JPH01135348A - Artificial joint - Google Patents
Artificial jointInfo
- Publication number
- JPH01135348A JPH01135348A JP29273687A JP29273687A JPH01135348A JP H01135348 A JPH01135348 A JP H01135348A JP 29273687 A JP29273687 A JP 29273687A JP 29273687 A JP29273687 A JP 29273687A JP H01135348 A JPH01135348 A JP H01135348A
- Authority
- JP
- Japan
- Prior art keywords
- sleeve
- stem
- core material
- bone
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011162 core material Substances 0.000 claims abstract description 16
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 15
- 230000007423 decrease Effects 0.000 claims 1
- 210000004394 hip joint Anatomy 0.000 abstract description 9
- 238000010008 shearing Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 7
- 239000002639 bone cement Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000001981 hip bone Anatomy 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000000278 osteoconductive effect Effects 0.000 description 1
- 230000002138 osteoinductive effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30907—Nets or sleeves applied to surface of prostheses or in cement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
Landscapes
- Prostheses (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、人体に適用する人工関節に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an artificial joint applied to the human body.
従来から用いられている全置換型人工関節の代表的なも
のは、第4図に示す如く、寛骨Aと大腿骨Bに骨セメン
トCで固定されるソケットDとステムEより構成され、
このうちステムEはステンレス鋼、コバルトクロム合金
、チタン合金などの金属からなり、ソケットDは超高分
子ポリエチレン製のものが最も多く使用されている。A typical total replacement artificial joint that has been used in the past consists of a socket D and a stem E, which are fixed to the hip bone A and femur B with bone cement C, as shown in Figure 4.
Among these, the stem E is made of metal such as stainless steel, cobalt chromium alloy, titanium alloy, etc., and the socket D is most often made of ultra-high molecular polyethylene.
ところが、上記人工関節の最大の欠点は、長期間、例え
ば10年から20年間にわたって体内に埋入され続ける
と、ステムE及びソケッl−Dの固定性が損なわれるこ
とである。(これを人工関節のルースニングと整形外科
領域では言われている)−旦、固定性を失った人工関節
は微小な動き(マイクロムーブメント)を開始し、痛み
の原因となり、人工関節の入れ替えを必要とする事態に
なる。このように固定性を失うことの原因として考えら
れることは、骨セメントCの生体内劣化、ステムE及び
ソケッ)Dの形状不適合、感染、無理な荷重など様々な
ものがあげられるが、生体の中に人工物が設置されるこ
とによって関節付近での応力分布が大きく変化し、骨の
りモデリング機能を充分に生かすことができないことも
一大要因として上げられる。However, the biggest drawback of the above-mentioned artificial joint is that if it continues to be implanted in the body for a long period of time, for example, 10 to 20 years, the fixation of the stem E and the socket L-D will be impaired. (This is referred to in the orthopedic field as artificial joint loosening.) - Once the artificial joint loses its stability, it begins to make minute movements (micro-movements), causing pain and requiring replacement of the artificial joint. The situation becomes necessary. There are various possible causes for this loss of fixation, including in-vivo deterioration of the bone cement C, incompatibility of the shape of the stem E and socket (D), infection, and excessive loading. Another major factor is that the stress distribution near the joints changes significantly due to the placement of artificial objects inside the joints, making it impossible to fully utilize the bone glue modeling function.
人工股関節を埋入した後の大腿骨は中心に変形し難い金
属ステムがあり、その回りに金属と比較して極めて変形
し易い筒状の骨及び骨セメントが存在していることにな
る。このため、荷重が印加された時、すなわち立脚時や
歩行時には、金属の変形量に比べ骨や骨セメントの変形
量が大きいものとなり、各々の界面において剪断力が発
生し、ゆるみの原因とる。After an artificial hip joint has been implanted, the femur has a metal stem in the center that is difficult to deform, and around it is a cylindrical bone and bone cement that are extremely deformable compared to metal. Therefore, when a load is applied, that is, when standing or walking, the amount of deformation of the bone and bone cement is greater than the amount of deformation of the metal, and shearing force is generated at each interface, causing loosening.
また、印加される荷重が衝撃的な場合、つまり、ジャン
プしたり、走ったりした場合には剛性の高い人工股関節
では衝撃エネルギーを吸収する性質に乏しいため、骨や
骨セメントへの従来よりも大きな衝撃がかかることとな
り、骨や骨セメントの変成を促進する結果になる。In addition, when the applied load is impactful, that is, when jumping or running, a highly rigid artificial hip joint has poor ability to absorb impact energy, so This results in an impact that promotes degeneration of the bone and bone cement.
上記のステム、セメントなどの界面に発生する剪断応力
と衝撃力の伝達という二つの問題点をより一層軽減する
ため、弾性率を徐々に変化させ、しかも衝撃吸収能を有
し、なおかつ生体内での劣化の少ないチタンファイバー
メソシュなどから成るスリーブをステム芯材の外周に積
層させることにより問題点を解消する。In order to further alleviate the two problems of shear stress and impact force transmission that occur at the interface between the stem and cement, we have gradually changed the elastic modulus, have shock absorption ability, and can be used in vivo. This problem is solved by laminating a sleeve made of titanium fiber mesh, etc., which is less susceptible to deterioration, around the outer periphery of the stem core material.
以下、図によって本発明実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は、本発明人工関節の例として股関節のステムl
を示し、(イ)図は人工股関節の一部を破断した正面図
、(ロ)図は(イ)図におけるX−X線断面図を示した
もので、このステム1はステム芯材2と積層スリーブ3
、及びボール4から構成され、ステム芯材2とボール4
はテーパ嵌合により固定されている。このステム芯材2
には積層スリーブ3が高温状態下、あるいは加圧するこ
とにより固定される。しかし特別な場合には固定されず
単にステム芯材2を積層スリーブ3に挿入した状態のも
のを使用してもよい。Figure 1 shows a hip joint stem l as an example of the artificial joint of the present invention.
Figure (a) is a partially cutaway front view of the artificial hip joint, and figure (b) is a cross-sectional view taken along line X-X in figure (a). This stem 1 is connected to the stem core material 2. Laminated sleeve 3
, and a ball 4, a stem core material 2 and a ball 4.
are fixed by tapered fitting. This stem core material 2
The laminated sleeve 3 is fixed under high temperature conditions or under pressure. However, in special cases, the stem core material 2 may be simply inserted into the laminated sleeve 3 without being fixed.
なお、ステム芯材2は一層に生体金属材料として用いら
れているステンレス鋼、コバルトクロム合金、チタン合
金等で形成される。The stem core material 2 is made of stainless steel, cobalt chromium alloy, titanium alloy, etc., which are further used as biometallic materials.
また、積層スリーブ3は、複数層のスリーブからなり、
第1図に示した実施例では3層の場合を図示してあり、
内側よりそれぞれ3a、3b、、3Cのスリーブ層を有
する。これらの積層スリーブ3はチタンファイバーを素
材とするメツシュからなっているため適度の空隙を有し
、弾力性に冨むが、これらはメツシュの製造条件やファ
イバーの太さなどを適当に選択することにより弾性率を
変化させることが可能である。これを利用し、ステム芯
材2の弾性率と骨(皮質骨)の弾性率の中間領域でファ
イバーメツシュの弾性率が均等に分布し、ステム芯材2
から骨へと徐々に弾性率が変化するように設定する。In addition, the laminated sleeve 3 is composed of a plurality of layers of sleeves,
In the embodiment shown in FIG. 1, a three-layer case is illustrated.
It has sleeve layers 3a, 3b, 3C from the inside. These laminated sleeves 3 are made of meshes made of titanium fibers, so they have appropriate voids and are highly elastic, but these can be determined by appropriately selecting the manufacturing conditions of the meshes, the thickness of the fibers, etc. It is possible to change the elastic modulus by Utilizing this, the elastic modulus of the fiber mesh is evenly distributed in the intermediate region between the elastic modulus of the stem core material 2 and the elastic modulus of bone (cortical bone), and the
The elastic modulus is set so that it gradually changes from bone to bone.
即ち、第2図で示す如く弾性率の大きなステム芯材2よ
り外周に向かってスリーブ層3a−スリーブ層3b→ス
リーブN3 cと、骨に接近するに従って弾性率を漸減
せしめ、弾性率の変化がなだらかであるように組合せで
あるため、剪断応力の発生を抑制することができる。That is, as shown in FIG. 2, the elastic modulus is gradually decreased from the stem core material 2 having a large elastic modulus toward the outer periphery from sleeve layer 3a to sleeve layer 3b to sleeve N3c, and as it approaches the bone, the change in the elastic modulus is Since the combination is gentle, it is possible to suppress the generation of shear stress.
尚、この実施例ではステム芯材2に対してスリーブ層3
a、3b、3Cの3つの層を重ねた例をあげたが、これ
に限らず材質の特性によっては一層だけでもよ(、その
他2層、あるいは4層以上のスリーブを設けたものであ
ってもよい。Note that in this embodiment, the sleeve layer 3 is different from the stem core material 2.
Although we have given an example in which three layers, a, 3b, and 3C, are stacked, it is not limited to this, and depending on the characteristics of the material, it may be possible to use just one layer. Good too.
また、緻密な金属の撓みによる衝撃力の吸収はごくわず
かであるが、本実施例のスリーブのように多孔空隙を有
する材料で構成したことにより、衝撃力を吸収するfJ
i’J材としても機能することができる。その結果、骨
Mi織に対する過大な衝撃力の伝搬を抑えることができ
る。なお、有機材料でも衝撃力の吸収が可能となるが、
生体内の過酷な環境下では材料の劣化が起こり、有する
特性が長期に亘って一定であることが非常に難しいのに
対して、本発明の構成に用いる例えばチタンファイバー
メソシュなどでは、チタンそのものが劣化しにくい材料
であり、しかもそれを織り込んだ構造を有することで、
緻密な金属材料と同等の寿命に近づけることができる。In addition, although the absorption of impact force due to the bending of dense metal is negligible, the fJ absorbs impact force by being made of a material with porous voids like the sleeve of this example.
It can also function as an i'J material. As a result, propagation of excessive impact force to the bone tissue can be suppressed. Although organic materials can also absorb impact forces,
Materials deteriorate under the harsh environment of living organisms, and it is extremely difficult for their properties to remain constant over a long period of time.In contrast, for example, the titanium fiber mesh used in the structure of the present invention is made of titanium itself. is a material that does not easily deteriorate, and has a structure that incorporates it,
It can approach the same lifespan as dense metal materials.
さらに、人工関節では、骨組織との親和性や固定力の長
期安定性が重要である。このうち生体親和性はセラミッ
クス材料≧有機材料〉金属材料の順で高いといわれてい
る。固定力については材料の差だけでなくインブラント
のデザインや表面構造によっても大きく左右される。同
じ金属材料でも、表面にポーラスな層があり、骨が3次
元方向、特に内部に増生侵入するようにしたインブラン
トが固定力の点ではすぐれている。Furthermore, for artificial joints, compatibility with bone tissue and long-term stability of fixation force are important. Among these, biocompatibility is said to be highest in the order of ceramic materials > organic materials > metal materials. Fixation strength is greatly influenced not only by differences in materials but also by the design and surface structure of the implant. Even though they are made of the same metal material, implants that have a porous layer on the surface and allow bone to grow in three dimensions, especially into the interior, are superior in terms of fixation power.
この点に関して、本発明のチタンファイバーメソシュな
どから成る積層スリーブで被覆されたステムは、全表面
に空隙を配置することが容易であり、骨の成長を最大限
活用することができる。In this regard, a stem covered with a laminated sleeve made of titanium fiber mesh or the like of the present invention is easy to place voids on the entire surface, making it possible to take full advantage of bone growth.
また、かかる積層スリーブ3の表面に骨誘導能や骨伝導
能を有する物質、すなわち、水酸化アパタイトなどをコ
ーティングすることによって、骨とインブラントの固定
をより早期に、かつ安定的に長期間保証することができ
る。In addition, by coating the surface of the laminated sleeve 3 with a substance that has osteoinductive and osteoconductive properties, such as hydroxyapatite, the fixation of the implant to the bone is ensured more quickly and stably for a long period of time. can do.
上記の第1図では人工股関節としての応用例であるが、
これに限らず、他部位の例えば第3図に示したような大
腿骨に装着する大腿骨部材Tと脛骨に挿入する脛骨部材
Sから成る人工膝関節の脛骨部材Sなどにも応用でき、
長期間にわたり一層安定的に固定することができる。Figure 1 above shows an example of application as an artificial hip joint.
It is not limited to this, but it can also be applied to other parts, such as the tibial member S of an artificial knee joint, which consists of a femoral member T attached to the femur and a tibial member S inserted into the tibia, as shown in FIG.
More stable fixation can be achieved over a long period of time.
叙上のように本発明によれば、人工関節の固定力が強化
され、より自然な応力の分布状態や衝撃吸収機構を実現
することができるため、従来の人工関節の寿命を延すこ
とが可能となり人類の福祉に寄与するところ大である。As described above, according to the present invention, the fixing force of the artificial joint is strengthened, and a more natural stress distribution state and shock absorption mechanism can be realized, so that the life of the conventional artificial joint can be extended. This will greatly contribute to human welfare.
第1図(イ)は本発明実施例に係る人工股関節のステム
のみの一部を破断した正面図、同図(ロ)は(イ)図に
おけるX−X線断面図、第2図は本発明実施例に係る人
工股関節のステムを構成する各部材の弾性率の比較を表
わしたグラフ図である。
第3図は本発明に係る他の人工関節の例を示す斜視図で
ある。第4図は従来例による人工股関節が骨に設置され
た状態を表わす模式図である。
1:ステム 2:ステム芯材
3:積層スリーブ 4:ポールFIG. 1(A) is a partially cutaway front view of only the stem of the artificial hip joint according to the embodiment of the present invention, FIG. 1(B) is a sectional view taken along line X-X in FIG. FIG. 2 is a graph diagram showing a comparison of the elastic modulus of each member constituting the stem of the artificial hip joint according to the embodiment of the invention. FIG. 3 is a perspective view showing another example of an artificial joint according to the present invention. FIG. 4 is a schematic diagram showing a state in which a conventional artificial hip joint is installed on a bone. 1: Stem 2: Stem core material 3: Laminated sleeve 4: Pole
Claims (1)
れたポーラスな積層スリーブからなり、かつ該積層スリ
ーブの弾性率が外周に向かって漸減していることを特徴
とする人工関節。An artificial joint characterized in that a stem inserted into a bone comprises a core material and a porous laminated sleeve worn around the core material, and the elastic modulus of the laminated sleeve gradually decreases toward the outer periphery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62292736A JP2732058B2 (en) | 1987-11-19 | 1987-11-19 | Artificial joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62292736A JP2732058B2 (en) | 1987-11-19 | 1987-11-19 | Artificial joint |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01135348A true JPH01135348A (en) | 1989-05-29 |
JP2732058B2 JP2732058B2 (en) | 1998-03-25 |
Family
ID=17785660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62292736A Expired - Lifetime JP2732058B2 (en) | 1987-11-19 | 1987-11-19 | Artificial joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2732058B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7296188B2 (en) | 2002-07-11 | 2007-11-13 | International Business Machines Corporation | Formal test case definitions |
JP2018513728A (en) * | 2015-04-01 | 2018-05-31 | アエスキュラップ アーゲー | Joint implant component, intra-articular prosthesis, and method for manufacturing a joint implant component and an intra-articular prosthesis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226056A (en) * | 1985-07-15 | 1987-02-04 | ゲブリユ−ダ− ズルツア− アクチエンゲゼルシヤフト | Plastic hip joint anchored in pelvis without cement |
JPS62137050A (en) * | 1985-12-05 | 1987-06-19 | テクメデイカ・インコ−ポレイテツド | Production of mesh screen having affinity to living body |
-
1987
- 1987-11-19 JP JP62292736A patent/JP2732058B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226056A (en) * | 1985-07-15 | 1987-02-04 | ゲブリユ−ダ− ズルツア− アクチエンゲゼルシヤフト | Plastic hip joint anchored in pelvis without cement |
JPS62137050A (en) * | 1985-12-05 | 1987-06-19 | テクメデイカ・インコ−ポレイテツド | Production of mesh screen having affinity to living body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7296188B2 (en) | 2002-07-11 | 2007-11-13 | International Business Machines Corporation | Formal test case definitions |
JP2018513728A (en) * | 2015-04-01 | 2018-05-31 | アエスキュラップ アーゲー | Joint implant component, intra-articular prosthesis, and method for manufacturing a joint implant component and an intra-articular prosthesis |
Also Published As
Publication number | Publication date |
---|---|
JP2732058B2 (en) | 1998-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11833052B2 (en) | Tissue integration design for seamless implant fixation | |
US5489306A (en) | Graduated porosity implant for fibro-osseous integration | |
US11974926B2 (en) | Prosthesis surface treatment for soft tissue attachment thereto | |
US7909883B2 (en) | Percutaneous implant for limb salvage | |
Morscher et al. | Cementless fixation of" isoelastic" hip endoprostheses manufactured from plastic materials. | |
JP2833717B2 (en) | Composite orthopedic implant with variable modulus | |
US4978358A (en) | Orthopaedic prosthetic device possessing improved composite stem design | |
US5549702A (en) | Flexible orthopaedic stem apparatus | |
US9370427B2 (en) | Bone-compliant femoral stem | |
US4738681A (en) | Femoral-joint prosthetic device | |
US6641616B1 (en) | Hollow endoprosthesis | |
US6942701B2 (en) | Prosthesis | |
JPH01305944A (en) | Internal prosthesis having bone absorption preventing means | |
US20080027559A1 (en) | Variable stiffness intramedullary stem | |
CN103705316A (en) | Orthopaedic hip prosthesis having femoral stem components with varying a/p taper angles | |
JPH01135348A (en) | Artificial joint | |
CN210019806U (en) | Artificial joint casting | |
CN208511256U (en) | Bone prosthesis | |
CN216535675U (en) | Biological knee joint prosthesis | |
JP2002291778A (en) | Artificial organ, stem of artificial organ, and manufacturing method of artificial organ | |
Gottsauner-Wolf et al. | Histomorphological evaluation of the diaphyseal anchorage in KMFTR-type tumor prostheses | |
JP2005278875A (en) | Artificial bone and artificial joint | |
JPH01171561A (en) | Organism prosthetic material |