[go: nahoru, domu]

KR20060048778A - Phrase-based searching in an information retrieval system - Google Patents

Phrase-based searching in an information retrieval system Download PDF

Info

Publication number
KR20060048778A
KR20060048778A KR1020050068057A KR20050068057A KR20060048778A KR 20060048778 A KR20060048778 A KR 20060048778A KR 1020050068057 A KR1020050068057 A KR 1020050068057A KR 20050068057 A KR20050068057 A KR 20050068057A KR 20060048778 A KR20060048778 A KR 20060048778A
Authority
KR
South Korea
Prior art keywords
phrase
document
phrases
query
documents
Prior art date
Application number
KR1020050068057A
Other languages
Korean (ko)
Other versions
KR101223172B1 (en
Inventor
엘. 패터슨 안나
Original Assignee
구글, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구글, 인코포레이티드 filed Critical 구글, 인코포레이티드
Publication of KR20060048778A publication Critical patent/KR20060048778A/en
Application granted granted Critical
Publication of KR101223172B1 publication Critical patent/KR101223172B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/3331Query processing
    • G06F16/3332Query translation
    • G06F16/3338Query expansion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • Y10S707/99934Query formulation, input preparation, or translation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

An information retrieval system uses phrases to index, retrieve, organize and describe documents. Phrases are identified that predict the presence of other phrases in documents. Documents are the indexed according to their included phrases. Related phrases and phrase extensions are also identified. Phrases in a query are identified and used to retrieve and rank documents. Phrases are also used to cluster documents in the search results, create document descriptions, and eliminate duplicate documents from the search results, and from the index.

Description

정보 검색 시스템에서의 문구 기반 서치{PHRASE-BASED SEARCHING IN AN INFORMATION RETRIEVAL SYSTEM}Phrase-based search in information retrieval system {PHRASE-BASED SEARCHING IN AN INFORMATION RETRIEVAL SYSTEM}

도 1은 본 발명의 일 실시예의 소프트웨어 아키텍처의 블록도.1 is a block diagram of a software architecture of one embodiment of the present invention.

도 2는 문서 내의 문구를 식별하는 방법을 나타내는 도면.2 illustrates a method of identifying phrases in a document.

도 3은 문구 윈도 및 2차 윈도를 갖는 문서를 나타내는 도면.3 shows a document having a phrase window and a secondary window;

도 4는 관련 문구를 식별하는 방법을 나타내는 도면.4 illustrates a method of identifying relevant phrases.

도 5는 관련 문구에 대한 문서를 인덱싱하는 방법을 나타내는 도면.5 illustrates a method of indexing a document for related phrases.

도 6은 문구에 기초한 문서를 검색하는 방법을 나타내는 도면.6 illustrates a method of retrieving a document based on a phrase.

도 7은 서치 결과를 제공하는 프리젠테이션 시스템의 동작을 나타내는 도면.7 illustrates the operation of a presentation system for providing search results.

도 8의 a 및 b는 참조할 문서와 참조된 문서간의 관계를 나타내는 도면.8 a and b are diagrams showing a relationship between a document to be referred to and a referenced document.

도면 부호의 설명Explanation of reference numerals

100 서치 시스템 110 인덱싱 시스템100 Search System 110 Indexing System

130 프리젠테이션 시스템 140 프론트 엔드 서버130 Presentation System 140 Front End Servers

150 인덱스 160 문구 데이터150 Index 160 Stationery Data

170 클라이언트 180 인터넷170 Client 180 Internet

190 웹사이트190 website

본 발명은 인터넷과 같은 대규모 자료에서 문서를 인덱싱, 서치(searching), 및 분류하는 정보 검색 시스템에 관한 것이다.The present invention relates to an information retrieval system for indexing, searching, and classifying documents in large-scale materials such as the Internet.

오늘날 정보 검색 시스템(일반적으로 서치 엔진으로 불림)은 인터넷과 같은 대규모적이고, 다양하고, 증대해 가는 자료들을 찾기 위한 필수 도구이다. 일반적으로, 서치 엔진은 문서(또는 "페이지")들을 각 문서 내에 존재하는 개개의 단어와 관련시키는 인덱스를 생성한다. 많은 질의 용어를 담고 있는 질의에 응답하여, 전형적으로는 문서 내에 존재하는 일부의 질의 용어를 갖는 것에 기초하여 문서가 검색된다. 그리고 나서 검색된 문서들은 질의 용어, 호스트 도메인, 링크 분석 등의 발생 빈도와 같은 기타 다른 통계 측정치에 따라 랭킹된다. 그리고 나서 검색된 문서들은 전형적으로는 랭킹된 순서대로 어떠한 부가적인 그룹화 또는 부과되는 계층 없이 유저에게 제공된다. 일부의 경우에, 유저가 문서의 내용을 일견할 수 있도록 선택된 부분의 문서의 텍스트가 제공된다.Today's information retrieval system (commonly called a search engine) is an essential tool for finding large, diverse, and growing resources such as the Internet. In general, the search engine creates an index that associates documents (or “pages”) with individual words present in each document. In response to a query containing many query terms, the document is typically retrieved based on having some query terms that exist in the document. The retrieved documents are then ranked according to other statistical measures, such as the frequency of occurrences of query terms, host domains, link analysis, and the like. The retrieved documents are then presented to the user, typically without any additional grouping or imposing hierarchy in the ranked order. In some cases, the text of the selected portion of the document is provided so that the user can see the contents of the document.

질의 용어의 직접적인 "부울" 매칭은 잘 알려진 제한을 갖고, 특히 질의 용어를 갖지 않고 관련 단어를 갖는 문서들은 식별하지 않는다. 예를 들면, 전형적인 부울 시스템에서는, "Australian Shepherds"에 대한 서치는 정확한 질의어를 갖지 않는 보더 콜리(Border Collie)와 같은 목양견(牧羊犬)에 대한 문서를 불러오지 않는다. 오히려, 이러한 시스템은 Australia에 관한 문서(개와는 관계 없음)와 일반적으로 "shepherds"에 관한 문서를 검색하여 높게 랭킹한다.Direct "boolean" matching of query terms has well-known limitations, in particular, documents that do not have a query term and have related words are not identified. For example, in a typical boolean system, the search for "Australian Shepherds" does not bring up documents for sheepdogs such as Border Collie that do not have exact queries. Rather, this system searches and ranks documents about Australia (not related to dogs) and generally about "shepherds".

여기에서 문제는 종래의 시스템이 개념보다는 개별적인 용어에 기초한 문서를 인덱싱한다는 것이다. 개념은 종종 "Australian Shepherd", "President of the United States", 또는 "Sundance Film Festival"과 같은 문구로 표현된다. 기껏해야, 일부의 선행 시스템들은 인간 운영자에 의해서 전형적으로 선택되는 소정의 매우 제한된 세트의 '알려진' 문구에 대해서 문서를 인덱싱한다. 문구의 인덱싱은 인지된 계산적 메모리 요건으로 인해 통상적으로 회피되어 모든 가능한 문구 즉 3, 4, 또는 5 이상의 단어를 식별한다. 예를 들면, 임의의 5개 단어가 문구를 구성하고, 큰 자료가 적어도 200,000개의 고유 용어를 갖는다고 가정하면, 대략 3.2×1026개의 가능한 문구가 존재하고, 현존하는 것보다 훨씬 더 많은 시스템이 메모리에 저장될 수 있거나 그렇지 않으면 프로그램적으로 조작할 수 있다. 또 다른 문제는 새로운 개개의 단어들이 생성되는 것보다 훨씬 더 종종 문구들이 계속적으로 사용 시에 사전에서 입출력한다. 과학기술, 예술, 월드 이벤트, 및 법률 등의 자료로부터 새로운 문구들이 항상 생성되고 있다. 다른 문구들은 시간이 지날수록 사용이 감소된다.The problem here is that conventional systems index documents based on individual terms rather than concepts. Concepts are often expressed in phrases such as "Australian Shepherd", "President of the United States", or "Sundance Film Festival". At most, some prior systems index documents for some very limited set of 'known' phrases that are typically selected by human operators. Indexing of phrases is typically avoided due to perceived computational memory requirements to identify all possible phrases, ie 3, 4, or 5 or more words. For example, assuming that any five words make up a phrase, and that large material has at least 200,000 unique terms, there are approximately 3.2 × 10 26 possible phrases, and there are far more systems than existing. It may be stored in memory or otherwise manipulated programmatically. Another problem is that the phrases are input and output from the dictionary as they are used more and more often than new individual words are generated. New phrases are always generated from materials such as science and technology, arts, world events, and law. Other phrases decrease in use over time.

일부의 기존 정보 검색 시스템은 개별 단어의 동시 발생 패턴을 이용하여 개념의 검색을 제공하는 시도를 한다. 이러한 시스템에서 "President"와 같은 한 단어의 서치는 또한 "White"와 "House"와 같이 "President"와 함께 종종 나타나는 다른 단어들을 갖는 문서를 검색한다. 이러한 방법이 개별 단어의 레벨에서 개념적으로 관련된 문서를 갖는 서치 결과를 생성할 수 있지만, 이것은 통상적으로 동시 발생 문구 사이에서 내제되어 있는 원칙적인 관계를 잡아내지 않는다.Some existing information retrieval systems attempt to provide conceptual retrieval using co-occurrence patterns of individual words. In such a system, a search for a word such as "President" also searches for documents with other words that often appear with "President", such as "White" and "House". While this method can produce search results with conceptually related documents at the level of individual words, this typically does not capture the underlying relationships inherent between concurrent phrases.

따라서, 대규모 자료에서 문구를 포괄적으로 식별하고, 문구에 따른 문서를 인덱싱하고, 이들 문구에 따라 문서를 서치 및 랭킹하고, 문서에 관한 부가적인 클러스터링 및 설명 정보를 제공할 수 있는 정보 검색 시스템 및 방법을 제공할 필요가 있다.Thus, an information retrieval system and method that can comprehensively identify phrases in large-scale materials, index documents according to phrases, search and rank documents according to those phrases, and provide additional clustering and descriptive information about the documents. It is necessary to provide.

정보 검색 시스템 및 방법은 문구를 사용하여 문서 컬랙션에서 문서를 인덱싱, 서치, 랭킹 및 설명한다. 이 시스템은 문서 컬랙션에서 상당히 자주 사용되어 "유효" 또는 "양호" 문구인 것을 나타내는 문구를 식별하는데 적합하다. 이러한 방식으로 복수의 어구, 예를 들면 4, 5, 또는 그 이상의 용어가 식별될 수 있다. 이는 주어진 개수의 단어의 모든 가능한 시퀀스로부터의 결과인 가능한 문구마다 식별 및 인덱싱해야 할 문제를 해소한다.Information retrieval systems and methods use phrases to index, search, rank, and describe documents in document collections. This system is used quite often in document collections and is suitable for identifying phrases that indicate "valid" or "good" phrases. In this way a plurality of phrases may be identified, for example four, five, or more terms. This solves the problem of identifying and indexing every possible phrase that results from every possible sequence of a given number of words.

또한 이 시스템은 문서 내의 다른 문구의 존재를 예측하는 문구의 능력에 기초하여 서로 관련된 문구를 식별하는데 적합하다. 보다 구체적으로, 실제의 2 문구의 공통 출현율을 예측되는 2 문구의 공통 출현과 관련시키는 예상 측정치가 사용된다. 실제의 공통 출현율과 예상되는 공통 출현율과의 비율로서 정보 이득은 이러한 하나의 예상 측정치이다. 예상 측정값이 소정의 한계값을 초과하는 경우에 2 문구가 관련된다. 그 경우, 제 2 문구는 제 1 문구에 대해서 유의한 정보 이득을 갖는다. 의미적으로, 관련된 문구는 "President of the United States"와 "White House"와 같이 주어진 주제 또는 개념을 논의 또는 설명하는데 공통적으로 사용되는 것들이다. 주어진 문구에 대해, 관련된 문구는 각 예상 측정값에 기초하여 그들의 관련성 또는 중요성에 따라 배열될 수 있다.The system is also suitable for identifying correlated phrases based on their ability to predict the presence of other phrases in a document. More specifically, a predictive measure is used that associates the common occurrence of the actual two phrases with the common appearance of the two phrases being predicted. The information gain as a ratio between the actual common prevalence and the expected common prevalence is one such expected measure. Two phrases are relevant if the expected measurement exceeds a predetermined threshold. In that case, the second phrase has a significant information gain over the first phrase. Semantically, related phrases are those commonly used to discuss or describe a given subject or concept, such as "President of the United States" and "White House." For a given phrase, related phrases may be arranged according to their relevance or importance based on each expected measurement.

정보 검색 시스템은 유효 또는 양호 문구에 의해 문서 컬렉션에서 문서를 인덱싱한다. 각 문구에 대해, 포스팅 리스트(posting list)는 문구를 담고 있는 문서를 식별한다. 또한, 주어진 문구에 대해, 제 2 리스트, 벡터, 또는 다른 구조가 사용되어 주어진 문구의 관련된 문구 중 어느 것이 또한 주어진 문구를 담고 있는 각 문서에 존재하는지를 나타내는 데이터를 저장한다. 이러한 방식으로, 시스템은 어느 문서가 서치 질의에 응답하여 어느 문구를 담고 있는지뿐만 아니라 어는 문서가 또한 질의 문구와 관련되는 문구를 담고 있는지를 쉽게 식별할 수 있고, 따라서 질의 문구에서 표현되는 주제 또는 개념에 대해서 구체적이 될 가능성이 크다.The information retrieval system indexes documents in the document collection by valid or good phrases. For each phrase, a posting list identifies the document containing the phrase. In addition, for a given phrase, a second list, vector, or other structure is used to store data indicating which of the relevant phrases of the given phrase are also present in each document containing the given phrase. In this way, the system can easily identify which documents contain which phrases in response to a search query, as well as which documents also contain phrases related to the query phrases, and thus the subject or concept expressed in the query phrases. It is likely to be specific about.

문구 및 관련 문구의 사용은 또한 의미적으로 유의한 문구의 그룹화를 나타내는 관련 문구의 클러스터를 생성 및 사용하게 한다. 클러스터는 클러스터 내의 모든 문구들 사이에서 매우 높은 예상 측정값을 갖는 관련 문구로부터 식별된다. 클러스터는 어떤 문서가 서치 결과 및 이들의 배열에 포함될지를 선택할 뿐만 아니라 서치 결과로부터 문서를 제거하는 것을 포함하여 서치 결과를 편성하는데 사용될 수 있다.The use of phrases and related phrases also allows the creation and use of clusters of related phrases that represent groupings of semantically significant phrases. The cluster is identified from the relevant phrase with a very high expected measure among all phrases in the cluster. Clusters can be used to organize search results, including removing documents from the search results as well as selecting which documents are to be included in the search results and their arrangement.

정보 검색 시스템은 또한 질의에 응답하여 문서를 서치하는 경우에 문구를 사용하는데 적합하다. 질의는 이 질의에 존재하는 임의의 문구를 식별하도록 처리되어, 질의 문구 및 관련 문구 정보에 대한 연관된 포스팅 리스트를 검색한다. 또 한, 어떤 경우에 유저는 "President of the"와 같이 서치 질의에서 불완전한 문구를 입력할 수 있다. 이와 같은 불완전한 문구는 "President of the United States"와 같이 문구 확장에 의해 식별되어 대체될 수 있다. 이는 유저의 가장 가능성 있는 서치가 사실상 실행된다는 것을 보장하는데 도움을 준다.Information retrieval systems are also suitable for using phrases when searching for documents in response to a query. The query is processed to identify any phrases present in this query to retrieve the associated posting list for the query phrase and related phrase information. Also, in some cases, the user may enter incomplete phrases in a search query, such as "President of the." Such incomplete phrases may be identified and replaced by phrase extensions, such as "President of the United States." This helps to ensure that the user's most likely search is actually executed.

관련 문구 정보는 또한 시스템에 의해 어떤 문서가 서치 결과에 포함되는지를 식별 또는 선택하는데 사용될 수 있다. 관련 문구 정보는 주어진 문구 및 주어진 문서로 표시되고, 이 주어진 문구의 관련 문구는 주어진 문서에 존재한다. 따라서, 2개의 질의 문구를 담고 있는 질의에 대해, 제 1 질의 문구에 대한 포스팅 리스트는 제 1 질의 문구를 담고 있는 문서를 식별하도록 처리되고 나서, 관련 문구 정보는 이 문서들 중 어는 것이 또한 제 2 질의 문구를 담고 있는지를 식별하도록 처리된다. 그리고 나서 이 후자의 문서는 서치 결과에 포함된다. 이는 시스템이 제 2 질의 문구의 포스팅 리스트를 개별적으로 처리할 필요성을 해소함으로써 보다 빠른 서치 시간을 제공한다. 물론, 이 방법은 질의 내의 많은 문구로 확장되어 상당한 계산적 시간 소비를 야기할 수 있다.Relevant phrase information may also be used by the system to identify or select which documents are included in the search results. Relevant phrase information is represented by a given phrase and a given document, and the relevant phrase of this given phrase is present in a given document. Thus, for a query containing two query phrases, the posting list for the first query phrase is processed to identify the document containing the first query phrase, and then the relevant phrase information is also the second of these documents. It is processed to identify whether it contains a query phrase. This latter document is then included in the search results. This provides faster search time by eliminating the need for the system to individually process the posting list of the second query phrase. Of course, this method can be extended to many phrases in a query, resulting in significant computational time consumption.

시스템은 또한 문구 및 관련 문구 정보를 사용하여 한 세트의 서치 결과에서 문서를 랭킹하는데 적합할 수 있다. 주어진 문구의 관련 문구 정보는 바람직하게는 비트 벡터와 같은 포맷으로 저장되고, 이는 주어진 문구에 대하여 각 관련 문구의 상대적 중요성을 나타낸다. 예를 들면, 관련 문구 비트 벡터는 주어진 문구의 관련 문구마다 비트를 갖고, 비트는 관련 문구에 대한 예상 측정값(예컨대, 정보 이득)에 따라 배열된다. 관련 문구 비트 벡터의 최상위 비트는 가장 높은 예상 측 정값을 갖는 관련 문구와 연관되고, 최하위 비트는 가장 낮은 예상 측정값을 갖는 관련 문구와 연관된다. 이러한 방식으로, 주어진 문서와 주어진 문구에 대해, 관련 문구 정보가 문서를 스코어링하는데 사용될 수 있다. (값으로서의) 비트 벡터 자체의 값은 문서 스코어로서 사용될 수 있다. 이러한 방식으로 질의 문구의 높은 차수의 관련 문구를 담고 있는 문서는 낮은 차수의 관련 문구를 갖는 것보다 더 원칙적으로 질의에 관련되어 있을 가능성이 있다. 비트 벡터 값은 또한 보다 복잡한 스코어링 함수 내의 성분으로서 사용될 수 있고, 부가적으로 가중될 수 있다. 그러면 문서는 문서 스코어에 따라 랭킹될 수 있다.The system may also be suitable for ranking documents in a set of search results using phrases and related phrase information. Relevant phrase information of a given phrase is preferably stored in a format such as a bit vector, which indicates the relative importance of each related phrase for a given phrase. For example, the relevant phrase bit vector has a bit for each relevant phrase of a given phrase, and the bits are arranged in accordance with the expected measurement (eg, information gain) for the relevant phrase. The most significant bit of the relevant phrase bit vector is associated with the relevant phrase with the highest expected measurement, and the least significant bit is associated with the relevant phrase with the lowest expected measurement. In this way, for a given document and a given phrase, relevant phrase information can be used to score the document. The value of the bit vector itself (as the value) can be used as the document score. In this way, documents containing higher-order related phrases of the query phrase are more likely to be related to the query in principle than having lower-order related phrases. Bit vector values can also be used as components in more complex scoring functions, and can additionally be weighted. The document can then be ranked according to the document score.

문구 정보는 또한 유저를 위한 서치를 개인화하도록 정보 검색 시스템에서 사용될 수 있다. 유저는 예를 들면 유저가 액세스한 문서로부터 유도(예컨대, 스크린 상에 보여지고, 인쇄되고, 저장됨 등등)된 문구의 컬렉션으로서 모델링된다. 보다 구체적으로, 문서가 유저에 의해 액세스된 경우, 이 문서에 존재하는 관련 문구는 유저 모델 또는 프로파일에 포함된다. 뒤이어 서치하는 동안, 유저 모델 내의 문구는 서치 질의의 문구를 여과하고 검색된 문서의 문서 스코어를 가중시키는데 사용된다.The phrase information may also be used in an information retrieval system to personalize a search for a user. The user is modeled, for example, as a collection of phrases derived from a document accessed by the user (eg, shown on screen, printed, stored, etc.). More specifically, when a document is accessed by a user, the relevant text present in this document is included in the user model or profile. Subsequently, during the search, the phrase in the user model is used to filter the phrase of the search query and weight the document score of the retrieved document.

문서 예컨대 한 세트의 서치 결과에 포함된 문서의 설명을 생성하도록 정보 검색 시스템에서 문구 정보가 또한 사용될 수 있다. 서치 질의가 주어지면, 시스템은 관련 문구와 함께 질의에 존재하는 문구 및 그들의 문구 확장을 식별한다. 주어진 문서에 대해, 각 문서의 문장은 질의 문구, 관련 문구 및 문구 확장이 문장 내에 얼마나 많이 존재하는가의 카운트를 갖는다. 문서의 문장은 이들 카운트(개 별적으로 또는 결합하여)에 의해 랭킹될 수 있고, 일부의 톱 랭킹 문장(예컨대, 5 문장)이 선택되어 문서 설명을 형성한다. 그러면 문서 설명은 문서가 서치 결과에 포함되는 경우 유저에게 제공될 수 있으므로, 유저는 질의에 관하여 문서를 보다 양호하게 이해할 수 있다.The phrase information may also be used in an information retrieval system to generate a description of a document, such as a document included in a set of search results. Given a search query, the system identifies phrases that exist in the query and their phrase extensions, along with relevant phrases. For a given document, the sentence of each document has a count of how many query phrases, related phrases, and phrase extensions exist within the sentence. Sentences in the document may be ranked by these counts (individually or in combination), and some top ranking sentences (eg, five sentences) are selected to form the document description. The document description can then be provided to the user when the document is included in the search results, so that the user can better understand the document with respect to the query.

문서 설명을 생성하는 이러한 프로세스의 정교함으로 시스템은 유저의 관심을 반영하는 개인화된 설명을 제공할 수 있다. 전과 같이, 유저 모델은 유저에게 관심사항인 관련 문구를 식별하는 정보를 저장한다. 이 유저 모델은 질의 문구에 관련된 문구의 리스트와 교차하여 양 그룹에 공통하는 문구를 식별한다. 그러면 공통 세트는 관련 문구 정보에 따라 배열된다. 결과적인 세트의 관련 문구가 사용되어 각 문서에 존재하는 이들 관련 문구의 인스턴스의 수에 따라 문서의 문장을 랭킹한다. 가장 높은 수의 공통 관련 문구를 갖는 많은 문장들이 개인화된 문서 설명으로서 선택된다.With the sophistication of this process of generating document descriptions, the system can provide a personalized description that reflects the user's interest. As before, the user model stores information that identifies relevant phrases of interest to the user. This user model intersects the list of phrases related to the query phrase to identify phrases common to both groups. The common set is then arranged according to the relevant phrase information. The resulting set of related phrases is used to rank sentences in the document according to the number of instances of these related phrases present in each document. Many sentences with the highest number of common related phrases are selected as the personalized document description.

정보 검색 시스템은 또한 문구 정보를 사용하여 문서 컬렉션을 인덱싱(크롤링)하는 동안 또는 서치 질의를 처리하는 경우 중복 문서를 식별 및 제거할 수 있다. 주어진 문서에 대해, 문서의 각 문장은 얼마나 많은 관련 문구가 문장에 존재하는지의 카운트를 갖는다. 문서의 문장은 이 카운트에 의해 랭킹될 수 있고, 많은 톱 랭킹 문장(예컨대, 5 문장)이 선택되어 문서 설명을 형성한다. 그러면 이 설명은 예컨대 문장의 스트링 또는 해시로서 문서와 연관되어 저장된다. 인덱싱하는 동안, 새로 크롤링된 문서는 동일한 방식으로 처리되어 문서 설명을 생성한다. 새로운 문서 설명은 이전의 문서 설명에 대하여 매칭(예컨대, 해싱)될 수 있고, 매 치가 발견되면, 새로운 문서는 사본이다. 마찬가지로, 서치 질의의 결과를 준비하는 동안, 서치 결과 세트 내의 문서가 처리되어 사본을 제거할 수 있다.The information retrieval system can also use the phrase information to identify and eliminate duplicate documents during indexing (crawl) of document collections or when processing search queries. For a given document, each sentence in the document has a count of how many related phrases are present in the sentence. Sentences in the document can be ranked by this count, and many top ranking sentences (eg, 5 sentences) are selected to form the document description. This description is then stored in association with the document, for example as a string or hash of a sentence. During indexing, newly crawled documents are processed in the same way to generate document descriptions. The new document description can be matched (eg hashed) against the previous document description, and if a match is found, the new document is a copy. Similarly, while preparing the results of a search query, documents in the search result set can be processed to remove copies.

본 발명은 시스템 및 소프트웨어 아키텍처, 컴퓨터 프로그램 성과물 및 컴퓨터 구현 방법, 및 컴퓨터 생성 유저 인터페이스와 프리젠테이션에서 부가적인 실시예를 갖는다.The present invention has additional embodiments in system and software architectures, computer program deliverables and computer implemented methods, and computer generated user interfaces and presentations.

전기한 사항은 문구에 기초한 정보 검색 시스템 및 방법의 일부의 특징에 지나지 않는다. 정보 검색의 당업자는 문구 정보의 보편적 융통성이 인덱싱, 문서 주석 달기, 서치, 랭킹 및 기타 다른 분야의 문서 분석과 처리에 다양하게 사용 및 응용될 수 있다는 것을 이해할 것이다.The foregoing is only a feature of some of the text-based information retrieval systems and methods. Those skilled in the information retrieval will appreciate that the universal flexibility of phrase information may be used and applied in a variety of ways in document analysis and processing in indexing, document annotation, search, ranking, and other fields.

본원의 도면은 단지 예시할 목적으로 본 발명의 바람직한 실시예를 나타낸다. 당업자는 본원에서 예시된 구조 및 방법의 변형 실시예가 본원에서 설명된 본 발명의 원칙을 벗어나지 않고 이용될 수 있다는 다음의 논의로부터 쉽게 이해할 것이다.The drawings herein show a preferred embodiment of the present invention for purposes of illustration only. Those skilled in the art will readily appreciate from the following discussion that modified embodiments of the structures and methods illustrated herein may be used without departing from the principles of the invention described herein.

I. 시스템 개요 I. System Overview

도 1을 참조하면, 본 발명의 일 실시예에 따른 서치 시스템(100)의 실시예의 소프트웨어 아키텍처가 도시되어 있다. 본 실시예에서, 시스템은 인덱싱 시스템(120), 프리젠테이션 시스템(130) 및 프론트 엔드 서버(140)를 포함한다.1, a software architecture of an embodiment of a search system 100 in accordance with an embodiment of the present invention is shown. In this embodiment, the system includes an indexing system 120, a presentation system 130, and a front end server 140.

인덱싱 시스템(110)은 다양한 웹사이트(190)와 기타 다른 문서 컬렉션에 액세스하여 문서 내의 문구를 식별하고 이들 문구에 따라 문서를 인덱싱하는 일을 담당한다. 프론트 엔드 서버(140)는 클라이언트(170)의 유저로부터 질의를 수신하 고, 이 질의를 서치 시스템(120)에 제공한다. 서치 시스템(120)은 서치 질의 내의 임의 문구를 식별하는 것을 포함하여 서치 질의(서치 결과)에 관련된 문서를 서치하고 나서, 랭킹 순위에 영향을 주도록 문구의 존재를 이용하여 서치 결과 내의 문서를 랭킹하는 일을 담당한다. 서치 시스템(120)은 서치 결과를 프리젠테이션 시스템(130)에 제공한다. 프리젠테이션 시스템(130)은 거의 중복된 문서를 제거하는 것을 포함하여 서치 결과를 수정하고, 문서의 주제 설명문을 생성하고, 수정된 서치 결과를 다시 프론트 엔드 서버(140)(결과를 클라이언트(170)에게 제공함)에 제공하는 일을 담당한다. 시스템(100)은 문서에 관련된 인덱싱 정보를 저장하는 인덱스, 문구를 저장하는 문구 데이터 저장부(160), 및 관련 통계 정보를 더 포함한다.Indexing system 110 is responsible for accessing various websites 190 and other document collections to identify phrases in documents and index documents according to those phrases. The front end server 140 receives a query from a user of the client 170 and provides the query to the search system 120. The search system 120 searches for documents related to the search query (search results), including identifying any phrases in the search query, and then ranks the documents in the search results using the presence of the phrases to affect the ranking ranking. In charge of work. The search system 120 provides the search results to the presentation system 130. Presentation system 130 modifies the search results, including eliminating nearly duplicate documents, generates topic descriptions of the documents, and sends the modified search results back to front end server 140 (results client 170). Provided). The system 100 further includes an index for storing indexing information related to the document, a phrase data storage 160 for storing the phrase, and related statistical information.

본 출원의 문맥에서, "문서"는 웹 문서, 이미지, 멀티미디어 파일, 텍스트 문서, PDF 또는 기타 다른 이미지 포맷 파일 등을 포함하여 서치 엔진에 의해 인덱싱 및 검색될 수 있는 임의 형식의 미디어인 것으로 이해된다. 문서는 하나 이상의 페이지, 파티션, 세그먼트 또는 기타 다른 구성요소를 그 내용 및 유형에 알맞게 갖는다. 동등하게 문서는 인터넷 상의 문서로 불리는데 일반적으로 사용되는 바와 같이 "페이지"로 불릴 수 있다. 일반적인 용어 "문서"의 사용에 의해 본 발명의 범위에 대해서 어떠한 제한도 수반되지 않는다. 서치 시스템(100)은 인터넷 및 월드 와이드 웹과 같은 큰 자료의 문서를 다루지만, 마찬가지로 도서관 또는 개인 기업의 문서 컬렉션과 같이 모다 제한된 컬렉션에 사용될 수 있다. 어느 한쪽의 문맥에서, 문서가 전형적으로 많은 다른 컴퓨터 시스템 및 사이트를 경유하여 배포됨을 이해할 것이다. 보편성을 잃지 않고, 포맷 또는 위치(예컨대, 어는 웹사이트 또는 데이터베이스)에 관계없이 문서는 일반적으로 자료 또는 문서 컬렉션으로 일괄하여 불린다. 각 문서는 문서를 고유하게 식별하는 연관된 식별자를 갖고, 식별자는 바람직하기로 URL이지만, 다른 유형의 식별자(예컨대, 문서 번호)가 또한 사용될 수 있다. 본 명세서에서, 문서를 식별하는데 URL을 사용하는 것으로 가정한다.In the context of the present application, a "document" is understood to be any type of media that can be indexed and searched by the search engine, including web documents, images, multimedia files, text documents, PDF or other image format files, and the like. . A document has one or more pages, partitions, segments, or other components appropriate to its content and type. Equivalently, a document is called a document on the Internet and may be called a "page" as is commonly used. The use of the generic term "document" does not entail any limitation as to the scope of the invention. The search system 100 handles documents of large material such as the Internet and the World Wide Web, but may likewise be used for all limited collections, such as libraries or collections of private companies. In either context, it will be understood that documents are typically distributed via many different computer systems and sites. Without losing generality, documents are generally referred to collectively as materials or document collections, regardless of format or location (eg, a website or database). Each document has an associated identifier that uniquely identifies the document, and the identifier is preferably a URL, but other types of identifiers (eg, document numbers) may also be used. In this specification, it is assumed that a URL is used to identify a document.

II. 인덱싱 시스템 II. Indexing system

일 실시예에서, 인덱싱 시스템(110)은 3가지 주요 기능적 동작을 제공한다: 1) 문구 및 관련 문구의 식별, 2) 문구에 대한 문서의 인덱싱, 및 3) 문구 기반의 분류법의 생성 및 유지. 당업자는 인덱싱 시스템(110)이 종래의 인덱싱 기능을 지원하면서 다른 기능도 이행한다는 것을 이해할 것이며, 따라서 다른 동작들은 본원에서 더 이상 설명되지 않는다. 인덱싱 시스템(110)은 문구 데이터의 데이터 저장소(160) 및 인덱스(150)에 작용한다. 이 데이터 저장소는 아래에서 더 설명된다.In one embodiment, indexing system 110 provides three major functional operations: 1) identification of phrases and related phrases, 2) indexing of documents to phrases, and 3) generation and maintenance of phrase based taxonomy. Those skilled in the art will understand that the indexing system 110 implements other functions while supporting the conventional indexing function, and thus other operations are not described herein any further. Indexing system 110 acts on data store 160 and index 150 of stationery data. This data store is further described below.

1. 문구 식별 1. Identify phrases

인덱싱 시스템(110)의 문구 식별 동작은 문서를 인덱싱하고 서치하는데 유용하며, 수집 문서 내에서 "양호(good)" 및 "불량(bad)" 문구를 식별한다. 하나의 관점에서, 양호 문구는 수집 문서 중 특정 비율 이상의 문서에서 발생하는 경향이 있는 문구, 및/또는 그러한 문서에서 활자 태그 또는 다른 어형, 포맷, 또는 문법적인 마커에 의해 범위가 정해지는 것과 같이 구별된 모양을 갖는 것으로 표시된 것이다. 양호 문구의 다른 특징은 다른 양호 문구를 예측할 수 있고, 어휘 목록에 나타나는 단순한 단어 시퀀스가 아닌 것이다. 예를 들어, 문구 "President of the United States"는 "George Bush" 및 "Bill Clinton"과 같은 다른 문구를 예측하는 문구이다. 그러나, "fell down the stairs" 또는 "top of the morning", "out of the blue"와 같은 관용어구와 구어체 표현은 상이하고 관련성이 없는 많은 다른 문구와 함께 나타나는 경향이 있기 때문에, 다른 문구가 예측되지 않는다. 따라서, 문구 식별 단계는 어느 문구가 양호 문구이고, 어느 문구가 불량 문구(즉, 예측 능력이 결여된)인지를 결정한다.The phrase identification operation of indexing system 110 is useful for indexing and searching for documents, and identifies "good" and "bad" phrases within the collected document. In one aspect, good phrases are distinguished, such as phrases that tend to occur in a certain percentage of documents in a collection document, and / or as defined by letter tags or other morphology, format, or grammatical markers in such documents. It is shown as having a shaped appearance. Another feature of good phrases is that they can predict other good phrases and are not just word sequences that appear in the vocabulary list. For example, the phrase "President of the United States" is a phrase that predicts other phrases such as "George Bush" and "Bill Clinton". However, idioms and colloquial expressions such as "fell down the stairs" or "top of the morning" and "out of the blue" tend to appear with many different and irrelevant phrases, so other phrases are not predicted. Do not. Thus, the phrase identification step determines which phrase is a good phrase and which phrase is a bad phrase (ie, lacks predictive capability).

도 2를 참조하면, 문구 식별 프로세스는 다음의 기능적인 단계들을 포함한다.Referring to Figure 2, the phrase identification process includes the following functional steps.

200: 문구들의 빈도 및 공통 출현 통계와 함께, 가능 및 양호 문구들을 수집한다.200: Collect possible and good phrases, along with frequency of phrases and common appearance statistics.

202: 빈도 통계에 기초하여 가능 문구들을 양호 또는 불량 문구 중 어느 하나로 분류한다.202: Classify possible phrases as either good or bad phrases based on the frequency statistics.

204: 공통 출현 통계로부터 유도된 예측 측도에 기초하여 양호 문구 리스트를 간결화한다.204: Simplify the good phrase list based on the predicted measure derived from the common occurrence statistics.

이제 이들 단계의 각각에 대하여 보다 구체적으로 설명한다.Each of these steps will now be described in more detail.

제1 단계(200)에서 인덱싱 시스템(110)은 어느 기간동안 수집 문서의 반복되는 파티션들을 생성하면서, 수집 문서의 문서 세트들을 크롤링한다. 패스마다 하나의 파티션이 처리된다. 패스마다 크롤링되는 문서 수는 바뀔 수 있고, 파티션 마다 대략 1,000,000 정도가 바람직하다. 모든 문서가 처리되거나, 다른 어미 기 준(termination criteria)을 만나기 전에는, 이미 크롤링되지 않은 문서만이 각 파티션에서 처리되는 것이 바람직하다. 사실상, 수집 문서에 새로운 문서가 계속적으로 추가되므로, 크롤링은 계속된다. 다음 스텝은 크롤링되지 않은 각 문서를 위하여 인덱싱 시스템(110)에 의해 처리된다.In a first step 200 the indexing system 110 crawls the document sets of the collected document, while creating repeated partitions of the collected document for a period of time. One partition is processed per pass. The number of documents crawled for each pass can vary, with approximately 1,000,000 being preferred per partition. Before all documents are processed or meet different termination criteria, it is desirable that only documents that have not already been crawled be processed at each partition. In fact, crawling continues because new documents are continuously added to the collected documents. The next step is processed by the indexing system 110 for each document that was not crawled.

문서의 단어들을 문구 윈도 길이 n으로 트래버스(traverse)하고, 여기서 n은 원하는 최대 문구 길이이다. 윈도의 길이는 일반적으로 최소 2이고, 바람직하게는 4 또는 5 어구(단어)이다. 바람직하게는, 문구는 문구 윈도 내의 모든 단어를 포함하고, "a", "the" 등과 같이, 스톱 단어(stop word)로서 다르게 특징지어질 수 있는 것을 포함한다. 문구 윈도는 라인의 끝, 단락 복귀, 활자 태그, 또는 문맥 또는 포맷 내에서 다른 변경 표시에 의하여 종료될 수 있다. Traverse the words of the document to the phrase window length n, where n is the desired maximum phrase length. The length of the window is generally at least 2, preferably 4 or 5 phrases (words). Preferably, the phrase includes all words in the phrase window and includes things that can be characterized differently as stop words, such as "a", "the", and the like. The phrase window may be terminated by the end of a line, a paragraph return, a letter tag, or other indication of change within the context or format.

도 3은 트래버스 동안 문서(300)의 일부를 나타낸 것으로, 단어 "stock"에서 시작하고, 우측으로 5 단어 확장된 문구 윈도(302)를 보여주고 있다. 윈도(302)의 첫번째 단어는 후보 문구 i이고, 각각의 시퀀스(i+1, i+2, i+3, i+4, 및 i+5)도 마찬가지로 후보 문구이다. 따라서, 본 예에서, 후보 문구들은 "stock", "stock dogs", "stock dogs for", "stock dogs for the", "stock dogs for the Basque", 및 "stock dogs for the Basque shepherds"이다. 3 shows a portion of document 300 during traverse, showing a phrase window 302 starting at the word "stock" and extending to the right by five words. The first word of window 302 is candidate phrase i, and each sequence i + 1, i + 2, i + 3, i + 4, and i + 5 is likewise a candidate phrase. Thus, in this example, the candidate phrases are "stock", "stock dogs", "stock dogs for", "stock dogs for the", "stock dogs for the Basque", and "stock dogs for the Basque shepherds".

각각의 문구 윈도(302)에서, 각 후보 문구는 양호 문구 리스트(208) 또는 가능 문구 리스트(206)에 이미 존재하는지를 판단하기 위하여 차례로 체크된다. 만약, 후보 문구가 양호 문구 리스트(208) 또는 가능 문구 리스트(206)의 어디에도 존재하지 않는 경우에는, 후보는 이미 "불량"으로 결정되어 스킵된다.In each phrase window 302, each candidate phrase is checked in turn to determine if it already exists in the good phrase list 208 or the possible phrase list 206. If the candidate phrase is not present anywhere in the good phrase list 208 or the possible phrase list 206, the candidate is already determined to be "bad" and skipped.

만약 후보 문구가 양호 문구 리스트(208)에 엔트리(gj)로서 존재하면, 문구(gj)용 인덱스(150) 엔트리는 상기 문서(예컨대, 그 URL 또는 다른 문서 식별자)를 포함하도록 갱신되어, 이 후보 문구(gj)가 현재 문서에 출연하고 있음을 나타낸다. 문구(gj)(또는 어구)용 인덱스(150) 엔트리는 문구(gj)의 포스팅 리스트(posting list)로서 참조된다. 포스팅 리스트는 상기 문구가 발생한 문서 리스트(d)를 (그 문서 식별자, 예컨대 문서 번호 또는 대안적으로 URL에 의하여) 포함한다.If a candidate phrase exists as entry g j in good phrase list 208, index 150 entry for phrase g j is updated to include the document (eg, its URL or other document identifier), Indicates that this candidate phrase g j is currently appearing in the document. The index 150 entry for phrase g j (or phrase) is referred to as a posting list of phrase g j . The posting list includes the document list d in which the phrase occurred (by its document identifier, eg document number or alternatively a URL).

나아가, 후술하는 바와 같이, 공통 출현 매트릭스(212)가 갱신된다. 첫번째 패스에서, 양호 그리고 불량 리스트는 비어 있을 것이고, 따라서, 대부분의 문구가 가능 문구 리스트(206)에 추가될 것이다.Further, as will be described later, the common appearance matrix 212 is updated. In the first pass, the good and bad lists will be empty, so most phrases will be added to the possible phrase list 206.

후보 문구가 양호 문구 리스트(208)에 존재하지 않는 경우, 이미 가능 문구 리스트(206)에 존재하지 않는 한, 가능 문구 리스트(206)에 추가된다. 가능 문구 리스트(206)의 각 엔트리(p)는 다음의 세 개의 관련 카운트를 갖는다.If the candidate phrase is not present in the good phrase list 208, it is added to the possible phrase list 206, unless it is already present in the possible phrase list 206. Each entry p of possible phrase list 206 has three related counts:

P(p): 가능 문구가 출현한 문서 수P (p): number of documents in which possible phrases appeared

S(p): 가능 문구의 모든 인스턴스 수S (p): Number of all instances of possible phrases

M(p): 가능 문구의 관심 인스턴스 수M (p): Number of instances of interest in possible phrases

가능 문구는 문서 내에서 문법적으로 또는 포맷 마커 예컨대, 볼드체, 또는 언더라인에 의하여, 또는 하이퍼링크 내의 앵커 택스트로서, 또는 물음표 내에서, 인접하는 문맥으로부터 구별되므로, 가능 문구의 인스턴스는 관심사항이다. 이러한(그리고 다른) 구별되는 외형은 다양한 HTML 마크업 언어 태그 및 문법적 마커에 의하여 표시된다. 문구가 양호 문구 리스트(208)에 존재하는 경우, 이러한 통계치는 문구를 위하여 유지된다. The possible phrases are of interest because they are distinguished from the adjacent context, either syntactically in the document or by format markers such as bold or underline, or as anchor texts in hyperlinks, or within question marks. These (and other) distinct appearances are represented by various HTML markup language tags and grammatical markers. If the phrase is present in the good phrase list 208, these statistics are maintained for the phrase.

덧붙여, 다양한 리스트에서, 양호 문구용 공통 출현 매트릭스(212(G))가 유지된다. 매트릭스(G)는 m x m 차원이고, 여기서 m은 양호 문구의 개수이다. 매트릭스의 각 엔트리 G(j,k)는 양호 문구의 쌍(gj,gk)을 나타낸다. 공통 출현 매트릭스(212)는 논리적으로 (반드시 형태적으로는 아니더라도) 현재 단어(i)를 중심으로, +/- h 단어로 확장된 제 2 윈도(304)에 대하여 양호 문구의 각 쌍(gj,gk)을 위한 세 개의 분리된 카운트를 유지한다. 일실시예에서, 도 3에 도시된 바와 같이, 제2 윈도(304)는 30 단어이다. 따라서 공통 출현 매트릭스(212)는 다음의 카운트를 유지한다.In addition, in the various lists, a common appearance matrix 212 (G) for good phrases is maintained. The matrix G is in the mxm dimension, where m is the number of good phrases. Each entry G (j, k) of the matrix represents a pair of good phrases g j , g k . The common occurrence matrix 212 is logically (not necessarily morphologically) centered around the current word i, with each pair of good phrases g j for the second window 304 extended with +/− h words. , g k ) maintains three separate counts for. In one embodiment, as shown in FIG. 3, the second window 304 is 30 words. The common appearance matrix 212 thus maintains the next count.

R(j,k): 미처리 공통 출현 카운트(Raw Co-occurrence count). 문구(gj)가 문구(gk)와 함께 제 2 윈도(304)에 출현하는 횟수.R (j, k): Raw Co-occurrence count. The number of times the phrase g j appears in the second window 304 with the phrase g k .

D(j,k): 분리 관심 카운트(Disjunctive Interesting count). 문구(gj) 또는 문구(gk) 중 어느 하나가 제 2 윈도 내에서 구별되는 텍스트로서 출현하는 횟수.D (j, k): Disjunctive Interesting count. The number of times either phrase g j or phrase gk appears as distinguished text in the second window.

C(j,k): 접속 관심 카운트(Conjunctive Interesting count): 문구(gj) 및 문구(gk)가 모두 제 2 윈도 내에서 구별된 텍스트로서 출현하는 횟수. 접속 관련 카운트의 사용은 문구(예컨대, 저작권 통지)가 사이드 바(sidebars), 푸터(footers), 또는 헤더에 빈번하게 출현하여, 실질적으로 다른 텍스트를 예측하지 않는 환경을 피하는데 특히 유익하다.C (j, k): Conjunctive Interesting count: The number of times the phrase g j and the phrase gk both appear as distinct text in the second window. The use of connection related counts is particularly beneficial to avoid environments where phrases (eg, copyright notices) frequently appear in sidebars, footers, or headers, and do not substantially predict other text.

도 3의 예를 참조하면, 문구 "Australian Shepherd" 및 "Australian Shepard Club of America"뿐만 아니라 "stock dogs"가 양호 문구 리스트(208) 상에 있는 것으로 가정한다. 이러한 양쪽의 후자 문구는 현재 문구 "stock dogs" 주위에 제 2 윈도(304) 내에 출현한다. 그러나, 문구 "Australian Shepherd Club of America"는 웹 사이트로의 하이퍼링크(언더라인으로 나타냄)용 앵커 텍스트로서 출현한다. 따라서, 쌍 {"stock dogs", "Australian Shepherd"}에 대한 미처리 공통 출현 카운트는 증가하고, {"stock dogs", "Australian Shepherd Club of America"}에 대한 미처리 출현 카운트 및 분리 관심 카운트는 후자가 구별된 텍스트로서 출현하기 때문에 둘다 증가한다.Referring to the example of FIG. 3, it is assumed that the phrases "Australian Shepherd" and "Australian Shepard Club of America" as well as "stock dogs" are on the good phrase list 208. Both of these latter phrases now appear in the second window 304 around the phrase "stock dogs". However, the phrase "Australian Shepherd Club of America" appears as anchor text for hyperlinks (indicated by underline) to the website. Thus, the raw common appearance count for the pair {"stock dogs", "Australian Shepherd"} increases, and the raw appearance count and split interest count for {"stock dogs", "Australian Shepherd Club of America"} Both increase because they appear as distinct text.

시퀀스 윈도(302) 및 제 2 윈도(304) 양쪽으로 각 문서를 트래버스하는 프로세스는 파티션 내의 각 문서에 대하여 반복된다.The process of traversing each document to both the sequence window 302 and the second window 304 is repeated for each document in the partition.

일단 파티션 내의 문서가 트래버스되면, 인덱스 동작의 다음 단계는 가능 문구 리스트(206)로부터 양호 문구 리스트(208)를 업데이트(202)하는 것이다. 가능 문구 리스트(206) 상의 가능 문구들(p)은, 문구의 출현 빈도와 문구가 출현하는 문서 수에 의하여, 그 문구가 뜻있는 문구로서 충분히 사용되는 것으로 나타난 경우, 양호 문구 리스트(208)로 이동된다. Once the documents in the partition have been traversed, the next step in the indexing operation is to update 202 the good phrase list 208 from the possible phrase list 206. The possible phrases p on the possible phrase list 206 are referred to as a good phrase list 208 when the phrase is shown to be sufficiently used as a meaningful phrase, depending on the frequency of occurrence of the phrase and the number of documents in which the phrase appears. Is moved.

일 실시예에서, 이것은 다음과 같이 테스트된다. 가능 문구(p)는 다음의 경우 가능 문구 리스트(206)으로부터 제거되고, 양호 문구 리스트(208) 상에 위치하게 된다. In one embodiment, this is tested as follows. The possible phrase p is removed from the possible phrase list 206 and placed on the good phrase list 208 in the following cases.

a) P(p)>10 및 S(p)>20 (문구(p)를 포함하는 문서 수가 10 이상이고, 문구(p)의 발생 수가 20 이상인 경우); 또는a) P (p)> 10 and S (p)> 20 (when the number of documents including the phrase p is 10 or more and the number of occurrences of the phrase p is 20 or more); or

b) M(p)>5 (문구(p)의 관심 인스턴스 수가 5 이상인 경우)b) M (p)> 5 (if the number of instances of interest in phrase (p) is 5 or greater)

이 임계치들은 파티션 내의 문서 수에 의하여 스케일링된다. 예를 들어, 만약 2,000,000 문서가 파티션 내에서 크롤링되면, 임계치들은 대략 두배가 된다. 물론, 임계치의 구체적인 값이나 임계치를 테스트하기 위한 로직은 실시예에 따라서 변경될 수 있음은 당업자에게 자명하다. These thresholds are scaled by the number of documents in the partition. For example, if 2,000,000 documents are crawled within a partition, the thresholds are approximately doubled. Of course, it will be apparent to those skilled in the art that the specific value of the threshold or logic for testing the threshold may vary depending on the embodiment.

문구(p)가 양호 문구 리스트(208)에 적합하지 않으면, 불량 문구에 해당되는지 체크한다. 문구(p)는 이하의 경우 불량 문구이다. If the phrase p is not suitable for the good phrase list 208, it is checked whether it corresponds to the bad phrase. The phrase p is a bad phrase in the following cases.

a) 문구를 포함하는 문서 수, P(p)<2인 경우 ; 그리고a) the number of documents containing the phrase, if P (p) <2; And

b) 문구의 관심 인스턴스 수, M(p)=0인 경우b) number of instances of interest in the phrase, where M (p) = 0

이러한 조건들은 문구가 양쪽 다 빈번하지 않고, 중요한 문맥을 나타내는데 다시 사용되지 않음을 나타내며, 이러한 임계치들이 파티션의 문서 수에 대하여 스케일링될 수 있음을 나타낸다. These conditions indicate that the phrases are both infrequent and never used again to indicate an important context, and that these thresholds can be scaled over the number of documents in the partition.

양호 문구 리스트(208)는 상술한 바와 같이, 복합-단어 문구에 더하여, 문구로서 개별적인 단어들을 당연히 포함함을 유의해야 한다. 이것은 문구 윈도(302) 내에서 각 첫번째 단어가 항상 후보 문구이고, 적절한 인스턴스 카운트가 축적될 것이기 때문이다. 따라서, 인덱싱 시스템(110)은 개개의 단어들(즉, 하나의 단어를 가지는 문구) 및 복합 단어 문구들을 모두 자동적으로 인덱싱할 수 있다. 또한, 양호 문구 리스트(208)는 m개의 문구의 모든 가능한 조합에 기초한 이론상의 최대 값 보다 상당히 작을 것이다. 대표적인 실시예에서, 양호 문구 리스트(208)는 대략 6.5×105 문구를 포함할 수 있다. 시스템은 오직 가능 및 양호 문구들의 트랙을 유지할 필요가 있기 때문에, 불량 문구들의 리스트는 저장할 필요가 없다. It should be noted that the good phrase list 208 naturally includes individual words as phrases, in addition to compound-word phrases, as described above. This is because in the phrase window 302 each first word is always a candidate phrase, and an appropriate instance count will accumulate. Thus, indexing system 110 can automatically index both individual words (ie, phrases with one word) and compound word phrases. In addition, the good phrase list 208 will be significantly less than the theoretical maximum based on all possible combinations of m phrases. In an exemplary embodiment, the good phrase list 208 may include approximately 6.5 × 10 5 phrases. Since the system only needs to keep track of possible and good phrases, the list of bad phrases does not need to be stored.

수집 문서을 통한 최종 패스에 의하여, 큰 자료 내의 문구들의 사용의 예상 분포로 인하여 가능 문구들의 리스트는 상대적으로 짧을 것이다. 따라서, 10번째 패스(즉, 10,000,000 문서)에 의하여 언급되는 경우, 바로 그 첫번째에 출현하는 문구는 그 때 양호 문구가 되기는 매우 어렵다. 그것은 막 사용된 새로운 문구일 것이고, 따라서 다음의 크롤 동안 점차 일반적으로 된다. 이 경우, 그것의 각 카운트는 증가할 것이고, 결국에는 양호 문구가 되기 위한 임계치를 충족할 것이다. By the final pass through the collection document, the list of possible phrases will be relatively short due to the expected distribution of the use of phrases in large data. Thus, when referred to by the tenth pass (i.e., 10,000,000 documents), the very first phrase appearing is then very difficult to be a good phrase at that time. It will be a new phrase that has just been used and thus becomes increasingly common during the next crawl. In this case, each count of it will increase and eventually meet the threshold to be a good phrase.

인덱싱 동작의 세번째 단계는 공통 출현 매트릭스(212)로부터 유도된 예측 측도를 이용하여 양호 문구 리스트(208)를 전지하기 위한 것이다(204). 전지 동작 없이는, 양호 문구 리스트(208)는 어휘 목록에 정규적으로 출현하는 동안 다른 문구들의 존재를 충분하게 예측할 수 없거나, 더 긴 문구 열이 되는 많은 문구들을 포함하게 될 것이다. 이러한 약한 양호 문구들을 제거함으로써, 양호 문구들의 매우 강화된다. 양호 문구들을 식별하기 위하여 한 문구가 다른 문구가 존재하는 주어진 하나의 문서에 출현하는 가능성의 증가를 표현하는 예측 측도가 사용된다. 이것은 일 실시예에서 다음과 같이 수행된다.The third step of the indexing operation is to populate 204 the good phrase list 208 using predictive measures derived from the common appearance matrix 212. Without battery operation, the good phrase list 208 would contain many phrases that would not sufficiently predict the presence of other phrases during regular appearances in the lexical list, or would be longer phrase strings. By eliminating these weak good phrases, the good phrases are greatly enhanced. To identify good phrases, predictive measures are used that express an increase in the likelihood that one phrase appears in a given document in which another phrase exists. This is done in one embodiment as follows.

상술한 바와 같이, 공통 출현 매트릭스(212)는 양호 문구들에 관련된 데이터를 저장하는 m × m 매트릭스이다. 매트릭스의 각 열(j)은 양호 문구(gj)를 나타내 고, 각 행(k)은 양호 문구(gk)를 나타낸다. 각각의 양호 문구(gj)에 대하여, 예측 값(E(gj))가 계산된다. 예측 값(E)는 문구(gj)를 포함할 것으로 예상되는 수집물 중의 문서의 비율이다. 예컨대, 이는 문구(gj)를 포함하는 문서 수의 크롤링되는 수집 문서의 총 수(T)에 대한 비율로 계산된다. 즉, P(j)/T이다.As mentioned above, the common appearance matrix 212 is an m × m matrix that stores data related to good phrases. Each column j of the matrix represents a good phrase g j , and each row k represents a good phrase g k . For each good phrase gj, the predicted value E (g j ) is calculated. The predicted value E is the proportion of documents in the collection that are expected to contain the phrase g j . For example, this is calculated as the ratio of the total number T of crawled collected documents to the number of documents containing the phrase g j . That is, P (j) / T.

상술한 바와 같이, 문구(gj)를 포함하는 문서 수는 문구(gj)가 문서에 출현할 때마다 갱신된다. E(gj)에 대한 값은 문구(gj)에 대한 카운트가 증가할 때마다, 또는, 이 세번째 단계 동안 갱신될 수 있다. As described above, the number of documents including the phrase gj is updated each time the phrase gj appears in the document. The value for E (gj) may be updated each time the count for phrase gj increases, or during this third step.

다음으로, 각 다른 양호 문구(예를 들어, 매트릭스의 행들)를 위하여, 문구(gj)는 문구(gk)를 예측하는지를 판단한다. 문구(gj)에 대한 예측 측도는 다음과 같이 정해진다. Next, for each other good phrase (eg, rows of the matrix), determine whether the phrase g j predicts the phrase g k . The predictive measure for the phrase g j is determined as follows.

i) 기대 값 E(gk)를 계산한다. 문구(gj) 및 문구(gk)가 서로 관련되지 않은 문구인 경우에는, 기대 공통 출현율 E(j,k)은 E(gj)*E(gk)이다.i) Calculate the expected value E (gk). In the case where the phrase g j and the phrase g k are not related to each other, the expected common prevalence E (j, k) is E (g j ) * E (g k ).

ii) 문구(gj) 및 문구(gk)의 실질 공통 출현율 A(j,k)을 계산한다. 이는 문서 전체 수인 T에 의하여 나누어진 미처리 공통 출현 카운트 R(j, k)이다.ii) Calculate the real common prevalence A (j, k) of phrases (gj) and (gk). This is the raw common appearance count R (j, k) divided by the total number of documents T.

iii) 실질 공통 출현율 A(j,k)이 기대 공통 출현율 E(j,k)를 임계량 만큼 초과하는 경우, 문구(gj)는 문구(gk)를 예측한다고 한다. iii) If the real common prevalence A (j, k) exceeds the expected common prevalence E (j, k) by a threshold amount, the phrase g j is said to predict the phrase g k .

일 실시예에서, 예측 측도는 정보 이득이다. 따라서, 문구(gj)의 존재 내에 서 문구(gk)의 정보 이득(I)이 임계치를 초과하는 경우, 문구(gj)는 다른 문구(gk)를 예측한다. 일 실시예에서, 이것은 다음과 같이 계산된다.In one embodiment, the predictive measure is information gain. Thus, if the information gain I of the phrase g k in the presence of the phrase g j exceeds the threshold, the phrase g j predicts another phrase g k . In one embodiment, this is calculated as follows.

I(j,k)=A(j,k)/E(j,k)I (j, k) = A (j, k) / E (j, k)

그리고, 다음의 경우에 양호 문구(gj)는 양호 문구(gk)를 예측한다. In the following case, the good phrase g j predicts the good phrase g k .

I(j,k) > 정보 이득 임계치I (j, k)> Information Gain Threshold

일 실시예에서, 이득 정보 임계치는 1.5이나, 1.1 과 1.7 사이가 바람직하다. 임계치를 1.0 이상으로 올리는 것은 두 개의 다른 관련되지 않은 문구가 임의적으로 예측된 것보다 더 공통 출현할 가능성을 감소시킨다. In one embodiment, the gain information threshold is 1.5 but preferably between 1.1 and 1.7. Raising the threshold above 1.0 reduces the likelihood that two other unrelated phrases appear more common than randomly predicted.

언급한 바와 같이, 정보 이득의 계산은 주어진 열(j)에 대하여 매트릭스(G)의 각 행(k)에서 반복된다. 일단 하나의 열이 완료되었을 때, 양호 문구들(gk) 어떤 것의 정보 이득도 정보 이득 임계치를 초과하지 않는 경우에는, 이는 문구(gj)가 어떠한 다른 양호 문구도 예측하지 않는 것을 의미한다. 이 경우, 문구(gj)는 양호 문구 리스트(208)에서 제거되고, 본질적으로 불량 문구로 된다. 문구(gj)에 대한 행(j)은 이 문구 자체가 다른 양호 문구들에 의하여 예측될 수도 있기 때문에 제거되지 않음을 유의해야 한다. As mentioned, the calculation of the information gain is repeated in each row k of the matrix G for a given column j. Once one column is completed, if the information gain of any of the good phrases g k does not exceed the information gain threshold, this means that the phrase g j does not predict any other good phrases. In this case, the phrase g j is removed from the good phrase list 208 and becomes essentially a bad phrase. It should be noted that the line j for the phrase g j is not removed because this phrase itself may be predicted by other good phrases.

이 스텝은 공통 출현 매트릭스(212)의 모든 열이 평가된 이후에 수행된다. This step is performed after all columns of the common appearance matrix 212 are evaluated.

이 과정의 마지막 스텝은 불완전한 문구를 제거하기 위하여 양호 문구 리스트(208)를 전지하기 위한 것이다. 불완전한 문구는 그 문구의 확장만을 예측하는 문구와, 문구의 가장 좌측(즉, 문구의 시작)에서 시작하는 문구이다. 문구(p)의 "문구 확장"은 문구 p로 시작하는 수퍼-시퀀스이다. 예를 들어, 문구 "President of"는 "President of the United States", "President of Mexico", "President of AT&T" 등을 예측한다. 이러한 후자 문구들은 모두 "President of"로 시작되므로 문구 "President of"의 문구 연장이고, 그것의 수퍼-시퀀스이다.The final step in this process is to populate the good phrase list 208 to remove incomplete phrases. An incomplete phrase is a phrase that predicts only the expansion of the phrase and a phrase that begins at the far left of the phrase (ie, the beginning of the phrase). The phrase phrase expansion of phrase p is a super-sequence starting with phrase p. For example, the phrase "President of" predicts "President of the United States", "President of Mexico", "President of AT & T", and the like. These latter phrases all start with "President of" and are therefore an extension of the phrase "President of" and its super-sequence.

따라서, 양호 문구 리스트(208)에 남아있는 각 문구(gj)는 상술한 정보 이득 임계치에 기초하여 몇 개의 다른 문구들을 예측할 것이다. 이제, 각 문구(gj)에 대하여, 인덱싱 시스템(110)은 예측된 각 문구(gk)로 스트링 매칭을 수행한다. 스트링 매치는 예측된 각 문구(gk)가 문구(gj)의 문구 확장인지를 검사한다. 만약, 예측된 모든 문구(gk)가 문구(gj)의 문구 확장인 경우, 문구(gj)는 불완전하고, 양호 문구 리스트(208)에서 삭제된다. 그리고, 불완전 문구 리스트(216)에 추가된다. 따라서, 만약 문구(gj)의 확장이 아닌 적어도 하나의 문구(gk)가 존재한다면, 문구(gj)는 완전하고, 양호 문구 리스트(208)에 유지된다. 예를 들어, "President of the United"는 예측하는 다른 문구가 오직 그 문구의 확장인 "President of the United States"이므로, 불완전 문구이다.Thus, each phrase g j remaining in the good phrase list 208 will predict several other phrases based on the information gain threshold described above. Now, for each phrase g j , indexing system 110 performs string matching with each predicted phrase g k . The string match checks whether each predicted phrase g k is a phrase extension of the phrase g j . If, for all predicted phrases (gk) is a phrase extension of the phrase (g j), phrases (g j) is incomplete, and removed from the good phrase list 208. Then, the incomplete phrase list 216 is added. Thus, if at least one stationary (g k) a non-extension of the phrases (g j) exist, phrases (g j) is complete, maintaining the good phrase list 208. For example, "President of the United" is an incomplete phrase because the other phrase that it predicts is only "President of the United States", an extension of that phrase.

불완전 문구 리스트(216) 자체는 실제 서치에 있어서 매우 유용하다. 서치 질의(query)가 수신된 경우, 불완전 문구 리스트(216)와 대조하여 비교될 수 있다. 만약, 질의어(또는 그 일부)가 이 리스트의 엔트리에 매치되면, 그 서치 시스템 (120)은 불완전 문구의 가장 비슷한 문구 확장(불완전 문구에 주어진 최고 정보 이득을 갖는 문구 확장)을 찾을 수 있고, 이 문구 확장을 유저에게 제안할 수 있거나, 문구 확장에 대해 자동적으로 서치할 수 있다. 예를 들어, 만약 서치 질의가 "President of the United"인 경우, 서치 시스템(120)은 자동적으로 유저에게 서치 질의로서 "President of the United States"를 제안할 수 있다.The incomplete phrase list 216 itself is very useful in actual search. When a search query is received, it may be compared against the incomplete phrase list 216. If a query (or a portion thereof) matches an entry in this list, the search system 120 may find the most similar phrase extension of the incomplete phrase (the phrase extension with the highest information gain given in the incomplete phrase). You can suggest phrase extensions to your users, or automatically search for phrase extensions. For example, if the search query is "President of the United", search system 120 may automatically suggest "President of the United States" as a search query to the user.

인덱싱 프로세스의 마지막 단계 이후에, 양호 문구 리스트(208)는 자료에 나타난 많은 수의 양호 문구를 포함할 것이다. 이러한 양호 문구 각각은 문구 연장이 아닌 적어도 하나의 다른 문구를 예측할 것이다. 즉, 각각의 양호 문구는 자료에서 표현된 의미있는 개념이나 아이디어를 표현하는데 충분한 빈도와 독립성을 가지고 사용된다. 미리 정해지거나 손으로 선택된 문구들을 사용하는 현재의 시스템과 달리, 양호 문구 리스트는 자료에 사용되는 실제의 문구들을 반영한다. 나아가, 상기의 크롤 및 인덱싱 프로세스는 새로운 문서가 수집 문서에 추가될 때마다 주기적으로 반복되기 때문에, 인덱싱 시스템(110)은 새로운 문구들이 어휘 목록에 들어갈 때, 새로운 문구들을 자동적으로 탐색한다.After the last step of the indexing process, the good phrase list 208 will contain a large number of good phrases that appear in the material. Each of these good phrases will predict at least one other phrase that is not a phrase extension. That is, each good phrase is used with sufficient frequency and independence to express meaningful concepts or ideas expressed in the data. Unlike current systems that use predetermined or hand selected phrases, the good phrase list reflects the actual phrases used in the material. Furthermore, since the crawling and indexing process is repeated every time a new document is added to a collected document, the indexing system 110 automatically searches for new phrases as they enter the vocabulary list.

2. 관련 문구 및 관련 문구 클러스터 식별 2. Identify related phrases and related phrase clusters

도 4를 참조하면, 관련 문구 식별 프로세스는 다음과 같은 기능적인 동작들을 포함한다.Referring to FIG. 4, the relevant phrase identification process includes the following functional operations.

400: 높은 정보 이득 값을 갖는 관련 문구를 식별한다.400: Identify relevant phrases with high information gain values.

402: 관련 문구의 클러스터를 식별한다.402: Identifies a cluster of related phrases.

404: 클러스터 비트 벡터 및 클러스터 번호를 저장한다.404: Store the cluster bit vector and cluster number.

이제, 이들 각각의 동작에 대하여 상세히 설명한다.Now, each of these operations will be described in detail.

먼저, 양호 문구들(gj)을 포함하는 공통 출현 매트릭스(212)를 리콜한다. 여기서, 양호 문구(gj) 각각은 정보 이득 임계치보다 높은 정보 이득으로 적어도 하나의 다른 양호 문구(gk)를 예측한다. 이 후, 관련 문구를 식별(400)하기 위하여, 각각의 양호 문구 쌍(gj,gk)에 대한 정보 이득이 관련 문구 임계치 예컨대, 100과 비교된다. 즉, 다음의 경우 문구(gj)와 문구(gk)는 관련 문구이다.First, recall a common appearance matrix 212 that includes good phrases g j . Here, each good phrase g j predicts at least one other good phrase g k with an information gain higher than the information gain threshold. Thereafter, to identify 400 relevant phrases, the information gain for each good phrase pair g j , g k is compared with a relevant phrase threshold, eg, 100. That is, in the following case, the phrase g j and the phrase g k are related phrases.

I(gj,gk)>100I (g j , g k )> 100

이러한 높은 임계치는 통계적으로 충분히 기대율 이상인 양호 문구들의 공통 출현을 식별하기 위하여 사용된다. 통계적으로, 이것은 문구(gj)와 문구(gk)가 기대 공통 출현율보다 100배 이상 공통 출현하는 것을 의미한다. 예를 들어, 하나의 문서 내에서 문구 "Monica Lewinsky"가 주어지고, 문구 "Bill Clinton"이 동일 문서에 100번 이상 출현할 가능성이 있다면, 문구 "Bill Clinton"은 임의적으로 선택된 어떠한 문서에도 출현할 것이다. 발생률이 100:1이므로, 다른 방법으로 말하면, 예측의 정확도가 99.999%이다.This high threshold is used to identify common occurrences of good phrases that are statistically well above expectations. Statistically, this means that the phrases g j and g k are 100 times more common than the expected common occurrence. For example, if the phrase "Monica Lewinsky" is given within one document, and the phrase "Bill Clinton" is likely to appear more than 100 times in the same document, the phrase "Bill Clinton" may appear in any document selected arbitrarily. will be. Since the incidence is 100: 1, in other words, the accuracy of the prediction is 99.999%.

따라서, 어떤 엔트리(gj,gk)가 관련 문구 임계치보다 적다는 것은 문구(gj)와 문구(gk)가 관련되지 않음을 의미하므로, 전부 삭제된다. 이제, 공통 출현 매트릭스(212)에 남아있는 어떤 엔트리도 전부 관련 문구들임을 의미한다.Thus, the fact that any entry g j , g k is less than the relevant phrase threshold means that the phrase g j and the phrase g k are not related and are therefore deleted. Now, any entries remaining in the common appearance matrix 212 are all related phrases.

이후, 공통 출현 매트릭스(212)의 각 열(gj)의 행들(gk)은 정보 이득 값 I(gj,gk)에 의해 소팅되어, 가장 높은 정보 이득을 갖는 관련 문구(gk)가 첫번째로 리스트에 올려진다. 따라서, 이러한 소팅은 주어진 문구(gj)에 대하여 정보 이득의 관점에서 가장 관련될 가능성이 있는 다른 문구들을 식별한다.Thereafter, the rows g k of each column g j of the common appearance matrix 212 are sorted by the information gain value I (g j , g k ), so that the relevant phrase g k having the highest information gain is obtained. Is listed first. Thus, this sorting identifies other phrases most likely to be relevant in terms of information gain for a given phrase g j .

다음 스텝은 어느 관련 문구들이 서로 관련 문구의 클러스터를 형성하는 지를 결정(402)하기 위한 것이다. 클러스터는 관련 문구들의 세트로서, 여기서 각각의 문구는 적어도 하나의 다른 문구에 대하여 높은 정보 이득을 갖는다. 일 실시예에서, 클러스터는 다음과 같이 식별된다.The next step is to determine 402 which related phrases form a cluster of related phrases with each other. A cluster is a set of related phrases, where each phrase has a high information gain for at least one other phrase. In one embodiment, clusters are identified as follows.

매트릭스의 각 열(gj) 내에서, 문구(gj)에 관련된 하나 이상의 다른 문구들이 있을 것이다. 이 세트는 관련 문구 세트(Rj)이고, 여기서, R={gk, gl, ..., gm} 이다.Within each column g j of the matrix, there will be one or more other phrases related to the phrase g j . This set is the relevant phrase set Rj, where R = {g k , g l , ..., g m }.

관련 문구 세트(Rj) 내에서 각 관련 문구(m)에 대하여, 인덱싱 시스템(110)은 R 내의 다른 관련 문구 각각이 문구(gj)에 또한 관련되어 있는지를 판단한다. 따라서, 만약 I(gk,gl)가 0이 아닌 경우에는, gj, gk, 및 gl는 클러스터의 일부이다. 이 클러스터 검사는 R 내의 각각의 쌍(gl,gm)에 대하여 반복된다.For each related phrase m in the related phrase set R j , the indexing system 110 determines whether each of the other related phrases in R is also related to the phrase g j . Thus, if I (g k , g l ) is nonzero, g j , g k , and g l are part of the cluster. This cluster check is repeated for each pair (g l , g m ) in R.

예를 들어, "Bill Cliton"에 대한 이들 문구 각각의 정보 이득(information gain)이 관련 문구 임계치(Related Phrase threshold)를 초과하기 때문에, 양호 문 구 "Bill Cliton"이 문구 "President", "Monica Lewinsky"와 관련이 있다고 가정하자. 또한, 문구 "Monica Lewinsky"가 문구 "purse designer"과 관련이 있다고 가정한다. 그러면, 이들 문구들은 세트 R을 형성한다. 클러스터를 판정하기 위하여, 인덱싱 시스템(110)은, 이들 문구의 대응하는 정보 이득을 판정함으로써, 이들 문구 각각의 다른 문구에 대한 정보 이득을 평가한다. 따라서, 인덱싱 시스템(110)은 정보 이득I("President", "Monica Lewinsky"), I("President", "purse designer") 등과 같은, R내의 모든 쌍에 대한 정보 이득I를 판정한다. 이 예에서, "Bill Cliton", "President", 및 "Monica Lewinsky"가 하나의 클러스터를 형성하고, "Bill Cliton", 및 "President"가 제2 클러스터를 형성하고, 그리고 "Monica Lewinsky", 및 "purse designer"가 제3 클러스터를 형성하고, 그리고 "Monica Lewinsky", "Bill Cliton", 및 "purse designer"가 제4 클러스터를 형성한다. 이것은 "Bill Clinton"은 충분한 정보 이득으로 "purse designer"를 예측하지 않는 반면에, "Monica Lewinsky"는 이들 2개의 문구 모두를 예측하기 때문이다.For example, because the information gain of each of these phrases for "Bill Cliton" exceeds the Related Phrase threshold, the good phrase "Bill Cliton" is the phrase "President", "Monica Lewinsky". Assume that it is related to It is also assumed that the phrase "Monica Lewinsky" is related to the phrase "purse designer". These phrases then form the set R. To determine the cluster, the indexing system 110 evaluates the information gain for each of these phrases by determining the corresponding information gain of those phrases. Thus, indexing system 110 determines the information gain I for all pairs in R, such as information gain I (" President ", " Monica Lewinsky "), I (" President ", " purse designer ") and the like. In this example, "Bill Cliton", "President", and "Monica Lewinsky" form one cluster, "Bill Cliton", and "President" form a second cluster, and "Monica Lewinsky", and "purse designer" forms a third cluster, and "Monica Lewinsky", "Bill Cliton", and "purse designer" form a fourth cluster. This is because "Bill Clinton" does not predict "purse designer" with sufficient information gain, while "Monica Lewinsky" predicts both of these phrases.

클러스터 정보를 기록(404)하기 위하여, 각 클러스터에는 고유의 클러스터 번호(클러스터 ID)가 할당된다. 그리고, 이 정보는 각 양호 문구(gj)와 관련하여 기록된다.In order to record the cluster information 404, each cluster is assigned a unique cluster number (cluster ID). This information is then recorded in association with each good phrase g j .

일 실시예에서, 클러스터 번호는, 문구들 사이의 직교 관련성을 가리키는, 클러스터 비트 벡터에 의하여 판정된다. 상기 클러스터 비트 벡터는 양호 문구 리스트에서 양호 문구의 수인 길이 n의 일련의 비트이다. 주어진 양호 문구 gj 에 대 하여, 비트 위치는 gj의 분류된 관련 문구들 R에 대응한다. R내의 관련 문구 gk가 문구 gj와 동일한 클러스터에 속하는 경우에 비트가 세트된다. 보다 일반적으로, 이것은, gj 와 gk 사이에 어떠한 하나의 방향으로 정보 이득이 있는 경우에, 클러스터 비트 벡터에서 대응하는 비트가 세트되는 것을 의미한다. In one embodiment, the cluster number is determined by a cluster bit vector, indicating orthogonal relationships between phrases. The cluster bit vector is a series of bits of length n that is the number of good phrases in the good phrase list. For a given good phrase g j , the bit position corresponds to the classified related phrases R of g j . The bit is set if the relevant phrase g k in R belongs to the same cluster as the phrase g j . More generally, this means that when there is an information gain in any one direction between g j and g k , the corresponding bit in the cluster bit vector is set.

그리고 클러스터 번호는 결과적인 비트 스트링의 값이다. 이 실시예는 다수의 또는 일 방향의 정보 이득을 가지는 관련 문구들이 동일한 클러스터에 나타나는 특징을 가진다.And the cluster number is the value of the resulting bit string. This embodiment has the feature that related phrases having multiple or one-way information gains appear in the same cluster.

상기한 문구들을 사용한 클러스터 비트 벡터의 예는 다음과 같다.An example of a cluster bit vector using the above phrases is as follows.

Bill ClintonBill Clinton PresidentPresident Monica LewinskyMonica Lewinsky purse designerpurse designer 클러스트 IDCluster ID Bill ClintonBill Clinton 1One 1One 1One 00 1414 PresidentPresident 1One 1One 00 00 1212 Monica LewinskyMonica Lewinsky 1One 00 1One 1One 1111 purse designerpurse designer 00 00 1One 1One 33

그리고 요약하면, 이 프로세스 이후에, 각 양호 문구gj 에 대하여, 정보 이득I(gj, gk)가 최상위값에서 최하위값의 순서로 소팅된 관련 문구의 세트 R가, 식별될 것이다. 게다가, 각 양호 문구 gj에 대하여, 클러스터 비트 벡터가 존재할 것인데, 그것의 값은, 문구gj 가 멤버로 포함되어 있는 제1 클러스터를 식별하는 클러스터 번호, 및 R내의 관련 문구들 중에서 gj 와 동일한 클러스터에 해당되는 관련 문구를 지시하는 직교값(orthogonality value)(각 비트 위치에 대하여 1 또는 0)이 다. 따라서 상기 예에서, "Bill Clinton", "President", 및 "Monica Lewinsky"는, 문구 "Bill Cliton"의 열에서의 비트 값에 기초하여, 클러스터 14에 속한다.And in summary, after this process, for each good phrase g j , a set R of related phrases whose information gain I (g j , g k ) is sorted in order from the highest value to the lowest value will be identified. In addition, for each good phrase g j , there will be a cluster bit vector whose value is the cluster number identifying the first cluster that contains the phrase g j as a member, and g j from among the relevant phrases in R. Orthogonality value (1 or 0 for each bit position) indicating the relevant phrase corresponding to the same cluster. Thus in the above example, "Bill Clinton", "President", and "Monica Lewinsky" belong to cluster 14, based on the bit value in the column of the phrase "Bill Cliton".

이 정보를 저장하기 위하여, 2개의 기본적인 표현 방법을 이용할 수 있다. 우선, 상기한 바와 같이, 상기 정보는 공통 출현 매트릭스(co-occurrence, 212)에 저장될 수 있는데, 여기서:To store this information, two basic presentation methods can be used. First, as noted above, the information may be stored in a common appearance matrix (co-occurrence) 212, where:

entry G[row j, col. k] = (I(j,k), clusterNumber, ClusterBitVector)entry G [row j, col. k] = (I (j, k), clusterNumber, ClusterBitVector)

이다.to be.

대신에, 상기 매트릭스 표현 방법을 사용하지 않고, 양호 문구 리스트(208)에 모든 정보가 저장될 수 있는데, 여기서 그것의 각 열은 양호 문구 gj 를 나타낸다:Instead, without using the matrix representation method, all the information can be stored in the good phrase list 208, where each column represents good phrase g j :

문구 열j = 리스트 [문구 gk, (I(j,k), 클러스터 번호, 클러스터 비트 벡터)]Phrase column j = list [phrase g k , (I (j, k), cluster number, cluster bit vector)]

이와 같은 접근법에 의하면 클러스터를 유용하게 조직화할 수가 있다. 우선, 이러한 접근법은, 엄격하게 -그리고 종종 임의적으로- 정의된 토픽과 개념의 분류 체계라기보다는, 관련 문구들에 의해 지시될 때, 토픽은 관련성의 복잡한 그래프를 형성하는데, 여기서 어떤 문구들은 많은 다른 문구들과 관련되고, 그리고 어떤 문구들은 보다 제한된 범위를 가지며, 그리고 상기 관련성은 상호성(각 문구가 다른 문구를 예측한다)을 가지거나 또는 일 방향성(어떤 문구가 다른 문구를 예측하지만, 역은 성립하지 않는다)을 가진다는 것을 인식한다. 그 결과, 클러스터 는 각 양호 문구에 대하여 "local"로 특징지워 질 수 있고, 그리고 어떤 클러스터들은 하나 또는 그 이상의 공통된 관련 문구들을 가짐으로써 중첩될 수도 있다.This approach is useful for organizing clusters. First of all, this approach, rather than strictly-and often arbitrarily-defined taxonomy of topics and concepts, when indicated by relevant phrases, forms a complex graph of relevance, where some phrases are many different. Are related to phrases, and some phrases have a more limited scope, and the relevance may have interactivity (each phrase predicts another phrase) or one-way (some phrase predicts another phrase, but vice versa) It does not.) As a result, clusters may be characterized as "local" for each good phrase, and some clusters may overlap by having one or more common related phrases.

주어진 양호 문구gj 에 대하여 정보 이득에 의하여 관련 문구들을 랭킹하는 것은 상기 문구의 클러스터를 명명하기 위한 체계(taxonomy)를 제공한다: 클러스터 이름은 클러스터에서 최고의 정보 이득을 가지는 관련 문구의 이름이다.Ranking related phrases by information gain for a given good phrase g j provides a taxonomy for naming the cluster of phrases: The cluster name is the name of the relevant phrase with the highest information gain in the cluster.

상기한 방법은 문서 컬렉션 나타나는 중요한 문구를 식별하기 위한 아주 강력한(robust) 방법을 제공하며, 그리고 이 방법은, 실제적으로 사용되는 자연스러운 "클러스터"에 이들 관련 문구들이 같이 사용된다는 점에서 유익한 방법이다. 그 결과, 이러한 관련 문구들의 데이터 구동 클러스터링 방법(data-driven clustering of related phrase)에 의하면, 많은 시스템에서 공통으로 사용되는 것과 같은, 관련 용어들과 개념들에 대한 어떠한 작위적인 "편집자"의 선택에 내재되어 있는 편향을 회피할 수가 있다.The above method provides a very robust method for identifying important phrases that appear in document collections, and this method is advantageous in that these related phrases are used together in the natural "cluster" used in practice. As a result, according to the data-driven clustering of related phrases, the choice of any "editor" for related terms and concepts, such as those commonly used in many systems, is a factor. Inherent deflections can be avoided.

3. 문구 및 관련 문구들을 가지는 인덱싱 문서 3. Indexing Documents with Phrases and Related Phrases

관련 문구 및 클러스터와 관련된 정보를 포함하는 상기 양호 문구 리스트(208)가 주어지면, 인덱싱 시스템(110)의 다음 기능적인 동작은, 양호 문구 및 클러스터에 대하여 문서 컬렉션내의 문서들을 인덱싱하고, 그리고 인덱스(150)에 업데이트된 정보를 저장하는 것이다. 도 5에는 이러한 프로세스가 도시되어 있는데, 여기에는 문서를 인덱싱하기 위한 다음과 같은 기능적인 단계가 있다:Given the good phrase list 208 containing relevant phrases and information related to the cluster, the next functional operation of the indexing system 110 is to index the documents in the document collection for the good phrases and clusters, and 150) to store the updated information. This process is illustrated in Figure 5, where there are the following functional steps for indexing a document:

500 : 문서에서 발견되는 양호 문구들의 포스팅 리스트(posting list)에 문 서를 포스팅.500: Posts a document to a posting list of good phrases found in the document.

502 : 관련 문구 및 2차적인 관련 문구에 대한 인스턴스 카운트(instance count)및 관련 문구 비트 벡터를 업데이트.502: Update the instance count and the associated phrase bit vector for the relevant phrase and the secondary related phrase.

504 : 관련 문구 정보로 문서에 주석 달기.504: Annotate documents with relevant textual information.

506 : 포스팅 리스트 크기에 따라 인덱스 엔트리를 재배열.506: Reorder index entries according to posting list size.

이들 단계에 대하여 지금부터 보다 상세하게 설명한다.These steps will now be described in more detail.

앞에서와 마찬가지로, 문서 세트를 트레버싱하거나 크롤링한다: 이것은 동일한 문서 세트이거나 다른 문서 세트일 수 있다. 주어진 문서d에 대하여, 상술한 것과 동일한 방법으로, 위치i로부터, 길이 n의 시퀀스 윈도(302)를 사용하여 단어별로 500 개의 문서 단어를 트레버싱한다.As before, traverse or crawl the document set: this can be the same document set or a different document set. For a given document d, in the same manner as described above, 500 document words per word are traversed from position i using a sequence window 302 of length n.

주어진 문구 윈도(302)에서, 위치i에서 시작하여, 윈도 내의 모든 양호 문구들을 식별한다. 각각의 양호 문구는 gi 로 표시된다. 따라서, g1 은 제1 양호 문구이고, g2 는 제2 양호 문구이다.At a given phrase window 302, starting at position i, all good phrases within the window are identified. Each good phrase is denoted by g i . Thus, g 1 Is the first good phrase and g 2 is the second good phrase.

각 양호 문구gi (예를 들어, g1 은 "President"이고, g4 는 "President of ATT"이다)에 대하여, 인덱스(150)의 양호 문구gi 에 대한 포스팅 리스트에 문서 식별자(예, URL)를 포스팅한다. 이러한 업데이트에 의하여, 양호 문구gi 가 이런 특정 문서에 나타난다는 것이 식별된다.Each good phrase g i (for example, g 1 Is "President", g 4 Posts a document identifier (eg, a URL) to the posting list for the good phrase g i of index 150, for " President of ATT &quot;. By this update, it is identified that the good phrase g i appears in this particular document.

일 실시예에서, 문구gi 에 대한 포스팅 리스트는 다음과 같은 논리적인 형태를 가진다.In one embodiment, the posting list for the phrase g i has the following logical form:

문구 gj : 리스트: (문서 d, [리스트: 관련 문구 카운트][관련 문구 정보])Phrases g j : List: (Document d, [List: Relevant Phrases Count] [Related Phrases Information])

각 문구gj 에 대하여, 그 문구가 나타나는 문서 d의 리스트가 있다. 각 문서에 대하여, 역시 문서 d에 나타나는 문구 gj의 관련 문구 R들이 나타나는 횟수를 카운트한 리스트가 있다.For each phrase g j , there is a list of documents d in which the phrase appears. For each document, there is a list of counting the number of times the relevant phrases R of the phrase g j appearing in the document d appear.

일 실시예에서, 관련 문구 정보는 관련 문구 비트 벡터일 수 있다. 이 비트 벡터는, 각 관련 문구gk 에 대하여 2개의 비트 위치, gk-1, gk-2가 있다는 점에서, "2-비트" 벡터로서의 특징이 있다. 제1 비트 위치는 관련 문구gk 가 문서 d(즉, 문서 d에서 gk 에 대한 카운트가 0보다 크다)에 존재하는지의 여부를 나타내는 플래그(flag)를 저장한다. 제2 비트 위치는 문구gk 의 관련 문구gi 가 문서 d에 존재하는지의 여부를 나타내는 플래그를 저장한다. 문구gj 의 관련 문구gk 의 관련 문구gi 는 여기서는 "gj 의 2차적인 관련 문구"로 칭해진다. 카운트와 비트 위치는 (정보 이득이 감소하는 순서로 소팅된) R에서 문구들의 표준적인(canonical) 순서에 대응한다. 이러한 소팅 순서는 gj 에 의하여 가장 높이 예측되는 관련 문구gk 가 관련 문구 비트 벡터의 최상위 비트에 연관되도록 하고, 그리고 gj 에 의하여 가장 낮게 예측되는 관련 문구gl 가 최하위지 비트와 연관되도록 하는 효과가 있다.In one embodiment, the relevant phrase information may be an associated phrase bit vector. This bit vector is characterized as a "2-bit" vector in that there are two bit positions, g k -1 and g k -2 for each relevant phrase g k . The first bit position stores a flag indicating whether or not the relevant phrase g k is present in document d (ie, the count for g k in document d is greater than zero). The second bit position stores a flag indicating whether or not the relevant phrase g i of the phrase g k exists in the document d. Related phrase g i of the phrase g j is a related phrase g k in this case is referred to as the "secondary related phrases of g j". The count and bit position correspond to the canonical order of phrases in R (sorted in order of decreasing information gain). This sorting order causes the relevant phrase g k most predicted by g j to be associated with the most significant bit of the relevant phrase bit vector, and the related phrase g l least predicted by g j is associated with the least significant bit. It works.

주어진 문구g에 대하여, 관련 문구 비트 벡터의 길이, 및 그 벡터의 각각의 비트에 대한 관련 문구들의 연관성은, 문구 g를 포함하고 있는 모든 문서에 대하여 동일할 것이라는 것에 주의하는 것은 유용하다. 이 실시예는 시스템이, 문구g를 포함하고 있는 어떤 (또는 모든) 문서에 대한 관련 문구 비트 벡터를, 쉽게 비교하여, 어떤 문서가 주어진 관련 문구를 가지고 있는지를 알아볼 수 있게 해주는 특징이 있다. 이것은 어떤 서치 질의에 대한 응답으로 문서를 식별하는 서치 프로세스를 용이하게 해주는 이점이 있다. 따라서, 주어진 문서는 많은 다른 문구의 포스팅 리스트에 나타날 것이며, 그리고 각각의 그러한 포스팅 리스트에는, 그 문서에 대한 그 관련 문구 벡터가 상기 포스팅 리스트를 가지는 문구에 고유(specific)할 것이다. 이러한 측면은 개별 문구 및 문서에 대한 관련 문구 비트 벡터의 특이성(localty)을 유지시킨다.It is useful to note that for a given phrase g, the length of the relevant phrase bit vector, and the association of the relevant phrases for each bit of the vector, will be the same for all documents containing the phrase g. This embodiment has a feature that allows the system to easily compare the relevant phrase bit vectors for any (or all) documents containing the phrase g so as to see which document has the given relevant phrase. This has the advantage of facilitating the search process of identifying documents in response to a search query. Thus, a given document will appear in the posting list of many different phrases, and in each such posting list, the relevant phrase vector for that document will be specific to the phrase having the posting list. This aspect maintains the locality of the relevant phrase bit vector for individual phrases and documents.

따라서, 다음 단계(502)는 문서(이전과 같이 +/- K 용어, 예를 들어, 30 용어)에서 현재의 인덱스 위치의 제2 윈도(304), 예컨대, i-K부터 i+K까지를 트래버싱하는 것을 포함한다. 제2 윈도(304)에 나타나는 gi 의 관련 문구gk 각각에 대하여, 인덱싱 시스템(110)은 관련 문구 카운트에서 문서 d에 대한 gk의 카운트를 증가시킨다. gi 가 문서에서 뒤에 나타나고, 그리고 그 관련 문구가 그 뒤쪽의 제2 윈도에 다시 발견되는 경우에는, 카운트는 다시 증가한다.Thus, the next step 502 traverses the second window 304 of the current index position, e.g. iK to i + K, in the document (+/- K term, eg 30 term as before). It involves doing. For each relevant phrase g k of g i appearing in the second window 304, the indexing system 110 increments the count of g k for document d in the relevant phrase count. If g i appears later in the document and the relevant phrase is found again in the second window behind it, the count is incremented again.

언급된 바와 같이, 관련 문구 비트 맵에서 대응하는 제1 비트 gk-1는 상기 카운트에 기초하여 세트되는데, gk 에 대한 카운트가 >0인 경우에는 그 비트는 1로 세트되고, 또는 상기 카운트가 0인 경우에는 0으로 세트된다.As mentioned, the corresponding first bit g k -1 in the relevant phrase bit map is set based on the count, if the count for g k is> 0, the bit is set to 1, or the count If is 0, it is set to 0.

다음으로, 인덱스(150)에서 관련 어구 gk를 찾아보고, gk의 포스팅 리스트에서 문서 d가 들어가 있는지 여부를 식별하고, 그리고 다음으로 어떠한 그것의 관련 문구에 대한 제 2 관련 문구 카운트 (또는 비트)를 체크함으로써, 제2 비트gk-2가 세트된다. 만일 어떠한 이들 제2 관련 문구 카운트/비트가 세트되면, 이것은 gj의 제 2 관련 문구가 문서 d에 역시 존재한다는 것을 지시한다.Next, look up the relevant phrase g k at index 150, identify whether document d is in the posting list of g k , and then count the second relevant phrase (or bit) for any of its related phrases. ), The second bit g k -2 is set. If any of these second related phrase counts / bits are set, this indicates that a second related phrase of g j is also present in document d.

문서 d가 이러한 방식으로 완전히 처리되는 경우에, 인덱싱 시스템(110)은 다음의 사항들을 식별할 것이다:In the case where document d is fully processed in this manner, indexing system 110 will identify the following:

i) 문서d에서 각 양호 문구gj;i) each good phrase g j in document d;

ii) 각 양호 문구gj 에 대하여, 그것의 관련 문구 gk중에서 어떠한 것이 문서 d에 존재하는지;ii) for each good phrase g j , which of its related phrases g k is present in document d;

iii) 문서 d에 존재하는 각 관련 문구gk에 대하여, 그것의 관련 문구gi(gj의 제2 관련 문구)중에서 어떠한 것이 또한 문서 d에 존재하는지.iii) For each relevant phrase g k present in document d, which of its related phrases g i (second related phrase of g j ) is also present in document d.

a) 문서에 대한 토픽을 판정하기a) determine the topic for the document

문구에 의하여 문서를 인덱싱하고 클러스터링 정보를 사용하는 것은 인덱싱 시스템(110)의 다른 하나의 이점을 제공하는데, 이것은 관련 문구 정보에 기초하여 문서의 토픽을 판정하는 능력이다.Indexing a document by phrases and using clustering information provides another advantage of indexing system 110, which is the ability to determine the topic of a document based on relevant phrase information.

주어진 양호 문구gj 및 주어진 문서 d에 대하여, 포스팅 리스트 엔트리가 다음과 같다고 가정하자:For a given good phrase g j and given document d, assume that the posting list entry is:

gj : 문서d : 관련 문구 카운트: = {3,4,3,0,0,2,1,1,0}g j : document d: related phrase count: = {3,4,3,0,0,2,1,1,0}

관련 문구 비트 벡터: = {11 11 10 00 00 10 10 10 01}             Related Phrases Bit Vectors: = {11 11 10 00 00 10 10 10 01}

여기서, 관련 문구 비트 벡터는 2비트 쌍(bi-bit pairs}에 나타나 있다.Here, the relevant phrase bit vector is shown in bi-bit pairs.

관련 문구 비트 벡터로부터, 문서 d의 제 1 및 제 2 토픽을 판정할 수 있다. 제1 토픽은 비트 쌍 (1,1)으로 지시되며, 그리고 제 2 토픽은 비트 쌍(1,0)으로 지시된다. 관련 문구 비트 쌍 (1,1)은, 제 2 관련 문구gi 와 함께 비트 쌍에 대한 관련 문구gk 둘 다 문서d에 존재한다는 것을 지시한다. 이것은 문서 d의 저자가 그 문서를 작성할 때에 몇 개의 관련 문구gj, gk, 및 gi 를 함께 사용한 것으로 해석할 수 있다. 비트 쌍 (1,0)은 gj 및 gk 는 둘 다 존재하지만, gk 가 아닌 다른 제2 관련 문구는 더 이상 존재하지 않는다는 것을 지시하며, 따라서 이것은 덜 중요한 토픽이다.From the relevant phrase bit vector, it is possible to determine the first and second topic of document d. The first topic is indicated by bit pair (1, 1), and the second topic is indicated by bit pair (1, 0). The relevant phrase bit pair (1, 1) indicates that both the relevant phrase g k for the bit pair together with the second related phrase g i are present in the document d. This can be interpreted by the author of document d using several related phrases g j , g k , and g i together in writing the document. Bit pair (1,0) indicates that both g j and g k are present, but there is no longer a second relevant phrase other than g k , so this is a less important topic.

b) 개선된 랭킹을 위한 문서 주석b) Document annotation for improved ranking

인덱싱 시스템(110)의 다른 하나의 측면은, 후속 서치 프로세스에서 개선된 랭킹을 제공하는 정보를 가지고 인덱싱 프로세스 중에 각 문서 d에 주석을 다는 능력(504)이다. 주석을 다는 프로세스(506)는 다음과 같다.Another aspect of indexing system 110 is the ability 504 to annotate each document d during the indexing process with information providing improved ranking in subsequent search processes. Annotating process 506 is as follows.

문서 컬렉션 내의 주어진 문서d는 다른 문서에 대하여 어떤 수의 아웃링크(outlink)를 가질 수 있다. 각 아웃링크(하이퍼링크)는 앵커 텍스트(anchor text) 및 타깃 문서의 문서 식별자를 포함한다. 설명의 편의를 위하여, 현재 처리가 이루어지고 있는 문서d는 URL0으로 하고, 문서d의 아웃링크인 타깃 문서는 URL1이라고 하자. 어떤 다른 URLi를 가리키는, URL0의 각 링크에 대한, 서치 결과에 나타나는 랭킹 문서에 나중에 사용하기 위하여, 인덱싱 시스템(110)은, URL0에 대한 그 링크의 앵커 문구에 대한 아웃트링크 스코어, 및 URLi에 대한 그 앵커 문구에 대한 인링크(inlink) 스코어를 생성한다. 다시 말해서, 문서 컬렉션에서 각 링크는 아웃링크와 인링크로 이루어진 한 쌍의 스코어를 가진다. 이들 스코어는 다음과 같이 계산된다.A given document d in a document collection can have any number of outlinks to other documents. Each outlink (hyperlink) includes an anchor text and a document identifier of the target document. For convenience of explanation, it is assumed that the document d currently being processed is URL0, and the target document which is an outlink of the document d is URL1. For later use in the ranking document that appears in the search results for each link in URL0 that points to some other URLi, the indexing system 110 adds an outlink score to the anchor phrase of that link to URL0, and URLi. Generate an inlink score for that anchor phrase for. In other words, each link in the document collection has a pair of scores, outlink and inlink. These scores are calculated as follows.

주어진 문서 URL0에 대하여, 인덱싱 시스템(110)은 다른 문서URL1에 대한 각 아웃링크를 식별하는데, 여기서 앵커 텍스트A는 양호 문구 리스트(208)에 있는 문구이다. 도 8a는 이러한 관련성을 도식적으로 보여주고 있는데, 여기서 문서URL0에서 앵커 텍스트 "A"는 하이퍼링크(800)에 사용된다.For a given document URL0, indexing system 110 identifies each outlink to another document URL1, where anchor text A is a phrase in good phrase list 208. 8A graphically illustrates this relationship, where the anchor text "A" in document URL0 is used for hyperlink 800.

문구A에 대한 포스팅 리스트에서, URL0은 문구A의 아웃링크로서 포스팅되고, 그리고 URL1은 문구A의 인링크로서 포스팅된다. URL0의 경우에, 관련 문구 비트 벡터는 상술한 바와 같이 완성되어, URL0에 존재하는 A의 관련 문구 및 제2 관련 문구를 식별한다. 이러한 관련 문구 비트 벡터는 URL0으로부터 앵커 문구A를 포함하고 있는 URL1까지의 링크에 대한 아웃링크 스코어로서 사용된다.In the posting list for phrase A, URL0 is posted as outlink of phrase A, and URL1 is posted as inlink of phrase A. In the case of URL0, the relevant phrase bit vector is completed as described above, identifying the relevant phrase of A and the second related phrase present in URL0. This relevant phrase bit vector is used as the outlink score for the link from URL0 to URL1 containing anchor phrase A.

다음으로, 인링크 스코어는 다음과 같이 판정된다. 앵커 문구A를 포함하는 URL1에 대한 각 인링크에 대하여, 인덱싱 시스템(110)은 URL1를 스캔하고, 그리고 URL1의 본문(body)에 문구A가 나타나는지 여부를 판정한다. 만일 문구A가 (URL0에 대한 아웃링크를 경유하여) URL1를 지시할 뿐만 아니라 URL1의 내용에 나타난다면, 이것은 URL1이 문구A에 의하여 대표되는 개념에 의식적으로 관련되어 있다고 말해질 수 있다. 도 8b는 이러한 경우를 나타내는데, 여기서 문구A는 (앵커 텍스트로서) URL0과 URL1의 본문에 둘 다 나타난다. 이 경우에, URL1에 대한 문구A의 관련 문구 비트 벡터는, URL0으로부터 문구A를 포함하는 URL1으로의 링크에 대한 인링크 스코어로서 사용된다.Next, the inlink score is determined as follows. For each inlink to URL1 that includes anchor phrase A, indexing system 110 scans URL1 and determines whether phrase A appears in the body of URL1. If the phrase A not only indicates URL1 (via an outlink to URL0) but also appears in the content of URL1, it can be said that URL1 is consciously related to the concept represented by phrase A. 8B illustrates this case, where the phrase A appears both in the body of URL0 and URL1 (as anchor text). In this case, the relevant phrase bit vector of phrase A for URL1 is used as the inlink score for the link from URL0 to URL1 containing phrase A.

만일 (도 8a에 도시된 바와 같이) 앵커 문구A가 URL1의 본문에 나타나지 않는 경우에는, 인링크 스코어를 판정하기 위하여 다른 단계가 사용된다. 이 경우에, 인덱싱 시스템(110)은 (마치 문구A가 URL1에 존재한 것과 같이) 문구A에 대한 URL1의 관련 문구 비터 벡터를 생성하여 문구A의 어떠한 관련 문구가 URL1에 나타나는지를 지시한다. 이러한 관련 문구 비트 벡터는 URL0으로부터 URL1으로의 링크에 대한 인링크 스코어로서 사용된다.If anchor phrase A does not appear in the body of URL1 (as shown in FIG. 8A), another step is used to determine the inlink score. In this case, indexing system 110 generates an associated phrase beater vector of URL1 for phrase A (as if phrase A was in URL1) to indicate which related phrase of phrase A appears in URL1. This relevant phrase bit vector is used as the inlink score for the link from URL0 to URL1.

예를 들어, 최초에 다음과 같은 문구들이 URL0과 URL1에 존재한다고 가정해보자.For example, suppose that the following statements first exist in URL0 and URL1.

문서 document 앵커 문구Anchor stationery 관련 문구 비트 벡터Related phrase bit vector Australian ShepherdAustralian Shepherd AussieAussie blue merleblue merle red merlered merle tricolortricolor agility trainingagility training URL0URL0 1One 1One 00 00 00 00 URL1URL1 1One 00 1One 1One 1One 00

(위의 표와 다음의 표에는 제2 관련 문구 비트는 표시되어 있지 않다). URL0열은 앵커 텍스터A로부터의 아웃링크 스코어이고, 그리고 URL1열은 상기 링크의 인링크 스코어이다. 여기서, URL0은 URL1을 타깃으로 하는 "Australian Shepㅗhrd"를 포함한다. "Australian Shephard"의 다섯 개의 관련 문구들 중에서, 단 하나의 관련 문구, "Aussie"만이 URL0에 나타난다. 그러면 직관적으로, URL0은 Anstralian Shepherd에 대하여 아주 약하게 관련되어 있다는 것을 알 수 있다. URL1은, 대조적으로, 문서의 본문에 "Australian Shephard"가 존재할 뿐만 아니라, "blue merle", "red merle", 및 "tricolor"와 같은 많은 관련 문구를 포함하고 있다. 따라서, 앵커 문구인 "Australian Shepard"는 URL0과 URL1에 모두 나타나기 때문에, URL0의 아웃링크 스코어와 URL1의 인링크 스코어는 상기 표의 각각의 열에 나타내져 있는 것과 같다.(The second and relevant phrase bits are not indicated in the table above and in the following table). Column URL0 is the outlink score from anchor text A, and URL1 column is the inlink score of the link. Here, URL0 includes "Australian Shep'hrd" which targets URL1. Of the five relevant phrases of "Australian Shephard", only one relevant phrase, "Aussie", appears in URL0. Intuitively, you can see that URL0 is very weakly related to Anstralian Shepherd. URL1, in contrast, contains "Australian Shephard" in the body of the document, as well as many related phrases such as "blue merle", "red merle", and "tricolor". Thus, since the anchor phrase "Australian Shepard" appears in both URL0 and URL1, the outlink score of URL0 and the inlink score of URL1 are as shown in the respective columns of the table.

상술한 두 번째 경우는 앵커 문구A가 URL1에 나타나지 않는 경우이다. 이 경우에, 인덱싱 시스템(110)은 URL1을 스캔하고, 그리고 관련 문구들 즉, "Aussi", "blue merle", "red merle", "tricolor", 및 "agility training" 중에서 어떤 것이 URL1에 존재하는지를 판정하여, 예를 들어 다음과 같은 관련 문구 비트 벡터를 생성한다:In the second case described above, the anchor phrase A does not appear in URL1. In this case, indexing system 110 scans URL1, and any of the relevant phrases, ie, "Aussi", "blue merle", "red merle", "tricolor", and "agility training" are present in URL1. To determine whether or not, generate the relevant phrase bit vector, for example:

문서 document 앵커 문구Anchor stationery 관련 문구 비트 벡터Related phrase bit vector Australian ShepherdAustralian Shepherd AussieAussie blue merleblue merle red merlered merle tricolortricolor agility trainingagility training URL0URL0 1One 1One 00 00 00 00 URL1URL1 00 00 1One 1One 1One 00

여기서, 상기 표는 URL1은 앵커 문구인 "Australian Shepard"는 포함하고 있지 않지만, 관련 문구들인 "blue merle", "red merle", 및 "tricolor"는 포함하고 있다는 것을 보여준다.Here, the table shows that URL1 does not include the anchor phrase "Australian Shepard", but includes related phrases "blue merle", "red merle", and "tricolor".

이러한 접근법에 의하면, 서치의 결과를 왜곡하기 위하여 (문서의 일부인) 웹 페이지를 어떠한 방식으로 조작하는 것을 완전히 방지할 수 있는 이점이 있다. 그 문서를 랭킹하기 위하여 주어진 문서를 지시하는 링크의 수에 의존하는 랭킹 알고리즘을 사용하는 서치 엔진은, 소망하는 페이지를 지시하는 주어진 앵커 텍스트를 가지고 많은 수의 페이지들을 인위적으로 생성시키는 것에 의하여 "폭발"될 수 있다. 그 결과, 앵커 텍스트를 사용하는 서치 질의가 입력되었을 경우에, 실제 이 페이지가 앵커 텍스트와 거의 관련이 없거나 아무런 관련이 없는 경우에도, 상기 소망하는 페이지가 대표적으로 찾아진다. 타깃 문서URL1으로부터 문서URL0에 대한 문구A의 관련 문구 비트 벡터로 관련 문구 벡터를 들여오게 되면, 서치 시스템이, 앵커 텍스트 문구에 대한 중요도 또는 URL1를 지시하는 것으로서, URL0에서 문구A의 관련성에만 의존하는 것을 없앨 수가 있다.This approach has the advantage of completely preventing any manipulation of the web page (which is part of the document) to distort the results of the search. A search engine that uses a ranking algorithm that depends on the number of links pointing to a given document to rank that document is "exploded" by artificially generating a large number of pages with a given anchor text that points to the desired page. "Can be. As a result, when a search query using anchor text is entered, the desired page is typically found even if this page has little or no relation to the anchor text. Importing the relevant phrase vector from the target document URL1 into the relevant phrase bit vector of phrase A for document URL0 causes the search system to rely only on the relevance of phrase A at URL0 as indicating the importance or URL1 for the anchor text phrase. You can get rid of it.

또한, 자료에서 나타나는 빈도에 기초하여, 인덱스(150)의 각 문구에는 문구 번호가 부여된다. 그 문구가 더 보편적이면 보편적일수록, 인덱스에서는 더 작은 문구 번호가 주어진다. 그러면 인덱싱 시스템(110)은, 각 포시팅 리스트의 문구 번호를 리스트하는 문서의 수에 따라서, 인덱스(150)에서 모든 포스팅 리스트를 감소하는 순서로 소팅(506)하는데, 그 결과 가장 빈번하게 나타나는 문구가 가장 앞에 포스팅된다. 그러면 그 문구 번호는 특정한 문구를 찾아보는데 사용될 수 있다.In addition, based on the frequency appearing in the data, a phrase number is assigned to each phrase of the index 150. The more universal the phrase, the smaller the number of phrases in the index. The indexing system 110 then sorts 506 all posting lists in index 150 in decreasing order, depending on the number of documents listing the phrase numbers of each posting list, resulting in the most frequent phrases. Is posted first. The phrase number can then be used to look up a particular phrase.

III. 서치 시스템 III. Search system

서치 시스템(120)은 질의를 받아서 그 질의에 관련된 문서를 찾고, 그리고 서치 결과의 세트에 (그 문서에 대한 링크를 가지는) 이들 문서의 리스트를 제공하도록 동작한다. 도 6에는 상기 서치 시스템(120)의 주요한 기능적인 동작이 도시되어 있다.Search system 120 operates to take a query, find documents related to the query, and provide a list of these documents (with a link to that document) in the set of search results. 6 illustrates the main functional operation of the search system 120.

600 : 질의에 대한 문구를 식별600: Identify phrases for queries

602 : 질의 문구에 관련된 문서를 검색602: retrieve documents related to the query phrase

604 : 문구에 따른 서치 결과에 문서들을 랭크604: Rank documents in search results according to the phrase

이들 단계들 각각에 대한 자세한 설명은 다음과 같다.A detailed description of each of these steps follows.

1. 질의 및 질의 확장에서 문구들을 식별 1. Identify phrases in queries and query extensions

서치 시스템(120)의 제1 단계(600)는 인덱싱을 효과적으로 서치하기 위하여 질의에 존재하는 문구들을 식별하는 것이다. 이 섹션에서는 다음과 같은 용어들이 사용된다:The first step 600 of the search system 120 is to identify phrases present in the query in order to search for indexing effectively. The following terms are used in this section:

q : 입력으로서 서치 시스템(120)에 의해 수신되는 질의.q: query received by search system 120 as input.

Qp : 질의에 존재하는 문구들.Qp: Phrases that exist in a query.

Qr: Qp의 관련 문구Qr: Qp related phrases

Qe: Qp의 문구 확장Qe: Qp phrase extension

Q: Qp와 Qr의 병합Q: merging Qp and Qr

질의 q는 클라이언트(190)로부터 수신되며, 문자 또는 단어의 어떤 최대수까지 갖는다.The query q is received from the client 190 and has up to some maximum number of letters or words.

서치 시스템(120)은 사이즈 N(예를 들면 5)의 문구 윈도를 사용하여 질의 q 의 용어들을 트래버스(traverse)한다. 문구 윈도는 질의의 제 1 용어부터 시작하여 우측으로 N개의 용어들을 확장한다. 그 후, 이 윈도는 M-N회 우측으로 시프트되고, 여기서 M은 질의 내의 용어 수이다.The search system 120 traverses the terms of the query q using a phrase window of size N (eg 5). The phrase window expands N terms to the right, starting with the first term in the query. This window is then shifted right M-N times, where M is the number of terms in the query.

각 윈도 위치에서는, 윈도 내의 N개(또는 소수)의 용어가 있을 수 있다. 이들 용어들은 가능 질의 문구로 이루어진다. 가능 문구를 양호 문구 리스트(208) 내에서 찾아내어, 양호 문구가 있는지의 여부를 결정한다. 가능 문구가 양호 문구 리스트(208) 내에 존재하면, 문구 번호가 문구를 대신하여 불러오게 된다. 이 가능 문구가 현재 후보 문구이다.In each window position, there may be N (or few) terms in the window. These terms are made up of possible query phrases. Possible phrases are found in the good phrase list 208 to determine whether there is good phrase. If a possible phrase exists in the good phrase list 208, the phrase number is called in place of the phrase. This possible phrase is the current candidate phrase.

각 윈도 내의 모든 가능 문구를 테스트하여 양호 후보 문구인지를 결정한 후에, 서치 시스템(120)은 질의 내의 대응하는 문구에 대하여 문구 번호들의 세트를 가질 것이다. 그 후, 이들 문구 번호들이 소팅된다(내림차순).After testing all possible phrases in each window to determine if they are good candidate phrases, the search system 120 will have a set of phrase numbers for the corresponding phrases in the query. Then, these phrase numbers are sorted (descending).

서치 시스템(120)은 1차 후보 문구로서 가장 높은 문구 번호부터 시작하여, 소팅된 리스트 내에서 일정한 수치 간격 내에 다른 후보 문구가 있는지, 즉 문구 번호 간의 차가 임계량, 예를 들면 20000 이내인지를 결정한다. 후보 문구가 있으면, 질의 내의 가장 좌측에 있는 문구를 유효한 질의 문구 Qp로서 선택한다. 이 질의 문구 및 그의 모든 서브문구를 후보 리스트로부터 제거하고, 리스트를 재정렬하여 프로세스를 반복한다. 이 프로세스의 결과가 유효 질의 문구 Qp의 세트이다.The search system 120 determines whether there are other candidate phrases within a certain numerical interval within the sorted list, that is, whether the difference between phrase numbers is within a threshold amount, for example 20000, starting with the highest phrase number as the primary candidate phrase. . If there is a candidate phrase, the leftmost phrase in the query is selected as a valid query phrase Qp. This query phrase and all its subphrases are removed from the candidate list and the list is rearranged to repeat the process. The result of this process is a set of valid query phrases Qp.

예를 들면, 서치 질의가 "Hillary Rodham Clinton Bill on the Senate Floor"라고 가정한다. 서치 시스템(120)은 다음과 같은 후보 문구, "Hillary Rodham Clinton Bill on", "Hillary Rodham Clinton Bill", 및 "Hillary Rodham Clinton"을 식별하게 된다. 처음 2개는 버리고, 마지막 1개는 유효 질의 문구로서 유지된다. 다음에, 서치 시스템(120)은 "Bill on the Senate Floor", 및 서브 문구 "Bill on the Senate", "Bill on the", "Bill on", :Bill"을 식별하여, "Bill"을 유효 질의 문구 Qp로서 선택하게 된다. 마지막으로, 서치 시스템(120)은 "on the senate floor"를 파싱하여 "Senate Floor"를 유효 질의 문구로서 식별했을 것이다.For example, suppose the search query is "Hillary Rodham Clinton Bill on the Senate Floor." The search system 120 will identify the following candidate phrases: "Hillary Rodham Clinton Bill on", "Hillary Rodham Clinton Bill", and "Hillary Rodham Clinton". The first two are discarded, and the last one is kept as a valid query phrase. Next, search system 120 identifies "Bill on the Senate Floor" and sub-phrases "Bill on the Senate", "Bill on the", "Bill on", and: Bill "to validate" Bill ". Finally, the search system 120 would have parsed "on the senate floor" to identify "Senate Floor" as a valid query phrase.

다음에, 서치 시스템(120)은 대문자에 대한 유효 문구 Qp를 조정한다. 질의를 분석할 때, 서치 시스템(120)은 각 유효 문구 내에 잠재적인 대문자를 식별한다. 이는 "United States"로서 대문자화된 "united states" 등의 공지된 대문자 테이블을 사용하거나, 문법 기반 대문자 알고리즘을 사용하여 행해질 수 있다. 이는 적절히 대문자화된 질의 문구의 세트를 생성한다.The search system 120 then adjusts the valid phrase Qp for capital letters. When analyzing a query, search system 120 identifies potential capital letters within each valid phrase. This can be done using a known capitalization table such as "united states" capitalized as "United States" or using a grammar-based capitalization algorithm. This produces a set of properly capitalized query phrases.

그 후, 서치 시스템(120)은 대문자화된 문구를 2회 패스시켜 문구와 그의 서브 문구가 모두 세트 내에 존재하는 가장 좌측에 있는 문구만을 선택하여 대문자화한다. 예를 들면, "president of the united states"의 서치는 "President of the United States"로 대문자화될 수 있다.The search system 120 then passes the capitalized phrase twice to select and capitalize only the leftmost phrase in which both the phrase and its sub-phrase are present in the set. For example, a search for "president of the united states" may be capitalized as "President of the United States."

다음 스테이지에서, 서치 시스템(120)은 질의 문구 Q와 관련된 문서들을 식별한다(602). 그 후, 서치 시스템(120)은 질의 문구 Q의 포스팅 리스트를 검색하고, 이들 리스트를 교차(intersect)시켜서 문구에 대한 포스팅 리스트의 전부(또는 일부)에 어떤 문서가 나타날 것인지를 판정한다. 질의 내의 문구 Q가 1 세트의 문구 확장 Qe(후술하는 바와 같이)를 갖는 경우, 서치 시스템(120)은 우선 포스팅 리 스트와의 교차를 행하기 전에 문구 확장의 포스팅 리스트를 병합한다. 서치 시스템(120)은 상기한 바와 같이 불완전한 문구 리스트(216) 내에서 각 질의 문구 Q를 찾아내서 문구 확장을 식별한다.In a next stage, the search system 120 identifies the documents associated with the query phrase Q (602). The search system 120 then searches the posting lists of the query phrase Q and intersects these lists to determine which documents will appear in all (or some) of the posting list for the phrase. If the phrase Q in the query has a set of phrase extensions Qe (as described below), the search system 120 first merges the posting list of phrase extensions before doing the intersection with the posting list. The search system 120 identifies each phrase phrase by finding each query phrase Q in the incomplete phrase list 216 as described above.

교차의 결과는 질의와 관련된 1 세트의 문서이다. 문구 및 이와 관련된 문구에 의해 문서를 인덱싱하고, 질의 내에서 문구 Q를 식별하고, 그 후 질의와 더욱 관련있는 문서 세트의 선택 시 문구 확장 결과를 포함하도록 질의를 확대하면, 질의 용어를 포함하는 문서만을 선택하는 종래의 부울대수 기반 서치 시스템과 마찬가지일 것이다.The result of the intersection is a set of documents associated with the query. Indexing a document by phrases and related phrases, identifying phrase Q in the query, and then enlarging the query to include phrase expansion results in the selection of a document set more relevant to the query will result in documents containing query terms. It would be the same as a conventional Boolean algebra based search system that selects only.

하나의 실시예에서, 서치 시스템(120)은 최적화된 메카니즘을 사용하여, 질의 문구 Q의 모든 포스팅 리스트와 교차시킬 필요없이 질의에 응답하는 문서를 식별한다. 인덱스(150) 구조의 결과, 각 문구 gj마다, 관련 문구gk는 공지되어 있고, 이 gk의 관련 문구 비트 벡터에서 식별된다. 따라서, 이 정보는 2개 이상의 질의 문구가 서로 관련된 문구이거나, 또는 공통의 관련 문구를 갖는 교차 프로세스를 간단히 하는데 사용될 수 있다. 이 경우, 관련 문구 비트 벡터를 직접 액세스한 다음에 대응하는 문서를 검색하는데 사용할 수 있다. 이 프로세스는 다음과 같이 더욱 충분하게 설명된다.In one embodiment, search system 120 uses an optimized mechanism to identify documents that respond to the query without having to intersect all posting lists of query phrase Q. As a result of the index 150 structure, for each phrase g j , the relevant phrase g k is known and identified in the relevant phrase bit vector of this g k . Thus, this information can be used to simplify two or more interrogation phrases, or a cross-process with common phrases. In this case, the relevant phrase bit vector can be accessed directly and then used to retrieve the corresponding document. This process is described more fully as follows.

임의의 2개의 질의 문구 Q1 및 Q2가 주어지면, 3개의 가능한 경우의 관계가 있다.Given any two query phrases Q1 and Q2, there are three possible case relationships.

1) Q2는 Q1의 관련 문구이다.1) Q2 is the relevant phrase of Q1.

2) Q2는 Q1의 관련 문구가 아니고 그들 각각의 관련 문구 Qr1 및 Qr2는 교차하지 않는다(즉, 공통의 관련 문구가 없다).2) Q2 is not a related phrase of Q1 and their respective related phrases Qr1 and Qr2 do not intersect (ie there is no common related phrase).

3) Q2는 Q1의 관련 문구가 아니지만, 그들 각각의 관련 문구 Qr1 및 Qr2는 교차한다.3) Q2 is not a related phrase of Q1, but their respective related phrases Qr1 and Qr2 intersect.

질의 문구의 각 쌍마다 서치 시스템(120)은 질의 문구 Qp의 관련 문구 비트 벡터를 찾아내서 적합한 경우를 판정한다.For each pair of query phrases, search system 120 finds the relevant phrase bit vector of query phrase Qp to determine if it is appropriate.

서치 시스템(120)은 Q1을 포함하는 문서와, 이들 문서 각각에 대하여 관련 문구 비트 벡터를 포함하는 질의 문구 Q1에 대한 포스팅 리스트를 검색한다. Q1의 관련 문구 비트 벡터는 문구 Q2(및 만일 있다면, 각각의 남아있는 질의 문구)가 Q1의 관련 문구이고 문서 내에 존재하는지의 여부를 표시할 것이다.The search system 120 retrieves the posting list for the query phrase Q1 containing the documents containing Q1 and the relevant phrase bit vector for each of these documents. The relevant phrase bit vector of Q1 will indicate whether the phrase Q2 (and each remaining query phrase, if any) is a relevant phrase of Q1 and is present in the document.

Q2에 제1의 경우가 적용되면, 서치 시스템(120)은 Q1의 포스팅 리스트 내의 각 문서 d마다 관련 문구 비트 벡터를 스캐닝하여 Q2에 대한 비트를 설정했는지를 판정한다. 이 비트가 Q1의 포스팅 리스트 내의 각 문서 d에 대해 설정되어 있지 않다면, Q2는 그 문서 내에 나타나지 않은 것을 의미한다. 그 결과, 이 문서는 더이상의 고려 대상으로부터 즉시 소거될 수 있다. 그 후, 나머지 문서가 스코어링될 수 있다. 이는 또한 서치 시스템(120)이 Q2의 포스팅 리스트 내에 어떤 문서가 존재하는지 확인하는 처리를 필요가 없어, 연산 시간을 절약할 수 있다는 것을 또한 의미한다.When the first case is applied to Q2, the search system 120 scans the relevant phrase bit vector for each document d in the posting list of Q1 to determine whether the bit for Q2 is set. If this bit is not set for each document d in Q1's posting list, it means that Q2 does not appear in that document. As a result, this document can be immediately erased from further consideration. The remaining document can then be scored. This also means that the search system 120 does not need to process which document is present in the posting list of Q2, thus saving computation time.

Q2에 제2의 경우를 적용하면, 2개의 문구는 서로 관련이 없다. 예를 들면, 질의 "cheap bolt action rifle"은 2개의 문구 "cheap" 및 "bolt action rifle"를 갖는다. 이들 문구는 서로 관련이 없고, 또한 이들의 각 관련 문구는 중복되지 않는다, 즉, "cheap"은 관련 문구 "low cost", "inexpensive", "discount", "bargain basement", 및 "lousy"를 갖는 반면에, "bolt action rifle"은 관련 문구 "gun", "22 caliber", "magazine fed", 및 "Armalite AR-30M"를 갖기 때문에, 리스트는 교차되지 않는다. 이 경우, 서치 시스템(120)은 Q1 및 Q2의 포스팅 리스트의 정규 교차를 행하여, 스코어링(scoring)용 문서를 얻는다.Applying the second case to Q2, the two phrases are not related to each other. For example, the query "cheap bolt action rifle" has two phrases "cheap" and "bolt action rifle". These phrases are not related to each other and their respective phrases do not overlap, i.e. "cheap" means the relevant phrases "low cost", "inexpensive", "discount", "bargain basement", and "lousy". In contrast, since the "bolt action rifle" has the relevant phrases "gun", "22 caliber", "magazine fed", and "Armalite AR-30M", the list is not crossed. In this case, the search system 120 performs normal intersection of the posting lists of Q1 and Q2 to obtain a document for scoring.

제3의 경우를 적용하면, 여기서 2개의 문구 Q1 및 Q2는 관련이 없지만, 적어도 하나의 관련된 문구를 공통으로 갖는다. 예를 들면, 문구 "bolt action rifle" 및 "22"는 모두 관련 문구로서 "gun"을 갖을 수 있다. 이 경우, 서치 시스템(120)은 양쪽 문구 Q1 및 Q2의 포스팅 리스트를 검색하고 이 리스트를 교차시켜 양쪽 문구를 포함하는 문서의 리스트를 생성한다.Applying the third case, here the two phrases Q1 and Q2 are not relevant but have at least one related phrase in common. For example, the phrases "bolt action rifle" and "22" may both have "gun" as related phrases. In this case, search system 120 retrieves the posting lists of both phrases Q1 and Q2 and intersects this list to produce a list of documents that contain both phrases.

그 후, 서치 시스템(120)은 생성된 문서 각각을 신속하게 스코어링할 수 있다. 우선, 서치 시스템(120)은 각 문서마다 스코어 조정값을 결정한다. 스코어 조정값은 문서의 관련 문구 비트 벡터 내의 질의 문구 Q1 및 Q2에 대응하는 위치에 있는 비트로 형성된 마스크이다. 예를 들면, Q1 및 Q2가 문서 d의 관련 문구 비트 벡터 내의 3번째 및 6번째의 2 비트(bi-bit) 위치에 대응하고, 3번째 위치의 비트값이 (1, 1)이고 6번째 쌍의 비트값이 (1, 0)이면, 스코어 조정값은 비트 마스크 "00 00 11 00 00 10"이다. 그 후, 스코어 조정값을 사용하여 문서의 관련 문구 비트 벡터를 마스킹한 후, 수정된 문구 비트 벡터가 문서의 보디 스코어(body score)를 산출하는데 사용될 랭킹 함수(후술함)로 패스된다.The search system 120 can then quickly score each of the generated documents. First, the search system 120 determines a score adjustment value for each document. The score adjustment value is a mask formed of bits at positions corresponding to query phrases Q1 and Q2 in the relevant phrase bit vector of the document. For example, Q1 and Q2 correspond to the third and sixth bi-bit positions in the relevant phrase bit vector of document d, and the bit value of the third position is (1, 1) and the sixth pair. If the bit value of is (1, 0), the score adjustment value is a bit mask "00 00 11 00 00 10". Then, after masking the relevant phrase bit vector of the document using the score adjustment value, the modified phrase bit vector is passed to a ranking function (described below) to be used to calculate the body score of the document.

2. 랭킹 (Ranking) 2. Ranking (Ranking)

a) 포함된 문구에 기초한 문서의 랭킹(Ranking Documents Based on Contained Phrases)a) Ranking Documents Based on Contained Phrases

서치 시스템(120)은 각 문서의 관련 문구 비트 벡터 내의 문구 정보, 및 질의 문구의 클러스터 비트 벡터를 사용하여 서치 결과 내의 문서가 랭킹되는 랭킹 스테이지(604)를 제공한다. 이러한 접근은 문서 내에 포함되는 문구, 또는 구어적으로 "보디 히트(body hits)"에 따라 문서를 랭킹한다.The search system 120 provides a ranking stage 604 in which the documents in the search results are ranked using the phrase information in the relevant phrase bit vector of each document, and the cluster bit vector of the query phrase. This approach ranks documents according to phrases contained within them, or colloquially "body hits."

상기한 바와 같이, 임의로 주어진 문구 gj에 대하여, gj의 포스팅 리스트 내의 각 문서 d는 관련 문구 gk 및 2차적인 관련 문구 gl이 문서 d 내에 존재하는 것을 식별하는 연관된 관련 문구 비트 벡터를 갖는다. 더욱 관련된 문구 및 2차적인 관련 문구가 주어진 문서 내에 존재하면, 더욱 많은 비트가 주어진 문구에 대한 문서의 관련 문구 비트 벡터 내에 설정될 것이다.As mentioned above, for any given phrase g j , each document d in g j 's posting list is associated with the relevant phrase bit vector identifying that the relevant phrase g k and the secondary related phrase g l are present in document d. Have If more relevant phrases and secondary related phrases exist in a given document, more bits will be set in the relevant phrase bit vector of the document for the given phrase.

따라서, 하나의 실시예에서, 서치 시스템(120)은 관련 문구 비트 벡터의 값에 따라서 서치 결과 내의 문서들을 소팅한다. 질의 문구 Q에 가장 관련된 문구를 포함하는 문서가 가장 높은 값의 관련 문구 비트 벡터를 가질 것이고, 이들 문서는 서치 결과 내에서 가장 높은 랭킹 문서일 것이다.Thus, in one embodiment, search system 120 sorts the documents in the search results according to the value of the relevant phrase bit vector. The document containing the phrase most relevant to the query phrase Q will have the highest value associated phrase bit vector, and these documents will be the highest ranking document in the search results.

이러한 접근은, 의미론적으로 이들 문서가 질의 문구에 가장 원칙적으로 관련되기 때문에 바람직하다. 이러한 접근은, 관련 문구 정보를 사용하여 관련 문서를 식별하기 때문에, 문서가 입력 질의 용어 q의 높은 빈도를 포함하지 않는 경우 에도 높게 관련된 문서를 제공한다. 입력 질의 용어의 빈도가 낮은 문서가 질의 용어 및 문구에 대해 문구의 큰 수를 아직 갖고 있을 수 있어, 관련 문구는 없지만 빈도가 높은 질의 용어 및 문구를 갖는 문서보다도 더욱 관련될 수 있다.This approach is desirable because, semantically, these documents are most principally related to the query phrase. This approach provides a highly relevant document even if the document does not contain a high frequency of input query term q because the relevant textual information is used to identify the relevant document. Documents with a low frequency of input query terms may still have a large number of phrases for query terms and phrases, so that they are more relevant than documents with no relevant phrases but high frequency query terms and phrases.

제 2 실시예에서, 서치 시스템(120)은 문서가 포함하는 질의 문구 Q의 관련 문구에 따른 결과 세트 내의 각 문서를 스코어링한다. 이것은 다음과 같이 행해진다.In a second embodiment, the search system 120 scores each document in the result set according to the relevant phrase of the query phrase Q that the document contains. This is done as follows.

각 질의 문구 Q가 주어지면, 문구 식별 프로세스 중에 식별되는, 질의 문구에 대해 관련된 문구 Qr의 얼마의 개수 N이 있을 것이다. 상기한 바와 같이, 관련 질의 문구 Qr은 질의 문구 Q로부터 그들의 정보 이득에 따라 배열된다. 그 후, 이들 관련 문구는 제 1 관련 문구 Qr1(즉, Q로부터 가장 높은 정보 이득을 갖는 관련 문구 Qr)의 N 포인트부터 시작하여, 다음의 관련 문구 Qr2의 N-1 포인트, 다음에 Qr3의 N-2 포인트 등의 포인트가 할당되어, 최종의 관련 문구 QrN은 1 포인트가 할당된다.Given each query phrase Q, there will be some number N of phrases Qr related to the query phrase, identified during the phrase identification process. As mentioned above, the relevant query phrase Qr is arranged according to their information gain from the query phrase Q. Then, these relevant phrases start with N points of the first relevant phrase Qr1 (i.e., the relevant phrase Qr having the highest information gain from Q), followed by N-1 points of the next relevant phrase Qr2, followed by N of Qr3. Points, such as -2 points, are allocated and one point is allocated to the last relevant phrase QrN.

그 후, 서치 결과 내의 각 문서는 질의 문구 Q의 관련 문구 Qr이 존재하는지를 결정하여 스코어링되고, 이러한 각 관련 문구 Qr에 할당된 포인트를 문서에 부여한다. 그 후, 문서들이 최상위 스코어로부터 최하위 스코어까지 소팅된다.Each document in the search results is then scored by determining if there is a related phrase Qr of the query phrase Q, and assigning the document a point assigned to each of these related phrases Qr. Thereafter, documents are sorted from the highest score to the lowest score.

더욱 정밀하게, 서치 시스템(120)은 결과 세트로부터 소정의 문서를 발췌할 수 있다. 일부의 경우에는, 문서들이 다수의 상이한 토픽에 관한 것일 수 있고, 이것은 특히 장문의 문서의 경우이다. 대다수의 경우에는, 유저들은 다수의 상이한 토픽에 관련되는 문서들보다 질의 내에 표현되는 단일 토픽에 대하여 강조되어 있는 문서들을 선호한다.More precisely, search system 120 can extract certain documents from the result set. In some cases, the documents may relate to a number of different topics, which is particularly the case for long documents. In most cases, users prefer documents that are emphasized about a single topic that is represented in a query over documents that relate to many different topics.

이들 후자의 타입의 문서를 발췌하기 위해서는, 서치 시스템(120)은 질의 문구의 클러스터 비트 벡터 내의 클러스터 정보를 사용하여, 문서 내의 클러스터의 임계수보다도 많이 있는 임의의 문서를 제거한다. 예를 들면, 서치 시스템(120)은 2개의 클러스터보다도 많이 포함하는 임의의 문서를 제거할 수 있다. 이 클러스터 임계는 미리 정해질 수 있거나, 유저가 서치 파라미터로서 설정할 수 있다.To extract these latter types of documents, search system 120 uses cluster information in the cluster bit vector of the query phrase to remove any document that is greater than the threshold number of clusters in the document. For example, the search system 120 can remove any document containing more than two clusters. This cluster threshold may be predetermined or set by the user as a search parameter.

b) 앵커 문구에 기초한 문서 랭킹(Ranking Documents Based on Anchor Phrases)b) Ranking Documents Based on Anchor Phrases

하나의 실시예에서 질의 문구의 보디 히트에 기초하여 서치 결과 내의 문서를 랭킹하는 것 이외에, 서치 시스템(120)은 다른 문서들에 대한 앵커들 내에 질의 문구 Q 및 관련 질의 문구 Qr의 출현에 기초하여 문서들을 랭킹하기도 한다. 하나의 실시예에서, 서치 시스템(1230)은 2개의 스코어, 즉 보디 히트 스코어와 앵커 히트 스코어의 함수(예를 들면, 1차 결합(linear combination))인 각 문서마다의 스코어를 산출한다.In one embodiment, in addition to ranking the documents in the search results based on the body hits of the query phrase, the search system 120 is based on the appearance of the query phrase Q and related query phrase Qr in anchors for other documents. It may also rank documents. In one embodiment, search system 1230 calculates a score for each document that is a function of two scores, a body hit score and an anchor hit score (eg, a linear combination).

예를 들면, 주어진 문서의 문서 스코어는 다음과 같이 산출될 수 있다.For example, the document score of a given document can be calculated as follows.

스코어 = .30*(보디 히트 스코어) + .70*(앵커 히트 스코어)Score = .30 * (body hit score) + .70 * (anchor hit score)

.30과 .70의 웨이트는 원하는 대로 조정될 수 있다. 문서의 보디 히트 스코어는 상기한 바와 마찬가지로 질의 문구 Qp가 주어진 경우에 문서에 대하여 가장 높게 평가된 관련 문구 비트 벡터의 수치이다. 선택적으로, 이 값은 서치 시스템(120)에서 인덱스(150) 내의 각 질의 문구 Q를 찾아내서 질의 문구 Q의 포스팅 리 스트로부터 문서를 액세스한 다음에 관련 문구 비트 벡터를 액세스함으로써 직접 구해질 수 있다.Weights of .30 and .70 can be adjusted as desired. The body hit score of the document is, as described above, the numerical value of the relevant phrase bit vector that is rated highest for the document given the query phrase Qp. Optionally, this value may be directly obtained by searching the document from the posting list of query phrase Q by finding each query phrase Q in index 150 in search system 120 and then accessing the relevant phrase bit vector. .

문서 d의 앵커 히트 스코어는 질의 문구 Q의 관련 문구 비트 벡터의 함수이고, 여기서 Q는 문서 d를 참조하는 문서 내의 앵커 용어이다. 인덱싱 시스템(110)은 문서 수집물 내의 문서들을 인덱싱할 때, 문구가 아웃링크 내의 앵커 텍스트인 문서의 리스트를 각 문구마다 유지하고, 또한 다른 문서로부터 인링크의 리스트(및 연관된 앵커 텍스트)를 각 문서마다 유지한다. 문서의 인링크는 다른 문서(참조 문서들)로부터 주어진 문서로의 참조(하이퍼링크)이다.The anchor hit score of document d is a function of the relevant phrase bit vector of query phrase Q, where Q is the anchor term in the document that references document d. When indexing systems 110 index documents in a document collection, indexing system 110 maintains a list of documents for each phrase in which the phrase is anchor text in the outlink, and also maintains a list of inlinks (and associated anchor text) from each other document. Maintain per document. An inlink in a document is a reference (hyperlink) to a given document from another document (reference documents).

그 후, 주어진 문서 d에 대한 앵커 히트 스코어를 결정하기 위해서, 서치 시스템(120)은 그들의 앵커 문구 Q에 의해 인덱스 내에 리스팅된 참조할 문서 R(i=1에서 참조 문서의 수까지)의 세트에 걸쳐서 반복하여, 다음과 같은 곱을 합산한다.Then, in order to determine the anchor hit score for a given document d, the search system 120 then checks the set of documents R (i = 1 to the number of reference documents) to reference listed in the index by their anchor phrase Q. Iterate over and add up the following products:

Ri.Q.관련 문구 비트 벡터*D.Q.관련 문구 비트 벡터Ri.Q. related phrase bit vector * D.Q related phrase bit vector

여기서 곱의 값은 얼마나 화제가 되는 앵커 문구 Q가 문서 D에 있는지의 스코어이다. 여기서 이 스코어는 "인바운드 스코어 성분(inbound score component)"이라 부른다. 이 곱은 현재 문서 D의 관련 비트 벡터를 참조할 문서 R내의 앵커 문구의 관련 비트 벡터에 의해 효율적으로 부과한다. 참조 문서 R 그 자체가 질의 문구 Q에 관련되면(그래서, 보다 높게 평가된 관련 문구 비트 벡터를 가지면), 현재 문서 D 스코어의 중요성이 커진다. 그 후, 상기한 바와 같이, 보디 히트 스코어 및 앵커 히트 스코어를 조합하여 문서 스코어를 생성한다.The value of the product here is a score of how topical the anchor phrase Q is in document D. This score is referred to herein as an "inbound score component." This product is efficiently imposed by the relevant bit vector of the anchor phrase in document R to refer to the relevant bit vector of the current document D. If the reference document R itself is related to the query phrase Q (and therefore has a higher phrase phrase vector evaluated higher), then the importance of the current document D score increases. Thereafter, as described above, the body score and the anchor score are combined to generate a document score.

다음에, 각각의 참조 문서 R마다, 각 앵커 문구 Q마다의 관련 문구 비트 벡 터를 구한다. 이는 앵커 문구 Q가 문서 R에서 얼마나 화제가 되는지의 측정이다. 여기서 이 값은 아웃바운드 스코어 성분(outbound score component)이라 부른다.Next, for each reference document R, the relevant phrase bit vector for each anchor phrase Q is obtained. This is a measure of how topical the anchor phrase Q is in document R. This value is referred to herein as the outbound score component.

그 후, 인덱스(150)로부터, 모든(참조할 문서, 참조된 문서) 쌍이 앵커 문구 Q에 대하여 추출된다. 그 후, 이들 쌍은 그들의 연관(아웃바운드 스코어 성분, 인바운드 스코어 성분) 값에 의해 소팅된다. 이러한 수행에 따라서, 이들 성분 중 어느 하나가 1차 소트 키일 수 있고, 다른 하나가 2차 소트 키일 수 있다. 그 후, 소팅 결과가 유저에게 표시된다. 아웃바운드 스코어 성분으로 문서를 소팅하는 것은, 앵커 히트로서 질의에 대하여 많은 관련 문구를 갖는 문서를 가장 높게 랭킹하게 하여, 이들 문서를 "expert" 문서로서 표시한다. 인바운드 문서 스코어로 소팅하는 것은, 앵커 용어에 의해 빈번하게 참조되는 문서를 가장 높게 랭킹하게 한다.Then, from the index 150, all (document to be referred to, referenced document) pairs are extracted for the anchor phrase Q. These pairs are then sorted by their association (outbound score component, inbound score component) values. In accordance with this implementation, either of these components may be the primary sort key and the other may be the secondary sort key. The sorting result is then displayed to the user. Sorting the documents by the outbound score component causes the documents with many related phrases to be ranked highest for the query as anchor hits, and display these documents as "expert" documents. Sorting by inbound document scores results in the highest ranking of documents frequently referenced by anchor terms.

3. 서치의 문구 기반 개인화(Phrase Based Personalization of Search) 3. Based Personalization of search phrases (Phrase Based Personalization of Search)

서치 시스템(120)의 다른 형태는 유저가 특별히 관심을 갖는 모델에 따라서 서치 결과의 랭킹을 개인화(606)하거나 고객화하는 능력이 있다. 이와 같이, 유저의 관심에 더욱 관련이 있을 것 같은 문서가 서치 결과 내에서 높게 랭킹된다. 서치 결과의 개인화는 다음과 같다.Another form of search system 120 is the ability to personalize 606 or customize the ranking of search results according to a model of particular interest to the user. As such, documents that are more likely to be relevant to the user's interest are ranked higher in the search results. Personalization of search results is as follows.

예비 문제로서, 문구로 표현될 수 있는 질의 및 문서의 용어 내에서 유저의 관심(예를 들면, 유저 모델)을 정의하는데 유용하다. 입력되는 서치 질의에 대하여, 질의는 질의 문구 Q, Qr의 관련 문구, 및 질의 문구 Qp의 문구 확장 Qe로 표현된다. 이와 같이, 이러한 용어 및 문구의 세트는 질의의 의미를 표현한다. 다음에, 문서의 의미는 페이지와 연관된 문구로 표현된다. 상기한 바와 같이, 질의 및 문서가 주어지면, 문서의 관련 문구는 문서에 인덱싱된 모든 문구에 대한 보디 스코어(관련 비트 벡터)로부터 결정된다. 마지막으로, 유저는 각각의 이들 요소를 표현하는 문구의 측면에서 질의들의 세트와 문서의 세트를 병합함으로써 표현될 수 있다. 유저를 표현하는 세트 내에 포함되는 특정 문서는 유저의 행동 및 목적지를 감시하는 클라이언트측 툴을 사용하여, 이전의 서치 결과 또는 자료의 일반적인 브라우징(인터넷 상에서의 문서 액세스)에서 유저가 선택하는 어떤 문서로부터 결정될 수 있다.As a preliminary problem, it is useful to define a user's interest (eg, user model) within terms of the query and document that can be expressed in phrases. For the entered search query, the query is represented by the query phrase Q, the related phrase of Qr, and the phrase extension Qe of the query phrase Qp. As such, this set of terms and phrases express the meaning of the query. Next, the meaning of the document is represented by a phrase associated with the page. As noted above, given a query and a document, the relevant phrase of the document is determined from the body score (related bit vector) for all the phrases indexed in the document. Finally, the user can be represented by merging the set of documents with the set of queries in terms of the phrases representing each of these elements. Specific documents included in the set representing the user may be derived from any document selected by the user in the normal browsing (document access on the Internet) of previous search results or data, using a client-side tool that monitors the user's behavior and destination. Can be determined.

개인화된 랭킹의 유저 모델을 구축 및 사용하는 프로세스는 다음과 같다.The process of building and using a personalized ranking user model is as follows.

우선, 주어진 유저에 대하여, 액세스된 최종의 K개의 질의 및 P개의 문서의 리스트가 유지되고, 여기서 K 및 P는 각각 250 정도가 바람직하다. 이 리스트는 유저 계정 데이터베이스 내에 유지될 수 있고, 여기서 유저는 로그인에 의해 또는 브라우저 쿠키에 의해 인식될 수 있다. 주어진 유저에 대하여, 유저가 질의를 하는 첫번째 시간에 리스트가 비어있을 것이다.First, for a given user, a list of the last K queries and P documents accessed is maintained, where K and P are each about 250 preferred. This list can be maintained in the user account database, where the user can be recognized by login or by a browser cookie. For a given user, the list will be empty at the first time the user makes a query.

다음에, 질의 q가 유저로부터 수신된다. 상기한 바와 같이, q의 관련 문구 Qr이 문구 확장에 따라서 검색된다. 이것이 질의 모델을 형성한다.Next, the query q is received from the user. As mentioned above, the relevant phrase Qr of q is retrieved according to the phrase extension. This forms the query model.

1차 패스(예를 들면, 유저의 질의 정보가 없는 경우)에서, 서치 시스템(120)은 더 이상의 고객화된 랭킹없이, 유저의 질의에 대한 서치 결과 내의 관련 문서를 단순히 불러오도록 동작한다.In the first pass (eg, when there is no query information of the user), the search system 120 operates to simply retrieve the relevant document in the search results for the user's query, without further customized ranking.

클라이언트측 브라우저 툴은 유저가 예를 들어 서치 결과 내의 문서 링크를 클릭함으로써 액세스하는 서치 결과 내의 문서들을 감시한다. 어떤 문구를 선택하 는데 기초가 되는 이들 액세스된 문서는 유저 모델의 일부가 될 것이다. 각각의 이러한 액세스된 문서에 대하여, 서치 시스템(120)은 문서에 관련된 문구의 리스트인 문서용 문서 모델을 검색한다. 액세스된 문서에 관련되는 각각의 문구가 유저 모델에 추가된다.The client-side browser tool monitors the documents in the search results that the user accesses, for example by clicking on a document link in the search results. These accessed documents, which are the basis for selecting a phrase, will be part of the user model. For each such accessed document, search system 120 retrieves the document model for the document, which is a list of phrases related to the document. Each phrase associated with the accessed document is added to the user model.

다음으로, 액세스된 문서와 관련된 문구가 주어지면, 이들 문구와 관련된 클러스터는 각각의 문구마다 클러스터 비트 벡터로부터 결정될 수 있다. 각각의 클러스터에서, 클러스터의 멤버인 각각의 문구는 상술한 바와 같이, 클러스터 비트 벡터 표시, 또는 클러스터 번호를 포함하는 관련 문구 테이블에서 문구를 찾아서 결정된다. 이 클러스터 번호는 유저 모델에 추가된다. 또한, 각각의 클러스터에서, 클러스터내의 문구가 유저 모델에 추가될 때마다, 카운트는 유지되어 증가된다. 이 카운터는 후술하는 바와 같이 웨이트(weight)로서 사용될 수 있다. 따라서, 유저 모델은 유저가 액세스하여 관심을 나타낸 문서에 있는 클러스터에 포함된 문구로부터 구축된다.Next, given the phrases associated with the accessed document, the clusters associated with these phrases may be determined from the cluster bit vector for each phrase. In each cluster, each phrase that is a member of the cluster is determined by looking for the phrase in the cluster bit vector representation, or in the associated phrase table containing the cluster number, as described above. This cluster number is added to the user model. Also, in each cluster, each time a phrase in the cluster is added to the user model, the count is maintained and incremented. This counter can be used as a weight as described below. Thus, the user model is constructed from phrases contained in clusters in documents that the user has accessed and has expressed interest.

동일한 일반적인 접근은, 문서를 단순히 액세스하는 것보다는 높은 수준의 관심을 유저가 나타낸 문구 정보를 획득하기 위해 더욱 정밀하게 집중될 수 있다(유저는 그 문서가 정말로 관련 있는지를 간단하게 판단할 것이다). 예컨대, 유저 모델로의 문구 수집은 유저가 인쇄하거나, 저장하거나, 즐겨찾기 또는 링크(link)로서 등록하거나, 다른 유저에게 이메일을 보내거나, 브라우저 윈도를 장기간(예컨대, 10분)동안 열어놓은 문서에 한정될 수 있다. 이러한 액션 및 다른 액션은 문서의 높은 수준의 관심을 나타낸다.The same general approach can be more precisely focused to obtain phrase information indicated by the user at a higher level of interest than simply accessing the document (the user will simply determine whether the document is really relevant). For example, collection of phrases into a user model can be a document that a user prints, saves, registers as a favorite or link, emails another user, or opens a browser window for a long time (eg, 10 minutes). It may be limited to. These and other actions represent a high level of interest in the document.

다른 질의가 유저로부터 수신된 경우, 관련 질의 문구 Qr가 검색된다. 관련 질의 문구 Qr은 유저 모델에 리스트된 문구와 교차되어 어떤 문구가 질의와 유저 모델 양쪽에 존재하는지를 결정한다. 마스크 비트 벡터는 질의 Qr의 관련 문구를 위해서 초기화된다. 이러한 비트 벡터는 상술한 바와 같이 2비트 벡터이다. 유저 모델에 또한 존재하는 질의의 각각의 관련 문구 Qr마다, 관련 문구용의 비트 양쪽이 마스크 비트 벡터에 설정된다. 따라서, 마스크 비트 벡터는 질의와 유저 모델 양쪽에 존재하는 관련 문구를 나타낸다.If another query is received from the user, the relevant query phrase Qr is retrieved. The relevant query phrase Qr is intersected with the phrases listed in the user model to determine which phrases exist in both the query and the user model. The mask bit vector is initialized for the relevant phrase of the query Qr. This bit vector is a 2-bit vector as described above. For each relevant phrase Qr of the query also present in the user model, both bits for the related phrase are set in the mask bit vector. Thus, the mask bit vector represents the relevant phrase that exists in both the query and the user model.

관련 문구 비트 벡터와 마스크 비트 벡터를 AND처리하여, 서치 결과의 현재 세트내의 각각의 문서마다 관련 문구 비트 벡터를 마스크하기 위하여 마스크 비트 벡터가 사용된다. 이는 바디 스코어(body score) 및 앵커 히트 스코어(anchor hit score)를 마스크 비트 벡터에 의해 조정하는 효과를 갖는다. 문서는 이전과 같이 바디 스코어 및 앵커 스코어를 위해 스코어링(scoring)되고 유저에게 제시된다. 이러한 액세스는, 높게 랭크된 순서로 유저 모델에 포함되는 질의 문구를 문서가 포함하는 것을 필수적으로 요구한다.The mask bit vector is used to AND the associated phrase bit vector and the mask bit vector to mask the relevant phrase bit vector for each document in the current set of search results. This has the effect of adjusting the body score and anchor hit score by the mask bit vector. The document is scored and presented to the user for body score and anchor score as before. This access necessitates that the document include query phrases included in the user model in a highly ranked order.

상술하는 엄격한 구속을 부과하지 않는 다른 실시예로서, 마스크 비트 벡터가 어래이(array)로 계산될 수 있어서, 각각의 비트는 유저 모델의 관련 문구용 클러스터 카운트를 웨이트(weight)하는데 사용된다. 따라서, 각각의 클러스터 카운터는 0 또는 1로 승산되어, 효과적으로 카운트(count)를 제로로 만들거나 유지시킨다. 다음으로, 스코어링되는 각각의 문서마다 관련 문구를 곱하기 위해 웨이트가 또한 사용되는 경우에, 이러한 카운트 자체가 웨이트로서 사용된다. 이러한 접근 은 관련 문구로서 질의 문구를 갖지 않는 문서가 여전히 적절하게 스코어링할 수 있게 하는 장점을 갖는다.As another embodiment that does not impose the above strict constraints, a mask bit vector can be computed in an array so that each bit is used to weight the cluster count for the relevant phrase of the user model. Thus, each cluster counter is multiplied by zero or one, effectively zeroing or maintaining the count. Next, if a weight is also used to multiply the relevant phrase for each document to be scored, this count itself is used as the weight. This approach has the advantage that documents that do not have a query phrase as a related phrase can still be properly scored.

마지막으로, 유저 모델은 현재 세션(session)에 한정될 수 있고, 일 세션은 서치에서 액티브한 기간의 간격이며, 그 세션 후에 유저 모델이 덤프된다. 또한, 지정된 유저용 유저 모델은 계속 유지되고 나서, 웨이트를 줄이거나 에이징(aging)될 수 있다.Finally, the user model can be limited to the current session, where one session is the interval of active periods in the search, after which the user model is dumped. In addition, the user model for a given user can be maintained and then reduced or aged.

Ⅳ. 결과 프리젠테이션 Ⅳ. Result presentation

프리젠데이션 시스템(130)은 스코어링되고 소팅된 서치 결과를 서치 시스템(120)으로부터 수신하고, 유저에게 그 결과를 제시하기 이전에 조직화, 주석 달기, 및 클러스터링 작업을 추가로 수행한다. 이러한 작업은 서치 결과의 내용에 대한 유저의 이해를 돕고, 중복을 없애고, 서치 결과의 더욱 대표적인 샘플링을 제공한다. 도 7은 프리젠테이션 시스템(130)의 주요 기능적 작업을 나타낸다.The presentation system 130 receives the scored and sorted search results from the search system 120 and further performs organization, annotating, and clustering operations before presenting the results to the user. This work helps the user understand the content of the search results, eliminates duplication, and provides a more representative sampling of the search results. 7 illustrates the main functional tasks of the presentation system 130.

700: 토픽 클러스터에 따른 문서를 클러스터링700: Clustering Documents by Topic Cluster

702: 문서 설명(description)을 생성702: Generate document description

704: 중복 문서를 제거704: Remove duplicate documents

각각의 이들 작업은 서치 결과(701)를 입력으로 받아서 수정된 서치 결과(703)를 출력한다. 도 7에 도시된 바와 같이, 이들 작업의 순서는 독립적이며, 해당 실시예에서 원하는 경우 변화될 수 있어서, 입력은 도시된 바와 같이 병렬로 이루어지는 것 대신에 파이프라인(pipeline)화 될 수 있다.Each of these tasks takes a search result 701 as input and outputs a modified search result 703. As shown in FIG. 7, the order of these tasks is independent and can be changed if desired in the embodiment so that the input can be pipelined instead of being done in parallel as shown.

1. 프리젠테이션용 다이내믹 분류법(dynamic taxonomy) 생성 1. Create a dynamic taxonomy for presentations

해당 질의에 대하여, 그 질의를 만족시키는 수백, 심지어 수천의 문서를 리턴시키는 것이 통상적이다. 여러 경우에, 서로 다른 내용을 갖는 특정 문서가 충분히 관련되어서 관련 문서의 의미 있는 그룹, 본질적으로 클러스터를 형성한다. 하지만, 대부분의 유저는 서치 결과에서 처음 30 내지 40 개의 문서 이상은 검토하지 않는다. 그리하여, 예컨대, 세 클러스터로부터 처음 100 개의 문서가 출현하지만, 다음의 100 개의 문서가 추가의 네 클러스터에 해당하고, 추가의 조정이 없는 경우에, 유저는 통상적으로 그와 같은 나중의 문서는 검토하지 않는다. 사실상, 그와 같은 나중의 문서는 질의와 관련된 각종 상이한 토픽을 나타내기 때문에, 유저의 질의와 매우 관련적일 수 있다. 따라서, 각 클러스터로부터의 문서의 샘플을 유저에게 제공함으로써, 서치 결과로부터의 상이한 문서의 폭넓은 선택을 유저에게 부여하는 것이 소망된다. 프리젠테이션 시스템(130)은 이것을 다음과 같이 행한다.For that query, it is common to return hundreds or even thousands of documents that satisfy the query. In many cases, specific documents with different content are sufficiently related to form meaningful groups of related documents, essentially clusters. However, most users do not review more than the first 30-40 documents in the search results. Thus, for example, if the first 100 documents appear from three clusters, but the next 100 documents correspond to four additional clusters and there is no further adjustment, the user typically does not review those later documents. Do not. In fact, such later documents may be very relevant to the user's query because they represent various different topics related to the query. Thus, by providing the user with a sample of the document from each cluster, it is desired to give the user a wide selection of different documents from the search results. Presentation system 130 does this as follows.

시스템(100)의 다른 태양으로서, 프리젠테이션 시스템(130)은 서치 결과의 각각의 문서 d마다 관련 문구 비트 벡터를 이용한다. 더욱 상세하게는, 각각의 질의 문구 Q 및 Q의 포스팅 리스트(posting list)내의 각각의 문서 d마다, 관련 문구 비트 벡터는 어느 관련 문구 Qr가 문서에 존재하는지를 나타낸다. 서치 결과의 문서 세트에 대하여, 각각의 관련 문구 Qr마다, 얼마나 많은 문서가 관련 문구 Qr을 포함하는지를 나타내기 위해 Qr에 대응하는 비트 위치의 비트 값을 합계하여 카운트가 결정된다. 서치 결과에 대하여 합계되고 분류될 때, 가장 자주 출현하는 관련 문구 Qr가 지시되고, 그 문구 각각이 문서의 클러스터가 될 것이다. 가장 자주 출현하는 관련 문구는 명칭으로서 그것의 관련 문구 Qr을 취하는 제 1 클러스터이고, 기타 상위 3개 내지 상위 5개 클러스터이다. 따라서, 각각의 상위 클러스터는 클러스터의 표제 또는 명칭으로서 문구 Qr과 함께 식별된다.As another aspect of system 100, presentation system 130 uses an associated phrase bit vector for each document d in the search results. More specifically, for each document d in each posting phrase of each query phrase Q and Q, the relevant phrase bit vector indicates which relevant phrase Qr is present in the document. For the document set of the search result, for each relevant phrase Qr, a count is determined by summing the bit values of the bit positions corresponding to Qr to indicate how many documents contain the relevant phrase Qr. When summed and sorted for search results, the most frequently appearing related phrase Qr is indicated, each of which will be a cluster of documents. The most often appearing related phrase is the first cluster, which takes its related phrase Qr as its name, and the other top three to top five clusters. Thus, each parent cluster is identified with the phrase Qr as the title or name of the cluster.

각각의 클러스터로부터의 문서는 여러 방법으로 유저에게 제시된다. 일 적용에서, 각각의 클러스터로부터의 고정된 수의 문서, 예컨대, 각각의 클러스터에서의 상위 스코어 10개 문서가 제시된다. 다른 적용에서, 각각의 클러스터로부터의 비례수의 문서가 나타내어질 수 있다. 따라서, 클러스터 1에 50개, 클러스터 2에 30개, 클러스터 3에 10개, 클러스터 4에 7개, 및 클러스터 5에 3개로 하여 서치 결과에 100개 문서가 있고, 20개의 문서만을 나타내고자 하는 경우에, 문서는 다음과 같이 선택된다: 클러스터 1로부터 10개의 문서, 클러스터 2로부터 7개의 문서, 클러스터 3으로부터 2개의 문서, 및 클러스터 4로부터 1개의 문서. 그후, 문서는 유저에게 나타내어지고, 표제로서의 적절한 클러스터 명칭에 따라서 그룹화될 수 있다.Documents from each cluster are presented to the user in several ways. In one application, a fixed number of documents from each cluster, such as the top 10 documents in each cluster, is presented. In other applications, a proportional number of documents from each cluster may be represented. Therefore, if there are 50 documents in the search results, there are 50 documents in cluster 1, 30 in cluster 2, 10 in cluster 3, 7 in cluster 4, and 3 in cluster 5. The documents are selected as follows: ten documents from cluster 1, seven documents from cluster 2, two documents from cluster 3, and one document from cluster 4. The documents can then be presented to the user and grouped according to the appropriate cluster name as the title.

예컨대, 검색 질의를 "blue merle agility training"라 하면, 서치 시스템(120)은 100개의 문서를 검색한다. 서치 시스템(120)은 "blue merle" 및 "agility training"을 질의 문구로서 미리 식별할 것이다. 이들 질의 문구의 관련 문구는 다음과 같다:For example, if the search query is called "blue merle agility training", the search system 120 searches 100 documents. The search system 120 will identify "blue merle" and "agility training" as query phrases in advance. The relevant phrases of these query phrases are as follows:

"blue merle"::"Australian Shepherd", "red merle", "tricolor", "aussie";"blue merle" :: "Australian Shepherd", "red merle", "tricolor", "aussie";

"agility training"::"weave poles", "teeter", "tunnel", "obstacle", "border collie"."agility training" :: "weave poles", "teeter", "tunnel", "obstacle", "border collie".

그 후, 프리젠테이션 시스템(130)은 각각의 질의 문구의 상기 관련 문구의 각각에 대하여, 그와 같은 문구를 포함하는 문서 수의 카운트를 결정한다. 예컨대, 문구 "weave poles"가 100개의 문서 중에서 75개의 문서에 나타나고, "teeter"가 60개의 문서에 나타나고, "red merle"가 50개의 문서에 나타난다고 가정한다. 그때, 제 1 클러스터는 "weave poles"라 칭하고, 그 클러스터로부터 선택된 문서의 수가 나타내지며, 제 2 클러스터는 "teeter"라 칭하고, 선택된 수가 역시 나타내어진다. 고정적 프리젠테이션의 경우, 각각의 클러스터로부터 10개의 문서가 선택될 수 있다. 비례적 프리젠테이션은 문서의 전체 수에 대한 각각의 클러스터로부터의 문서의 비례수를 사용할 것이다.The presentation system 130 then determines, for each of the relevant phrases of each query phrase, a count of the number of documents containing such phrases. For example, assume that the phrase "weave poles" appears in 75 documents out of 100 documents, "teeter" appears in 60 documents, and "red merle" appears in 50 documents. At that time, the first cluster is referred to as "weave poles", the number of documents selected from that cluster is represented, the second cluster is referred to as "teeter", and the selected number is also represented. For fixed presentations, ten documents can be selected from each cluster. The proportional presentation will use the proportional number of documents from each cluster relative to the total number of documents.

2. 토픽 관련 문서 설명 2. Topic-related document description

프리젠테이션 시스템(130)의 제 2 기능은 각각의 문서마다 서치 결과 프리젠테이션에 삽입될 수 있는 문서 설명의 생성이다(702). 이 설명은 각각의 문서에 나타난 관련 문구에 기초하며, 그리하여 문서가 무엇에 관한 것인지를 유저가 서치와 문맥적으로 관련된 방식으로 이해할 수 있도록 도운다. 문서 설명은 유저에게 일반적이거나 개인화될 수 있다.A second function of the presentation system 130 is the generation of document descriptions that can be inserted into the search results presentation for each document (702). This description is based on the relevant text that appears in each document, thus helping the user to understand what the document is about in a way that is contextually relevant to the search. The document description can be general or personal to the user.

a) 일반적 토픽 문서 설명 a) General topic document description

상술한 바와 같이, 질의가 주어지면, 서치 시스템(120)은 관련 질의 문구 Qr 및 질의 문구의 문구 확장을 결정하고, 질의에 대한 관련 문서를 식별한다. 프리젠테이션 시스템(130)은 서치 결과 내의 각각의 문서를 액세스하고 다음의 오퍼레이션을 수행한다.As mentioned above, given a query, the search system 120 determines the relevant query phrase Qr and the phrase extension of the query phrase and identifies the relevant document for the query. Presentation system 130 accesses each document in the search results and performs the following operations.

먼저, 프리젠테이션 시스템(130)은 문서의 문장을 질의 문구 Q, 관련 질의 문구 Qr, 및 문구 확장 Qp의 인스턴스의 수에 의해서 등급화하여, 문서의 각각의 문장에 대하여 세 태양의 카운트를 유지한다.First, the presentation system 130 ranks the sentences of the document by the number of instances of the query phrase Q, the associated query phrase Qr, and the phrase extension Qp to maintain three aspects of count for each sentence of the document. .

그 후, 문장은 그러한 카운트에 의해서 소팅되고, 제 1 소트 키는 질의 문구 Q의 카운트이며, 제 2 소트 키는 관련 질의 문구 Qr의 카운트이고, 마지막 소트 키는 문구 확장 Qp의 카운트이다.The sentence is then sorted by such a count, the first sort key is the count of the query phrase Q, the second sort key is the count of the relevant query phrase Qr, and the last sort key is the count of the phrase extension Qp.

최종적으로, 소팅 후의 상위 N(예컨대, 5) 문장이 문서의 설명으로서 사용된다. 이러한 문장의 세트는 포맷되어 수정된 서치 결과(703) 내의 문서의 프리젠테이션에 포함될 수 있다. 이러한 프로세스는 서치 결과 내의 몇 개의 문서에 반복되고, 유저가 결과의 다음 페이지를 요구할 때마다 요구에 따라 행해질 수 있다.Finally, the top N (eg 5) sentences after sorting are used as the description of the document. This set of sentences may be included in the presentation of the document in the formatted search modified search results 703. This process is repeated for several documents in the search results, and can be done on demand whenever the user requests the next page of results.

b) 개인화된 토픽 기반 문서 설명b) personalized topic-based document description;

서치 결과의 특정화가 제공된 실시예에서, 문서 설명 또한 유저 모델에서 표현된 바와 같은 유저 관심을 반영하기 위해서 개인화될 수 있다. 프리젠테이션 시스템(130)이 이것을 다음과 같이 수행한다.In embodiments where the specification of search results is provided, the document description may also be personalized to reflect user interest as represented in the user model. Presentation system 130 does this as follows.

먼저, 상술한 바와 같이, 프리젠테이션 시스템(130)은 질의 관련 문구 Qr을 유저 모델과 교차시킴으로써 유저에 해당되는 관련 문구를 결정한다(유저에 의해서 액세스된 문서내의 문구를 리스트한다).First, as described above, the presentation system 130 determines the relevant phrase corresponding to the user by listing the query related phrase Qr with the user model (list the phrase in the document accessed by the user).

그 후, 프리젠테이션 시스템(130)은 비트 벡터 자체의 값에 따라서 유저 관련 문구 Ur의 세트를 안정적으로 소팅하고, 소팅된 리스트를 질의 관련 문구 Qr의 리스트에 추가하고, 임의의 중복 문구를 제거한다. 안정적인 소트는 동등하게 랭 크된 문구의 현존 순서를 유지한다. 이는 질의 또는 유저에 관련된 관련 문구의 세트로 귀착하고 세트 Qu라 칭한다.The presentation system 130 then stably sorts the set of user related phrases Ur according to the value of the bit vector itself, adds the sorted list to the list of query related phrases Qr, and removes any duplicate phrases. . A stable sort maintains the existing order of equally ranked text. This results in a set of related phrases related to the query or user and is called the set Qu.

프리젠테이션 시스템(130)은, 상술한 바와 같은 일반적인 문서 설명 프로세스와 유사한 방식으로, 서치 결과 내의 각각의 문서 내의 문장을 랭킹하기 위한 근거(base)로서 문구의 순서화된 리스트를 사용한다. 따라서, 해당 문서에 대하여, 프리젠테이션 시스템(130)은 유저 관련 문구 및 질의 관련 문구(Qu) 각각의 인스턴스의 수에 의해서 문서의 문장을 랭킹하고, 질의 카운트에 따라서 랭킹된 문장을 소팅하며, 최종적으로 그와 같은 각각의 문구마다 문구 확장의 수에 기초하여 소팅한다. 앞에서는, 소트 키의 순서가 질의 문구 Q, 관련 질의 문구 Qr, 및 문구 확장 Qp 순이였지만, 여기서는 소트 키는 가장 높이 랭킹된 유저 관련 문구 Ur로 부터 가장 낮게 랭크된 유저 관련 문구 Ur의 순이다.Presentation system 130 uses an ordered list of phrases as a base for ranking the sentences in each document in the search results in a manner similar to the general document description process as described above. Thus, for the document, the presentation system 130 ranks the sentences of the document by the number of instances of each of the user-related phrase and the query-related phrase (Qu), sorts the ranked sentences according to the query count, and finally Each such phrase is sorted based on the number of phrase extensions. Previously, the sort keys were in order of query phrase Q, related query phrase Qr, and phrase extension Qp, but here the sort key is in order of the lowest ranked user related phrase Ur from the highest ranked user related phrase Ur.

또한, 이러한 프로세스는 서치 결과 내의 문서에 대하여 반복된다(요구시 또는 미리). 그와 같은 각각의 문서에서, 결과적인 문서 설명은 문서로부터의 N개의 상위 랭크 문장을 포함한다. 여기서, 이들 문장은 유저 관련 문구 Ur의 가장 높은 수를 갖는 것들이며, 그리하여 (적어도 유저 모델에 포착된 정보에 따른) 유저와 가장 관련 있는 개념 및 토픽을 나타내는 문서의 중요 문장을 나타낸다.This process is also repeated for documents in the search results (on request or in advance). In each such document, the resulting document description includes N high rank sentences from the document. Here, these sentences are those having the highest number of user-related phrases Ur, and thus represent important sentences in the document that represent concepts and topics that are most relevant to the user (at least according to the information captured in the user model).

3. 중복 문서 검출 및 제거 3. Duplicate document detection and removal

인터넷과 같은 대규모 자료에서, 동일 문서의 복합적인 예가 존재하고, 문서의 일부가 여러 상이한 위치에 존재하는 것은 매우 통상적이다. 예컨대, "Associated Press"와 같은 뉴스 지국에서 작성한 해당 뉴스 기사는 개별적인 신문 의 여러 웹사이트에서 반복된다. 서치 질의에 대응하여 이들 중복 문서를 모두 포함시키면, 중복 문서로 인하여 유저에 부담만 주며, 질의에 대응하는데 유용하지 않다. 따라서, 프리젠테이션 시스템(130)은 중복되거나 서로 거의 중복될 것 같은 문서를 식별하기 위한 추가의 능력(704)을 제공하며, 서치 결과에는 이것들 중에서 하나만을 포함시킨다. 따라서, 유저는 더욱 다양화되고 확실한 결과의 세트를 수신하고, 서로 중복되는 문서를 리뷰하는데 시간을 소모하지 않아도 된다. 프리젠테이션 시스템(130)은 다음과 같은 기능을 제공한다.In large data such as the Internet, there are complex examples of the same document, and it is very common for some parts of the document to exist in several different locations. For example, the news article produced by a news station such as "Associated Press" is repeated on several websites of individual newspapers. Including all of these duplicate documents in response to a search query burdens the user due to the duplicate documents and is not useful for responding to the query. Thus, the presentation system 130 provides additional capabilities 704 for identifying documents that are likely to overlap or nearly overlap each other, and include only one of these in the search results. Therefore, the user does not have to spend time receiving a more diversified and robust set of results and reviewing documents that overlap each other. The presentation system 130 provides the following functions.

프리젠테이션 시스템(130)은 서치 결과 세트(701) 내의 각각의 문서를 처리한다. 각각의 문서 d에서, 프리젠테이션 시스템(130)은 문서와 관련된 관련 문구 R의 리스트를 먼저 결정한다. 이들 관련 문구의 각각에 대하여, 프리젠테이션 시스템(130)은 각각의 문구의 출현 빈도수에 따라 문서의 문장을 랭크하고, 상위 N(예컨대, 5 내지 10)개의 문장을 선택한다. 이러한 문장 세트는 문서와 관련하여 저장된다. 이를 행하는 하나의 방식은 선택된 문장을 연결한 후, 문서 식별자(identifier)를 저장하기 위하여 해시 테이블(hash table)을 사용하는 것이다.Presentation system 130 processes each document in search result set 701. In each document d, the presentation system 130 first determines a list of relevant phrases R associated with the document. For each of these related phrases, presentation system 130 ranks the sentences of the document according to the frequency of appearance of each phrase, and selects the top N (eg, 5-10) sentences. This set of sentences is stored in association with the document. One way to do this is to concatenate the selected sentences and then use a hash table to store the document identifier.

그 후, 프리젠테이션 시스템(130)은 각각의 문서 d의 선택된 문장을 서치 결과(701) 내의 다른 문서의 선택된 문장과 비교하고, 선택된 문장이 (허용 오차 내에서)일치하면, 문서는 중복된 것으로 추정되고, 그것들 중 하나가 서치 결과로부터 제거된다. 예컨대, 프리젠테이션 시스템(130)은 연결된 문장을 해시할 수 있고, 해시 테이블이 해시 값의 엔트리(entry)를 미리 갖고 있다면, 이는 현재의 문서와 현재 해시된 문서가 중복된다는 것을 지시한다. 프리젠테이션 시스템(130)은 문서중의 하나의 문서 ID로 테이블을 업데이트할 수 있다. 바람직하게는, 프리젠테이션 시스템(130)은 높은 페이지 랭크 또는 문서 중요도의 다른 질의 독립 측도를 유지한다. 또한, 프리젠테이션 시스템(130)은 인텍스(150)을 수정하여, 임의의 질의에 대한 향후 서치 결과에 나타나지 않도록 중복 문서를 제거한다.The presentation system 130 then compares the selected sentences of each document d with the selected sentences of the other documents in the search results 701, and if the selected sentences match (within tolerance), the documents are duplicated. Are estimated and one of them is removed from the search results. For example, the presentation system 130 can hash linked statements, and if the hash table already has an entry of hash values, this indicates that the current document and the currently hashed document are duplicates. The presentation system 130 can update the table with one document ID in the document. Preferably, presentation system 130 maintains a high page rank or other query independent measure of document importance. The presentation system 130 also modifies the index 150 to remove duplicate documents so that they do not appear in future search results for any query.

동일한 중복 제거 프로세스는 인덱싱 시스템(110)에 의해서 직접 적용될 수 있다. 문서가 크롤(crawl)되는 경우, 선택된 문장 및 문장의 해쉬를 얻기 위하여 상술한 문서 설명 프로세스가 수행된다. 해쉬 테이블이 채워지면, 새로운 크롤된 문서는 이전 문서의 중복물로 여겨진다. 그러면, 다시, 인덱싱 시스템(110)은 높은 랭크 또는 다른 질의 독립 측도를 갖는 문서를 유지할 수 있다.The same deduplication process can be applied directly by the indexing system 110. If the document is crawled, the document description process described above is performed to obtain a selected sentence and a hash of the sentence. When the hash table is populated, the new crawled document is considered a duplicate of the old document. Then, again, indexing system 110 may maintain a document with a high rank or other query independent measure.

본 발명은 하나의 가능한 실시예에 대하여 특히 상세하게 설명하였다. 당업자는 본 발명이 다른 실시예로 실시될 수 있다는 것을 이해할 것이다. 먼저, 구성 요소의 특정 호칭, 용어의 대문자화, 어트리뷰트(attribute), 데이터 구조, 또는 다른 프로그래밍 또는 구조적 태양은 의무적이거나 중요한 것이 아니며, 본 발명을 실시하는 메커니즘 또는 그것의 특징은 다른 명칭, 포맷, 또는 프로토콜을 가질 수 있다. 또한, 시스템은 기술한 바와 같이, 하드웨어와 소프트웨어의 조합을 통하여, 또는 하드웨어 요소만으로 실시될 수 있다. 또한, 본 명세서에서 기재된 각종 시스템 요소들 사이의 작용의 특정 분할은 단순히 예시적이며, 의무적이지 않고, 단일 시스템 요소에 의해서 수행되는 기능은 복합 요소에 의해서 수행될 수 있으며, 복합 요소에 의해서 수행되는 기능은 단일 요소에 의해서 수행될 수 있다.The invention has been described in particular detail for one possible embodiment. Those skilled in the art will appreciate that the present invention may be practiced in other embodiments. First of all, a specific name of a component, capitalization of terms, attributes, data structures, or other programming or structural aspects is not mandatory or important, and the mechanisms or features thereof for carrying out the invention may be defined by different names, formats, Or protocol. In addition, the system may be implemented via a combination of hardware and software, or with only hardware elements, as described. In addition, the specific division of action between the various system elements described herein is merely illustrative and not mandatory, and the functions performed by a single system element may be performed by the complex element, and may be performed by the complex element. The function may be performed by a single element.

상술한 설명의 일부는 본 발명의 특징을 정보에 대한 오퍼레이션의 알고리즘 및 기호 표시 관점으로 나타낸다. 이러한 알고리즘 설명 및 표시는 데이터 처리 분야의 당업자가 그들의 업무의 실체를 다른 당업자에게 가장 효율적으로 전달하기 위해서 사용되는 수단이다. 기능적 또는 논리적으로 기재되는 이러한 오퍼레이션은 컴퓨터 프로그램에 의해서 실시되는 것으로 이해된다. 또한, 때때로 오퍼레이션의 이러한 구성을 일반성의 상실 없이 모듈로서 또는 기능적인 명칭으로서 칭하는 것이 편리하다는 것이 입증되었다.Some of the foregoing descriptions illustrate features of the present invention in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. Such operations, described functionally or logically, are understood to be performed by a computer program. In addition, it has sometimes proved convenient to refer to this configuration of operations as a module or as a functional name without loss of generality.

상술한 설명으로부터 명백한 바와 같이, 다르게 특정되지 않는 한, 상세한 설명에 걸쳐서, "처리", "산출", "계산", "결정", "표시" 등은, 컴퓨터 시스템 메모리나 레지스터 또는 다른 정보 스토리지, 전송 또는 디스플레이 장치 내의 물리적(전자) 양으로서 나타내지는 데이터를 조작하고 전송하는 컴퓨터 시스템, 또는 유사한 전자 계산 장치의 작용이나 프로세스를 칭하는 것이다.As is apparent from the foregoing description, unless otherwise specified, throughout the description, the terms "processing", "calculation", "calculation", "determination", "marking", and the like refer to computer system memory or registers or other information storage. , Computer system for manipulating and transmitting data represented as physical (electronic) quantities within a transmission or display device, or similar operations or processes of electronic computing devices.

본 발명의 특정 태양은 알고리즘의 형태로 여기에 기재된 프로세스 스텝 또는 명령을 포함한다. 본 발명의 프로세스 스텝 및 명령은 소프트웨어, 펌웨어, 또는 하드웨어로 실시될 수 있고, 소프트웨어로 실시되는 경우, 실시간 네트워크 오퍼레이팅 시스템에 의해서 사용되는 상이한 플랫폼에 체재하기 위하여 다운 로드 되어 오퍼레이팅 된다.Certain aspects of the present invention include process steps or instructions described herein in the form of algorithms. The process steps and instructions of the present invention may be implemented in software, firmware, or hardware and, if implemented in software, are downloaded and operated to stay on different platforms used by the real-time network operating system.

또한, 본 발명은 오퍼레이션을 수행하는 장치에 관한 것이다. 이러한 장치는 요구된 목적을 위해서 특별하게 구성될 수 있거나, 컴퓨터에 의해서 액세스 될 수 있는 컴퓨터 판독 가능 매체에 저장된 컴퓨터 프로그램에 의해서 재구성되거나 선택적으로 활성화되는 범용 컴퓨터를 포함할 수 있다. 그러한 컴퓨터 프로그램은 플로피 디스크, 광 디스크, CD-ROM, 자기-광 디스크, ROM(read only memory), RAM(random access memory), EPROM, EEPROM, 자기 또는 광 카드, 특정 용도 집적 회로(ASIC)를 포함하는 임의 종류의 디스크, 또는 전자 명령을 저장하는데 적합하고 컴퓨터 시스템 버스에 각각 접속되는 임의 종류의 매체와 같은 컴퓨터 판독 가능 저장 매체를 포함하지만 그것에 한정되는 것은 아니다. 또한, 명세서 내에서 칭해지는 컴퓨터는 단일 프로세서를 포함하거나 증가된 계산 능력을 위한 복합 프로세서 디자인을 채용하는 아키텍처(architecture)일 수 있다.The invention also relates to an apparatus for performing an operation. Such apparatus may be specially configured for the required purpose or may comprise a general purpose computer which is reconfigured or selectively activated by a computer program stored in a computer readable medium accessible by the computer. Such computer programs include floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read only memory (ROM), random access memory (RAM), EPROM, EEPROM, magnetic or optical cards, and special purpose integrated circuits (ASICs). Computer readable storage media such as, but not limited to, any type of disk, or any type of media suitable for storing electronic instructions and each connected to a computer system bus. In addition, a computer referred to within the specification may be an architecture that includes a single processor or employs a multiple processor design for increased computing power.

본 명세서에 기재된 알고리즘 및 오퍼레이션은 임의의 특정 컴퓨터 또는 다른 장치에 본질적으로 관련되지는 않는다. 또한, 다양한 범용 시스템이 교시에 따른 프로그램과 함께 사용될 수 있거나, 요구되는 방법 스텝을 수행하기 위한 더욱 특정된 장치를 구성하는 것이 편리하다는 것이 입증될 수 있다. 각종 시스템의 요구되는 구조는 동등한 변형예와 함께 당업자에게는 자명할 것이다. 또한, 본 발명은 임의의 특정 프로그래밍 언어를 참조하여 기재되지 않는다. 각종 프로그래밍 언어가 명세서에 기재된 본 발명의 교시를 실시하는데 사용될 수 있고, 특정 언어에 대한 임의의 참조가 본 발명의 기능 및 최선의 모드를 개시하기 위해 제공된다.The algorithms and operations described herein are not inherently related to any particular computer or other apparatus. In addition, various general purpose systems may be used with the teachings of the teachings, or it may prove convenient to construct more specific apparatus for performing the required method steps. The required structure of the various systems will be apparent to those skilled in the art with equivalent variations. In addition, the present invention is not described with reference to any particular programming language. Various programming languages may be used to practice the teachings of the invention described in this specification, and any reference to a particular language is provided to disclose the functionality and best mode of the invention.

본 발명은 수많은 토폴로지(topology)에 걸쳐있는 다양한 컴퓨터 네트워크 시스템에 매우 적합하다. 이러한 분야에서, 큰 네트워크의 구성 및 관리는 다른 컴퓨터와 통신가능하게 연결되는 컴퓨터 및 스토리지 장치, 및 인터넷과 같은 네트워크 상의 스토리지 장치를 포함한다.The present invention is well suited for a variety of computer network systems spanning numerous topologies. In this field, configuration and management of large networks includes computers and storage devices that are communicatively connected with other computers, and storage devices on the network, such as the Internet.

최종적으로, 본 명세서에서 사용된 언어는 본질적으로 읽기 용이성 및 교시 적 목적을 위해서 선택되었으며, 발명의 주안점을 정확히 서술하거나 제한하기 위해서 선택된 것은 아니다. 따라서, 본 발명의 개시는 첨부된 청구범위에 기재된 본 발명의 범주를 한정하지 않고 예시하기 위하여 의도된 것이다.Finally, the language used herein is selected essentially for readability and teaching purposes, and is not selected to precisely describe or limit the subject matter of the invention. Accordingly, the disclosure of the present invention is intended to illustrate without limiting the scope of the invention described in the appended claims.

본원 발명에서는 대규모 자료에서 문구를 포괄적으로 식별하고, 문구에 따른 문서를 인덱싱하고, 이들 문구에 따라 문서를 서치 및 랭킹하고, 문서에 관한 부가적인 클러스터링 및 설명 정보를 제공할 수 있는 정보 검색 시스템 및 방법이 제공된다.The present invention provides an information retrieval system capable of comprehensively identifying phrases in large-scale materials, indexing documents according to the phrases, searching and ranking documents according to these phrases, and providing additional clustering and descriptive information about the documents; A method is provided.

Claims (14)

질의에 응답하여 문서 컬렉션에서 문서를 선택하는 방법으로서,A method of selecting a document from a document collection in response to a query. 질의를 수신하는 단계와,Receiving a query; 상기 질의 내의 복수의 문구를 식별하는 단계로서, 적어도 하나의 문구가 복수 단어 문구인 단계와,Identifying a plurality of phrases in the query, the at least one phrase being a plurality of word phrases; 상기 식별된 문구 중 적어도 하나의 문구 확장을 식별하는 단계와,Identifying at least one phrase extension of the identified phrases; 상기 질의 및 문구 확장 내의 문구를 포함하는 한 세트로부터 적어도 하나의 문구를 담고 있는 상기 문서 컬렉션으로부터 문서를 선택하는 단계Selecting a document from the document collection containing at least one phrase from a set comprising a phrase in the query and phrase extension 를 포함하는 문서 선택 방법.Document selection method comprising a. 제 1항에 있어서,The method of claim 1, 상기 문서를 선택하는 단계는Selecting the document 식별된 문구의 포스팅 리스트(posting list)와 상기 식별된 문구의 문구 확장의 포스팅 리스트를 결합하여 결합된 포스팅 리스트를 형성하는 단계와,Combining a posting list of identified phrases with a posting list of phrase extensions of the identified phrases to form a combined posting list; 상기 결합된 포스팅 리스트 및 다른 식별된 문구의 포스팅 리스트에 나타나는 문서를 선택하는 단계Selecting a document that appears in the combined posting list and in the posted list of other identified phrases; 를 포함하는 문서 선택 방법.Document selection method comprising a. 질의에 응답하여 문서 컬렉션에서 문서를 선택하는 방법으로서,A method of selecting a document from a document collection in response to a query. 질의를 수신하는 단계와,Receiving a query; 상기 질의 내의 불완전 문구를 식별하는 단계와,Identifying an incomplete phrase in the query; 상기 불완전 문구를 문구 확장으로 대체하는 단계와,Replacing the incomplete phrase with a phrase extension; 상기 문구 확장을 담고 있는 상기 문서 컬렉션으로부터 문서를 선택하는 단계Selecting a document from the document collection containing the phrase extension 를 포함하는 문서 선택 방법.Document selection method comprising a. 제 3항에 있어서,The method of claim 3, wherein 상기 불완전 문구를 식별하는 단계 및 상기 불완전 문구를 대체하는 단계는Identifying the incomplete phrase and replacing the incomplete phrase 상기 질의 내의 후보 문구를 식별하는 단계와,Identifying candidate phrases in the query; 상기 후보 문구와 불완전 문구 리스트 내의 불완전 문구를 매칭하는 단계와,Matching incomplete phrases in the candidate phrase and incomplete phrase list; 상기 후보 문구를 상기 불완전 문구와 연관된 문구 확장으로 대체하는 단계Replacing the candidate phrase with a phrase extension associated with the incomplete phrase 를 포함하는 문서 선택 방법.Document selection method comprising a. 제 3항에 있어서,The method of claim 3, wherein 불완전 문구의 문구 확장은 상기 불완전 문구로 시작되는 불완전 문구의 수퍼-시퀀스(super-sequence)를 포함하는 문서 선택 방법.The phrase expansion of an incomplete phrase includes a super-sequence of the incomplete phrase starting with the incomplete phrase. 질의에 응답하여 문서 컬렉션에서 문서를 선택하는 방법으로서,A method of selecting a document from a document collection in response to a query. 제 1 문구 및 제 2 문구를 포함하는 질의를 수신하는 단계와,Receiving a query comprising a first phrase and a second phrase; 상기 제 1 문구를 담고 있는 문서의 포스팅 리스트를 검색하는 단계와,Retrieving a posting list of the document containing the first phrase; 상기 포스팅 리스트 내의 문서마다, 상기 문서에 존재하는 상기 제 1 문구의 관련 문구를 나타내는 리스트에 액세스하는 단계와, 상기 제 2 문구가 문서에 존재함으로 나타내는 관련 문구의 리스트에 응답하여, 상기 제 2 문구를 담고 있는 문서의 포스팅 리스트를 검색하지 않고 상기 질의에 대한 결과에 포함되도록 상기 문서를 선택하는 단계For each document in the posting list, accessing a list representing relevant phrases of the first phrase present in the document and responsive to the list of related phrases indicating that the second phrase exists in the document. Selecting the document to be included in the results of the query without retrieving a posting list of documents containing 를 포함하는 문서 선택 방법.Document selection method comprising a. 제 6항에 있어서,The method of claim 6, 상기 제 2 문구가 문서에 존재하지 않음을 나타내는 관련 문구의 리스트에 응답하여, 상기 제 2 문구를 담고 있는 문서의 포스팅 리스트를 검색하지 않고 상기 질의에 대한 결과로부터 상기 문서를 제외하는 단계를 더 포함하는 문서 선택 방법.In response to the list of relevant phrases indicating that the second phrase is not present in the document, excluding the document from the results of the query without retrieving a posting list of the document containing the second phrase. How to choose a document. 제 6항에 있어서,The method of claim 6, 상기 제 2 문구가 상기 제 1 문구의 관련 문구가 아님을 나타내는 관련 문구의 리스트에 응답하여, 상기 제 1 문구에 대한 문서의 포스팅 리스트를 상기 제 2 문구에 대한 문서의 포스팅 리스트와 교차시켜 상기 제 1 문구 및 상기 제 2 문구 모두를 담고 있는 문서를 선택하는 단계를 더 포함하는 문서 선택 방법.In response to a list of related phrases indicating that the second phrase is not a related phrase of the first phrase, intersecting a posting list of the document for the first phrase with a posting list of the document for the second phrase; Selecting the document containing both the first phrase and the second phrase. 제 6항에 있어서,The method of claim 6, 문서에 대해서 제 1 문구에 대한 관련 문구의 리스트를 비트 벡터(bit vector)로 저장하는 단계로서, 상기 비트 벡터의 비트는 상기 문서에 존재하는 상기 제 1 문구의 관련 문구마다 설정되고, 상기 벡터의 비트는 상기 문서에 존재하지 않는 상기 제 1 문구의 관련 문구마다 설정되지 않고, 상기 비트 벡터는 산술값을 갖는 단계를 더 포함하는 문서 선택 방법.Storing a list of relevant phrases for the first phrase for the document as a bit vector, wherein bits of the bit vector are set for each relevant phrase of the first phrase present in the document, And a bit is not set for each relevant phrase of the first phrase that does not exist in the document, and wherein the bit vector has an arithmetic value. 적어도 하나의 질의 문구를 포함하는 질의에 응답하여 서치 결과에 포함된 문서를 랭킹하는 방법으로서,A method of ranking documents included in a search result in response to a query including at least one query phrase, 상기 서치 결과 내의 문서마다, 질의 문구에 대한 관련 문구 비트 벡터에 액세스하는 단계로서, 상기 비트 벡터의 비트 각각은 상기 질의 문구의 관련 문구의 존재 또는 부재를 나타내는 단계와,For each document in the search results, accessing an associated phrase bit vector for the query phrase, each bit of the bit vector indicating the presence or absence of an associated phrase of the query phrase; 가장 높은 값의 관련 문구 비트 벡터를 갖는 문서가 상기 서치 결과에서 가장 높게 랭킹되도록 관련 문구 비트 벡터의 값에 의해 상기 서치 결과 내의 문서를 소팅하는 단계Sorting the documents in the search results by the value of the relevant phrase bit vector such that the document having the highest value of the relevant phrase bit vector is ranked highest in the search result. 를 포함하는 문서의 랭킹 방법.Ranking method of the document comprising a. 제 10항에 있어서,The method of claim 10, 상기 관련 문구 비트 벡터의 비트 각각은 상기 질의 문구의 관련 문구와 연관되고,Each bit of the relevant phrase bit vector is associated with a related phrase of the query phrase, 상기 비트는 상기 비트 벡터의 최상위 비트가 상기 질의 문구에 대해서 가장 큰 정보 이득을 갖는 관련 문구와 연관되고, 최하위 비트가 상기 질의 문구에 대해서 가장 적은 정보 이득을 갖는 관련 문구와 연관되도록 배열되는 문서의 랭킹 방법.The bit of the document is arranged such that the most significant bit of the bit vector is associated with a relevant phrase having the largest information gain for the query phrase and the least significant bit is associated with a relevant phrase having the least information gain for the query phrase. Ranking method. 적어도 하나의 질의 문구를 포함하는 질의에 응답하여 서치 결과에 포함된 문서를 랭킹하는 방법으로서,A method of ranking documents included in a search result in response to a query including at least one query phrase, 상기 서치 결과 내의 문서마다,For each document in the search results, 상기 질의의 문구에 대한 관련 문구 비트 벡터에 액세스하는 단계로서, 상기 비트 벡터의 비트 각각은 상기 질의 문구의 관련 문구의 존재 또는 부재를 나타내는 단계와,Accessing an associated phrase bit vector for the phrase of the query, each bit of the bit vector indicating the presence or absence of an associated phrase of the query phrase; 상기 질의 문구의 관련 문구의 존재를 나타내는 비트마다, 상기 비트와 연관된 소정 개수의 포인트를 상기 문서에 대한 스코어에 부가하는 단계와,For each bit indicating the presence of a related phrase in the query phrase, adding a predetermined number of points associated with the bit to a score for the document; 상기 문서 스코어에 의해 상기 서치 결과 내의 문서를 소팅(sorting)하는 단계Sorting documents in the search results by the document scores 를 포함하는 문서의 랭킹 방법.Ranking method of the document comprising a. 제 12항에 있어서,The method of claim 12, 상기 관련 문구 비트 벡터의 비트 각각은 상기 질의 문구의 관련 문구와 연관되고,Each bit of the relevant phrase bit vector is associated with a related phrase of the query phrase, 상기 비트는 상기 비트 벡터의 최상위 비트가 상기 질의 문구에 대해서 가장 큰 정보 이득을 갖는 관련 문구와 연관되고, 최하위 비트가 상기 질의 문구에 대해서 가장 적은 정보 이득을 갖는 관련 문구와 연관되도록 배열되고,The bits are arranged such that the most significant bit of the bit vector is associated with an associated phrase having the largest information gain for the query phrase, the least significant bit is associated with an associated phrase having the least information gain for the query phrase, 각 비트와 연관된 상기 소정 개수의 포인트는 최상위 비트와 연관된 가장 큰 수의 포인트로부터 최하위 비트와 연관된 가장 적은 수의 포인트까지의 범위에 걸쳐 있는 문서의 랭킹 방법.And the predetermined number of points associated with each bit ranges from the largest number of points associated with the most significant bit to the smallest number associated with the least significant bit. 정보 검색 시스템을 제공하는 방법으로서,As a method of providing an information retrieval system, 복수의 문서를 포함하는 문서 컬렉션에서 유효 문구를 자동적으로 식별하는 단계로서, 상기 유효 문구는 복수 단어 문구를 담고 있는 단계와,Automatically identifying a valid phrase in a document collection comprising a plurality of documents, the valid phrase containing a plurality of word phrases; 상기 문서에 담겨 있는 유효 문구에 따라 상기 문서를 인덱싱하는 단계와,Indexing the document according to valid text contained in the document; 서치 질의를 수신하는 단계와,Receiving a search query, 상기 질의에 담겨 있는 문구를 식별하는 단계와,Identifying phrases contained in the query; 상기 식별된 문구에 따라 문서를 선택하는 단계와,Selecting a document according to the identified phrase; 상기 식별된 문구에 따라 상기 선택된 문서를 랭킹(ranking)하는 단계Ranking the selected document according to the identified phrase 를 포함하는 정보 검색 시스템의 제공 방법.Method of providing an information retrieval system comprising a.
KR1020050068057A 2004-07-26 2005-07-26 Phrase-based searching in an information retrieval system KR101223172B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/900,041 2004-07-26
US10/900,041 US7599914B2 (en) 2004-07-26 2004-07-26 Phrase-based searching in an information retrieval system

Publications (2)

Publication Number Publication Date
KR20060048778A true KR20060048778A (en) 2006-05-18
KR101223172B1 KR101223172B1 (en) 2013-01-17

Family

ID=34979519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050068057A KR101223172B1 (en) 2004-07-26 2005-07-26 Phrase-based searching in an information retrieval system

Country Status (10)

Country Link
US (1) US7599914B2 (en)
EP (1) EP1622054B1 (en)
JP (2) JP5175005B2 (en)
KR (1) KR101223172B1 (en)
CN (6) CN102289462B (en)
AT (1) ATE521946T1 (en)
AU (1) AU2005203238B2 (en)
BR (1) BRPI0503778A (en)
CA (2) CA2813644C (en)
NO (1) NO20053640L (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811838B1 (en) * 2006-07-31 2008-03-10 (주)닷넷소프트 Information searching apparatus and control method thereof
KR100892406B1 (en) * 2007-05-16 2009-04-10 엔에이치엔(주) Method for Searching Information and System Therefor
KR100899922B1 (en) * 2007-03-29 2009-05-28 엔에이치엔(주) System and Method for Searching based on Phrase and Computer Readable Storage Medium for Storing Program for Carring Out The Method
WO2014003249A1 (en) * 2012-10-17 2014-01-03 주식회사 리얼타임테크 Method for performing logical operation, based on full-text, using hashes

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7266553B1 (en) * 2002-07-01 2007-09-04 Microsoft Corporation Content data indexing
US7548910B1 (en) 2004-01-30 2009-06-16 The Regents Of The University Of California System and method for retrieving scenario-specific documents
US7702618B1 (en) 2004-07-26 2010-04-20 Google Inc. Information retrieval system for archiving multiple document versions
US7536408B2 (en) 2004-07-26 2009-05-19 Google Inc. Phrase-based indexing in an information retrieval system
US7711679B2 (en) 2004-07-26 2010-05-04 Google Inc. Phrase-based detection of duplicate documents in an information retrieval system
US7567959B2 (en) 2004-07-26 2009-07-28 Google Inc. Multiple index based information retrieval system
US7580921B2 (en) 2004-07-26 2009-08-25 Google Inc. Phrase identification in an information retrieval system
US7584175B2 (en) 2004-07-26 2009-09-01 Google Inc. Phrase-based generation of document descriptions
US7580929B2 (en) * 2004-07-26 2009-08-25 Google Inc. Phrase-based personalization of searches in an information retrieval system
US7199571B2 (en) * 2004-07-27 2007-04-03 Optisense Network, Inc. Probe apparatus for use in a separable connector, and systems including same
US7493303B2 (en) * 2004-08-04 2009-02-17 International Business Machines Corporation Method for remotely searching a local user index
US7634461B2 (en) * 2004-08-04 2009-12-15 International Business Machines Corporation System and method for enhancing keyword relevance by user's interest on the search result documents
US8261196B2 (en) * 2004-08-04 2012-09-04 International Business Machines Corporation Method for displaying usage metrics as part of search results
US20060031199A1 (en) * 2004-08-04 2006-02-09 Newbold David L System and method for providing a result set visualizations of chronological document usage
US7496563B2 (en) * 2004-08-04 2009-02-24 International Business Machines Corporation Method for locating documents a user has previously accessed
US7831601B2 (en) * 2004-08-04 2010-11-09 International Business Machines Corporation Method for automatically searching for documents related to calendar and email entries
US7395260B2 (en) * 2004-08-04 2008-07-01 International Business Machines Corporation Method for providing graphical representations of search results in multiple related histograms
US20060031043A1 (en) * 2004-08-04 2006-02-09 Tolga Oral System and method for utilizing a desktop integration module to collect user metrics
US7421421B2 (en) * 2004-08-04 2008-09-02 International Business Machines Corporation Method for providing multi-variable dynamic search results visualizations
JP2006065395A (en) * 2004-08-24 2006-03-09 Fujitsu Ltd Hyper link generating device, hyper link generating method, and hyper link generating program
US7406462B2 (en) * 2004-10-19 2008-07-29 International Business Machines Corporation Prediction of query difficulty for a generic search engine
WO2006047790A2 (en) * 2004-10-27 2006-05-04 Client Dynamics, Inc. Enhanced client relationship management systems and methods with a recommendation engine
US7895218B2 (en) * 2004-11-09 2011-02-22 Veveo, Inc. Method and system for performing searches for television content using reduced text input
US7962462B1 (en) 2005-05-31 2011-06-14 Google Inc. Deriving and using document and site quality signals from search query streams
US7788266B2 (en) 2005-08-26 2010-08-31 Veveo, Inc. Method and system for processing ambiguous, multi-term search queries
US8321198B2 (en) * 2005-09-06 2012-11-27 Kabushiki Kaisha Square Enix Data extraction system, terminal, server, programs, and media for extracting data via a morphological analysis
US8209335B2 (en) * 2005-09-20 2012-06-26 International Business Machines Corporation Extracting informative phrases from unstructured text
US7644054B2 (en) 2005-11-23 2010-01-05 Veveo, Inc. System and method for finding desired results by incremental search using an ambiguous keypad with the input containing orthographic and typographic errors
US7971137B2 (en) * 2005-12-14 2011-06-28 Google Inc. Detecting and rejecting annoying documents
US8229733B2 (en) * 2006-02-09 2012-07-24 John Harney Method and apparatus for linguistic independent parsing in a natural language systems
US7657526B2 (en) 2006-03-06 2010-02-02 Veveo, Inc. Methods and systems for selecting and presenting content based on activity level spikes associated with the content
US8073860B2 (en) 2006-03-30 2011-12-06 Veveo, Inc. Method and system for incrementally selecting and providing relevant search engines in response to a user query
US7461061B2 (en) 2006-04-20 2008-12-02 Veveo, Inc. User interface methods and systems for selecting and presenting content based on user navigation and selection actions associated with the content
US7809704B2 (en) * 2006-06-15 2010-10-05 Microsoft Corporation Combining spectral and probabilistic clustering
US7624104B2 (en) * 2006-06-22 2009-11-24 Yahoo! Inc. User-sensitive pagerank
WO2008034057A2 (en) * 2006-09-14 2008-03-20 Veveo, Inc. Methods and systems for dynamically rearranging search results into hierarchically organized concept clusters
US8458207B2 (en) * 2006-09-15 2013-06-04 Microsoft Corporation Using anchor text to provide context
US9009133B2 (en) * 2006-10-02 2015-04-14 Leidos, Inc. Methods and systems for formulating and executing concept-structured queries of unorganized data
WO2008045690A2 (en) 2006-10-06 2008-04-17 Veveo, Inc. Linear character selection display interface for ambiguous text input
US9495358B2 (en) 2006-10-10 2016-11-15 Abbyy Infopoisk Llc Cross-language text clustering
US9075864B2 (en) 2006-10-10 2015-07-07 Abbyy Infopoisk Llc Method and system for semantic searching using syntactic and semantic analysis
US9069750B2 (en) 2006-10-10 2015-06-30 Abbyy Infopoisk Llc Method and system for semantic searching of natural language texts
US9189482B2 (en) 2012-10-10 2015-11-17 Abbyy Infopoisk Llc Similar document search
US9098489B2 (en) 2006-10-10 2015-08-04 Abbyy Infopoisk Llc Method and system for semantic searching
US9892111B2 (en) 2006-10-10 2018-02-13 Abbyy Production Llc Method and device to estimate similarity between documents having multiple segments
JP5437557B2 (en) * 2006-10-19 2014-03-12 富士通株式会社 Search processing method and search system
US8078884B2 (en) 2006-11-13 2011-12-13 Veveo, Inc. Method of and system for selecting and presenting content based on user identification
US20080114750A1 (en) * 2006-11-14 2008-05-15 Microsoft Corporation Retrieval and ranking of items utilizing similarity
US20080133365A1 (en) * 2006-11-21 2008-06-05 Benjamin Sprecher Targeted Marketing System
US7793230B2 (en) * 2006-11-30 2010-09-07 Microsoft Corporation Search term location graph
WO2008083504A1 (en) * 2007-01-10 2008-07-17 Nick Koudas Method and system for information discovery and text analysis
US7966321B2 (en) * 2007-01-17 2011-06-21 Google Inc. Presentation of local results
US8966407B2 (en) 2007-01-17 2015-02-24 Google Inc. Expandable homepage modules
US8326858B2 (en) * 2007-01-17 2012-12-04 Google Inc. Synchronization of fixed and mobile data
US8005822B2 (en) * 2007-01-17 2011-08-23 Google Inc. Location in search queries
US7966309B2 (en) 2007-01-17 2011-06-21 Google Inc. Providing relevance-ordered categories of information
US8166021B1 (en) 2007-03-30 2012-04-24 Google Inc. Query phrasification
US7693813B1 (en) 2007-03-30 2010-04-06 Google Inc. Index server architecture using tiered and sharded phrase posting lists
US8086594B1 (en) 2007-03-30 2011-12-27 Google Inc. Bifurcated document relevance scoring
US8166045B1 (en) 2007-03-30 2012-04-24 Google Inc. Phrase extraction using subphrase scoring
US7702614B1 (en) 2007-03-30 2010-04-20 Google Inc. Index updating using segment swapping
US7925655B1 (en) 2007-03-30 2011-04-12 Google Inc. Query scheduling using hierarchical tiers of index servers
US9239835B1 (en) * 2007-04-24 2016-01-19 Wal-Mart Stores, Inc. Providing information to modules
US7809714B1 (en) 2007-04-30 2010-10-05 Lawrence Richard Smith Process for enhancing queries for information retrieval
US8549424B2 (en) 2007-05-25 2013-10-01 Veveo, Inc. System and method for text disambiguation and context designation in incremental search
US8046372B1 (en) 2007-05-25 2011-10-25 Amazon Technologies, Inc. Duplicate entry detection system and method
US7908279B1 (en) 2007-05-25 2011-03-15 Amazon Technologies, Inc. Filtering invalid tokens from a document using high IDF token filtering
US7814107B1 (en) 2007-05-25 2010-10-12 Amazon Technologies, Inc. Generating similarity scores for matching non-identical data strings
US8117223B2 (en) 2007-09-07 2012-02-14 Google Inc. Integrating external related phrase information into a phrase-based indexing information retrieval system
US20090119572A1 (en) * 2007-11-02 2009-05-07 Marja-Riitta Koivunen Systems and methods for finding information resources
US8375073B1 (en) 2007-11-12 2013-02-12 Google Inc. Identification and ranking of news stories of interest
US8943539B2 (en) 2007-11-21 2015-01-27 Rovi Guides, Inc. Enabling a friend to remotely modify user data
US7895225B1 (en) * 2007-12-06 2011-02-22 Amazon Technologies, Inc. Identifying potential duplicates of a document in a document corpus
US7996379B1 (en) 2008-02-01 2011-08-09 Google Inc. Document ranking using word relationships
WO2009111631A1 (en) * 2008-03-05 2009-09-11 Chacha Search, Inc. Method and system for triggering a search request
US8219385B2 (en) * 2008-04-08 2012-07-10 Incentive Targeting, Inc. Computer-implemented method and system for conducting a search of electronically stored information
CN101320382B (en) * 2008-05-07 2011-12-07 索意互动(北京)信息技术有限公司 Method and system for rearranging search result based on context
US10025855B2 (en) * 2008-07-28 2018-07-17 Excalibur Ip, Llc Federated community search
US9342621B1 (en) * 2008-08-04 2016-05-17 Zscaler, Inc. Phrase matching
US8341415B1 (en) * 2008-08-04 2012-12-25 Zscaler, Inc. Phrase matching
US8788476B2 (en) * 2008-08-15 2014-07-22 Chacha Search, Inc. Method and system of triggering a search request
US8984398B2 (en) * 2008-08-28 2015-03-17 Yahoo! Inc. Generation of search result abstracts
GB2472250A (en) * 2009-07-31 2011-02-02 Stephen Timothy Morris Method for determining document relevance
US8666994B2 (en) 2009-09-26 2014-03-04 Sajari Pty Ltd Document analysis and association system and method
JP5372704B2 (en) * 2009-11-02 2013-12-18 株式会社電通 Web page display program, Web page display method, Web page display device, and Web page display system
US8543381B2 (en) * 2010-01-25 2013-09-24 Holovisions LLC Morphing text by splicing end-compatible segments
US20110202521A1 (en) * 2010-01-28 2011-08-18 Jason Coleman Enhanced database search features and methods
US20110191330A1 (en) 2010-02-04 2011-08-04 Veveo, Inc. Method of and System for Enhanced Content Discovery Based on Network and Device Access Behavior
US8650210B1 (en) * 2010-02-09 2014-02-11 Google Inc. Identifying non-search actions based on a search query
US8161073B2 (en) 2010-05-05 2012-04-17 Holovisions, LLC Context-driven search
US8799280B2 (en) * 2010-05-21 2014-08-05 Microsoft Corporation Personalized navigation using a search engine
US20110313756A1 (en) * 2010-06-21 2011-12-22 Connor Robert A Text sizer (TM)
EP2423830A1 (en) 2010-08-25 2012-02-29 Omikron Data Quality GmbH Method for searching through a number of databases and search engine
US8655648B2 (en) * 2010-09-01 2014-02-18 Microsoft Corporation Identifying topically-related phrases in a browsing sequence
US9015043B2 (en) 2010-10-01 2015-04-21 Google Inc. Choosing recognized text from a background environment
US10643355B1 (en) 2011-07-05 2020-05-05 NetBase Solutions, Inc. Graphical representation of frame instances and co-occurrences
US10872082B1 (en) * 2011-10-24 2020-12-22 NetBase Solutions, Inc. Methods and apparatuses for clustered storage of information
US20130179418A1 (en) * 2012-01-06 2013-07-11 Microsoft Corporation Search ranking features
US9501506B1 (en) 2013-03-15 2016-11-22 Google Inc. Indexing system
US9483568B1 (en) 2013-06-05 2016-11-01 Google Inc. Indexing system
RU2610280C2 (en) 2014-10-31 2017-02-08 Общество С Ограниченной Ответственностью "Яндекс" Method for user authorization in a network and server used therein
RU2580432C1 (en) 2014-10-31 2016-04-10 Общество С Ограниченной Ответственностью "Яндекс" Method for processing a request from a potential unauthorised user to access resource and server used therein
US9727607B2 (en) * 2014-11-19 2017-08-08 Ebay Inc. Systems and methods for representing search query rewrites
US9626430B2 (en) 2014-12-22 2017-04-18 Ebay Inc. Systems and methods for data mining and automated generation of search query rewrites
US10606815B2 (en) * 2016-03-29 2020-03-31 International Business Machines Corporation Creation of indexes for information retrieval
US11182437B2 (en) 2017-10-26 2021-11-23 International Business Machines Corporation Hybrid processing of disjunctive and conjunctive conditions of a search query for a similarity search
US10885081B2 (en) 2018-07-02 2021-01-05 Optum Technology, Inc. Systems and methods for contextual ranking of search results
WO2020079752A1 (en) * 2018-10-16 2020-04-23 株式会社島津製作所 Document search method and document search system
US20210073891A1 (en) * 2019-09-05 2021-03-11 Home Depot Product Authority, Llc Complementary item recommendations based on multi-modal embeddings

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270067A (en) * 1987-04-16 1990-11-05 Westinghouse Electric Corp <We> Inteligent inquiry system
US5321833A (en) * 1990-08-29 1994-06-14 Gte Laboratories Incorporated Adaptive ranking system for information retrieval
US5523946A (en) * 1992-02-11 1996-06-04 Xerox Corporation Compact encoding of multi-lingual translation dictionaries
US5353401A (en) 1992-11-06 1994-10-04 Ricoh Company, Ltd. Automatic interface layout generator for database systems
JPH0756933A (en) * 1993-06-24 1995-03-03 Xerox Corp Method for retrieval of document
US5692176A (en) 1993-11-22 1997-11-25 Reed Elsevier Inc. Associative text search and retrieval system
JPH07262217A (en) * 1994-03-24 1995-10-13 Fuji Xerox Co Ltd Text retrieval device
US5758257A (en) * 1994-11-29 1998-05-26 Herz; Frederick System and method for scheduling broadcast of and access to video programs and other data using customer profiles
US6460036B1 (en) * 1994-11-29 2002-10-01 Pinpoint Incorporated System and method for providing customized electronic newspapers and target advertisements
US5724571A (en) * 1995-07-07 1998-03-03 Sun Microsystems, Inc. Method and apparatus for generating query responses in a computer-based document retrieval system
JPH0934911A (en) * 1995-07-18 1997-02-07 Fuji Xerox Co Ltd Information retrieval device
US6366933B1 (en) * 1995-10-27 2002-04-02 At&T Corp. Method and apparatus for tracking and viewing changes on the web
US6098034A (en) * 1996-03-18 2000-08-01 Expert Ease Development, Ltd. Method for standardizing phrasing in a document
US7051024B2 (en) * 1999-04-08 2006-05-23 Microsoft Corporation Document summarizer for word processors
US5924108A (en) * 1996-03-29 1999-07-13 Microsoft Corporation Document summarizer for word processors
US5826261A (en) * 1996-05-10 1998-10-20 Spencer; Graham System and method for querying multiple, distributed databases by selective sharing of local relative significance information for terms related to the query
US5915249A (en) 1996-06-14 1999-06-22 Excite, Inc. System and method for accelerated query evaluation of very large full-text databases
EP0822502A1 (en) 1996-07-31 1998-02-04 BRITISH TELECOMMUNICATIONS public limited company Data access system
US5920854A (en) * 1996-08-14 1999-07-06 Infoseek Corporation Real-time document collection search engine with phrase indexing
US6085186A (en) * 1996-09-20 2000-07-04 Netbot, Inc. Method and system using information written in a wrapper description language to execute query on a network
US20030093790A1 (en) * 2000-03-28 2003-05-15 Logan James D. Audio and video program recording, editing and playback systems using metadata
US5960383A (en) * 1997-02-25 1999-09-28 Digital Equipment Corporation Extraction of key sections from texts using automatic indexing techniques
US6055540A (en) * 1997-06-13 2000-04-25 Sun Microsystems, Inc. Method and apparatus for creating a category hierarchy for classification of documents
US6470307B1 (en) * 1997-06-23 2002-10-22 National Research Council Of Canada Method and apparatus for automatically identifying keywords within a document
US5983216A (en) * 1997-09-12 1999-11-09 Infoseek Corporation Performing automated document collection and selection by providing a meta-index with meta-index values indentifying corresponding document collections
US5956722A (en) * 1997-09-23 1999-09-21 At&T Corp. Method for effective indexing of partially dynamic documents
US6542888B2 (en) 1997-11-26 2003-04-01 International Business Machines Corporation Content filtering for electronic documents generated in multiple foreign languages
JP4183311B2 (en) 1997-12-22 2008-11-19 株式会社リコー Document annotation method, annotation device, and recording medium
US6185558B1 (en) 1998-03-03 2001-02-06 Amazon.Com, Inc. Identifying the items most relevant to a current query based on items selected in connection with similar queries
JP3664874B2 (en) 1998-03-28 2005-06-29 松下電器産業株式会社 Document search device
US6363377B1 (en) * 1998-07-30 2002-03-26 Sarnoff Corporation Search data processor
US6377949B1 (en) * 1998-09-18 2002-04-23 Tacit Knowledge Systems, Inc. Method and apparatus for assigning a confidence level to a term within a user knowledge profile
US6366911B1 (en) 1998-09-28 2002-04-02 International Business Machines Corporation Partitioning of sorted lists (containing duplicate entries) for multiprocessors sort and merge
US6415283B1 (en) * 1998-10-13 2002-07-02 Orack Corporation Methods and apparatus for determining focal points of clusters in a tree structure
US7058589B1 (en) * 1998-12-17 2006-06-06 Iex Corporation Method and system for employee work scheduling
JP4457230B2 (en) * 1999-03-19 2010-04-28 明義 尾坂 Surface treatment method for medical implant material
US6862710B1 (en) * 1999-03-23 2005-03-01 Insightful Corporation Internet navigation using soft hyperlinks
JP4021583B2 (en) * 1999-04-08 2007-12-12 富士通株式会社 Information search apparatus, information search method, and recording medium storing program for realizing the method
US6430539B1 (en) * 1999-05-06 2002-08-06 Hnc Software Predictive modeling of consumer financial behavior
US7089236B1 (en) * 1999-06-24 2006-08-08 Search 123.Com, Inc. Search engine interface
US6601026B2 (en) * 1999-09-17 2003-07-29 Discern Communications, Inc. Information retrieval by natural language querying
US6996775B1 (en) * 1999-10-29 2006-02-07 Verizon Laboratories Inc. Hypervideo: information retrieval using time-related multimedia:
US6684183B1 (en) * 1999-12-06 2004-01-27 Comverse Ltd. Generic natural language service creation environment
US6963867B2 (en) 1999-12-08 2005-11-08 A9.Com, Inc. Search query processing to provide category-ranked presentation of search results
US6772150B1 (en) * 1999-12-10 2004-08-03 Amazon.Com, Inc. Search query refinement using related search phrases
CA2293064C (en) 1999-12-22 2004-05-04 Ibm Canada Limited-Ibm Canada Limitee Method and apparatus for analyzing data retrieval using index scanning
US6981040B1 (en) 1999-12-28 2005-12-27 Utopy, Inc. Automatic, personalized online information and product services
US6820237B1 (en) * 2000-01-21 2004-11-16 Amikanow! Corporation Apparatus and method for context-based highlighting of an electronic document
US6883135B1 (en) * 2000-01-28 2005-04-19 Microsoft Corporation Proxy server using a statistical model
US6654739B1 (en) * 2000-01-31 2003-11-25 International Business Machines Corporation Lightweight document clustering
US6571240B1 (en) * 2000-02-02 2003-05-27 Chi Fai Ho Information processing for searching categorizing information in a document based on a categorization hierarchy and extracted phrases
US7137065B1 (en) * 2000-02-24 2006-11-14 International Business Machines Corporation System and method for classifying electronically posted documents
US6859800B1 (en) * 2000-04-26 2005-02-22 Global Information Research And Technologies Llc System for fulfilling an information need
AU2001261506A1 (en) * 2000-05-11 2001-11-20 University Of Southern California Discourse parsing and summarization
US6691106B1 (en) * 2000-05-23 2004-02-10 Intel Corporation Profile driven instant web portal
WO2001098942A2 (en) * 2000-06-19 2001-12-27 Lernout & Hauspie Speech Products N.V. Package driven parsing using structure function grammar
US20020078090A1 (en) 2000-06-30 2002-06-20 Hwang Chung Hee Ontological concept-based, user-centric text summarization
EP1182577A1 (en) * 2000-08-18 2002-02-27 SER Systeme AG Produkte und Anwendungen der Datenverarbeitung Associative memory
KR100426382B1 (en) * 2000-08-23 2004-04-08 학교법인 김포대학 Method for re-adjusting ranking document based cluster depending on entropy information and Bayesian SOM(Self Organizing feature Map)
US7017114B2 (en) * 2000-09-20 2006-03-21 International Business Machines Corporation Automatic correlation method for generating summaries for text documents
US20020147578A1 (en) * 2000-09-29 2002-10-10 Lingomotors, Inc. Method and system for query reformulation for searching of information
US20020065857A1 (en) * 2000-10-04 2002-05-30 Zbigniew Michalewicz System and method for analysis and clustering of documents for search engine
CA2322599A1 (en) * 2000-10-06 2002-04-06 Ibm Canada Limited-Ibm Canada Limitee System and method for workflow control of contractual activities
JP2002169834A (en) * 2000-11-20 2002-06-14 Hewlett Packard Co <Hp> Computer and method for making vector analysis of document
US20020091671A1 (en) * 2000-11-23 2002-07-11 Andreas Prokoph Method and system for data retrieval in large collections of data
JP2002207760A (en) * 2001-01-10 2002-07-26 Hitachi Ltd Document retrieval method, executing device thereof, and storage medium with its processing program stored therein
US6778980B1 (en) * 2001-02-22 2004-08-17 Drugstore.Com Techniques for improved searching of electronically stored information
US6741984B2 (en) * 2001-02-23 2004-05-25 General Electric Company Method, system and storage medium for arranging a database
US6823333B2 (en) * 2001-03-02 2004-11-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System, method and apparatus for conducting a keyterm search
US6697793B2 (en) * 2001-03-02 2004-02-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System, method and apparatus for generating phrases from a database
US6721728B2 (en) * 2001-03-02 2004-04-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System, method and apparatus for discovering phrases in a database
US6741981B2 (en) * 2001-03-02 2004-05-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) System, method and apparatus for conducting a phrase search
US7194483B1 (en) * 2001-05-07 2007-03-20 Intelligenxia, Inc. Method, system, and computer program product for concept-based multi-dimensional analysis of unstructured information
US7171619B1 (en) * 2001-07-05 2007-01-30 Sun Microsystems, Inc. Methods and apparatus for accessing document content
US6778979B2 (en) * 2001-08-13 2004-08-17 Xerox Corporation System for automatically generating queries
US6978274B1 (en) * 2001-08-31 2005-12-20 Attenex Corporation System and method for dynamically evaluating latent concepts in unstructured documents
US6741982B2 (en) * 2001-12-19 2004-05-25 Cognos Incorporated System and method for retrieving data from a database system
US7356527B2 (en) * 2001-12-19 2008-04-08 International Business Machines Corporation Lossy index compression
US7243092B2 (en) * 2001-12-28 2007-07-10 Sap Ag Taxonomy generation for electronic documents
US7139756B2 (en) * 2002-01-22 2006-11-21 International Business Machines Corporation System and method for detecting duplicate and similar documents
US7028045B2 (en) * 2002-01-25 2006-04-11 International Business Machines Corporation Compressing index files in information retrieval
NZ518744A (en) * 2002-05-03 2004-08-27 Hyperbolex Ltd Electronic document indexing using word use nodes, node objects and link objects
US7085771B2 (en) * 2002-05-17 2006-08-01 Verity, Inc System and method for automatically discovering a hierarchy of concepts from a corpus of documents
US7028026B1 (en) * 2002-05-28 2006-04-11 Ask Jeeves, Inc. Relevancy-based database retrieval and display techniques
JP4452012B2 (en) * 2002-07-04 2010-04-21 ヒューレット・パッカード・カンパニー Document uniqueness evaluation method
JP2004046438A (en) * 2002-07-10 2004-02-12 Nippon Telegr & Teleph Corp <Ntt> Text retrieval method and device, text retrieval program and storage medium storing text retrieval program
US20040034633A1 (en) * 2002-08-05 2004-02-19 Rickard John Terrell Data search system and method using mutual subsethood measures
US7151864B2 (en) * 2002-09-18 2006-12-19 Hewlett-Packard Development Company, L.P. Information research initiated from a scanned image media
US7158983B2 (en) * 2002-09-23 2007-01-02 Battelle Memorial Institute Text analysis technique
US6886010B2 (en) * 2002-09-30 2005-04-26 The United States Of America As Represented By The Secretary Of The Navy Method for data and text mining and literature-based discovery
US20040133560A1 (en) * 2003-01-07 2004-07-08 Simske Steven J. Methods and systems for organizing electronic documents
GB2399427A (en) * 2003-03-12 2004-09-15 Canon Kk Apparatus for and method of summarising text
US7945567B2 (en) * 2003-03-17 2011-05-17 Hewlett-Packard Development Company, L.P. Storing and/or retrieving a document within a knowledge base or document repository
US6947930B2 (en) * 2003-03-21 2005-09-20 Overture Services, Inc. Systems and methods for interactive search query refinement
US7051023B2 (en) * 2003-04-04 2006-05-23 Yahoo! Inc. Systems and methods for generating concept units from search queries
US7149748B1 (en) * 2003-05-06 2006-12-12 Sap Ag Expanded inverted index
US7051014B2 (en) * 2003-06-18 2006-05-23 Microsoft Corporation Utilizing information redundancy to improve text searches
US7254580B1 (en) 2003-07-31 2007-08-07 Google Inc. System and method for selectively searching partitions of a database
US20050043940A1 (en) * 2003-08-20 2005-02-24 Marvin Elder Preparing a data source for a natural language query
US20050071328A1 (en) * 2003-09-30 2005-03-31 Lawrence Stephen R. Personalization of web search
US7240064B2 (en) 2003-11-10 2007-07-03 Overture Services, Inc. Search engine with hierarchically stored indices
CN100495392C (en) 2003-12-29 2009-06-03 西安迪戈科技有限责任公司 Intelligent search method
US7206389B1 (en) * 2004-01-07 2007-04-17 Nuance Communications, Inc. Method and apparatus for generating a speech-recognition-based call-routing system
US20050216564A1 (en) * 2004-03-11 2005-09-29 Myers Gregory K Method and apparatus for analysis of electronic communications containing imagery
US20050256848A1 (en) 2004-05-13 2005-11-17 International Business Machines Corporation System and method for user rank search
US7155243B2 (en) * 2004-06-15 2006-12-26 Tekelec Methods, systems, and computer program products for content-based screening of messaging service messages
JP2006026844A (en) * 2004-07-20 2006-02-02 Fujitsu Ltd Polishing pad, polishing device provided with it and sticking device
US7584175B2 (en) * 2004-07-26 2009-09-01 Google Inc. Phrase-based generation of document descriptions
US7567959B2 (en) * 2004-07-26 2009-07-28 Google Inc. Multiple index based information retrieval system
US7426507B1 (en) * 2004-07-26 2008-09-16 Google, Inc. Automatic taxonomy generation in search results using phrases
US7536408B2 (en) * 2004-07-26 2009-05-19 Google Inc. Phrase-based indexing in an information retrieval system
US7580921B2 (en) * 2004-07-26 2009-08-25 Google Inc. Phrase identification in an information retrieval system
US7454449B2 (en) 2005-12-20 2008-11-18 International Business Machines Corporation Method for reorganizing a set of database partitions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811838B1 (en) * 2006-07-31 2008-03-10 (주)닷넷소프트 Information searching apparatus and control method thereof
KR100899922B1 (en) * 2007-03-29 2009-05-28 엔에이치엔(주) System and Method for Searching based on Phrase and Computer Readable Storage Medium for Storing Program for Carring Out The Method
KR100892406B1 (en) * 2007-05-16 2009-04-10 엔에이치엔(주) Method for Searching Information and System Therefor
WO2014003249A1 (en) * 2012-10-17 2014-01-03 주식회사 리얼타임테크 Method for performing logical operation, based on full-text, using hashes
CN103874996A (en) * 2012-10-17 2014-06-18 实时科技株式会社 Method for performing logical operation, based on full-text, using hashes
CN103874996B (en) * 2012-10-17 2017-02-08 实时科技株式会社 Method for performing logical operation, based on full-text, using hashes

Also Published As

Publication number Publication date
CN1728141A (en) 2006-02-01
NO20053640L (en) 2006-01-27
CN106202248B (en) 2019-10-25
KR101223172B1 (en) 2013-01-17
CA2813644A1 (en) 2006-01-26
CN102226900B (en) 2017-04-12
BRPI0503778A (en) 2006-03-14
CA2813644C (en) 2016-08-30
CN102289462A (en) 2011-12-21
CN1728141B (en) 2011-09-07
CN106202248A (en) 2016-12-07
CN102226900A (en) 2011-10-26
NO20053640D0 (en) 2005-07-26
AU2005203238A1 (en) 2006-02-09
CN102289462B (en) 2014-07-23
EP1622054A1 (en) 2006-02-01
JP2006048684A (en) 2006-02-16
ATE521946T1 (en) 2011-09-15
US7599914B2 (en) 2009-10-06
EP1622054B1 (en) 2011-08-24
CN102226901A (en) 2011-10-26
JP5175005B2 (en) 2013-04-03
AU2005203238B2 (en) 2008-10-23
JP2011175670A (en) 2011-09-08
US20060031195A1 (en) 2006-02-09
CN102226899A (en) 2011-10-26
CN102226901B (en) 2014-01-15
CN102226899B (en) 2014-07-16
CA2513852C (en) 2013-05-28
CA2513852A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
KR101223172B1 (en) Phrase-based searching in an information retrieval system
KR101176079B1 (en) Phrase-based generation of document descriptions
KR101223173B1 (en) Phrase-based indexing in an information retrieval system
US9990421B2 (en) Phrase-based searching in an information retrieval system
US9817825B2 (en) Multiple index based information retrieval system
CA2513850C (en) Phrase identification in an information retrieval system
US7426507B1 (en) Automatic taxonomy generation in search results using phrases
US7580929B2 (en) Phrase-based personalization of searches in an information retrieval system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161229

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8