[go: nahoru, domu]

JPH0565026B2 - - Google Patents

Info

Publication number
JPH0565026B2
JPH0565026B2 JP8367686A JP8367686A JPH0565026B2 JP H0565026 B2 JPH0565026 B2 JP H0565026B2 JP 8367686 A JP8367686 A JP 8367686A JP 8367686 A JP8367686 A JP 8367686A JP H0565026 B2 JPH0565026 B2 JP H0565026B2
Authority
JP
Japan
Prior art keywords
liquid
ion
electrode
porous
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8367686A
Other languages
Japanese (ja)
Other versions
JPS62239049A (en
Inventor
Osamu Seshimoto
Yoshio Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP8367686A priority Critical patent/JPS62239049A/en
Priority to EP87101366A priority patent/EP0231033B1/en
Priority to DE8787101366T priority patent/DE3766835D1/en
Priority to US07/009,470 priority patent/US4842712A/en
Publication of JPS62239049A publication Critical patent/JPS62239049A/en
Publication of JPH0565026B2 publication Critical patent/JPH0565026B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、水性液体、特に生物体液(血液、
尿、唾液等)中の特定のイオンの活量(または濃
度)をポテンシヨメトリーを利用して定量分析す
るためのイオン活量測定器具を用いるイオン活量
測定方法に関する。 [発明の背景] 液体(水道水、河川水、下水、産業排水など)
や生物体液(血液、尿、唾液等)の液滴量を用
い、その中に含まれる特定のイオンの活量をシー
ト状のイオン活量測定器具を用いて測定する方法
はすでに知られている。 すなわち、互いに電気的に分離された一対のイ
オン選択電極のそれぞれのイオン選択層表面に参
照液および被検液を付与し、ついでブリツジによ
り両液体を互いに電気的に導通させた状態におい
て、各イオン選択電極間の電位差を測定して、被
検液体のイオン活量を測定する方法である。その
ようなイオン活量測定器具の例としては、特開昭
52−142586号、特開昭56−6148号、特開昭58−
211648号、等に記載されているイオン活量測定器
具をあげることができる。 これらのイオン活量測定器具は、基本的には1
対のシート状イオン選択電極をイオン選択電極が
上側になるように配置し、液点着孔(標準液と被
検液の付与を行うための開口部)を設けており、
液点着孔を介しピペツトなどを用いて参照液およ
び被検液液を付与し、次いでそれらを多孔性の液
体分配部材により各イオン選択電極のイオン選択
層表面に接触させ両イオン選択電極間に発生する
電位差を測定することにより、イオン活量を測定
する。一方、1個のイオン活量測定器具に複数組
のイオン選択電極対を組み込んで、参照液と被検
液とをそれぞれ1回付与することにより複数種類
のイオンの活量を測定出来るようにしたものが特
開昭58−211648号で知られている。 上記のような複数のシート状イオン選択電極対
を用いて複数種のイオン活量を実質上同時に測定
する方法は簡便で優れた方法であるが、下記の問
題があることが判明した。 すなわち全血、全血希釈液、またはそれに準ず
る、血球(特に赤血球)を含む血液試料中のイオ
ン活量、特にカリウムイオン活量を測定すると
き、血液試料がイオン活量測定器具内において溶
血をおこし、そのためにカリウムイオン活量の測
定値が血液試料中の真のカリウムイオン活量と異
なることがしばしば生じた。これは同じ血液試料
から血球を除去して得た血漿で測定したカリウム
イオン活量との不一致として検出された。多孔性
液体分配部材として局方包帯、ろ紙などを用いた
場合、このような溶血による誤差が大きい。 測定液(試料液、参照液)が液体分配部材中に
浸透して各イオン選択電極面に到達して電位差測
定が可能になるまでには若干時間がかかる。前記
の溶血は、この時間が長いと、また全血と接触す
る液体分配部材の量(表面積)が多いと、一層ひ
どくなる。合成ポリマー繊維、たとえばポリエス
テル繊維の布は、全血の溶血を比較的生じにくい
材料であるが、液の展開が遅いので、一個の器具
を用いてカリウムイオン活量と他のイオン活量を
同時に測定するためのイオン活量測定器具の液体
分配部材として用いると、液の展開に時間がかか
り、溶血のおそれがある。 カリウムイオン選択電極に液を供給する液体分
配部材は、材料だけでなく、配置や構造も溶血を
防ぐように考慮する必要がある。 [発明の目的] 本発明の目的は、試料液や参照液を点着した後
安定した電位測定が可能になるまでの時間が短
く、血液の溶血による影響が防止され、全血試料
中のイオン活量測定に特に適したイオン活量測定
器具を用いるイオン活量測定方法を提供すること
にある。 [発明の構成] 本発明は、電気的に互いに分離された状態で一
体とされた一対の単電極の上にカリウムイオン及
びその他のイオンに選択的に応答するイオン選択
層が積層されてなる複数のシート状イオン選択電
極、 それぞれのシート状イオン選択電極をイオン選
択層を下測にして、かつ並行関係の配置で収納す
る、一対の点着口と多孔性ブリツジとを有する上
部枠体、 上部枠体の一対の点着口に点着された被検液及
び参照液のそれぞれをシート状イオン選択電極の
一対の単電極上のイオン選択層の表面に分配供給
する一対のバインダを含まないセルロース系のス
パンボンド不織布からなる多孔性液体分配部材、 一対の多孔性液体分配部材を互いに並行に、か
つシート状イオン選択電極とは交差するような位
置関係にて収納する下部枠体、そして、 シート状イオン選択電極のイオン選択層の表面
と多孔性液体分配部材の表面とが互いに接触しな
いように両者の間に介在し、点着口より点着され
る被検液と参照液とを多孔性液体分配部材に供給
する液受け口および多孔性液体分配部材により分
配される被検液と参照液とを各シート状イオン選
択電極のイオン選択層表面に供給するための液供
給口を有する水不透過性部材、 からなるイオン活量測定器具の一方の点着口に参
照液を、そして他方の点着口に血球含有被検液を
それぞれ点着し、該参照液と血球含有被検液とを
別々に液受け口を通過させた後、多孔性液体分配
部材のそれぞれに、それらの切断部の側面より導
入させ、該多孔性液体分配部材内を通過させて各
シート状イオン選択電極の単電極上のイオン選択
層表面に到達させ、その状態で各シート状イオン
選択電極の単電極間の電位差を測定することを特
徴とするイオン活量測定方法にある。 カリウムイオン選択電極に液を供給する多孔性
液分配部材の、試料液が供給される端部または切
断部の側面(あるいは切断部の端部)からカリウ
ムイオン選択電極の被検液体もしくは参照液と接
触する領域までの最短距離は、5mmをこえないこ
とが一層好ましい。カリウム選択電極に液を供給
する多孔性液分配部材の、被検液体もしくは参照
液が供給される端部または切断部の側面(あるい
は切断部の端部)から他端までの距離は、10mm以
上とすることが一層好ましい。 液体分配部材としては、バインダーを実質的に
含まないセルロース系スパンボンド不織布が好ま
しく、特にコツトンリンターを原料とする長繊維
からなるものが好ましい。たとえば、コツトンリ
ンターをシユバイツア液に溶解してなる紡糸液か
らスパンボンド法で製造した不織布が好ましい。
このような不織布は、一般に3秒間に部材の重量
の少なくとも10倍の血液を吸収することができ
る。 本発明で用いる多孔性液体分配部材の厚さは約
100μないし400μ程度が適当である。 ブリツジに用いる天然繊維の糸としては、綿、
絹等の、合成繊維としてはポリエステル、ポリア
ミド(例えばナイロン)等の糸を用いることがで
きる。 本発明で用いる多孔性液体分配部材は、特願昭
59−244200号に記載されたような形状とすること
もできる。 本発明のイオン活量測定器具は種々の具体的態
様をとることができるが、たとえば第1図のよう
な構造とすることも出来る。図において、10
1,102,103はイオン選択層を下面に有す
るシート状固体電極対(電気的に互いに分離され
た状態で一体とされた一対の単電極からなるも
の)、400は点着孔410および420を有し、
複数の固体電極対を収納する上部枠体、600は
点着孔410と420の間を連絡する天然または
合成繊維の糸、たとえばポリエステル糸からなる
多孔性ブリツジ、200は固体電極対のイオン選
択層の下面に接して設けられた水不透性部材であ
り、水不透性部材200には液受け孔210,2
20および液供給孔213,223;212,2
22;211,221が設けられている。312
および311は液供給孔213および212,2
11にそれぞれ液を分配する多孔性部材、322
および321は液供給孔223および222,2
21にそれぞれ液を分配する多孔性部材、500
は下部枠体で、凹陥枠体で、凹陥部510および
520内に多孔性液分配部材312と311およ
び322と321をそれぞれ収容する。本発明で
は、カリウムイオン選択電極対102に対し液を
供給する多孔性部材311(または321)の長
さを少なくとも8mm、好ましくは10mm以上とし、
液受け孔210(または220)に臨む多孔性部
材311(または321)の端からカリウムイオ
ン選択電極対102に対する液供給孔212まで
の最短距離を6mm以下、好ましくは5mm以下とす
ることが望ましい。下部枠体500には空気抜き
孔532,531;542,541が設けられて
いる。多孔性ブリツジ600は液供給孔の中心点
から偏心した位置を通つていてもよい。また多孔
性ブリツジ600は点着孔410と420の中間
では、上部枠体400の上面に密接して設けられ
ていることが好ましい。 特開昭60−155960号、特開昭60−260843号、特
開昭60−260844号に記載された構造にすることも
できる。 本発明のイオン活量測定器具は、また特願昭60
−180358号、特願昭60−180359号、特願昭60−
180360号に記載されたような構造とすることも出
来る。 これらのイオン活量測定器具を用いてイオン活
量を測定するには、例えば3個のイオン選択電極
対をそれぞれ、一対はカリウムイオン選択電極
対、他はナトリウム、塩素各イオンに選択性の電
極対とし、参照液と被検液を液点着孔に点着する
と、参照液と被検液はそれぞれ多孔性液分配部材
にその切断部の側面(切断部の端部でもよい)浸
透し、水不透性部材に設けられた液供給孔を経
て、各イオン選択電極の表面に供給される。その
結果、イオン選択電極内の一対の単電極の間にそ
れぞれ電位差が発生するので、イオン選択電極対
の両端に設けられた電気接続端子領域を介して、
電位差計で電位差を測定すればよい。 固体イオン選択電極としては、特開昭58−
211648号、特開昭60−237351号、特開昭60−
237352号、特開昭61−7460号、特開昭61−6461
号、特開昭61−7462号、特願昭60−232306号に記
載されたイオン選択電極を用いることができる。 イオン選択電極は、特開昭59−102146号、特開
昭58−156848号、特開昭60−243555号に記載され
た方法で製造することが出来る。 [発明の効果] 本発明では、全血などの血球含有被検液中のカ
リウムイオン測定用のイオン活量測定器具におけ
る多孔性液体分配部材として、従来用いられてい
る局方包帯あるいはろ紙などに代り、溶血性の低
いバインダを含まないセルロース系のスパンボン
ド不織布からなる多孔性液体分配部材を用い、か
つ被検液などの液体試料を分配部材の切断部の側
面(切断部の端部であつてもよい)から浸透させ
るようにしたため、全血などの血球含有被検液を
溶血の危険性が少ない状態で速やかにシート状イ
オン選択電極のイオン選択層の表面にまで到達さ
せることができる。従つて、本発明のイオン活量
測定方法を利用することにより、特に溶血の影響
を受けやすい全血のような血球含有液体試料中の
カリウムイオン活量を高い精度と信頼性にて測定
することができる。 以下に、実施例により本発明をさらに具体的に
説明する。 [実施例] (1) Ag/AgCl電極の作製 厚さ180ミクロンのポリエチレンテレフタレー
ト(PET)フイルムに、厚さ8000Åの銀層を蒸
着した連続蒸着膜を作り、幅24mmに切断した。こ
のフイルムの幅方向中央に深さ70ミクロンの溝を
ナイフの先端を用いて切り込んだ。また両端に3
mm幅でポリ塩化ビニルのトルエン−メチルエチル
ケトン混合溶剤溶液(はく離除去可能な皮膜形成
性マスク用レジスト)を塗布、乾燥し、厚さ30ミ
クロンの保護膜を設けた。塩酸60m−mol/、
重クロム酸カリウム12m−mol/を含む酸化ハ
ロゲン化処理液中で、30℃で90秒浸漬後、水洗乾
燥し、シート状Ag/AgCl電極を作製した。 (2) ナトリウムイオン選択電極の作製 下記組成の溶液を上記のAg/AgCl電極上に塗
布、乾燥した。 塩化ナトリウム 6g 水 50g エタノール 40g その後、下記組成の溶液を乾燥膜厚が25ミクロ
ンになるように塗布した。 塩化ビニル酢酸ビニル共重合体 重合比=90:10 0.9g (ユニオンカーバイド社製VYNS) ジオクチルセバケート 1.2g メチルモネンシン 0.1g テトラフエニルホウ酸ナトリウム 0.002g メチルエチルケトン 5.0g 界面活性剤 1%(信越化学製
SH510) 0.06g 次ぎに、両端部に塗布されているレジスト層を
静かにはぎとり、銀蒸着面を電気接続端子部とし
て露出させた。これを幅5mmに切断し、ナトリウ
ムイオン選択電極とした。 (3) カリウムイオン選択電極の作製 下記組成の溶液を前記のAg/AgCl電極上に塗
布、乾燥した。 塩化ナトリウム 2.78g 塩化カリウム 2.22g n―プロピルアルコール 32g 水 96g 界面活性剤 1%(信越化学
製 SH510) 0.06g その上に、下記組成の溶液を乾燥膜厚30ミクロ
ンになるように塗布し、両端のレジスト層をはぎ
とつて、カリウムイオン選択電極を完成した。 塩化ビニル酢酸ビニル共重合体 重合比=90:10 0.9g (ユニオンカーバイド社製VYNS) ジオクチルフタレート 2.4g バリノマイシン 44mg テトラキスパラクロロフエニルホウ酸カリウム
6mg メチルエチルケトン 5.0g 界面活性剤 1%(信越化学製
SH510) 0.05g (4) 塩素イオン選択電極の作製 前記Ag/AgCl電極上に乾燥膜厚12ミクロンに
なるように塗布し、両端のレジスト層をはぎとつ
て、塩素イオン選択電極とした。 ポリビニルブチラール 1.0g トリオクチルメチルアンモニウムクロライド
1.0g エタノール 7.0g 界面活性剤 1%(信越化学製
SH510)
0.04g(5) イオン活量測定器具の組み立て 第1図に分解図で示すような、1組の各直径4
mmの液点着孔410,420と2組の空気抜き孔
431,432;441,442を有する長さ28
mm、幅24mmのプラスチツク枠400の溝部分に、
液点着孔410,420をはさんで、一方にナト
リウム選択電極103、他方の側にカリウムイオ
ン選択電極102、塩素イオン選択電極101
を、イオン選択層が露出する向きに収納し、1組
の液受け孔210,220と3組の液供給孔21
3,223;212,222;211,221を
予め設けた両面接着テープ200を、液供給孔の
各列が前記各電極面に対向するように、電極およ
び枠体の面に貼り付けた。液受け孔210と液供
給孔213,212の各区心間の距離、液受け孔
220と液供給孔223,222の各中心間の距
離はそれぞれ5.8mmで、液供給孔212,211
の各中心間の距離と、液供給孔222,221の
各中心間の距離は、ともに5.7mmであつた。 次いで長繊維セルロース不織布である旭化成(株)
製ベンリーゼGS303(商品名:バインダを含
まないセルロース系のスパンボンド不織布)から
なる幅2mm、長さ13mmの1組の液分配部材31
1,321、および幅2mm、長さ7.3mmの他の1
組の液分配部材312,322を、前記両面接着
テープ200の上に、液供給孔210および22
0の中心からそれぞれ1mmの所に一端が位置し、
かつ各液供給孔をおおうように固定した。さら
に、この上に1組の溝部分510,520を有す
るポリスチレン製支持枠500を、溝部分51
0,520が上記液分配部材を収容するように貼
り付けた。このようにして組み立てられたイオン
活量測定器具は、液点着孔が上を向くようにして
使用される。 第2A図に上記のイオン活量測定器具の断面
図、第2B図に第2A図中のXで示した部分の拡
大図、第2C図に第1図のイオン活量測定器具の
平面図を示した。第2B図中、102aはカリウ
ムイオン選択電極のフイルム支持体、102bは
銀層、1002cは塩化銀層、102dは電解質
層、102eはイオン選択膜層を示す。 (7) 電位測定 上記のようにして作製されたイオン活量測定器
具の試料液用の液供給孔には、ヘパリン採血した
全血50μを、参照液用の液供給孔には下記組成
の参照液を、同時にそれぞれ点着し、1分後に発
生する電位差を、各電極の端子113,123;
112,122;111,121を介してオリオ
ン マイクロプロセツサー モデル901(Orion社
製)により測定した。比較のため、同じ全血試料
から遠心分離により得た血漿を用いて、同様にし
て電位を測定した。第1表に点着1分後のカリウ
ムイオン選択電極の電位差の5回の測定から検量
線を用いて求めたカリウムイオン活量(平均値)
を示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Technical field of the invention] The present invention relates to aqueous liquids, particularly biological body fluids (blood, blood, etc.).
The present invention relates to an ion activity measurement method using an ion activity measurement device for quantitatively analyzing the activity (or concentration) of a specific ion in urine, saliva, etc. using potentiometry. [Background of the invention] Liquids (tap water, river water, sewage, industrial wastewater, etc.)
There is already a known method for measuring the activity of specific ions contained in droplets of biological body fluids (blood, urine, saliva, etc.) using a sheet-shaped ion activity measurement device. . That is, a reference liquid and a test liquid are applied to the surface of each ion-selective layer of a pair of ion-selective electrodes that are electrically separated from each other, and then each ion is This method measures the ionic activity of the test liquid by measuring the potential difference between selected electrodes. An example of such an ion activity measuring instrument is
No. 52-142586, JP-A-56-6148, JP-A-58-
The ion activity measuring device described in No. 211648, etc. can be mentioned. These ion activity measurement instruments basically have 1
A pair of sheet-shaped ion-selective electrodes are arranged with the ion-selective electrode facing upward, and liquid spotting holes (openings for applying the standard solution and test liquid) are provided.
A reference solution and a test solution are applied through the liquid spotting hole using a pipette, etc., and then they are brought into contact with the ion selective layer surface of each ion selective electrode using a porous liquid distribution member, and the liquid is applied between both ion selective electrodes. Ion activity is measured by measuring the potential difference generated. On the other hand, by incorporating multiple ion-selective electrode pairs into one ion activity measurement device, it is possible to measure the activities of multiple types of ions by applying a reference solution and a test solution once each. This is known from Japanese Patent Application Publication No. 58-211648. Although the method of measuring the ion activities of a plurality of species substantially simultaneously using a plurality of sheet-like ion-selective electrode pairs as described above is a simple and excellent method, it has been found that there are the following problems. In other words, when measuring ion activity, especially potassium ion activity, in whole blood, whole blood diluted solution, or similar blood samples containing blood cells (especially red blood cells), it is important to note that the blood sample has not undergone hemolysis in the ion activity measurement device. This caused the measured potassium ion activity to often differ from the true potassium ion activity in the blood sample. This was detected as a discrepancy with the potassium ion activity measured in plasma obtained by removing blood cells from the same blood sample. When a topical bandage, filter paper, or the like is used as a porous liquid distribution member, errors due to such hemolysis are large. It takes some time for the measurement liquid (sample liquid, reference liquid) to permeate into the liquid distribution member and reach the surface of each ion selection electrode, making it possible to measure the potential difference. The hemolysis is exacerbated by the longer this time and by the greater the amount (surface area) of the liquid distribution member in contact with the whole blood. Synthetic polymer fibers, such as polyester fiber cloth, are materials that are relatively unlikely to cause hemolysis of whole blood, but because the liquid develops slowly, potassium ion activity and other ion activities can be simultaneously measured using one device. When used as a liquid distribution member of an ion activity measurement device, it takes time for the liquid to spread, and there is a risk of hemolysis. For the liquid distribution member that supplies liquid to the potassium ion selective electrode, it is necessary to consider not only the material but also the arrangement and structure to prevent hemolysis. [Objectives of the Invention] The objects of the present invention are to shorten the time until stable potential measurement is possible after applying a sample solution or reference solution, to prevent the effects of hemolysis of blood, and to reduce the amount of ions in whole blood samples. An object of the present invention is to provide a method for measuring ion activity using an ion activity measuring instrument particularly suitable for measuring activity. [Structure of the Invention] The present invention provides a plurality of ion-selective layers that selectively respond to potassium ions and other ions, which are stacked on a pair of single electrodes that are electrically separated from each other and integrated. a sheet-like ion-selective electrode; an upper frame having a pair of spotting ports and a porous bridge for storing each sheet-like ion-selective electrode in a parallel arrangement with the ion-selective layer below; A pair of binder-free cellulose for distributing each of the test liquid and reference liquid spotted in a pair of spotting ports of a frame onto the surface of an ion selective layer on a single electrode of a pair of sheet-like ion selective electrodes. a porous liquid distribution member made of a spunbond nonwoven fabric, a lower frame housing the pair of porous liquid distribution members parallel to each other and intersecting with the sheet-like ion selection electrode; and a sheet. The surface of the ion-selective layer of the shaped ion-selective electrode and the surface of the porous liquid distribution member are interposed between the two so that they do not come into contact with each other, and the sample liquid and reference liquid spotted from the spotting opening are A water-impermeable electrode having a liquid receiving port for supplying the liquid to the liquid distribution member and a liquid supply port for supplying the test liquid and reference liquid distributed by the porous liquid distribution member to the surface of the ion selective layer of each sheet-like ion selective electrode. A reference solution is applied to one spotting port of an ion activity measurement device consisting of a magnetic member, and a blood cell-containing test solution is placed in the other spotting port, and the reference solution and the blood cell-containing test solution are mixed. After passing through the liquid receiving ports separately, the liquid is introduced into each of the porous liquid distribution members from the side of the cut portion, and is passed through the porous liquid distribution member onto a single electrode of each sheet-like ion selective electrode. A method for measuring ion activity is characterized in that the potential difference between the single electrodes of each sheet-like ion-selective electrode is measured in that state. The test liquid or reference liquid of the potassium ion selective electrode is supplied from the end of the porous liquid distribution member that supplies the liquid to the potassium ion selective electrode or the side surface of the cut section (or the end of the cut section) to which the sample solution is supplied. More preferably, the shortest distance to the contact area does not exceed 5 mm. The distance from the end of the porous liquid distribution member that supplies liquid to the potassium selection electrode to which the test liquid or reference liquid is supplied or the side of the cut section (or the end of the cut section) to the other end is 10 mm or more. It is more preferable that As the liquid distribution member, a cellulose-based spunbond nonwoven fabric containing substantially no binder is preferred, and one made of long fibers made from cotton linters is particularly preferred. For example, a nonwoven fabric manufactured by a spunbond method from a spinning solution obtained by dissolving cotton linters in a Schweitzer solution is preferred.
Such non-woven fabrics are generally capable of absorbing at least 10 times the weight of the component in blood in 3 seconds. The thickness of the porous liquid distribution member used in the present invention is approximately
Approximately 100μ to 400μ is appropriate. The natural fiber threads used for buritsuji include cotton,
As synthetic fibers such as silk, threads of polyester, polyamide (for example, nylon), etc. can be used. The porous liquid distribution member used in the present invention is
It can also have a shape as described in No. 59-244200. Although the ion activity measuring instrument of the present invention can take various specific embodiments, it can also have a structure as shown in FIG. 1, for example. In the figure, 10
Reference numerals 1, 102, and 103 denote a pair of sheet-like solid electrodes (consisting of a pair of single electrodes that are electrically separated from each other and are integrated) having an ion-selective layer on the bottom surface; 400 has spotting holes 410 and 420; have,
An upper frame housing a plurality of solid electrode pairs; 600 is a porous bridge made of natural or synthetic fiber yarn, such as polyester yarn, communicating between spotting holes 410 and 420; 200 is an ion-selective layer of the solid electrode pairs; It is a water-impermeable member provided in contact with the lower surface of the water-impermeable member 200.
20 and liquid supply holes 213, 223; 212, 2
22; 211, 221 are provided. 312
and 311 are liquid supply holes 213 and 212, 2
porous member for distributing liquid to 11, respectively; 322;
and 321 are liquid supply holes 223 and 222, 2
500 porous members for distributing liquid to 21, respectively;
is a lower frame body, which is a concave frame body and accommodates porous liquid distribution members 312 and 311 and 322 and 321 in concave portions 510 and 520, respectively. In the present invention, the length of the porous member 311 (or 321) that supplies liquid to the potassium ion selective electrode pair 102 is at least 8 mm, preferably 10 mm or more,
It is desirable that the shortest distance from the end of the porous member 311 (or 321) facing the liquid receiving hole 210 (or 220) to the liquid supply hole 212 for the potassium ion selective electrode pair 102 be 6 mm or less, preferably 5 mm or less. Air vent holes 532, 531; 542, 541 are provided in the lower frame 500. The porous bridge 600 may pass through a position eccentric from the center point of the liquid supply hole. Further, it is preferable that the porous bridge 600 is provided in close contact with the upper surface of the upper frame 400 between the spotting holes 410 and 420. The structure described in JP-A-60-155960, JP-A-60-260843 and JP-A-60-260844 can also be used. The ion activity measuring instrument of the present invention is also disclosed in the patent application filed in 1983.
−180358, patent application No. 180359, patent application No. 1883-
A structure as described in No. 180360 can also be used. To measure ion activity using these ion activity measurement instruments, for example, three ion-selective electrode pairs are used, one pair is a potassium ion-selective electrode pair, and the other electrodes are selective for sodium and chlorine ions. When the reference liquid and the test liquid are placed in the liquid spotting hole as a pair, the reference liquid and the test liquid respectively penetrate into the porous liquid distribution member on the side of the cut part (or the end of the cut part), The liquid is supplied to the surface of each ion selection electrode through a liquid supply hole provided in the water-impermeable member. As a result, a potential difference is generated between each of the pair of single electrodes within the ion selection electrode, so that the electric potential difference is generated between the pair of single electrodes within the ion selection electrode.
The potential difference can be measured using a potentiometer. As a solid ion-selective electrode, JP-A-58-
No. 211648, JP-A-60-237351, JP-A-60-
No. 237352, JP-A-61-7460, JP-A-61-6461
The ion-selective electrodes described in Japanese Patent Application No. 61-7462 and Japanese Patent Application No. 60-232306 can be used. The ion selective electrode can be manufactured by the method described in JP-A-59-102146, JP-A-58-156848, and JP-A-60-243555. [Effects of the Invention] The present invention can be used as a porous liquid distribution member in an ion activity measurement device for measuring potassium ions in blood cell-containing test fluids such as whole blood. Instead, a porous liquid distribution member made of cellulose-based spunbond nonwoven fabric that does not contain a binder with low hemolytic properties is used, and the liquid sample such as the test liquid is placed on the side of the cut part of the distribution member (at the end of the cut part). Since the test liquid containing blood cells such as whole blood can be permeated from the surface of the ion-selective layer of the sheet-like ion-selective electrode with little risk of hemolysis. Therefore, by using the ion activity measurement method of the present invention, potassium ion activity in blood cell-containing liquid samples such as whole blood, which is particularly susceptible to hemolysis, can be measured with high accuracy and reliability. I can do it. EXAMPLES Below, the present invention will be explained in more detail with reference to Examples. [Example] (1) Preparation of Ag/AgCl electrode A continuous vapor deposition film was prepared by depositing a silver layer with a thickness of 8000 Å on a polyethylene terephthalate (PET) film with a thickness of 180 microns, and was cut into a width of 24 mm. A groove with a depth of 70 microns was cut in the center of the film in the width direction using the tip of a knife. Also, 3 on both ends
A solution of polyvinyl chloride in a mixed solvent of toluene and methyl ethyl ketone (removable film-forming mask resist) was coated in a mm width and dried to form a protective film with a thickness of 30 microns. Hydrochloric acid 60mmol/,
After being immersed for 90 seconds at 30°C in an oxidative halogenation treatment solution containing 12 mmol of potassium dichromate, the electrode was washed with water and dried to produce a sheet-like Ag/AgCl electrode. (2) Preparation of sodium ion selective electrode A solution having the following composition was applied onto the above Ag/AgCl electrode and dried. Sodium chloride 6g Water 50g Ethanol 40g Thereafter, a solution having the following composition was applied so that the dry film thickness was 25 microns. Vinyl chloride vinyl acetate copolymer Polymerization ratio = 90:10 0.9g (VYNS manufactured by Union Carbide) Dioctyl sebacate 1.2g Methylmonensin 0.1g Sodium tetraphenylborate 0.002g Methyl ethyl ketone 5.0g Surfactant 1% (Shin-Etsu Chemical) made
SH510) 0.06g Next, the resist layer applied to both ends was gently peeled off to expose the silver-deposited surface as an electrical connection terminal. This was cut into a width of 5 mm and used as a sodium ion selective electrode. (3) Preparation of potassium ion selective electrode A solution having the following composition was applied onto the above Ag/AgCl electrode and dried. Sodium chloride 2.78g Potassium chloride 2.22g n-propyl alcohol 32g Water 96g Surfactant 1% (Shin-Etsu Chemical SH510) 0.06g On top of this, a solution with the following composition was applied to a dry film thickness of 30 microns, and both ends were coated. By peeling off the resist layer, a potassium ion selective electrode was completed. Vinyl chloride vinyl acetate copolymer Polymerization ratio = 90:10 0.9g (VYNS manufactured by Union Carbide) Dioctyl phthalate 2.4g Valinomycin 44mg Potassium tetrakis parachlorophenyl borate
6mg Methyl ethyl ketone 5.0g Surfactant 1% (Shin-Etsu Chemical)
SH510) 0.05g (4) Preparation of chloride ion selective electrode A chloride ion selective electrode was prepared by coating the Ag/AgCl electrode to a dry film thickness of 12 microns, and peeling off the resist layers at both ends. Polyvinyl butyral 1.0g trioctylmethylammonium chloride
1.0g Ethanol 7.0g Surfactant 1% (Shin-Etsu Chemical)
SH510)
0.04g(5) Assembling the ion activity measuring instrument As shown in the exploded view in Figure 1, one set of each diameter 4
Length 28 mm with liquid spot holes 410, 420 and two sets of air vent holes 431, 432; 441, 442
mm, in the groove part of the plastic frame 400 with a width of 24 mm,
A sodium selection electrode 103 is placed on one side, a potassium ion selection electrode 102 and a chloride ion selection electrode 101 are placed on the other side across the liquid spotting holes 410 and 420.
are housed in the direction in which the ion selective layer is exposed, and one set of liquid receiving holes 210, 220 and three sets of liquid supply holes 21 are arranged.
A double-sided adhesive tape 200 with 3,223; 212, 222; 211, 221 provided thereon was attached to the electrode and frame surfaces such that each row of liquid supply holes faced each of the electrode surfaces. The distance between the centers of the liquid receiving hole 210 and the liquid supply holes 213, 212, and the distance between the centers of the liquid receiving hole 220 and the liquid supply holes 223, 222 are 5.8 mm, respectively.
The distance between the centers of the liquid supply holes 222 and 221 and the distance between the centers of the liquid supply holes 222 and 221 were both 5.7 mm. Next is Asahi Kasei Corporation, which is a long-fiber cellulose nonwoven fabric.
A set of liquid distribution members 31 with a width of 2 mm and a length of 13 mm, made of Benliese GS303 (product name: cellulose spunbond nonwoven fabric containing no binder) manufactured by Manufacturer.
1,321, and another 1 with a width of 2 mm and a length of 7.3 mm.
A pair of liquid distribution members 312 and 322 are placed on top of the double-sided adhesive tape 200 through the liquid supply holes 210 and 22.
One end is located 1 mm from the center of 0,
It was fixed so as to cover each liquid supply hole. Further, a polystyrene support frame 500 having a pair of groove portions 510 and 520 is placed on top of the groove portion 51.
0.520 was attached so as to accommodate the liquid distribution member. The ion activity measurement device assembled in this manner is used with the liquid spotting hole facing upward. Figure 2A is a cross-sectional view of the above ion activity measuring instrument, Figure 2B is an enlarged view of the part indicated by X in Figure 2A, and Figure 2C is a plan view of the ion activity measuring instrument shown in Figure 1. Indicated. In FIG. 2B, 102a is a film support of a potassium ion selective electrode, 102b is a silver layer, 1002c is a silver chloride layer, 102d is an electrolyte layer, and 102e is an ion selective membrane layer. (7) Potential measurement In the sample liquid supply hole of the ion activity measurement device prepared as described above, 50μ of whole blood collected with heparin was added, and in the reference liquid supply hole, the following composition was used. The liquid is applied to each electrode at the same time, and the potential difference generated after one minute is measured at the terminals 113, 123 of each electrode;
112,122; 111,121 was measured using an Orion Microprocessor Model 901 (manufactured by Orion). For comparison, potentials were measured in the same manner using plasma obtained from the same whole blood sample by centrifugation. Table 1 shows the potassium ion activity (average value) determined using a calibration curve from 5 measurements of the potential difference of the potassium ion selective electrode 1 minute after spotting.
shows. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によれば、被検液として全血な
どの血球含有液体試料を用いた場合、Naイオン
やClイオンのみでなく、Kイオンでも、被検液と
して血漿を用いた場合と略同一のイオン活量値が
測定された。すなわち全血などの血球含有液体試
料を被検液として用いても溶血が発生しないこと
が確認された。本発明のイオン活量測定器具の一
実施態様を示す分解斜視図である。第2A図は第
1図のイオン活量測定器具の断面図、第2B図は
第2A図中Xで示した部分の拡大図、第2C図は
第1図のイオン活量測定器具の平面図である。
FIG. 1 shows that according to the present invention, when a liquid sample containing blood cells such as whole blood is used as a test liquid, not only Na ions and Cl ions but also K ions are detected, and plasma is used as a test liquid. Almost identical ion activity values were measured. In other words, it was confirmed that hemolysis does not occur even when a liquid sample containing blood cells such as whole blood is used as a test liquid. FIG. 1 is an exploded perspective view showing an embodiment of the ion activity measuring device of the present invention. Figure 2A is a cross-sectional view of the ion activity measuring device shown in Figure 1, Figure 2B is an enlarged view of the portion indicated by X in Figure 2A, and Figure 2C is a plan view of the ion activity measuring device shown in Figure 1. It is.

Claims (1)

【特許請求の範囲】 1 電気的に互いに分離された状態で一体とされ
た一対の単電極の上にカリウムイオン及びその他
のイオンに選択的に応答するイオン選択層が積層
されてなる複数のシート状イオン選択電極、 それぞれのシート状イオン選択電極をイオン選
択層を下側にして、かつ並行関係の配置で収納す
る、一対の点着口と多孔性ブリツジとを有する上
部枠体、 上部枠体の一対の点着口に点着された被検液及
び参照液のそれぞれをシート状イオン選択電極の
一対の単電極上のイオン選択層の表面に分配供給
する一対のバインダを含まないセルロース系のス
パンボンド下織布からなる多孔性液体分配部材、 一対の多孔性液体分配部材を互いに並行に、か
つシート状イオン選択電極とは交差するような位
置関係にて収納する下部枠体、そして シート状イオン選択電極のイオン選択層の表面
と多孔性液体分配部材の表面とが互いに接触しな
いように両者の間に介在し、点着口より点着され
る被検液と参照液とを多孔性液体分配部材に供給
する液受け口および多孔性液体分配部材により分
配される被検液と参照液とを各シート状イオン選
択電極のイオン選択層表面に供給するための液供
給口を有する水不透過性部材、 からなるイオン活量測定器具の一方の点着口に参
照液を、そして他方の点着口に血球含有被検液を
それぞれ点着し、該参照液と血球含有被検液とを
別々に液受け口を通過させた後、多孔性液体分配
部材のそれぞれに、それらの切断部の側面より導
入させ、該多孔性液体分配部材内を通過させて各
シート状イオン選択電極の単電極上のイオン選択
層表面に到達させ、その状態で各シート状イオン
選択電極の単電極間の電位差を測定することを特
徴とするイオン活量測定方法。
[Claims] 1. A plurality of sheets in which an ion selective layer that selectively responds to potassium ions and other ions is laminated on a pair of single electrodes that are electrically separated from each other and integrated. an upper frame body having a pair of spotting ports and a porous bridge for accommodating each sheet-shaped ion selective electrode in a parallel arrangement with the ion selective layer facing down; an upper frame body; A pair of binder-free cellulose-based liquids that distribute the test solution and reference solution spotted at a pair of spotting ports onto the surface of an ion selective layer on a single electrode of a pair of sheet-like ion selective electrodes. a porous liquid distribution member made of a spunbond lower woven fabric; a lower frame body housing the pair of porous liquid distribution members in a positional relationship parallel to each other and intersecting the sheet-like ion-selective electrode; and a sheet-like structure. The surface of the ion-selective layer of the ion-selective electrode and the surface of the porous liquid distribution member are interposed between the two so that they do not come into contact with each other, and the sample liquid and reference liquid spotted from the spotting port are distributed between the porous liquid and the surface of the porous liquid distribution member. A water impermeable electrode having a liquid receiving port for supplying the liquid to the distribution member and a liquid supply port for supplying the test liquid and reference liquid distributed by the porous liquid distribution member to the surface of the ion selective layer of each sheet-like ion selective electrode. A reference solution is applied to one spotting port of an ion activity measurement device consisting of a member, and a blood cell-containing test solution is spotted to the other spotting port, and the reference solution and the blood cell-containing test solution are separated. After passing through the liquid receiving port, the liquid is introduced into each of the porous liquid distribution members from the side of the cut portion, and the liquid is passed through the porous liquid distribution member to form a liquid on a single electrode of each sheet-like ion selective electrode. 1. A method for measuring ion activity, which comprises making the ion selection layer reach the surface of the ion selection layer, and measuring the potential difference between the single electrodes of each sheet-like ion selection electrode in that state.
JP8367686A 1986-01-31 1986-04-11 Ion activity measuring instrument Granted JPS62239049A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8367686A JPS62239049A (en) 1986-04-11 1986-04-11 Ion activity measuring instrument
EP87101366A EP0231033B1 (en) 1986-01-31 1987-02-02 Device for measuring ion activity
DE8787101366T DE3766835D1 (en) 1986-01-31 1987-02-02 DEVICE FOR MEASURING ION ACTIVITY.
US07/009,470 US4842712A (en) 1986-01-31 1987-02-02 Device for measuring ion activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8367686A JPS62239049A (en) 1986-04-11 1986-04-11 Ion activity measuring instrument

Publications (2)

Publication Number Publication Date
JPS62239049A JPS62239049A (en) 1987-10-19
JPH0565026B2 true JPH0565026B2 (en) 1993-09-16

Family

ID=13809084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8367686A Granted JPS62239049A (en) 1986-01-31 1986-04-11 Ion activity measuring instrument

Country Status (1)

Country Link
JP (1) JPS62239049A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263798A (en) * 2006-03-29 2007-10-11 Fujifilm Corp Chlorine ion selective electrode

Also Published As

Publication number Publication date
JPS62239049A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
US4437970A (en) Device for determining ionic activity
US4631174A (en) Multilayer chemical analysis member having an outer waterproof layer
SK99297A3 (en) Volume independent diagnostic test element and method to assay analytes using it
GB2121183A (en) Ion selective electrode and production thereof
US4532107A (en) Reagent test device
CA2286919C (en) Spreading layers, wetting agents for their production and their use in test strips
US4340565A (en) Hematocrit value determining element
US4250010A (en) Integrated ion selection electrode device
EP0239174B1 (en) Biological diagnostic device
US4842712A (en) Device for measuring ion activity
JPS5814050A (en) Ion activity measuring apparatus
JP2002039990A (en) Ion-selective electrode and its manufacturing method
JPH0565026B2 (en)
CN105122017B (en) Blended sliver
JP2001281216A (en) Ion-selective electrode
JPH0551099B2 (en)
KR102169586B1 (en) Strip structure for measuring potassium ions
JPH0556819B2 (en)
JPH01134246A (en) Biosensor
JPS5930055A (en) Ion activity measuring apparatus
JP2948423B2 (en) Ion selective electrode for potassium ion analysis
JPH01180445A (en) Ion selective electrode
JPH01212344A (en) Ion activity measuring instrument
JPS5883247A (en) Measuring instrument for ionic activity
JPH03291557A (en) Ion selective electrode and ion activity measuring element using this electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees