[go: nahoru, domu]

JPS58156023A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS58156023A
JPS58156023A JP3305082A JP3305082A JPS58156023A JP S58156023 A JPS58156023 A JP S58156023A JP 3305082 A JP3305082 A JP 3305082A JP 3305082 A JP3305082 A JP 3305082A JP S58156023 A JPS58156023 A JP S58156023A
Authority
JP
Japan
Prior art keywords
coal
product
temperature
depolymerization
depolymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3305082A
Other languages
Japanese (ja)
Inventor
Mikio Oyabu
大薮 巳喜男
Kenji Fukuda
憲二 福田
Keiichi Hirata
恵一 平田
Hideto Kabashima
樺島 秀人
Koichi Shimakawa
嶋川 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Coke Co Ltd
Original Assignee
Mitsui Coke Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Coke Co Ltd filed Critical Mitsui Coke Co Ltd
Priority to JP3305082A priority Critical patent/JPS58156023A/en
Publication of JPS58156023A publication Critical patent/JPS58156023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:Coal is depolymerized in a hydrocarbon solvent under hydrogen pressure, the product is subjected to distillative separation to give a coal depolymerization product, then the product is made into fibers, infusibilized and carbonized to produce carbon fibers of uniform quality and high strength. CONSTITUTION:Coal crushed into particles of appropriate sizes is mixed with a hydrocarbon solvent for depolymerization to form a slurry and a catalyst is added to the slurry. The mixed slurry is heated in a temperature range from 300 to 500 deg.C under hydrogen pressure to effect dissolution, then insoluble solids are separated by filtration. The remaining coal solution is heat-treated at 350-450 deg.C for 1-320min under 1-70mm.Hg pressure to separate the distillates, thus giving a coal depolymerization product. The product is made into fibers, infusibilized with air and calcined at higher temperatures to effect carbonization and graphitization, thus producing the objective carbon fiber.

Description

【発明の詳細な説明】 の製造は原料の点から大別すると天然繊維あるいは合成
繊維を原料とする方法,石油ピッチ,コールタールピッ
チを原料とする方法および石炭解重合物を原料とする方
法に分類することができる。本発明は石炭解重合物を原
料とする炭素繊維の製造方法である。本発明における石
炭解重合物とは石炭を水素加圧下で溶剤中にて解重合さ
せて製造する石炭解重合物である。
[Detailed Description of the Invention] In terms of raw materials, the production of can be roughly divided into methods using natural fibers or synthetic fibers as raw materials, methods using petroleum pitch or coal tar pitch as raw materials, and methods using coal depolymerized products as raw materials. Can be classified. The present invention is a method for producing carbon fiber using coal depolymerized material as a raw material. The coal depolymerized product in the present invention is a coal depolymerized product produced by depolymerizing coal in a solvent under hydrogen pressure.

従来の炭素璋維の製造法の一つである天然繊維あるいは
ポリアクリロニトリル等の合成繊維を原料とする場合、
原料繊維の価格が商いこと、原料繊維の炭化収率が低い
ことが難点として挙げられる、石油ピッチあるいはコー
ルタールピッチを原料とする場合、可動性の改善又は不
融化処理を容易ならしめるためにピッチの水素化処理又
は熱処理が必要であり、これに加えコールタールピッチ
の場合には不溶性固形分の分離除去操作を必要とする。
When using natural fibers or synthetic fibers such as polyacrylonitrile as raw materials, which is one of the conventional methods for producing carbon fibers,
When using petroleum pitch or coal tar pitch as a raw material, problems include the high price of raw material fiber and the low carbonization yield of raw material fiber. In addition, in the case of coal tar pitch, an operation for separating and removing insoluble solids is required.

しかも石油ピッチあるいはコールタールピッチは熱処理
によりピッチの組成は著るしく不均一化する結果これら
を原料とする炭素繊維の性状を均一に保つことは困難で
ある。
Moreover, the composition of petroleum pitch or coal tar pitch becomes significantly non-uniform due to heat treatment, making it difficult to maintain uniform properties of carbon fibers made from these pitches.

従って、石油ピッチあるいはコールタールピッチを原料
とする場合、これらを炭素繊維製造用原料として好まし
い性状を有するピッチに改質するためにはいくつかの複
雑な工程を必要とし、その結果炭素繊維製造工程は著り
、 < (IJ雑となる。しかも、改質されたピッチの
性状は炭素繊維製造用原料としての必要な条件を完全に
満たすとはいえない。
Therefore, when petroleum pitch or coal tar pitch is used as a raw material, several complicated steps are required to modify it into a pitch with desirable properties as a raw material for carbon fiber production, and as a result, the carbon fiber production process < (IJ becomes coarse. Moreover, the properties of the modified pitch cannot be said to completely satisfy the necessary conditions as a raw material for producing carbon fibers.

炭素繊維製造工程の一つである不融化工程の運転条件は
炭素繊維原料の軟化点に大きく支配される炭素繊維原料
の軟化点を上げることにより、紡糸された繊維の不融化
処理が容易になることは周知のことである。これは不融
化処理が空気酸化であり、酸化速度を上げるためには、
より高い温度で不融処理を行う方が有利であることに基
つくものである。
The operating conditions for the infusibility process, which is one of the carbon fiber manufacturing processes, are largely controlled by the softening point of the carbon fiber raw material.By raising the softening point of the carbon fiber raw material, the infusibility treatment of the spun fibers becomes easier. This is well known. This is because the infusibility treatment is air oxidation, and in order to increase the oxidation rate,
This is based on the fact that it is more advantageous to carry out the non-melting treatment at a higher temperature.

石炭解重合物の軟化点の支配因子の一つは残留解重合溶
剤量であり、他の因子は重合度または分子量である。た
とえば、解重合溶剤の蒸留回収条件をきびしくすること
により、炭素繊維製造用原料として好寸しい高軟化点の
石炭解重合物を得ることができる。ここで、解重合溶剤
とは石炭を解重合させ、石炭を石炭解重合物に転化する
際に用いる溶剤をさす。
One of the controlling factors for the softening point of the coal depolymerized product is the amount of residual depolymerization solvent, and the other factor is the degree of polymerization or molecular weight. For example, by tightening the conditions for distillation and recovery of the depolymerization solvent, it is possible to obtain a depolymerized coal having a high softening point and suitable as a raw material for producing carbon fibers. Here, the depolymerization solvent refers to a solvent used to depolymerize coal and convert it into a coal depolymerized product.

石炭解重合物は石炭固有の、又は解重合時の水素化によ
り石炭解重合物中に導入された脂環構造を有するために
、石油ピッチ及びコールタールピッチに比べ酸化を受け
やすい。しかしながら石炭解重合物においても全く問題
がないわけではない。すなわち従来の製造法による石炭
解重合物の製造において、軽度の解重合条件によって製
造された石炭解1合物は比較的軟化点も高く、炭素繊維
原料とするだめの軟化点を上げる操作は比較的温和な溶
剤回収条件で容易に達成することができたことは特開昭
55−90620に示されるごとくである。しかしなが
ら、最近は石炭の解重合条件は敞しくなる傾向にあり、
それは溶解性は劣るが低価格である低石炭化度炭を原料
として用いることや、解重合を進めて油状成分収率を増
大させたこと等の経済上の要求からである。また石炭解
重合プラントでのライン閉塞防止や不溶性固形分の分離
操作を容易にすること等の運転上の要求によるものであ
る、。
Coal depolymerized products are more susceptible to oxidation than petroleum pitch and coal tar pitch because they have an alicyclic structure inherent in coal or introduced into the coal depolymerized products by hydrogenation during depolymerization. However, coal depolymerized products are not completely free from problems. In other words, in the production of coal depolymerized products using conventional production methods, the coal depolymerized products produced under mild depolymerization conditions have a relatively high softening point, and the operation to increase the softening point of the carbon fiber raw material is comparatively difficult. This can be easily achieved under mild solvent recovery conditions, as shown in JP-A-55-90620. However, recently, coal depolymerization conditions have become more demanding.
This is due to economic demands such as the use of low-grade coal, which has poor solubility but low price, as a raw material, and the need to advance depolymerization to increase the yield of oily components. This is also due to operational requirements such as preventing line blockages and facilitating the separation of insoluble solids in coal depolymerization plants.

解重合条件を厳しくするとは、具体的にはスラリー中の
石炭濃度の低下、水素圧力の増加、触媒の使用、解重合
温度の上昇、解重合時間の増加、水素化能力の向上した
溶剤、たとえば同プロセスでの回収溶剤やあらかじめ水
素化触媒の存在下で水素化された溶剤の使用等をいう。
Stricter depolymerization conditions specifically include lowering the coal concentration in the slurry, increasing hydrogen pressure, using catalysts, increasing depolymerization temperature, increasing depolymerization time, and using solvents with improved hydrogenation ability, e.g. This refers to the use of recovered solvents or solvents that have been hydrogenated in the presence of a hydrogenation catalyst in the same process.

このように厳しい解重合条件で得られた石炭解重合物は
高度に水素化された石炭解重合物となる。その性状は従
来の軽度の解重合条件で得られた解重合物よりも全体的
に低分子量となっている。例えば溶剤分別1〜だ場合の
BI(ベンゼン4溶分)!及びTHF−T(デトラヒド
ロフラン不溶分)−°の低下が認められる。また炭素繊
維原料としてみた場合軟化点の低下が指撤される。
The coal depolymerized product obtained under such severe depolymerization conditions becomes a highly hydrogenated coal depolymerized product. Its properties are lower overall in molecular weight than depolymerized products obtained under conventional mild depolymerization conditions. For example, if the solvent fraction is 1~, BI (benzene 4 soluble)! and a decrease in THF-T (detrahydrofuran insoluble matter)-° was observed. Also, when viewed as a raw material for carbon fibers, the softening point is reduced.

このような高麗に水素化された石炭解重合物を特開昭5
5−90620に示されるが如き溶剤回収条件、すなわ
ち蒸留により炭化水素溶剤を除去する場合の蒸留ボトム
温度を350℃以下とする条件においては炭素繊維原料
として所望される軟化点にすることが困難であるために
、不融化処理の際に保持温度および昇温速度を低くおさ
える必要がある。
This kind of coal depolymerized product hydrogenated in Koryeo was published in Japanese Patent Application Publication No. 5
5-90620, that is, when removing hydrocarbon solvents by distillation, it is difficult to obtain the softening point desired as a carbon fiber raw material under conditions where the distillation bottom temperature is 350°C or less. Therefore, it is necessary to keep the holding temperature and temperature increase rate low during the infusibility treatment.

このために処理時間が長くなるばかりか、しばしば融着
等が発生する。
This not only increases processing time but also often causes fusion and the like.

本発明はこのように高度に水素化された石炭解重合物か
ら炭素繊維原料を製造する方法を提供するものである。
The present invention provides a method for producing a carbon fiber raw material from such highly hydrogenated coal depolymerized product.

本発明者等はとのよ住 うに高度に水素化された石炭解重合物を誉意研究した結
果、高度水素化石炭解重合物が比較的K 湛においても
熱安定性に優れているということを見出し、溶剤回収条
件を厳しくすることができるということ、また急速な勢
分解縮重合が起きないので所望の物性を具備した石炭解
重合物へと改質することができることを見出すことによ
って本発明に至ったものである。本発明を実施すること
によって、高度な石炭解重合条件によって製造された石
炭解重合物であっても、可動性が良好でしかも不融化処
理の容易な炭素繊維原料としての石炭解重合物を得るこ
とができる。これを原料とした炭素繊維の性状は均一で
高強度であり、肚つ紡糸原料に対する炭化歩留も高い。
As a result of extensive research on highly hydrogenated coal depolymerized products, the present inventors have found that highly hydrogenated coal depolymerized products have comparatively excellent thermal stability even under K conditions. The present invention was achieved by discovering that it is possible to make the solvent recovery conditions stricter, and that it is possible to reform coal depolymerized products with desired physical properties because rapid sequestration condensation polymerization does not occur. This is what led to this. By carrying out the present invention, even if the coal depolymerized product is produced under advanced coal depolymerization conditions, it is possible to obtain a coal depolymerized product as a raw material for carbon fibers that has good mobility and is easily infusible. be able to. The properties of carbon fiber made from this raw material are uniform and high in strength, and the carbonization yield relative to the spinning raw material is also high.

即ち本発明は石炭類を水素加圧下で触媒の存在下あるい
は非存在下において石炭系溶剤あるいは本発明等で回収
された回収溶剤ならびに高度に水素化された溶剤あるい
は高度に水素化された回収溶剤中にて解重合させて製造
された石炭解重合物に実質的に軽度の分解縮重合を行々
わさせ、溶剤と分解油を同時に蒸留除去することで炭素
繊維原料としての物軸・ 性を具備させたのちに該石炭解重合物を溶+紡糸し、つ
いで不融化処理、炭化処理を行うことを特徴とする炭素
繊維の製造方法である。
That is, the present invention processes coal under hydrogen pressure in the presence or absence of a catalyst, and then converts it into a coal-based solvent, a recovered solvent recovered by the present invention, etc., a highly hydrogenated solvent, or a highly hydrogenated recovered solvent. By subjecting the depolymerized coal produced by depolymerization inside the carbon fiber to substantially mild decomposition and condensation polymerization, and removing the solvent and decomposed oil by distillation at the same time, the material and properties of the coal as a raw material for carbon fiber can be improved. This method of producing carbon fibers is characterized in that the coal depolymerized product is melted and spun, and then subjected to infusibility treatment and carbonization treatment.

本発明が対象とする石炭解1合物とは、瀝青炭、鰍瀝青
炭、亜炭、褐炭、リグナイト、草炭を水素加圧下で触媒
の存在下または非存孔1でW+重重合剤剤中て解重合さ
せて製造したものである。
The coal decomposition 1 compound targeted by the present invention is the depolymerization of bituminous coal, bituminous coal, lignite, brown coal, lignite, and grass coal under hydrogen pressure in the presence of a catalyst or in the absence of pores 1 in W + polymerization agent. It was manufactured by

また本発明が対象とする触媒は鉄を主成分とする水素化
触媒、あるいは通常の石炭液化用触媒であるCo−Mo
系触媒、Ni−Mo系触媒、ZnCl2X5nC12等
ハロケン化触媒、あるいは鋼、白金等の全域触媒および
該金属のアンモニウム塩、酸化物等を単独あるいはソリ
カーアルミナに物持した触媒、あるいは固体酸触媒であ
るソリカーアルミナ、アルミナ、ゼオライト、合成ゼオ
ライト等を指す。
Further, the catalyst targeted by the present invention is a hydrogenation catalyst mainly composed of iron, or a Co-Mo catalyst which is a common coal liquefaction catalyst.
Halokenization catalysts such as Ni-Mo based catalysts, ZnCl2 Refers to certain solicar alumina, alumina, zeolite, synthetic zeolite, etc.

また、対象とする解重合溶剤とは石炭糸の中油留分すな
わち沸点範囲が200〜400℃の領分および該留分を
石炭解重合工程に使用したのち回収された回収油又はあ
らかじめ水素加圧下において300〜500℃の温度範
囲で無触媒下あるいは前述の水素化触媒を用いて^朋に
水素化した解重合用溶剤である。
In addition, the target depolymerization solvent is the middle oil fraction of coal yarn, that is, the region with a boiling point range of 200 to 400°C, and the recovered oil recovered after using this fraction in the coal depolymerization process, or the oil that has been prepared in advance under hydrogen pressure. This is a depolymerization solvent that has been hydrogenated in the temperature range of 300 to 500°C without a catalyst or using the hydrogenation catalyst described above.

本発明をさらに詳細に説明する。The present invention will be explained in further detail.

適当な粒度に粉砕した上記の石炭と炭化水素系解重合溶
剤、たとえば石炭乾留タールの沸点範囲が2(]0〜4
00℃の留分あるいは本工程ですでに使用された後に回
収工程で回収された溶剤とを石炭/解重合溶剤比(重量
ベース)が1゛1ないし1:10となるように混合して
スラリー状とする。場合によっては、このスラリーに触
媒を0.3〜10wt%添加する。この混合スラリーを
3〜300す/ cr/I Gの水素加圧下で300〜
500℃の温度範囲で加熱溶解する。水素加圧は石炭成
分の解重合溶剤への解Pl膠に有効であり、石炭溶解率
は著しく白土する。回収溶剤あるいは尚(9) 度に水素化された溶剤の使用も同様に有効であり、種々
の目的に応じて添加さ7しる触媒は溶解反応及び解重合
反応を促進さ)せるのに有効である。
The boiling point range of the above-mentioned coal pulverized to an appropriate particle size and a hydrocarbon depolymerization solvent, such as coal carbonization tar, is 2 (] 0 to 4).
00℃ distillate or the solvent already used in this process and recovered in the recovery process are mixed so that the coal/depolymerization solvent ratio (weight basis) is 1:1 to 1:10 to make a slurry. shall be as follows. In some cases, 0.3 to 10 wt% of catalyst is added to this slurry. This mixed slurry was heated under hydrogen pressure of 3 to 300 μg/cr/IG.
Melt by heating in a temperature range of 500°C. Hydrogen pressurization is effective in depolymerizing the coal component into the depolymerization solvent, and the coal dissolution rate is significantly reduced. The use of recovered solvents or (9) further hydrogenated solvents is equally effective, and catalysts added for various purposes are effective in accelerating dissolution and depolymerization reactions. It is.

加熱時間はスラリーが十分濾過可能な粘度になるように
設足するが、石炭あるいは溶剤触媒添加量すてよって異
なるが通常10〜240馴である。前述の処理により、
石炭の可洛成分を十分溶解せしめたのち、未溶解残渣を
たとえばフィルター又は遠心分離器等により分離除去す
る。得られた濾液あるいは上澄液を350℃〜450℃
の温度範囲で熱処理し同時に蒸留する。熱処理と蒸留は
なるべく積圧下で短時間で処理する方が望ましいが、具
体的には減圧度については工業的にoT北な1〜70 
wnHgab s 、また熱処理と蒸留温度における保
持時間は11〜320−で行うが、好1しくけ380〜
400℃の温度範囲に2いて5〜20 wnHg ab
 aの圧力下で5〜80JIIm程度の条件で行うこと
が有利である。350℃(10) 未満の条件では保持時間がさらに長くなるばかりでなく
軟化点を上げることが困難となる、また450℃を超え
る場合においては蒸留ボトム中で急速な縮重合が進行す
るおそれがあり、不溶性炭素前駆体の発生が認められる
場合がある。述べるまでもなく不溶性炭素前駆体の生成
は紡糸に悪影響を及ぼすばかりでなく、炭素繊維の強度
低下の原因となる。これらの操作により蒸留ボトム中の
低分子1−1低軟化点成分を除去し軟化点を200〜3
0〇I ℃、BIを45〜70wt%、T )l F/lを15
〜40wt%、不溶性固形分を0.5wt%以下にする
The heating time is set so that the slurry has a viscosity that can be sufficiently filtered, and although it varies depending on the amount of coal or solvent catalyst added, it is usually 10 to 240 ml. With the above processing,
After the soluble components of the coal are sufficiently dissolved, undissolved residues are separated and removed using, for example, a filter or a centrifugal separator. The obtained filtrate or supernatant was heated to 350°C to 450°C.
heat-treated at a temperature range of It is preferable to perform heat treatment and distillation in a short time under cumulative pressure, but specifically, the degree of vacuum should be 1 to 70, which is the industrial standard.
wnHgabs, and the heat treatment and the holding time at the distillation temperature are carried out at 11 to 320 -, but preferably 1 to 380 -
5-20 wnHg ab in a temperature range of 400℃
It is advantageous to carry out the process under a pressure of about 5 to 80 JIIm. If the temperature is less than 350°C (10), not only will the holding time become longer, but it will also be difficult to raise the softening point, and if it exceeds 450°C, there is a risk that rapid polycondensation will proceed in the distillation bottom. , generation of insoluble carbon precursors may be observed. Needless to say, the production of insoluble carbon precursors not only adversely affects spinning but also causes a decrease in the strength of carbon fibers. These operations remove low molecular weight 1-1 low softening point components in the distillation bottom and lower the softening point to 200 to 3.
0〇I℃, BI 45-70wt%, T)l F/l 15
~40wt%, and the insoluble solid content is 0.5wt% or less.

ここで軟化点は窒素気流下で微量融点測定装置にて測定
した。またBIはJIS−に−2425に準拠した。T
HF−IはBIと同様の操作においてTI(Fの還流温
度下で測定1( した。不溶性固形分−はJ I S −M −8801
に準拠した。
Here, the softening point was measured using a micro melting point measuring device under a nitrogen stream. Moreover, BI complies with JIS-2425. T
HF-I was measured under the reflux temperature of TI (F) in the same manner as BI.The insoluble solid content was determined according to JIS-M-8801.
Compliant with.

石炭解重合物の軟化点200℃未満、BI(11) 45 wt%未満、THF−115wt%未満の場合は
繊維の不融化に長時間を要し、また軟化点が3()0℃
、B I 70 wt %、THF−140wt% を
超える場合は溶融紡糸が困難であり、溶融紡糸に特別な
装置を必要とする。
If the softening point of the coal depolymerized product is less than 200°C, BI (11) less than 45 wt%, and THF-115 wt%, it will take a long time to make the fibers infusible, and the softening point will be 3()0°C.
, B I 70 wt%, THF-140 wt%, melt spinning is difficult and special equipment is required for melt spinning.

また不溶性固形分を0.5wt%を超えて含有する場合
は連続紡糸に支障をきたすほか、炭素繊維のボイドの増
加となり、強度の低下をきたし炭素繊維の原料として適
当でない。
Furthermore, if the insoluble solid content exceeds 0.5 wt%, continuous spinning will be hindered, and voids will increase in the carbon fibers, resulting in a decrease in strength, making them unsuitable as raw materials for carbon fibers.

ついで石炭解重合物を通常の溶融紡糸法により紡糸する
。紡糸した繊維は03、NOx。
The coal depolymerized product is then spun using a conventional melt spinning method. The spun fiber is 03, NOx.

S Ox、  ハロゲン化物酸化剤等の前処理により不
融化処理時間を短縮できるが、本発明に於いては、室温
より昇温を開始し、石炭解重合物の軟化点と同温度、あ
るいは約130℃高い温度まで昇温させ、空気酸化によ
る不融化処理を行う。不融化処理時の昇温速度は0.5
℃/頗以上20℃/順以下である。
Although the infusibility treatment time can be shortened by pretreatment with SOx, a halide oxidizing agent, etc., in the present invention, the temperature is started to rise from room temperature to the same temperature as the softening point of the coal depolymerized product, or about 130℃. The temperature is raised to a temperature higher than 30°F and infusible treatment is performed by air oxidation. The temperature increase rate during infusibility treatment is 0.5
℃/more than 20 degrees Celsius/below.

不融化処理の後、繊維は緊張下あるいけ無緊張下にて、
不活性ガス雰囲気中で、40℃(12) /馴以下の昇温速度で1000℃まで昇温し、焼成炭化
することにより炭素繊維とすることがで、きる。また炭
素繊維をさらに2000℃以−ヒの温度で焼成黒鉛化す
ることにより黒鉛繊維を得ることができる。
After the infusibility treatment, the fibers are placed under tension or without tension.
Carbon fibers can be obtained by raising the temperature to 1000° C. in an inert gas atmosphere at a temperature increase rate of less than 40° C. (12)/cm and firing and carbonizing it. Further, graphite fibers can be obtained by further firing and graphitizing carbon fibers at a temperature of 2000° C. or higher.

以下に実施例を示すが本発明はこれに限定されるもので
は々い。
Examples are shown below, but the present invention is not limited thereto.

実施例1 豪州並褐炭に3倍1st:(車量ベース)の水添回収溶
剤(本解珀合プロセスで水素化され社つまた循環使用さ
れているもの、循環回数12回)と触媒として酸化鉄の
水和物を主成分とする鉄鉱石(黄土)を1.5wt%添
加し、水素圧力150に9/iGの加圧下において反応
温度450℃で60馴保持した。この石炭浴解液を加圧
濾過法(3Kg/ crA G )にて濾過し、鉄鉱石
と褐炭中の灰分および未溶解褐炭を含む不溶性物質と濾
液(石炭溶′e、)に分離した。
Example 1 Australian average lignite was oxidized with 3x 1st: (vehicle volume basis) hydrogenated recovery solvent (hydrogenated in the main disintegration process and recycled 12 times) and as a catalyst. 1.5 wt % of iron ore (loess) containing iron hydrate as a main component was added, and the reaction temperature was maintained at 450° C. for 60 hours under hydrogen pressure of 150 and 9/iG. This coal bath solution was filtered by a pressure filtration method (3 Kg/crA G ), and was separated into an insoluble substance containing iron ore, ash in lignite, and undissolved lignite, and a filtrate (coal solution).

この濾液を8 wnHg a b aの減圧下でボトム
温度390℃において20馴間保持して解重合(13) 溶剤を回収した。保持時間経過後、蒸留物はただちに冷
却した。得られた蒸留物、即ち石炭解重合物は軟化点が
235℃、BIが56,5wt%、T)IF−Iが18
.6wt%、灰分が0.05wt% であった。これを
280℃で、溶融紡糸し、室温より270℃捷で空気気
流中で3℃/關の昇温速度で昇温し、同yFA興におい
て15騨保持した。ついで窒素気流中にて10℃/順の
昇温速度で1000℃まで昇温1〜、同温度にて301
dR保持し、炭素繊維を得た。この炭素繊維の収率は対
石炭解重合物77.7wt%、繊維径8〜loμで、引
張り強度は13.2 ton /caであった。
This filtrate was held at a bottom temperature of 390° C. for 20 hours under reduced pressure of 8 wnHg a ba to recover the depolymerization (13) solvent. After the holding time had elapsed, the distillate was immediately cooled. The obtained distillate, that is, the coal depolymerized product, has a softening point of 235°C, a BI of 56.5 wt%, and a T)IF-I of 18.
.. 6 wt%, and the ash content was 0.05 wt%. This was melt-spun at 280° C., heated from room temperature to 270° C. in an air stream at a rate of 3° C./degree, and maintained at 15 mm in the same FA laboratory. Then, in a nitrogen stream, the temperature was raised to 1000°C at a heating rate of 10°C/10°C, and then 301° at the same temperature.
dR was maintained to obtain carbon fibers. The yield of this carbon fiber was 77.7 wt% based on the coal depolymerized product, the fiber diameter was 8 to 10μ, and the tensile strength was 13.2 ton/ca.

実施例2 豪州産リグナイトを5倍歇のあらかじめ水素化的虫媒を
用いて水素化した水素化回収油と混合し、さらに水素化
触媒(Co−Mo系触媒)を2wt%添加した。この混
合スラリーを水素圧力200Kf/cAGの加圧下で反
応温度430℃において60III11保持して溶解さ
せた(14) 後に、フィルターを用いて触媒及び未溶解残置を分離除
去して′0I7!液(石炭溶tL)を得た。
Example 2 Australian lignite was mixed with 5-fold hydrogenated recovered oil that had been previously hydrogenated using a hydrogenating insect medium, and 2 wt % of a hydrogenation catalyst (Co-Mo catalyst) was added. This mixed slurry was held and dissolved at a reaction temperature of 430° C. under a hydrogen pressure of 200 Kf/cAG (14), and then the catalyst and undissolved residue were separated and removed using a filter. A liquid (coal molten tL) was obtained.

濾液の溶剤回収条件は、、 8 +mn Hgabsに
おいてボトム温度410℃で20順保持とした。得られ
た石炭解重合物中には炭素前駆体の生成は認められず、
全面的に光学的等方性であった。捷たこの石炭解重合物
は軟化点が260℃、BIが63.5wt%、THF−
Iが25.6wt1!、灰分が0.03wt%であった
。これを305℃で溶融紡糸し、室温より270℃まで
空気気流中44℃/Hの速度で昇温し友。
The solvent recovery conditions for the filtrate were as follows: 8 + mn Hgabs, bottom temperature 410° C., and 20-order maintenance. No formation of carbon precursors was observed in the obtained coal depolymerized product,
It was optically isotropic throughout. The shredded coal depolymerized product has a softening point of 260°C, a BI of 63.5 wt%, and a THF-
I is 25.6wt1! , the ash content was 0.03 wt%. This was melt-spun at 305°C, and the temperature was raised from room temperature to 270°C in an air stream at a rate of 44°C/H.

同温度において30囮保持したのちに窒素気流下に置換
し、同じく窒素気流下で4.4℃/騙の昇温速度で10
00℃1で昇温し同温度で30園保持した。得られた炭
素繊維は繊維径が8〜10μ、引張り強度が14.1 
ton/ ctlであった。
After holding at the same temperature for 30 minutes, it was replaced under a nitrogen flow, and then heated at a temperature increase rate of 4.4°C/10 degrees under the same nitrogen flow.
The temperature was raised to 00°C and maintained at the same temperature for 30 orchards. The obtained carbon fiber has a fiber diameter of 8 to 10μ and a tensile strength of 14.1.
ton/ctl.

実施例3 国産瀝青炭に4倍量のコールタール系中油を加えスラリ
ー化したのちに水素圧力60句(15) / cnI Gの加圧下において410℃で30分保持
して石炭溶解液を得た。これを遠心分離器により上澄液
と残渣に分離した。この上澄液にシリカアルミナ系触媒
を3wt%添加1〜、再び水素圧力100 Kg/ c
rl Gの加圧子反応温度450℃において30分保持
した。その後、フィルターを用いて濾過を行い濾液を得
た。
Example 3 Domestic bituminous coal was made into a slurry by adding four times the amount of coal tar medium oil, and then held at 410° C. for 30 minutes under a hydrogen pressure of 60 g (15)/cnI G to obtain a coal solution. This was separated into a supernatant and a residue using a centrifuge. 3 wt% of silica-alumina catalyst was added to this supernatant liquid, and hydrogen pressure was again increased to 100 Kg/c.
The pressurizer reaction temperature of rl G was maintained at 450° C. for 30 minutes. Thereafter, filtration was performed using a filter to obtain a filtrate.

この濾液の溶剤回収条件は5 mm Hgab sにお
いて430℃に;1ON保持した。得られた石炭解重物
は軟化点230℃、BIが56.5 wt%、THF−
1が20.2 wt%、灰分が0. Oi wt%であ
った。また石炭解重物には炭素前駆体の生成は認められ
ず全面的に光学的等方性であった。この石炭解重合物を
270℃において溶融紡糸したのちに、¥温より270
℃1で空気気流中で3℃/mの昇温速度で昇温した。
The solvent recovery conditions for this filtrate were maintained at 430° C. and 1 ON at 5 mm Hgabs. The obtained coal deweighted product had a softening point of 230°C, a BI of 56.5 wt%, and a THF-
1 is 20.2 wt%, and the ash content is 0. Oi wt%. In addition, no carbon precursors were observed in the de-weighted coal, and it was completely optically isotropic. After melt-spinning this coal depolymerized product at 270°C,
The temperature was increased at 1° C. in an air stream at a rate of 3° C./m.

同温度において60順保持したのちに、次に窒素気流下
において3℃/廉の昇温速度で1000℃捷で昇温し同
温度において30 m保持した。得られた炭素繊維は直
径8〜1゜(16) μ、引張り強度15.6 ton / ctilであっ
た。
After holding at the same temperature for 60 minutes, the temperature was then raised to 1000°C at a heating rate of 3°C/low under a nitrogen stream, and held at the same temperature for 30 m. The resulting carbon fibers had a diameter of 8-1° (16) μ and a tensile strength of 15.6 tons/ctil.

実施例4 豪州褐炭を原料として石炭路゛重合プラントで製造され
た石炭解重合物の性状は炭素繊維原料として適した性状
を具備しておらず、その軟化点は156℃、BIは38
.6 wt%、THF−Iは5.3wt%であった。こ
れを窒素気流下にて250℃にて溶融させ、攪拌し彦が
ら15mmHgaba において2℃/囮の昇温速度で
400℃壕で昇温17、同温度に10分間保持して再蒸
留物を得た。この再蒸留物の収率は原料の石炭解重合物
に対して85.2wj点237℃、BIが57.8 w
t%、THF−Iチであった。この再蒸留り炭解重合物
は軟化、     が20.1wtチ、灰分が0.06
 wj%であった。
Example 4 The properties of a depolymerized coal produced in a coal road polymerization plant using Australian lignite as a raw material do not have properties suitable as a raw material for carbon fibers, with a softening point of 156°C and a BI of 38.
.. 6 wt%, and THF-I was 5.3 wt%. This was melted at 250°C under a nitrogen stream, stirred, heated to 400°C at a rate of 2°C/decoy at 15 mm Hgaba, and kept at the same temperature for 10 minutes to obtain a redistilled product. Ta. The yield of this redistillate is 85.2 wj point at 237°C and BI is 57.8 w with respect to the raw material coal depolymerized product.
t%, THF-I. This redistilled charcoal depolymerized product is softened, has a weight of 20.1wt, and has an ash content of 0.06.
wj%.

□     また炭素前駆体の生成も全く認められなか
った。これを2851:において溶融紡糸したのちに、
室温より260℃まで空気気流中で昇温し同温度で15
分保持した。この不融化繊維をさらに10℃/mの昇温
速度で1000(17) ℃脣で昇温し同温度にて30分保持して炭素繊維を得た
。この炭素繊維の原料石炭γfE重合物に対する収率は
65.9 %であり、繊維径は8〜10μ、引張り強1
隻は14.5 ton / crlであった。
□ Also, no formation of carbon precursors was observed. After melt spinning this at 2851:
The temperature was raised from room temperature to 260℃ in an air stream, and the temperature was increased to 15℃ at the same temperature.
It was held for a minute. This infusible fiber was further heated to 1000 (17)° C. at a heating rate of 10° C./m and held at the same temperature for 30 minutes to obtain carbon fiber. The yield of this carbon fiber based on the raw material coal γfE polymer was 65.9%, the fiber diameter was 8 to 10μ, and the tensile strength was 1
The ship had a capacity of 14.5 tons/crl.

比較例1 実施例1に於る濾液(石炭溶液)全8+mnHgabs
で300℃に仔いて60囮保持し、M重合浴剤を1四収
した所、得られた石炭解合物は軟化点] 9 (1℃、
BIが43.3 wt%、’l” HF−■が10.1
wt%、灰分が0.05wt%であった。
Comparative Example 1 Filtrate (coal solution) in Example 1 total 8+mnHgabs
When the temperature was raised to 300°C and maintained at 60°C, 14% of the M polymerization bath agent was recovered, and the resulting coal decomposition product had a softening point of
BI is 43.3 wt%, 'l'' HF-■ is 10.1
wt%, and the ash content was 0.05 wt%.

この石炭解重合物を250℃で射融紡光したところ繊維
間に融着が昭められた。
When this coal depolymerized product was melt-spun at 250°C, fusion between fibers was observed.

比較例2 実施例4に於る石炭解重合プラントで製造された石炭解
重合物を用いて、20 un Hgabsにおいて蒸留
温度470℃まで1℃/騙の昇温速度で昇温した、同温
度に到達後たたちに冷却した。この再蒸留石炭解重物中
には微小な炭素前駆体が生成し、ており、連続した溶融
(18) 紡糸が不可能であった。
Comparative Example 2 Using the coal depolymerized product produced in the coal depolymerization plant in Example 4, the temperature was raised at a temperature increase rate of 1 °C / 1 °C to the distillation temperature of 470 °C at 20 un Hgabs. After arrival, it was cooled down. Fine carbon precursors were generated in this double-distilled coal cracked product, making continuous melt spinning impossible.

判許出υ1人  三井コークスエ葦株式会社眉 代理人 弁理士   平  沢  秀  江1(19)Judgment issued by 1 person Mitsui Coke Ashi Co., Ltd. Agent Patent Attorney Hide Hirazawa E1 (19)

Claims (1)

【特許請求の範囲】 1)石炭類を水素加圧下に炭化水素系溶剤と触媒の存在
下あるいは非存在下で処理後、不溶性固形分を除去した
石炭溶液を温度350℃ないし450℃、同温度での保
持時間1分ないし320分、同温度での圧力1mmHg
absないし70 mmHgabsの条件下で熱処理し
、同時に留出する成分を蒸留分離して得られる石炭解重
合物を溶融紡糸後不融化し、炭化またさらには黒鉛化す
る炭素繊維の製造方法。 2、特許請求の範囲第1項記載の石炭解重合物の軟化点
が200℃ないし300℃であり、かつベンゼン不溶分
が45 wt%ないし7 Owtチであり、かつテトラ
ヒドロフラン不溶分が15wt%ないし40wt%であ
り、かつ不溶性固形分が0.5wt%以下である炭素繊
維の製造方法。
[Claims] 1) After treating coal under hydrogen pressure in the presence or absence of a hydrocarbon solvent and a catalyst, the coal solution from which insoluble solids have been removed is heated at a temperature of 350°C to 450°C. Holding time: 1 minute to 320 minutes, pressure: 1 mmHg at the same temperature
A method for producing carbon fibers, in which a coal depolymerized product obtained by heat-treating under conditions of abs to 70 mmHgabs and simultaneously distilling and separating distilled components is infusible after melt-spinning, and then carbonized or graphitized. 2. The coal depolymerized product according to claim 1 has a softening point of 200°C to 300°C, a benzene insoluble content of 45 wt% to 7 Owt, and a tetrahydrofuran insoluble content of 15 wt% to 7 Owt. 40 wt% and an insoluble solid content of 0.5 wt% or less.
JP3305082A 1982-03-04 1982-03-04 Production of carbon fiber Pending JPS58156023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3305082A JPS58156023A (en) 1982-03-04 1982-03-04 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305082A JPS58156023A (en) 1982-03-04 1982-03-04 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS58156023A true JPS58156023A (en) 1983-09-16

Family

ID=12375937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305082A Pending JPS58156023A (en) 1982-03-04 1982-03-04 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS58156023A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132629A (en) * 1984-11-27 1986-06-20 Unitika Ltd Production of nonwoven fabrics of pitch activated carbon fiber
EP1951618A2 (en) * 2005-10-17 2008-08-06 Ab-Cwt, Llc Process of conversion of organic and non-organic waste materials into useful products
US7692050B2 (en) 2003-03-28 2010-04-06 Ab-Cwt, Llc Apparatus and process for separation of organic materials from attached insoluble solids, and conversion into useful products
US7771699B2 (en) 2005-09-28 2010-08-10 Ab-Cwt, Llc Depolymerization process of conversion of organic and non-organic waste materials into useful products
US8003833B2 (en) 2003-03-28 2011-08-23 Ab-Cwt, Llc Process for conversion of organic, waste, or low-value materials into useful products
US8877992B2 (en) 2003-03-28 2014-11-04 Ab-Cwt Llc Methods and apparatus for converting waste materials into fuels and other useful products

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132629A (en) * 1984-11-27 1986-06-20 Unitika Ltd Production of nonwoven fabrics of pitch activated carbon fiber
US7692050B2 (en) 2003-03-28 2010-04-06 Ab-Cwt, Llc Apparatus and process for separation of organic materials from attached insoluble solids, and conversion into useful products
US8003833B2 (en) 2003-03-28 2011-08-23 Ab-Cwt, Llc Process for conversion of organic, waste, or low-value materials into useful products
US8809606B2 (en) 2003-03-28 2014-08-19 Ab-Cwt Llc Process for conversion of organic, waste, or low-value materials into useful products
US8877992B2 (en) 2003-03-28 2014-11-04 Ab-Cwt Llc Methods and apparatus for converting waste materials into fuels and other useful products
US7771699B2 (en) 2005-09-28 2010-08-10 Ab-Cwt, Llc Depolymerization process of conversion of organic and non-organic waste materials into useful products
EP1951618A2 (en) * 2005-10-17 2008-08-06 Ab-Cwt, Llc Process of conversion of organic and non-organic waste materials into useful products
EP1951618A4 (en) * 2005-10-17 2009-11-18 Cwt Llc Ab Process of conversion of organic and non-organic waste materials into useful products

Similar Documents

Publication Publication Date Title
JPS61238885A (en) Method of refining raw material used for production of carbon product
JPH0252954B2 (en)
JPH0258596A (en) Production of both pitch for producing high-performance carbon fiber and pitch for producing widely useful carbon fiber
CA2202525C (en) Process for isolating mesophase pitch
EP0119100A2 (en) Process for preparing a spinnable pitch product
JPS59216921A (en) Manufacture of carbon fiber
JPS58156023A (en) Production of carbon fiber
EP0153419B1 (en) Process for treating coal tar or coal tar pitch
US20180142158A1 (en) Raw material pitch for carbon fiber production
EP0223387B1 (en) Process for producing pitch useful as raw material for carbon fibers
JPS5938280A (en) Preparation of precursor pitch for carbon fiber
JPH0662285B2 (en) Method for producing elastic graphite body
JPH0148312B2 (en)
JPS5910717B2 (en) Production method of heavy oil for high-grade carbon material raw material
JPS60106882A (en) Method for refining heavy bituminous substance
JPS58101191A (en) Preparation of mesophase pitch and carbon fiber from said pitch
JP2691231B2 (en) Pitch manufacturing method
JPH0730334B2 (en) Pitch manufacturing method
JPH023496A (en) Production of raw material for high-performance carbon fiber
EP0456278A1 (en) Process for producing meso-carbon microbeads
JPH0541728B2 (en)
JPS6215644B2 (en)
JPH0832884B2 (en) Method for producing precursor pitch for general-purpose carbon fiber
JP2533487B2 (en) Carbon fiber manufacturing method
JPH0155314B2 (en)