SI8911315A - Multi purpose asphalt binded product and process thereof - Google Patents
Multi purpose asphalt binded product and process thereof Download PDFInfo
- Publication number
- SI8911315A SI8911315A SI8911315A SI8911315A SI8911315A SI 8911315 A SI8911315 A SI 8911315A SI 8911315 A SI8911315 A SI 8911315A SI 8911315 A SI8911315 A SI 8911315A SI 8911315 A SI8911315 A SI 8911315A
- Authority
- SI
- Slovenia
- Prior art keywords
- asphalt
- water
- binder
- asphalt binder
- alkali metal
- Prior art date
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Road Paving Structures (AREA)
Abstract
Prikazano je gelirano asfaltno vezivo z izboljšanimi lastnostmi v primerjavi z običajnim asfaltnim vezivom, ki vključuje tako znižano temperaturno občutljivost kot tudi manjšo hitrost utrjevanja s staranjem. To večnamensko asfaltno vezivo izdelamo z geliranjem tekočega asfaltnega materiala. To dosežemo z umiljenjem v staljenem asfaltu, ki je v bistvu brez vode, vsaj ene maščobne kisline in vsaj ene smolne kisline z bazo alkalijske kovine ali z dodajanjem že umiljenega produkta v staljeni asfalt. Nastalo gelirano asfaltno vezivo je uporabno v običajnih postopkih za asfaltiranje cest, streh in za posebne uporabe. Asfaltno vezivo lahko pripravimo in uporabimo z uporabo običajnih postopkov za mešanje vroče asfaltne zmesi v dani napravi za vročo zmes, standardni napravi za uporabo na strehah in napravi za posebno uporabo asfalta.Gel asphalt binder with improved ones is shown properties compared to conventional asphalt binder, which includes such a reduced temperature sensitivity as well as lower speed of aging hardening. This multipurpose asphalt binder is made with gelling liquid asphalt material. We achieve this with soaping in the melted asphalt, which is basically without water, at least one fatty acid and at least one of resin acid with alkali metal base or by addition of already saponified product into molten asphalt. The resulting gelled asphalt binder is useful in the usual procedures for paving roads, roofs and for special applications. Asphalt binder can be prepared and used using conventional mixing procedures hot asphalt mixtures in a given hot mixer, standard for roof and fixture use for special use of asphalt.
Description
ASPHALT MATERIALS, Inc.ASPHALT MATERIALS, Inc.
Večnamenski asfaltno vezivni proizvod in postopekMultipurpose asphalt binder product and process
Predloženi izum se nanaša na novo večnamensko asfaltno vezivo ter na postopek za njegovo pridobivanje. Prav tako se nanaša na uporabo tega novega proizvoda kot ugodne zamenjave za običajno asfaltno vezivo pri gradnji cest in pri pokrivanju streh in kot novega asfaltnega veziva, pri katerem sta znižana temperaturna občutljivost in zmanjšano trajanje utrjevanja med najpomembnejšimi lastnostmi.The present invention relates to a new multipurpose asphalt binder and to a process for its production. It also refers to the use of this new product as a favorable substitute for conventional asphalt binders in road construction and roofing and as a new asphalt binder, with reduced temperature sensitivity and reduced curing time among the most important features.
Tlakovanje z asfaltom je uporabljeno pri preko 90% cestnih površin v ZDA. Naravne asfalte, dobljene iz dna jezer, so uporabljali že leta 1874. Kasneje so našli prirodni zdrobljeni asfalt v južnih in zahodnih državah in ga polagali na zemljo, nasipali in valjali, da bi oblikovali cestno površino. Od zgodnjih 1900-ih let pa je dominanten asfalt, ki ga proizvajajo z rafiniranjem nafte in se uporablja tako pri izdelavi cest kot tudi streh.Asphalt paving is used in over 90% of the US road surface. Natural asphalt, obtained from the bottom of lakes, was used as early as 1874. Later, natural crushed asphalt was found in the southern and western countries and laid on the ground, milled and rolled to form a road surface. Since the early 1900s, asphalt has been dominant, produced through the refining of oil and used in road and roof construction.
Asfalt je temnorjav do čm visokoviskozni material, ki vsebuje bitumen kot glavno sestavino in se nahaja v večini surove nafte. Asfaltni ostanek pri rafiniranju nafte, ki je v bistvu brez lažjih frakcij, ima skupni naziv asfalt.Asphalt is a dark brown, highly viscous material that contains bitumen as the main constituent found in most crude oil. Asphalt residues from petroleum refining, which are essentially free of light fractions, have the common name of asphalt.
Asfalti za izdelavo cestnih tlakov so razvrščeni kot asfaltno vezivo, razredčeni asfalt in asfaltna emulzija. V našem primeru je najpomembnejše asfaltno vezivo, čeprav so emulzije in razredčeni asfalt prav tako koristni za bodočnost.Road paving asphalt is classified as an asphalt binder, diluted asphalt and asphalt emulsion. In our case, the asphalt binder is the most important, although emulsions and diluted asphalt are also useful for the future.
Asfaltno vezivo je asfalt, ki ima lastnosti, ugodne za uporabo pri izgradnji cest ali prekrivanju streh in za nove produkte. Za gradnjo cest asfalt segrejejo, da postane prosto tekoč, zmešajo z agregatom, segretim približno do enake temperature (navadno od 121°C do 177°C), in nanesejo na pripravljeno površino, zbijajo in utijujejo, da nastane asfaltni beton. V dolgi zgodovini izdelave asfaltnih tlakov je mešanje vroče zmesi asfaltnega veziva in agregata ostal kot postopek, ki daje najugodnejše ravnotežje med ceno in kvaliteto.Asphalt binder is asphalt that has properties favorable for use in road construction or roofing and for new products. For road construction, the asphalt is heated to become free-flowing, mixed with an aggregate heated to approximately the same temperature (usually from 121 ° C to 177 ° C) and applied to the prepared surface, compacted and compressed to form asphalt concrete. In the long history of making asphalt pavements, mixing a hot mixture of asphalt binder and aggregate has remained a process that gives the best balance between price and quality.
Pri postopku mešanja vroče zmesi spravijo segreto tekoče asfaltno vezivo v stik s segretim agregatom, da dobijo prevlečeni agregat, pripravljen za nanašanje in zbijanje.In the hot mix process, the heated liquid asphalt binder is contacted with the heated aggregate to obtain a coated aggregate ready for application and compaction.
Asfaltna veziva, ki se uporabljajo za ceste, se razvrščajo v skladu s tremi parametri: viskoznostjo, viskoznostjo po staranju in penetracijo. Sistem razvrščanja, ki ga najpogosteje uporabljajo v ZDA, temelji na viskoznosti, izmerjeni v poazih pri 140°F (60°C) (AASHTO M-226) (AASHTO je oznaka za American Association of State Highway and Transportation Officials).Asphalt binders used for roads are classified according to three parameters: viscosity, viscosity after aging and penetration. The most commonly used grading system in the US is based on viscosity measured in pores at 140 ° F (60 ° C) (AASHTO M-226) (AASHTO is a designation for the American Association of State Highway and Transportation Officials).
V nadaljnjem tekstu so vse enote za viskoznost navedene v Pa.s, temperature pa v °C, kar je v skladu z enotami, kijih dopušča slovenska zakonodaja.Below, all viscosity units are listed in Pa.s and temperatures in ° C, which is in accordance with the units permitted by Slovenian law.
Tako ima asfaltno vezivo z viskoznostjo 25 Pa.s pri 60°C oznako AC-2,5 in se smatra kot mehki asfalt. Asfaltno vezivo, ki ima viskoznost 400 Pa.s pri 60°C pa je znano kot AC-40 in se smatra kot trdi asfalt. Vmesni asfalti pa so označeni kot: AC-5, AC-10, AC-20 in AC-30 in so v podobni zvezi s svojo viskoznostjo. Poleg tega se AC50 uporablja na nekaterih področjih s toplo klimo, AC-1 pa na takih s hladnejšo. Standardne vrste asfalta so razložene in tabelarno prikazane v Principles of Construction of Hot-Mix Asphalt Pavements, The Asphalt Institute, Manual ser. št. 22 (MS-22), Januar 1983, str. 14.Thus, an asphalt binder with a viscosity of 25 Pa.s at 60 ° C has the designation AC-2.5 and is considered as soft asphalt. An asphalt binder having a viscosity of 400 Pa.s at 60 ° C is known as AC-40 and is considered as hard asphalt. Intermediate asphalts, however, are designated as: AC-5, AC-10, AC-20 and AC-30 and are similar in relation to their viscosity. In addition, the AC50 is used in some areas with warmer climates, and the AC-1 in some areas with cooler ones. The standard types of asphalt are explained and tabulated in the Principles of Construction of Hot-Mix Asphalt Pavements, The Asphalt Institute, Manual ser. no. 22 (MS-22), January 1983, p. 14.
Nekatere zahodne države imajo sistem klasifikacije, ki temelji na viskoznosti po staranju. Namen tega sistema je, da prikaže točne karakteristike viskoznosti cestnih tlakov, potem ko jih nanesejo. Test simulira staranje asfalta s pospeševanjem oksidacije tanke plasti asfalta pri 60°C (AASHTO M-226). Iz rezultatov je razvidno, da se glede na AR-10 asfalt z viskoznostjo 100 Pa.s smatra za mehki in asfalt AR-160 z viskoznostjo 1600 Pa.s za trdi. Ta sistem klasifikacije je razložen v zgoraj navedeni publikaciji na 15. strani.Some Western countries have a classification system based on viscosity after aging. The purpose of this system is to display the exact viscosity characteristics of road pavements after they have been applied. The test simulates the aging of asphalt by accelerating the oxidation of a thin layer of asphalt at 60 ° C (AASHTO M-226). The results show that, with respect to AR-10, asphalt with a viscosity of 100 Pa.s is considered to be soft and AR-160 asphalt with a viscosity of 1600 Pa.s is considered to be hard. This classification system is explained in the above-mentioned publication on page 15.
Asfalte prav tako lahko klasificirajo s standardnim testom penetracije (AASHTO M-20). Pri teh testih označuje globina (distanca) penetracije standardne igle s specifično obremenitvijo v asfalt v danem času pri temperaturi 25°C trdoto ali mehkost asfalta. Ta test je razložen v zgoraj navedeni publikaciji na strani 16.Asphalt can also be classified by the standard penetration test (AASHTO M-20). In these tests, the penetration depth (distance) of a standard needle with a specific load on the asphalt at a given time at 25 ° C indicates the hardness or softness of the asphalt. This test is explained in the above publication on page 16.
Pri prekrivanju streh se asfaltno vezivo uporablja pri izdelavi večplastnih streh, skodlah in kot impregnacijsko sredstvo za strehe z valjanim asfaltom. Asfaltno vezivo, ki se uporablja pri večplastnih strehah, je klasificirano glede na točko zmehčišča v skladu z ASTM D313. (ASTM pomeni American Society for Testing Materials). Asfalt tipa I, ki ima nizko točko zmehčišča, smatrajo za mehki asfalt. Asfalt za prekrivanje streh tipa IV ima visoko točko zmehčišča in se smatra za trdi asfalt. Te in vmesne vrste temelje na občutljivosti asfalta, da teče pri navedenih temperaturah in nagibih streh. Večplastne strehe naredijo z valjanjem klobučevine, impregnirane z asfaltom, na katero nanesejo asfaltno vezivo. Ta postopek nekolikokrat ponovijo, da dobijo vodoodpomo večplastno streho.When covering roofs, the asphalt binder is used in the manufacture of multi-layer roofs, shingles and as an impregnating agent for rolled asphalt roofs. The asphalt binder used in multi-layer roofs is classified according to the softening point according to ASTM D313. (ASTM stands for American Society for Testing Materials). Type I asphalt having a low softening point is considered as soft asphalt. Type IV roof asphalt has a high softening point and is considered as hard asphalt. These and intermediate types are based on the sensitivity of the asphalt to flow at the indicated temperatures and gradients. Multilayered roofs are made by rolling asphalt impregnated felt onto which the asphalt binder is applied. Repeat this process several times to get a multi-ply roof.
Obstajajo tudi druge posebne uporabe asfaltnega veziva, kot npr.: za polnila za spoje in špranje, za reciklima sredstva, za izolacijo proti vodi in vlagi, pri čemer obstajajo različne zahteve glede na vrsto uporabe.There are other specific uses of asphalt binders, such as: for fillers for joints and cracks, for recycling agents, for insulation against water and moisture, with different requirements depending on the type of use.
Razredčen asfalt uporabljajo tam, kjer želijo, da se asfalt utekočini pri temperaturi, nižji od tiste, ki se normalno uporablja pri asfaltnem vezivu, ali brez emulgiranja (navedeno kasneje). Razredčene asfalte navadno nanašajo z razprševanjem. Navadno jih pripravljajo z raztapljanjem asfalta v raztopini na osnovi petroleja, kot je npr. nafta, kerozin ali kurilno olje. Pri nanašanjih, bodisi z razprševanjem ali pri nanosu hladne zmesi, uporabljajo razredčene asfalte, kar povzroča težave glede varnosti ljudi in okolja zaradi izhlapevanja topil v ozračje. V času energetske krize v 1970-tih letih je bila uporaba petrolejskih topil v te namene v nasprotju s takratnimi privzetimi konzervativnimi merili, kar ima za posledico znatno manjšo uporabo razredčenih asfaltov tudi še danes.Diluted asphalt is used where they want the asphalt to liquefy at a temperature lower than that normally used with the asphalt binder or without emulsifying (indicated later). Diluted asphalt is usually sprayed. They are usually prepared by dissolving asphalt in a petroleum-based solution such as e.g. petroleum, kerosene or fuel oil. Diluted asphalts are used in applications, either by spraying or by applying cold mixtures, which cause problems for human and environmental safety due to the evaporation of solvents into the atmosphere. At the time of the energy crisis of the 1970s, the use of petroleum solvents for these purposes was contrary to the default conservative criteria of the time, resulting in significantly less use of diluted asphalt even today.
Pri asfaltnih emulzijah navadno ne uporabljajo nobenih topil za pripravo, čeprav se razredčeni asfalt lahko uporabi kot asfaltna komponenta (to so navadno emulzije vode v olju). Ta asfaltni fluks preide v tekoče stanje s segrevanjem, kroglice asfalta se dispergirajo v vodi in meljejo s površinskim aktivnim sredstvom, da nastane stabilna emulzija tipa olje v vodi. Asfaltne emulzije so lahko različnih tipov, kot npr. anionske, kationske in neionske, odvisno od površinskoaktivnega sredstva, ki se uporablja za pripravo emulzije. Emulzije se uporabljajo za tesnjenje obstoječih cest z nanašanjem tanke plasti asfaltne emulzije na površino ceste, čemur sledi nanašanje agregata, da zagotovijo izolacijo ceste proti vodi. Asfaltne emulzije se lahko uporabljajo tako, da mešajo agregat na mestu cestnega temelja ali pa jih po postopku mešanja hladne zmesi zmešajo z agregatom v mešalnikih in nato z njimi tlakujejo cesto. Za emulzije navadno uporabijo postopek mešanja hladne zmesi; če uporabijo vročo zmes, pa so navadno potrebne nižje temperature v primerjavi z običajnimi postopki mešanja vroče zmesi.Asphalt emulsions usually do not use any preparation solvents, although diluted asphalt can be used as an asphalt component (these are usually water-in-oil emulsions). This asphalt flux enters the liquid state by heating, the asphalt beads are dispersed in water and ground with a surfactant to form a stable oil-in-water emulsion. Asphalt emulsions can be of different types, such as. anionic, cationic and nonionic, depending on the surfactant used to prepare the emulsion. Emulsions are used to seal existing roads by applying a thin layer of asphalt emulsion to the surface of the road, followed by application of the aggregate to ensure that the road is insulated against water. Asphalt emulsions can be used to mix the aggregate at the site of the road foundation, or by mixing the cold mixture with the aggregate in the mixers and then paving the road with them. For emulsions, they usually use a cold mixture mixing process; however, when using a hot mix, lower temperatures are usually required compared to conventional hot mix mixing processes.
Asfaltne emulzije se lahko uporabljajo v postopku mešanja vroče zmesi za izdelavo asfaltnega betona, zaradi svojstvenih proizvodnih težav pa je bolj prednostna uporaba asfaltnega veziva. Nekatere od teh težav, povezane z asfaltnimi emulzijami v postopku mešanja vroče zmesi, so razložene spodaj.Asphalt emulsions can be used in the mixing process of hot mix for the production of asphalt concrete, and due to the inherent production difficulties, the use of an asphalt binder is more preferred. Some of these problems associated with asphalt emulsions in the hot mix process are explained below.
V ciklični napravi za mešanje vroče zmesi spremljajo odvajanje vodne pare, sproščene pri segrevanju emulzije (normalna vsebnost okoli 30 mas.% vode), eksplozije, kjer se agregat segreje na relativno visoko temperaturo, kar povzroča težave glede varnosti ljudi in okolja. V kontinuimi napravi za mešanje vroče zmesi pa kratek čas mešanja včasih ne zadošča za odgovarjajoče sproščanje vode. V obeh proizvodnih postopkih mešanja vroče zmesi je potrebna znatna dodatna količina energije, da izpari voda, ki je vsebovana v emulziji. Emulzije tipa olje v vodi lahko zmrznejo, če jih hranijo na zadosti nizki temperaturi, posledica pa je prehiter razpad emulzije. Če se emulzija iz kakršnegakoli razloga pregreje, se voda lahko prehitro izgubi in emulzija se preoblikuje, kar povzroči resne težave pri obdelovanju, posledica pa so izgube pri uporabi produkta.In a cyclic hot mixer, they accompany the discharge of water vapor released by the emulsion heating (normal content of about 30% by weight of water), an explosion where the unit is heated to a relatively high temperature, causing problems for human and environmental safety. However, in a continuous hot mixer, a short stirring time is sometimes not sufficient for adequate water release. In both production processes of mixing the hot mixture, a significant additional amount of energy is required to evaporate the water contained in the emulsion. Oil-in-water type emulsions can freeze if stored at a sufficiently low temperature, resulting in premature decay of the emulsion. If the emulsion overheats for any reason, the water may be lost too quickly and the emulsion transformed, causing serious processing problems resulting in losses in product use.
S stališča kvalitete je najpomembnejše, da se odstrani voda čim hitreje in kolikor je mogoče popolno iz residualne emulzije, ki je vezana na agregat. Vodna faza emulzije neizbežno pripelje do visoke vsebnosti vode v asfaltnem betonu, na stopnjo izparevanja pa lahko vpliva okolica. Zaradi tega obstajajo negotovosti tako glede hitrosti kot tudi stopnje sušenja v fazi utrjevanja asfaltnega betona iz asfaltnih emulzij, skupaj z možnostmi za variiranje pomembnih lastnosti v katerikoli dani točki v postopku utrjevanja.From a quality standpoint, it is paramount to remove water as quickly as possible and as completely as possible from the residual emulsion bound to the aggregate. The aqueous phase of the emulsion inevitably leads to a high water content of asphalt concrete, and the evaporation rate can be affected by the surroundings. As a result, there are uncertainties regarding both the speed and the degree of drying in the curing phase of asphalt concrete from asphalt emulsions, along with the possibility of varying significant properties at any given point in the curing process.
Asfaltne emulzije, ki jih uporabljajo v postopku mešanja vroče zmesi, vključujejo anionske emulzije, ki se imenujejo visokotekočnostne emulzije. Priprava takih emulzij zahteva dolg ustaljen postopek, v katerem se in situ emulzija stabilizira z umiljenjem organskih kislin, ki so običajno prisotne kot talovo olje. Asfalt z izboljšanimi residualnimi lastnostmi proizvedejo po odstranitvi vode v postopku mešanja vroče zmesi.The asphalt emulsions used in the hot mix process include anionic emulsions, called high-liquid emulsions. The preparation of such emulsions requires a long established process in which the in-situ emulsion is stabilized by the saponification of organic acids, which are usually present as tall oil. Asphalt with improved residual properties is produced after removal of water in the hot mix process.
US patent št. 2,855,319 npr. opisuje emulzijo, v kateri talovo olje umilijo z natrijevim hidroksidom, da dobijo milo talovega olja, ki rabi kot emulgimo sredstvo, t.j., da dobijo izboljšane lastnosti emulzijskega ostanka utrjenega asfaltnega betona. US patent št. 3,904,428 podobno opisuje asfaltno emulzijo, v kateri npr. talovo olje, umiljeno z natrijevim hidroksidom, v prisotnosti znatne količine vode mešajo z asfaltnim vezivom v posebnem temperaturnem območju, da nastane viskozna masa, podobna gelu, ki vsebuje večjo količino asfalta, kot je navadno. Večja vsebnost asfalta ima manjšo tendenco za njegovo dreniranje iz vlažnega agregata in omogoča bolj popoln premaz.U.S. Pat. 2,855,319 e.g. describes an emulsion in which tallow oil is saponified with sodium hydroxide to obtain a soap of tallow oil which is used as an emulsifying agent, i.e., to obtain improved properties of the emulsion residue of hardened asphalt concrete. U.S. Pat. No. 3,904,428 similarly describes an asphalt emulsion in which e.g. Sodium hydroxide saponified oil is mixed in the presence of a significant amount of water with an asphalt binder in a specific temperature range to form a viscous gel-like mass containing more asphalt than usual. Higher asphalt content has a lesser tendency to drain it from a wet aggregate and allows a more complete coating.
US patent št. 4,422,084 opisuje postopke visokotekočnostne emulzije, v kateri talovo olje najprej zmešajo z asfaltom, predhodno obdelanim z različnimi modifikatoiji, ki vplivajo na lastnosti asfalta, ne pa na razpad emulzije. Prikazan je tudi postopek, v katerem emulgator, ki vsebuje npr. talovo olje, ki je reagiralo s kavstično sodo v vodni raztopini, zmešajo z asfaltom. Razmerje emulgatorskih komponent lahko variirajo z ozirom na različne sestave asfalta.U.S. Pat. No. 4,422,084 describes high-emulsion emulsion processes in which the tallow oil is first mixed with asphalt, pre-treated with various modifications that affect the properties of the asphalt, but not the decomposition of the emulsion. Also disclosed is a process in which an emulsifier containing e.g. The tallow oil, which reacted with caustic soda in aqueous solution, was mixed with asphalt. The ratio of emulsifier components can vary depending on the different compositions of the asphalt.
Publikacija Tali Oil Products Division of the Pulp Chemicals Associations, Tali Oil And Its Uses (F.W. Dodge Company, 1965), poudaija pomembnost površinskih aktivnih sredstev v emulziji, da nadomestijo vodo v agregatu in olajšajo vezavo asfaltnega veziva. V ta namen je opisana uporaba maščobnih kislin talovega olja kot emulgimih sredstev v tekočem asfaltu za uporabo na cestah.The publication of Tali Oil Products Division of Pulp Chemicals Associations, Tali Oil And Its Uses (F.W. Dodge Company, 1965), teaches the importance of surfactants in emulsion to replace water in the aggregate and facilitate asphalt binder bonding. To this end, the use of tallow fatty acids as emulsifying agents in liquid asphalt for road use is described.
Splošni pregled tlakovanj s postopki mešanja vroče in hladne zmesi je v Highway Engineering, Wright & Paquette, 4.izd., (John Wiley & Sons, 1979). Bolj aktualen pregled postopkov mešanja vroče zmesi je v Principles of Construction of Hot-Mix Asphalt Pavements, The Asphalt Institute, Manual ser. št. 22 (MS-22), januar 1983, za kar je bil napotek naveden že pred tem. Za pregled postopka mešanja hladne zmesi z uporabo asfaltne emulzije glej A Basic Asphalt Emulsion Manual, The Asphalt Institute, Manual ser. št. 19 (MS-19), marec 1979.A general overview of paving by mixing hot and cold mixtures is in Highway Engineering, Wright & Paquette, 4th ed. (John Wiley & Sons, 1979). For a more up-to-date overview of hot mix mixing processes, see Asphalt Pavements, The Asphalt Institute, Manual ser. no. 22 (MS-22), January 1983, for which reference was made earlier. For an overview of the process of mixing cold mixtures using an asphalt emulsion, see A Basic Asphalt Emulsion Manual, The Asphalt Institute, Manual ser. no. 19 (MS-19), March 1979.
Reakcija umiljenja se uporablja pri utrjevanju normalno tekočih ogljikovodikov, kot so npr. bencini, zaradi olajšanja varnega postopanja in uporabe. Tako npr. US patent št. 2,385,817 opisuje utrjevanje normalno tekočih ogljikovodikov s tvorbo in situ kovinskega mila, dobljenega z umiljenjem zmesi stearinske kisline in smole z natrijevim hidroksidom in majhno količino brezvodnega merilnega alkohola. Alkohol naj bi pospeševal reakcijo. 'Tekoči ogljikovodiki so bencini in drugi naftni destilati, ki so hitro vnetljivi in so namenjeni za uporabo kot goriva. Kot taki spadajo med lažje frakcije pri postopku rafiniranja nafte kot pa asfaltni ostanek. Podobno milne maščobe, ki sicer temeljijo na lažjih naftnih frakcijah, opisujejo, npr. Lockhart, American Lubricants (Chemical Publishing Company, 1927), str. 163 in US patent št. 3,098,823. Razvidno je, da je voda nezaželena sestavina v maščobah. Npr. v US patentu št. 2,394,907 pripravijo maščobo s suspendiranjem natrijevega hidroksida v nereaktivnem tekočem mediju, kot npr. mineralnem olju, v katerem natrijev hidroksid nato mešajo in umilijo maščobne kisline brez dodane vode. S segrevanjem zmesi do temperature umiljenja pa inicirajo reakcijo, ki proizvede neželeno vodo kot stranski produkt, ki jo je nato potrebno odstraniti.The saponification reaction is used to solidify normally liquid hydrocarbons such as e.g. petrol, to facilitate safe handling and use. So e.g. U.S. Pat. No. 2,385,817 describes the hardening of normally liquid hydrocarbons by the formation of in situ metal soap obtained by saponification of a mixture of stearic acid and a resin with sodium hydroxide and a small amount of anhydrous measuring alcohol. Alcohol is supposed to accelerate the reaction. 'Liquid hydrocarbons are gasoline and other petroleum distillates that are highly flammable and are intended for use as fuels. As such, they are lighter fractions in the oil refining process than asphalt residues. Similarly, soap fats, which are otherwise based on lighter petroleum fractions, describe, e.g. Lockhart, American Lubricants (Chemical Publishing Company, 1927), p. 163 and U.S. Pat. 3,098,823. It is shown that water is an unwanted ingredient in fats. E.g. in U.S. Pat. 2,394,907 prepare fat by suspending sodium hydroxide in a non-reactive liquid medium, such as e.g. a mineral oil in which sodium hydroxide is then mixed and soaped with fatty acids without added water. By heating the mixture to the saponification temperature, they initiate a reaction that produces unwanted water as a by-product, which must then be removed.
V US patentu št. 2,888,402 je opisana podobna reakcija, pri kateri uporabijo kovinski hidroksid, ki vsebuje hidratacijsko vodo, ki se sprosti pri segrevanju in za katero smatrajo, da inicira reakcijo umiljenja. Litijev hidroksid, katerega posebno smatrajo kot izvor vode, inicira prvo fazo umiljenja, ki ji sledi druga, v kateri uporabijo drugačen kovinski hidroksid.In U.S. Pat. No. 2,888,402 describes a similar reaction using a metal hydroxide containing hydrating water that is released by heating and is thought to initiate a saponification reaction. Lithium hydroxide, considered especially as a source of water, initiates the first saping phase, followed by the second, in which they use a different metal hydroxide.
Kljub dolgi zgodovini in široki uporabi maščob, v katerih se organski geli proizvedejo z umiljenjem in situ, pa v tehniki uporabe asfalta nikoli niso prevzeli in prilagodili tehnologije maščob, da bi dosegli bistvene koristi pri tvorbi gela v asfaltnih materialih. Uporabe asfalta za izgradnjo cest in streh ter posebne uporabe asfalta so ostale do predloženega izuma tehnološko zaostale glede postopkov za običajno asfaltno vezivo in v manjši meri glede postopkov za razredčeni asfalt in asfaltno emulzijo.Despite the long history and widespread use of fats in which organic gels are produced by in-situ saponification, the technology of asphalt has never been used to adopt and adapt the technology of fats to achieve the essential benefits of gel formation in asphalt materials. The use of asphalt for road and roof construction, and the specific use of asphalt, remained technologically backward to the present invention for conventional asphalt binder processes and, to a lesser extent, for diluted asphalt and asphalt emulsion processes.
Za izdelavo cestnih tlakov je potrebno asfaltno vezivo pazljivo izbrati, tako da se asfaltni beton ne zmehča pri višjih temperaturah ali razpoka pri nižjih. Potreba po taki izbiri je pripeljala do tega, da se uporabljajo mehkejše kvalitete asfalta v severnih oz. hladnejših klimatskih razmerah ter trše kvalitete asfalta v južnih oz. toplejših. Pri mnogih klimatskih razmerah so ceste izpostavljene ekstremnim visokim kot tudi nizkim temperaturam, kar je privedlo do kompromisa pri izbiri asfalta, brez neke posebne kvalitete, ki pa v popolnosti odgovarja celotnemu klimatskemu temperaturnemu območju.For the production of road pavements, the asphalt binder must be carefully selected so that asphalt concrete does not soften at higher temperatures or crack at lower ones. The need for such a choice has led to the use of softer asphalt qualities in the north and north. colder climates and harder asphalt qualities in the southern and warmer ones. In many climatic conditions, the roads are exposed to extreme high as well as low temperatures, which has led to a compromise in the selection of asphalt, without some special quality, which in its entirety corresponds to the entire climatic temperature range.
Zaradi tega je temperaturna občutljivost asfaltnega veziva pri uporabi asfaltnih betonov najbolj pomembna. Asfalt mora ostati strukturno integralen pri visokih temperaturah in ne sme postati trd in pokati pri nizkih. Te lastnosti morajo ohraniti asfaltni tlaki tudi med mnogimi ciklusi temperaturnih sprememb, zmrzovanjem inThis makes the temperature sensitivity of the asphalt binder the most important when using asphalt concrete. Asphalt must remain structurally integral at high temperatures and must not become stiff and crack at low temperatures. These properties must be maintained by asphalt pavements even during many cycles of temperature change, freezing and
Ί tajanjem ter med konstantnim spreminjanjem obtežbe. Čim nižji je naklon krivulje viskoznost/temperatura, narisane kot log-log viskoznosti, tem bolj ugodne so lastnosti temperaturne občutljivosti asfaltnega veziva.Ί by tilting and while constantly changing the load. The lower the slope of the viscosity / temperature curve, plotted as log-log viscosity, the more favorable are the temperature sensitivity characteristics of the asphalt binder.
Zaradi oksidacije pri podaljšani izpostavitvi vplivu okolja in prometa se asfaltna veziva z leti utrdijo. Doba utrjevanje je naslednja lastnost asfaltnega betona, ki zahteva pozornost. Čim nižji je naklon krivulje viskoznost/čas, narisane kot log-log viskoznosti, tem ugodnejše so lastnosti zaradi dobe utrjevanja asfalta.Due to oxidation during prolonged exposure to the environment and traffic, asphalt binders have hardened over the years. Age hardening is the next feature of asphalt concrete that requires attention. The lower the slope of the viscosity / time curve, plotted as log-log viscosity, the more favorable the properties are due to the asphalt hardening time.
Poleg tega je pomembno, da ima asfaltno vezivo, uporabljeno kot asfaltni beton, izredne trajnostne lastnosti, če je izpostavljeno normalnemu vremenu in staranju. Trajnost je kvaliteta odpornosti proti razpadanju v teku času pri danih vremenskih razmerah in prometu. Ponavljajoče zmrzovanje in tajanje kot tudi oksidacija vplivajo na proces staranja in predstavljajo faktorje, ki vplivajo na trajnost.In addition, it is important that the asphalt binder used as asphalt concrete has exceptional durability when exposed to normal weather and aging. Sustainability is the quality of resistance to decay over time under given weather conditions and traffic. Repeated freezing and thawing as well as oxidation affect the aging process and are factors that affect sustainability.
Jasno je, da bi glede na kvaliteto lahko dobili idealno asfaltno vezivo, če bi združili lastnosti najnižje kvalitete AC z nizko temperaturno krhkostjo in razpokanjem, brez izgub, z visoko temperaturnimi lastnostmi bolj viskozne višje kvalitete AC. Na žalost ima mešanje kvalitet AC v postopkih mešanja vroče asfaltne zmesi, tudi če je tehnično izvedljivo, neizbežno za posledico nezadovoljive kompromisne lastnosti. Npr. z mešanjem navedenih kvalitet asfaltov ne ohranimo v zmesi želene temperaturno odvisne viskoznosti vsake kvalitete; mešani produkt ima viskoznostne lastnosti, ki so nekje vmes med originalnimi vrednostmi.It is clear that, in terms of quality, an ideal asphalt binder could be obtained by combining the characteristics of the lowest quality AC with low temperature fragility and cracking, without loss, with the high temperature properties of the more viscous higher quality AC. Unfortunately, mixing AC qualities in blending hot asphalt mixtures, even if technically feasible, inevitably results in unsatisfactory compromise properties. E.g. by mixing these qualities of asphalt, we do not preserve the desired temperature-dependent viscosity of each quality in the mixture; mixed product has viscosity properties that are somewhere between the original values.
Podobno pride pri uporabi strešnih asfaltnih veziv za izdelavo streh tudi do premislekov glede temperaturne občutljivosti in dobe utrjevanja. Večplastne strehe iz asfaltnih materialov predstavljajo večino streh tako iz komercialnega kot tudi iz industrijskega stališča v ZDA. Izdelava večplastnih streh obsega izmenično postavljanje plasti asfalta in plošč, impregniranih z asfaltom, na katere asfalt nanesejo v vročem stanju kot strešno asfaltno vezivo.Similarly, when considering roof asphalt binders for roof construction, considerations regarding temperature sensitivity and curing time are also considered. Multilayered asphalt roofs represent the majority of roofs from both a commercial and industrial standpoint in the US. The construction of multilayered roofs involves alternating placement of asphalt layers and asphalt-impregnated slabs on which the asphalt is applied in the hot state as a roofing binder.
Posebne uporabe asfalta, kot npr. za reciklima sredstva, za zapolnitev spojev in razpok, za izolacije pred vodo in paro (ASTM D449), so tudi povezane s temperaturno občutljivostjo in dobo utrjevanja pri določanju končnih lastnosti produktov.Specific uses of asphalt, such as for recyclables, joints and cracks, for water and steam insulation (ASTM D449), they are also related to temperature sensitivity and cure time in determining the final product properties.
Zaradi tega je, med drugimi, prvi smoter predloženega izuma, da zagotovimo gelirano asfaltno vezivo z izboljšanimi lastnostmi, v primerjavi z običajnimi asfaltnimi vezivi, ki vključujejo zmanjšano temperaturno občutljivost in nižjo stopnjo dobe utrjevanja, in drugi smoter, da dobimo dobre rezultate z običajnim postopkom mešanja vroče asfaltne zmesi v dani napravi za vročo zmes, standardni napravi za uporabo na strehi in napravi za posebne uporabe asfalta.For this reason, it is, inter alia, the first purpose of the present invention to provide a gelled asphalt binder with improved properties compared to conventional asphalt binders which include reduced temperature sensitivity and a lower degree of cure time, and a second purpose to obtain good results by a conventional process of mixing hot asphalt mixture in a given hot mixer, standard rooftop and special asphalt mixer.
Kot že navedeno, predloženi izum zagotavlja novo, večnamensko asfaltno vezivo. Posebno zagotavlja asfaltno vezivo v geliranem stanju, proizvedeno z geliranjem utekočinjenega asfalta, ki je v bistvu brez vode.As stated above, the present invention provides a new multi-purpose asphalt binder. In particular, it provides an asphalt binder in a gelled state, produced by the gelation of liquefied asphalt, which is substantially free of water.
Predloženi izum nadalje zagotavlja postopek za pridobivanje geliranega večnamenskega asfaltnega veziva, ki obsega utekočinjenje v bistvu suhega asfaltnega materiala, umiljenje vsaj ene maščobne kisline in vsaj ene smolne kisline, z reakcijo z umiljivo količino v bistvu suhe baze alkalijske kovine, in odstranitev vode iz reakcije, da nastane večnamensko asfaltno vezivo v geliranem stanju.The present invention further provides a method of obtaining a gelled multipurpose asphalt binder comprising the liquefaction of substantially dry asphalt material, saponification of at least one fatty acid and at least one resin acid, by reaction with a saponifiable amount of substantially dry alkali metal base, and removal of water from the reaction to form a multi-purpose asphalt binder in a gel state.
Predloženi postopek obsega umiljenje v utekočinjenem asfaltu, ki je v bistvu brez vode, vsaj ene maščobne kisline in vsaj ene smolne kisline, z bazo alkalijske kovine ali z dodajanjem že umiljenega produkta k utekočinjenemu asfaltu. Nastalo gelirano asfaltno vezivo uporabimo v postopkih tlakovanja cest, za strehe in za posebne uporabe. Nadaljnje lastnosti in prednosti izuma so bolj razvidne iz opisa prednostnih izvedb izuma.The proposed process comprises saponification in substantially free of asphalt, at least one fatty acid and at least one resin acid, with an alkali metal base or by adding an already saponified product to the liquefied asphalt. The resulting gelled asphalt binder is used in road paving, roofing and special applications. Further features and advantages of the invention are more apparent from the description of preferred embodiments of the invention.
Običajno asfaltno vezivo ima pri povišanih temperaturah, uporabljenih v postopku mešanja vroče zmesi, reološke lastnosti tekočine. Asfalt ostane tekočina, sposobna tečenja, v skladu s svojo posebno zvezo viskoznost-temperatura med združevanjem z agregatom in njegovim nanašanjem kot asfaltni beton. V takem fizičnem stanju je občutljivost na odtekanje agregata odvisna od faktorjev, kot so temperatura, narava in površina agregata in velikost ter konfiguracija vrzeli.Typically, the asphalt binder has rheological properties of liquid at elevated temperatures used in the hot mix process. Asphalt remains a fluid capable of flowing in accordance with its special viscosity-temperature relationship between being combined with the aggregate and its application as asphalt concrete. In such a physical state, the susceptibility to runoff of an aggregate depends on factors such as temperature, nature and surface of the aggregate, and the size and configuration of the gaps.
Sedaj smo ugotovili, da asfalt lahko geliramo z direktnim umiljenjem, ki zahteva le zelo majhno količino (v sledovih) ionizirajoče tekočine, da nastane ionizirajoča cona v utekočinjenem asfaltu, v katerem se lahko prične umiljenje. Voda, ki nastane med reakcijo, zadostuje, da vzdržuje reakcijo v celotni zmesi, ki vsebuje asfalt in sestavine, nastale med umiljenjem. Vodo odstranimo kot del tega postopka.We have now found that asphalt can be gelled by direct saponification, which requires only a very small amount (in trace amounts) of ionizing fluid to form an ionizing zone in the liquefied asphalt, in which saponification can begin. The water generated during the reaction is sufficient to sustain the reaction throughout the mixture containing asphalt and constituents formed during saponification. Water is removed as part of this process.
Zaradi kvalitetnih prednosti geliranega večnamenskega asfalta, pripravljenega v smislu predloženega izuma, lahko izberemo asfalt nižje kvalitete AC (nižja viskoznost), da dobimo asfaltni beton z nizko temperaturnimi lastnosti takšne kvalitete, ki jih ima visokotemperatumi asfalt višje kvalitete (t.j. višja viskoznost). Dejansko ta asfaltna veziva dopuščajo bolj položno krivuljo viskoznost/temperatura, kot jo dobimo s katerokoli posamezno kvaliteto ali mešanimi kvalitetami. Podobno opazimo tudi izboljšane lastnosti glede dobe utrjevanja in bolj položno krivuljo viskoznost/čas.Due to the qualitative advantages of the gelled multi-purpose asphalt prepared according to the present invention, it is possible to select asphalt of lower quality AC (lower viscosity) to obtain asphalt concrete with low temperature properties of such quality as high-temperature asphalt of higher quality (i.e., higher viscosity). In fact, these asphalt binders allow a more flat viscosity / temperature curve than is obtained with any single quality or mixed quality. Similarly, we notice improved hardening properties and a more flat viscosity / time curve.
Izraz večnamenski asfalt, ki ga uporabljamo tukaj, je namenjen za opis novega geliranega asfaltnega veziva, ki ima zmanjšano temperaturno občutljivost in izboljšane lastnosti glede časa utrjevanja v primerjavi z običajnimi asfaltnimi vezivi. Večnamensko asfaltno vezivo naredimo z novim postopkom v bistvu brez vode, pri čemer je iz njegovih karakteristik razvidno, da ga lahko hranimo na temperaturi približno 104°C ali pri višji temperaturi, ne da bi nastajala pena. Prikladen je tako za mešanje z agregatom, da dobimo asfaltni beton z običajnim postopkom mešanja vroče zmesi, kot tudi za običajno izdelavo streh in za posebne uporabe.The term multifunctional asphalt as used herein is intended to describe a new gelled asphalt binder having reduced temperature sensitivity and improved curing time properties compared to conventional asphalt binders. The multifunctional asphalt binder is made with a new process essentially devoid of water, and its characteristics show that it can be stored at a temperature of about 104 ° C or at a higher temperature without foam. It is suitable for mixing with the aggregate to obtain asphalt concrete with the usual mixing process of hot mix, as well as for the usual roofing and for special applications.
V postopku v smislu predloženega izuma dobimo gelirano večnamensko asfaltno vezivo, ki je v bistvu brez vode, z geliranjem tekočega asfaltnega materiala, ki je v bistvu brez vode, z umiljenjem v njem vsebovane vsaj ene maščobne kisline in vsaj ene smolne kisline z reakcijo z bazo alkalne kovine v fino porazdeljeni, v bistvu suhi sipki obliki, čemur sledi odstranitev reakcijske vode iz dobljene zmesi. Voda, ki je normalno vezana na reakcijske sestavine, navadno zadostuje, da inicira reakcijo umiljenja, ne da bi povzročila povečanje hitrosti reakcije, da bi prišlo do neželenega penjenja reakcijske vode pri njenem izhajanju iz reakcijske zmesi.In the process of the present invention, a gel-free multipurpose asphalt binder which is substantially free of water is obtained by gelling a liquid asphalt material substantially free of water, by saponifying at least one fatty acid and at least one resinic acid by reaction with a base. alkali metals in a finely divided, substantially dry bulk form, followed by removal of the reaction water from the resulting mixture. Water normally bound to the reaction constituents is usually sufficient to initiate the saponification reaction without causing an increase in the reaction rate to cause unwanted foaming of the reaction water as it exits the reaction mixture.
Asfaltni material lahko dobimo iz različnih asfaltnih virov, kot so npr. prirodni asfalt, kamninski asfalt ah prednostno petrolejski asfalt, ki ga dobimo pri postopku rafinacije nafte. Asfalt lahko izberemo izmed tistih, klasificiranih po AASHTO in ASTM, ah pa je lahko zmes raznih asfaltov, ki niso definirani po določenih kvalitetah. Le-ti vključujejo z zrakom prepihani asfalt, vakuumsko destilirani asfalt, asfalt, destiliran s paro, razredčeni asfalt ali asfalt za oblaganje streh. Asfaltu lahko dodamo aditive, npr. za preprečevanje luščenja, ali polimere. Prednostno za večnamenski asfalt v smislu predloženega izuma uporabimo mehki asfalt kvalitete AC-5, če želimo asfalt za tlakovanje cest. Alternativno lahko izberemo naravni ali sintetični gilsonit, ki ga uporabimo samega ali zmešanega s petrolejskim asfaltom. Zmesi sintetičnih asfaltov, ki so primerne za uporabo v predloženem izumu, so opisane npr. v US patentu št. 4,437,896.Asphalt material can be obtained from a variety of asphalt sources such as e.g. natural asphalt, rock asphalt ah preferably petroleum asphalt obtained from the oil refining process. Asphalt can be selected from those classified according to AASHTO and ASTM, but it can also be a mixture of various asphalts that are not defined by certain qualities. These include air-blown asphalt, vacuum-distilled asphalt, steam-distilled asphalt, diluted asphalt, or asphalt for roofing. Additives can be added to the asphalt, e.g. to prevent peeling, or polymers. Preferably, the AC-5 quality soft asphalt is used for multi-purpose asphalt according to the present invention, if the asphalt is to be used for road paving. Alternatively, natural or synthetic guilsonite can be selected, used alone or mixed with petroleum asphalt. Mixtures of synthetic asphalt suitable for use in the present invention are described e.g. in U.S. Pat. No. 4,437,896.
Tekoči asfaltni material, ki vsebuje sestavine za umiljenje, spustimo skozi visokoobremenitveni koloidni mlin zaradi zmanjšanja velikosti delcev baze alkalijske kovine in zaradi dispergiranja komponent baze in organske kisline v utekočinjenem asfaltu, da omogočimo reakcijo umiljenja. Visokoobremenitveni mlin naj bi bil takega tipa, da se zmanjša velikost delcev baze pod 425 jum.Liquid asphalt material containing saponifying ingredients is passed through a high-load colloidal mill to reduce the particle size of the alkali metal base and to disperse the base and organic acid components in the liquefied asphalt to allow the saponification reaction. The high-load mill should be of a type that reduces the particle size of the base to below 425 µm.
Alternativno lahko gelirano asfaltno vezivo proizvedemo z dodajanjem predhodno pripravljenega mila tekočemu asfaltu. Ker je predhodno pripravljeno milo, ki je v bistvu brez reakcijske vode, relativno trdo, je prednostno, da ga zmeljemo ali stalimo pred dodajanjem k tekočem asfaltu. Izbira med in situ ali eksternim umiljenjem zahteva uravnoteženje nekaterih faktorjev. Čeprav z reakcijo in situ proizvedemo neželeno vodo v tekočem asfaltu, le-ta z lahkoto izpari pri danih delovnih temperaturah. Eksterna reakcija zahteva posebne faze in dodatno opremo za reakcijo, skladiščenje, mletje (kjer se produkt umiljenja ohrani kot trdno milo) in transport. S taljenjem mila uvedemo kritično fazo kontrole temperature in temperature, ki so na splošno večje od temperature tekočega asfalta. Zaradi tega je ugodnejše, da izvedemo reakcijo umiljenja in situ.Alternatively, a gelled asphalt binder can be produced by adding pre-prepared soap to liquid asphalt. Since pre-prepared soap, which is essentially reaction-free water, is relatively hard, it is preferable to grind or melt it before adding it to liquid asphalt. Choosing between in situ or external saponification requires balancing some factors. Although the in situ reaction produces unwanted water in liquid asphalt, it easily evaporates at the given operating temperatures. External reaction requires special phases and accessories for reaction, storage, grinding (where the saponification product is retained as solid soap) and transport. Soap melting introduces a critical phase of temperature control and temperatures generally higher than liquid asphalt temperatures. This makes it more advantageous to carry out the in situ saponification reaction.
Asfaltni material, ki je prednostno petrolejski asfalt, segrejemo, da dobimo prosto tekočo tekočino ali na nekoliko višjo temperaturo, da omogočimo izparevanje vode, ki nastane pri reakciji umiljenja. Delamo lahko pri temperaturah od 177°C do 232°C, pri čemer je prednostna temperatura 204°C.The asphalt material, which is preferably petroleum asphalt, is heated to obtain a free flowing liquid or to a slightly higher temperature to allow the evaporation of water resulting from the saponification reaction. It can be operated at temperatures from 177 ° C to 232 ° C, with a preferred temperature of 204 ° C.
Baza alkalijske kovine je lahko alkalijska kovina, oksid alkalijske kovine, hidroksid alkalijske kovine ali sol alkalijske kovine, kot npr. kovinski natrij, natrijev oksid, natrijev karbonat ali natrijev hidroksid ali ustrezne kalijeve ali litijeve spojine. Prednostno je, da je baza, ki jo dodajamo, v bistvu suha in v fino porazdeljeni sipki obliki.The alkali metal base may be an alkali metal, an alkali metal oxide, an alkali metal hydroxide, or an alkali metal salt, such as e.g. metallic sodium, sodium oxide, sodium carbonate or sodium hydroxide or the corresponding potassium or lithium compounds. Preferably, the base to be added is substantially dry and in a finely divided bulk form.
Organske kisline, ki se dajo umiliti (v namen tega izuma lahko obsegajo tudi svoje estre), so lahko ena ali več nasičenih ah nenasičenih maščobnih kislin z razvejenimi ali ravnimi verigami, ki vsebujejo od 12 do 24 atomov ogljika. Primeri takih kislin so: stearinska, oleinska, linolna, linolenska in organosulfonska kislina. Smolne kisline so lahko npr. abietinska, neoabietinska, dihidroksiabietinska, palustrinska ali izodekstropimama kislina ah njihove zmesi.The saponifiable organic acids (may also include their esters for the purposes of the present invention) may be one or more saturated or unsaturated, branched or straight chain fatty acids containing from 12 to 24 carbon atoms. Examples of such acids are: stearic, oleic, linoleic, linolenic and organosulfonic acid. The resin acids may be e.g. abietic, neo-abietinic, dihydroxyabietinic, palustrine or isodextropyme acids ah mixtures thereof.
Organske kisline se prednostno in ugodno dodajajo v obliki talovega olja. Talovo olje je tekoč smolast material, ki ga dobimo z razgradnjo lesne pulpe pri proizvodnji papirja. Komercialno talovo olje navadno obsega kompleks maščobnih kislin, prednostno kisline z 18 atomi ogljika, smolne kisline in komponente, ki se ne dajo umiliti, vključno sterol, višje alkohole, voske in ogljikovodike. Razmerje teh sestavin v talovem olju variira odvisno od številnih faktorjev, ki vključujejo geografsko lokacijo dreves, ki se uporabljajo za lesno pulpo. Prednostno je, da je vsebnost snovi, ki se ne dajo omiliti v talovem olju, manjša od 30% (ASTM D803). Razmerje maščobne kisline proti smolni mora biti med približno 0,7 in približno 2, prednostno približno 1:1. Ker uporabljamo surovo talovo olje, je prednostno, da uporabimo približno 2 mas.% asfalta za reakcijo z najmanj stehiometrijsko količino baze alkalijske kovine. Če izberemo rafinirano talovo olje ali posamezne maščobne kisline, ki ne izvirajo iz talovega olja ah, če so maščobne kisline mešane s smolnimi kislinami v sintetičnem talovem olju, potem morajo približno odgovarjati kislinskim komponentam surovega talovega olja. Na splošno je prednostna popolna nevtralizacija baze alkalijske kovine s talovim oljem, iz česar je razvidna približno ekvimolarna količina kisline in baze.The organic acids are preferably and advantageously added in the form of a tallow oil. Tall oil is a liquid resinous material obtained from the decomposition of wood pulp in paper production. Commercial tall oil typically comprises a complex of fatty acids, preferably acids with 18 carbon atoms, resin acids and non-absorbable components, including sterol, higher alcohols, waxes and hydrocarbons. The ratio of these constituents in tallow oil varies depending on many factors that include the geographical location of the trees used for the wood pulp. Preferably, the content of the non-attenuating substances in the tallow oil is less than 30% (ASTM D803). The ratio of fatty acid to resin should be between about 0.7 and about 2, preferably about 1: 1. As crude tall oil is used, it is preferable to use about 2% by weight of asphalt for reaction with at least a stoichiometric amount of alkali metal base. If refined tall oil or single fatty acids not derived from tall oil are selected ah, if the fatty acids are mixed with resin acids in synthetic tall oil, then they must roughly correspond to the acid components of the crude tall oil. In general, complete neutralization of the alkali metal base with the tallow oil is preferred, indicating an approximately equimolar amount of acid and base.
Za iniciranje reakcije umiljenja je potrebna prisotnost ekstremno majhne količine ionizirajočega medija, kot npr. vode. Normalno prisotna voda, kot vlaga na površini higroskopne baze, kot je v bistvu suhi natrijev reaktant, običajno zadostuje. Na podoben način je več kot primerna za iniciranje reakcije tudi voda, ki je normalno prisotna v komercialnem surovem talovem olju. Če pa izberemo bazo, ki ima vezano eno ali več molekul hidratacijske vode, kot npr. hidratiziran litijev hidroksid, potem toplota tekočega asfalta sprosti dovolj vode za iniciranje reakcije.The initiation of the saponification reaction requires the presence of an extremely small amount of ionizing medium, such as e.g. water. Normally present water, such as moisture on the surface of a hygroscopic base, such as a substantially dry sodium reactant, is usually sufficient. Similarly, water normally present in commercial crude oil is more than adequate to initiate the reaction. However, if a base is selected which has one or more hydration water molecules attached, such as e.g. hydrated lithium hydroxide, then the heat of the liquid asphalt releases enough water to initiate the reaction.
Če celotni reakcijski sistem ne vsebuje niti vode niti drugega ionizirajočega medija (npr. kadar uporabimo suho nehigroskopno bazo in rafinirano talovo olje brez vode), dodatek majhne količine vode v tekoči asfalt inicira reakcijo. Pomembno pa je, da jo dodamo v trenutku, v katerem se vgradi v tekoči asfalt, predno izpari. Zato običajno zadostuje, da jo vbrizgamo v vstopno odprtino mlina ali blizu le-te. Ugotovili smo, da je približno zadovoljiva količina vode manjša od 0,001 mas.%. V praksi reakcija umiljenja poteka s količinami vode, ki niso merljive s standardnimi tehnikami.If the entire reaction system contains neither water nor any other ionizing medium (eg when using a dry non-hygroscopic base and refined tallow oil without water), the addition of a small amount of water to the liquid asphalt initiates the reaction. However, it is important to add it to the moment it is installed in the liquid asphalt before it evaporates. Therefore, it is usually sufficient to inject it into or near the mill inlet. We found that approximately satisfactory water content was less than 0.001% by weight. In practice, the saponification reaction takes place with quantities of water that are not measurable by standard techniques.
Ne glede na izvor ionizirajočega medija, dobro mešanje, ki ga dosežemo v fazi mletja, navadno zadostuje za želeno porazdelitev, predno pride do izparevanja. Če se stvori reakcijska voda in je prisoten višek ionizirajočega medija, potem je želeno izparevanje, da dobimo v bistvu suho asfaltno vezivo.Regardless of the origin of the ionizing medium, the good mixing achieved during the grinding phase is usually sufficient for the desired distribution before evaporation occurs. If reaction water is formed and an excess of ionizing medium is present, then evaporation is desired to obtain a substantially dry asphalt binder.
Manjše količine alkohola, kot je metilni alkohol ali drugi nižji alifatski alkoholi, lahko podobno uporabimo kot sredstva za ioniziranje. Alkoholat, ki nastane z reakcijo s hidroksidom alkalne kovine, omogoča reakcijo umiljenja na enak način, pri čemer nastane med reakcijo voda. US patent št. 2,385,817 opisuje alkoholate za pospeševanje umiljenja tekočih ogljikovodikov, kot so bencini. Na splošno se je potrebno uporabi alkoholov izogniti zaradi dodatnega zapletanja postopka, ker je potrebno shranjevanje in manipuliranje še z eno sestavino.Smaller amounts of alcohol, such as methyl alcohol or other lower aliphatic alcohols, can similarly be used as ionizing agents. An alcoholate formed by the reaction with an alkali metal hydroxide enables the saponification reaction to be produced in the same way, resulting from the formation of water during the reaction. U.S. Pat. No. 2,385,817 describes alcohols for accelerating the saponification of liquid hydrocarbons such as gasoline. In general, the use of alcohols should be avoided because of the additional complexity of the process, since it is necessary to store and manipulate another ingredient.
Naslednji primeri ponazarjajo predloženi izum:The following examples illustrate the present invention:
PRIMER 1EXAMPLE 1
V segreto in izolirano posodo s koničnim dnom z volumnom 3,85 1 damo 1500 g asfaltnega veziva AC-20, predgretega na 232°C. Dno konusa je opremljeno z ventilom, da omogočimo asfaltu, da prehaja skozi koloidni mlin in se vrača na vrh posode. Medtem ko asfalt kroži skozi mlin, pa mu dodajamo 3,7 g natrijevega hidroksida v zrnih. Zrna so zaščitena pred vlago, da se izognemo neželeni vodi. Kroženje zmesi nadaljujemo približno 2 minuti, nato pa odvzete vzorce pasiramo skozi sito z oznako mesh 40 (425 μ,πι). Krožeči zmesi dodamo 30 g surovega talovega olja. Naslednja reakcija proizvede 1 mol vode za vsak mol organske kisline v surovem talovem olju, pri čemer se voda izgubi kot pena ob kontinuirnem segrevanju in mešanju. V nadaljevanju reakcije se viskoznost zmesi poveča. Mešanje nadaljujemo do prenehanja penjenja, iz česar je razvidno, da je reakcija končana v približno 15 minutah po dodatku talovega olja. Vzamemo vzorce za preizkus.1500 g of AC-20 asphalt binder, preheated to 232 ° C, are placed in a heated and insulated conical bottom vessel with a volume of 3.85 1. The bottom of the cone is fitted with a valve to allow the asphalt to pass through the colloid mill and return to the top of the container. While the asphalt is circulating through the mill, 3.7 g of sodium hydroxide is added to the grain. Grains are protected from moisture to avoid unwanted water. Continue circulating the mixture for about 2 minutes and then pass the samples through a mesh 40 (425 μ, πι) sieve. 30 g of crude tallow oil were added to the circulating mixture. The following reaction produces 1 mole of water for each mole of organic acid in crude tall oil, leaving the water as a foam under continuous heating and stirring. As the reaction proceeds, the viscosity of the mixture increases. Stirring was continued until foaming had ceased, indicating that the reaction was complete within about 15 minutes after the addition of the tallow oil. We take samples to test.
Rezultati različnih preizkusov so navedeni v tabeli 1 in na slikah 1-3 skupaj z rezultati, dobljenimi za vzorce asfaltnega veziva, predno smo jih izpostavili večnamenski obdelavi po zgoraj omenjenem postopku.The results of the various tests are listed in Table 1 and Figures 1-3, together with the results obtained for the asphalt binder samples, before being subjected to multifunctional treatment according to the above procedure.
PRIMER 2EXAMPLE 2
Delamo po postopku iz primera 1, le-da uporabimo asfaltno vezivo AC-5 namesto AC-20 iz primera 1. Fizikalne lastnosti nastalega asfaltnega veziva so navedene v tabeli 1 in slikah 1-3 v primerjavi z lastnostmi, dobljenimi s preizkušanjem istega asfaltnega veziva, predno smo ga izpostavili večnamenski obdelavi iz primera 1.We operate according to the procedure of Example 1, using the AC-5 asphalt binder instead of the AC-20 of Example 1. The physical properties of the resulting asphalt binder are listed in Table 1 and Figures 1-3 compared to the properties obtained by testing the same asphalt binder , before being exposed to the multifunctional treatment of Example 1.
PRIMER 3EXAMPLE 3
Delamo po postopku iz primera 1, le-da uporabimo asfaltno vezivo AC-10 namesto AC-20 iz primera 1. Fizikalne lastnosti nastalega asfaltnega veziva so navedene v tabeli 1 in slikah 1-3 v primerjavi z lastnostmi, dobljenimi s preizkušanjem istega asfaltnega veziva, predno smo ga izpostavili večnamenski obdelavi iz primera 1.We operate according to the procedure of Example 1, using the AC-10 asphalt binder instead of the AC-20 of Example 1. The physical properties of the resulting asphalt binder are listed in Table 1 and Figures 1-3 compared to the properties obtained by testing the same asphalt binder , before being exposed to the multifunctional treatment of Example 1.
Večnamenski gelirani asfalti so opisani v tabeli 1 in na slikah 1-3, tako glede na običajno asfaltno kvaliteto kot tudi glede na ekvivalentno kvaliteto, izraženo z viskoznostjo pri 60°C, v katero se te kvalitete pretvorijo z večnamensko obdelavo. Npr. MG-5-20 označuje večnamenski asfalt, narejen iz asfalta AC-5, ki ima viskoznostne lastnosti AC-20 pri 60°C.Multifunctional gelled asphalts are described in Table 1 and Figures 1-3, both in terms of normal asphalt quality and equivalent quality, expressed by a viscosity at 60 ° C, into which these qualities are converted by multifunctional treatment. E.g. MG-5-20 stands for multi-purpose asphalt made of AC-5 asphalt, having a viscosity of AC-20 at 60 ° C.
TABELA 1TABLE 1
Pred obdelavo Po večnamenski obdelaviBefore processing After multi-purpose processing
Viskoznost po valjanju TFOTViscosity after TFOT rolling
Indeks staranjaAging index
890,0890,0
2,542.54
439,0 210,0 111,0 530,0 431,0 380,0439.0 210.0 111.0 530.0 431.0 380.0
2,41 2,31 2,09 1,34 1,45 1,732.41 2.31 2.09 1.34 1.45 1.73
Rezultati, prikazani v tabeli 1, omogočajo direktno primerjanje različnih lastnosti navedenih vrst asfaltnih veziv pred večnamensko obdelavo (kar predstavlja običajno vročo zmes asfaltnega veziva) in po njej. Preizkusi vključujejo dva postopka, ki se veliko uporabljata za določanje temperaturne občutljivosti asfalta.The results shown in Table 1 allow a direct comparison of the different properties of these types of asphalt binders before multifunctional treatment (which is a typical hot mix of asphalt binders) and after. The tests involve two procedures, which are widely used to determine the temperature sensitivity of asphalt.
Prvi postopek je indeks penetracije (Pl), ki so ga razvili Pfeiffer & VanDoormal, naveden v Journal of Institute of Petroleum Technologists 12; 414 (1936). V tem postopku je vrednost 0 prevzeta za tipične cestne bitumne. Vrednosti, večje od 0, so za manj temperaturno občutljiva in vrednosti, manjše od 0, so za bolj temperaturno občutljiva asfaltna veziva . Iz tabele 1 je razvidno, da se Pl v bistvu izboljša z večnamensko obdelavo pri vseh preizkušenih asfaltnih kvalitetah.The first procedure is the penetration index (Pl) developed by Pfeiffer & VanDoormal, cited in Journal of the Institute of Petroleum Technologists 12; 414 (1936). In this procedure, the value 0 is assumed for typical road bitumen. Values greater than 0 are less temperature sensitive and values less than 0 are more temperature sensitive asphalt binders. Table 1 shows that Pl essentially improves with multifunctional treatment on all asphalt qualities tested.
Drugi postopek je število Pen-viskoznosti (PVN), ki ga je razvil McLeod, naveden v Proceedings of Asphalt Paving Technologists 41:424 (1972). PVN uporablja visoko temperaturno viskoznost asfalta kot tudi penetracijo v primerjavi z indeksi PVN dobrih in slabih asfaltov. Vrednosti, večje od 0, označujejo asfalte, manj občutljive za temperaturo kot vrednosti manjše od 0. Iz tabele 1 je razvidno, da so vsi preizkušeni asfalti na podoben način izboljšani, glede na temperaturno občutljivost, z večnamensko obdelavo.The second procedure is the Pen-Viscosity (PVN) number developed by McLeod, cited in Proceedings of Asphalt Paving Technologists 41: 424 (1972). PVN uses high temperature viscosity of asphalt as well as penetration compared to the PVN indices of good and bad asphalt. Values greater than 0 indicate asphalt less sensitive to temperature than less than 0. Table 1 shows that all tested asphalts are similarly improved in terms of temperature sensitivity by multi-purpose treatment.
Iz slike 1 je razvidna zveza med penetracijo, ki je merilo viskoznosti, in temperaturo. Večnamenski asfalti dajo bolj položno krivuljo, iz česar je razvidna nižja temperaturna občutljivost.Figure 1 shows the relationship between penetration, which is a measure of viscosity, and temperature. Multi-purpose asphalts give a more gentle curve, resulting in lower temperature sensitivity.
Podobno je iz slike 2 razviden grafičen prikaz bolj blagega nagiba krivulje viskoznost/temperatura za asfalte, izboljšane z večnamenskim postopkom. Vsi večnamensko obdelani asfalti imajo bolj blag nagib krivulje, iz česar je razvidna manjša temperaturna občutljivost, kot običajni neobdelani asfalti.Similarly, Figure 2 shows a graphical representation of a milder slope of the viscosity / temperature curve for asphalt improved with a multi-purpose process. All multi-purpose treated asphalts have a gentler slope of the curve, resulting in lower temperature sensitivity than conventional untreated asphalts.
Iz tabele 1 so tudi razvidni učinki postopka v smislu predloženega izuma na utrjevanja asfaltov s staranjem. Za označitev hitrosti utrjevanja asfaltov s staranjem smo uporabili ASTM D1754 Test Method for Effect of Healt and Air on AsphalticTable 1 also shows the effects of the process of the present invention on asphalt hardening with aging. ASTM D1754 Test Method for Effect of Healt and Air on Asphaltic was used to indicate the speed of curing of asphalt with aging
Materials (TFOT). Prav tako je prikazana hitrost utrjevanja s staranjem, ki jo dobimo tako, da delimo viskoznost asfalta po TFOT z viskoznostjo pred TFOT. To razmerje viskoznosti po toplotni obdelavi tanke plasti v primerjavi z viskoznostjo pred njo imenujemo indeks staranja. Iz tabele 1 je razvidna bistvena izboljšanost asfalta po večnamenski obdelavi tako glede TFOT kot tudi indeksa staranja.Materials (TFOT). The aging rate obtained by dividing the viscosity of the asphalt after TFOT by the viscosity before TFOT is also shown. This viscosity ratio after the heat treatment of the thin layer compared to the viscosity before it is called the aging index. Table 1 shows the significant improvement in asphalt after multi-purpose treatment in terms of both TFOT and aging index.
Preizkus toplotne obdelave tanke plasti smo podaljšali, da bi prikazali dolgotrajni učinek staranja tankih plasti asfalta pri povečanju časa staranja od 5 ur na 15. Iz tabele 1 je razvidno, da je hitrost utrjevanja asfalta s staranjem bistveno znižana z obdelavo, opisano v primerih.The thin-layer heat treatment test was extended to show the long-lasting effect of thin-layer asphalt aging on increasing the aging time from 5 hours to 15. Table 1 shows that the aging speed of the asphalt is significantly reduced by the treatment described in the examples.
Slika 3 prikazuje diagram spremembe viskoznosti kot funkcije časa utijevanja s staranjem s testiranjem toplotne obdelave tanke plasti. Razvidno je, da z večnamenskimi asfalti dobimo bolj blage naklone krivulj viskoznost/TFOT, iz česar je razvidna manjša hitrost utrjevanja s staranjem kot za običajne asfalte.Figure 3 shows a diagram of the viscosity change as a function of aging time with aging by testing the heat treatment of the thin layer. It is evident that multi-purpose asphalts produce milder slopes of the viscosity / TFOT curves, which results in a slower aging rate than for conventional asphalts.
Poudariti je treba, da normalni postopki za merjenje viskoznosti asfaltnih veziv, kot npr. ASTM D2170 in ASTM D2171, niso uporabni za večnamenske asfalte, ker asfalt ni ne-njutnovske narave. Zaradi ne-njutnovskih lastnosti je prednosten naslednji: ASTM P-160 (1984) Viscocity of Asphalt Emulsion Residues and Non-Newtonian Bitumens z uporabo vakuumskega kapilarnega viskozimetra. Rezultati različnih preizkusov so prikazani v tabeli 1 skupno z rezultati, dobljenimi pri vzorcih asfalta, predno smo jih izpostavili večnamenski obdelavi po zgoraj opisanih postopkih.It should be emphasized that normal procedures for measuring the viscosity of asphalt binders, such as e.g. ASTM D2170 and ASTM D2171 are not usable for multi-purpose asphalt because asphalt is not non-Newtonian in nature. Due to non-Newtonian properties, the following are preferred: ASTM P-160 (1984) Viscocity of Asphalt Emulsion Residues and Non-Newtonian Bitumens using a Vacuum Capillary Viscometer. The results of the various tests are shown in Table 1 together with the results obtained with the asphalt samples before being subjected to multifunctional treatment according to the procedures described above.
Iz predhodnih primeijalnih preizkusov je razvidno, da večnamenska obdelava znatno in prednostno vpliva na kvaliteto penetracije, viskoznosti in viskoznosti po TFOT staranju po 5 in 15 urah. Tako je npr. viskoznost asfalta AC-5 pred obdelavo 53 Pa.s pri 60°C. Večnamenska obdelava le-tega asfalta ima za posledico povečanje viskoznosti na 220 Pa.s, kar zadovoljuje zahteve viskoznosti po AASHTO M-226 za asfalt AC-20. Podobno so se tudi kvalitete utijevanja s staranjem za vse asfalte opazno izboljšale z večnamensko obdelavo.Prior priming tests show that multifunctional treatment significantly and preferably affects the penetration, viscosity and viscosity quality after TFOT aging after 5 and 15 hours. Thus, e.g. viscosity of AC-5 asphalt before treatment of 53 Pa.s at 60 ° C. Multipurpose treatment of this asphalt results in an increase in viscosity to 220 Pa.s, which meets the viscosity requirements of AASHTO M-226 for AC-20 asphalt. Similarly, the aging properties of all asphalt paving have been significantly improved by multi-purpose machining.
PRIMER 4EXAMPLE 4
Delamo po postopku iz primera 1, le-da uporabimo 1500 g AC-10 namesto asfaltnega veziva iz primera 1 in 5,25 g brezvodnega kalijevega hidroksida namesto natrijevega hidroksida iz primera 1. Rezultati preizkusa so prikazani v tabeli 2.We operate according to the procedure of Example 1, using 1500 g of AC-10 instead of the asphalt binder of Example 1 and 5.25 g of anhydrous potassium hydroxide instead of the sodium hydroxide of Example 1. The test results are shown in Table 2.
PRIMER 5EXAMPLE 5
Delamo po postopku iz primera 4, le-da uporabimo 2,24 g brezvodnega litijevega hidroksida namesto kalijevega hidroksida iz primera 4. Rezultati preizkusa so prikazani v tabeli 2.We operate according to the procedure of Example 4, using 2.24 g of anhydrous lithium hydroxide instead of potassium hydroxide of Example 4. The test results are shown in Table 2.
PRIMER 6EXAMPLE 6
Delamo po postopku iz primera 4, le-da uporabimo 4,5 g brezvodnega natrijevega karbonata namesto kalijevega hidroksida iz primera 4. Rezultati preizkusa so prikazani v tabeli 2.We operate according to the procedure of Example 4, using 4.5 g of anhydrous sodium carbonate instead of potassium hydroxide of Example 4. The test results are shown in Table 2.
TABELA 2TABLE 2
Iz tabele 2 je razvidno, da so vsa asfaltna veziva v bistvu izboljšana glede temperaturne občutljivosti, ki temelji na indeksu penetracije in indeksu dolgotrajnega staranja v primerjavi s kontrolnim AC-10, uporabljenim kot osnovni asfalt.Table 2 shows that all asphalt binders are substantially improved in terms of temperature sensitivity based on penetration index and long-term aging index compared to the control AC-10 used as base asphalt.
PRIMER 7EXAMPLE 7
Delamo po postopku iz primera 4, le-da uporabimo 2,2 g kovinskega natrija namesto kalijevega hidroksida iz primera 4. Opazimo manj pene. Rezultati preizkusa so prikazani v tabeli 3.We operate according to the procedure of Example 4, using 2.2 g of metallic sodium instead of the potassium hydroxide of Example 4. Less foam is observed. The results of the experiment are shown in Table 3.
PRIMER 8EXAMPLE 8
Delamo po postopku iz primera 4, pri čemer surovo talovo olje najprej dodamo k asfaltnemu vezivu, čemur sledi mešanje ob dodatku zrn kalijevega hidroksida v koloidnem mlinu. Rezultati preizkusa so prikazani v tabeli 3.We work according to the procedure of Example 4, whereby the crude tallow oil is first added to the asphalt binder, followed by mixing with the addition of potassium hydroxide grains in the colloidal mill. The results of the experiment are shown in Table 3.
Iz tega primera je razvidno, da obratni vrstni red dodajanja kemikalij nima bistvenega vpliva na lastnosti večnamensko obdelanega asfalta.This example shows that the reverse order of chemical addition does not have a significant effect on the properties of multi-purpose treated asphalt.
PRIMER 9EXAMPLE 9
V posodo iz primera 1 damo med temeljitim mešanjem 500 g surovega talovega olja, segretega na 149°C, nato pa 62,5 g zm natrijevega hidroksida. Iz nastale zmesi odvzamemo 33,75 g in dodamo k 1500 g asfalta AC-10, ki ga vzdržujemo pri 204°C. Nastalo zmes spustimo skozi koloidni mlin. Večnamenski produkt preizkusimo, kot je navedeno pred tem, rezultati pa so navedeni v tabeli 3.In the vessel of Example 1, 500 g of crude tallow oil heated to 149 ° C was then stirred thoroughly, followed by 62.5 g of sodium hydroxide. 33.75 g is removed from the resulting mixture and 1500 g of AC-10 asphalt maintained at 204 ° C is added to it. The resulting mixture is passed through a colloidal mill. The multifunctional product is tested as previously stated and the results are shown in Table 3.
TABELA 3TABLE 3
Zgornji rezultati prikazujejo fizikalne lastnosti, ki jih dobimo pri produktih iz večnamenskega asfalta iz primerov 7-9. Iz rezultatov je razvidna bistvena izboljšanost temperaturne občutljivosti in utijevanja s staranjem večnamenskega asfaltnega veziva, če ga primerjamo s kontrolnim AC-10, ne glede na vrsti red dodajanja ses20 tavin.The above results show the physical properties obtained with the multi-purpose asphalt products of Examples 7-9. The results show a significant improvement in temperature sensitivity and maturation with the aging of the multifunctional asphalt binder, when compared with the control AC-10, regardless of the order of addition of ses20 mats.
PRIMER 10EXAMPLE 10
Preizkuse izvedemo zato, da prikažemo občutljivost asfaltnih emulzijskih preostankov, ki vsebujejo visokotekočnostne preostanke, glede na vlago, preostalo v zmesi. Izprani apnenec ASTM št. 8 premažemo s 4 mas.% večnamenskega asfaltnega veziva, izdelanega iz asfalta AC-5 (pri čemer dobimo MG5-20 asfaltno vezivo) in primerjamo s podobno pripravljenim običajnim asfaltom AC-20 (ASSHTO M-226). HFMS-2h asfaltno emulzijo (ASSHTO M-140) prav tako zmešamo z agregatom z dodajanjem 5,7 mas.% emulzije, da proizvedemo 4 mas.% zmesi residualnega asfalta. Vsako šaržo asfaltnega veziva mešamo 90 sekund z agregatom pri 149°C. Agregat segrejemo približno 38°C više s HFMS-2h asfaltno emulzijo, da odstranimo vodo. Končna temperatura zmesi v vseh primerih je 135°C.The tests are performed to show the sensitivity of asphalt emulsion residues containing high-liquid residues with respect to the moisture remaining in the mixture. The washed limestone ASTM no. 8 is coated with 4% by weight multifunctional asphalt binder made of AC-5 asphalt (yielding MG5-20 asphalt binder) and compared with similarly prepared conventional AC-20 asphalt (ASSHTO M-226). The HFMS-2h asphalt emulsion (ASSHTO M-140) is also mixed with the aggregate by adding 5.7% by weight of the emulsion to produce 4% by weight of the residual asphalt mixture. Each batch of asphalt binder is mixed for 90 seconds with the aggregate at 149 ° C. The unit is heated approximately 38 ° C more with HFMS-2h asphalt emulsion to remove water. The final temperature of the mixture in all cases is 135 ° C.
Približno 300 g vsake zmesi damo v peč pri 149°C na sito št. 4 s premerom 20,32 cm. Pod vsako sito damo posodo, da prestrežemo presejani asfalt. Rezultati so naslednji:Approximately 300 g of each mixture was placed in an oven at 149 ° C on a sieve no. 4 with a diameter of 20,32 cm. Put a container under each sieve to intercept the sifted asphalt. The results are as follows:
MG 5-20 AC-20 HFMS-2hMG 5-20 AC-20 HFMS-2h
Grami asfalta v posodi 0 9,9 1,3Grams of asphalt in a container 0 9,9 1,3
Ti preizkusi ponazarjajo odpornost večnamenskega asfalta za migracijo iz agregata v primerjavi z običajnim asfaltnim vezivom AC-20 in visokotekočnostnim srednje strdljivim preostankom asfaltne emulzije. Posebna lastnost visokotekočnostnih ostankov je, da omogočijo nižjo migracijo asfalta v vročih zmeseh. Iz teh testov je razvidno, da to točno velja za AC-20; večnamenski asfalt pa je odločno superioren v tem, v primerjavi s HFMS emulzijskimi preostanki.These tests illustrate the resistance of multifunctional asphalt to migration from the aggregate compared to the conventional AC-20 asphalt binder and high-strength medium-hardened asphalt emulsion residue. A special feature of high-liquid residues is that they allow the lower migration of asphalt in hot mixes. These tests show that this is true of the AC-20; multi-purpose asphalt, however, is decidedly superior in that compared to HFMS emulsion residues.
PRIMER 11EXAMPLE 11
Lastnosti zmesi iz primera 10 izmerimo v širokem temperaturnem območju. Namen teh preizkusov je, da določimo, če bi izboljšave večnamenskih asfaltnih veziv lahko izboljšale tudi lastnosti asfaltnih agregatnih zmesi (primarna končna uporaba materiala).The properties of the mixture of Example 10 were measured over a wide temperature range. The purpose of these tests is to determine if improvements to multi-purpose asphalt binders could also improve the properties of asphalt aggregates (primary end use of the material).
Enak asfalt, kot je uporabljen pri preučevanju dreniranja iz primera 10, uporabimo v asfaltni agregatni zmesi za preučevanje v tem primeru. Agregat ASTM št. 5, agregat št. 8 in pesek fine kvalitete zmešamo, da dobimo 19 mm (3/4”) kompaktno zmes (ASTM D-3515). Agregat in asfalt segrejemo na 149°C pred mešanjem, le-da HFMS-2h zmešamo z agregatom pri 204°C in HFMS-2h pri 25°C v 90 sekundah. Vsaka kombinirana zmes ima 4,5 mas.% asfalta. Vsako zmes zbijemo s 75 udarci v skladu z zbijanjem po Marshallu in v skladu z ASTM D-1559. Naredimo štiri zmesi z vsakim asfaltom in testiramo pri štirih temperaturah: 60°C, 38°C, 25°C in 4,5°C. To temperaturno območje predstavlja široko območje temperatur, ki pridejo dejansko v poštev pri tlakovanju. Trdoto izmerimo na aparaturah Marshalla in Hveema v skladu z ASTM D-1559 in ASTM D-1560. Rezultati so prikazani v tabeli 4.The same asphalt as used in the study of drainage from Example 10 is used in the asphalt aggregate mixture to be studied in this case. ASTM unit no. 5, aggregate no. 8 and fine sand are mixed to form a 19 mm (3/4 ”) compact mixture (ASTM D-3515). The aggregate and asphalt were heated to 149 ° C before mixing, with HFMS-2h mixed with the aggregate at 204 ° C and HFMS-2h at 25 ° C for 90 seconds. Each combined mixture has 4.5% by weight of asphalt. Combine each mixture with 75 strokes according to Marshall compaction and according to ASTM D-1559. Four mixtures are made with each asphalt and tested at four temperatures: 60 ° C, 38 ° C, 25 ° C and 4.5 ° C. This temperature range represents a wide range of temperatures that are actually relevant for paving. The hardness is measured on the Marshall and Hveem apparatus in accordance with ASTM D-1559 and ASTM D-1560. The results are shown in Table 4.
TABELA 4TABLE 4
Iz teh rezultatov je razvidno, da se trdota (t.j. stabilnost) asfaltnega betona, narejenega iz večnamenskega asfaltnega veziva, ni povečala toliko kot iz običajnega asfaltnega veziva.These results show that the hardness (i.e., stability) of asphalt concrete made from multi-purpose asphalt binder did not increase as much as from conventional asphalt binder.
Iz rezultatov je tudi razvidno, da ima emulzijska zmes (HFMS-2h) prenizko stabilnost pri visokih temperaturah, kar lahko pripisujemo nepopolni vezavi (t.j. prisotnosti residualne vlage).The results also show that the emulsion mixture (HFMS-2h) has too little stability at high temperatures, which can be attributed to incomplete binding (i.e., the presence of residual moisture).
V primerih 12-14 smo izvedli preizkuse, da bi prikazali majhno količino vode, potrebno, da iniciira reakcijo umiljenja v postopku za izdelavo večnamenskega asfaltnega veziva.In Examples 12-14, tests were performed to show the small amount of water required to initiate the saponification reaction in a process for making a multipurpose asphalt binder.
PRIMER 12EXAMPLE 12
1500 g asfalta AC-10 segrejemo na 204°C in damo v enako posodo, kot smo jo uporabili v primeru 1. Natrijev hidroksid 3,75 g predhodno segrejemo do suhega, stalimo in dodamo k asfaltu in mešamo 1 minuto. Talovo olje segrevamo pri 135°C 2 uri, da se popolnoma posuši. 30 g posušenega talovega olja dodamo k zmesi asfalta in kavstične sode in meljemo 15 minut. Rezultati preizkusa so navedeni v tabeli 5.Heat 1500 grams of AC-10 asphalt to 204 ° C and place in the same container as used in Example 1. Sodium hydroxide 3.75 g was pre-warmed to dryness, melted and added to the asphalt and stirred for 1 minute. The tall oil was heated at 135 ° C for 2 hours to dry completely. 30 g of dried tallow oil was added to the mixture of asphalt and caustic soda and milled for 15 minutes. The test results are listed in Table 5.
PRIMER 13EXAMPLE 13
Delamo po postopku iz primera 12, le da uporabimo 2,2 g kovinskega natrija namesto natrijevega hidroksida. Rezultati preizkusa so prikazani v tabeli 5.We operate according to the procedure of Example 12, except that 2.2 g of metallic sodium is used instead of sodium hydroxide. The test results are shown in Table 5.
PRIMER 14EXAMPLE 14
Delamo po postopku iz primera 13 in dodamo 0,015 g vode k talovemu olju in mešamo, predno dodamo k asfaltu.Work according to the procedure of Example 13 and add 0.015 g of water to the tallow oil and stir before adding to the asphalt.
TABELA 5TABLE 5
Penetracija pri 4’C, 200 g, 60 s, dmmPenetration at 4'C, 200 g, 60 s, dmm
Penetracija pri 25’C, 100 g, 5 s, dmmPenetration at 25'C, 100 g, 5 s, dmm
Viskoznost pri 60’C, s1, Pa.sViscosity at 60'C, s 1 , Pa.s
Točka zmehčišča, ’CThe softening point, 'C
Primer 12 (suho)Example 12 (dry)
Primer 13 (suho)Example 13 (dry)
111111
Primer 14 (voda)Example 14 (water)
Indeks penetracije (Pl)Penetration Index (Pl)
Viskoznost po 5 h (TFOT), Pa.sViscosity after 5 h (TFOT), Pa.s
Indeks staranjaAging index
Viskoznost po 15 h (TFOT), Pa.sViscosity after 15 h (TFOT), Pa.s
Indeks staranjaAging index
307.5 +4,3307.5 +4,3
425,00425,00
1,381.38
497.5497.5
1,621.62
920,0920,0
47,5 +0,747.5 +0.7
178,5178,5
1,921.92
682,0682,0
7,417.41
275,0 +3,8275,0 +3,8
401,0401,0
1,451.45
679,5679,5
2,472.47
Iz rezultatov je razvidno, da pri reakcijah umiljenja, ki potekajo v primerih 12 in 14, dobimo primerljive lastnosti za asfaltno vezivo. Pri reakciji v primeru 12 so bili ti reaktanti posebno suhi. Kljub temu pa je bilo v sistemu dovolj vlage (pod možnostjo laboratorijske meritve) za iniciranje reakcije.The results show that the saponification reactions occurring in Examples 12 and 14 give comparable properties to the asphalt binder. In the reaction in Example 12, these reactants were particularly dry. Nevertheless, there was sufficient moisture (under laboratory measurement) in the system to initiate the reaction.
V primeru 13 ni prišlo do reakcije, kljub temu da smo uporabili enak postopek za sušenje talovega olja. Tukaj je bil kovinski natrij uporabljen namesto suhega stal24 jenega natrijevega hidroksida iz primera 12.In Example 13, no reaction occurred, although the same procedure was used to dry the tallow oil. Here, metal sodium was used in place of the dry molten sodium hydroxide of Example 12.
Z uporabo kovinskega natrija in kovinskega talovega olja in tudi ob dodatku majhne količine vode (0,001 mas.% od mase asfalta) k zmesi pa je reakcija umiljenja potekala, kot je prikazano v primeru 14.However, using metal sodium and metallic tallow oil and adding a small amount of water (0.001% by weight of asphalt) to the mixture, the saponification reaction was carried out as shown in Example 14.
PRIMER 15EXAMPLE 15
Delamo po postopku, kot je naveden v primeni 1, le-da uporabimo asfalt za strehe tip I (ASTM D312) namesto AC-12. V tabeli 6 so rezultati preizkusa v primerjavi z osnovnim asfaltom, z ozirom na tipične preizkuse za prekrivanje streh.We use the procedure described in Example 1 to use Type I Roofing Asphalt (ASTM D312) instead of AC-12. Table 6 shows the results of the test compared to the base asphalt, with reference to typical roof covering tests.
TABELA 6TABLE 6
Iz preizkusov je razvidno, da ima obdelani asfalt nizkotemperatume lastnosti asfaltov za strehe tipa I in visokotemperatume lastnosti asfaltov za strehe tipa II. Pl je tudi v bistvu nižji pri obdelanem asfaltu, iz česar je razvidna manjša temperaturna občutljivost.The tests show that treated asphalt has low-temperature asphalt properties for type I roofs and high-temperature asphalt properties for type II roofs. Pl is also substantially lower in treated asphalt, which results in a lower temperature sensitivity.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/211,775 US4874432A (en) | 1988-06-27 | 1988-06-27 | Multigrade asphalt cement product and process |
YU01315/89A YU131589A (en) | 1988-06-27 | 1989-06-27 | Multi purpose asphalt binded product and process thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
SI8911315A true SI8911315A (en) | 1996-06-30 |
Family
ID=26906447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI8911315A SI8911315A (en) | 1988-06-27 | 1989-06-27 | Multi purpose asphalt binded product and process thereof |
Country Status (2)
Country | Link |
---|---|
HR (1) | HRP940223A2 (en) |
SI (1) | SI8911315A (en) |
-
1989
- 1989-06-27 SI SI8911315A patent/SI8911315A/en unknown
-
1994
- 1994-04-01 HR HRP-1315/89A patent/HRP940223A2/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
HRP940223A2 (en) | 1996-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4874432A (en) | Multigrade asphalt cement product and process | |
CN103374232B (en) | Warm mix asphalt binder compositions containing lubricating additives | |
US2877129A (en) | Asphalt composition containing a fatty ester and a process of making it | |
WO1999007792A1 (en) | Emulsified bituminous binder | |
US6770127B2 (en) | Multigrade asphalt power additive | |
US4839404A (en) | Bituminous compositions having high adhesive properties | |
US2339853A (en) | Paving composition | |
US4168179A (en) | Bituminous composition | |
SI8911315A (en) | Multi purpose asphalt binded product and process thereof | |
US3074807A (en) | Cold-laid bituminous paving materials | |
US4168178A (en) | Asbestos-free bituminous composition | |
US2288924A (en) | Bituminous emulsion | |
US2013972A (en) | Bituminous paving material | |
US2049772A (en) | Method of making bituminous paving materials | |
US1739652A (en) | Liquefier for preparing stone for bitumen coating | |
USRE16301E (en) | Treatment oe rock asphalt | |
US1846107A (en) | Binding material for the mineral aggregates of pavements and in the method of using the same | |
US998691A (en) | Liquid bituminous compound and process of making the same. | |
US1711727A (en) | Bituminous composition and method of producing the same | |
US1776379A (en) | Cold bituminous paving composition | |
US330196A (en) | Amzi l | |
US3000808A (en) | Petroleum-based amorphous compositions | |
Dissanayaka | Evaluation of Novel Asphalt Binder Modifiers and Additives to Improve Extreme Temperature Rheological Properties for Enhanced Pavement Performance | |
US2026198A (en) | Preparation of bituminous macadam | |
WO2022090577A1 (en) | A bitumen additive comprising an aqueous wax dispersion at its use to obtain a foamed bitumen |