KR101775334B1 - Apparatus For Controlling Output Voltage by Using Variable Switch Capacitor - Google Patents
Apparatus For Controlling Output Voltage by Using Variable Switch Capacitor Download PDFInfo
- Publication number
- KR101775334B1 KR101775334B1 KR1020150052569A KR20150052569A KR101775334B1 KR 101775334 B1 KR101775334 B1 KR 101775334B1 KR 1020150052569 A KR1020150052569 A KR 1020150052569A KR 20150052569 A KR20150052569 A KR 20150052569A KR 101775334 B1 KR101775334 B1 KR 101775334B1
- Authority
- KR
- South Korea
- Prior art keywords
- diode
- switch
- control pulse
- input
- output voltage
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 claims description 7
- 241000989913 Gunnera petaloidea Species 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/145—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/155—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
-
- H02J7/022—
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Abstract
Disclosed is an output voltage control apparatus using a variable switch capacitor.
Among the two electronic switches, two series diodes, and additional gate driver circuits commonly used in variable switch capacitors, a new type of variable switch capacitor that can implement a variable switch capacitor by connecting only one or two electronic switches to the rectifier And an output voltage control device using the same.
Description
The present embodiment relates to an output voltage control apparatus using a variable switch capacitor.
The contents described below merely provide background information related to the present embodiment and do not constitute the prior art.
1A is a circuit diagram when a variable switch capacitor C v is used in a conventional LC parallel resonance circuit.
The power conversion circuit shown in FIG. 1A can control the output characteristics (for example, the voltage gain) of the circuit to a desired value by serially or in parallel resonance of the inductance L s of the inductor and the capacitance C p of the capacitor. R L in FIG. 1A denotes various loads such as a battery and an LED. The power conversion circuit shown in FIG. 1A can arbitrarily control the output voltage (or the output power) when the values of L s and C p are changed. The power conversion circuit when the output voltage deviates from the target value is changed to L s, C p value of unwanted, again L s, control the C p value should be controlled to the target output voltage.
If the output voltage deviates from the target voltage in a preset L s , C p environment in the power conversion circuit, the user usually changes the value of L s , C p by changing the inductor or capacitor in the power conversion circuit. However, the above-mentioned passive replacement method provides many inconveniences to the user. Therefore, there is a need for a technique that can control the output voltage to a desired output voltage by electronically controlling the LC resonance characteristics by changing the value of L s or C p in the power conversion circuit.
FIG. 1A is an example of a wireless power circuit diagram which can be mainly applied to the present invention, and FIG. 1A is a circuit shown in FIG. 1A (the primary side is a series resonance and the secondary side is a parallel resonance). 1A is a final equivalent circuit diagram of FIGS. 1A and 1B. (D) of FIG. 1A shows a case where the value of C v, which is a capacitance obtained by electronically changing C p in the LC resonance (serial or parallel) circuit, is varied, the resonance frequency is adjusted under a fixed operating frequency, (Or voltage gain G V ) is controlled. As shown in (a) of Figure 1a power supply voltage V s or the load resistance R L turns, or changes the Ls corresponding to the distance changes between the transmitting and receiving unit of a wireless power system as shown in Figure 1a (b) The output voltage will deviate from the target voltage. In the above case, as shown in (c) of FIG. 1A, a plurality of capacitors are connected in parallel to obtain a desired voltage gain (or output voltage) value by changing the C v value, Tuning is possible, but there is a problem of using multiple capacitors and switches.
1B is a circuit diagram of a variable switch capacitor using a bi-directional switch. FIG. 1 (b) is a graph showing (before) the variable switch capacitor application and after (after) application. As shown in FIG. 1B, two switches S 1 and S 2 and two diodes D 1 and D 2 are connected in parallel with a capacitor to implement a variable switching capacitor in a power conversion circuit, A variable switch capacitor can be realized. In other words, in the power conversion circuit, the effective capacitance value of the capacitor is adjusted by using the pulse width control of the electronic switch (S 1 , S 2 ), and the LC resonance frequency is electronically controlled by adjusting the effective capacitance value to control the output voltage . The aforementioned variable switch capacitance value of C v is a variable according to a duty d as shown in
(C v : variable capacitance, d : switching duty, C p : capacitance of the previously connected C p )
In the power conversion circuit, bidirectional switches (S 1 , S 2 ) are connected in parallel with the resonant capacitor to adjust the effective capacitance through the switching duty d . In the case of the switch duty in the power conversion circuit, 0 < d < 0.5, and Equation (1) holds.
However, since the circuit of FIG. 1B requires an additional gate driver circuit for switching the diode and the floating ground to be connected in series with the switch when adjusting the load voltage (V L ), additional circuit There is a problem that a device is required.
The present embodiment is a new type of switch capable of implementing a variable switch capacitor by connecting only one or two electronic switches to a rectifier among two electronic switches, two serial diodes and additional gate driver circuits commonly used in variable switch capacitors An object of the present invention is to provide an output voltage control apparatus using a variable switch capacitor.
According to an aspect of the present invention, a resonance circuit part is connected to an input power source (v s ) for controlling an output voltage, harmonic attenuation using a LC resonance characteristic, power factor adjustment, ; Holding portion connected to said resonant circuit, rectifies the alternating current generated by the input power (v s) in direct current; And applying the at least one diode and connected in parallel, the input power (v s) the duty cycle (Duty Cycle) based on the same frequency of the control pulse signal and the operating frequency of the plurality of diodes (Diode) included in the rectifying section And a variable switching unit for controlling the LC resonance frequency to adjust the output voltage V L of the rectifying unit to be controlled.
As described above, according to the present embodiment, among the two electronic switches, two serial diodes, and additional gate driver circuits commonly used in the variable switch capacitor, only one or two of the electronic switches are connected to the rectifier, A variable switch capacitor of a new type capable of implementing a variable switch capacitor can be realized.
According to the present embodiment, not only is it possible to apply variously to a wireless power transmission, an illumination power control circuit, a battery charging circuit, an AC-DC converter, and the like, but also has an effect of being highly valuable both technically and economically.
1A is a circuit diagram when a variable switch capacitor C v is used in a conventional LC parallel resonance circuit.
1B is a circuit diagram when a variable switch capacitor is implemented by switching in a positive direction using two switches in parallel with a capacitor C p .
2A is a circuit diagram in which a variable switch capacitor using one switch is applied to an LC parallel resonance type full bridge rectifier according to the present embodiment.
2B is a graph showing a result of applying a variable switch capacitor using one switch to an LC parallel resonance type full bridge rectifier according to the present embodiment.
3A is a circuit diagram in which a variable switch capacitor using two switches is applied to an LC parallel resonance type full bridge rectifier according to the present embodiment.
3B is a graph showing a result of applying a variable switch capacitor using two switches to an LC parallel resonance type full bridge rectifier according to the present embodiment.
FIG. 4A is a circuit diagram of a LC parallel resonance type first half bridge rectifier according to the present embodiment in which one switch is connected to a variable switch capacitor.
4B is a graph showing a result of applying a variable switch capacitor by connecting one switch to an LC parallel resonance type first half bridge rectifier according to the present embodiment.
FIG. 5A is a circuit diagram of a LC parallel resonant type second half bridge rectifier according to the present embodiment in which one switch is connected to a variable switch capacitor.
5B is a graph showing a result of applying a variable switch capacitor by connecting one switch to an LC parallel resonance type second half bridge rectifier according to the present embodiment.
6A is a circuit diagram of two switches applied to a full bridge circuit of an LCC series-parallel resonance type according to the present embodiment.
6B is an equivalent circuit diagram of an LCC parallel resonance circuit according to the present embodiment.
FIG. 6C is a graph showing the characteristics of G v -ω s according to the variation of C v in the present embodiment.
Hereinafter, the present embodiment will be described in detail with reference to the accompanying drawings.
2A is a circuit diagram in which a variable switch capacitor using one switch is applied to an LC parallel resonance type full bridge rectifier according to the present embodiment. 2B is a graph showing a result of applying a variable switch capacitor using one switch to an LC parallel resonance type full bridge rectifier according to the present embodiment.
In the present embodiment, 'variable switch capacitor' refers to an effective capacitance value of a component corresponding to a fundamental wave of an LC resonance frequency by applying a switching duty of an electronic switch to a physical capacitor C p Control technology. In other words, the output voltage can be controlled by electronically adjusting the LC resonance frequency value through the variable switch capacitor.
The output voltage control device (power conversion circuit) using one switch in the LC parallel resonance type full bridge rectifier according to the present embodiment includes a
The
If the
The case where the
The
The
When the
The
The operation of the
A case where the
The case where the first switch S 1 is a general switch will be described. The first switch S 1 has one end connected to the contact of the first diode D 1 and the second diode D 2 . The other end of the first switch S 1 is connected to the first control pulse generator G 1 . When the first control pulse signal is applied to the other end of the first switch S 1 , the duty cycle of the second diode D 2 is adjusted based on the first control pulse signal.
The case where the first switch S 1 is a MOSFET (Metal Oxide Silicon Field Effect Transistor) will be described. When the first switch S 1 is implemented as a MOSFET, the first switch S 1 includes a first input terminal Gate, a first current input terminal Drain, and a first current output terminal Source. The first input terminal is connected to the first control pulse generator (G 1 ). The first current receiving end is connected to the contacts of the first diode (D 1 ) and the second diode (D 2 ). A first current take-off end is connected to the node of the second diode (D 2). A first switch (S 1) is switched such that when the first control pulse signal to the first input terminal is applied, the duty cycle of the second diode (D 2) control on the basis of the first control pulse signal.
The
As shown in FIG. 2A, a rectifying section 220 (including a first diode (D 1 ) to a diode (D 1 ) to a diode fourth diode (D 4)) one of the diodes can implement the variable switch capacitor by connecting one of the first switch (S 1) to the (first diode (D 1) ~ a fourth diode (D 4)) in parallel of have. LC parallel resonance with the full bridge (or a series resonance is possible) when the one first switch (S 1) to a circuit connection, the first switch (S 1) is a second diode (D 2) or the fourth diode ( D 4 and connected to the ground. However, the present invention is not limited thereto.
As shown in FIG. 2B, when a variable switch capacitor using a single switch is applied to a full bridge rectifier of an LC parallel resonance type in a power conversion circuit, a desired output voltage (or a maximum output voltage ) Can be controlled. Considering FIGS. 2A and 2B together, it is possible to implement a variable switch capacitor by using only two switches, two serial diodes, and one switch instead of an additional gate driver in the conventional power conversion circuit.
The resonance frequency can be set near the operating frequency by using the duty control of the variable switch capacitor in the output voltage control device (power conversion circuit). The output voltage can be adjusted by adjusting the duty of the variable switch capacitor in the output voltage control device (power conversion circuit). 2A, only one first switch S 1 is applied to the rectifying
As shown in FIG. 2A, the output voltage can be adjusted by changing the resonance frequency through duty control of the variable switch capacitor. In the output voltage control device (power conversion circuit) according to the present embodiment, an additional level shift circuit is not necessary since it is in common with the ground of the output terminal. Thus, application of the variable switch capacitor using only one switch It is possible.
①. When the output voltage control device (power conversion circuit) is applied as a main application, the following operation can be performed.
A. In the case of wireless charging of an electric vehicle such as an on-line electric vehicle (OLEV), a change in the external environment (change in core characteristics due to changes in air gap or temperature / humidity between x and y directions) The resonance point can be automatically tuned.
Ⓑ. Variable switch capacitors applied to the present embodiment are useful when controlling the maximum voltage or the desired voltage even under other load conditions such as an LED (Light Emitting Diode) or a battery.
②. The resonance method can be both serial and parallel, and the switch implemented in the circuit can implement the soft switching.
3A is a circuit diagram in which a variable switch capacitor using two switches is applied to an LC parallel resonance type full bridge rectifier according to the present embodiment. 3B is a graph showing a result of applying a variable switch capacitor using two switches to an LC parallel resonance type full bridge rectifier according to the present embodiment.
The output voltage control device (power conversion circuit) using two switches in the LC parallel resonance type full bridge rectifier according to the present embodiment includes a
The
The
The
As shown in FIG. 3A, a case where the
The
The operation of the
The case where the
The case where the first switch S 1 and the second switch S 2 are general switches will be described. One end of the first switch S 1 is connected to the contact of the first diode D 1 and the second diode D 2 . The other end of the first switch S 1 is connected to the first control pulse generator G 1 . When the first control pulse signal is applied to the other end of the first switch S 1 , the duty cycle of the second diode D 2 is adjusted based on the first control pulse signal. One end of the second switch S 2 is connected to the contact of the third diode D 3 and the fourth diode D 4 . And the other end of the second switch S 2 is connected to the second control pulse generator G 2 . When the second control pulse signal is applied to the other end of the second switch S 2 , the duty cycle of the fourth diode D 4 is adjusted based on the second control pulse signal.
The case where the first switch S 1 and the second switch S 2 are MOSFETs will be described. The first switch S 1 includes a first input terminal, a first current input terminal, and a first current output terminal. The first input terminal is connected to the first control pulse generator (G 1 ). The first current receiving end is connected to the contacts of the first diode (D 1 ) and the second diode (D 2 ). A first current take-off end is connected to the node of the second diode (D 2). A first switch (S 1) is switched such that when the first control pulse signal to the first input terminal is applied, the duty cycle of the second diode (D 2) control on the basis of the first control pulse signal. The second switch S 2 includes a second input terminal, a second current input terminal, and a second current output terminal. The second input is connected with the second control pulse generator (G 2). The second current input end is connected to the contact of the third diode D 3 and the fourth diode D 4 . A second current take-off end is connected to the node of the fourth diode (D 4). A second switch (S 2) is when the second control pulse signal to the second input is applied, the switching so that the duty cycle of the fourth diode (D 4) controlled on the basis of the second control pulse signal.
In the output voltage control device (power conversion circuit), two switches are connected in parallel to the diode in the full-wave rectifier, so that it can be realized as a variable switch capacitor. The resonance frequency can be set near the operating frequency by using the duty control of the variable switch capacitor in the output voltage control device (power conversion circuit). The output voltage can be adjusted by adjusting the duty of the variable switch capacitor in the output voltage control device (power conversion circuit).
As shown in FIG. 3B, when a variable switch capacitor using two switches is applied to an LC parallel resonance type full bridge rectifier in an output voltage control device (power conversion circuit), the desired output Voltage (or maximum output voltage) can be controlled.
Considering FIGS. 3A and 3B together, it is possible to implement a variable switch capacitor by connecting two series diodes and only two switches instead of an additional gate driver circuit in the conventional power conversion circuit. As shown in FIG. 2A, the power conversion circuit may further include only one switch to implement a variable switch capacitor. However, two switches may be additionally connected as shown in FIG. 3A to convert the effective capacitance range of the capacitor C p into a single switch It can be used about 2 times as wide as the case of additional connection.
FIG. 4A is a circuit diagram of a LC parallel resonance type first half bridge rectifier according to the present embodiment in which one switch is connected to a variable switch capacitor. 4B is a graph showing a result of applying a variable switch capacitor by connecting one switch to an LC parallel resonance type first half bridge rectifier according to the present embodiment.
The output voltage control device (power conversion circuit) using one switch in the LC half-bridge resonance type first half bridge rectifier according to the present embodiment includes a
The
The
The rectifying
The
The operation of the
The case where the
The case where the third switch S 3 is a general switch will be described. One end of the third switch S 3 is connected to the cathode of the first diode D 1 . The other end (input end) of the third switch S 3 is connected to the third control pulse generator G 3 . 3 when the third control pulse signal to the other end (input end) of the switch (S 3) is applied, a third switch (S 3) is the duty cycle control of the first diode (D 1) on the basis of a third control pulse signal .
The case where the third switch S 3 is a MOSFET will be described. The third switch S 3 includes a third input terminal, a third current input terminal, and a third current output terminal. And the third input terminal is connected to the third control pulse generator G 3 . The third current input end is connected to the cathode of the first diode D 1 . The third current lead-out end is connected to the other end of the
The resonance frequency can be set near the operating frequency by using the duty control of the variable switch capacitor in the output voltage control device (power conversion circuit). The output voltage can be adjusted by adjusting the duty of the variable switch capacitor in the output voltage control device (power conversion circuit).
As shown in Fig. 4A, it is applicable to a half-wave rectifier as well as a full-wave rectifier in a power conversion circuit. As shown in FIG. 4B, when a variable switch capacitor is connected to a first half bridge rectifier of the LC parallel resonance type in the power conversion circuit, a desired output voltage Maximum output voltage) can be controlled.
FIG. 5A is a circuit diagram of a LC parallel resonant type second half bridge rectifier according to the present embodiment in which one switch is connected to a variable switch capacitor. 5B is a graph showing a result of applying a variable switch capacitor by connecting one switch to an LC parallel resonance type second half bridge rectifier according to the present embodiment.
The output voltage control device (power conversion circuit) using one switch in the second half bridge rectifier of the LC parallel resonance type according to the present embodiment includes a
The
The
The rectifying
The
The operation of the
The case where the
The case where the third switch S 3 is a general switch will be described. The third switch S 3 is connected at one end to the contact of the first diode D 1 and the second diode D 2 . The other end of the third switch S 3 is connected to the third control pulse generator G 3 . A third switch (S 3) is when a third control signal pulse is applied to the other end, and so that the switching duty cycle of the second diode (D 2) control on the basis of a third control signal pulse.
The case where the third switch S 3 is a MOSFET will be described. When the third switch S 3 is implemented as a MOSFET, the third switch S 3 includes a third input terminal, a third current input terminal, and a third current output terminal. And the third input terminal is connected to the third control pulse generator G 3 . The third current input end is connected to the contacts of the first diode (D 1 ) and the second diode (D 2 ). The third current lead is connected to the node of the second diode (D 2 ). A third switch (S 3) is when a third control signal pulse is applied to the third input terminal, and switches such that the duty cycle of the second diode (D 2) control on the basis of a third control signal pulse.
The resonance frequency can be set near the operating frequency by using the duty control of the variable switch capacitor in the output voltage control device (power conversion circuit). The output voltage can be adjusted by adjusting the duty of the variable switch capacitor in the output voltage control device (power conversion circuit). As shown in Fig. 5A, it is applicable to a half-wave rectifier as well as a full-wave rectifier in a power conversion circuit.
The output voltage control device (power conversion circuit) using the LC half-bridge resonance type second half bridge rectifier is configured such that the third switch S 3 is connected in parallel with the second diode D 2 However, the first diode D 1 is operated by two switches by connecting an additional switch in parallel to the first diode D 1 .
The output voltage control device (power conversion circuit) using the second half bridge rectifier of the LC parallel resonance type operates with the first load capacitor C L1 , the second load capacitor C L2 and the first capacitance element C P However, it is possible to operate without the first capacitance element (C P ).
FIG. 5B shows the voltage gain according to the first capacitance element C P. As shown in FIG. 5B, when a variable switch capacitor is connected to a second half bridge rectifier of the LC parallel resonance type in the power conversion circuit and one switch is connected, the desired output voltage Maximum output voltage) can be controlled.
FIG. 6A is a circuit diagram showing two switches applied to a full bridge circuit of the LCC series-parallel resonance type according to the present embodiment, and FIG. 6B is an equivalent circuit diagram of the LCC parallel resonant circuit according to this embodiment.
The output voltage control device (power conversion circuit) using one switch in the full bridge rectifier of the LCC parallel resonance type according to the present embodiment includes a
The
The
The rectifying
The
The operation of the
The case where the
The case where the first switch S 1 and the second switch S 2 are general switches will be described. One end of the first switch S 1 is connected to the contact of the first diode D 1 and the second diode D 2 . The other end of the first switch S 1 is connected to the first control pulse generator G 1 . When the first control pulse signal is applied to the other end of the first switch S 1 , the duty cycle of the second diode D 2 is adjusted based on the first control pulse signal. One end of the second switch S 2 is connected to the contact of the third diode D 3 and the fourth diode D 4 . And the other end of the second switch S 2 is connected to the second control pulse generator G 2 . When the second control pulse signal is applied to the other end of the second switch S 2 , the duty cycle of the fourth diode D 4 is adjusted based on the second control pulse signal.
The case where the first switch S 1 and the second switch S 2 are MOSFETs will be described. The first switch S 1 includes a first input terminal, a first current input terminal, and a first current output terminal. The first input terminal is connected to the first control pulse generator (G 1 ). The first current receiving end is connected to the contacts of the first diode (D 1 ) and the second diode (D 2 ). A first current take-off end is connected to the node of the second diode (D 2). A first switch (S 1) is switched such that when the first control pulse signal to the first input terminal is applied, the duty cycle of the second diode (D 2) control on the basis of the first control pulse signal. The second switch S 2 includes a second input terminal, a second current input terminal, and a second current output terminal. The second input is connected with the second control pulse generator (G 2). The second current input end is connected to the contact of the third diode D 3 and the fourth diode D 4 . A second current take-off end is connected to the node of the fourth diode (D 4). A second switch (S 2) is when the second control pulse signal to the second input is applied, the switching so that the duty cycle of the fourth diode (D 4) controlled on the basis of the second control pulse signal.
In the LCC series parallel resonance type full-wave rectification circuit, the output voltage is controlled through the change of the variable switch capacitance value (C v ). 6B and 6C, the voltage gain value G v in the full-wave rectification circuit is expressed by Equation (2), and the impedance value for calculating Equation (2) is expressed by Equation (3) same.
(G v : voltage gain value, X s : impedance value due to inductor L s and capacitor C s , X p : impedance value due to capacitor C p , R 0 : load resistance value)
(X s : Impedance value due to inductor L s and capacitor C s , X p : Impedance value due to capacitor C p , R 0 : Load resistance value, α: Conversion ratio by switching the bridge diode)
6C is a graph showing characteristics of G v -ωs according to the variation of the variable capacitor value C v in the present embodiment. LCC series parallel resonance type Full wave rectifier circuit controls output voltage through Cv change. As shown in FIG. 6C, by applying a variable switch capacitor in which two switches are connected to a full bridge circuit of an LCC series-parallel resonance type in the power conversion circuit, a desired output voltage Output voltage) can be controlled.
The foregoing description is merely illustrative of the technical idea of the present embodiment, and various modifications and changes may be made to those skilled in the art without departing from the essential characteristics of the embodiments. Therefore, the present embodiments are to be construed as illustrative rather than restrictive, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be construed according to the following claims, and all technical ideas within the scope of equivalents thereof should be construed as being included in the scope of the present invention.
210: Resonance circuit part 220:
230: Variable switching unit 240: Load unit
Claims (10)
Holding portion connected to said resonant circuit, rectifies the alternating current generated by the input power (v s) in direct current; And
Applying at least one diode and connected in parallel, and the duty cycle (Duty Cycle) based on the input power (v s) the same frequency of the control pulse signal and the operating frequency of the plurality of diodes (Diode) included in the rectifying section and A variable switching unit for adjusting the LC resonance frequency so that the output voltage V L of the rectifying unit is adjusted,
Wherein the rectifying part includes a first diode (D 1 ) and a second diode (D 2 ), the first diode (D 1 ) being connected in series across the output of the resonant circuit part, the first diode (D 1) and the node is connected to the second diode (D 2) to the node in the variable switching unit and Kane sword and once the connection of the first diode (D 1), the other end of the resonant circuit connected to the base of the third switch includes a (S 3), the third switch (S 3) is the third control pulse generator (G 3) of the rectified input voltage (v o) on the basis of the third control pulse signal input from the So that the wave component is controlled.
The variable-
And turning on when the current polarity of the input power source is 0 in the negative direction in the diode of the rectifying part for positive half-wave rectification based on the control pulse signal, And then switches to turn off,
When the current polarity of the input power source is 0 in the positive direction in the diode of the rectifier section for rectifying the negative voltage half-wave based on the control pulse signal, it is turned on and maintained in the ON state for a predetermined period of time, And performs soft switching,
The effective capacitance value of the capacitor C p connected to both ends of the input power source v s is changed due to the soft switching and the LC resonance frequency is changed according to the change of the effective capacitance value so that the output voltage V L And the output voltage is controlled to be adjusted.
The third switch S 3 includes a third input terminal, a third current input terminal, a third current output terminal, the third input terminal is connected to the third control pulse generator G 3 , The current input end is connected to the cathode of the first diode D 1 , the third current output end is connected to the other end of the resonant circuit part, and when the third control pulse signal is applied to the third input end, And the duty cycle of the first diode (D 1 ) is adjusted based on the third control pulse signal.
Holding portion connected to said resonant circuit, rectifies the alternating current generated by the input power (v s) in direct current; And
Applying at least one diode and connected in parallel, and the duty cycle (Duty Cycle) based on the input power (v s) the same frequency of the control pulse signal and the operating frequency of the plurality of diodes (Diode) included in the rectifying section and A variable switching unit for adjusting the LC resonance frequency so that the output voltage V L of the rectifying unit is adjusted,
Include, but, of a first load capacitor (C L1) and a second load capacitor and a second leg (C L2) connected in series haha further comprised of parts of the load, the holding portion includes a first diode (D 1) on, and the cake method of the node and a second diode (D 2) comprises a first leg connected in series, are connected in parallel wherein the second leg of the first leg, one end of said first diode of said resonant circuit ( D 1 ) and the second diode (D 2 ), and the other end of the resonance circuit part is connected to a contact point between the first load capacitor (C L1 ) and the second load capacitor (C L2 ) The third switch S 3 includes a third switch S 3 connected in parallel to the second diode D 2 and a third switch S 3 connected to the third control pulse generator G 3 , So that the fundamental wave component of the rectified input voltage (v o ) is adjusted based on the pulse signal And outputting the output voltage.
The third switch S 3 includes a third input terminal, a third current input terminal, a third current output terminal, the third input terminal is connected to the third control pulse generator G 3 , The current input end is connected to the contact of the first diode D 1 and the second diode D 2 and the third current output end is connected to the node of the second diode D 2 , And switches the duty cycle of the second diode (D 2 ) to be adjusted based on the third control pulse signal when the third control pulse signal is applied to the third input terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150052569A KR101775334B1 (en) | 2015-04-14 | 2015-04-14 | Apparatus For Controlling Output Voltage by Using Variable Switch Capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150052569A KR101775334B1 (en) | 2015-04-14 | 2015-04-14 | Apparatus For Controlling Output Voltage by Using Variable Switch Capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160122913A KR20160122913A (en) | 2016-10-25 |
KR101775334B1 true KR101775334B1 (en) | 2017-09-12 |
Family
ID=57446300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150052569A KR101775334B1 (en) | 2015-04-14 | 2015-04-14 | Apparatus For Controlling Output Voltage by Using Variable Switch Capacitor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101775334B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101880267B1 (en) * | 2017-02-07 | 2018-07-23 | (주)그린파워 | current collector converter switching method for broad resonance frequency allowed of wireless power transfer |
KR102639744B1 (en) * | 2018-11-21 | 2024-02-21 | 엘지전자 주식회사 | Wireless power receiving apparatus for controlling output voltage |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080083969A1 (en) | 2006-10-06 | 2008-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Rectifier circuit, semiconductor device using the rectifier circuit, and driving method thereof |
US20130272044A1 (en) * | 2010-08-13 | 2013-10-17 | Auckland Uniservices Limited | Inductive power transfer control |
US20140313801A1 (en) * | 2011-11-24 | 2014-10-23 | Paul Vahle Gmbh & Co. Kg | Controlled rectifier with a b2 bridge and only one switching device |
-
2015
- 2015-04-14 KR KR1020150052569A patent/KR101775334B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080083969A1 (en) | 2006-10-06 | 2008-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Rectifier circuit, semiconductor device using the rectifier circuit, and driving method thereof |
US20130272044A1 (en) * | 2010-08-13 | 2013-10-17 | Auckland Uniservices Limited | Inductive power transfer control |
US20140313801A1 (en) * | 2011-11-24 | 2014-10-23 | Paul Vahle Gmbh & Co. Kg | Controlled rectifier with a b2 bridge and only one switching device |
Also Published As
Publication number | Publication date |
---|---|
KR20160122913A (en) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6485198B2 (en) | Resonant inverter and resonant power supply | |
KR101288230B1 (en) | Battery charging device for electric vehicle | |
US10320239B2 (en) | Wireless power receiver | |
KR102432265B1 (en) | Rectifier circuit and device comprising same | |
US20180309374A1 (en) | Converter and driving method thereof | |
TW201607226A (en) | On and off controlled resonant DC-DC power converter | |
JP2009142085A (en) | Device for transferring energy and semiconductor device for controlling energy transfer | |
US9312778B2 (en) | Power supply device | |
EP2985846A1 (en) | Wireless power transmission | |
JP5324009B2 (en) | Power receiving device and non-contact power transmission system using the same | |
US20160049858A1 (en) | Lc resonant converter using phase shift switching method | |
US9433060B2 (en) | Power factor correction circuit, operating device for a light-emitting means and method for controlling a power factor correction circuit | |
US20130170253A1 (en) | Auxiliary power generation circuit | |
KR101775334B1 (en) | Apparatus For Controlling Output Voltage by Using Variable Switch Capacitor | |
JP7087887B2 (en) | Switching power supply | |
GB2315375A (en) | Fluorescent lamp drive circuit | |
US9350255B2 (en) | DC-DC conversion device including pulse width modulation control | |
US11356029B2 (en) | Rectifying circuit and switched-mode power supply incorporating rectifying circuit | |
KR20150047648A (en) | ZVZCS Switching Converter Using Auto-Transformer | |
CN111213310B (en) | Resonant DC-DC converter | |
JP2009545945A (en) | DC-DC power converter with switch control circuit coupled magnetically | |
KR101456654B1 (en) | A common-core power factor correction resonant converter | |
KR20170094290A (en) | Inductive power receiver | |
TWI543513B (en) | Resonant converter | |
JP2015008589A (en) | Switching power-supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |