JPH07258940A - Ultrafine fiber structure having high strength, its production and conjugate fiber having high strength - Google Patents
Ultrafine fiber structure having high strength, its production and conjugate fiber having high strengthInfo
- Publication number
- JPH07258940A JPH07258940A JP7017646A JP1764695A JPH07258940A JP H07258940 A JPH07258940 A JP H07258940A JP 7017646 A JP7017646 A JP 7017646A JP 1764695 A JP1764695 A JP 1764695A JP H07258940 A JPH07258940 A JP H07258940A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- fiber structure
- yarn
- structure according
- sea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Woven Fabrics (AREA)
- Air Bags (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、産業資材用途に好適に
用いられる繊維構造物に関する。詳しくは、優れた機械
的強度、優れた柔軟性を兼ね備え、かつ製糸性や加工性
良く製造できる繊維構造物に関する。特に、低い通気性
をも兼ね備えエアバッグ用基布等として特に有用な産業
用織編物にも関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber structure suitable for use in industrial materials. More specifically, the present invention relates to a fiber structure that has excellent mechanical strength and excellent flexibility and that can be manufactured with good spinnability and processability. In particular, the present invention relates to an industrial woven or knitted fabric which also has low air permeability and is particularly useful as a base fabric for an airbag.
【0002】[0002]
【従来の技術】合成繊維よりなる構造物は、各種産業資
材分野で広く使用されている。例えば、タイヤ、Vベル
ト、コンベアベルト、ホースなどのゴム補強材として、
帆布、テント、ターポリン、養生シート、シートベル
ト、エアバッグ用などの織編物として、さらには漁網、
ロープ、縫い糸などとして幅広く使用されている。Structures made of synthetic fibers are widely used in various industrial material fields. For example, as a rubber reinforcing material for tires, V-belts, conveyor belts, hoses, etc.
As woven and knitted fabrics for canvas, tents, tarpaulins, curing sheets, seat belts, airbags, fishing nets,
Widely used as ropes and sewing threads.
【0003】従来、上記目的用の繊維構造物に用いられ
る糸としては、単糸繊度が5d以上のものが汎用的に使
われていた。これは、高強力糸を容易に製糸するために
はある程度以上の単糸繊度が必要であり、また、表面か
らの劣化の抑制のために比表面積を小さくするには単糸
繊度の太い方が有効であるからである。Conventionally, as the yarn used in the fiber structure for the above purpose, a yarn having a single yarn fineness of 5d or more has been generally used. This is because a single yarn fineness of a certain level or more is required to easily produce a high-strength yarn, and a larger single yarn fineness is required to reduce the specific surface area in order to suppress deterioration from the surface. This is because it is effective.
【0004】しかし、近年、帆布、テント、ターポリ
ン、エアバッグなどのテキスタイル関連の産業資材用途
が広がってくるにつれ、これら繊維構造物に対して、高
強力でありながら、かつ軽量で柔軟であることも要求さ
れてきている。However, with the widespread use of textile-related industrial materials such as canvas, tents, tarpaulins, and airbags in recent years, these fiber structures must be strong, lightweight, and flexible. Have also been requested.
【0005】この要求のために、総繊度や単糸繊度を減
少させるといった種々の改善や提案がそれぞれの用途に
おいて試みられてきた。Due to this demand, various improvements and proposals have been made in each application, such as reducing the total fineness and the single yarn fineness.
【0006】例えば、エアバッグ用基布の場合、まず第
一に、衝撃時にスムーズに膨脹するに必要な低い気体透
過性ならびに高い機械的強度を有することが要求される
が、さらに膨脹時に人体、特に顔面を擦過などで傷つけ
ないことや、コンパクトに収納できること、さらには、
長期間車体に設置している間に寸法変化が生じないこと
なども要求される。[0006] For example, in the case of a base fabric for an air bag, first of all, it is required to have a low gas permeability and a high mechanical strength which are necessary for smooth expansion upon impact. Especially, the face should not be scratched or scratched, and it can be stored compactly.
It is also required that the dimensions do not change during installation on the vehicle body for a long time.
【0007】しかしながら、これら要求特性の全てを同
時に満足させることは困難である。例えば、上記のエア
バッグ用基布に要求される項目のうちの気体透過性を抑
えようとすれば、基布を厚くすればよいが、逆に、基布
を厚くすると、収納時コンパクト性が悪化し、さらに、
人体に接触した時の衝撃力が大きくなって顔面を擦過し
て傷つけやすくなるという問題が生じる。このように、
その基布設計においては相反する特性が要求される。However, it is difficult to satisfy all of these required characteristics at the same time. For example, in order to suppress gas permeability among the items required for the airbag base fabric, it is sufficient to make the base fabric thicker. On the contrary, if the base fabric is made thicker, the compactness at the time of storage will be improved. Worse, and
There is a problem that the impact force when contacting the human body is increased and the face is easily scratched and damaged. in this way,
Contrary characteristics are required in the design of the base cloth.
【0008】これまで開発されている代表的なエアバッ
ク用基布しては、例えば、単糸繊度4〜7d、総繊度4
00〜1000dのナイロン糸条で構成されただけの基
布(以下ノンコート品と称する)や、この基布にクロロ
プレンやシリコンなどの樹脂をコーティングした基布
(以下コート品と称する)(特開平3−243442号
公報)がある。Typical air bag base fabrics developed so far are, for example, single yarn fineness 4 to 7d and total fineness 4
A base fabric (hereinafter referred to as a non-coated product) simply composed of a nylon yarn of 00 to 1000 d, or a base fabric coated with a resin such as chloroprene or silicone (hereinafter referred to as a coated product) (JP-A-3) No. 243442).
【0009】これらエアバッグ用基布は、気体の透過性
を抑える点では優れているが、基布を構成するフィラメ
ントの総繊度並びに単糸繊度が大きいため、布帛が硬く
柔軟性に欠け、その結果コンパクト性に劣るとともに衝
撃力が大きいという問題点があった。さらに、コート品
の場合は、その製造工程が複雑であって、特に均一な樹
脂コーティングが難しく、収納時コンパクト性に劣ると
いう問題点があった。These air bag base fabrics are excellent in suppressing gas permeation, but since the total fineness and the single yarn fineness of the filaments constituting the base fabric are large, the fabric is hard and lacks in flexibility. As a result, the compactness is poor and the impact force is large. Further, in the case of a coated product, there is a problem that the manufacturing process is complicated, particularly uniform resin coating is difficult, and compactness during storage is poor.
【0010】上記のような問題点を解決するために、種
々の提案がなされてきた。例えば特開平1−10484
8号公報に記載のごとく、基布を構成するマルチフィラ
メントの総繊度を少なくし基布厚みを薄くすることで、
基布を柔らかくし、さらに、収納時コンパクト性を付与
しようとする試みがある。Various proposals have been made to solve the above problems. For example, Japanese Unexamined Patent Publication No. 1-10484
As described in Japanese Patent Publication No. 8, by reducing the total fineness of the multifilaments constituting the base cloth and reducing the thickness of the base cloth,
There has been an attempt to soften the base cloth and to give it compactness when stored.
【0011】しかしながら、単に総繊度を低下させただ
けでは気体の透過性が著しく大きくなるので、樹脂コー
ティングによって気体透過性低下を補うことが必要とな
り、その結果、収納時コンパクト性は改善されない。However, simply reducing the total fineness significantly increases the gas permeability, so it is necessary to compensate for the decrease in gas permeability with a resin coating, and as a result, compactness during storage cannot be improved.
【0012】また、気体透過性を低くしかつ収納時コン
パクト性を改善するために、総繊度を低下させるととも
に織物をより高密度に製織する方法があるが、4〜7d
という通常の単糸繊度ではどんなに総繊度を小さくして
も布帛の柔軟性の改善には限界があり、柔軟性を満足し
うる値まで改善することは困難であった。Further, there is a method of lowering the total fineness and weaving the woven fabric at a higher density in order to reduce the gas permeability and improve the compactness during storage.
With the usual single yarn fineness, no matter how small the total fineness is, there is a limit to the improvement of the flexibility of the fabric, and it is difficult to improve the flexibility to a satisfactory value.
【0013】また、特開昭64−41438号公報に
は、コート品の折り畳み性の改良のために、強度8.5
g/d以上かつ単糸繊度3d以下の繊維からなるエアバ
ッグ用基布が提案されている。さらに、特開平4−21
4437号公報には、4dtex以下、総繊度250〜4
00dtex のポリエチレンテレフタレートマルチフィラ
メントからなるノンコート型エアバッグ用基布が提案さ
れている。Further, in JP-A-64-41438, a strength of 8.5 is provided in order to improve the foldability of the coated product.
A base fabric for an air bag has been proposed which is composed of fibers having a single yarn fineness of 3 d or less and a g / d or more. Furthermore, JP-A-4-21
No. 4437 discloses 4 dtex or less, total fineness of 250 to 4
A non-coat type airbag base fabric made of 00 dtex polyethylene terephthalate multifilament has been proposed.
【0014】しかしながら、これらの技術は、それらの
実施例に記載されているように単糸繊度を2d程度まで
細くしようとするものであり、基布としての柔軟性や折
り畳み性を十分に改善することは困難であった。さら
に、これら公報に開示されている繊維は直接紡糸方法で
製造されるものであるので、単糸繊度が極細になるほど
製糸工程や製織工程での毛羽や糸切れの発生が多くな
る。また、エアバッグ用基布にみられるように産業資材
用布帛の製織は無撚り、無糊という条件で行われるの
で、毛羽や糸切れを生じ易く、特に単糸1.0d以下の
ような極細フィラメント糸では巻取り時に毛羽がなくて
も製織時に単糸切れが生じるほどに、製織時における毛
羽や糸切れが極めて生じ易いものである。従って、これ
ら公報に記載された従来の技術では、製糸性並びに製織
性の点から単糸0.8d未満のような極細繊維からなる
エアバッグ用基布は工業的な製造が困難であった。However, these techniques are intended to reduce the single yarn fineness to about 2d as described in those examples, and sufficiently improve the flexibility and foldability of the base fabric. It was difficult. Further, since the fibers disclosed in these publications are produced by the direct spinning method, the finer the single yarn fineness is, the more fluff and yarn breakage occurs in the yarn making process and the weaving process. In addition, weaving of fabrics for industrial materials is carried out under the condition of no twist and no glue as seen in air bag base fabrics, so that fluff and yarn breakage are likely to occur. With filament filaments, fluff and yarn breakage during weaving are extremely likely to occur such that single yarn breakage occurs during weaving even without fluff during winding. Therefore, with the conventional techniques described in these publications, it is difficult to industrially manufacture an air bag base fabric made of ultrafine fibers having a single yarn of less than 0.8 d from the viewpoint of yarn forming property and weaving property.
【0015】また、特開平1−122752号公報に
は、高密度織物を収縮加工し、さらに熱固定した後にカ
レンダー加工することにより、寸法安定性に優れたエア
バッグ用基布とする方法が記載されている。しかし、こ
の発明においても、用いる繊維の単糸繊度は1d以上と
太く、カレンダー加工を施しても布帛の柔軟性は十分に
改善されないものであった。Further, Japanese Unexamined Patent Publication (Kokai) No. 1-122752 describes a method of shrink-processing a high-density fabric, heat-fixing it, and calendering it to obtain a base fabric for an airbag having excellent dimensional stability. Has been done. However, also in the present invention, the single yarn fineness of the fibers used is as large as 1d or more, and the flexibility of the fabric is not sufficiently improved even by calendering.
【0016】さらに、特開平4−2835号公報には、
ポリエチレンテレフタレートより構成されたノンコート
型エアバッグ用基布であって、軽量で薄いという特徴の
もと通気量が0.5cc/sec /cm2 以下、650psi
以上の破裂強度、300ポンド以上の引張り強度、40
ポンド以上の台形片引裂強度を有する織布が提案されて
いる。しかし、ここで使用される繊維の単糸繊度は細く
ても1d程度であり、また気体の透過性を抑えるために
上述のカレンダー加工を必要とするものであるので、上
記と同様の問題点があった。Further, Japanese Patent Laid-Open No. 4-2835 discloses that
A non-coating type airbag base fabric made of polyethylene terephthalate, which is lightweight and thin, and has an air permeability of 0.5 cc / sec / cm 2 or less and 650 psi.
Burst strength above, tensile strength above 300 pounds, 40
Woven fabrics having a trapezoidal piece tear strength of over a pound have been proposed. However, the single yarn fineness of the fiber used here is about 1d even if it is thin, and since the above-mentioned calendering is required to suppress the gas permeability, the same problems as described above occur. there were.
【0017】さらにまた、衣料用途で用いられてきた単
糸繊度1d以下の極細繊維を使用することも試みられて
いる(特開平5−213131号公報)。しかし、衣料
用途向きの極細繊維は固有粘度0.6〜0.7程度のポ
リマを用いて製造され強度が2.5〜4.5g/d以下
と低いので、エアバッグ用に十分な強力特性を得ること
は困難であった。そこで、通常繊度の高強度糸と合糸さ
せて強度不足を補うことが提案されているが、この場
合、太繊度の補強繊維の併用により極細繊維の本来の特
性が十分に発揮できないという問題があった。Furthermore, it has been attempted to use ultrafine fibers having a single yarn fineness of 1d or less, which has been used for clothing (Japanese Patent Laid-Open No. 5-213131). However, ultrafine fibers for clothing applications are manufactured using a polymer with an intrinsic viscosity of about 0.6 to 0.7 and have a low strength of 2.5 to 4.5 g / d or less, so that they have sufficient strength characteristics for airbags. Was hard to get. Therefore, it has been proposed to combine a high-strength yarn with a normal fineness to compensate for the lack of strength, but in this case, there is a problem that the original characteristics of the ultrafine fiber cannot be sufficiently exhibited due to the combined use of the reinforcing fibers with a large fineness. there were.
【0018】また、実開昭56−56500号公報で
は、極細繊維をパラシュートの展開布帛に用いる提案が
なされているが、この場合でも、極細かつ高強度の繊維
とすることは何ら開示されていない。Further, Japanese Utility Model Laid-Open No. 56-56500 proposes to use ultrafine fibers for the development fabric of parachute, but even in this case, it is not disclosed to use ultrafine fibers and high strength. .
【0019】以上のエアバッグ用基布等の例から明らか
なように、これまでの産業資材用分野では、単糸繊度が
0.8d以下のように極細であって、かつ高強度を有す
る繊維を製造し、これを用いようとする試みはなかっ
た。As is clear from the above examples of the base fabric for airbags and the like, in the field of industrial materials so far, a fiber having a single yarn fineness of 0.8 d or less and having a very high strength. There was no attempt to manufacture and use this.
【0020】[0020]
【発明が解決しようとする課題】このように、従来の産
業資材用の繊維構造物では、優れた機械的強度と優れた
柔軟性とを、さらに必要に応じて低い通気性をも兼ね備
え、かつ毛羽が少なく、高品質の繊維構造物というもの
は未だ得られていなかった。As described above, the conventional fiber structure for industrial materials has excellent mechanical strength and excellent flexibility, and further has low air permeability as necessary, and High-quality fiber structures with little fluff have not yet been obtained.
【0021】そこで、本発明の主な目的は、上記した従
来技術における問題点を解決し、産業資材用に用いる繊
維構造物として、優れた機械的特性、及び、優れた柔軟
性を有し、毛羽が少なく、また織物の場合、必要に応じ
て低い気体透過性をも有する繊維構造物を提供するこ
と、さらに、製糸時や製織時などの繊維構造物製造工程
における毛羽や糸切れの発生が少なくその繊維構造体を
製造できる方法を提供することにある。Therefore, the main object of the present invention is to solve the above-mentioned problems in the prior art and to have excellent mechanical properties and excellent flexibility as a fiber structure used for industrial materials. In the case of a woven fabric with a small amount of fluff, if necessary, to provide a fiber structure having a low gas permeability, and further, generation of fluff or yarn breakage in the fiber structure manufacturing process such as during yarn making or weaving. It is an object of the present invention to provide a method capable of producing the fiber structure at least.
【0022】[0022]
【課題を解決するための手段】上述した目的を達成する
ために、本発明の繊維構造物は、単糸繊度が0.8d未
満の極細繊維からなり、かつ、引張り強度6.5g/d
以上、及び、破断伸度15%以上を有する高強度マルチ
フィラメントで構成された高強度極細繊維構造物である
ことを特徴とする。In order to achieve the above-mentioned object, the fiber structure of the present invention comprises ultrafine fibers having a single yarn fineness of less than 0.8d and a tensile strength of 6.5g / d.
The above is a high-strength ultrafine fiber structure composed of high-strength multifilaments having a breaking elongation of 15% or more.
【0023】本発明の高強度極細繊維構造物において
は、高強度マルチフィラメントがポリエステル繊維であ
ることが好ましく、特に、固有粘度(IV)が0.8以
上のポリエチレンテレフタレート繊維であることが好ま
しい。In the high-strength ultrafine fiber structure of the present invention, the high-strength multifilament is preferably a polyester fiber, and particularly preferably a polyethylene terephthalate fiber having an intrinsic viscosity (IV) of 0.8 or more.
【0024】また、本発明の高強度極細繊維構造物にお
いては、硫酸相対粘度(ηrn)が3.0以上の重合度
を有するポリアミド繊維からなることが好ましい。The high-strength ultrafine fiber structure of the present invention is preferably made of polyamide fiber having a polymerization degree of sulfuric acid relative viscosity (ηrn) of 3.0 or more.
【0025】この本発明の高強度極細繊維構造物の製造
方法は、2成分のポリマを同時に口金の単孔より複合吐
出することにより得られた、断面が海島型を有する単糸
繊度3.0d以上の複合繊維を、フィラメント数120
以下の実質的に無撚り、無糊の糸条で製編織した後、海
成分のポリマを除去することで、織編物を構成するフィ
ラメントの単糸繊度を0.8d未満にすることによって
製造できる。The method for producing a high-strength ultrafine fiber structure of the present invention is a single yarn fineness of 3.0d having a sea-island cross section, which is obtained by simultaneously discharging two components of polymer through a single hole of a die. The number of filaments is 120
It can be manufactured by knitting and weaving with the following substantially non-twisted and non-paste yarns, and then removing the sea component polymer to make the filaments constituting the woven or knitted fabric have a single yarn fineness of less than 0.8d. .
【0026】本発明の最大の特徴は、繊維構造物を構成
するフィラメントが、複合紡糸−溶出除去の方法により
容易に製造できる高強度の極細繊維であって、特定の引
張り強度、破断伸度、単糸繊度を有する極細繊維糸条か
らなる点にある。これにより、優れた機械的特性と優れ
た柔軟性とを有し、かつその製造時の毛羽や糸切れの発
生が少なく、高品質の繊維構造物とすることができる。
特に布帛とした場合、経糸及び/又は緯糸の打ち込み本
数を特定の値とすることによって、上記特性を兼ね備え
るとともに低い気体透過性をも有する繊維構造物が得ら
れる。The most important feature of the present invention is that the filaments constituting the fiber structure are high-strength ultrafine fibers which can be easily produced by the method of composite spinning-elution removal, and have a specific tensile strength, elongation at break, The point is that it consists of an ultrafine fiber yarn having a single yarn fineness. As a result, it is possible to obtain a high-quality fiber structure having excellent mechanical properties and excellent flexibility, less fluffing and yarn breakage during its production.
Particularly in the case of a fabric, by setting the number of warp yarns and / or weft yarns set to a specific value, it is possible to obtain a fiber structure having both the above characteristics and low gas permeability.
【0027】本発明における繊維構造物とは、その一部
もしくは全てが繊維状の形態の物質から構成されている
物を指す。ここでいう繊維状の形態の物質とは、物質の
形状を円柱に近似したときその直径に対する高さ(アス
ペクト比)が10以上ある物を指す。繊維構造物の代表
的な例としては、織物、編み物、不織布などの布帛や、
ロープ、縫い糸などの糸が挙げられる。繊維構造物の中
では、用いられる繊維状物質は連続して存在することが
好ましいが、非連続であってもよい。また、これら布帛
やロープは樹脂を含浸や被覆したような複合物として用
いてもよいし、また、樹脂の内部や表面に補強材として
繊維状物質が含有されている3次元物であってもよい。
このように、本発明における高強度極細繊維構造物と
は、本発明で説明する高強度極細繊維が少なくともその
一部に使用された繊維構造物である。The fibrous structure in the present invention refers to a part or all of which is composed of a fibrous substance. The fibrous substance here means a substance having a height (aspect ratio) with respect to its diameter of 10 or more when the shape of the substance is approximate to a cylinder. As typical examples of the fiber structure, fabrics such as woven fabric, knitted fabric, and non-woven fabric,
Threads such as ropes and sewing threads are included. In the fibrous structure, the fibrous substance used is preferably present continuously, but may be discontinuous. Further, these cloths and ropes may be used as a composite material in which a resin is impregnated or coated, or may be a three-dimensional material in which a fibrous substance is contained as a reinforcing material inside or on the surface of the resin. Good.
Thus, the high-strength ultrafine fiber structure in the present invention is a fiber structure in which the high-strength ultrafine fiber described in the present invention is used at least in part.
【0028】本発明における高強度極細繊維を用いた繊
維構造物は、ロープなどの1次元構造物、及び、織物、
編み物、不織布など布帛としての2次元構造物で代表さ
れるが、他の樹脂の補強材として使用した樹脂複合体な
ど3次元構造物でもよく、特に制限なく任意の形態で使
用されうる。しかし、極細繊維の特徴である柔軟性、軽
量性、風合いの効果をより発揮するためには、2次元の
繊維構造物である布帛の形態が好ましい。The fiber structure using the high-strength ultrafine fibers in the present invention is a one-dimensional structure such as a rope and a woven fabric,
Although it is represented by a two-dimensional structure as a cloth such as a knit or a non-woven fabric, it may be a three-dimensional structure such as a resin composite used as a reinforcing material of another resin, and may be used in any form without particular limitation. However, in order to further exert the effects of flexibility, lightness, and texture which are the characteristics of the ultrafine fibers, the form of the cloth, which is a two-dimensional fiber structure, is preferable.
【0029】本発明における高強度極細繊維構造物を構
成するマルチフィラメントは、それを構成する単糸の繊
度が0.8d未満であることが必要である。In the multifilament constituting the high-strength ultrafine fiber structure of the present invention, the fineness of the single yarn constituting the multifilament must be less than 0.8d.
【0030】単糸繊度が0.8d以上では、総繊度を抑
えても繊維構造体の柔軟性を十分に改善できない。一
方、あまりに単糸繊度が細すぎると、産業資材用途とし
て必要な強力を得るためには、フィラメント数をかなり
多くする必要があり、複合紡糸法を用いたとしても合糸
が必要になるなど、工業的な実施における実用性に欠
け、品位面にも問題を生じる。この点から、より好まし
くは0.1d以上0.8d未満、さらにより好ましくは
0.1d以上0.5d以下である。When the single yarn fineness is 0.8 d or more, the flexibility of the fiber structure cannot be sufficiently improved even if the total fineness is suppressed. On the other hand, if the single yarn fineness is too thin, it is necessary to considerably increase the number of filaments in order to obtain the strength required for industrial material applications, and even if the composite spinning method is used, a composite yarn is required. It lacks practicability in industrial practice and causes problems in quality. From this point, it is more preferably 0.1 d or more and less than 0.8 d, and even more preferably 0.1 d or more and 0.5 d or less.
【0031】さらに、本発明における高強度極細繊維構
造物を構成するマルチフィラメントは、引張り強度が
6.5g/d以上が必要であり、特に、7.5g/d以
上が好ましい。高強度極細繊維構造物として要求される
機械的特性を満足させるためには上記強度特性が必要で
あり、上記値より低いと、実用上必要な機械的特性を満
足することが困難である。このような高強度の極細繊維
から繊維構造物が構成されていることによって、本発明
においては単糸繊度の太い繊維を併用しなくても必要な
機械特性等を具備させることができる。Further, the multifilament constituting the high-strength ultrafine fiber structure in the present invention needs to have a tensile strength of 6.5 g / d or more, and particularly preferably 7.5 g / d or more. The above-mentioned strength characteristics are required to satisfy the mechanical characteristics required as a high-strength ultrafine fiber structure, and if it is lower than the above values, it is difficult to satisfy the mechanical characteristics required for practical use. By constructing the fiber structure from such high-strength ultrafine fibers, in the present invention, necessary mechanical properties and the like can be provided without using fibers having a large single yarn fineness.
【0032】また、本発明における高強度極細繊維構造
物を構成するマルチフィラメントは、破断伸度が15%
以上が必要であり、特に18%以上が好ましい。破断伸
度が15%未満であると、単糸繊度が0.8d未満と極
細であっても繊維構造物としたときi硬く柔軟性が劣る
し、しかも、紡糸時や製織時に毛羽や糸切れを生じ易く
不適当である。また、破断伸度があまりにも高すぎる場
合には、繊維構造物自体の伸度が大きくなり過ぎて寸法
安定性や形状維持の点で好ましくなく、通常40%以下
であることが好ましい。後述のように繊維構造物がエア
バッグ用基布である場合には、破断伸度が40%を越え
る場合には気体の透過性の抑制の点からも好ましくな
い。The multifilament constituting the high-strength ultrafine fiber structure of the present invention has a breaking elongation of 15%.
The above is required, and 18% or more is particularly preferable. When the elongation at break is less than 15%, even if the fineness of the single yarn is less than 0.8d, it is hard and inferior in flexibility when formed into a fiber structure, and further, fluff or yarn breakage occurs during spinning or weaving. Is likely to occur and is inappropriate. When the breaking elongation is too high, the elongation of the fiber structure itself becomes too large, which is not preferable in terms of dimensional stability and shape maintenance, and is usually preferably 40% or less. When the fiber structure is a base fabric for an airbag as described below, it is not preferable from the viewpoint of suppressing gas permeability when the breaking elongation exceeds 40%.
【0033】本発明における上記引張り強度及び破断伸
度は、繊維構造体中にその構成部材として存在している
時の値であって、構造体を形成する前の原糸の段階での
値ではない。すなわち、極細繊維とした後での値であ
り、脱海処理の複合糸での値ではない。複合繊維を脱海
処理して極細繊維とする工程は、効率の点などから、繊
維構造体とした後に行うことが好ましく、後述のように
溶剤処理、溶解処理などにより実施される。このときの
極細化処理により繊維はやや収縮され、結果として極細
化される前に比べて若干高伸度となる。The above-mentioned tensile strength and elongation at break in the present invention are values when they are present as constituent members in the fiber structure, and are values at the stage of the raw yarn before forming the structure. Absent. That is, it is a value after forming the ultrafine fibers, and is not a value for the composite yarn subjected to the sea removal treatment. From the viewpoint of efficiency, it is preferable that the step of removing the seawater from the composite fibers to obtain ultrafine fibers is performed after forming the fiber structure, and is performed by solvent treatment, dissolution treatment, or the like as described later. The fibers are slightly shrunk by the ultrathinning treatment at this time, and as a result, the elongation is slightly higher than that before the ultrathinning.
【0034】本発明における高強度極細繊維構造物を構
成するマルチフィラメントのポリマは、公知の海島型に
よって最終的に極細繊維を作製することが可能であれば
特に制限なく、公知の合成繊維用ポリマが適用可能であ
る。代表的なポリマの例としては、ポリエチレンテレフ
タレート、ポリブチレンテレフタレート、ポリエチレン
ナフタレートに代表されるポリエステル、ポリヘキサメ
チレンアジパミド、ポリテトラメチレンアジパミド、ポ
リカプラミドに代表されるポリアミド、ポリアクリロニ
トリル、ポリビニルアルコール、ポリエチレンやポリプ
ロピレンなどのポリオレフィン、芳香族ポリアミド、芳
香族ポリエステル、などが挙げられる。The multifilament polymer constituting the high-strength ultrafine fiber structure in the present invention is not particularly limited as long as the ultrafine fibers can be finally produced by the known sea-island type, and the known polymer for synthetic fiber is used. Is applicable. Examples of representative polymers include polyethylene terephthalate, polybutylene terephthalate, polyesters represented by polyethylene naphthalate, polyhexamethylene adipamide, polytetramethylene adipamide, polyamides represented by polycapramide, polyacrylonitrile, polyvinyl. Examples thereof include alcohols, polyolefins such as polyethylene and polypropylene, aromatic polyamides, aromatic polyesters, and the like.
【0035】使用するポリマは、それらの本来の優れた
性質を損ねない範囲であれば、曳糸性を高めるなどの目
的で、他の共重合成分や添加剤を含んでいてもよい。ま
た、曳糸性を損ねない範囲であれば、布帛の性能を高め
る目的で、耐光剤や酸化防止剤や顔料などの添加剤を含
んでいてもよい。The polymer used may contain other copolymerization components or additives for the purpose of enhancing the spinnability, etc., as long as they do not impair their original excellent properties. In addition, additives such as a light resistance agent, an antioxidant, and a pigment may be included for the purpose of enhancing the performance of the fabric as long as the spinnability is not impaired.
【0036】複合紡糸法による極細繊維製造の容易さ
や、得られた繊維構造物の寸法安定性、機械的特性など
を考慮すると、ポリエステルやポリアミドからなるフィ
ラメントが好ましい。なかでも、85重量%以上がエチ
レンテレフタレート単位より構成されるポリエチレンテ
レフタレート繊維が特に好ましい。Filaments made of polyester or polyamide are preferred in consideration of the ease of producing ultrafine fibers by the composite spinning method, the dimensional stability of the obtained fiber structure, the mechanical properties and the like. Among them, polyethylene terephthalate fibers in which 85% by weight or more is composed of ethylene terephthalate units are particularly preferable.
【0037】極細繊維がポリエチレンテレフタレート繊
維の場合、高粘度のポリマを用いると、前述の強度と伸
度が得易いため、最終的に得られた極細繊維の固有粘度
は0.8以上であることが好ましい。得られた極細繊維
の固有粘度が0.8未満では目的の強伸度が得られ難い
ばかりか耐熱性や寸法安定性も低下しやすく好ましくな
い。When the ultrafine fibers are polyethylene terephthalate fibers, the use of a high-viscosity polymer makes it easy to obtain the above-mentioned strength and elongation. Therefore, the ultrafine fibers finally obtained have an intrinsic viscosity of 0.8 or more. Is preferred. If the obtained ultrafine fibers have an intrinsic viscosity of less than 0.8, it is difficult to obtain the desired strength and elongation, and the heat resistance and the dimensional stability are also lowered, which is not preferable.
【0038】さらに本発明の高強度極細繊維構造物にお
いて、この繊維構造物を構成する極細繊維がポリエチレ
ンテレフタレート繊維の場合、広角X線により測定した
結晶体積値(C)が8×104 (オングストローム)3
以上、小角X線により測定した子午線方向の長周期(D
m)が120オングストローム以上、広角X線測定より
算出した結晶配向度(Fc)が0.90以上であること
が好ましい。結晶体積値(C)が8×104 (オングス
トローム)3 未満の場合や、長周期(Dm)が120オ
ングストローム未満、あるいは結晶配向度(Fc)が
0.90未満であると、高強度が得られにくく、また加
水分解を起こしやすいため耐久性に劣ったものとなりや
すい。Further, in the high-strength ultrafine fiber structure of the present invention, when the ultrafine fibers constituting this fiber structure are polyethylene terephthalate fibers, the crystal volume value (C) measured by wide-angle X-ray is 8 × 10 4 (angstrom). ) 3
As described above, the long period in the meridional direction (D
It is preferable that m) is 120 Å or more and the crystal orientation degree (Fc) calculated by wide-angle X-ray measurement is 0.90 or more. When the crystal volume value (C) is less than 8 × 10 4 (angstrom) 3 , the long period (Dm) is less than 120 angstrom, or the crystal orientation degree (Fc) is less than 0.90, high strength can be obtained. It is difficult to be treated, and hydrolysis tends to occur, resulting in poor durability.
【0039】さらに本発明の高強度極細繊維構造物にお
いて、この繊維構造物を構成する極細繊維がポリエチレ
ンテレフタレート繊維の場合、非晶配向度(Fb)が
0.975以上であることが好ましい。非晶配向度(F
b)が0.975に満たない場合、寸法安定性や耐熱性
が十分でなく、産業資材用途としての使用が難しくなり
易い。Further, in the high-strength ultrafine fiber structure of the present invention, when the ultrafine fibers constituting this fiber structure are polyethylene terephthalate fibers, the degree of amorphous orientation (Fb) is preferably 0.975 or more. Amorphous orientation (F
When b) is less than 0.975, dimensional stability and heat resistance are insufficient, and it tends to be difficult to use it as an industrial material.
【0040】一方、本発明の高強度極細繊維構造物にお
いて、この繊維構造物を構成する極細繊維がポリヘキサ
メチレンアジパミドやポリカプラミドのようなポリアミ
ド繊維の場合、ポリアミド繊維の有する低い初期モジュ
ラスのため、繊維構造物の柔軟性は極細繊維の効果と相
乗して有効に発現し、好ましいものとなる。この場合に
おいても、高粘度のポリマを用いると、前述の強度と伸
度が得易く、最終的に構成する極細繊維の98%硫酸相
対粘度(ηrn)が3.0以上であることが望ましい。On the other hand, in the high-strength ultrafine fiber structure of the present invention, when the ultrafine fibers constituting this fiber structure are polyamide fibers such as polyhexamethylene adipamide and polycapramide, the polyamide fiber has a low initial modulus. Therefore, the flexibility of the fiber structure is synergistically exerted with the effect of the ultrafine fibers and is effectively exhibited, which is preferable. Even in this case, if a high-viscosity polymer is used, the above-mentioned strength and elongation are easily obtained, and it is desirable that the 98% sulfuric acid relative viscosity (ηrn) of the ultrafine fibers finally formed is 3.0 or more.
【0041】本発明の高強度極細繊維構造物において
は、高強度マルチフィラメントを構成する極細糸は、高
強度の繊維が容易に得られ紡糸が容易であるといった点
から、全部が実質的に同一のポリマ組成であることが好
ましい。In the high-strength ultrafine fiber structure of the present invention, all the ultrafine yarns constituting the high-strength multifilament are substantially the same in that high-strength fibers are easily obtained and spinning is easy. It is preferable that the polymer composition is
【0042】高強度マルチフィラメントを構成する極細
糸の全部を実質的に一種のポリマ組成とするためには、
直接紡糸の他、海島型複合紡糸などの複合紡糸方法や、
ブレンド紡糸などを用いて最終的に一種類のポリマのみ
が残って極細繊維マルチフィラメントとなる方法が挙げ
られる。製造の容易さからは海島型複合紡糸方法を用
い、その後脱海処理により極細繊維を得る手法がより好
ましい。さらに、この海島型複合紡糸方法は、目的とす
る高強度極細マルチフィラメントの総繊度が大きい場合
や、極細繊維の単糸繊度がより低い場合に特に好まし
い。In order to make all of the ultrafine yarns constituting the high strength multifilament substantially one kind of polymer composition,
In addition to direct spinning, composite spinning methods such as sea-island composite spinning,
There is a method in which only one kind of polymer is finally left by using a blended spinning method or the like to form an ultrafine fiber multifilament. It is more preferable to use the sea-island type composite spinning method from the viewpoint of ease of production, and then to obtain ultrafine fibers by de-sealing treatment. Further, this sea-island type composite spinning method is particularly preferable when the total fineness of the target high-strength ultrafine multifilament is large, or when the single-filament fineness of the ultrafine fiber is lower.
【0043】さらには、本発明における高強度極細繊維
を用いた繊維構造物が布帛である場合、極細繊維の特徴
である柔軟性、軽量性、風合いの効果をより発揮するた
めには、用いるマルチフイラメントの総繊度は1000
d以下であることが好ましい。さらに、産業資材用途と
して必要な強力水準などを合わせ考えると100〜10
00dがより好ましい。1000dを越えるマルチフィ
ラメントの場合は、単糸繊度0.8d未満の極細繊維で
あっても、布帛の厚みが厚くなり過ぎて柔軟性やしなや
かさが十分に発現し難くなる。Further, when the fiber structure using the high-strength ultrafine fibers in the present invention is a cloth, in order to exert the effects of the flexibility, the lightness and the texture which are the characteristics of the ultrafine fibers, the multi to be used is used. The total fineness of filament is 1000
It is preferably d or less. Furthermore, considering the strength level required for industrial materials, etc., 100 to 10
00d is more preferable. In the case of a multifilament having a fineness of more than 1000 d, even the ultrafine fibers having a single yarn fineness of less than 0.8 d have a too large thickness of the fabric, and it is difficult to sufficiently exhibit flexibility and flexibility.
【0044】このようにして得られた布帛は、その織り
密度にも因るが、一般に、引張り強力が100kg/3
cm以上、好ましくは150kg/3cm以上、より好まし
くは170kg/3cm以上、カンチレバー法による柔軟
性評価が60mm以下、より好ましくは45mm以下と
いう優れた特性を具備することが可能となる。引張り強
力が100kg/3cm未満であると、産業資材用途とし
ては機械的強力が不足する場合があり、また柔軟性評価
が60mmより大きいと、本発明の目的とする柔軟性向
上効果が不十分であり好ましくない。The fabric thus obtained generally has a tensile strength of 100 kg / 3, although it depends on its weaving density.
It is possible to have excellent properties such as cm or more, preferably 150 kg / 3 cm or more, more preferably 170 kg / 3 cm or more, and the flexibility evaluation by the cantilever method of 60 mm or less, more preferably 45 mm or less. If the tensile strength is less than 100 kg / 3 cm, the mechanical strength may be insufficient for industrial material applications, and if the flexibility evaluation is greater than 60 mm, the flexibility improving effect aimed at by the present invention may be insufficient. There is not preferable.
【0045】本発明における高強度極細繊維を用いた布
帛は、種々の産業資材用途への展開が可能であるが、な
かでも、柔軟性及び軽量性に優れること、さらに、布帛
構造の設計によって気体の低透過性が容易に得られるこ
となどの点から、エアバッグ用基布として用いることが
好適である。The fabric using the high-strength ultrafine fibers of the present invention can be applied to various industrial materials, but among them, it is excellent in flexibility and lightness, and further, it is gas by designing the fabric structure. It is suitable to be used as a base fabric for an air bag because the low permeability can be easily obtained.
【0046】エアバッグ用基布に要求される特性として
は、布帛としての引張り強力、引裂強力、破裂強力など
の力学的特性の他、柔軟性、軽量性、収納時コンパクト
性(折り畳み性)、低気体透過性などが挙げられる。こ
れら要件を満足するエアバッグ用基布とするためには、
それを構成する高強度極細繊維フィラメントの総繊度は
180〜450dとすることが好ましい。総繊度が45
0dを越えると、樹脂コーティングなし(以下、ノンコ
ート品と略す)で十分に低い通気性水準が得られる程度
に高密度の布帛としたときに、布帛厚みが厚くなり過
ぎ、柔軟性及び軽量性が損なわれ易くなるため好ましく
ない。さらに、収納時コンパクト性も劣ったものとなり
易い。逆に総繊度が180d未満であると、いかに高密
度に織ったとしても布帛の機械的強度が不充分となり易
く、膨脹時に破裂し易くなるため好ましくない。さら
に、好ましい総繊度は200〜375dである。The properties required of the airbag base fabric include mechanical properties such as tensile strength, tear strength and burst strength as a fabric, as well as flexibility, light weight, compactness during storage (foldability), Examples include low gas permeability. To make an airbag base fabric that satisfies these requirements,
The total fineness of the high-strength ultrafine fiber filaments constituting it is preferably 180 to 450 d. Total fineness is 45
If it exceeds 0d, the fabric thickness becomes too thick when the fabric is made to have a high density so that a sufficiently low air permeability level can be obtained without resin coating (hereinafter, abbreviated as non-coated product), and the flexibility and lightness are reduced. It is not preferable because it is easily damaged. Furthermore, the compactness tends to be poor when stored. On the other hand, if the total fineness is less than 180 d, the mechanical strength of the fabric tends to be insufficient and the fabric tends to burst at the time of expansion no matter how densely woven it is, which is not preferable. Furthermore, the preferable total fineness is 200 to 375 d.
【0047】また、布帛のカバーファクタKを1900
以上、より好ましくは2000以上とすると、ノンコー
トでも優れたエアバッグ用基布とすることができる。カ
バーファクタKが1900に満たないと、ノンコートで
は通気性が高くなり過ぎて、満足な膨脹が難しく、さら
に、布帛の機械的強度が弱くなり易く好ましくない。Further, the cover factor K of the cloth is set to 1900.
As described above, more preferably 2000 or more, it is possible to obtain an excellent airbag base fabric even without coating. If the cover factor K is less than 1900, the non-coating has too high air permeability, which makes it difficult to achieve satisfactory expansion, and further, the mechanical strength of the fabric tends to be weak, which is not preferable.
【0048】得られたエアバッグ用基布は、基布として
の引張り強力が100kg/3cm以上、カンチレバー法
による柔軟性評価が60mm以下、1.27cmの圧力
降下における気体の透過量が5.0cc/sec /cm2 以下
という優れた特性を具備でき、低い通気性と柔軟性とを
兼ね備えた物となる。The obtained air bag base fabric has a tensile strength of 100 kg / 3 cm or more as a base fabric, a flexibility evaluation by the cantilever method of 60 mm or less, and a gas permeation amount of 5.0 cc at a pressure drop of 1.27 cm. It is possible to have excellent characteristics such as / sec / cm 2 or less, and it has low air permeability and flexibility.
【0049】また、このような条件を満足する基布は、
8kgf以上のような高い引裂き強力(JIS−L−1
096(トラペゾイド法)により測定した布帛の経方
向、緯方向の各値の平均値)や、40kg/cm2 以上の
ように高い破裂強度(JIS−L−1018A法(ミュ
ーレン法)による)を有することも可能となる。A base cloth satisfying such conditions is
Tear strength as high as 8 kgf or more (JIS-L-1
096 (trapezoid method), and has a high burst strength (according to JIS-L-1018A method (Mullen method)) of 40 kg / cm 2 or more) It is also possible.
【0050】このように本発明によると、エアバッグ用
基布を構成する経糸及び緯糸が、複合紡糸−溶出除去の
方法により容易に製造できる高強度の極細繊維であっ
て、特定の引張り強度、破断伸度、総繊度、単糸繊度を
有する極細繊維糸条を用いることにより、優れた機械的
特性は勿論のこと、低い気体透過性と優れた柔軟性を有
し、かつ製織時の毛羽や糸切れの発生が少なく、高品質
のエアバッグ用基布とすることができる。もちろん、こ
のエアバッグ用基布は、樹脂コーティングなしの状態の
ノンコート品として使用することも可能であるし、ま
た、必要に応じて樹脂コーティングして使用してもよ
い。As described above, according to the present invention, the warp yarn and the weft yarn constituting the airbag base fabric are high-strength ultrafine fibers which can be easily produced by the method of composite spinning-eluting removal, and have a specific tensile strength, By using an ultrafine fiber yarn having break elongation, total fineness, and single yarn fineness, not only excellent mechanical properties but also low gas permeability and excellent flexibility, and fluff during weaving or It is possible to obtain a high-quality airbag base fabric with less yarn breakage. Of course, this airbag base fabric can be used as a non-coated product without resin coating, or may be resin-coated and used as the case requires.
【0051】本発明にかかる高強度極細繊維構造物は、
前述のように海島型の複合紡糸方法を用いて得られた高
強度極細繊維によって構成されることが好適であり、例
えば、次の方法によって容易に製造できる。The high-strength ultrafine fiber structure according to the present invention is
As described above, it is preferable that it is composed of high-strength ultrafine fibers obtained by using the sea-island type composite spinning method. For example, it can be easily produced by the following method.
【0052】まず2成分のポリマを同時に口金の単孔よ
り複合吐出するという通常の海島型複合紡糸法により、
海島構造で単糸繊度が3.0d以上の複合繊維のマルチ
フィラメント糸を製造する。First, by the usual sea-island type composite spinning method in which the two components of the polymer are simultaneously discharged through a single hole of the spinneret,
A multi-filament yarn having a sea-island structure and a single fiber fineness of 3.0 d or more is produced.
【0053】その島成分には最終的に布帛を構成するポ
リマを、また、海成分には特定の溶剤に対する溶解性が
島成分よりも大きいポリマを使用する。ここにおいて、
島成分は、十分な機械的特性を有するフィラメントを得
るために前述した強伸度とすることが必要であり、その
ためには、高重合度のポリマを用いることが好ましい。
具体的には、ポリエチレンテレフタレートの場合、極細
繊維とした状態での固有粘度(IV)を0.8以上、ま
た、ポリアミドの場合、極細繊維とした状態での98%
硫酸相対粘度(ηrn)を3.0以上とすることが好ま
しいので、紡糸に供するチップの粘度は、ポリエチレン
テレフタレートの場合、固有粘度(IV)で1.0以
上、ポリヘキサメチレンアジパミドの場合、98%硫酸
相対粘度(ηrn)3.0以上のものを用いることが、
前述した強伸度特性を得るために好ましい。The island component is a polymer that finally constitutes the fabric, and the sea component is a polymer having a higher solubility in a specific solvent than the island component. put it here,
The island component needs to have the above-mentioned high elongation to obtain a filament having sufficient mechanical properties, and for that purpose, it is preferable to use a polymer having a high degree of polymerization.
Specifically, in the case of polyethylene terephthalate, the intrinsic viscosity (IV) in the state of ultrafine fibers is 0.8 or more, and in the case of polyamide, 98% in the state of ultrafine fibers.
Since the sulfuric acid relative viscosity (ηrn) is preferably 3.0 or more, the viscosity of the chips to be spun is 1.0 or more in intrinsic viscosity (IV) in the case of polyethylene terephthalate, and in the case of polyhexamethylene adipamide. , 98% sulfuric acid relative viscosity (ηrn) of 3.0 or more is used,
It is preferable in order to obtain the above-mentioned strong elongation property.
【0054】除去される海成分比率が少ないほど生産性
が高くなり、さらに高密度で気体透過性がより抑えられ
た繊維構造物が得やすいので、これらの点から海成分比
率はできる限り低いことが一般的に好ましい。従って、
海成分は好ましくは20%以下、より好ましくは10%
以下である。しかし、海成分比率があまりにも低くなり
過ぎると、島成分の合流が起こりやすくなったり、ま
た、複合繊維の滑らかな延伸、特に高倍率での延伸の困
難性が増してフィラメントとして目的の機械的強伸度が
得難くなったりするので、少なくとも5%程度とするこ
とが好ましい。The smaller the proportion of the sea component to be removed, the higher the productivity becomes, and it is easy to obtain a fiber structure having a higher density and more suppressed gas permeability. From these points, the sea component ratio should be as low as possible. Are generally preferred. Therefore,
Sea component is preferably 20% or less, more preferably 10%
It is the following. However, if the sea component ratio is too low, the island components are likely to merge with each other, and the smooth drawing of the composite fiber, particularly the difficulty of drawing at a high magnification, increases and the mechanical properties of the filament are increased. Since it may be difficult to obtain a high elongation, it is preferable that the strength be at least about 5%.
【0055】島成分及び海成分のポリマは、紡糸口金中
で断面が海島構造の複合流を形成し、通常の溶融紡糸法
により紡糸口金より紡出される。このとき、ポリマの熱
による劣化を防ぐために、紡糸機内におけるポリマの滞
留時間は短いほど好ましく、通常10分以内、さらに1
〜5分が好ましい。The polymer of island component and sea component forms a composite flow having a sea-island structure in cross section in the spinneret, and is spun from the spinneret by a usual melt spinning method. At this time, in order to prevent the polymer from deteriorating due to heat, the shorter the residence time of the polymer in the spinning machine is, the more preferable it is.
~ 5 minutes is preferred.
【0056】2種のポリマを紡糸口金から吐出するに際
し、紡糸口金あたりの複合糸のフィラメント数は120
以下が好ましく、さらに20〜90が好ましい。120
を越えると、一般に面積に限界のある口金面での孔間隔
が狭くなって、吐出後に糸条内の複合単糸どうしが衝突
を起こし易く、安定な紡糸が難しくなるし、さらに、複
雑な複合断面構造に起因して口金面での吐出ポリマ曲が
りが起き易く、糸条内の単糸間衝突が起こり易くなるの
で、好ましくない。When the two polymers were discharged from the spinneret, the number of filaments of the composite yarn per spinneret was 120.
The following is preferable, and 20 to 90 is more preferable. 120
In general, the hole spacing on the spinneret surface, which has a limited area, becomes narrower, the composite single yarns in the yarns tend to collide with each other after ejection, and stable spinning becomes difficult. Due to the cross-sectional structure, bending of the discharge polymer on the spinneret surface is likely to occur, and collision between single yarns in the yarn is likely to occur, which is not preferable.
【0057】海島型紡糸方法において、複合糸のフィラ
メント数、及び1本の複合糸中の島成分の数は、得よう
とする極細繊維マルチフィラメントの総繊度と単糸繊度
によって決めればよい。複合糸のフィラメント数が少な
過ぎる場合は、一般に島数が多くなりすぎて複合糸の各
単糸繊度が相当に太くなり、糸条の冷却に不均一性が生
じ、紡糸の安定性が損われ易いので好ましくない。逆
に、複合糸のフィラメント数が多すぎる場合は、1本の
複合糸中に含まれる島の数が少なくなりすぎ、複合糸1
本の繊度が細くなりすぎるので、紡糸冷却時に単糸間衝
突が起こりやすくなるし、また、毛羽や糸切れが発生し
やすくなるので好ましくない。通常、複合糸のフィラメ
ント数と島数としては、複合糸の単糸繊度が延伸糸にお
いて3〜10dの範囲にはいるようにバランスして設計
することが好ましい。In the sea-island type spinning method, the number of filaments of the composite yarn and the number of island components in one composite yarn may be determined depending on the total fineness and the single yarn fineness of the ultrafine fiber multifilaments to be obtained. If the number of filaments in the composite yarn is too small, the number of islands will generally be too large, and the individual yarn fineness of the composite yarn will be considerably large, resulting in uneven cooling of the yarn and impairing the spinning stability. It is not preferable because it is easy. On the contrary, when the number of filaments of the composite yarn is too large, the number of islands contained in one composite yarn becomes too small, and the composite yarn 1
Since the fineness of the book becomes too thin, collision between single yarns is likely to occur during spinning cooling, and fuzz and yarn breakage are likely to occur, which is not preferable. Usually, the number of filaments and the number of islands of the composite yarn are preferably designed in a balanced manner so that the single yarn fineness of the composite yarn falls within the range of 3 to 10 d in the drawn yarn.
【0058】紡糸口金の直下に、10〜100cmの長
さで200〜350℃に温度制御された加熱筒を設け、
吐出糸条はこの加熱筒内の高温雰囲気中を通過させるこ
とがよい。加熱筒の長さ及び温度条件は、2種のポリマ
特性や糸条繊度、複合繊維のフィラメント数により最適
化すればよい。この加熱筒は、溶融ポリマの固化を遅ら
せ高強度を発現させるために有効である。なお、高温で
の熱劣化を防止する目的で、必要に応じて加熱筒内の雰
囲気を高温不活性ガスでシールしてもよい。Immediately below the spinneret, a heating cylinder having a length of 10 to 100 cm and a temperature controlled at 200 to 350 ° C. is provided.
The discharged yarn is preferably passed through the high temperature atmosphere in the heating cylinder. The length and temperature conditions of the heating cylinder may be optimized depending on the two types of polymer characteristics, yarn fineness, and the number of filaments of the composite fiber. This heating cylinder is effective for delaying the solidification of the molten polymer and developing high strength. The atmosphere in the heating cylinder may be sealed with a high temperature inert gas, if necessary, for the purpose of preventing thermal deterioration at high temperatures.
【0059】紡出糸条は、高温雰囲気中を通過した後、
冷却風で冷却固化され、次いで油剤が付与された後、紡
糸速度を制御する引取りロールで引取られる。The spun yarn, after passing through a high temperature atmosphere,
It is cooled and solidified with cooling air, and then an oil agent is applied, and then it is taken up by a take-up roll that controls the spinning speed.
【0060】引取りロールに引取られた未延伸糸は、巻
取ることなく連続して延伸されることが好ましいが、一
旦巻取った後に別工程で延伸してもよい。紡糸速度は、
通常1500m/min 以下で行うことが好ましい。延伸
は通常の熱延伸法により行えばよく、2段以上の多段延
伸が好ましい。その延伸倍率は、ポリマの種類や紡糸速
度等により適宜最適化すればよく、未延伸糸段階での複
屈折、延伸温度及び多段延伸時の延伸比配分等によって
変化させうるが、通常は3.0倍以上、好ましくは3.
0〜6.5倍、より好ましくは4.0〜6.0倍であれ
ばよい。The undrawn yarn taken up by the take-up roll is preferably continuously drawn without being taken up, but may be taken up once and drawn in a separate step. The spinning speed is
Usually, it is preferably performed at 1500 m / min or less. Stretching may be performed by an ordinary hot stretching method, and multistage stretching of two or more stages is preferable. The draw ratio may be appropriately optimized depending on the type of polymer, the spinning speed, and the like, and can be changed depending on the birefringence in the undrawn yarn stage, the drawing temperature, the draw ratio distribution in multistage drawing, and the like. 0 times or more, preferably 3.
It may be 0 to 6.5 times, more preferably 4.0 to 6.0 times.
【0061】このように延伸して得られる複合繊維の糸
条は、単糸繊度3d以上がさらに5d以上がよい。3d
未満であると、紡糸時の加熱筒内における糸揺れに起因
して繊度斑を起こし易くて均一な延伸が難しくなると、
さらに、糸切れや毛羽の原因となり易く好ましくない。The yarn of the composite fiber obtained by drawing in this manner preferably has a single yarn fineness of 3d or more and further 5d or more. 3d
When it is less than, if the fineness is likely to occur due to yarn wobbling in the heating cylinder during spinning, and uniform stretching becomes difficult,
Furthermore, it is not preferable because it easily causes yarn breakage or fuzz.
【0062】次いで、この延伸糸は熱固定される。熱固
定は、糸条を熱ローラや熱板に接触させる方法や、高温
気体中を通過させる方法などの通常の方法により行えば
よい。この熱固定時の張力及び温度を変化させることに
よって、乾熱収縮率を調整することができる。例えば、
繊維構造物に低い通気性を付与する場合には、150
℃、30分間の熱処理時の乾熱収縮率を1〜10%、さ
らに、3〜8%とするこが好ましく、布帛の状態で海成
分を除去する際に適度に布帛が収縮して、脱海後におい
て低い気体透過性が達成される。最適の乾熱収縮率は、
製織時の織密度条件や目的とする布帛の通気性、機械的
強度の水準などから決定すればよい。Next, the drawn yarn is heat set. The heat fixation may be carried out by a usual method such as a method of bringing the yarn into contact with a heat roller or a hot plate, or a method of passing through a high temperature gas. The dry heat shrinkage can be adjusted by changing the tension and temperature during the heat setting. For example,
When imparting low air permeability to the fiber structure, 150
The dry heat shrinkage rate during heat treatment at 30 ° C. for 30 minutes is preferably 1 to 10%, more preferably 3 to 8%. When the sea component is removed in the state of the cloth, the cloth shrinks moderately and is removed. A low gas permeability is achieved after the sea. The optimum dry heat shrinkage is
It may be determined from the weaving density conditions during weaving, the desired air permeability of the fabric, the level of mechanical strength, and the like.
【0063】本発明における海島型複合紡糸方法による
高強度極細繊維は、毛羽発生をさらに抑えるため、延伸
工程及び熱固定工程において、フィラメントに交絡処理
を施してもよい。その交絡処理はエア交絡などの公知の
方法を採用すればよい。例えば、エア交絡の場合は、糸
条繊度や張力に応じてエア圧力を適宜変更する事で目的
の交絡度とすることができる。この場合、交絡度として
は20以上がさらには50以上が好ましい。In the high-strength ultrafine fibers produced by the sea-island type composite spinning method of the present invention, the filaments may be entangled in the drawing step and the heat setting step in order to further suppress the occurrence of fluff. A known method such as air entanglement may be adopted for the entanglement processing. For example, in the case of air entanglement, the desired entanglement degree can be obtained by appropriately changing the air pressure according to the yarn fineness and the tension. In this case, the degree of entanglement is preferably 20 or more, more preferably 50 or more.
【0064】延伸して得られた複合繊維の糸条は、通
常、単糸繊度が3〜8d、引張り強度が7.0g/d以
上、さらに8.0g/d以上、破断伸度が13.5%以
上であるマルチ複合フィラメン糸とすればよい。The yarn of the composite fiber obtained by drawing usually has a single yarn fineness of 3 to 8 d, a tensile strength of 7.0 g / d or more, further 8.0 g / d or more, and a breaking elongation of 13. A multi-composite filament yarn having a content of 5% or more may be used.
【0065】このマルチ複合フィラメントを用いて高強
度極細繊維構造物を製造するには、先ず得られたマルチ
複合フィラメントをそのまま用いて繊維構造物を作製す
る。例えば、繊維構造物が織物の場合、マルチ複合フイ
ラメントを経糸及び緯糸に用い通常の方法で製織すれば
よい。製織は、通常、無撚りかつ無糊で行われるが、必
要に応じて撚糸したり、糊づけしてもよい。織組織は、
平織り、斜織りなど、目的に応じて選択可能である。織
り密度等の織条件は目的に応じて決定すればよい。特
に、エアバッグ用基布とする場合には、最終的な織物の
カバーファクタ(K)が所定の値となるように、フィラ
メント繊度、脱海処理工程での海成分除去量及び収縮程
度を加味して織条件を設計すればよい。In order to produce a high-strength ultrafine fiber structure using this multi-composite filament, first, the obtained multi-composite filament is used as it is to prepare a fiber structure. For example, when the fibrous structure is a woven fabric, the multi-composite filament may be used for the warp and the weft and woven by a usual method. The weaving is usually performed without twisting and without sizing, but may be twisted or sizing as necessary. The woven structure is
A plain weave or a diagonal weave can be selected according to the purpose. Weaving conditions such as weaving density may be determined according to the purpose. Especially when it is used as a base fabric for airbags, the filament fineness, the amount of sea component removed and the degree of shrinkage in the sea removal treatment process are taken into consideration so that the final cover factor (K) of the fabric will be a predetermined value. Then, weaving conditions can be designed.
【0066】本発明の複合紡糸方法では、最終的には
0.8d未満という非常に細い単糸繊度の極細フィラメ
ントで構成される繊維構造物を、単糸繊度3.0d以上
という太単糸の複合フィラメント糸状態で紡糸した後、
目的の繊維構造物の形状となし、その後に極細繊維にす
るという方法でもって製造しているので、紡糸時の糸切
れや毛羽の発生や繊維構造物作製時の毛羽・糸切れの発
生を十分に抑制することができる。従って、例えば、繊
維構造物が織物の場合においても、製織時に糊付けや撚
糸を行わなくても、紡糸性や加工性良く、柔軟性や軽量
性等が十分に向上した織物が容易に製造できるのであ
る。In the composite spinning method of the present invention, finally, a fiber structure composed of ultrafine filaments having a very fine single yarn fineness of less than 0.8 d is converted into a thick single yarn having a single yarn fineness of 3.0 d or more. After spinning in the state of composite filament yarn,
Since the shape of the target fiber structure is used, and then the fiber is manufactured by the method of making ultrafine fibers, there is sufficient occurrence of yarn breakage and fluff during spinning and fluff and yarn breakage during fiber structure production. Can be suppressed. Therefore, for example, even when the fibrous structure is a woven fabric, it is possible to easily produce a woven fabric in which spinnability and workability are good, and flexibility and lightness are sufficiently improved without performing sizing or twisting during weaving. is there.
【0067】作製された繊維構造物は次いで脱海処理を
施し海成分を除くことで、構成するフィラメントを目的
とする極細繊維とする。脱海処理は、海成分用ポリマの
特性に合わせて選択すればよいが、例えば、水による溶
出、酸性溶液やアルカリ性溶液などの各種水溶液による
分解、また有機溶剤による溶解などの処理が用いられ
る。また、それらのうちの2種以上の処理を組み合わせ
てもよい。さらには、特開昭56−118961号公報
に記載されたように脱海処理の前に海成分ポリマに予め
脆化処理を施してもよい。Next, the produced fiber structure is subjected to sea removal treatment to remove sea components, thereby forming the filaments constituting the target ultrafine fibers. The sea-removing treatment may be selected according to the characteristics of the polymer for sea components, but for example, treatments such as elution with water, decomposition with various aqueous solutions such as acidic solutions and alkaline solutions, and dissolution with organic solvents are used. In addition, two or more of these treatments may be combined. Furthermore, as described in JP-A-56-118961, the sea component polymer may be subjected to an embrittlement treatment in advance before the desalination treatment.
【0068】それらの処理は、繊維構造物を構成する島
成分の特性を損なわない範囲内であれば加熱や加圧の条
件を併用してもよい。エアバッグ用基布とする場合は、
気体透過性を抑えるために、脱海処理と同時に布帛をあ
る程度収縮させることによって、海成分が存在していた
空間を小さくすることが必要である。このためには、加
熱しながら溶液中を通過させることにより海成分を除去
する方法が好ましく、さらに、収縮を起こさせるために
70℃以上で処理することが好ましい。These treatments may be combined with heating and pressurizing conditions as long as the characteristics of the island components constituting the fiber structure are not impaired. When using the base fabric for airbags,
In order to suppress the gas permeability, it is necessary to shrink the fabric to some extent at the same time as the sea removal treatment to reduce the space where the sea component was present. For this purpose, a method of removing sea components by passing through the solution while heating is preferable, and further, treatment at 70 ° C. or higher is preferable in order to cause shrinkage.
【0069】海成分として用いられる具体的なポリマと
しては、例えば、溶剤で溶解させるタイプとしてポリス
チレン、水で溶解もしくは水溶液で分解させるタイプと
して5ソディウムイソフタル酸を共重合させたポリエス
テル、その他の公知の水溶性ポリマなどが挙げられる。
水により溶出できる水溶性ポリマの1例としては、テレ
フタル酸を主たる酸成分とし、5−ナトリウムスルホイ
ソフタル酸8〜16モル%及びイソフタル酸5〜40モ
ル%を含み、かつエチレングリコールが主たるジオール
成分であって、分子量5000以下のポリエチレングリ
コールを10重量%以下共重合した水溶性ポリエステル
(特開平4−361659号公報記載)が挙げられる。
水溶出タイプのポリマは、脱海処理する際の島成分への
ダメージが小さいので、最終的な機械的物性の点から好
ましい。Specific polymers used as the sea component include, for example, polystyrene dissolved in a solvent, polyester copolymerized with 5 sodium isophthalic acid dissolved in water or decomposed in an aqueous solution, and other known polymers. Examples include water-soluble polymers.
An example of a water-soluble polymer that can be eluted with water is diol component containing terephthalic acid as a main acid component, 5-sodium sulfoisophthalic acid 8 to 16 mol% and isophthalic acid 5 to 40 mol%, and ethylene glycol as a main component. And a water-soluble polyester obtained by copolymerizing polyethylene glycol having a molecular weight of 5000 or less in an amount of 10% by weight or less (described in JP-A-4-361659).
The water-eluting type polymer is preferable from the viewpoint of the final mechanical properties, because the damage to the island components during the desalination treatment is small.
【0070】以上の方法によって脱海工程を経て得られ
た繊維構造物は、単糸繊度が0.8d未満と極細であ
り、かつその引張り強度が6.5g/d以上ち高く、さ
らにその破断伸度が15%以上という高強度極細繊維の
マルチフィラメントから構成される。The fiber structure obtained through the sea removal step by the above method has an extremely fine single yarn fineness of less than 0.8 d, and has a high tensile strength of 6.5 g / d or more, and further its breakage. It is composed of multifilaments of high-strength ultrafine fibers having an elongation of 15% or more.
【0071】海島型複合紡糸を利用する製造方法による
と、複合繊維糸条の段階では伸度が13%程度であって
も脱海処理により高伸度化し、伸度15%以上を有する
フィラメントで構成される繊維構造物とすることができ
る。According to the production method using sea-island type composite spinning, even if the elongation is about 13% at the stage of the composite fiber yarn, it is highly elongated by the sea removal treatment and has a elongation of 15% or more. It can be a constructed fibrous structure.
【0072】海島型複合紡糸を利用して極細繊維を製造
する場合の紡糸安定性等からして、最終的な極細繊維を
構成する島成分用ポリマは、1種のポリマ素材よりなる
ことが好ましい。From the viewpoint of spinning stability and the like in the case of producing ultrafine fibers using sea-island type composite spinning, the polymer for the island component which constitutes the final ultrafine fibers is preferably made of one kind of polymer material. .
【0073】本発明の繊維構造体においては、その形態
や用途等に応じて、構成する極細繊維マルチフィラメン
トの総繊度や単糸繊度を最適に設計する必要がある。こ
こで海島型複合紡糸方法を用いる場合、1本の複合糸か
ら生じる極細フィラメントの数、即ち、島の数は、その
紡糸口金構造上、分割型複合糸の場合よりも多くするこ
とが可能である。というのは、分割型の場合は分割数を
あまり多くできないので、極細繊度を生じさせるために
は複合糸1本の繊度を相当に細くする必要があり、製糸
の安定性が損なわれやすい。従って、十分に細い極細繊
維を安定的に得るためには海島型紡糸方法が好ましい。In the fiber structure of the present invention, it is necessary to optimally design the total fineness and single yarn fineness of the ultrafine fiber multifilaments constituting the fiber structure according to its form and use. When the sea-island type composite spinning method is used here, the number of ultrafine filaments produced from one composite yarn, that is, the number of islands, can be made larger than that of the split type composite yarn due to its spinneret structure. is there. In the case of the split type, since the number of divisions cannot be increased so much, it is necessary to make the fineness of one composite yarn considerably thin in order to generate an ultrafine fineness, and the stability of the yarn production is likely to be impaired. Therefore, the sea-island type spinning method is preferable in order to stably obtain sufficiently fine ultrafine fibers.
【0074】本発明における繊維構造物は、本発明の特
性を損ねない範囲内であれば、必要に応じて、カレンダ
加工や熱セットなどの処理を加えてもよい。The fiber structure of the present invention may be subjected to treatment such as calendering or heat setting, if necessary, as long as it does not impair the characteristics of the present invention.
【0075】[0075]
【実施例】以下、実施例により本発明を詳細に説明す
る。本発明における各物性は、次のようにして測定した
値である。The present invention will be described in detail below with reference to examples. Each physical property in the present invention is a value measured as follows.
【0076】(1) ポリエステルの固有粘度(IV):
オルソクロロフェノール25mlに対しサンプルポリマ
2gを溶解したポリマ溶液を作り、そのポリマ溶液の相
対粘度ηrpをオストワルド粘度計を用いて、25℃で
測定し、次の近似式により固有粘度(IV)を算出す
る。 IV=0.0242・ηrp+0.2634 ただし、 ηrp=(t×d)/(t0 ×d0 ) t :溶液の落下時間(秒) t0 :オルソクロルフェノールの落下時間(秒) d :溶液の密度(g/cc) d0 :オルソクロルフェノールの密度(g/cc) (2) ポリアミドの硫酸相対粘度(ηrn):試料を9
8%硫酸に1重量%の濃度で溶解し、オストワルド粘度
計を用いて25℃で測定する。(1) Intrinsic viscosity (IV) of polyester:
A polymer solution was prepared by dissolving 2 g of the sample polymer in 25 ml of orthochlorophenol, and the relative viscosity ηrp of the polymer solution was measured at 25 ° C. using an Ostwald viscometer, and the intrinsic viscosity (IV) was calculated by the following approximate expression. To do. IV = 0.0242 · ηrp + 0.2634 where ηrp = (t × d) / (t 0 × d 0 ) t: Fall time of solution (sec) t 0 : Fall time of orthochlorophenol (sec) d: Solution Density (g / cc) d 0 : density of orthochlorophenol (g / cc) (2) Sulfuric acid relative viscosity of polyamide (ηrn): 9 samples
It is dissolved in 8% sulfuric acid at a concentration of 1% by weight and measured at 25 ° C. using an Ostwald viscometer.
【0077】(3) 複合繊維糸の引張り強度、破断伸
度:JIS−L−1017に準拠して測定する。(3) Tensile strength and elongation at break of composite fiber yarn: Measured in accordance with JIS-L-1017.
【0078】(4) 繊維構造物を構成するマルチフィラ
メントの引張り強度、破断伸度:繊維構造物中からマル
チフィラメントを取り出して測定する。例えば織物の場
合は織物からの分解糸を、また、編物等の場合は、これ
らから糸にダメージを与えないようにして抜き出したフ
ィラメントをサンプルとする。このサンプルに、原糸段
階の繊度の約1/3の荷重をかけて25cmの長さに切
り揃えた後、その重量を測定し、9000m長の重量に
換算して分解糸繊度を求める。次いで、オリエンテック
社製RTM−100の引張り試験機を用いて、試長15
cm、引張り速度30mm/分の条件で引張り試験を行
う。得られた荷重−伸長曲線から、最大強力点の強力を
読みとり、この値を分解糸繊度で除した値を分解糸の引
張り強度とする。また、その荷重−伸長曲線から、切断
伸度を読取る。(4) Tensile Strength and Elongation at Break of Multifilament Constituting Fiber Structure: Measured by taking out multifilament from the fiber structure. For example, in the case of a woven fabric, the decomposed yarn from the woven fabric is used, and in the case of a knitted fabric or the like, a filament extracted from these without damaging the yarn is used as a sample. A load of about ⅓ of the fineness of the original yarn stage is applied to this sample, and the sample is cut into a length of 25 cm. The weight is measured, and the decomposed yarn fineness is calculated by converting the weight to a length of 9000 m. Next, using an RTM-100 tensile tester manufactured by Orientec, a test length of 15
The tensile test is performed under the conditions of cm and a tensile speed of 30 mm / min. The strength at the maximum strength point is read from the obtained load-elongation curve, and the value obtained by dividing this value by the decomposed yarn fineness is taken as the tensile strength of the decomposed yarn. Also, the cutting elongation is read from the load-elongation curve.
【0079】(5) 繊維の結晶体積値(C) 理学電機(株)製広角X線発生装置(4036A2型)
を用い、CuKα(Niフィルタ使用)を線源として測
定する。(出力35KV、15mA、スリット2mm
φ)。撮影条件は赤道方向2θ=10〜35゜、子午線
方向2θ=10〜35゜、円周方向2θ=90〜270
゜ステップ0.05゜(円周方向は0.5゜)、積算時
間2秒とすればよい。(5) Fiber crystal volume value (C) Wide-angle X-ray generator (4036A2 type) manufactured by Rigaku Denki Co., Ltd.
Is used to measure CuKα (using a Ni filter) as a radiation source. (Output 35KV, 15mA, slit 2mm
φ). The shooting conditions are equatorial direction 2θ = 10 to 35 °, meridian direction 2θ = 10 to 35 °, and circumferential direction 2θ = 90 to 270.
The step may be 0.05 ° (0.5 ° in the circumferential direction) and the integration time may be 2 seconds.
【0080】結晶サイズは、透過法により得られた面指
数(010)、(100)、(−105)のピークの半
価巾から下記のScherrerの式を用いて算出す
る。◎ L(hkl) =Kλ/β0 cosθB ただし、L(hkl) :微結晶の(hkl) 面に垂直な方向の平
均の大きさ、 K:1.0、 λ :X線の波長、 β0 :(βE 2 −βI 2 )1/2 、 βE :見かけの半価巾(測定値) βI :1.05×10-2rad βB :ブラッグ角、である。 以上の方法によって求めた各面での結晶サイズの値から
次式により、結晶体積値(C)を算出する。 V=L(010) ×L(100) ×L(-105) ((オングストロ
ーム)3 ) (6) 繊維の子午線方向の長周期(Dm) 理学電機(株)製小角X線発生装置(RU200型)を
用い、CuKα(Niフィルタ使用)を線源として測定
する。(出力50KV、200mA、スリット1mm
φ)。撮影条件はカメラ半径400mm、フィルムはK
odak DEF−5、露出時間120分とすればよ
い。小角X線散乱写真上の距離(r)から、下記のBr
aggの式を用いて長周期(J)を求める。The crystal size is calculated from the half width of the peaks of the plane indices (010), (100) and (-105) obtained by the transmission method, using the Scherrer's formula below. ◎ L (hkl) = Kλ / β 0 cos θ B where L (hkl) is the average size of the crystallites in the direction perpendicular to the (hkl) plane, K: 1.0, λ is the wavelength of X-rays, β 0 : (β E 2 −β I 2 ) 1/2 , β E : apparent half width (measured value) β I : 1.05 × 10 −2 rad β B : Bragg angle. The crystal volume value (C) is calculated from the value of the crystal size on each surface obtained by the above method by the following equation. V = L (010) x L (100) x L (-105) ((angstrom) 3 ) (6) Long period in the meridional direction of fiber (Dm) Small angle X-ray generator (RU200 type) manufactured by Rigaku Denki Co., Ltd. ) Is used to measure CuKα (using a Ni filter) as a radiation source. (Output 50KV, 200mA, slit 1mm
φ). Shooting conditions: camera radius 400 mm, film K
odak DEF-5, exposure time 120 minutes. From the distance (r) on the small-angle X-ray scattering photograph, the following Br
The long period (J) is calculated using the agg equation.
【0081】 J=λ/2Sin[{tan-1(r/R)}}] ここで、R:カメラ半径、λ:X線の波長、J:長周
期、である。本発明の高強度極細繊維は層状4点散乱を
示すので、 L.E.Alex-ander 著、桜田監訳、浜田、梶井
訳、「高分子のX線(下)」、5章、化学同人(197
3)の定義により、繊維軸方向に対応するスポット間距
離から長周期(Dm)(オングストローム)を算出でき
る。J = λ / 2Sin [{tan −1 (r / R)}}] where R is the camera radius, λ is the wavelength of X-rays, and J is the long period. Since the high-strength ultrafine fibers of the present invention exhibit layered four-point scattering, LEAlex-ander's translation by Sakurada, Hamada, Kajii, “Polymer X-ray (below)”, Chapter 5, Kagaku Dojin (197)
According to the definition of 3), the long period (Dm) (angstrom) can be calculated from the spot distance corresponding to the fiber axis direction.
【0082】(7) 繊維の結晶配向度(Fc) 前記した広角X線測定において求めた(010)面の赤
道線干渉のデバイ環上に沿った強度分布曲線の半価巾
(H゜)から次式により結晶配向度(Fc)を求める。 Fc=(180゜−H゜)/180゜ (8) 繊維の非晶配向度(Fb) 偏向蛍光法によって測定する。装置は、日本分光工業製
(株)FOM−1を用い、透過法(励起光波長:365
nm、蛍光波長:420nm)で測定する。なお、サン
プル糸は、約0.2%の蛍光剤入りの55℃の水溶液中
に4時間浸漬し、水洗し風乾した物を用いた。(7) Crystal orientation of fiber (Fc) From the half width (H °) of the intensity distribution curve along the Debye ring of the equatorial line interference of the (010) plane obtained in the wide angle X-ray measurement described above. The crystal orientation degree (Fc) is calculated by the following formula. Fc = (180 ° -H °) / 180 ° (8) Amorphous orientation degree (Fb) of fiber Measured by a polarized fluorescence method. The instrument used was FOM-1 manufactured by JASCO Corporation, and the transmission method (excitation light wavelength: 365) was used.
nm, fluorescence wavelength: 420 nm). The sample yarn was used by being immersed in an aqueous solution containing about 0.2% of a fluorescent agent at 55 ° C. for 4 hours, washed with water and air-dried.
【0083】(9) 布帛の引張り強力 JIS−K−6328(ストリップ法)に準拠し、試料
幅3cmで測定する。結果は、布帛の経方向の値と緯方向
の値の平均値でもって示す。(9) Tensile Strength of Cloth Measured with a sample width of 3 cm according to JIS-K-6328 (strip method). The results are shown by the average value of the warp direction value and the weft direction value of the fabric.
【0084】(10) 布帛の柔軟性 JIS−L−1096(45°カンチレバー法)で測定
した剛軟度でもって示す。(10) Softness of Cloth This is represented by the bending resistance measured by JIS-L-1096 (45 ° cantilever method).
【0085】(11) 布帛の気体通過量(1.27cmの水
柱の圧力降下時における気体の透過量) JIS−L−1096(A法)で測定し、通過する空気
量をcc/sec /cm2 でもって示す。(11) Gas permeation amount of fabric (gas permeation amount when pressure drop of water column is 1.27 cm) Measured according to JIS-L-1096 (method A), air amount passing through is cc / sec / cm Shown with 2 .
【0086】(12) 工程通過性 繊維構造物作製時の工程通過性(毛羽・糸切れによる通
過性)を相対的に評価した。(12) Process Passability The process passability (passability due to fluff and yarn breakage) during the production of the fiber structure was relatively evaluated.
【0087】[実施例1]島成分用ポリマとして、固有
粘度(IV)が1.20のポリエチレンテレフタレート
(PET)を、海成分用ポリマとして、5−ナトリウム
スルホイソフタル酸を5.0%モル共重合したポリエチ
レンテレフタレート(固有粘度IV=0.70)(Co
−PET)を用い、通常の海島型複合紡糸法により2成
分溶融複合紡糸を行った。紡糸口金は60ホール、1本
の複合繊維中の島数は16、海島比は島/海=91/9
とした。この時の紡糸温度は290℃とし、口金直下に
は、長さ300mm、温度320℃の加熱筒を配し、紡糸
速度は600m/min とした。[Example 1] Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 1.20 was used as the polymer for the island component, and 5.0% mol of 5-sodium sulfoisophthalic acid was used as the polymer for the sea component. Polymerized polyethylene terephthalate (intrinsic viscosity IV = 0.70) (Co
-PET) was used to perform a two-component melt composite spinning by a usual sea-island composite spinning method. The spinneret has 60 holes, the number of islands in one composite fiber is 16, and the sea-island ratio is island / sea = 91/9
And The spinning temperature at this time was 290 ° C., a heating cylinder having a length of 300 mm and a temperature of 320 ° C. was arranged immediately below the spinneret, and the spinning speed was 600 m / min.
【0088】次いで、この複合紡出糸を巻取ることなく
引続き2段延伸により、トータル延伸倍率5.5倍、最
終延伸ロール温度215℃で延伸熱処理した後、3.0
%の弛緩率でリラックス処理を施し、総繊度335d、
60フィラメントの海島型複合繊維糸とした。紡糸、延
伸時においては、目立った糸切れや毛羽の発生もなく、
安定に紡糸できた。Then, the composite spun yarn was continuously drawn by a two-stage drawing without winding, and a draw ratio was set to 5.5 at a total draw ratio of 215 ° C. and a final draw roll temperature of 215 ° C., and then 3.0.
Relaxed at a relaxation rate of%, total fineness 335d,
It was a sea-island type composite fiber yarn of 60 filaments. During spinning and drawing, there is no noticeable yarn breakage or fluff,
Stable spinning was possible.
【0089】得られた複合繊維糸は、複合繊維の単糸繊
度5.58dであり、強度8.6g/d、伸度14.8
%であった。この繊維の海成分をカチオン染料で染色
後、走査型電子顕微鏡にて繊維断面観察したところ、き
れいな海島構造が形成されていることが認められた。The obtained composite fiber yarn had a single yarn fineness of 5.58 d, a strength of 8.6 g / d and an elongation of 14.8.
%Met. When the sea component of this fiber was dyed with a cationic dye and then the cross section of the fiber was observed with a scanning electron microscope, it was confirmed that a beautiful sea-island structure was formed.
【0090】次いで、この複合繊維糸を経糸及び緯糸に
用い、織密度が経62本/吋、緯61本/吋の平織を作
製した。この製織は無糊、無撚で行ったが、工程中に毛
羽や糸切れは殆ど発生しなかった。Next, this composite fiber yarn was used as a warp yarn and a weft yarn to prepare a plain weave having a weave density of 62 warps / inch and 61 wefts / inch. This weaving was performed with no paste and no twist, but fluff and yarn breakage were hardly generated during the process.
【0091】次いで、この織物を弛緩状態で1%硫酸沸
騰水溶液で60分処理した後、90℃の水酸化ナトリウ
ム水溶液中を通過させ、海成分(5ナトリウムスルホイ
ソフタル酸共重合ポリエステル)を除去した。次いで、
この織物に常法による乾燥・熱セットを施し、エアバッ
グ用基布とした。Next, this woven fabric was treated with a 1% sulfuric acid boiling aqueous solution for 60 minutes in a relaxed state, and then passed through an aqueous sodium hydroxide solution at 90 ° C. to remove sea components (5-sodium sulfoisophthalic acid copolymerized polyester). . Then
This woven fabric was dried and heat set by a conventional method to obtain a base fabric for an airbag.
【0092】得られた織物を構成するフィラメントは複
合繊維が細繊度化されたものであって、この織物の分解
糸は、総繊度310d、フィラメント数960本、単糸
繊度0.32dであり、強度7.6g/d、伸度19.
5%であった。また、この織物の熱セット後の織り密度
は、経63本/吋、緯61本/吋であり、カバーファク
タは2183であった。The filaments constituting the obtained woven fabric were obtained by finely dividing the composite fibers, and the decomposed yarns of this woven fabric had a total fineness of 310d, a number of filaments of 960, and a single yarn fineness of 0.32d. Strength 7.6 g / d, elongation 19.
It was 5%. The woven density of the woven fabric after heat setting was 63 warps / inch, 61 wefts / inch, and the cover factor was 2183.
【0093】[実施例2]ポリマ総吐出量を変更し、延
伸糸の巻取り直前にエア交絡を施した以外は実施例1と
同様にして2成分溶融複合紡糸及び延伸を行って、総繊
度235d、60フィラメントの海島型複合繊維の延伸
糸を得た。このときの海島比は島/海=90/10とし
た。[Example 2] A two-component melt composite spinning and drawing were carried out in the same manner as in Example 1 except that the total polymer discharge amount was changed and the air entanglement was performed immediately before winding the drawn yarn to obtain the total fineness. A drawn yarn of sea-island type composite fiber of 235d and 60 filaments was obtained. The sea-island ratio at this time was island / sea = 90/10.
【0094】得られた複合繊維糸は、単糸繊度3.92
d、強度8.5g/d、伸度16.7%、交絡度60で
あった。The obtained composite fiber yarn had a single yarn fineness of 3.92.
d, strength was 8.5 g / d, elongation was 16.7%, and degree of entanglement was 60.
【0095】次いで、この複合繊維糸を経糸及び緯糸に
用い、織密度が経71本/吋、緯70本/吋の平織を作
製した。この製織は無糊、無撚で行ったが、工程中に毛
羽や糸切れは殆ど発生しなかった。Next, this composite fiber yarn was used as a warp yarn and a weft yarn to prepare a plain weave having a weaving density of 71 warps / inch and 70 wefts / inch. This weaving was performed with no paste and no twist, but fluff and yarn breakage were hardly generated during the process.
【0096】次いで、実施例1と同様に、この織物を弛
緩状態で1%硫酸沸騰水溶液で処理した後、引き続き8
0℃の水酸化ナトリウム水溶液中を通過させ、海成分を
除去した。次いで、この織物に常法による乾燥・熱セッ
トを施し、エアバッグ用基布とした。Then, in the same manner as in Example 1, the woven fabric was treated in a relaxed state with a 1% aqueous solution of boiling sulfuric acid, and then 8
It was passed through a 0 ° C. aqueous sodium hydroxide solution to remove sea components. Next, this woven fabric was dried and heat set by a conventional method to obtain a base fabric for an airbag.
【0097】得られた織物を構成するフィラメントは複
合繊維が細繊度化されたものであって、この織物の分解
糸は、総繊度222d、フィラメント数960本、単糸
繊度0.23dであり、強度7.4g/d、伸度20.
0%であった。また、この織物の熱セット後の織り密度
は、経73本/吋、緯72本/吋であり、カバーファク
タは2160であった。The filaments constituting the obtained woven fabric were obtained by finely dividing the composite fiber, and the decomposed yarn of this woven fabric had a total fineness of 222d, the number of filaments of 960, and a single yarn fineness of 0.23d. Strength 7.4 g / d, elongation 20.
It was 0%. The woven density of the woven fabric after heat setting was 73 warps / inch, 72 wefts / inch, and the cover factor was 2160.
【0098】[実施例3]ホール数が90ホール、1本
の複合繊維中の島数が12である紡糸口金を用い、かつ
総吐出量を変更した以外は実施例1と同様にして2成分
溶融複合紡糸及び延伸を行って、総繊度855d、90
フィラメントの海島型複合延伸糸を得た。このときの海
島比は島/海=87/13とした。[Example 3] A two-component melt composite was performed in the same manner as in Example 1 except that a spinneret having 90 holes, 12 islands in one composite fiber was used, and the total discharge amount was changed. Spin and draw to obtain a total fineness of 855d, 90
A sea-island composite drawn yarn of filament was obtained. The sea-island ratio at this time was island / sea = 87/13.
【0099】得られた複合繊維糸は、単糸繊度9.50
d、強度8.9g/d、伸度16.5%であった。The obtained composite fiber yarn had a single yarn fineness of 9.50.
d, the strength was 8.9 g / d, and the elongation was 16.5%.
【0100】次いで、この複合繊維糸を経糸及び緯糸に
用い、織密度が経28本/吋、緯28本/吋の平織を作
製した。この製織は無糊、無撚で行ったが、工程中に毛
羽や糸切れはほとんど発生しなかった。Next, this composite fiber yarn was used as a warp yarn and a weft yarn to prepare a plain weave having warp density of 28 warps / inch and 28 wefts / inch. This weaving was performed without sizing and twisting, but fluff and yarn breakage were hardly generated during the process.
【0101】次いで、実施例2と同じ条件で硫酸沸騰水
溶液での処理及び水酸化ナトリウム水溶液中での処理を
行って、海成分を除去し、乾燥・熱セットを施した。Then, treatment with a boiling sulfuric acid aqueous solution and treatment with a sodium hydroxide aqueous solution were carried out under the same conditions as in Example 2 to remove sea components, followed by drying and heat setting.
【0102】得られた織物を構成するフィラメントは複
合繊維が細繊度化されたものであって、この織物の分解
糸は、総繊度774d、フィラメント数1080本、単
糸繊度0.73dであり、強度7.4g/d、伸度2
1.2%であった。また、この織物の熱セット後の織り
密度は、経30本/吋、緯29本/吋であり、カバーフ
ァクタは1641であった。The filaments constituting the obtained woven fabric were obtained by finely dividing the composite fiber, and the decomposed yarn of this woven fabric had a total fineness of 774d, a number of filaments of 1080, and a single yarn fineness of 0.73d. Strength 7.4g / d, elongation 2
It was 1.2%. The woven density of the woven fabric after heat setting was 30 warps / inch, weft 29 threads / inch, and the cover factor was 1641.
【0103】[実施例4]島成分用ポリマを、98%硫
酸相対粘度(ηrn)が3.2のポリヘキサメチレンア
ジパミド(N66)とし、海島比を島/海=90/10
とし、紡糸速度を700m/min とし、ポリマ総吐出量
を変更した以外は、実施例1と同様にして2成分溶融複
合紡糸した。Example 4 The polymer for the island component was polyhexamethylene adipamide (N66) having a 98% sulfuric acid relative viscosity (ηrn) of 3.2, and the sea-island ratio was island / sea = 90/10.
In the same manner as in Example 1 except that the spinning speed was 700 m / min and the total amount of polymer discharged was changed, a two-component melt composite spinning was performed.
【0104】次いで、この複合紡出糸を巻取ることなく
引続き2段延伸により、トータル延伸倍率5.0倍、最
終延伸ロール温度215℃で延伸熱処理した後、3.0
%の弛緩率でリラックス処理、次いでエア交絡処理を施
し、総繊度345d、60フィラメント、交絡度50の
海島型複合繊維糸とした。紡糸、延伸時においては、目
立った糸切れ・毛羽もなく、安定に紡糸できた。Then, the composite spun yarn was continuously drawn in two steps without winding, and drawn and heat-treated at a final draw roll temperature of 215 ° C. with a total draw ratio of 5.0 times, and then 3.0.
The relaxation treatment was performed at a relaxation rate of%, and then the air entanglement treatment was performed to obtain a sea-island type composite fiber yarn having a total fineness of 345 d, 60 filaments, and an interlacing degree of 50. During spinning and drawing, there was no noticeable yarn breakage or fluff, and stable spinning was possible.
【0105】得られた複合繊維糸は、複合繊維の単糸繊
度5.75dであり、強度8.8g/d、伸度21.5
%であった。この繊維の海成分をカチオン染料で染色
後、走査型電子顕微鏡にて繊維断面観察したところ、き
れいな海島構造が形成されていることが認められた。The obtained composite fiber yarn had a single yarn fineness of 5.75 d, a strength of 8.8 g / d and an elongation of 21.5.
%Met. When the sea component of this fiber was dyed with a cationic dye and then the cross section of the fiber was observed with a scanning electron microscope, it was confirmed that a beautiful sea-island structure was formed.
【0106】次いで、この複合繊維糸を経糸及び緯糸に
用い、織密度が経60本/吋、緯59本/吋の平織を作
製した。この製織は無糊、無撚で行ったが、工程中に毛
羽や糸切れは殆ど発生しなかった。Next, this composite fiber yarn was used as a warp yarn and a weft yarn to prepare a plain weave having a weaving density of 60 warps / inch and 59 wefts / inch. This weaving was performed with no paste and no twist, but fluff and yarn breakage were hardly generated during the process.
【0107】次いで、この織物を弛緩状態で、95℃の
水酸化ナトリウム水溶液中を通過させ、海成分(5ナト
リウムスルホイソフタル酸共重合ポリエステル)を除去
した。次いで、この織物に常法による乾燥・熱セットを
施し、エアバッグ用基布とした。Next, this woven fabric was passed through an aqueous sodium hydroxide solution at 95 ° C. in a relaxed state to remove the sea component (5-sodium sulfoisophthalic acid copolymerized polyester). Next, this woven fabric was dried and heat set by a conventional method to obtain a base fabric for an airbag.
【0108】得られた織物を構成するフィラメントは複
合繊維が細繊度化されたものであって、この織物の分解
糸は、総繊度330d、フィラメント数960本、単糸
繊度0.34dであり、強度8.2g/d、伸度24.
5%であった。また、この織物の熱セット後の織り密度
は、経62本/吋、緯61本/吋であり、カバーファク
タは2234であった。The filaments constituting the obtained woven fabric were obtained by finely dividing the composite fiber, and the decomposed yarn of this woven fabric had a total fineness of 330d, the number of filaments of 960, and a single yarn fineness of 0.34d. Strength 8.2g / d, elongation 24.
It was 5%. The woven density of the woven fabric after heat setting was 62 warps / inch, 61 wefts / inch, and the cover factor was 2234.
【0109】[比較例1]1本の複合繊維中の島数を6
とし、ポリマ総吐出量を変更した以外は、実施例1と同
様にして2成分溶融複合紡糸した。[Comparative Example 1] The number of islands in one composite fiber was 6
Then, two-component melt composite spinning was performed in the same manner as in Example 1 except that the total polymer discharge amount was changed.
【0110】次いで、この複合紡出糸を実施例1と同様
に延伸して、総繊度340d、60フィラメントの海島
型複合延伸糸を得た。紡糸、延伸においては、目立った
糸切れも毛羽もなく、安定な紡糸が可能であった。Next, this composite spun yarn was drawn in the same manner as in Example 1 to obtain a sea-island type composite drawn yarn having a total fineness of 340d and 60 filaments. In spinning and drawing, there was no noticeable yarn breakage or fluff, and stable spinning was possible.
【0111】得られた複合繊維糸は、複合繊維の単糸繊
度5.67d、強度8.6g/d、伸度17.5%であ
った。The obtained composite fiber yarn had a single fiber fineness of 5.67d, a strength of 8.6g / d and an elongation of 17.5%.
【0112】次いで、この複合繊維糸を経糸及び緯糸に
用い、織密度が経57本/吋、緯56本/吋の平織を作
製した。この製織は無糊、無撚で行ったが、工程中毛羽
糸切れはほとんど発生しなかった。Next, this composite fiber yarn was used as a warp yarn and a weft yarn to produce a plain weave having a weave density of 57 warps / inch and 56 wefts / inch. This weaving was performed with no paste and no twist, but fluff yarn breakage hardly occurred during the process.
【0113】次いで、実施例1と同様にして海成分を除
去し、乾燥・熱セットを施し、エアバッグ用基布とし
た。Then, in the same manner as in Example 1, the sea component was removed, drying and heat setting were carried out to obtain a base fabric for an airbag.
【0114】得られた織物を構成するフィラメントは複
合繊維が細繊度化されたものであって、この織物の分解
糸は、総繊度320d、フィラメント数360本、単糸
繊度0.89dであり、強度7.6g/d、伸度19.
4%であった。また、この織物の熱セット後の織り密度
は、経58本/吋、緯57本/吋であり、カバーファク
タは2058であった。The filaments constituting the obtained woven fabric were obtained by finely dividing the composite fiber, and the decomposed yarn of this woven fabric had a total fineness of 320d, a number of filaments of 360, and a single yarn fineness of 0.89d. Strength 7.6 g / d, elongation 19.
It was 4%. The woven density of the woven fabric after heat setting was 58 warps / inch, weft 57 threads / inch, and the cover factor was 2058.
【0115】[比較例2]島成分用ポリマとして、固有
粘度(IV)が0.70のポリエチレンテレフタレート
を用い、紡糸温度を280℃とし、ポリマ総吐出量を変
更し、口金直下の加熱筒を使用しなかった以外は、実施
例1と同様にして2成分海島型複合紡糸を行った。[Comparative Example 2] Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.70 was used as the polymer for the island component, the spinning temperature was set to 280 ° C, the total discharge amount of the polymer was changed, and the heating cylinder immediately below the spinneret was used. A two-component sea-island composite spinning was performed in the same manner as in Example 1 except that it was not used.
【0116】次いで、この複合紡出糸を巻取ることなく
引続き1段延伸により、延伸倍率3.3倍で延伸した
後、3.0%の弛緩率でリラックス処理を施し、総繊度
235d、60フィラメントの海島型複合延伸糸とし
た。紡糸、延伸においては、目立った糸切れや毛羽の発
生もなく、安定な紡糸が可能であった。Next, the composite spun yarn was continuously drawn by one-step drawing without winding up, at a draw ratio of 3.3 times, and then subjected to a relaxation treatment at a relaxation rate of 3.0% to obtain a total fineness of 235d, 60. It was a sea-island type composite drawn yarn of filament. In spinning and drawing, stable spinning was possible without noticeable yarn breakage or generation of fluff.
【0117】得られた複合繊維糸は、複合繊維の単糸繊
度3.92d、強度3.9g/d、伸度24.0%であ
った。この繊維の海成分をカチオン染料で染色後走査型
電子顕微鏡にて繊維断面観察したところ、きれいな海島
構造が形成されていることが認められた。The obtained composite fiber yarn had a single fiber fineness of the composite fiber of 3.92 d, a strength of 3.9 g / d and an elongation of 24.0%. When the sea component of this fiber was dyed with a cationic dye and the cross section of the fiber was observed with a scanning electron microscope, it was confirmed that a beautiful sea-island structure was formed.
【0118】次いで、この複合繊維糸を経糸及び緯糸に
用い、織密度が経71本/吋、緯70本/吋の平織を作
製した。この製織は無糊、無撚で行ったが、工程中に毛
羽や糸切れはほとんど発生しなかった。Next, this composite fiber yarn was used as a warp yarn and a weft yarn to prepare a plain weave having a weaving density of 71 warps / inch and 70 wefts / inch. This weaving was performed without sizing and twisting, but fluff and yarn breakage were hardly generated during the process.
【0119】次いで、この織物を弛緩状態で沸騰硫酸水
溶液中を通過させた後、80℃の水酸化ナトリウム水溶
液中を通過させ、海成分(5−ナトリウムスルホイソフ
タル酸共重合ポリエステル)を除去した。次いで、この
織物に常法による乾燥・熱セットを施しエアバッグ用基
布とした。Then, this woven fabric was passed through a boiling sulfuric acid aqueous solution in a relaxed state and then passed through a sodium hydroxide aqueous solution at 80 ° C. to remove the sea component (5-sodium sulfoisophthalic acid copolymerized polyester). Then, this woven fabric was dried and heat set by a conventional method to obtain a base fabric for an airbag.
【0120】得られた織物を構成するフィラメントは複
合繊維が細繊度化されたものであって、この織物の分解
糸は、総繊度222d、フィラメント数960本、単糸
繊度0.23dであり、強度3.4g/d、伸度27.
2%であった。また、この織物の熱セット後の織り密度
は、経73本/吋、緯73本/吋であり、カバーファク
タは2175であった。The filaments constituting the obtained woven fabric were obtained by finely dividing the composite fiber, and the decomposed yarns of this woven fabric had a total fineness of 222d, a number of filaments of 960, and a single yarn fineness of 0.23d. Strength 3.4 g / d, elongation 27.
It was 2%. The weaving density of the woven fabric after heat setting was 73 warps / inch, weft 73 threads / inch, and the cover factor was 2175.
【0121】[比較例3]織物を製造する際の織り密度
を経52本/吋、緯52本/吋とした以外は、比較例2
と同様にして製織し、脱海処理し、乾燥・熱セットして
エアバッグ用基布とした。得られた織物の熱セット後の
織り密度は、経53本/吋、緯53本/吋であり、カバ
ーファクタは1579であった。[Comparative Example 3] Comparative Example 2 except that the weaving density when producing a woven fabric was 52 warps / inch and weft 52 threads / inch.
Weaving was carried out in the same manner as above, deseaing treatment, drying and heat setting were carried out to obtain an air bag base fabric. The woven density of the obtained woven fabric after heat setting was 53 warps / inch, weft 53 threads / inch, and the cover factor was 1579.
【0122】[比較例4]固有粘度(IV)が1.20
のポリエチレンテレフタレートを通常の溶融紡糸法によ
り、ホール数60の紡糸口金を用いて直接紡糸方法によ
り紡糸した。このときの紡糸温度は300℃とし、口金
直下には長さ300mm、温度300℃の加熱筒を用
い、紡糸速度は500m/minとした。紡出糸を巻き
取ることなく引き続き5.9倍に延伸し、220℃の温
度で熱処理した後、エア交絡をかけながら3.0%の弛
緩率でリラックス処理を施し、420d、60フィラメ
ントの延伸糸を得た。[Comparative Example 4] Intrinsic viscosity (IV) was 1.20.
The polyethylene terephthalate of Example 1 was spun by a normal melt spinning method by a direct spinning method using a spinneret having 60 holes. The spinning temperature at this time was 300 ° C., a heating cylinder having a length of 300 mm and a temperature of 300 ° C. was used immediately below the spinneret, and the spinning speed was 500 m / min. The spun yarn is continuously drawn 5.9 times without winding it up, heat-treated at a temperature of 220 ° C., and then subjected to a relaxation treatment at a relaxation rate of 3.0% while applying air entanglement to draw 420d, 60 filaments. I got a thread.
【0123】この紡糸、延伸において、目立った糸切れ
や毛羽の発生もなく、安定な紡糸が可能であった。In this spinning and drawing, stable spinning was possible without noticeable yarn breakage or generation of fluff.
【0124】得られたフィラメント糸は、単糸繊度7.
00dであり、強度9.5g/d、伸度17.2%であ
った。The filament yarn obtained had a single yarn fineness of 7.
It had a strength of 9.5 g / d and an elongation of 17.2%.
【0125】次いで、このフィラメント糸を経糸及び緯
糸に用い、織密度が経54本/吋、緯54本/吋の平織
を作製した。この製織は無糊、無撚で行ったが、工程
中、毛羽や糸切れはほとんど発生しなかった。また、こ
の布帛の熱セット後の織り密度は、経56本/吋、緯5
5本/吋であり、カバーファクタは2275あった。Next, using this filament yarn as a warp yarn and a weft yarn, a plain weave having a weave density of 54 warps / inch and 54 wefts / inch was produced. This weaving was performed without sizing or twisting, but fluff and yarn breakage were hardly generated during the process. The woven density of this fabric after heat setting is 56 warps / inch, weft 5
It was 5 / inch and the cover factor was 2275.
【0126】[比較例5]紡糸口金のホール数を240
とし、紡糸速度を600m/minとし、延伸倍率を
5.4倍とした以外は、実施例4と同様にして、直接紡
糸延伸し、420d、288フィラメントの延伸糸を得
た。[Comparative Example 5] The number of holes in the spinneret was 240.
In the same manner as in Example 4, except that the spinning speed was 600 m / min and the draw ratio was 5.4, direct spinning and drawing were carried out to obtain a drawn yarn of 420d and 288 filaments.
【0127】このとき、加熱筒内で糸揺れによる単糸間
衝突が発生し、延伸時糸切れが多発した。At this time, a single yarn-to-single yarn collision occurred due to yarn swinging in the heating cylinder, resulting in frequent yarn breakage during drawing.
【0128】得られたフィラメント糸は、単糸繊度1.
46d、強度8.6g/d、伸度15.2%であった。
次いで、実施例1と同様にして製織したところ、毛羽の
発生が多過ぎて製織ができなかった。The filament yarn obtained had a single yarn fineness of 1.
The strength was 46d, the strength was 8.6 g / d, and the elongation was 15.2%.
Next, when weaving was performed in the same manner as in Example 1, weaving could not be performed due to excessive generation of fluff.
【0129】[比較例6]ポリマ総吐出量を増加させ、
延伸倍率を6.1倍と高くした以外は、実施例1と同様
にして2成分溶融複合紡糸及び延伸を行って、総繊度3
35d、60フィラメント、複合繊維の単糸繊度5.5
8d、強度10.2g/d、伸度10.5%の複合繊維
糸を得た。この製糸時において毛羽が若干発生した。[Comparative Example 6] The total polymer discharge amount is increased,
Two-component melt composite spinning and drawing were performed in the same manner as in Example 1 except that the draw ratio was increased to 6.1 times, and the total fineness was 3
35d, 60 filaments, single yarn fineness of composite fiber 5.5
A composite fiber yarn having 8d, strength of 10.2 g / d and elongation of 10.5% was obtained. Some fluff was generated during this yarn production.
【0130】次いで、実施例1と同様にこの複合繊維糸
を経糸及び緯糸に用い、織密度が経62本/吋、緯61
本/吋の平織を無糊、無撚で作製したが、製織時に毛羽
が多数発生した。Then, as in Example 1, this composite fiber yarn was used for the warp and weft, and the weaving density was 62 warps / inch, 61 wefts.
A book / inch plain weave was produced without sizing or untwisting, but many fluffs were generated during weaving.
【0131】次いで、この織物を実施例1と同様にして
脱海処理し、乾燥・熱セットし、エアバッグ用基布とし
た。Then, this woven fabric was desalinated in the same manner as in Example 1, dried and heat set to obtain a base fabric for an airbag.
【0132】得られた織物を構成するフィラメントは複
合繊維が細繊度化されたものであって、この織物の分解
糸は、総繊度310d、フィラメント数960本、単糸
繊度0.32dであり、強度9.1g/d、伸度12.
1%であった。また、この織物の熱セット後の織り密度
は、経63本/吋、緯61本/吋であり、カバーファク
タは2183であったが、織物表面の品位は毛羽が多い
ために不良であった。The filaments constituting the obtained woven fabric were obtained by finely sizing the composite fibers, and the decomposed yarn of this woven fabric had a total fineness of 310d, a number of filaments of 960, and a single yarn fineness of 0.32d. Strength 9.1 g / d, elongation 12.
It was 1%. The woven density of this woven fabric after heat setting was warp 63 yarns / inch, weft 61 yarns / inch, and the cover factor was 2183, but the quality of the woven fabric surface was poor because of many fluffs. .
【0133】上記実施例1〜4及び比較例1〜6の糸物
性を表1及び表2に、織物特性ならびに製織時の工程通
過性を表3に示す。The yarn physical properties of Examples 1 to 4 and Comparative Examples 1 to 6 are shown in Tables 1 and 2, and the woven fabric properties and the process passability during weaving are shown in Table 3.
【0134】[0134]
【表1】 [Table 1]
【0135】[0135]
【表2】 [Table 2]
【0136】[0136]
【表3】 [Table 3]
【0137】表1、表2及び表3の結果より明らかなよ
うに、本発明による場合(実施例1〜6)は、繊維構造
物として機械的強度、柔軟性ならびに工程通過性のいず
れにも優れていた。さらに、織り密度を高くして、カバ
ーファクタを1900以上とした実施例1〜2及び4
は、前述の機械的強度、柔軟性ならびに工程通過性の
他、通気性が低く、エアバッグ用基布としてバランスが
とれた優れた繊維構造物であることが認められた。As is clear from the results of Table 1, Table 2 and Table 3, in the case of the present invention (Examples 1 to 6), the fiber structure has no mechanical strength, flexibility and process passability. Was excellent. Furthermore, Examples 1 to 2 and 4 in which the weaving density is increased and the cover factor is 1900 or more
In addition to the above-mentioned mechanical strength, flexibility, and process passability, it was found to be an excellent fiber structure that has low air permeability and is well balanced as a base fabric for airbags.
【0138】これに対し、比較例1では、極細化したあ
との極細繊維の単糸総繊度が高過ぎたので繊維構造物と
しては柔軟性が劣っていた。On the other hand, in Comparative Example 1, since the total fineness of the single yarn of the ultrafine fibers after ultrafine was too high, the fiber structure was inferior in flexibility.
【0139】比較例2は、複合繊維糸並びに該複合糸を
分割した後の極細繊維の強度が低いため、同等の組織の
繊維構造物である実施例2の場合に比較して機械的特性
に劣り、産業資材用途としては不適当なものであった。In Comparative Example 2, since the strength of the composite fiber yarn and the ultrafine fibers after dividing the composite yarn are low, mechanical properties are improved as compared with the case of Example 2 which is a fiber structure having an equivalent structure. It was inferior and was unsuitable for industrial materials.
【0140】比較例3においては、比較例2よりも織り
密度を低くしているため、機械的特性がさらに劣ってい
た。In Comparative Example 3, since the weave density was lower than that in Comparative Example 2, the mechanical properties were further inferior.
【0141】比較例4は、最終的な単糸繊度が7.0d
と高く、繊維構造物として柔軟性に劣っていた。In Comparative Example 4, the final single yarn fineness is 7.0d.
And it was inferior in flexibility as a fiber structure.
【0142】比較例5は、単糸繊度が1.46dの細繊
度フィラメント糸を直接紡糸法で製造したために、紡糸
時に糸切れや毛羽が多発し、工程通過性に劣るものであ
った。In Comparative Example 5, since fine filament yarns having a single yarn fineness of 1.46d were produced by the direct spinning method, many yarn breakages and fluffs occurred during spinning, and the process passability was poor.
【0143】さらに比較例6は、紡糸時の延伸倍率が高
く、極細繊維の伸度が低いため、製織時に毛羽が多発
し、やはり工程通過性に劣るものであった。Further, in Comparative Example 6, since the draw ratio during spinning was high and the elongation of the ultrafine fibers was low, many fluffs were generated during weaving and the process passability was also poor.
【0144】[実施例5]実施例1、実施例3、及び比
較例2において得られた繊維構造物中の極細繊維の繊維
構造物性を測定するため、それら実施例、比較例で得ら
れた海島型複合繊維糸を20cmの長さに切り取って1
0〜20本を引き揃えた後、ガーゼで包み、その状態で
脱海処理を行い極細繊維化した極細繊維束をサンプル糸
として、結晶体積値(C)、子午線方向の長周期(D
m)、結晶配向度(Fc)、非晶配向度(Fb)を測定
した。その結果は表4のとおりであった。[Example 5] In order to measure the fiber structure physical properties of the ultrafine fibers in the fiber structures obtained in Example 1, Example 3 and Comparative Example 2, these were obtained in these Examples and Comparative Examples. Cut the sea-island composite fiber yarn to a length of 20 cm and
After arranging 0 to 20 pieces, they are wrapped in gauze and subjected to sea removal treatment in that state to form ultrafine fiber bundles as sample yarns, and the crystal volume value (C), long period in the meridian direction (D
m), crystal orientation (Fc), and amorphous orientation (Fb) were measured. The results are shown in Table 4.
【0145】[0145]
【表4】 [Table 4]
【0146】表1〜3より明らかなように、結晶体積値
(C)、子午線方向の長周期(Dm)、結晶配向度(F
c)、非晶配向度(Fb)の各値が本発明の好ましい範
囲内である実施例1及び3の場合は、産業資材用途に必
要な機械的強度や耐光性や耐久性において優れているこ
とが繊維構造面からも認められた。As is clear from Tables 1 to 3, the crystal volume value (C), the long period in the meridian direction (Dm), the crystal orientation degree (F
In the cases of Examples 1 and 3 in which the respective values of c) and the degree of amorphous orientation (Fb) are within the preferred ranges of the present invention, the mechanical strength, light resistance and durability required for industrial material applications are excellent. It was also confirmed from the fiber structure side.
【0147】これに対し、上記した各値が本発明の好ま
しい範囲外である比較例2の場合は、産業資材用途に好
適な物性が得られなかった。On the other hand, in the case of Comparative Example 2 in which each of the above-mentioned values was out of the preferred range of the present invention, the physical properties suitable for industrial materials could not be obtained.
【0148】[0148]
【発明の効果】本発明に係る高強度極細繊維構造物は、
特定の単糸繊度と特定の高い強度を有する高強度極細マ
ルチフィラメントでもって構成されているので、産業資
材用途として好適な機械特性を具備させることができ、
しかも、極細繊維を使用したことによる優れた効果を十
分に発揮できる。特に繊維構造物が布帛の場合、機械的
強度は勿論、優れた柔軟性、折り畳み性を有し、さら
に、低い気体透過性を有することができる。The high-strength ultrafine fiber structure according to the present invention is
Since it is composed of high-strength ultrafine multifilaments having a specific single yarn fineness and a specific high strength, it is possible to provide suitable mechanical properties for industrial material applications,
Moreover, the excellent effect obtained by using the ultrafine fibers can be sufficiently exhibited. In particular, when the fiber structure is a cloth, it has not only mechanical strength but also excellent flexibility and foldability, and further has low gas permeability.
【0149】また、本発明の製造方法によると、紡糸時
や繊維構造物の作製時の毛羽や糸切れの発生が十分に抑
制され、製糸性や工程通過性良く上記した優れた繊維構
造物が容易に得られる。Further, according to the production method of the present invention, generation of fluff and yarn breakage during spinning or production of a fiber structure is sufficiently suppressed, and the above excellent fiber structure is obtained with good spinnability and process passability. Easily obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 6/62 303 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display part D01F 6/62 303 J
Claims (22)
なり、かつ、引張り強度6.5g/d以上、及び、破断
伸度15%以上を有する高強度マルチフィラメントから
構成されることを特徴とする高強度極細繊維構造物。1. A high-strength multifilament composed of ultrafine fibers having a single yarn fineness of less than 0.8 d, a tensile strength of 6.5 g / d or more, and a breaking elongation of 15% or more. Characteristic high-strength ultrafine fiber structure.
ル繊維であることを特徴とする請求項1記載の高強度極
細繊維構造物。2. The high-strength ultrafine fiber structure according to claim 1, wherein the high-strength multifilament is a polyester fiber.
が0.8以上のポリエチレンテレフタレート繊維である
ことを特徴とする請求項2記載の高強度極細繊維構造
物。3. The polyester fiber has an intrinsic viscosity (IV).
Is a polyethylene terephthalate fiber having a value of 0.8 or more. 3. The high-strength ultrafine fiber structure according to claim 2, wherein
体積値(C)が8×104 (オングストローム)3 以上
であることを特徴とする請求項3記載の高強度極細繊維
構造物。4. The high-strength ultrafine fiber structure according to claim 3, wherein the crystal volume value (C) of the polyethylene terephthalate fiber is 8 × 10 4 (angstrom) 3 or more.
線方向の長周期(Dm)が120オングストローム以上
であることを特徴とする請求項3記載の高強度極細繊維
構造物。5. The high-strength ultrafine fiber structure according to claim 3, wherein the polyethylene terephthalate fiber has a long period (Dm) in the meridian direction of 120 angstroms or more.
配向度(Fc)が0.90以上であることを特徴とする
請求項3記載の高強度極細繊維構造物。6. The high-strength ultrafine fiber structure according to claim 3, wherein the degree of crystal orientation (Fc) of the polyethylene terephthalate fiber is 0.90 or more.
配向度(Fb)が0.975以上であることを特徴とす
る請求項3記載の高強度極細繊維構造物。7. The high-strength ultrafine fiber structure according to claim 3, wherein the degree of amorphous orientation (Fb) of the polyethylene terephthalate fiber is 0.975 or more.
酸相対粘度(ηrn)が3.0以上のポリアミド繊維で
あることを特徴とする請求項1記載の高強度極細繊維構
造物。8. The high-strength ultrafine fiber structure according to claim 1, wherein the high-strength multifilament is a polyamide fiber having a 98% sulfuric acid relative viscosity (ηrn) of 3.0 or more.
0.1d以上0.8d未満であることを特徴とする請求
項1記載の高強度極細繊維構造物。9. The high-strength ultrafine fiber structure according to claim 1, wherein the single-filament fineness of the high-strength multifilament is 0.1 d or more and less than 0.8 d.
極細繊維の全部が、実質的に同一のポリマ組成からなる
ことを特徴とする請求項1記載の高強度極細繊維構造
物。10. The high-strength ultrafine fiber structure according to claim 1, wherein all of the ultrafine fibers constituting the high-strength multifilament have substantially the same polymer composition.
合繊維の脱海処理により作製された極細フィラメント糸
であることを特徴とする請求項1記載の高強度極細繊維
構造物。11. The high-strength ultrafine fiber structure according to claim 1, wherein the high-strength multifilament is an ultrafine filament yarn produced by sea removal treatment of sea-island type composite fiber.
する請求項1記載の高強度極細繊維構造物。12. The high-strength ultrafine fiber structure according to claim 1, wherein the fiber structure is a cloth.
ルチフィラメントからなる織編物であることを特徴とす
る請求項12記載の高強度極細繊維構造物。13. The high-strength ultrafine fiber structure according to claim 12, wherein the cloth is a woven or knitted fabric composed of multifilaments having a total fineness of 100 to 1000 d.
cm以上、かつ、カンチレバー法による柔軟性が60mm
以下である請求項13記載の高強度極細繊維構造物。14. The fabric has a tensile strength of 100 kgf / 3.
cm or more and 60 mm flexibility by the cantilever method
The high-strength ultrafine fiber structure according to claim 13, which is as follows.
チフィラメントからなるエアバッグ用基布であることを
特徴とする請求項13記載の高強度極細繊維構造物。15. The high-strength ultrafine fiber structure according to claim 13, wherein the cloth is a base cloth for an airbag, which is made of multifilaments having a total fineness of 180 to 450 d.
上であって、かつ、表面に樹脂コート層が存在しないエ
アバッグ用基布であることを特徴とする請求項15記載
の高強度極細繊維構造物。(ここで、布帛のカバーファ
クタKは次式により算出した値である。) K=NW ×DW 1/2 +NF ×DF 1/2 (ただし、NW :経糸密度(本/インチ)、DW :経糸
繊度(デニール)、NF:緯糸密度(本/インチ)、D
F :緯糸繊度(デニール)である。)16. The high-strength ultrafine fiber structure according to claim 15, wherein the cloth has a cover factor K of 1900 or more and does not have a resin coating layer on its surface. . (Here, the cover factor K of a fabric is a value calculated by the following equation.) K = N W × D W 1/2 + N F × D F 1/2 ( provided that, N W: warp density (lines / inch ), D W : Warp yarn fineness (denier), N F : Weft yarn density (books / inch), D
F : Weft fineness (denier). )
ける気体透過量が5.0cc/sec /cm2 以下であること
を特徴とする請求項16記載の高強度極細繊維構造物。17. The high-strength ultrafine fiber structure according to claim 16, which has a gas permeation amount of 5.0 cc / sec / cm 2 or less at a pressure drop of a water column of 1.27 cm.
同時に口金の単孔より溶融複合吐出することにより得ら
れた、断面が海島型の単糸繊度3.0d以上の複合繊維
糸を、フィラメント数120以下の実質的に無撚り、無
糊の糸条の状態で製編織した後、海成分のポリマを除去
し、単糸繊度が0.8d未満、引張り強度が6.5g/
d以上、かつ、破断伸度が15%以上を有する高強度マ
ルチフィラメントで構成される高強度極細繊維構造物を
製造することを特徴とする高強度極細繊維構造物の製
法。18. A composite fiber yarn having a sea-island type single yarn fineness of 3.0 d or more, which is obtained by simultaneously melt-compounding an island component polymer and a sea component polymer from a single hole of a spinneret to form a filament. After weaving or knitting in the state of a yarn of 120 or less and having substantially no twist and no glue, the sea component polymer is removed, and the single yarn fineness is less than 0.8 d and the tensile strength is 6.5 g /
A method for producing a high-strength ultrafine fiber structure, which comprises producing a high-strength ultrafine fiber structure composed of high-strength multifilaments having a breaking elongation of 15% or more.
て、固有粘度(IV)1.0以上のポリエチレンテレフ
タレート及び98%硫酸相対粘度(ηrn)3.0以上
のポリアミドから選ばれた高粘度ポリマを用いることを
特徴とする請求項18記載の高強度極細繊維構造物の製
法。19. A high viscosity polymer selected from polyethylene terephthalate having an intrinsic viscosity (IV) of 1.0 or more and polyamide having a 98% sulfuric acid relative viscosity (ηrn) of 3.0 or more as a polymer for an island component to be subjected to melt spinning. The method for producing a high-strength ultrafine fiber structure according to claim 18, which is used.
囲気を設けて徐冷紡糸し、冷却、給油の後に、3.0倍
以上に延伸する製糸方法により、海島型複合繊維を製造
することを特徴とする請求項18記載の高強度極細繊維
構造物の製法。20. A sea-island type composite fiber is produced by a spinning method in which a high-temperature atmosphere of 200 to 350 ° C. is provided immediately below the spinneret, slowly spinning, cooling, refueling, and then stretching 3.0 times or more. The method for producing a high-strength ultrafine fiber structure according to claim 18, which is characterized.
特徴とする請求項18記載の高強度極細繊維構造物の製
法。21. The method for producing a high-strength ultrafine fiber structure according to claim 18, wherein the island component polymer is one type.
度が7.0g/d以上であることを特徴とする高強度複
合繊維。22. A high-strength composite fiber having a sea-island type cross section and a tensile strength of 7.0 g / d or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7017646A JPH07258940A (en) | 1994-02-07 | 1995-02-06 | Ultrafine fiber structure having high strength, its production and conjugate fiber having high strength |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-13832 | 1994-02-07 | ||
JP1383294 | 1994-02-07 | ||
JP7017646A JPH07258940A (en) | 1994-02-07 | 1995-02-06 | Ultrafine fiber structure having high strength, its production and conjugate fiber having high strength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07258940A true JPH07258940A (en) | 1995-10-09 |
Family
ID=26349681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7017646A Pending JPH07258940A (en) | 1994-02-07 | 1995-02-06 | Ultrafine fiber structure having high strength, its production and conjugate fiber having high strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07258940A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041432A (en) * | 2001-07-27 | 2003-02-13 | Asahi Kasei Corp | Polyester ultrafine fiber |
JP2005124959A (en) * | 2003-10-27 | 2005-05-19 | Yasuharu Noisshiki | Low blood permeable medical material |
JP2006052505A (en) * | 2004-08-13 | 2006-02-23 | Unitica Fibers Ltd | High-density woven fabric and method for producing the same |
JP2006057219A (en) * | 2004-08-23 | 2006-03-02 | Toray Ind Inc | High-density woven fabric and its production |
WO2006043517A1 (en) * | 2004-10-19 | 2006-04-27 | Toray Industries, Inc. | Fabric for restraint device and process for producing the same |
JP2006161212A (en) * | 2004-12-07 | 2006-06-22 | Toray Ind Inc | Base fabric for air belt and method for producing the same |
US7101504B2 (en) | 2002-09-17 | 2006-09-05 | Yamanashi Tlo Co. | Highly oriented super microfilaments |
JP2008007870A (en) * | 2006-06-28 | 2008-01-17 | Teijin Fibers Ltd | Polyester fine fiber and its fiber product |
JP2010159502A (en) * | 2009-01-06 | 2010-07-22 | Teijin Fibers Ltd | Strap |
US7794220B2 (en) | 2003-03-07 | 2010-09-14 | University Of Yamanashi | Apparatus for manufacturing oriented sheath-core type filaments |
US8128850B2 (en) | 2005-09-29 | 2012-03-06 | Teijin Fibers Limited | Method of producing islands-in-sea type composite spun fiber |
WO2013137263A1 (en) * | 2012-03-13 | 2013-09-19 | 旭化成せんい株式会社 | Superfine polyester fiber and tubular seamless fabric |
JP2014101613A (en) * | 2012-11-22 | 2014-06-05 | Teijin Ltd | Ultra fine fiber |
WO2014156557A1 (en) * | 2013-03-25 | 2014-10-02 | 東レ株式会社 | Adhesively processed item |
CN105177807A (en) * | 2015-07-15 | 2015-12-23 | 屠明鑫 | Multifunctional deodorant health-care mattress shell fabric and manufacturing method thereof |
US20160184488A1 (en) * | 2013-09-12 | 2016-06-30 | Asahi Kasei Fibers Corporation | Ultrafine polyester fiber |
CN105839206A (en) * | 2015-01-16 | 2016-08-10 | 上海水星家用纺织品股份有限公司 | Manufacturing process of profiled, hollow, three-dimensional crimp and acrylic fibers and application thereof and dyeing and finishing process of fabric |
WO2018181695A1 (en) | 2017-03-31 | 2018-10-04 | セーレン株式会社 | Woven fabric for non-coated airbag and airbag |
WO2019189044A1 (en) | 2018-03-30 | 2019-10-03 | セーレン株式会社 | Airbag base fabric and airbag |
WO2019189043A1 (en) * | 2018-03-30 | 2019-10-03 | セーレン株式会社 | Airbag base fabric and airbag |
US10760188B2 (en) | 2016-09-28 | 2020-09-01 | Seiren Co., Ltd. | Non-coated air bag fabric and air bag |
-
1995
- 1995-02-06 JP JP7017646A patent/JPH07258940A/en active Pending
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041432A (en) * | 2001-07-27 | 2003-02-13 | Asahi Kasei Corp | Polyester ultrafine fiber |
US7101504B2 (en) | 2002-09-17 | 2006-09-05 | Yamanashi Tlo Co. | Highly oriented super microfilaments |
US7794220B2 (en) | 2003-03-07 | 2010-09-14 | University Of Yamanashi | Apparatus for manufacturing oriented sheath-core type filaments |
JP2005124959A (en) * | 2003-10-27 | 2005-05-19 | Yasuharu Noisshiki | Low blood permeable medical material |
JP2006052505A (en) * | 2004-08-13 | 2006-02-23 | Unitica Fibers Ltd | High-density woven fabric and method for producing the same |
JP4550521B2 (en) * | 2004-08-13 | 2010-09-22 | ユニチカトレーディング株式会社 | High density fabric |
JP2006057219A (en) * | 2004-08-23 | 2006-03-02 | Toray Ind Inc | High-density woven fabric and its production |
JP4556551B2 (en) * | 2004-08-23 | 2010-10-06 | 東レ株式会社 | High density fabric and manufacturing method |
WO2006043517A1 (en) * | 2004-10-19 | 2006-04-27 | Toray Industries, Inc. | Fabric for restraint device and process for producing the same |
JPWO2006043517A1 (en) * | 2004-10-19 | 2008-05-22 | 東レ株式会社 | Constraint device fabric and manufacturing method thereof |
JP2006161212A (en) * | 2004-12-07 | 2006-06-22 | Toray Ind Inc | Base fabric for air belt and method for producing the same |
US8128850B2 (en) | 2005-09-29 | 2012-03-06 | Teijin Fibers Limited | Method of producing islands-in-sea type composite spun fiber |
JP2008007870A (en) * | 2006-06-28 | 2008-01-17 | Teijin Fibers Ltd | Polyester fine fiber and its fiber product |
JP2010159502A (en) * | 2009-01-06 | 2010-07-22 | Teijin Fibers Ltd | Strap |
WO2013137263A1 (en) * | 2012-03-13 | 2013-09-19 | 旭化成せんい株式会社 | Superfine polyester fiber and tubular seamless fabric |
US10363153B2 (en) * | 2012-03-13 | 2019-07-30 | Asahi Kasei Fibers Corporation | Superfine polyester fiber and tubular seamless fabric |
US20150081004A1 (en) * | 2012-03-13 | 2015-03-19 | Asahi Kasei Fibers Corporation | Superfine polyester fiber and tubular seamless fabric |
TWI502106B (en) * | 2012-03-13 | 2015-10-01 | Asahi Kasei Fibers Corp | Very fine polyester fiber and cylindrical seamless fabric |
JP2014101613A (en) * | 2012-11-22 | 2014-06-05 | Teijin Ltd | Ultra fine fiber |
WO2014156557A1 (en) * | 2013-03-25 | 2014-10-02 | 東レ株式会社 | Adhesively processed item |
US20160184488A1 (en) * | 2013-09-12 | 2016-06-30 | Asahi Kasei Fibers Corporation | Ultrafine polyester fiber |
CN105839206A (en) * | 2015-01-16 | 2016-08-10 | 上海水星家用纺织品股份有限公司 | Manufacturing process of profiled, hollow, three-dimensional crimp and acrylic fibers and application thereof and dyeing and finishing process of fabric |
CN105177807A (en) * | 2015-07-15 | 2015-12-23 | 屠明鑫 | Multifunctional deodorant health-care mattress shell fabric and manufacturing method thereof |
US10760188B2 (en) | 2016-09-28 | 2020-09-01 | Seiren Co., Ltd. | Non-coated air bag fabric and air bag |
WO2018181695A1 (en) | 2017-03-31 | 2018-10-04 | セーレン株式会社 | Woven fabric for non-coated airbag and airbag |
US11752968B2 (en) | 2017-03-31 | 2023-09-12 | Seiren Co., Ltd. | Non-coated air bag fabric and air bag |
WO2019189044A1 (en) | 2018-03-30 | 2019-10-03 | セーレン株式会社 | Airbag base fabric and airbag |
WO2019189043A1 (en) * | 2018-03-30 | 2019-10-03 | セーレン株式会社 | Airbag base fabric and airbag |
CN112004725A (en) * | 2018-03-30 | 2020-11-27 | 世联株式会社 | Base fabric for airbag and airbag |
JPWO2019189043A1 (en) * | 2018-03-30 | 2021-05-13 | セーレン株式会社 | Base cloth for airbags and airbags |
EP3760493A4 (en) * | 2018-03-30 | 2021-12-08 | Seiren Co., Ltd. | Airbag base fabric and airbag |
US11414794B2 (en) | 2018-03-30 | 2022-08-16 | Seiren Co., Ltd. | Airbag base fabric and airbag |
US11560115B2 (en) | 2018-03-30 | 2023-01-24 | Seiren Co., Ltd. | Airbag base fabric and airbag |
CN112004725B (en) * | 2018-03-30 | 2023-09-12 | 世联株式会社 | Base fabric for airbag and airbag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0666344B1 (en) | High-strength ultra-fine fiber construction and method for producing the same | |
JPH07258940A (en) | Ultrafine fiber structure having high strength, its production and conjugate fiber having high strength | |
KR100901325B1 (en) | Polylatic acid fiber | |
JP3859672B2 (en) | Composite fiber and method for producing the same | |
JP3284735B2 (en) | Base fabric for airbag | |
JP4944561B2 (en) | Screen filament monofilament | |
WO1995004846A1 (en) | Polyester fiber | |
JP2007182646A (en) | Flame-retardant ultrafine polyester fiber, method for producing the same and high-density woven fabric | |
JP3180524B2 (en) | Base fabric for airbag | |
CA2278962A1 (en) | Monofil bicomponent fibres of the sheath/core type | |
JP4858038B2 (en) | Bulky polyester composite fiber yarn | |
JP2008202204A (en) | Production method of ultrafine fiber fabric | |
JP4315009B2 (en) | Blended yarn and textile products comprising the same | |
JP4826011B2 (en) | Polyester fiber and method for producing the same | |
JP2004315984A (en) | Webbing for seat belt and method for producing the same | |
JP2009256865A (en) | Ultrafine fiber fabric and method for producing the same | |
JP3284805B2 (en) | Textile for industrial materials | |
JP2009000751A (en) | Woven fabric for polishing cloth, its manufacturing method, and the polishing cloth | |
JP3966988B2 (en) | High-hollow polyester fiber excellent in durability and fiber product using the same | |
JP3649215B2 (en) | Method for producing high-strength polybutylene terephthalate fiber | |
JP4826367B2 (en) | Seat belt webbing | |
JPH06128836A (en) | Ground fabric for air bags and air bags | |
JP2005105445A (en) | Ground fabric for air bag and method for producing the ground fabric | |
JP7063574B2 (en) | Dyed meta-type total aromatic polyamide fibers and spun yarns and fabrics and textile products | |
JP3863051B2 (en) | Polyester spotted yarn |