[go: nahoru, domu]

TW201600888A - Transmissive and reflective optical projection film, manufacturing method and projection screen thereof - Google Patents

Transmissive and reflective optical projection film, manufacturing method and projection screen thereof Download PDF

Info

Publication number
TW201600888A
TW201600888A TW103121814A TW103121814A TW201600888A TW 201600888 A TW201600888 A TW 201600888A TW 103121814 A TW103121814 A TW 103121814A TW 103121814 A TW103121814 A TW 103121814A TW 201600888 A TW201600888 A TW 201600888A
Authority
TW
Taiwan
Prior art keywords
microlenses
film
optical projection
oxide
projection film
Prior art date
Application number
TW103121814A
Other languages
Chinese (zh)
Inventor
陳良吉
廖家聖
Original Assignee
宇葳科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇葳科技股份有限公司 filed Critical 宇葳科技股份有限公司
Priority to TW103121814A priority Critical patent/TW201600888A/en
Publication of TW201600888A publication Critical patent/TW201600888A/en

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

A transmissive and reflective optical projection film comprises a transparent substrate, a transmissive and reflective layer, a plurality of microlenses and pressure sensitive adhesive. The optical projection film can be flexibly adhered to another planar or non-planar transparent substrate to form a transmissive and reflective optical projection screen.

Description

可穿透及反射的光學投影膜、其製造方法及投影螢幕 Penetrating and reflecting optical projection film, manufacturing method thereof and projection screen

本發明是關於一種可透視、反射及黏貼的投影膜,其可撓性地黏貼於玻璃上形成投影幕(projection screen),其可應用於抬頭顯示器(Head Up Display,HUD)或光學頭戴式顯示器(Optical Head-Mounted Display,OHMD),將外界的景象與欲顯示於投影幕上的資料合併於同一視覺影像內。 The invention relates to a see-through, reflective and adhesive projection film which can be flexibly adhered to a glass to form a projection screen, which can be applied to a head up display (HUD) or an optical head-mounted type. The Optical Head-Mounted Display (OHMD) combines the external scene with the data to be displayed on the projection screen in the same visual image.

傳統上投影成像可分為兩類:一、不可透視投影幕,例如應用於電影院、會議室及家庭劇院;二、可透視的投影幕,例如於玻璃基板上鍍膜,例如應用於背投電視(Rear-projection television)上。 Traditionally, projection imaging can be divided into two categories: one, non-transparent projection screens, for example, used in cinemas, conference rooms, and home theaters; and second, perspective projection screens, such as coating on glass substrates, such as for rear projection televisions ( Rear-projection television).

不可透視的投影幕係在一個不透明基材上加入塑膠樹脂或可產生散射的無機粒子形成光學散射結構,使投影成像於投影幕上形成高對比的影像。不可透視的投影幕之投影光源係與觀看者於同一側,使投影影像藉由不可透視的投影幕反射至觀看者。 The non-perspective projection screen is formed by adding plastic resin or scattering inorganic particles to an opaque substrate to form an optical scattering structure, so that the projection image is formed on the projection screen to form a high contrast image. The projection light source of the non-perspective projection screen is on the same side as the viewer, so that the projected image is reflected to the viewer by the non-transparent projection screen.

可透視的投影幕係在一個透明基板上加入塑膠樹脂或可產生漫射的粒子以形成光學透鏡結構,接著利用真空蒸鍍鍍上高反射的光學金屬膜,使投影成像於膜上形成高對比的影像。如此的產品係使用真空蒸鍍鍍方式形成光學金屬膜,故造成產品製作程序較為繁瑣及成本較高,且該光學金屬膜係鍍於光學透鏡結構之外側,易有刮傷或剝落之問題,因此至少需要再增加至少一保護層來抗刮,因而 可能使光學品質下降。 The fluoroscopy projection screen adds plastic resin on a transparent substrate or can produce diffuse particles to form an optical lens structure, and then vacuum-evaporates a highly reflective optical metal film to form a high contrast on the film. Image. Such a product uses an optical vapor deposition method to form an optical metal film, which results in a cumbersome and expensive product manufacturing process, and the optical metal film is plated on the outside of the optical lens structure, which is prone to scratching or peeling. Therefore, at least one additional protective layer needs to be added to resist scratching, thus It may cause the optical quality to drop.

圖1繪示習知之一種可透視的投影幕的側視示意圖。可透視的投影幕100係於折射率為n1的玻璃基材110上,利用UV交聯固化的環氧樹脂形成半徑為625um及折射率為n2的複數個微透鏡111。接著利用真空蒸鍍的方式在該複數個微透鏡111表面形成40Å的鋁薄鍍而當作反射層112,因此投影幕100對入射光線有部分反射、部分穿透及部分吸收。再利用折射率為n2的封膠層113及折射率為n1之另一玻璃基材114將玻璃基材110上該複數個微透鏡111及反射層112封裝於內,以保護該複數個微透鏡111及反射層112避免被刮傷。 1 is a side elevational view of a conventional perspective projection screen. The see-through projection screen 100 is attached to a glass substrate 110 having a refractive index n1, and a plurality of microlenses 111 having a radius of 625 um and a refractive index of n2 are formed by UV-curing epoxy resin. Then, 40 Å of aluminum thin plating is formed on the surface of the plurality of microlenses 111 by vacuum evaporation to serve as the reflective layer 112. Therefore, the projection screen 100 partially reflects, partially penetrates, and partially absorbs the incident light. The plurality of microlenses 111 and the reflective layer 112 on the glass substrate 110 are encapsulated by using the sealant layer 113 having a refractive index of n2 and another glass substrate 114 having a refractive index of n1 to protect the plurality of microlenses. 111 and reflective layer 112 are protected from being scratched.

當該習知可透視的投影幕100用於投影成像時,由光源所發出的入射光115先入射玻璃基材114及封膠層113,接著部份由該複數個微透鏡111表面之反射層112反射且離開玻璃基材114,所以該投影膜100的射出之反射光116的亮度會因射玻璃基材114及封膠層113的吸收而降低,因此需要增加光源亮度以補償被吸收之光線並獲得所欲得之反射亮度。或者可增加反射層112之反射率,但同時卻也降低了可透視性。並且,該可透視的投影幕100係包含玻璃基材110及玻璃基材114,故無法作為可撓性地的投影幕。 When the conventional fluoroscopic projection screen 100 is used for projection imaging, the incident light 115 emitted by the light source is first incident on the glass substrate 114 and the sealant layer 113, and then partially reflected by the surface of the plurality of microlenses 111. 112 reflects and leaves the glass substrate 114, so the brightness of the reflected light 116 emitted by the projection film 100 is reduced by the absorption of the glass substrate 114 and the sealant layer 113, so it is necessary to increase the brightness of the light source to compensate for the absorbed light. And get the desired brightness of the reflection. Alternatively, the reflectivity of the reflective layer 112 can be increased, but at the same time the visibility is reduced. Further, since the see-through projection screen 100 includes the glass substrate 110 and the glass substrate 114, it cannot be used as a flexible projection screen.

Dieter Cuypers、Herbert De Smet、Xavier Hugel及Guilhem Dubroca等人於論文“Projection Technology for Future Airplane Cockpits”(IDW 2012,19,pp1995~1998)中揭露利用R、G、B LED(發光二極體)產生三原色光線以投影在一3M Vikuiti投影螢幕上,該3M Vikuiti投影螢幕係在PVC基材上先轉印出阻擋光線干涉之黑色油墨,接著再利用UV交聯固化的塑膠樹脂製作的微透鏡,藉此以完成投影螢幕之主要結構。觀賞者可在螢幕背後看到影像,亦即類似背投電視。日本發明專利公開號JP2007-256457A亦揭露用於背投之類似顯示螢幕結構。 Dieter Cuypers, Herbert De Smet, Xavier Hugel, and Guilhem Dubroca et al., in the paper "Projection Technology for Future Airplane Cockpits" (IDW 2012, 19, pp 1995-1998), revealed the use of R, G, B LEDs (Light Emitting Diodes) The three primary colors are projected onto a 3M Vikuiti projection screen. The 3M Vikuiti projection screen is first transferred to a PVC substrate to remove the black ink that blocks the interference of light, and then the microlens made of UV cross-linked cured plastic resin. This completes the main structure of the projection screen. Viewers can see images behind the screen, which is similar to rear projection TV. Japanese Patent Publication No. JP2007-256457A also discloses a similar display screen structure for rear projection.

此外,中國實用新型專利CN202067071U揭露一種投影螢幕之結構,其係在高分子材料基材上黏上微細的黑灰色複合膜,接著此膜再與一黑灰色光柵複合膜結合。然而,此等先前技術均 於投影螢幕之結構中使用黑色油墨或黑色膜層,故會吸收部份光線而降低射出光線之亮度。 In addition, the Chinese utility model patent CN202067071U discloses a structure of a projection screen which is adhered to a fine black-grey composite film on a polymer material substrate, and then the film is combined with a black-gray grating composite film. However, these prior techniques are The use of black ink or black film in the structure of the projection screen absorbs some of the light and reduces the brightness of the emitted light.

綜上,前述先前技術有些並無法用於抬頭顯示器或光學頭戴式顯示器,或因著結構層內使用黑色材料而降低射出光線之亮度,且大多無法可撓性地與另一非平面之透明基材結合。因此,本發明提供一種可使光線穿透及反射的光學投影膜,不僅能用於抬頭顯示器或光學頭戴式顯示器,且降低光線被吸收之比例以增強射出光線之亮度。 In summary, some of the foregoing prior art cannot be used for a head-up display or an optical head-mounted display, or the brightness of the emitted light is reduced by the use of a black material in the structural layer, and most of them cannot be flexibly combined with another non-planar transparency. The substrate is bonded. Accordingly, the present invention provides an optical projection film that allows light to penetrate and reflect, not only for a heads-up display or an optical head-mounted display, but also reduces the proportion of light absorbed to enhance the brightness of the emitted light.

本發明提供一種可使光線穿透及反射的光學投影膜,其包含透明基材、可穿透及反射層、複數個微透鏡以及壓黏著膠。使該光學投影膜可撓性地黏貼於平面或非平面之透明基材上,而形成投影幕,並將外界的景象與欲顯示於投影幕上的資料合併於同一視覺影像內。 The invention provides an optical projection film which can penetrate and reflect light, and comprises a transparent substrate, a penetrable and reflective layer, a plurality of microlenses and a pressure-adhesive glue. The optical projection film is flexibly adhered to a flat or non-planar transparent substrate to form a projection screen, and the external scene and the data to be displayed on the projection screen are combined in the same visual image.

本發明提供一種可使光線穿透及反射光線的光學投影膜,其包含:一透明基材,其具有一第一表面及相對於該第一表面之一第二表面;一可穿透及反射層,其係設置於該第一表面上用以使光線部分反射及部分透射;以及複數個微透鏡,其係相對於該透明基材而設置於該可穿透及反射層之一表面上。 The invention provides an optical projection film capable of penetrating and reflecting light, comprising: a transparent substrate having a first surface and a second surface opposite to the first surface; a penetrable and reflective a layer disposed on the first surface for partially reflecting and partially transmitting light; and a plurality of microlenses disposed on a surface of the penetrable and reflective layer with respect to the transparent substrate.

在本發明之一實施例中,該光學投影膜另包含一壓黏著層,其係設置於該第二表面上,其中該壓黏著層可使可見光部分反射及部分透射。 In an embodiment of the invention, the optical projection film further comprises a pressure-adhesive layer disposed on the second surface, wherein the pressure-adhesive layer partially reflects and partially transmits visible light.

本發明另提供一種製造穿透及反射光線的光學投影膜的方法,其包含:提供透明基材,其具有第一表面及相對於第一表面之第二表面;塗佈可穿透及反射層於第一表面上;塗佈UV樹脂於可穿透及反射層上,將模板壓合於UV交聯固化樹脂上以形成複數個微透鏡之外形;以及以UV光照射UV樹脂而得固化的複數個微透鏡。 The present invention further provides a method of fabricating an optical projection film that penetrates and reflects light, comprising: providing a transparent substrate having a first surface and a second surface relative to the first surface; coating the penetrable and reflective layer On the first surface; coating the UV resin on the permeable and reflective layer, pressing the template onto the UV cross-linking cured resin to form a plurality of microlens shapes; and curing the UV resin by UV light A plurality of microlenses.

在本發明之一實施例中,該方法另包含塗佈一壓黏著膠於於該第二表面上之步驟。 In an embodiment of the invention, the method further comprises the step of applying a pressure-sensitive adhesive to the second surface.

在本發明之一實施例中,該透明基材可以為聚酯(PET)、聚萘酯、聚碳酸酯、壓克力或聚氯乙烯等材料。 In an embodiment of the invention, the transparent substrate may be a material such as polyester (PET), polynaphthyl ester, polycarbonate, acrylic or polyvinyl chloride.

在本發明之一實施例中,該可穿透及反射層為透明無機物薄膜或金屬薄膜,可使用真空蒸鍍鍍或化學鍍方式鍍上薄膜,並依照無機物或金屬之種類以及薄膜厚度來控制對光線的反射率及透射率。 In an embodiment of the invention, the penetrable and reflective layer is a transparent inorganic film or a metal film, which can be coated by vacuum evaporation or electroless plating, and controlled according to the type of inorganic or metal and the thickness of the film. Reflectivity and transmittance of light.

在本發明之一實施例中,該透明無機物薄膜為氧化鈰、氧化鋯、氧化鋅、氧化鎢、氧化鈦或氧化鉻。 In an embodiment of the invention, the transparent inorganic thin film is cerium oxide, zirconium oxide, zinc oxide, tungsten oxide, titanium oxide or chromium oxide.

在本發明之一實施例中,該金屬薄膜可為鋁、銀、金、鉻、鎘、鋅或鋯。 In an embodiment of the invention, the metal film may be aluminum, silver, gold, chromium, cadmium, zinc or zirconium.

在本發明之一實施例中,該等微透鏡係以UV交聯固化樹脂所形成,其中該UV交聯固化樹脂為壓克力樹脂、碳酸酯樹脂或環氧樹脂其中之一者。 In an embodiment of the invention, the microlenses are formed of a UV crosslinked curing resin, wherein the UV crosslinking curing resin is one of an acrylic resin, a carbonate resin or an epoxy resin.

在本發明之一實施例中,該壓黏著層為壓克力膠、聚氨酯膠或矽膠。 In an embodiment of the invention, the pressure-adhesive layer is an acrylic glue, a polyurethane glue or a silicone rubber.

在本發明之一實施例中,該複數個微透鏡之形狀為多邊形、圓形及橢圓形其中之一者或其組合。 In an embodiment of the invention, the plurality of microlenses are in the shape of one of a polygon, a circle, and an ellipse or a combination thereof.

在本發明之一實施例中,該複數個微透鏡之形狀可為六角形、矩形、菱形及三角形其中之一者或其組合。 In an embodiment of the invention, the plurality of microlenses may be in the shape of one of a hexagon, a rectangle, a diamond, and a triangle, or a combination thereof.

在本發明之一實施例中,該複數個微透鏡包含有無機奈米粒子,用以調整該複數個微透鏡之機械強度、耐磨性及抗炫光,其中等無機奈米粒子可為氧化鈰、氧化鋯、氧化鋅、氧化鈦、氧化鋁或氧化鉻其中之一者或其組合。 In an embodiment of the invention, the plurality of microlenses comprise inorganic nanoparticles for adjusting mechanical strength, wear resistance and anti-glare of the plurality of microlenses, wherein the inorganic nanoparticles can be oxidized. One of or a combination of cerium, zirconia, zinc oxide, titanium oxide, aluminum oxide or chromium oxide.

100‧‧‧投影膜 100‧‧‧projection film

110‧‧‧玻璃基材 110‧‧‧Glass substrate

111‧‧‧微透鏡 111‧‧‧Microlens

112‧‧‧反射層 112‧‧‧reflective layer

113‧‧‧封膠層 113‧‧‧ Sealing layer

114‧‧‧玻璃基材 114‧‧‧ glass substrate

115‧‧‧入射光 115‧‧‧ incident light

116‧‧‧反射光 116‧‧‧Reflected light

200、300、400、500、600、700‧‧‧光學投影膜 200, 300, 400, 500, 600, 700‧‧‧ optical projection film

209、309、409、509、609、709‧‧‧壓黏著層 209, 309, 409, 509, 609, 709‧‧ ‧ pressure adhesive layer

210、310、410、510、610、710‧‧‧透明基材 210, 310, 410, 510, 610, 710‧‧ ‧ transparent substrate

211、311、411、511、611、711‧‧‧微透鏡 211, 311, 411, 511, 611, 711‧‧ ‧ microlenses

212、312、412、512、612、712‧‧‧反射層 212, 312, 412, 512, 612, 712‧‧ ‧ reflective layer

圖1繪示習知之一種可透視的投影幕100的側視示意圖。 1 is a side elevational view of a conventional see-through projection screen 100.

圖2繪示本發明之一實施例的側視示意圖。 2 is a side elevational view of an embodiment of the present invention.

圖3繪示本發明之一實施例的側視示意圖。 3 is a side elevational view of an embodiment of the present invention.

圖4繪示本發明之一實施例的立體圖。 4 is a perspective view of an embodiment of the present invention.

圖5繪示本發明之一實施例的立體圖。 Figure 5 is a perspective view of an embodiment of the present invention.

圖6繪示本發明之一實施例的立體圖。 Figure 6 is a perspective view of an embodiment of the present invention.

圖7繪示本發明之一實施例的立體圖。 Figure 7 is a perspective view of an embodiment of the present invention.

圖8為本發明之六角形柱體微透鏡之放大圖。 Figure 8 is an enlarged view of a hexagonal cylindrical microlens of the present invention.

圖9為本發明之半球體微透鏡放大圖。 Figure 9 is an enlarged view of a hemispherical microlens of the present invention.

本揭露內容係為目前實施本發明之最佳方式。本發明係參照各種實施例以及圖式而描述於此。此等揭露係供做描繪本發明的主要原理而不應被限制。熟習此等技藝之人士應了解各種變化與改良係可依照本發明精神所屬之範疇下的示而達成。本發明之範疇應由專利申請範圍定義之。 The disclosure is the best mode for carrying out the invention. The invention has been described herein with reference to various embodiments and drawings. These disclosures are intended to depict the principal principles of the invention and should not be limited. Those skilled in the art will appreciate that various changes and modifications can be made in accordance with the scope of the invention. The scope of the invention should be defined by the scope of the patent application.

本實施例中複數個微透鏡結構之形成係先使用雷射雕刻機對銅板進行雕刻,形成複數個邊長60μm、邊框厚度20μm及刻深35μm的正六角形凹槽之模板。再利用塗佈機將UV交聯固化樹脂塗覆在透明基材上,其中透明基材之厚度為50μm,而UV交聯固化樹脂塗覆厚度為20-50μm。接下來,將UV交聯固化樹脂之透明基材以塗覆有樹脂之一面壓印於已經雕刻有正六角型凹槽的模板之上,之後將壓印貼合於模板上的透明基材送進UV固化機中固化UV交聯固化樹脂,待UV交聯固化樹脂吸收達400mj/cm2之能量後取出貼合於模板上的透明基材,並將透明基材與模板分離,即可獲得已固化之複數個六角形柱體之微透鏡的光學投影膜,其中六角形柱體之邊長約50μm及邊寬厚度約20μm。在此必須說明的是,在UV固化過程中UV交聯固化樹脂是由液體、無特定形體逐漸轉成固體,使得UV交聯固化樹脂在未完全固化前仍有伸縮、移動之可能。而正六角形之排列可利用此特性使各六角形柱體彼此間之排列達到最密堆積且均勻地緊密分佈於透明基材上。 In the embodiment, the plurality of microlens structures are formed by first engraving the copper plate using a laser engraving machine to form a plurality of templates of regular hexagonal grooves having a side length of 60 μm, a frame thickness of 20 μm, and a depth of 35 μm. The UV crosslinked cured resin was coated on a transparent substrate by a coater, wherein the thickness of the transparent substrate was 50 μm, and the thickness of the UV crosslinked cured resin was 20-50 μm. Next, the transparent substrate of the UV cross-linking cured resin is embossed on one side of the resin coated with a template having a regular hexagonal groove, and then the embossed is applied to the transparent substrate on the stencil. The UV cross-linking curing resin is cured in a UV curing machine, and after the UV cross-linking curing resin absorbs energy of up to 400 mj/cm 2 , the transparent substrate adhered to the template is taken out, and the transparent substrate is separated from the template to obtain An optical projection film of a plurality of hexagonal cylinder microlenses having a side length of about 50 μm and a side width of about 20 μm. It must be noted here that during the UV curing process, the UV cross-linking curing resin is gradually converted into a solid by a liquid, without a specific shape, so that the UV cross-linked curing resin still has the possibility of stretching and moving before being completely cured. The arrangement of the regular hexagons can take advantage of the fact that the hexagonal cylinders are arranged to each other to be closest packed and uniformly distributed on the transparent substrate.

另外將複數個六角形柱體之微透鏡結構形成於不同的透明基材上,製作出實施例1-8的光學投影膜,並與無六角形柱體之光學投影膜(比較例1、2)比較其成像效果。然本發明並不受此等 實施例所限制,該複數個微透鏡之形狀可以為多邊形、圓形及橢圓形其中之一者或其組合,或可以是六角形、矩形、菱形及三角形其中之一者或其組合。 In addition, a plurality of hexagonal cylinder microlens structures were formed on different transparent substrates to fabricate the optical projection films of Examples 1-8 and optical projection films without hexagonal cylinders (Comparative Examples 1, 2) ) Compare its imaging results. However, the present invention is not subject to such For example, the shape of the plurality of microlenses may be one of a polygon, a circle, and an ellipse, or a combination thereof, or may be one of a hexagon, a rectangle, a diamond, and a triangle, or a combination thereof.

將不同透明基材及UV交聯固化樹脂所製作之六角形柱體的光學投影膜(實施例1-8)及無六角形柱體之光學投影膜(比較例1-2)放置於投影機前方80公分處測試,其結果如表1所示。在可見光穿透率(VLT)接近46%時的對比度可達13000:1(實施例3),且在光學投影膜前、後處觀察都可以得到清晰明亮的投影成像。而使用有鍍鋁膜的透明基材,其VLT雖由92%降至70%,但其成像對比度均有明顯的提高(如實施例1、4、5和實施例2之比較)。不同VLT的光學投影膜可依欲將外界景象合併於同一視覺影像內之需求調整可穿透及反射層,卻不損及成像清晰明亮及高對比的需求。 An optical projection film (Example 1-8) of a hexagonal cylinder made of a different transparent substrate and a UV crosslinked curing resin, and an optical projection film (Comparative Example 1-2) without a hexagonal column were placed on the projector. Tested in front of 80 cm, the results are shown in Table 1. The contrast ratio at visible light transmittance (VLT) of approximately 46% can reach 13000:1 (Example 3), and clear and bright projection imaging can be obtained by observation both before and after the optical projection film. In the case of a transparent substrate having an aluminized film, the VLT was reduced from 92% to 70%, but the imaging contrast was significantly improved (as compared with Examples 1, 4, and 5 and Example 2). Optical projection films of different VLTs can adjust the transmissive and reflective layers according to the needs of incorporating external scenes into the same visual image without compromising the need for clear and high contrast images.

圖2例示本發明之一實施例之側視示意圖。一種可使光線穿透及反射光線的光學投影膜200包含透明基材210、可穿透及反射層212、複數個弧面柱體微透鏡211以及壓黏著層209。透明基材210具有第一表面及相對於第一表面之第二表面,又可穿透及反射層212係設置於第一表面上用以使光線部分反射及部分透射。複數個弧面柱體微透鏡211係相對於透明基材210而設置於可穿透及反射層212之表面上,各柱體間彼此相隔一間距。壓黏著層209係設置於第二表面上,並可使可見光部分反射及部分透射。 Figure 2 illustrates a side view of an embodiment of the invention. An optical projection film 200 that allows light to penetrate and reflect light includes a transparent substrate 210, a penetrable and reflective layer 212, a plurality of curved cylindrical microlenses 211, and a pressure-bonding layer 209. The transparent substrate 210 has a first surface and a second surface opposite to the first surface, and the transmissive and reflective layer 212 is disposed on the first surface for partially reflecting and partially transmitting the light. A plurality of arcuate cylinder microlenses 211 are disposed on the surface of the penetrable and reflective layer 212 with respect to the transparent substrate 210, and the pillars are spaced apart from each other by a pitch. The pressure-sensitive adhesive layer 209 is disposed on the second surface and can partially and partially transmit visible light.

該透明基材210可以為聚酯(PET)、聚萘酯、聚碳酸酯、壓克力或聚氯乙烯等形成之板材,具有可撓性者較佳。該可穿透及反射層212為透明無機物薄膜或金屬薄膜,可使用真空蒸鍍鍍或化學鍍方式鍍上薄膜,並依照無機物或金屬之種類以及薄膜厚度來控制對光線的反射率及透射率。該透明無機物薄膜可以由氧化鈰、氧化鋯、氧化鋅、氧化鎢、氧化鈦或氧化鉻形成,又金屬薄膜可以由鋁、銀、金、鉻、鎘、鋅或鋯形成。 The transparent substrate 210 may be a sheet formed of polyester (PET), polynaphthyl ester, polycarbonate, acryl or polyvinyl chloride, and is preferably flexible. The transparent and reflective layer 212 is a transparent inorganic film or a metal film. The film can be plated by vacuum evaporation or electroless plating, and the reflectance and transmittance of the light can be controlled according to the type of inorganic or metal and the thickness of the film. . The transparent inorganic thin film may be formed of cerium oxide, zirconium oxide, zinc oxide, tungsten oxide, titanium oxide or chromium oxide, and the metal thin film may be formed of aluminum, silver, gold, chromium, cadmium, zinc or zirconium.

複數個弧面柱體微透鏡211可以UV交聯固化樹脂固化而形成,該微透鏡211中並可包含無機奈米粒子,用以調整該複數個微透鏡之機械強度、耐磨性及抗炫光。該UV交聯固化樹脂可以是壓克力樹脂、碳酸酯樹脂或環氧樹脂其中之一者,又該等無機奈米粒子為氧化鈰、氧化鋯、氧化鋅、氧化鈦、氧化鋁或氧化鉻其中之一者或其組合。該壓黏著層209可以是壓克力膠、聚氨酯膠或矽膠。本發明之各結構層或並不受此實施例中列出之材料所限制。 A plurality of arcuate cylindrical microlenses 211 may be formed by curing a UV crosslinked curing resin, and the microlenses 211 may include inorganic nanoparticles for adjusting mechanical strength, wear resistance and anti-glare of the plurality of microlenses. Light. The UV crosslinking curing resin may be one of an acrylic resin, a carbonate resin or an epoxy resin, and the inorganic nano particles are cerium oxide, zirconium oxide, zinc oxide, titanium oxide, aluminum oxide or chromium oxide. One of them or a combination thereof. The pressure-adhesive layer 209 may be an acrylic glue, a urethane glue or a silicone rubber. The various structural layers of the present invention are not limited by the materials listed in this embodiment.

圖3繪示本發明之另一實施例之側視示意圖。光學投影膜300包含透明基材310、可穿透及反射層312、複數個半球體或半橢球體之微透鏡311以及壓黏著層309。透明基材310具有第一表面及相對於第一表面之第二表面,又可穿透及反射層312係設置於第一表面上用以使光線部分反射及部分透射。複數個半球體或半橢球體之微透鏡311係相對於透明基材310而設置於可穿透及反射層312之表面上,各球體間彼此相隔一間距。壓黏著層309係設置於第二表面上,並可使可見光部分反射及部分透射。相較圖2中微透鏡211係 弧面柱體,圖3中微透鏡311係半球體或半橢球體,然本發明不受此等實施例所限制,亦即微透鏡可以是柱狀體、球體或突起物,其上表面可以是弧面或球面等。 3 is a side elevational view of another embodiment of the present invention. The optical projection film 300 includes a transparent substrate 310, a penetrable and reflective layer 312, a plurality of hemispheres or semi-ellipsoid microlenses 311, and a pressure-adhesive layer 309. The transparent substrate 310 has a first surface and a second surface opposite to the first surface, and a transmissive and reflective layer 312 is disposed on the first surface for partially reflecting and partially transmitting the light. A plurality of hemispherical or semi-ellipsoidal microlenses 311 are disposed on the surface of the penetrable and reflective layer 312 with respect to the transparent substrate 310, and the spheres are spaced apart from each other by a distance. The pressure-sensitive adhesive layer 309 is disposed on the second surface and can partially and partially transmit visible light. Compared with the microlens 211 in Figure 2 The curved surface cylinder, the microlens 311 in FIG. 3 is a hemisphere or a semi-ellipsoid, but the invention is not limited by the embodiments, that is, the microlens may be a columnar body, a sphere or a protrusion, and the upper surface thereof may be It is a curved surface or a spherical surface.

與圖3中光學投影膜300相類似,圖9所示為具有半球體微透鏡之光學投影膜,各半球體間彼此相隔一間距,其係根據前述製造流程完成之光學投影膜。 Similar to the optical projection film 300 of FIG. 3, FIG. 9 shows an optical projection film having a hemispherical microlens, each of which is spaced apart from each other by an optical projection film completed in accordance with the aforementioned manufacturing process.

圖4繪示本發明之另一實施例之立體圖,光學投影膜400包含透明基材410、可穿透及反射層412、複數個六角形柱體之微透鏡411以及壓黏著層409。透明基材410具有第一表面及相對於第一表面之第二表面,又可穿透及反射層412係設置於第一表面上用以使光線部分反射及部分透射。複數個六角形柱體之微透鏡411係相對於透明基材410而設置於可穿透及反射層412之表面上,各柱體間彼此相隔一間距,其上表面可為實質平面或弧面,其中六角形柱體之排列使微透鏡可達到最密堆積,使各微透鏡可以均勻地緊密分佈於透明基材410上。壓黏著層409係設置於第二表面上,並可使可見光部分反射及部分透射。 4 is a perspective view of another embodiment of the present invention. The optical projection film 400 includes a transparent substrate 410, a transparent and reflective layer 412, a plurality of hexagonal cylinder microlenses 411, and a pressure-adhesive layer 409. The transparent substrate 410 has a first surface and a second surface opposite to the first surface, and a transmissive and reflective layer 412 is disposed on the first surface for partially reflecting and partially transmitting the light. A plurality of hexagonal cylinder microlenses 411 are disposed on the surface of the transparent and reflective layer 412 with respect to the transparent substrate 410. The pillars are spaced apart from each other, and the upper surface thereof may be substantially planar or curved. The arrangement of the hexagonal cylinders allows the microlenses to be densely packed, so that the microlenses can be uniformly and closely distributed on the transparent substrate 410. The pressure-sensitive adhesive layer 409 is disposed on the second surface and can partially and partially transmit visible light.

與圖4中光學投影膜400相類似,圖8所示為上表面具弧面之六角形柱體微透鏡的光學投影膜,各柱體間彼此相隔一間距,其係根據前述製造流程完成之光學投影膜。 Similar to the optical projection film 400 of FIG. 4, FIG. 8 shows an optical projection film of a hexagonal cylindrical microlens having a curved surface on the upper surface, each column being spaced apart from each other by a pitch according to the aforementioned manufacturing process. Optical projection film.

圖5繪示本發明之另一實施例之立體圖,光學投影膜500包含透明基材510、可穿透及反射層512、複數個矩形柱體之微透鏡511以及壓黏著層509。透明基材510具有第一表面及相對於第一表面之第二表面,又可穿透及反射層512係設置於第一表面上用以使光線部分反射及部分透射。複數個矩形柱體之微透鏡511係相對於透明基材510而設置於可穿透及反射層512之表面上,各柱體間彼此相隔一間距,其上表面可為實質平面或弧面。壓黏著層509係設置於第二表面上,其中壓黏著層509可使可見光部分反射及部分透射。本實施例之微透鏡511係矩形柱體,各矩形柱體間可以彼此相隔一間距或接觸。 5 is a perspective view of another embodiment of the present invention. The optical projection film 500 includes a transparent substrate 510, a penetrable and reflective layer 512, a plurality of rectangular cylinders of microlenses 511, and a pressure-adhesive layer 509. The transparent substrate 510 has a first surface and a second surface opposite to the first surface, and a transmissive and reflective layer 512 is disposed on the first surface for partially reflecting and partially transmitting the light. A plurality of rectangular cylinder microlenses 511 are disposed on the surface of the penetrable and reflective layer 512 with respect to the transparent substrate 510. The pillars are spaced apart from each other, and the upper surface thereof may be a substantially planar surface or a curved surface. The pressure-sensitive adhesive layer 509 is disposed on the second surface, wherein the pressure-adhesive layer 509 can partially and partially transmit visible light. The microlens 511 of this embodiment is a rectangular cylinder, and each of the rectangular cylinders may be spaced apart from each other or in contact with each other.

圖6繪示本發明之另一實施例,光學投影膜600包 含透明基材610、可穿透及反射層612、複數個菱形柱體之微透鏡611以及壓黏著層609。透明基材610具有第一表面及相對於第一表面之第二表面,又可穿透及反射層612係設置於第一表面上用以使光線部分反射及部分透射。複數個菱形柱體之微透鏡611係相對於透明基材610而設置於可穿透及反射層612之表面上,各柱體間彼此相隔一間距,其上表面可為實質平面或弧面。壓黏著層609係設置於第二表面上,並可使可見光部分反射及部分透射。本實施例之微透鏡611係菱形柱體,各矩形柱體間可以彼此相隔一間距或接觸。 FIG. 6 illustrates another embodiment of the present invention, an optical projection film 600 package A transparent substrate 610, a penetrable and reflective layer 612, a plurality of diamond-shaped microlenses 611, and a pressure-adhesive layer 609. The transparent substrate 610 has a first surface and a second surface opposite to the first surface, and a transmissive and reflective layer 612 is disposed on the first surface for partially reflecting and partially transmitting the light. A plurality of diamond-shaped microlenses 611 are disposed on the surface of the penetrable and reflective layer 612 with respect to the transparent substrate 610. The pillars are spaced apart from each other, and the upper surface thereof may be a substantially planar surface or a curved surface. The pressure-sensitive adhesive layer 609 is disposed on the second surface and can partially and partially transmit visible light. The microlens 611 of this embodiment is a rhombic cylinder, and each of the rectangular cylinders may be spaced apart from each other or in contact with each other.

圖7繪示本發明之另一實施例,光學投影膜700包含透明基材710、可穿透及反射層712、複數個三角形柱體之微透鏡711以及壓黏著層709。透明基材710具有第一表面及相對於第一表面之第二表面,又可穿透及反射層712係設置於第一表面上用以使光線部分反射及部分透射。複數個三角形柱體之微透鏡711係相對於透明基材710而設置於可穿透及反射層712之表面上,各柱體間彼此相隔一間距,其上表面可為實質平面或弧面。壓黏著層709係設置於第二表面上,並可使可見光部分反射及部分透射。本實施例之微透鏡711係三角形柱體,各三角形柱體間可以彼此相隔一間距或接觸。 FIG. 7 illustrates another embodiment of the present invention. The optical projection film 700 includes a transparent substrate 710, a penetrable and reflective layer 712, a plurality of triangular cylinders of microlenses 711, and a pressure-bonding layer 709. The transparent substrate 710 has a first surface and a second surface opposite to the first surface, and a transmissive and reflective layer 712 is disposed on the first surface for partially reflecting and partially transmitting the light. A plurality of triangular cylinder microlenses 711 are disposed on the surface of the transparent and reflective layer 712 with respect to the transparent substrate 710. The pillars are spaced apart from each other, and the upper surface thereof may be substantially planar or curved. The pressure-sensitive adhesive layer 709 is disposed on the second surface and can partially and partially transmit visible light. The microlens 711 of this embodiment is a triangular cylinder, and each of the triangular cylinders may be spaced apart from each other or in contact with each other.

熟習此技藝之人士應可知各種調整和改變可被應用於本發明所揭露之結構以及流程,而不會脫離本發明的範疇和精神。藉由先前所述之內容,可知本發明可涵蓋有關本發明之調整和變化,若其落於以下所述之專利申請範圍以及其均等之內。 It will be appreciated by those skilled in the art that various modifications and changes can be made in the structure and the process disclosed in the present invention without departing from the scope and spirit of the invention. The present invention is intended to cover modifications and variations of the present invention, which are within the scope of the appended claims.

200‧‧‧光學投影膜 200‧‧‧ optical projection film

209‧‧‧壓黏著層 209‧‧‧Adhesive layer

210‧‧‧透明基材 210‧‧‧Transparent substrate

211‧‧‧微透鏡 211‧‧‧Microlens

212‧‧‧反射層 212‧‧‧reflective layer

Claims (24)

一種可穿透及反射的光學投影膜,其包含:一透明基材,其具有一第一表面及相對於該第一表面之一第二表面;一可穿透及反射層,其係設置於該第一表面上用以使可見光部分反射及部分透射;以及複數個微透鏡,其係相對於該透明基材而設置於該可穿透及反射層之一表面上。 A transmissive and reflective optical projection film comprising: a transparent substrate having a first surface and a second surface opposite to the first surface; a penetrable and reflective layer disposed on The first surface is for partially reflecting and partially transmitting visible light; and a plurality of microlenses are disposed on a surface of the transparent and reflective layer on the surface of the transparent and reflective layer. 如申請專利範圍第1項的光學投影膜,其另包含一壓黏著層,其係設置於該第二表面上,其中該壓黏著層可使可見光部分反射及部分透射。 The optical projection film of claim 1, further comprising a pressure-adhesive layer disposed on the second surface, wherein the pressure-sensitive adhesive layer partially and partially transmits visible light. 如申請專利範圍第1項的光學投影膜,其中該透明基材為聚酯、聚萘酯、聚碳酸酯、壓克力或聚氯乙烯。 The optical projection film of claim 1, wherein the transparent substrate is polyester, polynaphthyl ester, polycarbonate, acrylic or polyvinyl chloride. 如申請專利範圍第1項的光學投影膜,其中該可穿透及反射層為透明無機物薄膜或金屬薄膜。 The optical projection film of claim 1, wherein the penetrable and reflective layer is a transparent inorganic film or a metal film. 如申請專利範圍第4項的光學投影膜,其中該透明無機物薄膜為氧化鈰、氧化鋯、氧化鋅、氧化鎢、氧化鈦或氧化鉻。 The optical projection film of claim 4, wherein the transparent inorganic thin film is cerium oxide, zirconium oxide, zinc oxide, tungsten oxide, titanium oxide or chromium oxide. 如申請專利範圍第4項的光學投影膜,其中該金屬薄膜為鋁、銀、金、鉻、鎘、鋅或鋯。 The optical projection film of claim 4, wherein the metal film is aluminum, silver, gold, chromium, cadmium, zinc or zirconium. 如申請專利範圍第1項的光學投影膜,其中該複數個微透鏡之形狀為多邊形、圓形及橢圓形其中之一者或其組合。 The optical projection film of claim 1, wherein the plurality of microlenses are one of a polygonal shape, a circular shape, and an elliptical shape or a combination thereof. 如申請專利範圍第7項的光學投影膜,其中該多邊形為六角形。 The optical projection film of claim 7, wherein the polygon is hexagonal. 如申請專利範圍第1項的光學投影膜,其中該等微透鏡係以UV交聯固化樹脂所形成,該複數個微透鏡另包含有複數個無機奈米粒子,用以調整該複數個微透鏡之機械強度、耐磨性及抗炫光。 The optical projection film of claim 1, wherein the microlenses are formed by UV crosslinking curing resin, and the plurality of microlenses further comprise a plurality of inorganic nanoparticles for adjusting the plurality of microlenses Mechanical strength, wear resistance and anti-glare. 如申請專利範圍第9項的光學投影膜,其中該UV交聯固化樹脂為壓克力樹脂、碳酸酯樹脂或環氧樹脂其中之一者;以及該複數個無機奈米粒子為氧化鈰、氧化鋯、氧化鋅、氧化鈦、 氧化鋁或氧化鉻其中之一者或其組合。 The optical projection film of claim 9, wherein the UV crosslinking curing resin is one of an acrylic resin, a carbonate resin or an epoxy resin; and the plurality of inorganic nanoparticles are cerium oxide and oxidized Zirconium, zinc oxide, titanium oxide, One or a combination of alumina or chrome oxide. 如申請專利範圍第2項的光學投影膜,其中該壓黏著層為壓克力膠、聚氨酯膠或矽膠。 The optical projection film of claim 2, wherein the pressure-adhesive layer is acrylic glue, polyurethane glue or silicone rubber. 一種製造可穿透及反射之光學投影膜的方法,其包含:提供一透明基材,該透明基材具有一第一表面及一相對於該第一表面之第二表面;塗佈一可穿透及反射層於該第一表面上用以使可見光部分反射及部分透射;塗佈一UV交聯固化樹脂於該可穿透及反射層上,將一模板壓合於該UV交聯固化樹脂上以形成複數個微透鏡之外形;以及以UV光照射該UV交聯固化樹脂而得固化的複數個微透鏡。 A method of making a permeable and reflective optical projection film, comprising: providing a transparent substrate having a first surface and a second surface opposite the first surface; Transmitting and reflecting layer on the first surface for partially reflecting and partially transmitting visible light; coating a UV crosslinked curing resin on the penetrable and reflective layer, and pressing a template to the UV crosslinked curing resin Forming a plurality of microlenses to form a plurality of microlenses; and curing the UV crosslinked curing resin by UV light to obtain a plurality of microlenses. 如申請專利範圍第12項的方法,其另包含塗佈一壓黏著膠於於該第二表面上之步驟。 The method of claim 12, further comprising the step of applying a pressure-sensitive adhesive to the second surface. 如申請專利範圍第12項的方法,其中該透明基材為聚酯、聚萘酯、聚碳酸酯、壓克力或聚氯乙烯。 The method of claim 12, wherein the transparent substrate is polyester, polynaphthyl ester, polycarbonate, acrylic or polyvinyl chloride. 如申請專利範圍第12項的方法,其中該可穿透及反射層為透明無機物薄膜或金屬薄膜。 The method of claim 12, wherein the penetrable and reflective layer is a transparent inorganic film or a metal film. 如申請專利範圍第15項的方法,其中該透明無機物薄膜為氧化鈰、氧化鋯、氧化鋅、氧化鎢、氧化鈦或氧化鉻。 The method of claim 15, wherein the transparent inorganic thin film is cerium oxide, zirconium oxide, zinc oxide, tungsten oxide, titanium oxide or chromium oxide. 如申請專利範圍第15項的方法,其中該金屬薄膜為鋁、銀、金、鉻、鎘、鋅或鋯。 The method of claim 15, wherein the metal film is aluminum, silver, gold, chromium, cadmium, zinc or zirconium. 如申請專利範圍第12項的方法,其中該複數個微透鏡之形狀為多邊形、圓形及橢圓形其中之一者或其組合。 The method of claim 12, wherein the plurality of microlenses are one of a polygonal shape, a circular shape, and an elliptical shape or a combination thereof. 如申請專利範圍第18項的方法,其中該多邊形為六角形。 The method of claim 18, wherein the polygon is hexagonal. 如申請專利範圍第12項的方法,其中該UV交聯固化樹脂包含有複數個無機奈米粒子,用以調整該複數個微透鏡之機械強度、耐磨性及抗炫光。 The method of claim 12, wherein the UV crosslinking curing resin comprises a plurality of inorganic nanoparticles for adjusting mechanical strength, abrasion resistance and glare resistance of the plurality of microlenses. 如申請專利範圍第20項的方法,其中該UV交聯固化樹脂為壓克力樹脂、碳酸酯樹脂或環氧樹脂其中之一者;以及該複數個無機奈米粒子為_氧化鈰、氧化鋯、氧化鋅、氧化鈦、 氧化鋁或氧化鉻其中之一者或其組合。 The method of claim 20, wherein the UV crosslinking curing resin is one of an acrylic resin, a carbonate resin or an epoxy resin; and the plurality of inorganic nanoparticles are yttria, zirconia , zinc oxide, titanium oxide, One or a combination of alumina or chrome oxide. 如申請專利範圍第13項的方法,其中該壓黏著膠為壓克力膠、聚氨酯膠或矽膠其中之一者。 The method of claim 13, wherein the pressure-sensitive adhesive is one of acrylic glue, polyurethane glue or silicone rubber. 如申請專利範圍第13項的方法,其中於該以UV光照射該UV交聯固化樹脂而得固化的複數個微透鏡之步驟後,再移除該模板。 The method of claim 13, wherein the template is removed after the step of curing the UV cross-linked curing resin by UV light to obtain a plurality of microlenses. 一種可穿透及反射的投影螢幕,包含如申請專利範圍第1至11項其中一項之光學投影膜。 A transmissive and reflective projection screen comprising an optical projection film according to one of claims 1 to 11.
TW103121814A 2014-06-25 2014-06-25 Transmissive and reflective optical projection film, manufacturing method and projection screen thereof TW201600888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103121814A TW201600888A (en) 2014-06-25 2014-06-25 Transmissive and reflective optical projection film, manufacturing method and projection screen thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103121814A TW201600888A (en) 2014-06-25 2014-06-25 Transmissive and reflective optical projection film, manufacturing method and projection screen thereof

Publications (1)

Publication Number Publication Date
TW201600888A true TW201600888A (en) 2016-01-01

Family

ID=55641232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103121814A TW201600888A (en) 2014-06-25 2014-06-25 Transmissive and reflective optical projection film, manufacturing method and projection screen thereof

Country Status (1)

Country Link
TW (1) TW201600888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903672A (en) * 2019-04-12 2019-06-18 江阴通利光电科技有限公司 A kind of lenticule anti false film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903672A (en) * 2019-04-12 2019-06-18 江阴通利光电科技有限公司 A kind of lenticule anti false film

Similar Documents

Publication Publication Date Title
KR101558885B1 (en) A single multi-layer optical sheet and a backlight assembly comprising the same for liquid crystal display
JP5716733B2 (en) Daylighting sheet, daylighting device, and building
JP2015060193A (en) Reflection type screen, and video display system
JP5888450B2 (en) Daylighting sheet, daylighting device, and building
CN105204283A (en) Penetrable and reflectible optical projection film, manufacturing method thereof and projection screen
JP6476812B2 (en) Reflective screen, video display system
TW201600888A (en) Transmissive and reflective optical projection film, manufacturing method and projection screen thereof
US20120146482A1 (en) Flat display and method of fabricating the same
JP2014115600A (en) Display system
JP5796691B2 (en) Daylighting sheet, daylighting device, and building
TWM540299U (en) Optical projection film and projection screen thereof
JP6164000B2 (en) Transmission screen and video display system
JP2023060578A (en) Louver, head-mounted display, optical instrument, and method for manufacturing louver
JP2014153427A (en) Reflection screen, reflection screen unit, video display system, and manufacturing method of reflection screen
JP6089680B2 (en) Daylighting sheet, daylighting device, and building
JP6037068B2 (en) Daylighting sheet, daylighting device, and building
JP6215376B2 (en) Daylighting sheet, daylighting device, and building
JP6037067B2 (en) Daylighting sheet, daylighting device, and building
JP5910177B2 (en) Method for manufacturing transmission screen
JP5888449B2 (en) Daylighting sheet, daylighting device, and building
JP2014071388A (en) Screen, image display system, and method for manufacturing screen
JP2012098751A (en) Display device
JP6037069B2 (en) Daylighting sheet, daylighting device, and building
JP6215375B2 (en) Daylighting sheet, daylighting device, and building
JP6036872B2 (en) Daylighting sheet, daylighting device, and building