[go: nahoru, domu]

JPH06224140A - Manufacture of silicon laminate - Google Patents

Manufacture of silicon laminate

Info

Publication number
JPH06224140A
JPH06224140A JP5265988A JP26598893A JPH06224140A JP H06224140 A JPH06224140 A JP H06224140A JP 5265988 A JP5265988 A JP 5265988A JP 26598893 A JP26598893 A JP 26598893A JP H06224140 A JPH06224140 A JP H06224140A
Authority
JP
Japan
Prior art keywords
silicon
film
carbon
polycrystalline silicon
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5265988A
Other languages
Japanese (ja)
Inventor
Fumitaka Tamura
文孝 田村
Yoshinori Okayasu
良宣 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP5265988A priority Critical patent/JPH06224140A/en
Publication of JPH06224140A publication Critical patent/JPH06224140A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a silicon laminate manufacturing method wherein a polycrystalline silicon film which is very thin, large in crystal grain diameter, and hardly separated off from a substrate can be formed in a short time. CONSTITUTION:A carbon fiber woven cloth 21 (carbon base material) is heated at a temperature of 1400 deg.C, a mixed gas of silane, methane, and phosphine (N-type dopant) is fed and made to react with each other in vapor on the woven cloth 21, whereby a N-type dopant-loaded intermediate film 22 of silicon carbide uniform in thickness and quality is formed on the cloth 21, silicon particles are introduced into plasma of high temperature to be fused, the fused silicon particles are turned into a polycrystalline silicon film 23 large in crystal grain diameter on the intermediate film 22, and thus a silicon laminate 20 composed of a woven cloth, an intermediate film, and a polycrystalline silicon film is manufactured. A polycrystalline silicon film can be lessened in film stress by the action of an intermediate film, and furthermore a woven cloth and a polycrystalline silicon film can be ohmically joined together, so that a BSF effect can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素系基材とこの基材
上に製膜された多結晶シリコン膜とでその主要部が構成
され、例えば、太陽電池の一部を構成するシリコン層と
裏面電極部材として一体的に適用可能なシリコン積層体
に係り、特に、適用できるシリコン原料の選択範囲が広
く、かつ、上記基材からの剥離が起り難く薄膜でしかも
その結晶粒径が大きい多結晶シリコン膜を短時間で形成
できるシリコン積層体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based base material and a polycrystalline silicon film formed on the base material, the main part of which is composed of, for example, a silicon layer forming a part of a solar cell. And a silicon laminate that can be integrally applied as a back surface electrode member, and in particular, a wide selection range of applicable silicon raw materials, a thin film that does not easily peel from the base material, and a large crystal grain size thereof. The present invention relates to a method for manufacturing a silicon laminate, which can form a crystalline silicon film in a short time.

【0002】[0002]

【従来の技術】炭素系基材を適用したこの種のシリコン
積層体の製造方法としては、例えば、特開昭55−73
450号公報に記載されたものが知られている。
2. Description of the Related Art As a method for producing a silicon laminate of this kind using a carbon-based material, for example, Japanese Patent Laid-Open No. 55-73 is used.
The one described in Japanese Patent Publication No. 450 is known.

【0003】すなわち、この製造方法は、融解槽に収容
された融体シリコン内に一連の穴を備えた網状構造のカ
ーボンファイバー織布等を浸漬し、上記穴内並びに表面
に融体シリコンを充填並びに被覆すると共に、この融体
を結晶化させてシリコン積層体を求める方法で、製造さ
れたシリコン積層体は、例えば、図5に示された太陽電
池のシリコン層と裏面電極部材等として一体的に適用さ
れている。
That is, in this manufacturing method, a carbon fiber woven cloth having a net-like structure having a series of holes is dipped in the melted silicon contained in the melting tank, and the melted silicon is filled in and inside the holes. The silicon laminate manufactured by the method of coating and crystallizing this melt to obtain a silicon laminate is, for example, integrated with the silicon layer of the solar cell shown in FIG. Has been applied.

【0004】尚、図5中、aはp型シリコン層、bはn
型シリコン層、cはITO等の反射防止層、dは櫛歯状
電極、eはオーミック性接合層、fは裏面電極をそれぞ
れ示している。
In FIG. 5, a is a p-type silicon layer and b is n.
A type silicon layer, c is an antireflection layer such as ITO, d is a comb-shaped electrode, e is an ohmic contact layer, and f is a backside electrode.

【0005】ところで、この方法によりシリコン積層体
を製造する場合、上記融体シリコンを保持しかつ結晶化
させる一連の穴を備えた網状構造のカーボンファイバー
織布等を適用することが前提となるため、この製造方法
においてはその表面並びに内部構造が密状態にあるシー
ト状基材を適用することが困難な欠点があり、かつ、上
記カーボンファイバー織布等の基材が穴を備えている分
だけその電気抵抗が大きくなるため、組込まれた太陽電
池についてその光電変換効率の向上を図り難い欠点があ
った。
By the way, when a silicon laminate is manufactured by this method, it is premised that a carbon fiber woven fabric having a net-like structure having a series of holes for holding and crystallizing the molten silicon is applied. In this manufacturing method, there is a drawback that it is difficult to apply a sheet-like base material whose surface and internal structure are in a dense state, and the base material such as the carbon fiber woven cloth has holes. Since the electric resistance becomes large, there is a drawback that it is difficult to improve the photoelectric conversion efficiency of the incorporated solar cell.

【0006】このため、従来においては、通常、熱CV
D法やプラズマCVD法等の製膜手段により炭素系基材
面に多結晶シリコン膜を直接製膜させてシリコン積層体
を製造し、このシリコン積層体を上記太陽電池等に組込
む方法が採られている。
Therefore, in the past, the thermal CV is usually used.
A method is adopted in which a polycrystalline silicon film is directly formed on a carbon-based substrate surface by a film forming means such as D method or plasma CVD method to manufacture a silicon laminated body, and the silicon laminated body is incorporated into the solar cell or the like. ing.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記製膜手段
を適用して製造された後者のシリコン積層体においても
以下のような問題点があった。
However, the latter silicon laminated body manufactured by applying the above-mentioned film forming means also has the following problems.

【0008】すなわち、炭素系基材面に対して熱CVD
法等の手段により多結晶シリコン膜を製膜した場合、上
記炭素系基材とシリコンの熱膨張係数の差異に起因して
製膜された多結晶シリコン膜にストレスが生じ易い欠点
があり、多結晶シリコン膜の膜厚をある程度の大きさに
設定しないと膜内に欠陥やクラックが生じ易くなり、か
つ、この膜ストレスが原因となって炭素系基材から多結
晶シリコン膜が剥がれ易いといった問題点があった。
That is, thermal CVD is performed on the surface of the carbon-based substrate.
When a polycrystalline silicon film is formed by a method such as a method, there is a drawback that stress tends to occur in the formed polycrystalline silicon film due to the difference in thermal expansion coefficient between the carbon-based base material and silicon. Unless the thickness of the crystalline silicon film is set to a certain degree, defects and cracks are likely to occur in the film, and the film stress easily causes the polycrystalline silicon film to peel off from the carbon-based substrate. There was a point.

【0009】また、多結晶シリコン膜の製膜法自体につ
いても、熱CVD法においてはこの方法に適用できるシ
リコン原料が分解され易いSiH4、Si26 等のシラ
ン化合物やSiH2Cl2 、SiHCl3 等のハロゲン
化珪素に限られ、SiF4 、SiCl4 、Si26
及び、SiH22 等の分解され難いハロゲン化珪素や
精製処理が不十分な金属級シリコン粒子(MG・Si)
等の適用が困難なためその材料選択範囲が狭い欠点があ
り、かつ、上記SiH4 等のシラン化合物を適用するに
してもその分解率はあまり高くなく、その分、基材への
材料供給速度が遅くなるため多結晶シリコンの製膜に時
間を要する問題点があった。
Also in the method of forming a polycrystalline silicon film itself, a silane compound such as SiH 4 , Si 2 H 6 or SiH 2 Cl 2 which can easily decompose the silicon raw material applicable to this method in the thermal CVD method, or SiH 2 Cl 2 , Limited to silicon halides such as SiHCl 3 , SiF 4 , SiCl 4 , Si 2 F 6 ,
Also, it is difficult to decompose silicon halide such as SiH 2 F 2 or metal grade silicon particles (MG / Si) that have not been sufficiently purified.
However, the material selection range is narrow because it is difficult to apply, and even if the above silane compounds such as SiH 4 are applied, the decomposition rate is not so high, and the material supply rate to the substrate is correspondingly high. However, there is a problem in that it takes a long time to form a film of polycrystalline silicon because of slowing down.

【0010】他方、プラズマCVD法においても適用で
きる材料の選択範囲が狭い欠点があり、かつシリコン原
料の分解率が低いため上記熱CVD法と同様に多結晶シ
リコンの製膜に時間を要する問題点があった。また、プ
ラズマCVD法は低温条件下においてなされるため基材
に耐熱性が要求されない利点を有しているが、その反
面、製膜処理が低温でなされることから結晶粒径の大き
い多結晶シリコン膜が求め難い問題点があった。
On the other hand, the plasma CVD method has a drawback that the selection range of applicable materials is narrow, and the decomposition rate of silicon raw material is low, so that it takes time to form a polycrystalline silicon film as in the thermal CVD method. was there. Further, the plasma CVD method has an advantage that the substrate is not required to have heat resistance because it is performed under a low temperature condition, but on the other hand, since the film forming process is performed at a low temperature, polycrystalline silicon having a large crystal grain size is used. There was a problem that the film was difficult to obtain.

【0011】このような技術的背景の下、本発明者等は
カーボンファイバー等の炭素系基材と、この炭素系基材
の表面に形成されn型又はp型ドーパントが混入された
炭化シリコンより成る中間膜と、この中間膜上に製膜さ
れた多結晶シリコン膜とでその主要部が構成されるシリ
コン積層体を既に創案している。
Under such a technical background, the present inventors have made use of a carbon-based substrate such as carbon fiber and silicon carbide formed on the surface of the carbon-based substrate and mixed with an n-type or p-type dopant. We have already created a silicon laminated body in which the main part of the intermediate film is a polycrystalline silicon film formed on this intermediate film.

【0012】そして、このシリコン積層体によれば、化
学的並びに物理的に炭素とシリコンとの中間的性質を有
する炭化シリコンより成る中間膜が上記炭素系基材と多
結晶シリコン膜との間に介在されているため、炭素系基
材と多結晶シリコン膜との化学的親和性の向上が図れか
つ多結晶シリコン製膜直後における膜ストレスの低減を
図ることができ、また、上記炭化シリコンより成る中間
膜内にはn型又はp型ドーパントが混入されているた
め、炭素系基材と多結晶シリコン膜との間のオーミック
性接合を形成することが可能となり、かつ、n型又はp
型ドーパントの作用により上記炭化シリコンから成る中
間膜の電気抵抗を下げられると共に、多結晶シリコン膜
に対して電界が生じるためBSF効果を得ることも可能
にするものであった。
According to this silicon laminate, an intermediate film made of silicon carbide having an intermediate property between carbon and silicon chemically and physically is provided between the carbon-based substrate and the polycrystalline silicon film. Since it is interposed, the chemical affinity between the carbon-based base material and the polycrystalline silicon film can be improved, and the film stress can be reduced immediately after the polycrystalline silicon film is formed. Since the n-type or p-type dopant is mixed in the intermediate film, it becomes possible to form an ohmic contact between the carbon-based substrate and the polycrystalline silicon film, and the n-type or p-type is formed.
By the action of the type dopant, the electrical resistance of the intermediate film made of silicon carbide can be lowered, and an electric field is generated in the polycrystalline silicon film, so that the BSF effect can be obtained.

【0013】そこで、本発明の目的はこのようなシリコ
ン積層体を簡便にかつ経済的に大量生産可能な製造方法
を提供することにある。
Therefore, an object of the present invention is to provide a manufacturing method capable of mass-producing such a silicon laminate easily and economically.

【0014】[0014]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、炭素系基材と、この炭素系基材の表面に形成
されn型又はp型ドーパントが混入された炭化シリコン
より成る中間膜と、この中間膜上に製膜された多結晶シ
リコン膜とで構成されるシリコン積層体の製造方法を前
提とし、シリコンの融点直下温度に設定された炭素系基
材に対しガス状のシリコン原料、炭素原料及びn型又は
p型ドーパントガスとで構成される混合ガスを供給し、
この混合ガスを上記炭素系基材上で反応させてn型又は
p型ドーパントが混入された炭化シリコンより成る中間
膜を製膜した後、シリコン原子が含まれるシリコン原料
を高温プラズマ中に導入してこの原料を溶融又は分解
し、この溶融又は分解物を上記シリコンの融点直下温度
に設定された炭素系基材の中間膜上に製膜させて多結晶
シリコン膜を形成することを特徴とするものである。
That is, the invention according to claim 1 is an intermediate product comprising a carbon-based base material and silicon carbide formed on the surface of the carbon-based base material and mixed with an n-type or p-type dopant. Assuming a method for manufacturing a silicon laminated body composed of a film and a polycrystalline silicon film formed on this intermediate film, gaseous silicon is used for a carbon-based base material set at a temperature just below the melting point of silicon. A mixed gas composed of a raw material, a carbon raw material, and an n-type or p-type dopant gas is supplied,
After reacting this mixed gas on the carbon-based substrate to form an intermediate film made of silicon carbide mixed with an n-type or p-type dopant, a silicon raw material containing silicon atoms is introduced into high temperature plasma. Characterized in that the raw material is melted or decomposed, and the melted or decomposed material is formed on an intermediate film of a carbon-based substrate whose temperature is set just below the melting point of silicon to form a polycrystalline silicon film. It is a thing.

【0015】以下、請求項1に係る発明について図面を
参照して詳細に説明する。
The invention according to claim 1 will be described below in detail with reference to the drawings.

【0016】まず、この製造方法に適用される装置とし
ては、図2に示すように数千〜一万度程度の高温プラズ
マを発生させる高温プラズマ発生部1と、この高温プラ
ズマ発生部1に隣接して設けられ炭素系基材2が配置さ
れる反応室3とでその主要部が構成され、シリコンの融
点(1430℃)直下温度に設定された上記炭素系基材
2に対しガス状のシリコン原料、炭素原料及びn型又は
p型ドーパントガスとで構成される混合ガスを供給し、
この混合ガスを上記炭素系基材2上で反応させてn型又
はp型ドーパントが混入された炭化シリコン(SiC)
より成る中間膜を製膜した後、上記高温プラズマ発生部
1に導入されて溶融又は分解されたシリコン原料を上記
シリコンの融点直下温度に設定された炭素系基材2の中
間膜上に製膜させて多結晶シリコン膜を形成するもので
ある。
First, as an apparatus applied to this manufacturing method, as shown in FIG. 2, a high temperature plasma generating section 1 for generating high temperature plasma of several thousands to 10,000 degrees, and a high temperature plasma generating section 1 are adjacent to the high temperature plasma generating section 1. And a reaction chamber 3 in which the carbon-based base material 2 is disposed, and the main part thereof is configured, and gaseous silicon is supplied to the carbon-based base material 2 set to a temperature just below the melting point (1430 ° C.) of silicon. A mixed gas composed of a raw material, a carbon raw material, and an n-type or p-type dopant gas is supplied,
Silicon carbide (SiC) in which an n-type or p-type dopant is mixed by reacting this mixed gas on the carbon-based substrate 2
After the formation of an intermediate film consisting of the above, the silicon raw material introduced into the high temperature plasma generating part 1 and melted or decomposed is formed on the intermediate film of the carbon-based substrate 2 which is set at a temperature just below the melting point of silicon. Then, a polycrystalline silicon film is formed.

【0017】尚、上記反応室3の下流側には排気系4が
設けられており、シリコン原料に含まれていた揮発成分
や炭素系基材2に製膜されなかったシリコン等を排出す
るように構成されている。また、図2中、5はシリコン
原料であるシリコン粒子6を収容する容器、7は上記炭
素系基材2を保持する基材ホルダー、8はこの基材ホル
ダー7内に設けられた加熱手段をそれぞれ示している。
An exhaust system 4 is provided on the downstream side of the reaction chamber 3 so as to discharge volatile components contained in the silicon raw material and silicon not deposited on the carbon-based substrate 2. Is configured. Further, in FIG. 2, 5 is a container for containing silicon particles 6 as a silicon raw material, 7 is a base material holder for holding the carbon-based base material 2, and 8 is a heating means provided in the base material holder 7. Shown respectively.

【0018】ここで、上記高温プラズマを発生させる手
段としては、アークプラズマを用いる直流法、誘導プラ
ズマを用いる高周波法、並びに、アークプラズマと誘導
プラズマを併用する併用法があり本発明においてはいず
れの方法も適用できる。
Here, as the means for generating the above-mentioned high temperature plasma, there are a direct current method using arc plasma, a high frequency method using induction plasma, and a combination method using both arc plasma and induction plasma. The method can also be applied.

【0019】すなわち、上記直流法においては図3に示
すようにDCプラズマトーチ16の電極部11と陰極部
12の間でアーク放電を発生させ、上記電極部11と陰
極部12のギャップ間を流れるアルゴンガス、水素ガス
等を分解させて高温プラズマを発生させる。そして、高
温プラズマが発生している部位へシリコン原料を導入
し、このシリコン原料を高温のアルゴンプラズマ、水素
プラズマ等により溶融、分解させると共にこの溶融又は
分解物を上記炭素系基材2側へ輸送させて多結晶シリコ
ン膜を形成するものである。他方、上記高周波法におい
ては図4に示すようにアルゴンガス、水素ガス等が供給
される石英管等管13の中央にRFプラズマコイル14
を巻回し、かつ、このRFプラズマコイル14により誘
導プラズマを発生させるもので上記直流法に較べ広がっ
たプラズマフレーム15が形成される。また、上記併用
法はこれ等直流法と高周波法とを組合わせた方法である
(図2参照)。
That is, in the DC method, as shown in FIG. 3, an arc discharge is generated between the electrode portion 11 and the cathode portion 12 of the DC plasma torch 16, and the arc discharge flows between the electrode portion 11 and the cathode portion 12. Argon gas, hydrogen gas, etc. are decomposed to generate high temperature plasma. Then, a silicon raw material is introduced into a portion where high-temperature plasma is generated, the silicon raw material is melted and decomposed by high-temperature argon plasma, hydrogen plasma, etc., and the molten or decomposed product is transported to the carbon-based substrate 2 side. Then, a polycrystalline silicon film is formed. On the other hand, in the high frequency method, as shown in FIG. 4, an RF plasma coil 14 is provided at the center of a quartz tube 13 to which argon gas, hydrogen gas, etc. are supplied.
The plasma frame 15 is formed by winding RF coil and generating induction plasma by the RF plasma coil 14 and is wider than the DC method. The combined method is a combination of the direct current method and the high frequency method (see FIG. 2).

【0020】そして、直流又は高周波の投入電力、アル
ゴンガス、水素ガス等の流量、以下に述べるシリコン原
料の投入量並びにその種類等を適宜調整することにより
上記プラズマフレーム15の形状、シリコン原料の溶融
又は分解状態、この溶融又は分解物中に含まれるシリコ
ン成分の濃度並びにその流速等を制御することが可能に
なるため、これ等の条件を適宜選定することにより多結
晶シリコン膜の製膜条件を調整することが可能となる。
The shape of the plasma frame 15 and the melting of the silicon raw material are adjusted by appropriately adjusting the input power of direct current or high frequency, the flow rate of argon gas, hydrogen gas, etc., the input amount of the silicon raw material and the type thereof described below. Alternatively, since it becomes possible to control the decomposition state, the concentration of the silicon component contained in the melted or decomposed product, the flow rate thereof, etc., the film forming conditions for the polycrystalline silicon film can be determined by appropriately selecting these conditions. It becomes possible to adjust.

【0021】尚、上記高温プラズマ発生部1内における
圧力条件は、この高温プラズマ発生部1内へのシリコン
原料の供給のし易さや製造装置の構成の簡略化等を考慮
して、通常、大気圧又は大気圧近傍(数百Torr)の
条件に設定されるが、これより低い条件、例えば数十T
orrに設定しても当然のことながらよい。そして、高
温プラズマ発生部1内の圧力条件をこのように低く設定
した場合、上記プラズマフレーム15(プラズマ空間)
が広がるためシリコン原料の溶融又は分解物を炭素系基
材2の広い領域へ供給することが可能となり、上記炭素
系基材2上に大面積でかつ膜質均一な多結晶シリコン膜
を形成できる利点を有している。但し、プラズマ空間が
広がることからその単位体積当りのエネルギー供給量が
低下するため、直流又は高周波の投入電力を増大させる
ことを要する。また、高温プラズマ発生部1内の圧力条
件を低く設定した場合、プラズマフレーム15が伸びて
炭素系基材2が過熱されることがある。このような場合
にはアルゴンガスや水素ガス等の流量を下げることによ
り上記過熱現象を簡単に回避することができる。
The pressure condition in the high temperature plasma generating section 1 is usually large in consideration of the ease of supplying the silicon raw material into the high temperature plasma generating section 1 and the simplification of the structure of the manufacturing apparatus. The condition is set to atmospheric pressure or near atmospheric pressure (several hundred Torr), but lower condition, for example, several tens T
Of course, it may be set to orr. When the pressure condition in the high temperature plasma generation unit 1 is set to be low as described above, the plasma flame 15 (plasma space)
As a result, the melting or decomposition product of the silicon raw material can be supplied to a wide region of the carbon-based substrate 2, and an advantage that a large-area and uniform-quality polycrystalline silicon film can be formed on the carbon-based substrate 2. have. However, since the plasma space expands and the amount of energy supplied per unit volume thereof decreases, it is necessary to increase the input power of direct current or high frequency. Moreover, when the pressure condition in the high temperature plasma generation part 1 is set low, the plasma flame 15 may expand and the carbon-based base material 2 may be overheated. In such a case, the above-mentioned overheating phenomenon can be easily avoided by reducing the flow rates of argon gas, hydrogen gas and the like.

【0022】次に、この請求項1に係る発明において適
用できる炭素系基材としては、表面並びに内部構造が密
状態にあるグラファイト板や炭素−炭素複合材料(例え
ば、カーボンファイバーと炭化された樹脂成分とでその
主要部が構成されるもの等)、及び、密に編まれて表面
並びに内部構造が密状態にあるカーボンファイバー織布
等が挙げられ、更に、疎に編まれた網状構造のカーボン
ファイバー織布の適用も可能である。
Next, as the carbon-based substrate applicable in the invention according to claim 1, a graphite plate or a carbon-carbon composite material (for example, carbon fiber and carbonized resin) having a dense surface and internal structure is used. Components, etc.), and carbon fiber woven fabrics in which the surface and the internal structure are densely knitted in a dense state, and the like. The application of fiber woven cloth is also possible.

【0023】また、上記混合ガスを構成するガス状のシ
リコン原料としては例えばSiH4、Si26 等が適用
でき、ガス状の炭素原料としては、CH4、C26、及
び、C38等の飽和炭化水素、エチレン、アセチレン等
の不飽和炭化水素等が適用でき、上記n型ドーパントガ
スとしては、PH3 (フォスフィン)ガス、AsH
3(アルシン)ガス等が、また、p型ドーパントガスと
しては、B26 (ジボラン)ガス、B(CH33(ト
リメチルボロン)ガス等が適用可能である。
Further, for example, SiH 4 , Si 2 H 6 or the like can be applied as the gaseous silicon raw material constituting the above mixed gas, and CH 4 , C 2 H 6 , and C can be used as the gaseous carbon raw material. Saturated hydrocarbons such as 3 H 8 and unsaturated hydrocarbons such as ethylene and acetylene can be applied. As the n-type dopant gas, PH 3 (phosphine) gas, AsH is used.
3 (arsine) gas or the like, and as the p-type dopant gas, B 2 H 6 (diborane) gas, B (CH 3 ) 3 (trimethylboron) gas, or the like can be used.

【0024】そして、上記シリコン原料、炭素原料及び
n型又はp型ドーパントガスの混合比並びその供給量を
適宜調整し、かつ、上記炭素系基材上において混合ガス
を気相反応させることにより、炭素系基材上にn型又は
p型ドーパントが混入された薄膜でしかもその膜厚並び
に膜質が均一な炭化シリコン(SiC)より成る中間膜
を形成することが可能となる。
Then, the mixing ratio of the silicon raw material, the carbon raw material, and the n-type or p-type dopant gas and the supply amount thereof are appropriately adjusted, and the mixed gas is subjected to a gas phase reaction on the carbon-based base material. It is possible to form an intermediate film made of silicon carbide (SiC), which is a thin film in which an n-type or p-type dopant is mixed, and whose film thickness and film quality are uniform, on a carbon-based substrate.

【0025】一方、上記高温プラズマ中に導入されて多
結晶シリコン膜を形成するシリコン原料としては、分解
され易いSiH4 、Si26 等のシラン化合物、Si
2Cl2 、SiHCl3 等のハロゲン化珪素が適用で
きると共に、SiF4 、SiCl4 、Si26 、Si2
Cl6 、SiHxy 、及び、SiHxCly 等分解され
難いガス状又は液状のハロゲン化珪素が適用でき、更
に、精製処理が不十分でかつその粒径が約200μm以
下の金属級シリコン粒子(MG・Si,例えばSi純度
が99%のもの)並びに精製処理された太陽電池級シリ
コン粒子(SOG,例えばSi純度が99.9999%
のもの)等シリコン原子を含有する粉状体についてもこ
れ等シリコン粒子中に含まれる不純物が高温加熱処理に
より揮発成分となって除去され易いためその適用が可能
となる。
On the other hand, as a silicon raw material which is introduced into the high temperature plasma to form a polycrystalline silicon film, silane compounds such as SiH 4 and Si 2 H 6 which are easily decomposed, Si
Silicon halides such as H 2 Cl 2 and SiHCl 3 can be applied, and SiF 4 , SiCl 4 , Si 2 F 6 and Si 2 can be used.
Cl 6 , SiH x F y , SiH x Cl y, or other gas or liquid silicon halide that is difficult to decompose can be applied, and further, the purification treatment is insufficient and the particle size of the metal-grade silicon is about 200 μm or less. Particles (MG / Si, for example, having a Si purity of 99%) and purified solar cell grade silicon particles (SOG, for example, a Si purity of 99.9999%)
It is also applicable to powders containing silicon atoms such as those) because impurities contained in these silicon particles are easily removed as volatile components by high temperature heat treatment.

【0026】尚、金属級シリコン粒子を適用した場合、
この粒子内に含まれるB(ボロン)やC(炭素)等の軽
元素を除去するため酸素(O2)ガスや水蒸気(H2O)
等を上記高温プラズマ中に供給してもよいし、上記粒子
内に含まれるTi(チタン)やFe(鉄)等の重金属を
除去するため弗化カルシウム(CaF2 )等の弗化物を
上記高温プラズマ中に供給してもよい。また、シリコン
原料投入時における反応室内の圧力変動を防止して反応
室内の圧力を略一定に保持する圧力制御弁を設けてもよ
い。
When metal-grade silicon particles are applied,
Oxygen (O 2 ) gas and water vapor (H 2 O) to remove light elements such as B (boron) and C (carbon) contained in the particles
Etc. may be supplied to the high temperature plasma, or fluorides such as calcium fluoride (CaF 2 ) may be added to the high temperature plasma in order to remove heavy metals such as Ti (titanium) and Fe (iron) contained in the particles. You may supply in plasma. In addition, a pressure control valve may be provided to prevent the pressure in the reaction chamber from fluctuating when the silicon raw material is charged and to keep the pressure in the reaction chamber substantially constant.

【0027】そして、シリコンの融点直下温度に設定さ
れた上記炭素系基材に対してガス状のシリコン原料、炭
素原料及びn型又はp型ドーパントガスとで構成される
混合ガスを供給し、この混合ガスを上記炭素系基材上で
気相反応させて炭素とシリコンに対して中間的性質を有
しかつn型又はp型ドーパントが混入された炭化シリコ
ンの中間膜を製膜する。この場合、この製造方法におい
ては上記混合ガスを外部から供給し、かつ、炭素系基材
上においてこの混合ガスを気相反応させて炭化シリコン
(SiC)の中間膜を形成しているため、上記混合ガス
の混合比並びにその供給量を適正に制御することにより
炭素系基材上にn型又はp型ドーパントが混入された薄
膜でしかもその膜厚並びに膜質が均一な中間膜を確実に
形成できる利点を有している。
Then, a mixed gas composed of a gaseous silicon raw material, a carbon raw material, and an n-type or p-type dopant gas is supplied to the carbon-based base material set to a temperature just below the melting point of silicon. The mixed gas is subjected to a gas phase reaction on the carbon-based base material to form an intermediate film of silicon carbide having an intermediate property between carbon and silicon and having an n-type or p-type dopant mixed therein. In this case, in this manufacturing method, the mixed gas is supplied from the outside and the mixed gas is subjected to a gas phase reaction on the carbon-based substrate to form an intermediate film of silicon carbide (SiC). By properly controlling the mixing ratio of the mixed gas and the supply amount thereof, it is possible to reliably form an intermediate film which is a thin film in which an n-type or p-type dopant is mixed on a carbon-based substrate and whose film thickness and film quality are uniform. Have advantages.

【0028】次に、上記中間膜を形成した後、シリコン
の融点直下温度に設定された炭素系基材の中間膜上に上
記シリコン原料の溶融又は分解物を製膜させて多結晶シ
リコン膜を形成する。この場合、上記炭素系基材がシリ
コンの融点直下温度に設定された状態で多結晶シリコン
膜を製膜しているため、製膜直後の多結晶シリコン膜温
度と炭素系基材温度との差が小さくなり、その分、上記
多結晶シリコン膜の膜ストレスが低減すると共に、炭素
とシリコンとの中間的性質を有する炭化シリコンの中間
膜が作用して更に膜ストレスの低減が図れる。従って、
その膜厚を薄く設定しても製膜された多結晶シリコン膜
に欠陥やクラック等が発生し難くなると共に炭素系基材
からの剥離も起こり難くなる利点を有している。
Next, after the intermediate film is formed, a molten or decomposed product of the silicon raw material is formed on the intermediate film of the carbon-based base material set at a temperature just below the melting point of silicon to form a polycrystalline silicon film. Form. In this case, since the polycrystalline silicon film is formed in a state in which the carbon-based base material is set to the temperature just below the melting point of silicon, the difference between the polycrystalline silicon film temperature immediately after the formation and the carbon-based base material temperature. Becomes smaller, and the film stress of the polycrystalline silicon film is reduced accordingly, and the film stress can be further reduced by the action of the silicon carbide intermediate film having an intermediate property between carbon and silicon. Therefore,
Even if the film thickness is set to be small, there is an advantage that defects and cracks are less likely to occur in the formed polycrystalline silicon film, and peeling from the carbon-based substrate is less likely to occur.

【0029】尚、請求項1に係るこの製造方法において
は、外部から供給された各製膜材料を利用して上記中間
膜と多結晶シリコン膜とを形成しているため、上記炭化
シリコン(SiC)の中間膜を製膜する際の炭素系基材
の設定温度と多結晶シリコン膜を製膜する際の炭素系基
材の設定温度を共にシリコンの融点直下温度に設定した
状態でこれを行うことが可能となる。従って、製造工程
中における炭素系基材の温度制御を簡便に行える利点を
有している。
In the manufacturing method according to the first aspect, since the intermediate film and the polycrystalline silicon film are formed by using each film forming material supplied from the outside, the silicon carbide (SiC This is done under the condition that both the set temperature of the carbon-based base material for forming the intermediate film and the set temperature of the carbon-based base material for forming the polycrystalline silicon film are both set just below the melting point of silicon. It becomes possible. Therefore, there is an advantage that the temperature of the carbon-based substrate can be easily controlled during the manufacturing process.

【0030】ここで、炭素系基材の設定温度を調整する
には上記高温プラズマの出力を調整してこれを行っても
よいし、あるいは、基材ホルダー内に設けられた加熱手
段を調整して行ってもよくその方法は任意である。ま
た、上記高温プラズマの出力調整と基材ホルダー内に設
けられた加熱手段の調整とを併用して上記炭素系基材の
設定温度を制御してもよい。
Here, in order to adjust the set temperature of the carbon-based substrate, the output of the high temperature plasma may be adjusted, or the heating means provided in the substrate holder may be adjusted. However, the method is arbitrary. Further, the set temperature of the carbon-based base material may be controlled by using the output adjustment of the high temperature plasma and the adjustment of the heating means provided in the base material holder together.

【0031】次に、上記反応室3内に炭素系基材2を配
置する場合、プラズマ発生部1と配置された炭素系基材
2間距離が近過ぎるとプラズマ発生部1からのプラズマ
フレーム15により炭素系基材2が過熱されて破損する
ことがあり、反対に距離を開け過ぎるとシリコン膜の製
膜が困難になることがある。
Next, when the carbon-based substrate 2 is placed in the reaction chamber 3, if the distance between the plasma-generating unit 1 and the carbon-based substrate 2 placed is too short, the plasma flame 15 from the plasma-generating unit 1 is increased. As a result, the carbon-based base material 2 may be overheated and damaged. On the contrary, if the distance is too large, it may be difficult to form the silicon film.

【0032】従って、上記プラズマ発生部1内の圧力状
態、プラズマフレーム15の形状、シリコン原料の溶融
又は分解状態並びに溶融又は分解物の流速等の条件に対
応した適正距離を選定することが望ましい。
Therefore, it is desirable to select an appropriate distance corresponding to the conditions of the pressure inside the plasma generator 1, the shape of the plasma frame 15, the molten or decomposed state of the silicon raw material and the flow velocity of the molten or decomposed product.

【0033】また、炭素系基材2を固定して配置した場
合、上記プラズマフレーム15により炭素系基材2が局
所的に過熱されて製膜されるシリコン膜の均一性が阻害
されることがあるため、炭素系基材2を保持する基材ホ
ルダー7に移動機構を設けこの移動機構により上記炭素
系基材2を水平方向へ移動させて炭素系基材2の局所的
過熱を防止することが望ましい。
When the carbon-based substrate 2 is fixedly arranged, the plasma frame 15 locally overheats the carbon-based substrate 2 to impair the uniformity of the silicon film formed. Therefore, a moving mechanism is provided in the substrate holder 7 that holds the carbon-based substrate 2, and the carbon-based substrate 2 is horizontally moved by this moving mechanism to prevent local overheating of the carbon-based substrate 2. Is desirable.

【0034】尚、請求項1に係る製造方法により求めら
れたシリコン積層体の適用対象としては上記太陽電池に
限らず、例えば光センサ等が挙げられる。
The application target of the silicon laminate obtained by the manufacturing method according to claim 1 is not limited to the above-mentioned solar cell, but may be an optical sensor or the like.

【0035】[0035]

【作用】請求項1に係る発明によれば、シリコンの融点
直下温度に設定された炭素系基材に対しガス状のシリコ
ン原料、炭素原料及びn型又はp型ドーパントガスとで
構成される混合ガスを供給し、この混合ガスを上記炭素
系基材上で反応させてn型又はp型ドーパントが混入さ
れた炭化シリコンより成る中間膜を製膜した後、シリコ
ン原子が含まれるシリコン原料を高温プラズマ中に導入
してこの原料を溶融又は分解し、この溶融又は分解物を
シリコンの融点直下温度に設定された炭素系基材の中間
膜上に製膜させて多結晶シリコン膜を形成している。
According to the first aspect of the present invention, a mixture of a carbon-based base material set at a temperature just below the melting point of silicon and a gaseous silicon raw material, a carbon raw material, and an n-type or p-type dopant gas is mixed. After supplying a gas and reacting the mixed gas on the carbon-based substrate to form an intermediate film made of silicon carbide mixed with an n-type or p-type dopant, a silicon raw material containing silicon atoms is heated to a high temperature. This raw material is melted or decomposed by introducing it into plasma, and the melted or decomposed product is deposited on an intermediate film of a carbon-based base material set at a temperature just below the melting point of silicon to form a polycrystalline silicon film. There is.

【0036】そして、この製造方法においては上記混合
ガスを外部から供給しかつ炭素系基材上においてこの混
合ガスを気相反応させて炭化シリコン(SiC)の中間
膜を形成しているため、上記混合ガスの混合比並びにそ
の供給量を適正に制御することによりn型又はp型ドー
パントが混入された薄膜でしかもその膜厚並びに膜質が
均一な中間膜を確実に形成させることが可能となる。
In this manufacturing method, the mixed gas is supplied from the outside and the mixed gas is subjected to a gas phase reaction on the carbon-based substrate to form an intermediate film of silicon carbide (SiC). By properly controlling the mixing ratio of the mixed gas and the supply amount thereof, it becomes possible to reliably form an intermediate film which is a thin film in which an n-type or p-type dopant is mixed and whose film thickness and film quality are uniform.

【0037】また、上記中間膜上に多結晶シリコン膜を
形成するに際しては、炭素系基材がシリコンの融点直下
温度に設定された状態で上記多結晶シリコン膜を製膜し
ているため、製膜直後の多結晶シリコン膜温度と炭素系
基材温度との差が小さくなり、その分、上記多結晶シリ
コン膜の膜ストレスが低減すると共に炭素とシリコンと
の中間的性質を有する上記炭化シリコンから成る中間膜
も作用しこれ等相乗作用により上記膜ストレスを大幅に
低減させることが可能となる。
Further, when the polycrystalline silicon film is formed on the intermediate film, the polycrystalline silicon film is formed under the condition that the temperature of the carbon-based substrate is just below the melting point of silicon. The difference between the temperature of the polycrystalline silicon film immediately after the film and the temperature of the carbon-based base material is reduced, and the film stress of the polycrystalline silicon film is reduced accordingly, and the silicon carbide having an intermediate property between carbon and silicon is obtained. The formed intermediate film also acts, and the synergistic effect of these can significantly reduce the film stress.

【0038】更に、上記多結晶シリコン膜を形成するに
際しシリコン原子が含まれるシリコン原料を高温プラズ
マ中に導入してこれを溶融又は分解しているため、従来
法では適用困難であった分解温度の高いシリコン原料や
不純物の含まれる金属級シリコン粒子の適用が可能にな
ると共に、シリコン原料の溶融又は分解速度が速まって
上記中間膜上への溶融又は分解物の供給速度も速まるた
め多結晶シリコン膜の製膜速度の向上が図れ、かつ、プ
ロセス全体が従来より高温条件下で行われるため結晶粒
径の大きい多結晶シリコン膜を求めることが可能とな
る。
Further, when the polycrystalline silicon film is formed, the silicon raw material containing silicon atoms is introduced into the high temperature plasma to melt or decompose it. It is possible to apply high-grade silicon raw materials and metal-grade silicon particles containing impurities, and the melting or decomposition speed of the silicon raw materials is increased, and the supply speed of the melted or decomposed materials onto the interlayer film is also increased. Since the film forming speed can be improved and the whole process is performed under higher temperature conditions than in the past, it is possible to obtain a polycrystalline silicon film having a large crystal grain size.

【0039】また、この製造方法においては上記炭化シ
リコンの中間膜を製膜する際の炭素系基材の設定温度
と、多結晶シリコン膜を製膜する際の炭素系基材の設定
温度を共にシリコンの融点直下温度に設定した状態でこ
れを行っており、その分、製造工程中における炭素系基
材の温度制御が簡便となる。
Further, in this manufacturing method, the set temperature of the carbon-based base material when forming the intermediate film of silicon carbide and the set temperature of the carbon-based base material when forming the polycrystalline silicon film are both set. This is performed under the condition that the temperature is just below the melting point of silicon, and the temperature control of the carbon-based base material during the manufacturing process can be simplified accordingly.

【0040】[0040]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0041】[実施例1]まず、この実施例に係るシリ
コン積層体20は、図1に示すようにその全域に亘り小
孔を有していないシート状のカーボンファイバー織布2
1と、このカーボンファイバー織布21表面の全域に亘
り形成されn型ドーパントのP(リン)が混入された炭
化シリコンから成る中間膜22と、この中間膜22上に
製膜された多結晶シリコン膜23とでその主要部が構成
されている。
Example 1 First, as shown in FIG. 1, the silicon laminated body 20 according to this example has a sheet-like carbon fiber woven fabric 2 having no small holes throughout its entire area.
1, an intermediate film 22 made of silicon carbide formed over the entire surface of the carbon fiber woven fabric 21 and mixed with P (phosphorus) as an n-type dopant, and polycrystalline silicon film formed on the intermediate film 22. The membrane 23 and the main part thereof are constituted.

【0042】尚、上記カーボンファイバー織布21に
は、以下の表1にその特性が示されている株式会社有沢
製作所のカーボンファイバークロス(商品名 CFS
1140)が適用されている。
The carbon fiber woven fabric 21 has carbon fiber cloth (trade name: CFS) manufactured by Arisawa Manufacturing Co., Ltd. whose characteristics are shown in Table 1 below.
1140) has been applied.

【0043】[0043]

【表1】 そして、このシリコン積層体20は以下に述べるような
方法にて製造されている。すなわち、図2に示すように
アークプラズマ並びに誘導プラズマを形成できる高温プ
ラズマ発生部1と、この高温プラズマ発生部1に隣接し
て設けられ内部に基材ホルダー7を備える反応室3とで
その主要部が構成される装置内に上記カーボンファイバ
ー織布21を配置し、かつ、反応室3内を〜10-3Torr
まで真空引きを行って反応室3内の空気等を排気した
後、プラズマ点火後の急加熱や局所的過熱を防ぐため点
火に先がけ上記基材ホルダー7に設けられカーボンファ
イバー織布21を水平方向へ移動操作する移動機構(図
示せず)を作動させた。
[Table 1] The silicon stack 20 is manufactured by the method described below. That is, as shown in FIG. 2, a high temperature plasma generating part 1 capable of forming arc plasma and induction plasma, and a reaction chamber 3 provided adjacent to the high temperature plasma generating part 1 and having a substrate holder 7 therein, The carbon fiber woven fabric 21 is arranged in the apparatus constituting the part, and the inside of the reaction chamber 3 is -10 −3 Torr.
After evacuating the air and the like in the reaction chamber 3 until the plasma chamber is ignited, the carbon fiber woven cloth 21 is horizontally attached to the base material holder 7 prior to ignition in order to prevent rapid heating and local overheating after plasma ignition. A moving mechanism (not shown) for moving to (1) was operated.

【0044】次に、プラズマ発生部1内へアルゴンガス
と水素ガスを導入すると共にプラズマ点火を行った。電
源は最初に直流を投入しその後に高周波を投入した。
尚、高温プラズマフレームの形状はアルゴンガス、水素
ガスの流量でかなり変化するが安定した状態を比較的容
易に得ることができた。また、この装置にはアルゴンガ
ス、水素ガス等のガス導入口並びにシリコン原料の導入
口に圧力制御弁が取付けられ、かつ、反応室3の下流側
には排気系4が設けられておりこれ等機構により反応室
3内の圧力は〜550Torrに保持されている。
Next, an argon gas and a hydrogen gas were introduced into the plasma generating section 1 and plasma ignition was performed. As the power source, direct current was first applied and then high frequency was applied.
The shape of the high temperature plasma flame varied considerably depending on the flow rates of argon gas and hydrogen gas, but a stable state could be obtained relatively easily. In addition, a pressure control valve is attached to a gas inlet of argon gas, hydrogen gas, etc. and an inlet of a silicon raw material, and an exhaust system 4 is provided downstream of the reaction chamber 3 in this apparatus. The mechanism keeps the pressure in the reaction chamber 3 at ˜550 Torr.

【0045】そして、上記カーボンファイバー織布21
を高温プラズマと基材ホルダー7内に設けられた加熱手
段8により加熱してその表面温度が十分上昇しているこ
とを放射温度計を用いてモニターし、かつ、その表面温
度がシリコンの融点直下の温度(1400℃)になった
時点で上記ガス導入口からシランガスとメタンガスとフ
ォスフィンガス(n型ドーパントガス)の混合ガスを導
入し、この混合ガスをカーボンファイバー織布21上で
気相反応させてn型ドーパントが混入された炭化シリコ
ンより成る中間膜22を形成した。
Then, the carbon fiber woven fabric 21
Is heated by high-temperature plasma and heating means 8 provided in the substrate holder 7 to monitor its surface temperature sufficiently using a radiation thermometer, and the surface temperature is directly below the melting point of silicon. When the temperature reaches 1400 ° C., a mixed gas of silane gas, methane gas, and phosphine gas (n-type dopant gas) is introduced from the gas introduction port, and this mixed gas is subjected to a gas phase reaction on the carbon fiber woven fabric 21. Thus, the intermediate film 22 made of silicon carbide mixed with the n-type dopant was formed.

【0046】(中 間 膜 の 形 成 条 件) 反応室内の圧力 〜550Torr DCプラズマ投入電力 5KW RFプラズマ投入電力 30KW アルゴンガス流量 60〜80リット
ル/min 水素ガス流量 2〜4リットル/
min シランガス流量 0.5リットル/
min メタンガス流量 0.5リットル/
min フォスフィンガス流量 0.1リットル/
min 高温プラズマ発生部と織布間距離 10〜20cm 次に、上記カーボンファイバー織布21の温度を140
0℃に保持する一方、シリコン原料の導入口から定量の
シリコン粒子6を導入してこのシリコン粒子6を高温プ
ラズマ中にて溶融させ、かつ、この溶融物をカーボンフ
ァイバー織布21の上記中間膜22上に製膜させた。
(Conditions of Forming the Membrane) Pressure in the reaction chamber: 550 Torr DC plasma input power 5 KW RF plasma input power 30 KW Argon gas flow rate 60-80 liters / min Hydrogen gas flow rate 2-4 liters /
min Silane gas flow rate 0.5 liter /
min Methane gas flow rate 0.5 liter /
min Phosphine gas flow rate 0.1 liter /
min distance between high temperature plasma generating part and woven fabric 10 to 20 cm Next, the temperature of the carbon fiber woven fabric 21 is set to 140
While maintaining the temperature at 0 ° C., a fixed amount of silicon particles 6 are introduced from the inlet of the silicon raw material to melt the silicon particles 6 in high temperature plasma, and the melt is the intermediate film of the carbon fiber woven cloth 21. A film was formed on No. 22.

【0047】そして、この製膜処理を2〜3分間行い、
かつ、シリコン粒子6の供給停止後も高周波を投入して
アルゴンの高温プラズマを継続させ5〜10分程度の冷
却制御を行い膜厚1mm程度の多結晶シリコン膜23を形
成して上記シリコン積層体20を製造した。
Then, this film forming treatment is performed for 2 to 3 minutes,
Further, even after the supply of the silicon particles 6 is stopped, a high frequency is applied to continue the high temperature plasma of argon to control the cooling for about 5 to 10 minutes to form a polycrystalline silicon film 23 with a film thickness of about 1 mm to form the above silicon laminated body. 20 was produced.

【0048】尚、基材ホルダー7に設けられた移動機構
は上記中間膜22の形成前からシリコン膜の冷却制御中
も継続して作動させておりカーボンファイバー織布21
表面への入熱の均一化を図っている。
The moving mechanism provided on the base material holder 7 is continuously operated before the formation of the intermediate film 22 and during the cooling control of the silicon film.
The heat input to the surface is made uniform.

【0049】(多 結 晶 シ リ コ ン 膜 の
製 膜 条 件) 反応室内の圧力 〜550Torr DCプラズマ投入電力 5KW RFプラズマ投入電力 30KW アルゴンガス流量 60〜80リット
ル/min 水素ガス流量 2〜4リットル/
min シリコン粒子の粒径 75〜150μm シリコン粒子の供給量 1g/min 高温プラズマ発生部と織布間距離 10〜20cm この様にして求められた多結晶シリコン膜23について
TEM観察を行ったところ、膜厚1mm程度でその結晶粒
径は100μm程度に達していることが確認でき、か
つ、その膜特性も均一になっていることが確認された。
(Of a polycrystalline silicon film)
Film formation conditions) Pressure in reaction chamber ~ 550 Torr DC plasma input power 5KW RF plasma input power 30KW Argon gas flow rate 60-80 liters / min Hydrogen gas flow rate 2-4 liters /
min Particle size of silicon particles 75 to 150 μm Supply amount of silicon particles 1 g / min Distance between high temperature plasma generation part and woven fabric 10 to 20 cm TEM observation was conducted on the polycrystalline silicon film 23 thus obtained, and the film was found. It was confirmed that the crystal grain size reached about 100 μm at a thickness of about 1 mm, and that the film characteristics were also uniform.

【0050】[実施例2]反応室内の圧力を略60To
rrに設定し、かつ、DCプラズマ投入電力を10K
W、RFプラズマ投入電力を50KWに設定した点を除
き実施例1と略同一の条件でシリコン積層体を製造し
た。
[Example 2] The pressure in the reaction chamber was set to about 60 To.
rr and set DC plasma input power to 10K
A silicon laminated body was manufactured under substantially the same conditions as in Example 1 except that W and RF plasma input power were set to 50 KW.

【0051】そして、このシリコン積層体の多結晶シリ
コン膜についてTEM観察を行ったところ、実施例1に
係る多結晶シリコン膜と略同一の特性を有していること
が確認された。
Then, when the polycrystalline silicon film of this silicon laminated body was observed by TEM, it was confirmed that it had substantially the same characteristics as the polycrystalline silicon film of Example 1.

【0052】[0052]

【発明の効果】請求項1に係る発明によれば、炭素系基
材表面にn型又はp型ドーパントが混入された薄膜でし
かも膜厚並びに膜質が均一な炭化シリコンより成る中間
膜を確実に形成することができると共に、この中間膜上
にその結晶粒径が大きくかつ膜ストレスが小さい多結晶
シリコン膜を形成でき、更に、従来法では適用困難であ
った分解温度が高いシリコン原料や不純物が含まれる金
属級シリコン粒子の適用も可能となり、かつ、上記多結
晶シリコン膜の製膜速度の向上も図れる。
According to the first aspect of the present invention, an intermediate film made of silicon carbide having a uniform film thickness and a uniform film quality, which is a thin film in which an n-type or p-type dopant is mixed on the surface of a carbon-based substrate, is surely obtained. A polycrystalline silicon film having a large crystal grain size and a small film stress can be formed on the intermediate film as well as being formed, and further, a silicon raw material or impurities having a high decomposition temperature, which is difficult to apply by the conventional method, can be formed. The metal grade silicon particles contained can be applied, and the film formation speed of the polycrystalline silicon film can be improved.

【0053】従って、BSF型太陽電池等にそのまま適
用されしかも多結晶シリコン膜が剥離し難い電気的特性
に優れたシリコン積層体を簡便にかつ経済的に大量生産
できる効果を有している。
Therefore, there is an effect that a silicon laminated body which is directly applied to a BSF type solar cell or the like and which has a polycrystalline silicon film hardly peeling and which has excellent electric characteristics can be mass-produced easily and economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係るシリコン積層体の概略断面図。FIG. 1 is a schematic cross-sectional view of a silicon stack according to an example.

【図2】実施例の製法に適用された装置の構成概念図。FIG. 2 is a structural conceptual diagram of an apparatus applied to the manufacturing method of the embodiment.

【図3】直流法による高温プラズマ発生部の模式図。FIG. 3 is a schematic diagram of a high temperature plasma generation unit by a direct current method.

【図4】高周波法による高温プラズマ発生部の模式図。FIG. 4 is a schematic diagram of a high temperature plasma generation unit by a high frequency method.

【図5】従来の太陽電池の概略断面図。FIG. 5 is a schematic cross-sectional view of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1 高温プラズマ発生部 2 炭素系基材 3 反応室 7 基材ホルダー 8 加熱手段 20 シリコン積層体 21 カーボンファイバー織布 22 中間膜(SiC) 23 多結晶シリコン膜 DESCRIPTION OF SYMBOLS 1 High temperature plasma generation part 2 Carbon type base material 3 Reaction chamber 7 Base material holder 8 Heating means 20 Silicon laminated body 21 Carbon fiber woven cloth 22 Intermediate film (SiC) 23 Polycrystalline silicon film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素系基材と、この炭素系基材の表面に形
成されn型又はp型ドーパントが混入された炭化シリコ
ンより成る中間膜と、この中間膜上に製膜された多結晶
シリコン膜とで構成されるシリコン積層体の製造方法に
おいて、 シリコンの融点直下温度に設定された炭素系基材に対し
ガス状のシリコン原料、炭素原料及びn型又はp型ドー
パントガスとで構成される混合ガスを供給し、この混合
ガスを上記炭素系基材上で反応させてn型又はp型ドー
パントが混入された炭化シリコンより成る中間膜を製膜
した後、シリコン原子が含まれるシリコン原料を高温プ
ラズマ中に導入してこの原料を溶融又は分解し、この溶
融又は分解物をシリコンの融点直下温度に設定された炭
素系基材の中間膜上に製膜させて多結晶シリコン膜を形
成することを特徴とするシリコン積層体の製造方法。
1. A carbon-based substrate, an intermediate film made of silicon carbide formed on the surface of the carbon-based substrate and mixed with an n-type or p-type dopant, and a polycrystalline film formed on the intermediate film. In a method for manufacturing a silicon laminated body including a silicon film, a carbon-based base material set to a temperature just below a melting point of silicon is composed of a gaseous silicon raw material, a carbon raw material, and an n-type or p-type dopant gas. Gas mixture is supplied, and the mixed gas is reacted on the carbon-based substrate to form an intermediate film made of silicon carbide mixed with an n-type or p-type dopant, and then a silicon raw material containing silicon atoms. Is introduced into a high temperature plasma to melt or decompose the raw material, and the melted or decomposed product is deposited on an intermediate film of a carbon-based substrate whose temperature is set just below the melting point of silicon to form a polycrystalline silicon film. To do A method for manufacturing a silicon laminate, comprising:
JP5265988A 1992-10-27 1993-10-25 Manufacture of silicon laminate Pending JPH06224140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265988A JPH06224140A (en) 1992-10-27 1993-10-25 Manufacture of silicon laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-288365 1992-10-27
JP28836592 1992-10-27
JP5265988A JPH06224140A (en) 1992-10-27 1993-10-25 Manufacture of silicon laminate

Publications (1)

Publication Number Publication Date
JPH06224140A true JPH06224140A (en) 1994-08-12

Family

ID=26547246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265988A Pending JPH06224140A (en) 1992-10-27 1993-10-25 Manufacture of silicon laminate

Country Status (1)

Country Link
JP (1) JPH06224140A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460504B1 (en) * 2002-10-17 2004-12-08 한국전자통신연구원 Method of manufacturing a SiC thin film with Si nano dot
KR100561701B1 (en) * 2004-01-30 2006-03-17 한국과학기술연구원 Synthesis method of ??? nanorod and nanowire
US8075760B2 (en) 1995-06-19 2011-12-13 Lifescan, Inc. Electrochemical cell
KR20160129479A (en) * 2015-04-30 2016-11-09 최대규 Silicon layer on carbon fiber fabric for solar cell and a method of manufacturing the above
JP2021082765A (en) * 2019-11-21 2021-05-27 住友金属鉱山株式会社 Silicon carbide polycrystalline film, and manufacturing method and deposition apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075760B2 (en) 1995-06-19 2011-12-13 Lifescan, Inc. Electrochemical cell
US8101056B2 (en) 1995-06-19 2012-01-24 Lifescan, Inc. Electrochemical cell
KR100460504B1 (en) * 2002-10-17 2004-12-08 한국전자통신연구원 Method of manufacturing a SiC thin film with Si nano dot
KR100561701B1 (en) * 2004-01-30 2006-03-17 한국과학기술연구원 Synthesis method of ??? nanorod and nanowire
KR20160129479A (en) * 2015-04-30 2016-11-09 최대규 Silicon layer on carbon fiber fabric for solar cell and a method of manufacturing the above
JP2021082765A (en) * 2019-11-21 2021-05-27 住友金属鉱山株式会社 Silicon carbide polycrystalline film, and manufacturing method and deposition apparatus therefor

Similar Documents

Publication Publication Date Title
US4434188A (en) Method for synthesizing diamond
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPH06224140A (en) Manufacture of silicon laminate
CN114212772A (en) Method for preparing single-walled carbon nanotube @ hexagonal boron nitride composite film
JPS63285923A (en) Manufacture of silicon-germanium alloy
RU2258764C1 (en) Method and a device for settling at least partially of a crystalline silicon layer on a subtrate
JPS61222121A (en) Functional deposit-film and method and apparatus for manufacturing said film
JPH06208961A (en) Manufacture of silicon lamination body
JPH06196425A (en) Manufacture of silicon laminate
JPH06208960A (en) Manufacture of silicon lamination body
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JPH06196426A (en) Manufacture of silicon laminate
JP2012180233A (en) Production apparatus of polysilicon and production method of polysilicon
JPH07196307A (en) Production of silicon laminate
JPH07118006A (en) Production of silicon laminate
JPH05315259A (en) Manufacture of polycrystalline silicon film
RU2769751C1 (en) Device for deposition of ultra-thick layers of polycrystalline silicon
JPH06208962A (en) Manufacture of silicon lamination body
JPH07187641A (en) Production of silicon laminate
JPH05326414A (en) Manufacture of polycrystalline silicon thin film
JPH06140647A (en) Laminated silicon element
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JP4743730B2 (en) Deposition method of silicon thin film by thermal plasma CVD
JPH05315260A (en) Manufacture of polycrystalline silicon film
JPH05315257A (en) Manufacture of polycrystalline silicon film