[go: nahoru, domu]

JPS6093522A - Controller of moving robot - Google Patents

Controller of moving robot

Info

Publication number
JPS6093522A
JPS6093522A JP58200360A JP20036083A JPS6093522A JP S6093522 A JPS6093522 A JP S6093522A JP 58200360 A JP58200360 A JP 58200360A JP 20036083 A JP20036083 A JP 20036083A JP S6093522 A JPS6093522 A JP S6093522A
Authority
JP
Japan
Prior art keywords
area
robot
obstacle
run
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58200360A
Other languages
Japanese (ja)
Inventor
Katsuji Okumura
奥村 勝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTOMATSUKUSU KK
Original Assignee
OOTOMATSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTOMATSUKUSU KK filed Critical OOTOMATSUKUSU KK
Priority to JP58200360A priority Critical patent/JPS6093522A/en
Priority to EP84100065A priority patent/EP0142594B1/en
Priority to US06/567,978 priority patent/US4674048A/en
Priority to DE8484100065T priority patent/DE3478824D1/en
Priority to AT84100065T priority patent/ATE44322T1/en
Priority to CA000445143A priority patent/CA1217836A/en
Publication of JPS6093522A publication Critical patent/JPS6093522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49157Limitation, collision, interference, forbidden zones, avoid obstacles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To run a moving robot efficiently throughout the whole area efficiently without any collision against an obstacle even if the obstacle is present by deciding an area where the robot is not run yet from an area where the robot is already run and an area where the obstacle is present. CONSTITUTION:A previously learnt movement area is fractionized into longitudinal and lateral blocks in a matrix on two-dimensional coordinates and stored on a map. A CPU9 repeats a run longitudinally or laterally, line by line, and the area where the robot run is is stored and held in a storage part 10 successively. Thus, a linear run is made and ultrasonic sensors 4 on both flanks detect whether there is an obstacle on the right and left sides of a run block and stores the result in the storage part 10. When a sensor 4 on the front surface senses an obstacle in front, the run is repeated within a range wherein the robot collides against it while the position of the obstacle is stored; when the sensor does not sense it any more, a decision on an area where the robot is not run so far is made from the area where the robot is already run and the obstacle area, and the robot is moved to the part to continue to run, line by line.

Description

【発明の詳細な説明】 (技術分野) 本発明は例えば床面清掃を行なう移動ロボットの制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a control device for a mobile robot that cleans, for example, a floor surface.

(技術的背景) 無人走行により床面を移動しつつ清掃作業を行なう移動
ロボットについて、本出願人により、例えば特願昭57
−232269号などとして提案されている。
(Technical background) Regarding a mobile robot that performs cleaning work while moving on the floor by unmanned running, the present applicant has proposed, for example, Japanese Patent Application No. 57
It has been proposed as No.-232269.

これは清掃エリヤの学習機能をもち、その清掃エリヤ内
で自己の現在位置を認識しながら、所定の走行路に従っ
て移動し、くj、なくエリア内球面の清掃を行なうもの
であり、従来のように、予定の走行路に沿って配設され
た位置観測手段や誘導手段を一切必要とぜず、全ゆる場
所の清掃に適用できるという特徴をもっている。
This robot has a cleaning area learning function, and while recognizing its current position within the cleaning area, it moves along a predetermined travel path and cleans the spherical surface within the area without any hassle. Another feature is that it does not require any position observation means or guidance means placed along the planned travel route, and can be applied to cleaning any location.

(発明の目的) 本発明は、このような移動ロボットにおいて、走行筒内
に障害物が存在するときでも、障害物と衝突することな
しに、くまなく全領域への移動を効率的に行なうことを
可能とした、移動ロボットの制御装置を提供することを
目的とする。
(Purpose of the invention) The present invention is to enable such a mobile robot to efficiently move to all areas without colliding with the obstacles even when there are obstacles in the travel cylinder. The purpose of the present invention is to provide a control device for a mobile robot that enables the following.

〈発明の開示) 本発明は、駆動輪を介して自走する移動ロボットの走行
距離を検出するセンサ及び走行に伴う方向の変化を検出
づるセンサ、これら両センサの出力にもとづいてロボッ
トの単位走行距離ごとの二次元平面座標の位置を演算に
よってめる位置識別手段と、ロボットのすくなくとも走
行前面及び側面に設けられ障害物を検出するセンサと、
ロボットの移動すべき領域を二次元座標上でX軸とy軸
に対応して単位距離ごとに分割されたマツプに記憶させ
る学習手段と、マツプの各ブロック上をX軸またはv軸
に沿って直線走行させる手段と、直線走行して領域境界
に到達したときに次列に移動して反転走行させる手段と
、この走行前方所定の距離に障害物センサが障害物を検
出したときtit、その場で反転して次列に移動して走
行させる手段と、上記走行したブロックを位置識別手段
からの出力にもとづいて順次記憶する記憶部と、障害物
を確認したときにそのブロックを順次記憶する記憶部と
、走行路に障害物がなくなったときに既に走行した領域
と障害物の存在する領域を記憶部から読み出して、移動
領域内で未走行の領域を判別する手段と、この判別結果
にもとづいて未走行領域があるときはその領域にロボッ
トを走行列を横断して戻す手段と、同じく未走行領域が
ないときはそれで全ての走行を終了させる手段とを備え
ている。
<Disclosure of the Invention> The present invention provides a sensor that detects the travel distance of a self-propelled mobile robot via drive wheels, a sensor that detects a change in direction accompanying the travel, and a sensor that detects a unit travel of the robot based on the outputs of these two sensors. a position identification means that calculates the position of two-dimensional plane coordinates for each distance; a sensor that is installed at least on the front and side surfaces of the robot and detects obstacles;
A learning means that stores the area in which the robot should move in a map divided into units of distance corresponding to the X and Y axes on two-dimensional coordinates, and a learning means that stores the area in which the robot should move in a map divided into units of distance corresponding to the X and Y axes on two-dimensional coordinates, and a means for driving in a straight line, a means for moving to the next line and reversing when the area boundary is reached after traveling in a straight line; means for inverting and moving the blocks to the next row and running; a memory section for sequentially storing the blocks that have been run based on the output from the position identifying means; and a memory for sequentially storing the blocks when an obstacle is identified. a means for reading the area where the vehicle has already traveled and the area where the obstacle exists when the obstacle is removed from the travel path, and determining the area in which the vehicle has not traveled within the moving area; When there is an untraveled area, the robot is provided with a means for returning the robot across the travel line to that area, and a means for ending all travel when there is no untraversed area.

したがって本発明によれば、移動ロボットに清掃スィー
パやバキュームクリーナを取付けて床面を移動しながら
清掃させる場合、清掃領域を予め指定して学習させると
、後は全自動的に走行パターンを清掃領域に存在する障
害物などとの関係に対応しつつ決定し、未清掃域を残す
ことなく最も効率よく清掃を行なうことができる。
Therefore, according to the present invention, when a cleaning sweeper or a vacuum cleaner is attached to a mobile robot and the robot is moved to clean the floor surface, the cleaning area can be specified in advance and learned, and then the traveling pattern can be automatically changed to the cleaning area. It is possible to perform the cleaning most efficiently without leaving any uncleaned areas.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図において、1は移動ロボットの走行距離、例えば
駆動輪の回転量に比例したパルス信号を出力する距離セ
ンサ、2はロボット走行方向の変化を検出するガスレー
トジ11イロなどからなる方向センサ、3は距離センサ
1からのパルス信号を計数してロボットの走行距離を測
定するとともに、方向センサ2の出力からロボットの移
動方向を判定して、ロボットの単位走行距離ごとの二次
元座標上における現在位置を時々刻々と演算によってめ
る位置識別手段である。
In FIG. 1, 1 is a distance sensor that outputs a pulse signal proportional to the travel distance of the mobile robot, for example, the amount of rotation of a drive wheel; 2 is a direction sensor that detects changes in the robot's travel direction; measures the distance traveled by the robot by counting pulse signals from the distance sensor 1, determines the moving direction of the robot from the output from the direction sensor 2, and determines the current position of the robot on two-dimensional coordinates for each unit distance traveled. This is a position identification means that calculates the position from time to time by calculation.

4はロボットの移動前面、両側面及び後面に設けられ、
超音波を発信しながら壁面や柱などの障害物の有無や障
害物までの距離を検知する障害物センサ、5は同じくこ
れら障害物センサ4とは別に機械的な接触によって障害
物を判断するタッチセンサで、これらセンサ4,5の出
力はマイクロプロセッサで構成される制御回路6に、ア
ンプ7及び入力ポート8Dを介して入力される。同時に
前記識別手段3の位置信号も、入出力ポート8Aを介し
て制御回路6に入力される。
4 are provided on the front, both sides and rear of the robot,
Obstacle sensor 5 detects the presence or absence of obstacles such as walls and pillars and the distance to the obstacles while transmitting ultrasonic waves. Similarly, 5 is a touch sensor that determines obstacles by mechanical contact, in addition to these obstacle sensors 4. The outputs of these sensors 4 and 5 are input to a control circuit 6 composed of a microprocessor via an amplifier 7 and an input port 8D. At the same time, the position signal from the identification means 3 is also input to the control circuit 6 via the input/output port 8A.

制御回路6は中央演算回路(CPIJ)9と読出専用メ
モリ(ROM)及び読出書込メモリ(RAM)からなる
記憶部10とで構成される。11Aはクロックパルスを
出力するクロック、11B【よ割込みコントローラであ
る。
The control circuit 6 includes a central processing circuit (CPIJ) 9 and a storage section 10 consisting of a read-only memory (ROM) and a read/write memory (RAM). 11A is a clock that outputs clock pulses, and 11B is an interrupt controller.

CPLJ9は後述するようにして駆動回路12に対して
入出力ボート8Cを介して駆動信号を出力し、走行用の
左右の駆動輪に設けた駆動モータ(サーボモータまたは
ステップモータ)13.14の回転を可逆的に制御し、
同時に口/Iζツ1〜に取付けた清掃用スィーパの駆動
モータ15の回転を制御する。
The CPLJ9 outputs a drive signal to the drive circuit 12 via the input/output boat 8C as described later, and controls the rotation of the drive motors (servo motors or step motors) 13 and 14 provided on the left and right drive wheels for running. control reversibly,
At the same time, the rotation of the drive motor 15 of the cleaning sweeper attached to the mouth/Iζ 1 is controlled.

16はシステム電源のオン・Aフ、走行モー]:の切換
え、スタート位置の設定、方向センサ2の感度調整など
を適宜行なうことのできる操作部、17.18はロボッ
トに移動領域の領界を学習させるために、ラジオコント
ロールによって駆動回路12に走行指令を優先的に割込
ませ、その操縦を任意に行なわせる、リモートコントロ
ール送信、受信ユニットで、それぞれ出力は入出力ポー
ト8Bを介して制御回路6にも入力する。
Reference numeral 16 is an operation unit that allows the system power to be turned on/off, switching the running mode, setting the start position, adjusting the sensitivity of the direction sensor 2, etc. as appropriate; In order to learn, the drive circuit 12 is given priority by radio control to receive travel commands, and the drive circuit 12 is operated as desired.It is a remote control transmitting and receiving unit, and each output is sent to the control circuit via the input/output port 8B. Also enter 6.

第2図は移動ロボッ゛トの具体的な構造を平面的に示ず
概略図であるが、ロボット本体3oは、その外周に全域
的に、前部バンパー31、左右側部バンパー32.33
及び後部バンパー34が設けられ、各バンパー31〜3
4には前述した障害物のタッチセンサ5が取付けてあり
、バンパーが障害物に接触したときにこれを感知するよ
うになっている。
Although FIG. 2 is a schematic diagram and does not show the specific structure of the mobile robot in a plan view, the robot body 3o has a front bumper 31, left and right side bumpers 32, 33 all over its outer periphery.
and a rear bumper 34, each bumper 31-3
The above-mentioned obstacle touch sensor 5 is attached to the bumper 4 to detect when the bumper comes into contact with an obstacle.

また、ロボット本体3oの前面には、その中央部及び両
隅部にそれぞれ超音波センサ4A・・・が、また両側面
にもそれぞれ1個づつの超音波センサ4B・・・が、さ
らに後面の両隅部にもそれぞれ超音波センサ4C・・・
が設けてあり、前述したように障害物を検知する。
In addition, on the front of the robot body 3o, there are ultrasonic sensors 4A at the center and both corners, and one ultrasonic sensor 4B on each side, and further on the rear. Ultrasonic sensors 4C in both corners...
is provided to detect obstacles as described above.

超音波センサ4A、4Cは、通常は上記したタッチセン
サ5が障害物と接触する前に、障害物を検知するのであ
るが、ロボットの向きにより死角に障害物が入ったは場
合でもロボットのバンパー31〜34が軽く接触すれば
これを感知できるようにしである。
The ultrasonic sensors 4A and 4C normally detect obstacles before the touch sensor 5 comes into contact with the obstacle, but depending on the orientation of the robot, even if an obstacle enters the blind spot, the robot's bumper may be detected. If 31 to 34 touch lightly, this can be detected.

ロボット本体30は、この例では前方の走行輪40と、
後方の左右の駆動輪41.42によって自由に走行しう
るのであり、同時にロボット本体30の前方下面に設け
た2つの回転スィーパ43゜44により走行床面の清掃
を行なう。
In this example, the robot main body 30 has a front running wheel 40,
The robot can move freely using rear left and right drive wheels 41 and 42, and at the same time, two rotary sweepers 43 and 44 provided on the lower front surface of the robot body 30 clean the running floor.

このようなロボットにおいて第3図、第4図を参照しな
がらさらに本発明の特徴部分を説明する。
Characteristic parts of the present invention will be further explained with reference to FIGS. 3 and 4 regarding such a robot.

第4図に示す領域を清掃する場合、その移動境界を学習
により憶え込むため、操作部16により学習走行モード
に設定したうえで、リモートコントロール送受信ユニッ
ト17.18を用いてロボットを図に示すスタート位置
(S)に誘導し、その位置で操作部16のセットボタン
を押して二次元座標上におけるスタート点(xo、 y
o)及び進行方向′の基準θ0をそれぞれ設定する。
When cleaning the area shown in FIG. 4, in order to memorize the movement boundaries by learning, the operation section 16 is used to set the robot to the learning travel mode, and the remote control transmitting/receiving unit 17.18 is used to start the robot as shown in the diagram. At that position, press the set button on the operation unit 16 to set the starting point (xo, y) on the two-dimensional coordinates.
o) and the reference θ0 of the traveling direction' are respectively set.

次いで、リモートコントロール送受信ユニット17.1
8を用いて、点線で示す予定コースにしたがうロボット
の学習走行を開始させると、制御回路6のCPLJ9は
位置識別手段3から送られてくるロボットの現在位置(
x、y)及び進行方向θを記憶部10に順次記憶させ、
これによりロボットの移動すべき領域境界を学習させる
Then the remote control transmitter/receiver unit 17.1
8 to start the learning run of the robot following the planned course shown by the dotted line, the CPLJ9 of the control circuit 6 detects the robot's current position (
x, y) and the traveling direction θ are sequentially stored in the storage unit 10,
This allows the robot to learn the area boundaries to which it should move.

学習コースの走行が完了すると、移動境界が二次元座標
上において、y軸とy軸に対応して単位距離ごとに分割
されたブロックとしてマツプ上に記憶される。
When the travel of the learning course is completed, the moving boundary is stored on the map as blocks divided into units of distance corresponding to the y-axis and the y-axis on the two-dimensional coordinate system.

次いで、ロボットをスタート点または、スタート点に隣
接するA点につかせ、操作部16により無人走行モード
に切換えると、制御回路6は駆動回路12に駆動信号を
送ってロボットの走行を開始する。
Next, when the robot is brought to the start point or point A adjacent to the start point and switched to unmanned running mode using the operation unit 16, the control circuit 6 sends a drive signal to the drive circuit 12 to start the robot running.

このロボットの走行はCPU9によって次のように行な
われる。
The robot moves as follows by the CPU 9.

まず、マツプ上のy軸に沿って縦方向に各ブロックの上
を一直線に進ませる。
First, move in a straight line over each block in the vertical direction along the y-axis on the map.

このとき同時にロボットが通過したブロックが順次記憶
部10に記憶保持される。
At this time, the blocks that the robot passed through are sequentially stored and held in the storage unit 10.

−直線にすすんで境界に達したことを位置識別手段3で
判断すると、その位置から左方向に(未走行列の方向)
に反転させて次の走行列(y軸に沿う)に移行させ、再
び直線走行させる。同時に走行ブロックの左右に障害物
があるか否かを、両側面の超音波センサ4Bで検出し、
障害物があったときはこれを記憶部10に記憶し、ない
とぎは走行可能ブロックとして記憶する。
- When the position identification means 3 determines that the boundary has been reached after traveling in a straight line, move to the left from that position (in the direction of the untraveled line).
The vehicle is then reversed to move to the next running line (along the y-axis), and then run in a straight line again. At the same time, the ultrasonic sensors 4B on both sides detect whether there are any obstacles on the left or right side of the running block.
When there is an obstacle, it is stored in the storage unit 10, and the carving is stored as a traversable block.

直線走行は順次繰り返されることになり、−列づつ通過
ブロックが増え、同時に記憶された走行可能域を消去し
ていく。
Straight travel is repeated in sequence, the number of blocks passed increases by -column, and at the same time, the memorized travelable area is erased.

一方、前面の超音波センサ4Δが前に障害物をF点で感
知すると、上記境界を識別したときと同様に、ロボット
を未走行列の方向へ反転させ、同時に障害物を検知した
ブロックを、記憶部10に記憶させる。
On the other hand, when the front ultrasonic sensor 4Δ detects an obstacle at point F, the robot is reversed in the direction of the untraveled row, and at the same time the block where the obstacle was detected is The information is stored in the storage unit 10.

このようにして、障害物を検知しながらこれと衝突する
ことなく、障害物と境界との間を往復走行し、次いで進
行前方に障害物を検知しなくなると、そのまま縦列方向
に境界を識別するまで進む。
In this way, the vehicle travels back and forth between the obstacle and the boundary without colliding with the obstacle while detecting it, and then, when no obstacle is detected in front of the vehicle, the boundary is identified in the column direction. Proceed until.

このとき、障害物の側面を通り過ぎると、ロボットの左
右に同時に走行可能なブロックが存在することになる。
At this time, when the robot passes the side of the obstacle, there will be blocks that can run simultaneously on both sides of the robot.

この場合、境界に到達してからの反転はいままでとは逆
方向に行ない、障害物によって走行不能となっていた、
背面の未走行域を走行させる。このときの反転を行なっ
たB点は、次に元位買へ復帰させるときのために記憶部
10に記憶させてお(。
In this case, after reaching the boundary, the vehicle would be reversed in the opposite direction, and the vehicle would be unable to travel due to an obstacle.
Drive the untraveled area on the back. Point B, where the reversal was made at this time, is stored in the storage unit 10 for the next time when the yuan is returned to buying.

この取り残した未走行域を、前述したのと同様に縦列方
向に順次反転をしながら移動し、0点において次の反転
方向に既に走行済みのブロックがあることを識別したら
、未走行域の走行終了と判断して、前記B点まで横列方
向に直線走行して戻り、B点の隣りのブロックであるD
点より再び縦列方向への走行を開始する。
This remaining untraveled area is moved while sequentially reversing in the column direction in the same way as described above, and when it is identified that there is a block that has already been traveled in the next reversal direction at the 0 point, the untraversed area is moved. It is judged that the end is completed, and the vehicle moves straight in the row direction to the point B and returns to the block D, which is the block next to the point B.
From this point, it starts running in the column direction again.

このようにして、0点に到達すると、学習した移動領域
において、未走行域がなくなったことを判断し、全ての
移動を完了する。
In this way, when the 0 point is reached, it is determined that there is no untraveled area in the learned movement area, and all movement is completed.

未走行領域が残っているか否かの判別は、記憶部10に
記憶された既走行域と障害物領域とを比較して行なう。
Determination as to whether an untraveled area remains is performed by comparing the traveled area stored in the storage unit 10 with the obstacle area.

この実施例では、既走行の走行列の中に未走行域があと
きは、障害物がな(なった時点で直ちにこの方向へと移
動するようにしたが、いったん全ての境界内の走行を終
了してから、残りの未走行域へと移るようにしてもよい
In this example, when there is an untraveled area in a train that has already traveled, the train immediately moves in that direction as soon as there are no obstacles. After finishing, you may move to the remaining untraveled area.

このロボットの移動中、スィーパ43.44を回転させ
ておくことにより、移動領域の床面清掃がくまなく効率
的に行なわれることになる。
By keeping the sweepers 43 and 44 rotating while the robot is moving, the floor surface of the moving area can be thoroughly and efficiently cleaned.

この実施例では、移動領域の学習をリモートコントロー
ル送受信ユニット17.18によりロボットを無線誘導
して行ったが、移動領域の境界が壁面により仕切られて
いる場合など、障害物センサ4によって壁面を検出しな
がら壁面に沿って一周させることで学習させてもよい。
In this embodiment, learning of the moving area was carried out by wirelessly guiding the robot using the remote control transmitting/receiving units 17 and 18. However, in cases where the boundary of the moving area is partitioned by a wall, the obstacle sensor 4 detects the wall. You may also learn by moving the robot around the wall while doing so.

この場合には、常に壁面と所定の至近距離を保つように
、制御回路6は駆動回路12に信号を送り、ロボットを
壁に衝突させることなく一周させる。
In this case, the control circuit 6 sends a signal to the drive circuit 12 so that the robot always maintains a predetermined close distance from the wall, and makes the robot go around without colliding with the wall.

また、この実施例では縦列方向に直線走行を繰り返すよ
うにしたが、横列方向に往復させることも勿論可能であ
る。
Further, in this embodiment, the linear movement is repeated in the column direction, but it is of course possible to make the movement back and forth in the horizontal direction.

〈発明の効果) 以上のように本発明によれば、予め学習した移動領域内
を、二次元座標としてマトリックス状に縦横のブロック
に細分化し、縦列あるいは横列に一列づつ走行を繰り返
し、かつこの既走行域を順次記憶させる一方、進行前方
に障害物を感知したときは、これと衝突しない範囲で上
記走行を繰り返しつつ障害物の位置を記憶し、障害物を
感知しなくなったならば、敗走行領域と障害物の存在す
る領域とから、未走行の領域を判別し、この部分に移行
して再び一列づつ走行するので、移動領域内に障害物が
存在しても、これと衝突することなく、かつ移動可能域
については最も効率よく全域をくまなく走行でき、した
がって清掃ロボットとして用いるときは、無人で能率よ
く清掃が行なえるのである。
<Effects of the Invention> As described above, according to the present invention, a movement area learned in advance is subdivided into vertical and horizontal blocks in a matrix shape as two-dimensional coordinates, and the movement is repeated one by one vertically or horizontally. While the driving range is sequentially memorized, when an obstacle is detected in front of the vehicle, the position of the obstacle is memorized while repeating the above driving within a range that does not collide with it, and when the obstacle is no longer detected, the route is defeated. It determines the untraveled area from the area and the area where the obstacle exists, moves to this area and travels again one line at a time, so even if there is an obstacle within the moving area, it will not collide with it. , and can travel throughout the movable area in the most efficient manner, so when used as a cleaning robot, cleaning can be carried out efficiently and unattended.

また、その他ロボットを利用しである領域の全域に薬品
を散布したりの作業も、能率的に行なうことができる。
In addition, other tasks such as spraying chemicals over an entire area using a robot can be performed efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のロボット制m装回のブロック回路図、
第2図はロボット本体の概略平面図、第3図は制御動作
を示すフローチャート、第4図はロボットの走行状態を
示す説明図である。 1・・・距離センサ、2・・・方向センサ、3・・・位
taKfiE別手段、4 (4A、4B、4C)・・・
障害物センサ、5・・・タッチセンサ、6・・・制m回
路、8A〜8D・・・入出力ポート、9・・・中央演算
回路(CPU) 、10・・・記憶部(ROM、RAM
) 、12・・・駆動回路、13.14・・・車輪駆動
モータ、16・・・操作部、30・・・ロボット本体、
31〜34・・・バンパー、41゜42・・・駆動輪、
43.44・・・スィーパ。 第2図 第3図
FIG. 1 is a block circuit diagram of the robot control system of the present invention.
FIG. 2 is a schematic plan view of the robot body, FIG. 3 is a flowchart showing control operations, and FIG. 4 is an explanatory diagram showing the running state of the robot. 1...Distance sensor, 2...Direction sensor, 3...Other taKfiE means, 4 (4A, 4B, 4C)...
Obstacle sensor, 5...Touch sensor, 6...Control circuit, 8A to 8D...Input/output port, 9...Central processing circuit (CPU), 10...Storage unit (ROM, RAM)
), 12... Drive circuit, 13.14... Wheel drive motor, 16... Operating unit, 30... Robot body,
31-34...bumper, 41°42...drive wheel,
43.44...Sweepa. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 駆動輪を介して自走する移動ロボットにおいて、ロボッ
トの走行距離及び走行方向の変化を検出してロボットの
二次元座標上の位置を演算してめる位置識別手段と、ロ
ボットの走行前面及び両側面に設けられ障害物を検出す
るセンサと、ロボットの移動領域を二次元座標の単位ブ
ロックごとに分割されたマツプに記憶させる学習手段と
、マツプの各ブロックに沿って縦列または横列にロボッ
トを直線走行させる手段と、直線走行して上記領域の境
界に到達または障害物センサが進行前方所定の範囲に障
害物を検知したときはその場で反転させて次列へ移行さ
せる手段と、既走行ブロックの位置並びに障害物の位置
を順次格納保持する記憶部と、走行前面に障害物がなく
なったときに既走行域と障害物域とを記憶部から読み出
して未走行域をを判別する手段と、この判別結果にもと
づいて移動領域内に未走行域が存在するときはその領域
まで走行列を横切ってロボットを戻1手段とを備えたこ
とを特徴とづる移動ロボットの制御装置。
In a mobile robot that runs on its own through drive wheels, a position identification means that detects changes in the traveling distance and traveling direction of the robot and calculates the robot's position on two-dimensional coordinates, and A sensor installed on the surface to detect obstacles, a learning means that stores the movement area of the robot in a map divided into unit blocks of two-dimensional coordinates, and a learning means that stores the robot's movement area in a map divided into unit blocks of two-dimensional coordinates. a means for causing the block to run; a means for moving in a straight line to the next line by reversing the block when the boundary of the area is reached or an obstacle sensor detects an obstacle in a predetermined range in front of the moving block; a storage unit for sequentially storing and holding the positions of the vehicle and the positions of obstacles; and means for reading out the traveled area and the obstacle area from the storage unit and determining the untraversed area when there are no obstacles in front of the vehicle; 1. A control device for a mobile robot, comprising: a means for returning the robot across the traveling line to the untraversed area when there is an untraversed area within the moving area based on the determination result.
JP58200360A 1983-10-26 1983-10-26 Controller of moving robot Pending JPS6093522A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58200360A JPS6093522A (en) 1983-10-26 1983-10-26 Controller of moving robot
EP84100065A EP0142594B1 (en) 1983-10-26 1984-01-04 Control system for mobile robot
US06/567,978 US4674048A (en) 1983-10-26 1984-01-04 Multiple robot control system using grid coordinate system for tracking and completing travel over a mapped region containing obstructions
DE8484100065T DE3478824D1 (en) 1983-10-26 1984-01-04 Control system for mobile robot
AT84100065T ATE44322T1 (en) 1983-10-26 1984-01-04 CONTROL SYSTEM FOR A MOVABLE ROBOT.
CA000445143A CA1217836A (en) 1983-10-26 1984-01-12 Control system for mobile robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200360A JPS6093522A (en) 1983-10-26 1983-10-26 Controller of moving robot

Publications (1)

Publication Number Publication Date
JPS6093522A true JPS6093522A (en) 1985-05-25

Family

ID=16422999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200360A Pending JPS6093522A (en) 1983-10-26 1983-10-26 Controller of moving robot

Country Status (1)

Country Link
JP (1) JPS6093522A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150407A (en) * 1985-12-24 1987-07-04 Komatsu Forklift Kk Automatic guidance device for sweeper
JPS63131207A (en) * 1986-11-20 1988-06-03 Sanyo Electric Co Ltd Running system for moving vehicle for work
JPS63156203A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Autonomous working vehicle
JPS63311513A (en) * 1987-06-15 1988-12-20 Sanyo Electric Co Ltd Mobile working vehicle
JPH01187606A (en) * 1988-01-21 1989-07-27 Mitsubishi Heavy Ind Ltd Traveling track calculating method for traveling body
JPH096433A (en) * 1995-06-19 1997-01-10 Kawasaki Heavy Ind Ltd Automated guided vehicle and its non-contact type obstacle detecting method
KR100486578B1 (en) * 2002-09-12 2005-05-03 엘지전자 주식회사 Work space mapping method using robot
WO2005096114A1 (en) * 2004-04-01 2005-10-13 Seoul National University Industry Foundation Method for avoiding collision of multiple robots by using extended collision map, and storage medium readable by computer recording the method
JP2006260348A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Autonomous travelling device
WO2007066872A1 (en) * 2005-12-09 2007-06-14 Electronics And Telecommunications Research Institute Method of mapping and navigating mobile robot by artificial landmark and local coordinate
JP2017511549A (en) * 2014-04-14 2017-04-20 エコバクス ロボティクス カンパニー リミテッドEcovacs Robotics Co.,Ltd. Obstacle avoidance walking method of self-propelled robot
JP2017213429A (en) * 2017-08-16 2017-12-07 シャープ株式会社 Self-propelled vacuum cleaner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597608A (en) * 1979-01-19 1980-07-25 Mitsubishi Electric Corp Automatic cleaner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597608A (en) * 1979-01-19 1980-07-25 Mitsubishi Electric Corp Automatic cleaner

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150407A (en) * 1985-12-24 1987-07-04 Komatsu Forklift Kk Automatic guidance device for sweeper
JPS63131207A (en) * 1986-11-20 1988-06-03 Sanyo Electric Co Ltd Running system for moving vehicle for work
JPS63156203A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Autonomous working vehicle
JPS63311513A (en) * 1987-06-15 1988-12-20 Sanyo Electric Co Ltd Mobile working vehicle
JPH01187606A (en) * 1988-01-21 1989-07-27 Mitsubishi Heavy Ind Ltd Traveling track calculating method for traveling body
JPH096433A (en) * 1995-06-19 1997-01-10 Kawasaki Heavy Ind Ltd Automated guided vehicle and its non-contact type obstacle detecting method
KR100486578B1 (en) * 2002-09-12 2005-05-03 엘지전자 주식회사 Work space mapping method using robot
WO2005096114A1 (en) * 2004-04-01 2005-10-13 Seoul National University Industry Foundation Method for avoiding collision of multiple robots by using extended collision map, and storage medium readable by computer recording the method
JP2006260348A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Autonomous travelling device
WO2007066872A1 (en) * 2005-12-09 2007-06-14 Electronics And Telecommunications Research Institute Method of mapping and navigating mobile robot by artificial landmark and local coordinate
KR100748245B1 (en) * 2005-12-09 2007-08-10 한국전자통신연구원 Method for mapping and navigating mobile robot by artificial landmark and local coordinate
JP2017511549A (en) * 2014-04-14 2017-04-20 エコバクス ロボティクス カンパニー リミテッドEcovacs Robotics Co.,Ltd. Obstacle avoidance walking method of self-propelled robot
JP2017213429A (en) * 2017-08-16 2017-12-07 シャープ株式会社 Self-propelled vacuum cleaner

Similar Documents

Publication Publication Date Title
EP0142594B1 (en) Control system for mobile robot
US5896488A (en) Methods and apparatus for enabling a self-propelled robot to create a map of a work area
KR930000081B1 (en) Cleansing method of electric vacuum cleaner
US6119057A (en) Autonomous vehicle with an easily set work area and easily switched mode
JP3395874B2 (en) Mobile vehicle
CN109997089A (en) Floor treatment machine and floor treatment method
JPS62117012A (en) Self-travelling of self-travelling type cleaner and floor cleaner to implement the same
JPS6093522A (en) Controller of moving robot
JPS62154008A (en) Travel control method for self-travel robot
JP3237500B2 (en) Autonomous mobile work vehicle
JP3528200B2 (en) Self-propelled vacuum cleaner
JP3401023B2 (en) Unmanned vehicle control method
JPH06149364A (en) Controller for unmanned traveling car
JPH0379723B2 (en)
JPH06131044A (en) Controller for unmanned traveling car
JPH0747045A (en) Self-mobile electric vacuum cleaner
JP2005346477A (en) Autonomous travelling body
JP2791048B2 (en) Control device for self-propelled robot
JP3166250B2 (en) Cleaning robot
JP2863361B2 (en) Unmanned vehicle control method
JPH03292513A (en) Mobile robot
JP3036863B2 (en) Traveling robot
JPH05204447A (en) Automatic cleaning device
KR100635829B1 (en) Cleaning area driving method of robot cleaner
JPH0135361B2 (en)