JPS5973372A - Travelling machine - Google Patents
Travelling machineInfo
- Publication number
- JPS5973372A JPS5973372A JP58144562A JP14456283A JPS5973372A JP S5973372 A JPS5973372 A JP S5973372A JP 58144562 A JP58144562 A JP 58144562A JP 14456283 A JP14456283 A JP 14456283A JP S5973372 A JPS5973372 A JP S5973372A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- arm body
- rotary arm
- rotation
- wheels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/022—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members consisting of members having both rotational and walking movements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/52—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/28—Four wheel or all wheel drive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Handcart (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は階段の昇PjP、障害物の乗越性が”J ii
Rな走行体に関する。[Detailed Description of the Invention] The present invention improves the ability to climb stairs and get over obstacles.
Regarding R running objects.
最近、原子炉格納容器等大の立木が好壕しくない環境で
機器の点検監視、保守、修理等の各種作業をなす場合に
は、作業者に代って遠15′+j 4・ψ作によシこれ
ら作業をなすことのできるロア1ポツトを使用すること
が試みらノI、ている。このようなロボットは一般に原
子炉格I413簑器内身を自由に定行し得る走行体に点
検監視等の各fΦ作茅をなす作業用機器を搭載して構成
される。ところで原子炉格納容器内には狭い空間に多く
のl& ’t!:4が収容されておシ、このようなロボ
ットが走行すべき路面は複雑でありかつ途中に多くの階
段や障害物がある。このため、この上うなロボ。Recently, when performing various types of work such as inspection, monitoring, maintenance, and repair of equipment in an environment where standing trees the size of a nuclear reactor containment vessel are not suitable for sheltering, a distance of 15' + j 4 ψ is used instead of the worker. I have attempted to use a lower pot that can perform these tasks. Such a robot is generally constructed by mounting work equipment for each fΦ such as inspection and monitoring on a running body that can freely navigate the inside of the I413 reactor. By the way, inside the reactor containment vessel, there are many l&'t! The road surface on which such a robot must run is complex, and there are many stairs and obstacles along the way. For this reason, Una Robo.
トを実用化するには階段を自由に昇降し、また障害物を
自由に乗越える走行イ本が必要となる。In order to put the robot into practical use, it will be necessary to have a running vehicle that can freely go up and down stairs and freely overcome obstacles.
このような走行体としてはクローラ形走イ)(e> i
、’u。An example of such a running body is a crawler type (e> i
,'u.
を備えたものが考えられるが、クローラ形のものでは階
段の昇降や障害物の東越智の能力にIXjφ界があった
。壕だ、複数の脚全備えたいわゆる走行形の走行体も開
発されている。このような走行形の走行体は階段の昇降
や障害物の乗越等の能力は犬であるが、脚の構造やその
駆動機+:Itが複雑となり、甘だ脚の作動制御に多く
の情報を必要とし、脚の制御機構もきわめて複雑になる
等の不具合があった。It is conceivable that a crawler-type one has IXjφ world in its ability to go up and down stairs and overcome obstacles. A so-called traveling body with multiple legs has also been developed. Such a running body has the ability of a dog to go up and down stairs and overcome obstacles, but the structure of the legs and its driving mechanism are complicated, and a lot of information is needed to control the operation of the legs. However, the leg control mechanism was extremely complicated.
本発明は以上の事情にもとづいてなでれたもので、その
目的とするところは階段の昇降、i庫害物の乗越等の能
力が大であるとともに構造が簡単でかつ制御の容易な走
行体を得ることにある。The present invention was developed based on the above-mentioned circumstances, and its purpose is to have a high ability to go up and down stairs, climb over harmful objects, etc., have a simple structure, and provide easy-to-control running. It's about getting a body.
以下本発明ケ図面に示す一実施例に従って説明する。こ
の一実施例は原子炉格納容器内の機器を点検監了見する
ものである。図中1は車体であって、この車体1上には
たとえばテレビカメラ2等の監視用機器が搭載されてい
る。そして、この車体1の前端部および後端部にはそれ
ぞtL左右一対ずつ、合計4個の回転アーム体重・・・
が取付けられている。これらの回転アーム体重・・・は
回転軸4・・・によって垂直面内で自由に回転できるよ
うに車体1に取付けられている。そして、これらの回転
アーム体重・・・にばそれぞtL回転中心よシ放射状に
突設された3本のアーム部、5・・・が設けら12てい
る。そして、これらアームM+、 5・・・の先端部に
はそれぞれfj輪6・・が車軸7・・・Cてよって回転
自在に取付けられている。そして、上記回転アーム体l
・・・の回転中心■(にも車輪6が回転自在に取付けら
れている。The present invention will be described below according to an embodiment shown in the drawings. This embodiment is for inspecting and supervising equipment in the reactor containment vessel. In the figure, reference numeral 1 denotes a vehicle body, on which monitoring equipment such as a television camera 2 is mounted. At the front end and the rear end of the vehicle body 1, there are a total of four rotary arms, one pair each on the left and right sides...
is installed. The weight of these rotating arms is attached to the vehicle body 1 by a rotating shaft 4 so that it can freely rotate within a vertical plane. Each of these rotary arm weights is provided with three arm portions 5 that project radially from the center of rotation tL. Fj wheels 6 are rotatably attached to the tips of these arms M+, 5, respectively, by axles 7...C. Then, the rotating arm body l
A wheel 6 is rotatably attached to the center of rotation (■).
車体1内には上記回転アーム部、1. 、?・・・をそ
tしぞれ回転1駆動し、また任意の位IF−4に固定で
きる回転アーム体駆動機構旦・・・および上記車輪6・
・・忙回転アーム体L・・・の回転とは独立して回+1
i 1ffi IIIJする車輪駆動機構ヱ・・・が、
tQけら)1.ているOこノシら回転アーム体駆動伽構
A・・・および車輪駆動機構L・・・は各回転アーム体
l・・・についてそれぞiし同様の構成のものが設けら
れてお−リ、以−ト記3図を参照して1個の回転アーム
体重についての回転アーム体駆動機M8および車輪組M
<Ij枳構ユの構成を説明する。10は回11)、アー
ノ・体庁、diυ1゜t、4構亙の、!(K動モータで
あって、その回転軸11歯車12が取イ1けられておシ
、この歯車12は回転アーム体lの回rPri軸4に取
1・1けられた歯車13にu、(1合している。そして
この駆動モータ10は正転および逆転が可能であり、−
またブレーキ機器を内蔵しており、上記回転アーム体重
を正転および逆転するとともにこの回転アーム体旦の回
転を任意の位置で固定できるように構成されている。な
お、j−記11」動モータ10としてはクラッチ機構全
内蔵したモータを数句けてもよい。また14は屯輪駆動
砿構ヱの駆動モータでおって、その回転軸15には歯車
16が取付けられており、この歯車16は駆動軸17に
取付けら几た歯車〕8に噛合している。そしてこの駆彫
り軸17は前記回転アーム体重の回転軸4内をこれと同
心に回転自在に貫通している。そしてこの駆動軸17(
・よ回転アーム体lのアーム部、5内に設けられた歯車
列19’r介してアーム部5の先端部に取付けられた車
輪6の車軸7に連結さtLでいる。=!た1、この@動
軸17の先端部は回転アーム体30回転中JL>部に取
付けらシした車#’iii 6と直結している。駆11
IIJモータノ4は正転および逆転が可能なもσ)で
車−1i、j 6 f正転および逆転することができる
ように構成てれている。Inside the vehicle body 1 are the rotating arm section, 1. ,? . . . Each of the wheels 6 and the above-mentioned wheels 6 and 6 are provided with a rotary arm drive mechanism that can drive the wheels 6 and 6 for one rotation, respectively, and that can be fixed to the IF-4 at any desired position.
・・Independent of the rotation of the busy rotating arm body L・・1 times +1
i 1ffi IIIJ wheel drive mechanism...
tQKera) 1. The rotary arm drive structure A... and the wheel drive mechanism L... are provided with similar configurations for each rotary arm body L.... , Referring to Figure 3 below, the rotary arm body driving machine M8 and wheel set M for the weight of one rotary arm
<The configuration of the Ij structure will be explained. 10 is 11), Arno Body Office, diυ1゜t, 4 structures,! (It is a K-motion motor, and its rotating shaft 11 has a gear 12, and this gear 12 is attached to a gear 13, which is attached to the rotation rPri shaft 4 of the rotating arm body l. (The drive motor 10 is capable of forward and reverse rotation, and -
It also has a built-in brake device, and is configured to rotate the weight of the rotary arm in the forward and reverse directions, and to fix the rotation of the rotary arm body at an arbitrary position. Note that the motor 10 may include several motors that have a complete clutch mechanism built-in. Reference numeral 14 denotes a drive motor of the torpedo wheel drive mechanism, and a gear 16 is attached to its rotating shaft 15, and this gear 16 meshes with a gear 8 attached to a drive shaft 17. . The drive shaft 17 passes through the rotary shaft 4 of the weight of the rotary arm so as to be rotatable concentrically therewith. And this drive shaft 17 (
- The arm part of the rotary arm body l is connected to the axle 7 of a wheel 6 attached to the tip of the arm part 5 via a gear train 19'r provided in the arm part 5. =! 1. The tip of this moving shaft 17 is directly connected to the wheel #'iii 6 which is attached to the rotating arm body 30 during rotation. Kakeru 11
IIJ motor 4 is capable of forward and reverse rotation (σ).
Cars-1i, j6f are constructed so that they can rotate forward and backward.
また、前記車体1内K(=よ走行制御機構20が設けら
れている。この走行11制御磯構2θはたとえば車輪6
・・・に作用する荷重の変化から車輪6・・・の浮き上
f)f検出し、また車輪6・・・に作用する衝撃やトル
クの変化から車も「4.6・・・が階段や障害物の側面
に衝突したことを検吊し、こね、らのイ)¥報をもとに
して各回転アーム体重・・・および車1.11i6・・
・の回転を制御するように借成さitでいる。Further, a traveling control mechanism 20 is provided inside the vehicle body 1. This traveling control mechanism 2θ includes, for example, the wheels 6
The lifting f) of the wheels 6... is detected from the changes in the load acting on the wheels 6..., and from the changes in the impact and torque acting on the wheels 6... The weight of each rotating arm...and the car 1.11i6...
- It is borrowed to control the rotation of the machine.
次に上記一実施例の動作ケ説明する。−まず、平坦な路
面21金走行する場合には第41¥1に示す如く各回転
アーム体重・・・のアーム部5の先ψl′1.1部に取
付けられた車輪6のうち2個の車軸6・・全接地させ、
各回転アー ム体旦の回転は固定せず自由に回転できる
ようにしておく。そしてIH中1.、i6・・・を駆動
機構互によって回転させ、前H(f; 後退をおこな
う。この場合、各回転アーム体3 ・は自由に回転でき
るので路面に多少、(D凹凸があっ−Cもこれら回転ア
ーム体l・・・が回動することによシ常に2個の車輪6
・・・を確実に接地させておくことができ、安定した走
行ができる。また、第5図に示す如く路面21′が傾斜
していても回転アーム体旦が回動し、常に2個の車輪6
・・・を接地させておくことができる。次に階段を昇降
する場合や障・書物を乗越える場合の動作ケ第6図ない
し第10図を参照して説明する。なお、上記第6図ない
し第10図では説明を容易にするため1個の回転アーム
体旦のみ?模式的に示すものであるが、4個の回転アー
ム体旦・・・はいずれも同様に動作するものである。ま
ず階段を昇る場合を第6図(、)〜(e)を参照して説
明する。Next, the operation of the above embodiment will be explained. - First, when traveling on a flat road surface, two of the wheels 6 attached to the tip ψl'1.1 of the arm part 5 of each rotary arm weight... as shown in No. 41 1. Axle 6: Fully grounded,
The rotation of each rotary arm body is not fixed and is allowed to rotate freely. And 1 during IH. , i6... are rotated by the drive mechanisms to perform the forward H (f; backward movement. In this case, each rotary arm body 3 can rotate freely, so there are some unevenness on the road surface. As the rotating arm body l... rotates, the two wheels 6 are constantly rotated.
... can be reliably grounded, allowing stable driving. Furthermore, as shown in FIG. 5, even if the road surface 21' is inclined, the rotary arm body rotates, and the two wheels 6 are always rotated.
... can be grounded. Next, operations when going up and down stairs or getting over obstacles or books will be explained with reference to FIGS. 6 to 10. In addition, in the above-mentioned FIGS. 6 to 10, only one rotating arm body is shown for ease of explanation. Although shown schematically, all four rotating arm bodies operate in the same way. First, the case of climbing stairs will be explained with reference to FIGS. 6(,) to (e).
路面を走行していた走行体が階段22の位置まで来ると
前方に位置する車輪6aが第6図(a)に示す如く第1
段22aの−IIJll面に衝突する。そして、この状
態は車輪6aに作用した衝撃、車輪6aの停止やトルク
変化等により走行制御機構2θで検出され、回転アーム
体重が1駆動機構8によって正回転する。し°たがって
回転アーノ・体3・は上記車輪6af中心として上方G
・ζ回動し416図(b)に示す如く車輪6bが第1段
2 ’2 aの上面に当接する。そしてさらυこ回転ア
、−ム(4C、?’を回転させるとこの回転アーム体旦
は第1 F422 aの上面に当接した車輪6bを中!
シ・とじて−上方(・こ回動し、第6図(C)に示す如
くらも1段22aの」二重で上昇する。なお、上記の如
く回転アーノ、1本立を回転させる場合、車輪115
a、 6h+ 6’ c r6dに大きな正回転トルク
を与えておくと回転アーム体主に大きな逆転方向の反動
トノトりが′1−じ、また車輪6 a ) #b 、、
6 c 、 6 d f 倣%jJ<態としておくと車
輪6a 、6bが後方に転動してしまっため、各車輪6
a、6b、6c、6dにはわずかの正回転トルク金与え
ておく。次(で回転アーム体lが1200回転したらそ
のl!]、l ’Niを停止するとともにこれを回転不
能に固1ビし、車輪1!i 8 + 6b r 60
+ 6dヶ正回転芒せ、第1段22gの上面の上音走行
させる。そして、ε(56図(d)に示す如く車輪6b
が第2段22 h LJ) li!il而に衝突すると
走行:則御機構20がこれ全検出して前記と同様υζし
て回転アーム体1号回転させてこの第2段22bの上ま
で昇る。以下同様にして一段ずつ階段22を昇る。そし
て単6図(e)にボす如く最上段22nの上まで昇ると
車輪6aI6b*66+6d全回転して走行しても前方
の一屯輪6aが次の段の側面に衝突しなくなる。そして
走行制御機構20では回転アーム休3の回転全固定し、
車輪6a、6 b 、6c、6d−を回転して走行させ
たのち所定の距離だけ走行しても沖2輪6a、6b、6
cが衝突しない場合には階段を昇り切ったものと判定し
1、回転アーム°体Jの固定全解除し、平坦路面の走行
状態とする。1だ、階段22′のピッチが小石な場合に
は第7図(a)に示す如く回転アーム体迭ヲ回転させた
場合、次の車輪6bか第1段22′aの上面に当接ぜず
、第2段22′bの側面に当接する場合がある。この場
合車輪6 a h 6b * 6 c 、6 dに与え
られている回転トルクは比較的小さいので、回転アーム
体Jの回k l・ルクおよび車体1の重量が車輪6a、
6bめ正回転トルクに打ち勝ち、回転アーム体;? t
/′J回転ケ続け、車φIj56Qは逆回転しながら後
退し、寸だ車軸+i h k、J、’第2段22′aの
佃1面に沿って逆回転しながら下降し第7図(b)に示
す如く第1段22′aの上面に当接する。したがってこ
のように階段22′のピッチが小さな場合であってもこ
fl、 ’i昇ることができる。次に階段ケ下降する場
合の動作を距8図(a)〜(e)を巷間して説明する。When the traveling body traveling on the road surface reaches the position of the stairs 22, the wheels 6a located in front move to the first position as shown in FIG. 6(a).
It collides with the -IIJll surface of stage 22a. This state is detected by the travel control mechanism 2θ due to an impact acting on the wheel 6a, stopping of the wheel 6a, a change in torque, etc., and the weight of the rotary arm is rotated in the forward direction by the 1 drive mechanism 8. Therefore, the rotating armoire body 3 is rotated upward G with the center of the wheel 6af.
- The wheel 6b rotates ζ and comes into contact with the upper surface of the first stage 2'2a as shown in FIG. 416 (b). Then, when the rotating arm (4C, ?') is rotated, this rotating arm body rotates the wheel 6b that is in contact with the upper surface of the first F422a.
It closes and rotates upwards, and rises twice as high as the first stage 22a as shown in FIG. wheel 115
If a large forward rotational torque is applied to a, 6h+6' cr6d, the rotating arm body will mainly have a large reaction torsion in the reverse direction, and the wheels 6 a) #b,...
6 c , 6 d f If the copying %jJ is maintained, the wheels 6a and 6b will roll backwards, so
A slight forward rotation torque is applied to a, 6b, 6c, and 6d. Next (when the rotating arm body l rotates 1200 times, that's it!), stop l'Ni and fix it so that it cannot rotate, and turn the wheel 1!i 8 + 6b r 60
+ 6d forward rotation awn, and the upper surface of the first stage 22g runs upward. Then, ε (as shown in FIG. 56(d), the wheel 6b
is the second stage 22 h LJ) li! When the vehicle collides with the vehicle, the control mechanism 20 detects this and rotates the rotary arm body 1 in the same manner as described above, and rises to the top of the second stage 22b. Thereafter, the user ascends the stairs 22 one step at a time in the same manner. As shown in Fig. 6 (e), when the vehicle rises to the top of the top stage 22n, the front wheel 6a will not collide with the side surface of the next stage even if the wheels 6aI6b*66+6d rotate fully. Then, in the travel control mechanism 20, the rotation of the rotary arm rest 3 is completely fixed,
Even if the wheels 6a, 6b, 6c, 6d- are rotated and run for a predetermined distance, the Oki motorcycles 6a, 6b, 6
If there is no collision, it is determined that the vehicle has climbed the stairs 1, and the rotary arm body J is completely released from the fixation, and the vehicle is in a running state on a flat road surface. 1. If the pitch of the stairs 22' is pebbles, if the rotary arm body is rotated as shown in FIG. 7(a), the next wheel 6b will come into contact with the top surface of the first step 22'a. First, it may come into contact with the side surface of the second stage 22'b. In this case, the rotational torque applied to the wheels 6a, 6b*6c, 6d is relatively small, so the rotational torque of the rotating arm J and the weight of the vehicle body 1 are
6b The rotating arm body overcomes the forward rotation torque;? t
/'J continues to rotate, and the car φIj56Q moves backward while rotating in the opposite direction. As shown in b), it comes into contact with the upper surface of the first stage 22'a. Therefore, even if the pitch of the stairs 22' is small, it is possible to climb the stairs 22'. Next, the operation when descending the stairs will be explained with reference to Figures 8 (a) to (e).
才ず、加:、’ )1 rノl (a)−1でノドす如
< i1行体が階段23のに1件で階ると1111力の
車軸6aが浮き上る。イーし、て、この車Ii扁6λに
作用する141班の変化等により、走行+llI ru
l (%構20がこの車輪6aが浮き上ったこと44・
配出し、回転アーム体重ヲ制御しつつ正回転σせ、−1
また後側の車輪6aが第1段23aから落ちないように
車輪6a、6b、6C,6df逆回転させる。したがっ
て第8図(b)に示す如く一車鴨i6aは下降し、第2
段23bの上面に)汐地−「る。そしてこの車輪6aが
rA2第2段2? bの土面VCy;″地するとこの車
輪6FLは逆回転している(1)で第8図(c)に示す
如く第1段23hの側面に押し付けられてこの第2段2
3bから落下することが防止される。そ1〜で、第8図
(a) VC示す如く回転アーム体1が120’回転し
た状態で走行制御機構2θK 、jニジ前方に位置した
車輪6bが接地したか否かが確認式れる。そして、この
車輪6bが接地し°Cいない場合には階段23が続いて
いるものと判定して上記と同様の動作を娩け、一段ずつ
階段23全下降する。そして、第8図(e)に示す如く
最下段23nf:降シると回転アーム体重が120’回
転した場合に前号の車輪6aが接地する。したがって走
行制御機構20でこの状態全検出し、階段23を降りた
ものと判定して回転アーム体重の回転を自由回転状態と
し、また車輌6a*6b、6ck正回転させて平坦路面
の走行状態とする。また、階段23′のピッチが小さい
場合には第9図(a)に示す如く回転アーム体重が正回
転して前方の車輪6ILが下降してもこの車ii76
aが第2段23′bの上面に接地せず第2段23′bの
側面に当接する場合がおる。このような場合には車輪6
a、6b、6cr6dの逆回転のトルク全走行体の重f
#ニよりこの車輪6akこ加わる正回転トルクより小さ
くしておけばこの車輪6aは第2段23/bの411面
に70って正回転しながら下降し、単9図(b)に示す
如く第3段23’aの上面に接地するので前述と同様に
この階段23′ヲ下降することができる。次に障害物を
乗越える場合全第10図(a)〜(g)ケ沙1ij4し
て説明する。まず前方の車輪6aが第10図(a)に示
す如く障害物24の(l(!1面に衝突すると^1j述
の階段を昇る場合と同様に回転アーム体重が正回転し、
第10図(b)に示す如く車輪6bが1′?F害物24
の上面に当接する。そして埴らに回転アーム体lは正回
転を続け、第1()図(c)に示す如く回転アーム体1
が120’回転して障害物24の上に乗ったらこの回転
アーム体重の回転を停止するとともにこの回転全固定し
、車輪6m、6b、6c、6df正回転させて回転アー
ム体互全前進させ、第10図(d)に示す如くこの回転
アーム体3f障害物24上に完全にil+1.萌る。そ
してさらに前進全組け、障害物J24の反対側せで来る
と前方に位1浴する車輪6bが第10図(、)に示す如
く浮き上る。そして、前述した階段を下降する場合と同
様に走行動ft1機構20によってこの状態が検出され
、車輪6a。When the body reaches the top of the stairs 23, the axle 6a of 1111 force rises. E, te, due to changes in the 141 group acting on this car Ii 6λ, the running +llI ru
l (% structure 20 is that this wheel 6a has risen 44.
Distribute, control the weight of the rotating arm and rotate it in the normal direction σ, -1
Also, the wheels 6a, 6b, 6C, and 6d are rotated in the opposite direction so that the rear wheel 6a does not fall off the first stage 23a. Therefore, as shown in Fig. 8(b), the first car duck i6a descends, and the second
When this wheel 6a touches the soil surface VCy of rA2 second stage 2? ), this second stage 2 is pressed against the side surface of the first stage 23h.
3b is prevented from falling. In steps 1 to 1, it is confirmed whether or not the wheel 6b positioned in front of the travel control mechanism 2θK has touched the ground while the rotary arm body 1 has rotated 120' as shown in FIG. 8(a) VC. If the wheel 6b is not in contact with the ground, it is determined that the stairs 23 continue, and the same operation as above is performed, so that the stairs 23 are completely descended one step at a time. Then, as shown in FIG. 8(e), when the lowermost stage 23nf descends and the rotating arm weight rotates 120', the previous wheel 6a touches the ground. Therefore, the traveling control mechanism 20 detects this entire state, determines that the person has descended the stairs 23, sets the rotation of the weight of the rotary arm to a free rotation state, and rotates the vehicle 6a*6b, 6ck in the forward direction to return to the state of running on a flat road surface. do. In addition, if the pitch of the stairs 23' is small, as shown in FIG.
There are cases where the tip a does not touch the upper surface of the second stage 23'b but comes into contact with the side surface of the second stage 23'b. In such a case, wheel 6
Reverse rotation torque of a, 6b, 6cr6d Total weight of traveling body f
If the positive rotational torque applied to this wheel 6ak is made smaller than #2, this wheel 6a will descend to the 411 plane of the second stage 23/b while rotating in the forward direction by 70 degrees, as shown in Figure 9(b). Since it comes into contact with the upper surface of the third step 23'a, it is possible to descend this step 23' in the same manner as described above. Next, the case of overcoming an obstacle will be explained with reference to FIGS. 10(a) to (g). First, when the front wheel 6a collides with the (l(!1) surface of the obstacle 24 as shown in FIG.
As shown in FIG. 10(b), the wheel 6b is 1'? F harmful substance 24
touches the top surface of the Then, the rotating arm body 1 continues to rotate in the normal direction, and as shown in FIG.
When it rotates 120' and gets on top of the obstacle 24, the rotation of the weight of this rotary arm is stopped and the rotation is completely fixed, and the wheels 6m, 6b, 6c, and 6d are rotated in the forward direction to move the rotary arms fully forward. As shown in FIG. 10(d), il+1. Moe. When the wheel 6b moves further forward and comes to the opposite side of the obstacle J24, the wheel 6b, which is moving forward, floats up as shown in FIG. 10 (,). Then, similar to the case of descending the stairs described above, this state is detected by the running action ft1 mechanism 20, and the wheels 6a are moved.
6h、6c、6dが逆回転されるとともに回転アーム体
互が制動されつつ正回転する。したがって前方の車輪6
bは下降して単10図(r)に示す如く接地する。ぞし
てさらに回転アーム体ユが回転し、第10図(g)に示
す如く120°回転した状態で前方に位置した車輪6c
が接地すると走行制御機構20がこの状態を検出し、障
害物24を乗越したものと判定して回転アーム体重の回
転を停止して自由に回転し得るようにし、捷だ車輪6h
、6b、6e*6df正回転させて平坦路面の走行状態
とする。6h, 6c, and 6d are rotated in the reverse direction, and the rotary arms are rotated in the forward direction while being braked. Therefore, the front wheel 6
b descends and touches the ground as shown in Figure 10 (r). Then, the rotary arm unit further rotates, and the wheel 6c located in front rotates 120 degrees as shown in FIG. 10(g).
When the wheel 6h touches the ground, the traveling control mechanism 20 detects this state, determines that the obstacle 24 has been overcome, and stops the rotation of the weight of the rotary arm so that it can rotate freely.
, 6b, 6e*6df are rotated forward to drive on a flat road surface.
また、障害物が小さい場合には前方の車輪6aが障害物
の側面に衝突すると回転アーム体重が正回転するが、第
11図に示す如く回転中心部の車輪6dが障害物24′
の上面に当接して乗越える。In addition, when the obstacle is small, when the front wheel 6a collides with the side of the obstacle, the weight of the rotary arm rotates in the normal direction, but as shown in FIG.
Contact the top surface of and get over it.
したがってこの−実施例のものは平坦路面の走行はもと
より斜面および1皆段の昇降、障害物の乗越等をおこな
うことができ、あらゆる伏ν1;の路面全走行すること
ができる。そして、この一実施例のものは乗越えられる
段差の最高の品さHは回転アーム体3のアーム部5中の
半径rR1車情6・・・の半径frとすると第12図に
示す如く
□=r + R+ x ・・・・
・・(1)となる。そして、
x = RSin 30’−r −
−(2)であるから
H=3=R
2・・・・・・(3)
となる。この走行体が南段青を昇降中に下方に転句1し
ないためには、第13図に示す如く下方の回転アーム体
lの中心から重心G−iでの水平方向の距#i1.をL
x、回転アーム体重の中心から重心Gまでの尚さをLy
l箪体の1明きをθとすノLにL ” Lx cosθ
−Lyslnθ) R・・・・・・(4)とすればよい
。したがって予想される最大の傾き角θに対して上目己
(4)式全満足する範囲でアーム部50半径Rを大きく
すれば乗越えられる段差の高さを大さくすることができ
、階段の昇降や障害物乗越の能力がきわめて犬となる。Therefore, the vehicle of this embodiment can not only travel on a flat road surface, but also be able to ascend and descend slopes and all steps, climb over obstacles, etc., and can travel on all surfaces of any slope ν1;. In this embodiment, the highest quality H of the level difference that can be overcome is as shown in FIG. r+R+x・・・・
...(1). And x = RSin 30'−r −
-(2), so H=3=R 2 (3). In order to prevent this traveling body from rolling downward while ascending and descending on the southern stage, the horizontal distance #i1. L
x, the height from the center of weight of the rotating arm to the center of gravity G is Ly
Let θ be one light of the cabinet.
-Lyslnθ) R (4). Therefore, by increasing the radius R of the arm part 50 within a range that fully satisfies equation (4) for the expected maximum inclination angle θ, the height of the step that can be climbed can be increased, and the height of the step that can be climbed can be increased. This dog is extremely capable of overcoming obstacles.
また、この−央適例のものは回転アーム体3・・・のア
ーム部5・・・の先端部と回転中心部に車輪6・・・を
設けただけのもので構造が簡単であり、しかも回転アー
ム体重の回転中心部に車輪6dがあるので回転アーム体
l・・・の回転軸4・・・が階段や障害物の角に当って
破損することもない。また回転アーム体重・・・と車輪
6・・・の回転t−匍j御するだけであらゆる走行状態
に対応でき、制御も容易である。゛また、この一実施例
のものは車輪6・・・の衝突や浮LOによって走行路面
の状態を検出するようにしたので、走行路面の状1g4
2検出する機構も簡単となるものである。In addition, this central suitable example has a simple structure, with only wheels 6 provided at the tip of the arm portion 5 of the rotating arm body 3 and at the center of rotation. Moreover, since the wheel 6d is located at the center of rotation of the weight of the rotating arm, the rotating shaft 4 of the rotating arm body l will not be damaged by hitting the corner of a staircase or an obstacle. In addition, it is possible to cope with all running conditions by simply controlling the weight of the rotary arm and the rotation of the wheels 6, and the control is easy.゛Also, in this embodiment, the condition of the running road surface is detected by the collision or floating LO of the wheels 6..., so the condition of the running road surface 1g4 is detected.
2. The detection mechanism is also simple.
なお、本発明は上記の一実施例には限にされない。Note that the present invention is not limited to the above embodiment.
たとえば回転アーム体のアーム部は必ずしも3本に限ら
ず、4本以上であってもよい。For example, the number of arm portions of the rotating arm body is not necessarily limited to three, but may be four or more.
また、走行制御機構は必ずしも昆輸の衝突や浮き上りに
よって走行路面の状態を検出するものに限らず、その他
超音波や光学的な検出手段によって走行路面の状態勿検
出するものであってもよい。Further, the driving control mechanism is not necessarily limited to one that detects the condition of the driving road surface by the collision or lifting of the vehicle, but may also detect the condition of the driving road surface by other ultrasonic or optical detection means. .
さらに回転アーム体駆動磯構や車輪駆動機構等の構成も
必ずしも上記のものに限定されない。Further, the configurations of the rotating arm drive rock structure, wheel drive mechanism, etc. are not necessarily limited to those described above.
さらに本発明は原子炉格納容器内の点検監視用の走行体
に限らず、その他無人工場内の機器の保守点検用の走行
体、さらには身体障害考用の車椅子などの走行体一般に
通用できるものである。Furthermore, the present invention is applicable not only to traveling bodies for inspecting and monitoring inside nuclear reactor containment vessels, but also to traveling bodies for maintenance and inspection of equipment in unmanned factories, and also to traveling bodies in general such as wheelchairs for people with physical disabilities. It is.
上述の如く本発明は3本以上の放射状に配置されたアー
ム部金有する回転アーム体を車体に回転自在に取付け、
またこれらアーム部の先端部と回転中心部にそれぞれ車
輪を設け、この回転アーム体と車輪とをそれぞれ独立し
て駆動する回転アーム体駆動機構と車輪駆動機構を設け
、走行制御機構によって走行路面の仏螺孕検出し、これ
に対応して回転アーム体と車輪の回転を制御し、階段の
昇降や障害物の乗越等をなすものである。したがってこ
のものはアーム部の半径を大きくすれば乗越えられる段
差を太きくすることができ、階段の昇降や障害物の乗越
等の能力がきわめて大きく、また構造も簡単で制御も容
易である等その効果は大である。As described above, the present invention includes a rotating arm body having three or more radially arranged arm metals, which is rotatably attached to a vehicle body,
In addition, wheels are provided at the tip and center of rotation of these arms, and a rotating arm drive mechanism and a wheel drive mechanism are provided to drive the rotating arm body and wheels independently, respectively, and the running control mechanism controls the running road surface. The system detects the spiral movement and controls the rotation of the rotary arm body and wheels in response to this, allowing the robot to climb stairs, climb over obstacles, etc. Therefore, by increasing the radius of the arm, the steps that can be climbed can be made thicker, and the ability to climb stairs and get over obstacles is extremely high, and the structure is simple and easy to control. The effect is great.
図面は本発明の一実施例を示し、第1図は側面図、第2
図は平面図、第3図は第1図の1lI−■腺に沿う断面
図、第4図は平坦路面を走行する状態を示す側面図、第
5図。よ傾斜した路面を走行する状態を示す側面図、第
6図(a)〜(e)/Ii階段を登る状態全模式的に示
す図、第7図(a) 、 (b)はピッチの小さな階段
を登る状態を模式的に示す図、第8図(&)〜(e)は
階段全下降する状態を模式的に示す図、稟9図(a)
a (b)はピッチの小さな階段を下降する場合′f:
模式的に示す図、第i。
図(a)〜(g)は障害物を乗越す状態全模式的に示す
図、第11図は小さな障害物を乗越す状態を模式的に示
す図、第12図はアーム部の半径と登り得る段差の高さ
との関係を説明する図、第13図に階段昇降中に転t!
I Lないための重心とアーム部半径との関係を説明す
る図である。
1・・・車体、互・・・回転アーム体、4・・・回転軸
、5・・・アーム部、6・・・車輪、乙・・・車軸、互
・・・回転アーム体駆動機構、9・・・車輪駆動機構、
2θ・・・走行制御機構。
、出願人代理人 弁理士 鈴 江 武 彦第3図
第4図
第5図
第6図
(a) (b)
(c) (d)
第6図
(e)
第7図
第8
(a)
(C)
C
図
(b)
(d)
第8図
(e)
第9図
(a) (b)
第10図
(a) (b)
(C) (d)
第10図
(e) (f)
(9)
第11図The drawings show one embodiment of the present invention, the first being a side view and the second being a side view.
The figure is a plan view, FIG. 3 is a sectional view taken along line 1lI-■ in FIG. 1, FIG. 4 is a side view showing the state of running on a flat road surface, and FIG. A side view showing the state of driving on a highly sloping road surface, Figures 6 (a) to (e)/Ii A diagram schematically showing the state of climbing stairs, and Figures 7 (a) and (b) are those with a small pitch. Figure 8 (&) to (e) is a diagram schematically showing the state of climbing the stairs; Figure 8 (&) to (e) is a diagram schematically showing the state of descending the stairs completely; Figure 9 (a)
a (b) is when descending stairs with a small pitch'f:
Schematic diagram, No. i. Figures (a) to (g) are diagrams schematically showing the state of overcoming an obstacle, Figure 11 is a diagram schematically showing the state of overcoming a small obstacle, and Figure 12 is a diagram showing the radius of the arm and the climbing Figure 13 is a diagram explaining the relationship between the height of the step and the height of the step.
FIG. 4 is a diagram illustrating the relationship between the center of gravity and the radius of the arm portion to prevent IL. DESCRIPTION OF SYMBOLS 1...Vehicle body, mutually...rotating arm body, 4...rotating shaft, 5...arm part, 6...wheel, B...axle, mutually...rotating arm body drive mechanism, 9...wheel drive mechanism,
2θ...Travel control mechanism. , Applicant's Representative Patent Attorney Takehiko Suzue Figure 3 Figure 4 Figure 5 Figure 6 (a) (b) (c) (d) Figure 6 (e) Figure 7 Figure 8 (a) ( C) C Figure (b) (d) Figure 8 (e) Figure 9 (a) (b) Figure 10 (a) (b) (C) (d) Figure 10 (e) (f) ( 9) Figure 11
Claims (2)
もに回転中心より放射状に突設された3本以上のアーム
部金有する回転アーム体と、この回転アーム体のアーム
部の先端部と回転中心部にそれぞれ回転自在に取付けら
れた車輪と、上記回転アーム体を回転駆動する回転アー
ム体駆動機構と、上記重輪を上記回転アーム体の回転と
は独立して回転駆動する車輪駆動機構と、走行路面の形
状に対応してよi己回転アーム体および車輪の回転を制
御する走行制個j機購とを具イ111Iシたことを特徴
とする走行体。(1) A vehicle body, a rotary arm body that is rotatably attached to the vehicle body and has three or more arm metal parts protruding radially from the center of rotation, and the tip of the arm of this rotary arm body and the center of rotation. a wheel rotatably attached to each of the parts, a rotary arm body drive mechanism that rotatably drives the rotary arm body, and a wheel drive mechanism that rotatably drives the heavy wheel independently of the rotation of the rotary arm body; 111. A running body comprising a self-rotating arm body and a running control unit that controls the rotation of wheels in accordance with the shape of a running road surface.
の浮き上が9によシ前記走行路面の状態を判定するもの
でおることに%徴とする前記特許h1′4求の範囲第1
項記載の走行体。(2) The scope of the patent h1'4 that the control mechanism is capable of determining the condition of the traveling road surface depending on whether the wheel collides with an obstacle or lifts the wheel. 1st
Traveling object described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58144562A JPS5973372A (en) | 1983-08-08 | 1983-08-08 | Travelling machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58144562A JPS5973372A (en) | 1983-08-08 | 1983-08-08 | Travelling machine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55188905A Division JPS5925712B2 (en) | 1980-12-26 | 1980-12-26 | running body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5973372A true JPS5973372A (en) | 1984-04-25 |
Family
ID=15365132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58144562A Pending JPS5973372A (en) | 1983-08-08 | 1983-08-08 | Travelling machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973372A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6326115A (en) * | 1986-07-18 | 1988-02-03 | Fujitsu Ltd | Ternary control circuit |
JPS6375479U (en) * | 1986-11-05 | 1988-05-19 | ||
US5052237A (en) * | 1989-05-17 | 1991-10-01 | Aluweld S.A. | Transmission device |
US5579857A (en) * | 1993-06-04 | 1996-12-03 | Kabushiki Kaisha Daikin Seisakusho | Stair climbing vehicle |
JPH09272473A (en) * | 1996-04-09 | 1997-10-21 | Nec Corp | Moon-surface rover and running method of the rover |
US5701965A (en) * | 1993-02-24 | 1997-12-30 | Deka Products Limited Partnership | Human transporter |
US5971091A (en) * | 1993-02-24 | 1999-10-26 | Deka Products Limited Partnership | Transportation vehicles and methods |
US6302230B1 (en) | 1999-06-04 | 2001-10-16 | Deka Products Limited Partnership | Personal mobility vehicles and methods |
US6553271B1 (en) | 1999-05-28 | 2003-04-22 | Deka Products Limited Partnership | System and method for control scheduling |
US6571892B2 (en) | 1999-03-15 | 2003-06-03 | Deka Research And Development Corporation | Control system and method |
EP1738734A2 (en) * | 2005-06-28 | 2007-01-03 | D Cubed S.r.l. | Powered tripod wheel assembly, in particular for a wheelchair, and wheelchair featuring such a wheel assembly |
US7370713B1 (en) | 1993-02-24 | 2008-05-13 | Deka Products Limited Partnership | Personal mobility vehicles and methods |
WO2009069144A2 (en) * | 2007-09-06 | 2009-06-04 | Rafique Riyaz | Methods and systems for ascending and descending stairs |
CN102319154A (en) * | 2011-08-16 | 2012-01-18 | 上海电机学院 | Stair climbing wheel chair |
CN102632938A (en) * | 2012-05-03 | 2012-08-15 | 上海理工大学 | Mechanical device for climbing stairs |
US9188984B2 (en) | 1999-06-04 | 2015-11-17 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9545963B2 (en) | 2002-07-12 | 2017-01-17 | DEKA Products Limited Partnership LLP | Control of a transporter based on attitude |
USD837323S1 (en) | 2018-01-03 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
USD837322S1 (en) | 2016-07-20 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
USD840872S1 (en) | 2016-07-20 | 2019-02-19 | Razor Usa Llc | Two wheeled board |
US10220843B2 (en) | 2016-02-23 | 2019-03-05 | Deka Products Limited Partnership | Mobility device control system |
USD846452S1 (en) | 2017-05-20 | 2019-04-23 | Deka Products Limited Partnership | Display housing |
RU2692956C1 (en) * | 2018-11-07 | 2019-06-28 | Валерий Иванович Паутов | Small vehicle drive wheel |
US10802495B2 (en) | 2016-04-14 | 2020-10-13 | Deka Products Limited Partnership | User control device for a transporter |
US10908045B2 (en) | 2016-02-23 | 2021-02-02 | Deka Products Limited Partnership | Mobility device |
US10926756B2 (en) | 2016-02-23 | 2021-02-23 | Deka Products Limited Partnership | Mobility device |
JP2021079824A (en) * | 2019-11-19 | 2021-05-27 | 楽天株式会社 | Moving body |
USD941948S1 (en) | 2016-07-20 | 2022-01-25 | Razor Usa Llc | Two wheeled board |
US11399995B2 (en) | 2016-02-23 | 2022-08-02 | Deka Products Limited Partnership | Mobility device |
US11654995B2 (en) | 2017-12-22 | 2023-05-23 | Razor Usa Llc | Electric balance vehicles |
US11681293B2 (en) | 2018-06-07 | 2023-06-20 | Deka Products Limited Partnership | System and method for distributed utility service execution |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS507824A (en) * | 1973-05-24 | 1975-01-27 |
-
1983
- 1983-08-08 JP JP58144562A patent/JPS5973372A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS507824A (en) * | 1973-05-24 | 1975-01-27 |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6326115A (en) * | 1986-07-18 | 1988-02-03 | Fujitsu Ltd | Ternary control circuit |
JPS6375479U (en) * | 1986-11-05 | 1988-05-19 | ||
JPH0353979Y2 (en) * | 1986-11-05 | 1991-11-27 | ||
US5052237A (en) * | 1989-05-17 | 1991-10-01 | Aluweld S.A. | Transmission device |
US5701965A (en) * | 1993-02-24 | 1997-12-30 | Deka Products Limited Partnership | Human transporter |
US5791425A (en) * | 1993-02-24 | 1998-08-11 | Deka Products Limited Partnership | Control loop for transportation vehicles |
US5971091A (en) * | 1993-02-24 | 1999-10-26 | Deka Products Limited Partnership | Transportation vehicles and methods |
US7370713B1 (en) | 1993-02-24 | 2008-05-13 | Deka Products Limited Partnership | Personal mobility vehicles and methods |
US5579857A (en) * | 1993-06-04 | 1996-12-03 | Kabushiki Kaisha Daikin Seisakusho | Stair climbing vehicle |
JPH09272473A (en) * | 1996-04-09 | 1997-10-21 | Nec Corp | Moon-surface rover and running method of the rover |
US6571892B2 (en) | 1999-03-15 | 2003-06-03 | Deka Research And Development Corporation | Control system and method |
US7130702B2 (en) | 1999-05-28 | 2006-10-31 | Deka Products Limited Partnership | System and method for control scheduling |
US6553271B1 (en) | 1999-05-28 | 2003-04-22 | Deka Products Limited Partnership | System and method for control scheduling |
US9442492B2 (en) | 1999-06-04 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US6302230B1 (en) | 1999-06-04 | 2001-10-16 | Deka Products Limited Partnership | Personal mobility vehicles and methods |
US9442491B2 (en) | 1999-06-04 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9188984B2 (en) | 1999-06-04 | 2015-11-17 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9411336B2 (en) | 1999-06-04 | 2016-08-09 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9545963B2 (en) | 2002-07-12 | 2017-01-17 | DEKA Products Limited Partnership LLP | Control of a transporter based on attitude |
US9529365B2 (en) | 2004-09-13 | 2016-12-27 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9459627B2 (en) | 2004-09-13 | 2016-10-04 | Deka Products Limited Partership | Control of a personal transporter based on user position |
US9442486B2 (en) | 2004-09-13 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9400502B2 (en) | 2004-09-13 | 2016-07-26 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9411339B2 (en) | 2004-09-13 | 2016-08-09 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9429955B2 (en) | 2004-09-13 | 2016-08-30 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
EP1738734A2 (en) * | 2005-06-28 | 2007-01-03 | D Cubed S.r.l. | Powered tripod wheel assembly, in particular for a wheelchair, and wheelchair featuring such a wheel assembly |
EP1738734A3 (en) * | 2005-06-28 | 2007-02-21 | D Cubed S.r.l. | Powered tripod wheel assembly, in particular for a wheelchair, and wheelchair featuring such a wheel assembly |
WO2009069144A3 (en) * | 2007-09-06 | 2009-09-11 | Rafique Riyaz | Methods and systems for ascending and descending stairs |
WO2009069144A2 (en) * | 2007-09-06 | 2009-06-04 | Rafique Riyaz | Methods and systems for ascending and descending stairs |
CN102319154A (en) * | 2011-08-16 | 2012-01-18 | 上海电机学院 | Stair climbing wheel chair |
CN102632938A (en) * | 2012-05-03 | 2012-08-15 | 上海理工大学 | Mechanical device for climbing stairs |
US11399995B2 (en) | 2016-02-23 | 2022-08-02 | Deka Products Limited Partnership | Mobility device |
US11679044B2 (en) | 2016-02-23 | 2023-06-20 | Deka Products Limited Partnership | Mobility device |
US10220843B2 (en) | 2016-02-23 | 2019-03-05 | Deka Products Limited Partnership | Mobility device control system |
US10752243B2 (en) | 2016-02-23 | 2020-08-25 | Deka Products Limited Partnership | Mobility device control system |
US10926756B2 (en) | 2016-02-23 | 2021-02-23 | Deka Products Limited Partnership | Mobility device |
US10908045B2 (en) | 2016-02-23 | 2021-02-02 | Deka Products Limited Partnership | Mobility device |
US12023285B2 (en) | 2016-02-23 | 2024-07-02 | Deka Products Limited Partnership | Mobility device |
US11720115B2 (en) | 2016-04-14 | 2023-08-08 | Deka Products Limited Partnership | User control device for a transporter |
US10802495B2 (en) | 2016-04-14 | 2020-10-13 | Deka Products Limited Partnership | User control device for a transporter |
USD899541S1 (en) | 2016-07-20 | 2020-10-20 | Razor Usa Llc | Two wheeled board |
USD840872S1 (en) | 2016-07-20 | 2019-02-19 | Razor Usa Llc | Two wheeled board |
USD865890S1 (en) | 2016-07-20 | 2019-11-05 | Razor Usa Llc | Two wheeled board |
USD899540S1 (en) | 2016-07-20 | 2020-10-20 | Razor Usa Llc | Two wheeled board |
USD865095S1 (en) | 2016-07-20 | 2019-10-29 | Razor Usa Llc | Two wheeled board |
USD1013080S1 (en) | 2016-07-20 | 2024-01-30 | Razor Usa Llc | Two wheeled board |
USD1002764S1 (en) | 2016-07-20 | 2023-10-24 | Razor Usa Llc | Two wheeled board |
USD941948S1 (en) | 2016-07-20 | 2022-01-25 | Razor Usa Llc | Two wheeled board |
USD958278S1 (en) | 2016-07-20 | 2022-07-19 | Razor Usa Llc | Two wheeled board |
USD837322S1 (en) | 2016-07-20 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
USD960043S1 (en) | 2016-07-20 | 2022-08-09 | Razor Usa Llc | Two wheeled board |
USD846452S1 (en) | 2017-05-20 | 2019-04-23 | Deka Products Limited Partnership | Display housing |
USD876994S1 (en) | 2017-05-20 | 2020-03-03 | Deka Products Limited Partnership | Display housing |
US11654995B2 (en) | 2017-12-22 | 2023-05-23 | Razor Usa Llc | Electric balance vehicles |
USD837323S1 (en) | 2018-01-03 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
US11681293B2 (en) | 2018-06-07 | 2023-06-20 | Deka Products Limited Partnership | System and method for distributed utility service execution |
RU2692956C1 (en) * | 2018-11-07 | 2019-06-28 | Валерий Иванович Паутов | Small vehicle drive wheel |
JP2021079824A (en) * | 2019-11-19 | 2021-05-27 | 楽天株式会社 | Moving body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5973372A (en) | Travelling machine | |
JPS5925712B2 (en) | running body | |
US4674584A (en) | Stair-climbing wheelchair with stair step sensing means | |
US3533483A (en) | Vehicle with vertically angularly adjustable asymmetrical wheeled frames | |
US4977971A (en) | Hybrid robotic vehicle | |
US4790548A (en) | Climbing and descending vehicle | |
JPS60176871A (en) | Travel gear for robot | |
CN106394721B (en) | The upright mobile conveyor of multiple road conditions and transportation resources | |
Nakajima | Evaluation of the mobility performance of a personal mobility vehicle for steps | |
JP5026059B2 (en) | A crawler-type traveling vehicle equipped with a stepper flipper | |
Morales et al. | Coordinated motion of a new staircase climbing wheelchair with increased passenger comfort | |
CN111717315A (en) | Stair climbing vehicle with triangular wheel train | |
JP6894158B2 (en) | Transport vehicle for overcoming obstacles | |
JPH0233554B2 (en) | ||
JPH0228152Y2 (en) | ||
JP2004050966A (en) | Leg type travelling system and its device | |
Taguchi | Enhanced wheel system for step climbing | |
CN206417095U (en) | The upright mobile conveyor of multiple road conditions | |
Lawn | Study of stair-climbing assistive mechanisms for the disabled | |
JPS631226B2 (en) | ||
JPH0492784A (en) | Calamity rescue robot | |
JPS6033172A (en) | Travelling and walking vehicle | |
JPH08169345A (en) | Vehicle | |
JPH04349082A (en) | Falloff preventive device for crawler vehicle | |
Nakajima | Step up/down motion for a four-wheel-type vehicle |