US10162688B2 - Processing event messages for user requests to execute program code - Google Patents
Processing event messages for user requests to execute program code Download PDFInfo
- Publication number
- US10162688B2 US10162688B2 US15/340,825 US201615340825A US10162688B2 US 10162688 B2 US10162688 B2 US 10162688B2 US 201615340825 A US201615340825 A US 201615340825A US 10162688 B2 US10162688 B2 US 10162688B2
- Authority
- US
- United States
- Prior art keywords
- event
- program code
- user
- service
- virtual compute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/542—Event management; Broadcasting; Multicasting; Notifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/546—Message passing systems or structures, e.g. queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/5011—Pool
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/54—Indexing scheme relating to G06F9/54
- G06F2209/549—Remote execution
Definitions
- computing devices utilize a communication network, or a series of communication networks, to exchange data.
- Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties.
- the computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks).
- data centers or data processing centers herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center.
- the data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.
- virtualization technologies may allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center.
- the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner.
- users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
- virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality.
- various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently.
- These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started.
- the device image is typically stored on the disk used to create or initialize the instance.
- a computing device may process the device image in order to implement the desired software configuration.
- FIG. 1 is a block diagram depicting an illustrative environment for processing event messages for user requests to execute program codes in a virtual compute system
- FIG. 2 depicts a general architecture of a computing device providing a frontend of a virtual compute system for processing event messages for user requests to execute program codes;
- FIG. 3 is a flow diagram illustrating an event notification and message generation routine implemented by an auxiliary system in communication with a frontend of a virtual compute system, according to an example aspect
- FIG. 4 is a flow diagram illustrating an event message processing routine implemented by a frontend of a virtual compute system, according to another example aspect.
- over-utilization e.g., acquiring too little computing resources and suffering performance issues
- under-utilization e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying
- prediction of change in traffic e.g., so that they know when to scale up or down
- instance and language runtime startup delay which can take 3-10 minutes, or longer, even though users may desire computing capacity on the order of seconds or even milliseconds.
- delay (sometimes referred to as latency) associated with executing the user code (e.g., instance and language runtime startup time) can be significantly reduced.
- aspects of the present disclosure relate to the management of virtual machine instances and containers created therein.
- systems and methods are disclosed which facilitate management of virtual machine instances in a virtual compute system.
- the virtual compute system maintains a pool of virtual machine instances that have one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon.
- the virtual machine instances in the pool can be designated to service user requests to execute program codes.
- the program codes can be executed in isolated containers that are created on the virtual machine instances.
- the delay associated with finding compute capacity that can handle the requests is significantly reduced.
- a message queue, a message bus, or any other message intermediary service is provided to facilitate transportation or communication of event messages generated in a first programmatic environment (e.g., at an auxiliary service) to the programmatic environment provided by the virtual compute system described herein.
- event messages may be generated to include information descriptive of the triggered event, a user associated with a request to execute user code in response to the triggered event, and programmatic information to enable the virtual compute system to convert the event message into a user request for further processing by the virtual compute system.
- the event message and/or programmatic information contained therein may be structured according to a schema, a code model, or an application programming interface (“API”) to facilitate both creation/generation of the event message at the auxiliary service and conversion/processing of the event message at the virtual compute system.
- API application programming interface
- a virtual compute system may maintain a pool of virtual machine instances on one or more physical computing devices, where each virtual machine instance has one or more software components loaded thereon.
- the virtual compute system may select a virtual machine instance for executing the program code of the user based on the one or more computing constraints specified by the request and cause the program code of the user to be executed on the selected virtual machine instance.
- the virtual compute system is capable of responding to events on-demand, whether the events are triggered infrequently (e.g., once per day) or on a larger scale (e.g., hundreds or thousands per second).
- FIG. 1 a block diagram illustrating an embodiment of a virtual environment 100 will be described.
- the example shown in FIG. 1 includes a virtual environment 100 in which users (e.g., developers, etc.) of user computing devices 102 may run various program codes using the virtual computing resources provided by a virtual compute system 110 .
- users e.g., developers, etc.
- virtual compute system 110 may run various program codes using the virtual computing resources provided by a virtual compute system 110 .
- various example user computing devices 102 are shown in communication with the virtual compute system 110 , including a desktop computer, laptop, and a mobile phone.
- the user computing devices 102 can be any computing device such as a desktop, laptop, mobile phone (or smartphone), tablet, kiosk, wireless device, and other electronic devices.
- the user computing devices 102 may include web services running on the same or different data centers, where, for example, different web services may programmatically communicate with each other to perform one or more techniques described herein.
- the user computing devices 102 may include Internet of Things (IoT) devices such as Internet appliances and connected devices.
- IoT Internet of Things
- the virtual compute system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programming interfaces (API), and/or other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110 ), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes.
- CLI command-line interfaces
- API application programming interfaces
- other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110 ), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes.
- the user computing devices 102 access the virtual compute system 110 over a network 104 .
- the network 104 may be any wired network, wireless network, or combination thereof.
- the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof.
- the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet.
- the network 104 may be a private or semi-private network, such as a corporate or university intranet.
- the network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network.
- GSM Global System for Mobile Communications
- CDMA Code Division Multiple Access
- LTE Long Term Evolution
- the network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks.
- the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
- the virtual compute system 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks.
- the virtual compute system 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1 .
- the depiction of the virtual compute system 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure.
- the virtual compute system 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer-to-peer network configurations to implement at least a portion of the processes described herein.
- the virtual compute system 110 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein.
- the one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.
- the virtual environment 100 includes a virtual compute system 110 , which includes a frontend 120 , a warming pool manager 130 , and a worker manager 140 .
- virtual machine instances (“instances”) 152 , 154 are shown in a warming pool 130 A managed by the warming pool manager 130
- instances 156 , 158 are shown in an active pool 140 A managed by the worker manager 140 .
- the illustration of the various components within the virtual compute system 110 is logical in nature and one or more of the components can be implemented by a single computing device or multiple computing devices.
- the instances 152 , 154 , 156 , 158 can be implemented on one or more physical computing devices in different various geographic regions.
- each of the frontend 120 , the warming pool manager 130 , and the worker manager 140 can be implemented across multiple physical computing devices. Alternatively, one or more of the frontend 120 , the warming pool manager 130 , and the worker manager 140 can be implemented on a single physical computing device.
- the virtual compute system 110 may comprise multiple frontends, multiple warming pool managers, and/or multiple worker managers. Although four virtual machine instances are shown in the example of FIG. 1 , the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the virtual compute system 110 may comprise any number of virtual machine instances implemented using any number of physical computing devices. Similarly, although a single warming pool and a single active pool are shown in the example of FIG. 1 , the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the virtual compute system 110 may comprise any number of warming pools and active pools.
- the virtual compute system 110 is illustrated as being connected to the network 104 .
- any of the components within the virtual compute system 110 can communicate with other components (e.g., the user computing devices 102 and auxiliary services 106 , which may include monitoring/logging/billing services 107 , a storage service 108 , an instance provisioning service 109 , a message queue service 105 , and/or other services that may communicate with the virtual compute system 110 ) of the virtual environment 100 via the network 104 .
- not all components of the virtual compute system 110 are capable of communicating with other components of the virtual environment 100 .
- any of the auxiliary services 106 may be configured to operate as an event triggering service 106 A in order to listen for events specified by users of the auxiliary service and trigger generation of event messages for processing by the virtual compute system 110 , as described in more detail herein.
- the storage service 108 may be configured to operate as an event triggering service 106 A in order to provide the capability of executing user code on the virtual compute system 110 in response to events as they occur on the storage service 108 .
- the one or more auxiliary services 106 may be registered or configured to be polled or queried for events to trigger execution of user codes on the virtual compute system 110 .
- Such registration or configuration may be provided or enabled via the one or more user interfaces provided to the user computing devices 102 .
- a user interface may provide options for the user to select or specify an auxiliary service 106 as an event-triggering service 106 A, such that events on the event-triggering service 106 A may trigger generation of event messages, or such that the event-triggering service 106 A may be periodically polled or queried for events such as by an intermediary polling system.
- the event triggering service 106 A may be configured to associate an event or event type with a particular program code to be executed on the virtual compute system 110 (that is, the event triggering service 106 A may store or have access to data which associates the event with the particular program code).
- the event triggering service 106 A may not necessarily associate an event or event type with a particular program code to be executed on the virtual compute system 110 , but rather the event triggering service 106 A may generate event messages which the virtual compute system 110 is configured to interpret as being associated with the program code to be executed on the virtual compute system 110 (that is, the virtual compute system 110 may store or have access to data which associates the event with the particular program code),
- an intermediary system or service may be configured to handle interpretation and routing of event messages to execute the program code, such that neither the event triggering service 106 A nor the virtual compute system 110 may store or have access to the event-to-program code association data.
- the event triggering service 106 A may generate an event message that is agnostic to any particular program code to be executed; and the event message may be routed to the virtual compute system 110 (or an intermediary system) which evaluates the event message and associated metadata to determine which program code to execute in response, and initiate a corresponding request to execute the program code.
- any of the auxiliary services 106 may be configured to operate as an event triggering service 106 A.
- These include but are not limited to: remote storage systems; database systems; message queue systems (for example, a message queue service provided by the virtual compute system 110 , a message queue system owned and/or operated by a user or client separate from the virtual compute system 110 , and so on); web services; auditing services; health monitoring services (for example, for monitoring health status of a virtual compute system); logging services; billing services; resource management systems and services (for example, for managing lifecycles and/or ownership of virtual computing environments and the like); and so on.
- message queue systems for example, a message queue service provided by the virtual compute system 110 , a message queue system owned and/or operated by a user or client separate from the virtual compute system 110 , and so on
- web services auditing services
- health monitoring services for example, for monitoring health status of a virtual compute system
- logging services billing services
- resource management systems and services for example, for managing lifecycles and/or ownership of
- Users may use the virtual compute system 110 to execute user code thereon. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed.
- One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code.
- the user may send a code execution request the virtual compute system 110 .
- the virtual compute system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity.
- compute capacity e.g., containers, instances, etc., which are described in greater detail below
- the virtual compute system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).
- over-utilization e.g., acquiring too little computing resources and suffering performance issues
- under-utilization e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying.
- the frontend 120 receives and processes all the requests (sometimes in the form of event messages) to execute user code on the virtual compute system 110 .
- the frontend 120 serves as a front door to all the other services provided by the virtual compute system 110 .
- the frontend 120 processes the requests and makes sure that the requests are properly authorized. For example, the frontend 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.
- the user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language.
- code e.g., a program, routine, subroutine, thread, etc.
- program code may be used interchangeably.
- Such user code may be executed to achieve a specific task, for example, in connection with a particular web application or mobile application developed by the user.
- the user codes may be written in JavaScript (node.js), Java, Python, and/or Ruby.
- the request may include the user code (or the location thereof) and one or more arguments to be used for executing the user code.
- the user may provide the user code along with the request to execute the user code.
- the request may identify a previously uploaded program code (e.g., using the API for uploading the code) by its name or its unique ID.
- the code may be included in the request as well as uploaded in a separate location (e.g., the storage service 108 or a storage system internal to the virtual compute system 110 ) prior to the request is received by the virtual compute system 110 .
- the virtual compute system 110 may vary its code execution strategy based on where the code is available at the time the request is processed.
- the frontend 120 may receive the request to execute such user codes in response to Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing the user code. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing the code execution request to the frontend 120 .
- the frontend 120 may also receive the request to execute such user codes when an event is detected, such as an event that the user has registered to trigger automatic request generation.
- the user may configured an auxiliary service 106 to operate as an event-triggering service 106 A by registering the user code with the auxiliary service 106 and specifying that whenever a particular event occurs (e.g., a new file is uploaded), the request to execute the user code is sent to the frontend 120 .
- the user may have registered a timed job (e.g., execute the user code every 24 hours). In such an example, when the scheduled time arrives for the timed job, the request to execute the user code may be sent to the frontend 120 .
- a timed or scheduled job may be implemented using the techniques of this disclosure to, for example, model the job as an event generated by a timer service.
- the timer service may generate an event message indicating that it is now time to run a user code, and the virtual compute system 110 may implement a process to run code at a certain time by utilizing the timer service to remind the virtual compute system 110 to run the user code.
- the frontend 120 may include or have access to a queue of incoming code execution requests, and when the user's batch job is removed from the virtual compute system's work queue, the frontend 120 may process the user request.
- the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in FIG. 1 .
- the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in FIG. 1 .
- a request to execute/activate user codes may be generated in response to an event associated with the user computing device 102 or an auxiliary service 106 .
- an auxiliary service such as storage service 108
- the event triggering service 106 A can trigger a request to execute/activate a code to generate a thumbnail of the image.
- the code may be hosted in the active pool 120 or downloaded from a storage service storage service 108 to the virtual compute system 110 .
- an event message representative of a request to execute the user code may be initially received by a message queue service 105 and provided to or placed in a message queue.
- the message queue service 105 may be implemented as a component of the auxiliary services 106 or as a different component.
- the frontend 120 may periodically poll the message queue service 105 to identify and retrieve event messages for processing.
- Message events may be placed in the message queue for example by the message queue service 105 , such as in response to when an event is detected for which the user has registered to trigger automatic generation of a request to execute user code. In some instances it may be desirable or more practical to detect such events, trigger generation of an event message, and provide the event message to the message queue service 105 .
- the message queue service 105 may be configured to allow ordering of message events so that certain message events may receive a higher priority.
- the message queue service 105 may be specifically or specially configured to facilitate transportation of certain types of programmatic events, such as database operations, certain types of data suitable for batch processing, and so on.
- the message queue service 105 may be configured to provide streaming, and/or ordered transport of messages (for example, as a sharded set of data). The frontend 120 may then poll the message queue service 105 and retrieve event messages for further processing by the virtual compute system 110 .
- the frontend 120 may query the event triggering service 106 A directly to request and receive event messages for further processing, such as via invocation of an API provided by the event triggering service 106 A.
- the event triggering service 106 A may interface directly with the frontend 120 via one or more APIs and function calls. For example, when an event is detected and an event message is generated, the event triggering system 106 A may invoke an API provided by the frontend 120 to provide the event message directly to the frontend 120 , without necessarily providing the event message to the message queue service 105 .
- a user request may specify one or more third-party libraries (including native libraries) to be used along with the user code.
- the user request includes a package file (for example, a compressed file, a ZIP file, a RAR file, etc.) containing the user code and any libraries (and/or identifications of storage locations thereof).
- the user request includes metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code.
- the program code may be provided with the request, previously uploaded by the user, provided by the virtual compute system 110 (e.g., standard routines), and/or provided by third parties.
- resource-level constraints e.g., how much memory is to be allocated for executing a particular user code
- the virtual compute system 110 may have access to such resource-level constraints before each individual request is received, and the individual requests may not specify such resource-level constraints.
- the user request may specify other constraints such as permission data that indicates what kind of permissions that the request has to execute the user code. Such permission data may be used by the virtual compute system 110 to access private resources (e.g., on a private network).
- the user request may specify the behavior that should be adopted for handling the user request.
- the user request may include an indicator for enabling one or more execution modes in which the user code associated with the user request is to be executed.
- the request may include a flag or a header for indicating whether the user code should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the user code is provided back to the user (e.g., via a console user interface).
- the virtual compute system 110 may inspect the request and look for the flag or the header, and if it is present, the virtual compute system 110 may modify the behavior (e.g., logging facilities) of the container in which the user code is executed, and cause the output data to be provided back to the user.
- the behavior/mode indicators are added to the request by the user interface provided to the user by the virtual compute system 110 .
- Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in the request.
- the virtual compute system 110 may include multiple frontends 120 .
- a load balancer may be provided to distribute the incoming requests and/or event messages to the multiple frontends 120 , for example, in a round-robin fashion.
- the warming pool manager 130 ensures that virtual machine instances are ready to be used by the worker manager 140 when the virtual compute system 110 receives a request to execute user code on the virtual compute system 110 .
- the warming pol manager 130 manages the warming pool 130 A, which is a group (sometimes referred to as a pool) of pre-initialized and pre-configured virtual machine instances that may be used to service incoming user code execution requests.
- the warming pool manager 130 causes virtual machine instances to be booted up on one or more physical computing machines within the virtual compute system 110 and added to the warming pool 130 A prior to receiving a code execution request that will be executed on the virtual machine instance.
- the warming pool manager 130 communicates with an auxiliary virtual machine instance service (e.g., an instance provisioning service 109 ) to create and add new instances to the warming pool 130 A.
- an auxiliary virtual machine instance service e.g., an instance provisioning service 109
- the warming pool manager 130 may cause additional instances to be added to the warming pool 130 A based on the available capacity in the warming pool 130 A to service incoming requests.
- the warming pool manager 130 may utilize both physical computing devices within the virtual compute system 110 and one or more virtual machine instance services to acquire and maintain compute capacity that can be used to service code execution requests received by the frontend 120 .
- the virtual compute system 110 may comprise one or more logical knobs or switches for controlling (e.g., increasing or decreasing) the available capacity in the warming pool 130 A.
- virtual machine instances in the warming pool 130 A can be configured based on a predetermined set of configurations independent from a specific user request to execute a user's code.
- the predetermined set of configurations can correspond to various types of virtual machine instances to execute user codes.
- the warming pool manager 130 can optimize types and numbers of virtual machine instances in the warming pool 130 A based on one or more metrics related to current or previous user code executions.
- instances may have operating systems (OS) and/or language runtimes loaded thereon.
- the warming pool 130 A managed by the warming pool manager 130 comprises instances 152 , 154 .
- the instance 152 includes an OS 152 A and a runtime 152 B.
- the instance 154 includes an OS 154 A.
- the instances in the warming pool 130 A may also include containers (which may further contain copies of operating systems, runtimes, user codes, etc.), which are described in greater detail below.
- the instance 152 is shown in FIG. 1 to include a single runtime, in other embodiments, the instances depicted in FIG. 1 may include two or more runtimes, each of which may be used for running a different user code.
- the warming pool manager 130 may maintain a list of instances in the warming pool 130 A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances.
- the virtual machine instances in the warming pool 130 A may be used to serve any user's request. In one embodiment, all the virtual machine instances in the warming pool 130 A are configured in the same or substantially similar manner. In another embodiment, the virtual machine instances in the warming pool 130 A may be configured differently to suit the needs of different users. For example, the virtual machine instances may have different operating systems, different language runtimes, and/or different libraries loaded thereon. In yet another embodiment, the virtual machine instances in the warming pool 130 A may be configured in the same or substantially similar manner (e.g., with the same OS, language runtimes, and/or libraries), but some of those instances may have different container configurations.
- two instances may have runtimes for both Python and Ruby, but one instance may have a container configured to run Python code, and the other instance may have a container configured to run Ruby code.
- multiple warming pools 130 A each having identically-configured virtual machine instances, are provided.
- the warming pool manager 130 may pre-configure the virtual machine instances in the warming pool 130 A, such that each virtual machine instance is configured to satisfy at least one of the operating conditions that may be requested or specified by the user request to execute program code on the virtual compute system 110 .
- the operating conditions may include program languages in which the potential user codes may be written.
- such languages may include Java, JavaScript, Python, Ruby, and the like.
- the set of languages that the user codes may be written in may be limited to a predetermined set (e.g., set of 4 languages, although in some embodiments sets of more or less than four languages are provided) in order to facilitate pre-initialization of the virtual machine instances that can satisfy requests to execute user codes.
- the user interface may prompt the user to specify one of the predetermined operating conditions for executing the user code.
- the service-level agreement (SLA) for utilizing the services provided by the virtual compute system 110 may specify a set of conditions (e.g., programming languages, computing resources, etc.) that user requests should satisfy, and the virtual compute system 110 may assume that the requests satisfy the set of conditions in handling the requests.
- operating conditions specified in the request may include: the amount of compute power to be used for processing the request; the type of the request (e.g., HTTP vs. a triggered event); the timeout for the request (e.g., threshold time after which the request may be terminated); security policies (e.g., may control which instances in the warming pool 130 A are usable by which user); etc.
- the worker manager 140 manages the instances used for servicing incoming code execution requests.
- the worker manager 140 manages the active pool 140 A, which is a group (sometimes referred to as a pool) of virtual machine instances that are currently assigned to one or more users.
- the virtual machine instances are described here as being assigned to a particular user, in some embodiments, the instances may be assigned to a group of users, such that the instance is tied to the group of users and any member of the group can utilize resources on the instance.
- the users in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one member's code in a container on a particular instance after another member's code has been executed in another container on the same instance does not pose security risks.
- the worker manager 140 may assign the instances and the containers according to one or more policies that dictate which requests can be executed in which containers and which instances can be assigned to which users.
- An example policy may specify that instances are assigned to collections of users who share the same account (e.g., account for accessing the services provided by the virtual compute system 110 ).
- the requests associated with the same user group may share the same containers (e.g., if the user codes associated therewith are identical).
- a request does not differentiate between the different users of the group and simply indicates the group to which the users associated with the requests belong.
- instances may have operating systems (OS), language runtimes, and containers.
- the containers may have individual copies of the OS and the runtimes and user codes loaded thereon.
- the active pool 140 A managed by the worker manager 140 includes the instances 156 , 158 .
- the instance 156 has an OS 156 A, runtimes 156 B, 156 C, and containers 156 D, 156 E.
- the container 156 D includes a copy of the OS 156 A, a copy of the runtime 156 B, and a copy of a code 156 D- 1 .
- the container 156 E includes a copy of the OS 156 A, a copy of the runtime 156 C, and a copy of a code 156 E- 1 .
- the instance 158 has an OS 158 A, runtimes 158 B, 158 C, 158 E, 158 F, a container 158 D, and codes 158 G, 158 H.
- the container 158 D has a copy of the OS 158 A, a copy of the runtime 158 B, and a copy of a code 158 D- 1 .
- instances may have user codes loaded thereon, and containers within those instances may also have user codes loaded therein.
- the worker manager 140 may maintain a list of instances in the active pool 140 A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances.
- the worker manager 140 may have access to a list of instances in the warming pool 130 A (e.g., including the number and type of instances). In other embodiments, the worker manager 140 requests compute capacity from the warming pool manager 130 without having knowledge of the virtual machine instances in the warming pool 130 A.
- user codes are executed in isolated compute systems referred to as containers (e.g., containers 156 D, 156 E, 158 D).
- Containers are logical units created within a virtual machine instance using the resources available on that instance.
- the worker manager 140 may, based on information specified in the request to execute user code, create a new container or locate an existing container in one of the instances in the active pool 140 A and assigns the container to the request to handle the execution of the user code associated with the request.
- such containers are implemented as Linux containers.
- the virtual machine instances in the active pool 140 A may have one or more containers created thereon and have one or more program codes associated with the user loaded thereon (e.g., either in one of the containers or in a local cache of the instance).
- Each container may have credential information made available therein, so that user codes executing on the container have access to whatever the corresponding credential information allows them to access.
- the worker manager 140 finds capacity to service the request to execute user code on the virtual compute system 110 . For example, if there exists a particular virtual machine instance in the active pool 140 A that has a container with the same user code loaded therein (e.g., code 156 D- 1 shown in the container 156 D), the worker manager 140 may assign the container to the request and cause the user code to be executed in the container.
- the worker manager 140 may create a new container on such an instance, assign the container to the request, and cause the user code to be loaded and executed in the container.
- the worker manager 140 may determine whether any of the instances in the active pool 140 A is currently assigned to the user associated with the request and has compute capacity to handle the current request. If there is such an instance, the worker manager 140 may create a new container on the instance and assign the container to the request. Alternatively, the worker manager 140 may further configure an existing container on the instance assigned to the user, and assign the container to the request. For example, the worker manager 140 may determine that the existing container may be used to execute the user code if a particular library demanded by the current user request is loaded thereon. In such a case, the worker manager 140 may load the particular library and the user code onto the container and use the container to execute the user code.
- the worker manager 140 pulls a new virtual machine instance from the warming pool 130 A, assigns the instance to the user associated with the request, creates a new container on the instance, assigns the container to the request, and causes the user code to be downloaded and executed on the container.
- the user code may be downloaded from an auxiliary service 106 such as the storage service 108 of FIG. 1 .
- Data 108 A illustrated in FIG. 1 may comprise user codes uploaded by one or more users, metadata associated with such user codes, or any other data utilized by the virtual compute system 110 to perform one or more techniques described herein.
- the virtual environment 100 may include other levels of storage systems from which the user code may be downloaded.
- each instance may have one or more storage systems either physically (e.g., a local storage resident on the physical computing system on which the instance is running) or logically (e.g., a network-attached storage system in network communication with the instance and provided within or outside of the virtual compute system 110 ) associated with the instance on which the container is created.
- the code may be downloaded from a web-based data store provided by the storage service 108 .
- the warming pool manager 130 or the worker manger 140 takes the instance out of the warming pool 130 A and assigns it to the user associated with the request.
- the assigned virtual machine instance is taken out of the warming pool 130 A and placed in the active pool 140 A.
- the same virtual machine instance cannot be used to service requests of any other user. This provides security benefits to users by preventing possible co-mingling of user resources.
- multiple containers belonging to different users may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity.
- the virtual compute system 110 may maintain a separate cache in which user codes are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and a web-based network storage (e.g., accessible via the network 104 ).
- a web-based network storage e.g., accessible via the network 104.
- the worker manager 140 may tear down the container used to execute the user code to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager 140 may keep the container running to use it to service additional requests from the same user. For example, if another request associated with the same user code that has already been loaded in the container, the request can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the user code in the container. In some embodiments, the worker manager 140 may tear down the instance in which the container used to execute the user code was created. Alternatively, the worker manager 140 may keep the instance running to use it to service additional requests from the same user.
- the determination of whether to keep the container and/or the instance running after the user code is done executing may be based on a threshold time, the type of the user, average request volume of the user, and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., running of the code), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released.
- the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.
- the virtual compute system 110 may provide data to one or more of the auxiliary services 106 as it services incoming code execution requests.
- the virtual compute system 110 may communicate with the monitoring/logging/billing services 107 .
- the monitoring/logging/billing services 107 may include: a monitoring service for managing monitoring information received from the virtual compute system 110 , such as statuses of containers and instances on the virtual compute system 110 ; a logging service for managing logging information received from the virtual compute system 110 , such as activities performed by containers and instances on the virtual compute system 110 ; and a billing service for generating billing information associated with executing user code on the virtual compute system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service).
- the monitoring/logging/billing services 107 may provide application-level services on behalf of the user code executed on the virtual compute system 110 .
- the monitoring/logging/billing services 107 may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the user code being executed on the virtual compute system 110 .
- the monitoring, logging, and billing services 107 may be provided as separate services.
- the worker manager 140 may perform health checks on the instances and containers managed by the worker manager 140 (e.g., those in the active pool 140 A). For example, the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, the worker manager 140 performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks.
- the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers.
- the frequency of the health checks may be adjusted based on user requests.
- the worker manager 140 may perform similar health checks on the instances and/or containers in the warming pool 130 A.
- the instances and/or the containers in the warming pool 130 A may be managed either together with those instances and containers in the active pool 140 A or separately.
- the warming pool manager 130 instead of the worker manager 140 , may perform the health checks described above on the instances and/or the containers in the warming pool 130 A.
- the virtual compute system 110 is adapted to begin execution of the user code shortly after it is received (e.g., by the frontend 120 ).
- a time period can be determined as the difference in time between initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user) and receiving a request to execute the user code (e.g., received by a frontend).
- Another time period can be determined as the difference in time between (1) detection of an event on an event-triggering service and (2a) receiving a request to execute the user code (e.g., received by a frontend) and/or (2b) initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user).
- Another time period can be determined as the difference in time between (1) retrieving, accessing, or receiving an event message (e.g., directly or indirectly from on an event-triggering service) and (2) initiating processing of a request to execute the user code (e.g., in a container on a virtual machine instance associated with the user).
- the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration.
- the predetermined duration is 500 ms.
- the predetermined duration is 300 ms.
- the predetermined duration is 100 ms.
- the predetermined duration is 50 ms.
- the predetermined duration is 10 ms.
- the predetermined duration may be any value chosen from the range of 10 ms to 500 ms.
- the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration if one or more conditions are satisfied.
- the one or more conditions may include any one of: (1) the user code is loaded on a container in the active pool 140 A at the time the request is received; (2) the user code is stored in the code cache of an instance in the active pool 140 A at the time the request is received; (3) the active pool 140 A contains an instance assigned to the user associated with the request at the time the request is received; or (4) the warming pool 130 A has capacity to handle the request at the time the request is received.
- the worker manager 140 may include an instance allocation unit for finding compute capacity (e.g., containers) to service incoming code execution requests and a user code execution module for facilitating the execution of user codes on those containers.
- compute capacity e.g., containers
- user code execution module for facilitating the execution of user codes on those containers.
- FIG. 2 depicts a general architecture of a computing system (referenced as frontend 120 ) that processes event messages for user requests to execute program codes in the virtual compute system 110 .
- the general architecture of the frontend 120 depicted in FIG. 2 includes an arrangement of computer hardware and software modules that may be used to implement aspects of the present disclosure.
- the hardware modules may be implemented with physical electronic devices, as discussed in greater detail below.
- the frontend 120 may include many more (or fewer) elements than those shown in FIG. 2 . It is not necessary, however, that all of these generally conventional elements be shown in order to provide an enabling disclosure. Additionally, the general architecture illustrated in FIG. 2 may be used to implement one or more of the other components illustrated in FIG. 1 .
- the frontend 120 includes a processing unit 190 , a network interface 192 , a computer readable medium drive 194 , an input/output device interface 196 , all of which may communicate with one another by way of a communication bus.
- the network interface 192 may provide connectivity to one or more networks or computing systems.
- the processing unit 190 may thus receive information and instructions from other computing systems or services via the network 104 .
- the processing unit 190 may also communicate to and from memory 180 and further provide output information for an optional display (not shown) via the input/output device interface 196 .
- the input/output device interface 196 may also accept input from an optional input device (not shown).
- the memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure.
- the memory 180 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer-readable media.
- the memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the worker manager 140 .
- the memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure.
- the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device.
- the memory 180 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.
- the memory 180 may include an event/request processing unit 188 which may include an event message polling unit 186 A and an event message conversion unit 186 B that may be executed by the processing unit 190 .
- the user interface unit 182 , the event message polling unit 186 A, and the event message conversion unit 186 B individually or collectively implement various aspects of the present disclosure, e.g., processing an event message for a request to executed user code, as described herein.
- a separate polling service may be implemented, for example via a polling fleet configured to poll an event source or a message queue and perform at least an initial message conversion or processing to prepare the event message for further processing by the frontend 120 and/or another component of the virtual compute system 100 .
- the event message polling unit 186 A periodically polls for event messages to be processed into requests to execute user code. For example, the event message polling unit 186 A may periodically access a message queue, such as the message queue service 105 or any other message queue service or message bus, to determine or detect whether an event message has been placed in the message queue for processing by the virtual compute system 110 . An event message may be placed in the message queue according to, for example, the routine described herein with reference to FIG. 3 . In response to determining or detecting an event message in the message queue, the event message polling unit 186 A may retrieve the message event from the message queue and initiate further processing of the event message as further described herein.
- a message queue such as the message queue service 105 or any other message queue service or message bus
- the event message polling unit 186 A may poll the event-triggering service 106 A directly rather than from a message queue.
- some event-triggering services such as certain types of databases may support direct polling of event messages that need not necessarily rely on an intermediary message queue.
- the event message conversion unit 186 B manages the conversion of the event message (e.g., as accessed or retrieved from a message queue such as the message queue 105 ) into a request to execute user code (e.g., ready for further processing in accordance with the processes described in U.S. application Ser. No. 14/502,992, titled “THREADING AS A SERVICE,” filed on Sep. 30, 2014, which was previously incorporated by reference in its entirety above). Conversion of the event message is described in more detail with reference to FIG. 4 herein.
- the event message is generated in a format representative of a remote procedure call to facilitate rapid conversion and/or immediate function invocation by the virtual compute system 110 when the event message is processed.
- Such an implementation enables a high degree of functional transparency and reduced latency between an auxiliary system responding to an event trigger and the virtual compute system 110 processing the event message generated by the auxiliary system responsive to the event trigger.
- event message polling unit 186 A and the event message conversion unit 186 B are shown in FIG. 2 as part of the frontend 120 , in other embodiments, all or a portion of the event message polling unit 186 A and the event message conversion unit 186 B may be implemented by other components of the virtual compute system 110 and/or another computing device.
- another computing device in communication with the virtual compute system 110 may include several modules or components that operate similarly to the modules and components illustrated as part of the frontend 120 .
- the frontend 120 may further include components other than those illustrated in FIG. 2 .
- routine 300 implemented by one or more components of the auxiliary service 106 , such as the storage service 108 , configured to operate as an event triggering service 106 A, will be described.
- routine 300 is described with regard to implementation by event triggering service 106 A, one skilled in the relevant art will appreciate that alternative components, such as a user device 102 or the virtual compute system 110 , may implement routine 300 or that one or more of the blocks may be implemented by a different component or in a distributed manner.
- the event triggering service 106 A detects an event or activity that has been designated to trigger or activate execution of a user code on the virtual compute system 110 .
- the event triggering service 106 A may be configured to enable or activate event notifications for one or more events.
- the event trigger and notification configuration settings may be provided or specified by a user. For example, when the user provides or uploads user code to the virtual compute system 110 and/or to the storage service 108 , the user may at that time specify one or more events for which the event triggering service 106 A should listen, and which corresponding functions or routines of the user code are to be executed in response to detection of the one or more events.
- a user may upload (or have previously uploaded or otherwise provided to the virtual compute system 110 ) a user code to generate a thumbnail image, and further specify that the code to generate a thumbnail image is to be executed in response to an end user uploading a new image to an auxiliary system (such as an image sharing system).
- an auxiliary system such as an image sharing system
- the image sharing system will then monitor or detect an image upload event.
- the event trigger and notification configuration settings may be provided or specified by a configuration file or other data format that may be provided, for example, with the user code.
- the user uploading the user code and the end user performing some other action with respect to the auxiliary service configured as an event-triggering service may be separate and distinct users or entities.
- the event triggering service 106 A generates an event message in association with the detected activity/event.
- the event triggering service 106 A may generate the event message according to the event trigger and notification configuration settings previously provided by the user.
- the configuration settings can specify, for example, a schema, a code model, or an API associated with the user code to be executed by the virtual compute system in response to the event being triggered.
- the event message may be generated to comprise, among other things, a user account identifier associated with the user, a function identifier to identify a function to be invoked on the virtual compute system, and one or more event message parameters including any input parameters (required and/or optional) to be provided with the function invocation.
- the event message may include data or metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code.
- the event message may specify that the user code is to be executed on “Operating System A” using “Language Runtime X.”
- the virtual compute system 110 or one of its components may locate a virtual machine instance that has been pre-configured with “Operating System A” and “Language Runtime X” and assigned to the user.
- the virtual compute system 110 may then create a container on the virtual machine instance for executing the user code therein. If a container having the code already exists on the virtual machine instance, the virtual compute system 110 can buffer the current request for execution on the container once the container becomes available.
- the format of the event message may represent a standard remote procedure call such that the event triggering service 106 A may only need to perform minimal processing to provide relevant information in the event message that may be needed to invoke the function on the virtual compute system.
- a standard remote procedure call format may enable an auxiliary system 106 which runs a different operating system or language runtime than the virtual compute system 110 to seamlessly communicate with the virtual compute system 110 via the event message generated in such a standard format.
- the format of the remote procedure call may be provided by the user and designed to match or correspond to the user code to be executed.
- the format of the event message may represent a remote procedure call to a function to be executed in response on the virtual compute system, such as “invoke (generateThumbnail, userID, imageName, imagePath)”, or “generateThumbnail (userID, imageName, imagePath),” or similar.
- the event message may further comprise the user code to be executed by the virtual compute system 110 .
- the user may provide the user code to the event triggering service 106 A instead of or in addition to providing the user code to the virtual compute system 110 , and further designate that the user code is to be provided with the event message to the virtual compute system 110 for execution at runtime.
- the event message may comprise a location (such as a URI) of the user code to be executed by the virtual compute system 110 , such that the virtual compute system 110 can remotely invoke the user code via the URI.
- the event triggering service 106 A provides the event message for further processing by the virtual compute system.
- the event message is provided to a message queue, such as the message queue 105 .
- the message queue service 105 may be a component of the auxiliary system 106 (e.g., as shown in FIG. 1 ) or it may be a separate system or service in communication with the auxiliary system 106 and/or the virtual compute system 110 over the network 160 .
- the particular format of the event message may be based at least in part on a specification associated with the message queue being used to transport the event message. Additionally, a particular message queue being used may be based on the type of event message being generated and provided to the virtual compute system.
- a particular message queue may be suited to transport messages relating to database operations, and thus an event message generated in response to a database event trigger may be provided using the particular message queue.
- the event message may be provided or made available for access by the virtual compute system 110 directly, without the need for an intermediary message queue.
- the event triggering service 106 A may provide or enable an API which the virtual compute system 110 may invoke in order to request one or more available event messages from the event triggering service 106 A.
- the virtual compute system 100 may then invoke the API, for example on a periodic basis, instead of or in combination with polling a message queue in order to access and/or retrieve event messages for processing.
- routine 300 of FIG. 3 has been described above with reference to blocks 302 - 306 , the embodiments described herein are not limited as such, and one or more blocks may be omitted, modified, or switched without departing from the spirit of the present disclosure.
- routine 400 implemented by one or more components of the virtual compute system 110 (e.g., the frontend 120 ) will be described.
- routine 400 is described with regard to implementation by the frontend 120 , one skilled in the relevant art will appreciate that alternative components may implement routine 400 or that one or more of the blocks may be implemented by a different component or in a distributed manner.
- the frontend 120 may optionally periodically poll a message queue (e.g., message queue 105 ) for an event message which may represent a request to execute user code.
- a message queue e.g., message queue 105
- the block 402 may continue the event messaging process from the block 306 of FIG. 3 in scenarios where the event triggering service 106 A provides event messages via the message queue.
- the frontend 120 accesses or retrieves an event message for processing by the virtual compute system 110 .
- the event message is accessed or retrieved from the message queue. Retrieval of the event message removes the event message from the message queue to prevent duplication of further processing associated with the event.
- the event message may be accessed or retrieved from the event triggering service directly, such as by invocation of an API provided by the event trigger service by which the frontend 120 can request and receive event messages ready for processing by the virtual compute system 110 .
- the event message can include or comprise any of the information and metadata described above with reference to FIG.
- a user account identifier associated with the user including for example, a user account identifier associated with the user, a function identifier to identify a function to be invoked on the virtual compute system, and one or more event message parameters including any input parameters (required and/or optional) to be provided with the function invocation.
- the frontend 120 converts the event message into a request to execute user code, such that the request to execute user code may be further processed by the virtual compute system 110 (including, for example, as described in U.S. application Ser. No. 14/502,992, titled “THREADING AS A SERVICE,” filed on Sep. 30, 2014, which was previously incorporated by reference in its entirety above). Conversion of the event message may involve parsing the event message to identify and/or extract the function identifier, any input parameters, and other metadata that may be needed to generate a request to execute the user code which was designated by the user to be executed in response to the event trigger.
- the event message may include or comprise at least one or more of the following: information related to an event payload (e.g., event data), which may conform to a known or defined schema or other format; an event wrapper or “envelope” provided, for example, by the event message bus or by the event-triggering service (for example, which may part of an implicit lease on the event message provided by the message queue service); and/or event metadata associated with the event, including an identity for which the event message was signed, an identity of the event producer or source of the event trigger (for example, which event-triggering service triggered the event), a name or owner of the message queue on which the event message was transported; and so on.
- event payload e.g., event data
- event data e.g., event data
- an event wrapper or “envelope” provided, for example, by the event message bus or by the event-triggering service (for example, which may part of an implicit lease on the event message provided by the message queue service)
- event metadata associated with the event including an identity for which the event
- the format of the event message may represent a standard remote procedure call, such that once retrieved from the message queue, the frontend 120 may only need to perform minimal processing to generate a corresponding request to execute the user code.
- the format of the event message may represent a remote procedure call to a function to be executed in response on the virtual compute system, such as “invoke (generateThumbnail, userID, imageName, imagePath)”, or “generateThumbnail (userID, imageName, imagePath),” or similar.
- the frontend 120 may extract this remote procedure call and immediately invoke the specified function to initiate a request.
- the request to execute the user code may further specify that the user code is to be executed on “Operating System A” using “Language Runtime X,” which may be included as additional inputs for the request to execute the user code.
- the frontend 120 may optionally verify security access and/or authenticate the user associated with a user account identifier provided with the event message and determine that the user is authorized to access the specified user code.
- the security and/or authentication may be omitted or performed in a separate process or as part of the processing of the request to execute the user code.
- the security and/or authentication may be performed earlier in the routine 400 , such as prior to the conversion performed at block 406 .
- the frontend 120 provides the request to execute the user code to the virtual compute system 110 .
- the frontend 120 itself may perform further processing of the request, for example as described in U.S. application Ser. No. 14/502,992, titled “THREADING AS A SERVICE,” filed on Sep. 30, 2014, which was previously incorporated by reference in its entirety above.
- the request can include a program code composed in a programming language. Various program languages including Java, PHP, C++, Python, etc. can be used to compose the user code.
- the request can include configuration information relating to code-execution requirements. For example, the request can include information about program language in which the program code is written, information about language runtime and/or language library to execute the user code.
- the configuration information need not include any specific information regarding the virtual machine instance that can host the user code.
- routine 400 of FIG. 4 has been described above with reference to blocks 402 - 410 , the embodiments described herein are not limited as such, and one or more blocks may be omitted, modified, or switched without departing from the spirit of the present disclosure.
- the block 402 may be modified such that the frontend 120 receives an event message from the user device 102 .
- the routine 400 of FIG. 4 may include different processes or routines which may be performed in a different order.
- One alternative example is provided as follows, although other variations may be possible.
- an event message may be received or accessed by the frontend 120 , which parses the event message (using a schema if one is available).
- the frontend 120 may combine the parsed event message with additional event metadata (e.g., an event wrapper, information about the message queue identity or source of the event trigger, and so on) in order to determine or establish information about the event, the source or owner of the event, and other information which may be provided to the virtual compute system 110 .
- the frontend 120 may then perform at least an initial authorization and/or security check as needed to verify secured access and related execution of user code.
- the frontend 120 may then evaluate the parsed event message and additional event metadata in order to route the message to an appropriate program or user code to be called in response to the event.
- the frontend 120 may then perform mapping of the event message into a request to execute the user code by, for example, converting the content of the message and/or the event metadata into arguments, variables, and other inputs in the programming language of the user code selected to process the event message. Additional information may be added to the request to execute the user code including, for example, an identity associated with the signer or provider of the event message.
- the frontend 120 may then call a function, method, or other entry point in the programming language (optionally with conditions based on aspects of the event message and/or event metadata) to initiate processing of the request.
- the frontend 120 may continue to perform additional processes to facilitate processing of the event message or payload. For example, if the original event message or payload comprised an aggregate collection of one or more sub-events, each sub-event may be relayed to the virtual compute system 110 for execution via the user code one at a time.
- the frontend 120 may be configured to manage splitting the original, aggregate event message payload into multiple single events.
- the frontend 120 may also be configured to, for example, facilitate intermediate or aggregate checkpoint services which may be required as part of processing of the original event message.
- an aggregate event message comprising multiple events may require some of first events to be processed and completed first before later, second or tertiary events; in this case the frontend 120 may be further configured to facilitate processing of the first events, check for status of completion of the first events before routing the later, second or tertiary events for processing/execution by the virtual compute system.
- the frontend 120 may be further configured to provide additional post-processing. For example, the frontend 120 may perform certain cleanup operations (for example, releasing a lease on the associated event message/wrapper), perform result calculations, provide return values (if needed), perform checkpoint operations (which, for example, as described above, may occur during processing or in between processing of sub-events related to an aggregate event message), and so on. In some embodiments, the frontend 120 may perform logging, monitoring, alarming/notifications, and/or other reporting associated with the completion (successful or unsuccessful) of the event on behalf of the user program.
- cleanup operations for example, releasing a lease on the associated event message/wrapper
- perform result calculations for example, provide return values (if needed)
- perform checkpoint operations which, for example, as described above, may occur during processing or in between processing of sub-events related to an aggregate event message
- the frontend 120 may perform logging, monitoring, alarming/notifications, and/or other reporting associated with the completion (succes
- logging, monitoring, and so on may be performed in addition to any logging, monitoring, and related processes performed during execution of the user code itself.
- the frontend 120 may be configured to report on the outcome of the event (and related execution of user code in response to the event), for example back to the event-triggering service 106 A or to the user.
- Conditional language such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Stored Programmes (AREA)
Abstract
A service manages a plurality of virtual machine instances for low latency execution of user codes. The service can provide the capability to execute user code in response to events triggered on an auxillary service to provide implicit and automatic rate matching and scaling between events being triggered on the auxiliary service and the corresponding execution of user code on various virtual machine instances. An auxiliary service may be configured as an event triggering service to detect events and generate event messages for execution of the user codes. The service can request, receive, or poll for event messages directly from the auxiliary service or via an intermediary message service. Event messages can be rapidly converted to requests to execute user code on the service. The time from processing the event message to initiating a request to begin code execution is less than a predetermined duration, for example, 100 ms.
Description
This application is a continuation of U.S. application Ser. No. 14/869,886, filed Sep. 29, 2015 and titled “PROCESSING EVENT MESSAGES FOR USER REQUESTS TO EXECUTE PROGRAM CODE,” which is a continuation of U.S. application Ser. No. 14/502,741, filed Sep. 30, 2014 and titled “PROCESSING EVENT MESSAGES FOR USER REQUESTS TO EXECUTE PROGRAM CODE,” the disclosure of each of which is hereby incorporated by reference in its entirety.
The present application's Applicant previously filed the following U.S. patent applications on Sep. 30, 2014, the disclosures of which are hereby incorporated by reference in their entireties:
Application No. | Title |
14/502,589 | MESSAGE-BASED COMPUTATION |
REQUEST SCHEDULING | |
14/502,810 | LOW LATENCY COMPUTATIONAL |
CAPACITY PROVISIONING | |
14/502,714 | AUTOMATIC MANAGEMENT OF LOW |
LATENCY COMPUTATIONAL CAPACITY | |
14/502,992 | THREADING AS A SERVICE |
14/502,648 | PROGRAMMATIC EVENT DETECTION |
AND MESSAGE GENERATION FOR | |
REQUESTS TO EXECUTE PROGRAM | |
CODE | |
14/502,620 | DYNAMIC CODE DEPLOYMENT AND |
VERSIONING | |
Generally described, computing devices utilize a communication network, or a series of communication networks, to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.
To facilitate increased utilization of data center resources, virtualization technologies may allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.
The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Companies and organizations no longer need to acquire and manage their own data centers in order to perform computing operations (e.g., execute code, including threads, programs, software, routines, subroutines, processes, etc.). With the advent of cloud computing, storage space and compute power traditionally provided by hardware computing devices can now be obtained and configured in minutes over the Internet. Thus, developers can quickly purchase a desired amount of computing resources without having to worry about acquiring physical machines. Such computing resources are typically purchased in the form of virtual computing resources, or virtual machine instances. These instances of virtual machines, which are hosted on physical computing devices with their own operating systems and other software components, can be utilized in the same manner as physical computers.
However, even when virtual computing resources are purchased, developers still have to decide how many and what type of virtual machine instances to purchase, and how long to keep them. For example, the costs of using the virtual machine instances may vary depending on the type and the number of hours they are rented. In addition, the minimum time a virtual machine may be rented is typically on the order of hours. Further, developers have to specify the hardware and software resources (e.g., type of operating systems and language runtimes, etc.) to install on the virtual machines. Other concerns that they might have include over-utilization (e.g., acquiring too little computing resources and suffering performance issues), under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying), prediction of change in traffic (e.g., so that they know when to scale up or down), and instance and language runtime startup delay, which can take 3-10 minutes, or longer, even though users may desire computing capacity on the order of seconds or even milliseconds. Thus, an improved method of allowing users to take advantage of the virtual machine instances provided by service providers is desired.
According to aspects of the present disclosure, by maintaining a pool of pre-initialized virtual machine instances that are ready for use as soon as a user request is received, delay (sometimes referred to as latency) associated with executing the user code (e.g., instance and language runtime startup time) can be significantly reduced.
Generally described, aspects of the present disclosure relate to the management of virtual machine instances and containers created therein. Specifically, systems and methods are disclosed which facilitate management of virtual machine instances in a virtual compute system. The virtual compute system maintains a pool of virtual machine instances that have one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. The virtual machine instances in the pool can be designated to service user requests to execute program codes. The program codes can be executed in isolated containers that are created on the virtual machine instances. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) is significantly reduced.
In certain embodiments, a message queue, a message bus, or any other message intermediary service is provided to facilitate transportation or communication of event messages generated in a first programmatic environment (e.g., at an auxiliary service) to the programmatic environment provided by the virtual compute system described herein. To further facilitate propagation and transportation of a triggered event from the first programmatic environment to the virtual compute system, event messages may be generated to include information descriptive of the triggered event, a user associated with a request to execute user code in response to the triggered event, and programmatic information to enable the virtual compute system to convert the event message into a user request for further processing by the virtual compute system. The event message and/or programmatic information contained therein may be structured according to a schema, a code model, or an application programming interface (“API”) to facilitate both creation/generation of the event message at the auxiliary service and conversion/processing of the event message at the virtual compute system.
In another aspect, a virtual compute system may maintain a pool of virtual machine instances on one or more physical computing devices, where each virtual machine instance has one or more software components loaded thereon. When the virtual compute system receives a request to execute the program code of a user, which specifies one or more computing constraints for executing the program code of the user, the virtual compute system may select a virtual machine instance for executing the program code of the user based on the one or more computing constraints specified by the request and cause the program code of the user to be executed on the selected virtual machine instance.
One benefit provided by the systems and methods described herein is an implicit and automatic rate matching and scaling between events being triggered on an auxiliary service and the corresponding execution of user code on various virtual machine instances. Thus, the virtual compute system is capable of responding to events on-demand, whether the events are triggered infrequently (e.g., once per day) or on a larger scale (e.g., hundreds or thousands per second).
Specific embodiments and example applications of the present disclosure will now be described with reference to the drawings. These embodiments and example applications are intended to illustrate, and not limit, the present disclosure.
With reference to FIG. 1 , a block diagram illustrating an embodiment of a virtual environment 100 will be described. The example shown in FIG. 1 includes a virtual environment 100 in which users (e.g., developers, etc.) of user computing devices 102 may run various program codes using the virtual computing resources provided by a virtual compute system 110.
By way of illustration, various example user computing devices 102 are shown in communication with the virtual compute system 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop, mobile phone (or smartphone), tablet, kiosk, wireless device, and other electronic devices. In addition, the user computing devices 102 may include web services running on the same or different data centers, where, for example, different web services may programmatically communicate with each other to perform one or more techniques described herein. Further, the user computing devices 102 may include Internet of Things (IoT) devices such as Internet appliances and connected devices. The virtual compute system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programming interfaces (API), and/or other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.
The user computing devices 102 access the virtual compute system 110 over a network 104. The network 104 may be any wired network, wireless network, or combination thereof. In addition, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. For example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
The virtual compute system 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks. The virtual compute system 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1 . Thus, the depiction of the virtual compute system 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure. For example, the virtual compute system 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer-to-peer network configurations to implement at least a portion of the processes described herein.
Further, the virtual compute system 110 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.
In the environment illustrated FIG. 1 , the virtual environment 100 includes a virtual compute system 110, which includes a frontend 120, a warming pool manager 130, and a worker manager 140. In the depicted example, virtual machine instances (“instances”) 152, 154 are shown in a warming pool 130A managed by the warming pool manager 130, and instances 156, 158 are shown in an active pool 140A managed by the worker manager 140. The illustration of the various components within the virtual compute system 110 is logical in nature and one or more of the components can be implemented by a single computing device or multiple computing devices. For example, the instances 152, 154, 156, 158 can be implemented on one or more physical computing devices in different various geographic regions. Similarly, each of the frontend 120, the warming pool manager 130, and the worker manager 140 can be implemented across multiple physical computing devices. Alternatively, one or more of the frontend 120, the warming pool manager 130, and the worker manager 140 can be implemented on a single physical computing device. In some embodiments, the virtual compute system 110 may comprise multiple frontends, multiple warming pool managers, and/or multiple worker managers. Although four virtual machine instances are shown in the example of FIG. 1 , the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the virtual compute system 110 may comprise any number of virtual machine instances implemented using any number of physical computing devices. Similarly, although a single warming pool and a single active pool are shown in the example of FIG. 1 , the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the virtual compute system 110 may comprise any number of warming pools and active pools.
In the example of FIG. 1 , the virtual compute system 110 is illustrated as being connected to the network 104. In some embodiments, any of the components within the virtual compute system 110 can communicate with other components (e.g., the user computing devices 102 and auxiliary services 106, which may include monitoring/logging/billing services 107, a storage service 108, an instance provisioning service 109, a message queue service 105, and/or other services that may communicate with the virtual compute system 110) of the virtual environment 100 via the network 104. In other embodiments, not all components of the virtual compute system 110 are capable of communicating with other components of the virtual environment 100. In one example, only the frontend 120 may be connected to the network 104, and other components of the virtual compute system 110 may communicate with other components of the virtual environment 100A via the frontend 120. In some embodiments, any of the auxiliary services 106 may be configured to operate as an event triggering service 106A in order to listen for events specified by users of the auxiliary service and trigger generation of event messages for processing by the virtual compute system 110, as described in more detail herein. Thus for example, the storage service 108 may be configured to operate as an event triggering service 106A in order to provide the capability of executing user code on the virtual compute system 110 in response to events as they occur on the storage service 108.
In one embodiment, the one or more auxiliary services 106 may be registered or configured to be polled or queried for events to trigger execution of user codes on the virtual compute system 110. Such registration or configuration may be provided or enabled via the one or more user interfaces provided to the user computing devices 102. For example, a user interface may provide options for the user to select or specify an auxiliary service 106 as an event-triggering service 106A, such that events on the event-triggering service 106A may trigger generation of event messages, or such that the event-triggering service 106A may be periodically polled or queried for events such as by an intermediary polling system.
In one embodiment, the event triggering service 106A may be configured to associate an event or event type with a particular program code to be executed on the virtual compute system 110 (that is, the event triggering service 106A may store or have access to data which associates the event with the particular program code). In another embodiment, the event triggering service 106A may not necessarily associate an event or event type with a particular program code to be executed on the virtual compute system 110, but rather the event triggering service 106A may generate event messages which the virtual compute system 110 is configured to interpret as being associated with the program code to be executed on the virtual compute system 110 (that is, the virtual compute system 110 may store or have access to data which associates the event with the particular program code), In another embodiment, an intermediary system or service may be configured to handle interpretation and routing of event messages to execute the program code, such that neither the event triggering service 106A nor the virtual compute system 110 may store or have access to the event-to-program code association data. For example, the event triggering service 106A may generate an event message that is agnostic to any particular program code to be executed; and the event message may be routed to the virtual compute system 110 (or an intermediary system) which evaluates the event message and associated metadata to determine which program code to execute in response, and initiate a corresponding request to execute the program code.
As mentioned above, any of the auxiliary services 106 may be configured to operate as an event triggering service 106A. These include but are not limited to: remote storage systems; database systems; message queue systems (for example, a message queue service provided by the virtual compute system 110, a message queue system owned and/or operated by a user or client separate from the virtual compute system 110, and so on); web services; auditing services; health monitoring services (for example, for monitoring health status of a virtual compute system); logging services; billing services; resource management systems and services (for example, for managing lifecycles and/or ownership of virtual computing environments and the like); and so on.
Users may use the virtual compute system 110 to execute user code thereon. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. Alternatively, the user may send a code execution request the virtual compute system 110. The virtual compute system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The virtual compute system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).
The frontend 120 receives and processes all the requests (sometimes in the form of event messages) to execute user code on the virtual compute system 110. In one embodiment, the frontend 120 serves as a front door to all the other services provided by the virtual compute system 110. The frontend 120 processes the requests and makes sure that the requests are properly authorized. For example, the frontend 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.
The user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “code,” “user code,” and “program code,” may be used interchangeably. Such user code may be executed to achieve a specific task, for example, in connection with a particular web application or mobile application developed by the user. For example, the user codes may be written in JavaScript (node.js), Java, Python, and/or Ruby. The request may include the user code (or the location thereof) and one or more arguments to be used for executing the user code. For example, the user may provide the user code along with the request to execute the user code. In another example, the request may identify a previously uploaded program code (e.g., using the API for uploading the code) by its name or its unique ID. In yet another example, the code may be included in the request as well as uploaded in a separate location (e.g., the storage service 108 or a storage system internal to the virtual compute system 110) prior to the request is received by the virtual compute system 110. The virtual compute system 110 may vary its code execution strategy based on where the code is available at the time the request is processed.
The frontend 120 may receive the request to execute such user codes in response to Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing the user code. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing the code execution request to the frontend 120. The frontend 120 may also receive the request to execute such user codes when an event is detected, such as an event that the user has registered to trigger automatic request generation. For example, the user may configured an auxiliary service 106 to operate as an event-triggering service 106A by registering the user code with the auxiliary service 106 and specifying that whenever a particular event occurs (e.g., a new file is uploaded), the request to execute the user code is sent to the frontend 120. Alternatively, the user may have registered a timed job (e.g., execute the user code every 24 hours). In such an example, when the scheduled time arrives for the timed job, the request to execute the user code may be sent to the frontend 120. A timed or scheduled job may be implemented using the techniques of this disclosure to, for example, model the job as an event generated by a timer service. For example, the timer service may generate an event message indicating that it is now time to run a user code, and the virtual compute system 110 may implement a process to run code at a certain time by utilizing the timer service to remind the virtual compute system 110 to run the user code. In yet another example, the frontend 120 may include or have access to a queue of incoming code execution requests, and when the user's batch job is removed from the virtual compute system's work queue, the frontend 120 may process the user request. In yet another example, the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in FIG. 1 .
In yet another example, the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in FIG. 1 . In some embodiments, a request to execute/activate user codes may be generated in response to an event associated with the user computing device 102 or an auxiliary service 106. For example, in response to an end user uploading a new image from a user computing device to an auxiliary service (such as storage service 108) configured to operate as an event triggering service 106A, the event triggering service 106A can trigger a request to execute/activate a code to generate a thumbnail of the image. The code may be hosted in the active pool 120 or downloaded from a storage service storage service 108 to the virtual compute system 110.
In any of the examples described above and throughout this disclosure, an event message representative of a request to execute the user code may be initially received by a message queue service 105 and provided to or placed in a message queue. The message queue service 105 may be implemented as a component of the auxiliary services 106 or as a different component. In certain embodiments the frontend 120 may periodically poll the message queue service 105 to identify and retrieve event messages for processing. Message events may be placed in the message queue for example by the message queue service 105, such as in response to when an event is detected for which the user has registered to trigger automatic generation of a request to execute user code. In some instances it may be desirable or more practical to detect such events, trigger generation of an event message, and provide the event message to the message queue service 105. For example, depending on the embodiment, the message queue service 105 may be configured to allow ordering of message events so that certain message events may receive a higher priority. In another example, the message queue service 105 may be specifically or specially configured to facilitate transportation of certain types of programmatic events, such as database operations, certain types of data suitable for batch processing, and so on. In one embodiment the message queue service 105 may be configured to provide streaming, and/or ordered transport of messages (for example, as a sharded set of data). The frontend 120 may then poll the message queue service 105 and retrieve event messages for further processing by the virtual compute system 110.
In another embodiment, instead of or in combination with using the message queue service 105, the frontend 120 may query the event triggering service 106A directly to request and receive event messages for further processing, such as via invocation of an API provided by the event triggering service 106A. In another embodiment, the event triggering service 106A may interface directly with the frontend 120 via one or more APIs and function calls. For example, when an event is detected and an event message is generated, the event triggering system 106A may invoke an API provided by the frontend 120 to provide the event message directly to the frontend 120, without necessarily providing the event message to the message queue service 105.
A user request may specify one or more third-party libraries (including native libraries) to be used along with the user code. In one embodiment, the user request includes a package file (for example, a compressed file, a ZIP file, a RAR file, etc.) containing the user code and any libraries (and/or identifications of storage locations thereof). In some embodiments, the user request includes metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code. For example, the program code may be provided with the request, previously uploaded by the user, provided by the virtual compute system 110 (e.g., standard routines), and/or provided by third parties. In some embodiments, such resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular user code, and may not vary over each execution of the user code. In such cases, the virtual compute system 110 may have access to such resource-level constraints before each individual request is received, and the individual requests may not specify such resource-level constraints. In some embodiments, the user request may specify other constraints such as permission data that indicates what kind of permissions that the request has to execute the user code. Such permission data may be used by the virtual compute system 110 to access private resources (e.g., on a private network).
In some embodiments, the user request may specify the behavior that should be adopted for handling the user request. In such embodiments, the user request may include an indicator for enabling one or more execution modes in which the user code associated with the user request is to be executed. For example, the request may include a flag or a header for indicating whether the user code should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the user code is provided back to the user (e.g., via a console user interface). In such an example, the virtual compute system 110 may inspect the request and look for the flag or the header, and if it is present, the virtual compute system 110 may modify the behavior (e.g., logging facilities) of the container in which the user code is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the request by the user interface provided to the user by the virtual compute system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in the request.
In some embodiments, the virtual compute system 110 may include multiple frontends 120. In such embodiments, a load balancer may be provided to distribute the incoming requests and/or event messages to the multiple frontends 120, for example, in a round-robin fashion.
The warming pool manager 130 ensures that virtual machine instances are ready to be used by the worker manager 140 when the virtual compute system 110 receives a request to execute user code on the virtual compute system 110. In the example illustrated in FIG. 1 , the warming pol manager 130 manages the warming pool 130A, which is a group (sometimes referred to as a pool) of pre-initialized and pre-configured virtual machine instances that may be used to service incoming user code execution requests. In some embodiments, the warming pool manager 130 causes virtual machine instances to be booted up on one or more physical computing machines within the virtual compute system 110 and added to the warming pool 130A prior to receiving a code execution request that will be executed on the virtual machine instance. In other embodiments, the warming pool manager 130 communicates with an auxiliary virtual machine instance service (e.g., an instance provisioning service 109) to create and add new instances to the warming pool 130A. For example, the warming pool manager 130 may cause additional instances to be added to the warming pool 130A based on the available capacity in the warming pool 130A to service incoming requests. In some embodiments, the warming pool manager 130 may utilize both physical computing devices within the virtual compute system 110 and one or more virtual machine instance services to acquire and maintain compute capacity that can be used to service code execution requests received by the frontend 120. In some embodiments, the virtual compute system 110 may comprise one or more logical knobs or switches for controlling (e.g., increasing or decreasing) the available capacity in the warming pool 130A. For example, a system administrator may use such a knob or switch to increase the capacity available (e.g., the number of pre-booted instances) in the warming pool 130A during peak hours. In some embodiments, virtual machine instances in the warming pool 130A can be configured based on a predetermined set of configurations independent from a specific user request to execute a user's code. The predetermined set of configurations can correspond to various types of virtual machine instances to execute user codes. The warming pool manager 130 can optimize types and numbers of virtual machine instances in the warming pool 130A based on one or more metrics related to current or previous user code executions.
As shown in FIG. 1 , instances may have operating systems (OS) and/or language runtimes loaded thereon. For example, the warming pool 130A managed by the warming pool manager 130 comprises instances 152, 154. The instance 152 includes an OS 152A and a runtime 152B. The instance 154 includes an OS 154A. In some embodiments, the instances in the warming pool 130A may also include containers (which may further contain copies of operating systems, runtimes, user codes, etc.), which are described in greater detail below. Although the instance 152 is shown in FIG. 1 to include a single runtime, in other embodiments, the instances depicted in FIG. 1 may include two or more runtimes, each of which may be used for running a different user code. In some embodiments, the warming pool manager 130 may maintain a list of instances in the warming pool 130A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances.
In some embodiments, the virtual machine instances in the warming pool 130A may be used to serve any user's request. In one embodiment, all the virtual machine instances in the warming pool 130A are configured in the same or substantially similar manner. In another embodiment, the virtual machine instances in the warming pool 130A may be configured differently to suit the needs of different users. For example, the virtual machine instances may have different operating systems, different language runtimes, and/or different libraries loaded thereon. In yet another embodiment, the virtual machine instances in the warming pool 130A may be configured in the same or substantially similar manner (e.g., with the same OS, language runtimes, and/or libraries), but some of those instances may have different container configurations. For example, two instances may have runtimes for both Python and Ruby, but one instance may have a container configured to run Python code, and the other instance may have a container configured to run Ruby code. In some embodiments, multiple warming pools 130A, each having identically-configured virtual machine instances, are provided.
The warming pool manager 130 may pre-configure the virtual machine instances in the warming pool 130A, such that each virtual machine instance is configured to satisfy at least one of the operating conditions that may be requested or specified by the user request to execute program code on the virtual compute system 110. In one embodiment, the operating conditions may include program languages in which the potential user codes may be written. For example, such languages may include Java, JavaScript, Python, Ruby, and the like. In some embodiments, the set of languages that the user codes may be written in may be limited to a predetermined set (e.g., set of 4 languages, although in some embodiments sets of more or less than four languages are provided) in order to facilitate pre-initialization of the virtual machine instances that can satisfy requests to execute user codes. For example, when the user is configuring a request via a user interface provided by the virtual compute system 110, the user interface may prompt the user to specify one of the predetermined operating conditions for executing the user code. In another example, the service-level agreement (SLA) for utilizing the services provided by the virtual compute system 110 may specify a set of conditions (e.g., programming languages, computing resources, etc.) that user requests should satisfy, and the virtual compute system 110 may assume that the requests satisfy the set of conditions in handling the requests. In another example, operating conditions specified in the request may include: the amount of compute power to be used for processing the request; the type of the request (e.g., HTTP vs. a triggered event); the timeout for the request (e.g., threshold time after which the request may be terminated); security policies (e.g., may control which instances in the warming pool 130A are usable by which user); etc.
The worker manager 140 manages the instances used for servicing incoming code execution requests. In the example illustrated in FIG. 1 , the worker manager 140 manages the active pool 140A, which is a group (sometimes referred to as a pool) of virtual machine instances that are currently assigned to one or more users. Although the virtual machine instances are described here as being assigned to a particular user, in some embodiments, the instances may be assigned to a group of users, such that the instance is tied to the group of users and any member of the group can utilize resources on the instance. For example, the users in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one member's code in a container on a particular instance after another member's code has been executed in another container on the same instance does not pose security risks. Similarly, the worker manager 140 may assign the instances and the containers according to one or more policies that dictate which requests can be executed in which containers and which instances can be assigned to which users. An example policy may specify that instances are assigned to collections of users who share the same account (e.g., account for accessing the services provided by the virtual compute system 110). In some embodiments, the requests associated with the same user group may share the same containers (e.g., if the user codes associated therewith are identical). In some embodiments, a request does not differentiate between the different users of the group and simply indicates the group to which the users associated with the requests belong.
As shown in FIG. 1 , instances may have operating systems (OS), language runtimes, and containers. The containers may have individual copies of the OS and the runtimes and user codes loaded thereon. In the example of FIG. 1 , the active pool 140A managed by the worker manager 140 includes the instances 156, 158. The instance 156 has an OS 156A, runtimes 156B, 156C, and containers 156D, 156E. The container 156D includes a copy of the OS 156A, a copy of the runtime 156B, and a copy of a code 156D-1. The container 156E includes a copy of the OS 156A, a copy of the runtime 156C, and a copy of a code 156E-1. The instance 158 has an OS 158A, runtimes 158B, 158C, 158E, 158F, a container 158D, and codes 158G, 158H. The container 158D has a copy of the OS 158A, a copy of the runtime 158B, and a copy of a code 158D-1. As illustrated in FIG. 1 , instances may have user codes loaded thereon, and containers within those instances may also have user codes loaded therein. In some embodiments, the worker manager 140 may maintain a list of instances in the active pool 140A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances. In some embodiments, the worker manager 140 may have access to a list of instances in the warming pool 130A (e.g., including the number and type of instances). In other embodiments, the worker manager 140 requests compute capacity from the warming pool manager 130 without having knowledge of the virtual machine instances in the warming pool 130A.
In the example illustrated in FIG. 1 , user codes are executed in isolated compute systems referred to as containers (e.g., containers 156D, 156E, 158D). Containers are logical units created within a virtual machine instance using the resources available on that instance. For example, the worker manager 140 may, based on information specified in the request to execute user code, create a new container or locate an existing container in one of the instances in the active pool 140A and assigns the container to the request to handle the execution of the user code associated with the request. In one embodiment, such containers are implemented as Linux containers. The virtual machine instances in the active pool 140A may have one or more containers created thereon and have one or more program codes associated with the user loaded thereon (e.g., either in one of the containers or in a local cache of the instance). Each container may have credential information made available therein, so that user codes executing on the container have access to whatever the corresponding credential information allows them to access.
Once a request has been successfully processed by the frontend 120, the worker manager 140 finds capacity to service the request to execute user code on the virtual compute system 110. For example, if there exists a particular virtual machine instance in the active pool 140A that has a container with the same user code loaded therein (e.g., code 156D-1 shown in the container 156D), the worker manager 140 may assign the container to the request and cause the user code to be executed in the container. Alternatively, if the user code is available in the local cache of one of the virtual machine instances (e.g., codes 158G, 158H, which are stored on the instance 158 but do not belong to any individual containers), the worker manager 140 may create a new container on such an instance, assign the container to the request, and cause the user code to be loaded and executed in the container.
If the worker manager 140 determines that the user code associated with the request is not found on any of the instances (e.g., either in a container or the local cache of an instance) in the active pool 140A, the worker manager 140 may determine whether any of the instances in the active pool 140A is currently assigned to the user associated with the request and has compute capacity to handle the current request. If there is such an instance, the worker manager 140 may create a new container on the instance and assign the container to the request. Alternatively, the worker manager 140 may further configure an existing container on the instance assigned to the user, and assign the container to the request. For example, the worker manager 140 may determine that the existing container may be used to execute the user code if a particular library demanded by the current user request is loaded thereon. In such a case, the worker manager 140 may load the particular library and the user code onto the container and use the container to execute the user code.
If the active pool 140A does not contain any instances currently assigned to the user, the worker manager 140 pulls a new virtual machine instance from the warming pool 130A, assigns the instance to the user associated with the request, creates a new container on the instance, assigns the container to the request, and causes the user code to be downloaded and executed on the container.
The user code may be downloaded from an auxiliary service 106 such as the storage service 108 of FIG. 1 . Data 108A illustrated in FIG. 1 may comprise user codes uploaded by one or more users, metadata associated with such user codes, or any other data utilized by the virtual compute system 110 to perform one or more techniques described herein. Although only the storage service 108 is illustrated in the example of FIG. 1 , the virtual environment 100 may include other levels of storage systems from which the user code may be downloaded. For example, each instance may have one or more storage systems either physically (e.g., a local storage resident on the physical computing system on which the instance is running) or logically (e.g., a network-attached storage system in network communication with the instance and provided within or outside of the virtual compute system 110) associated with the instance on which the container is created. Alternatively, the code may be downloaded from a web-based data store provided by the storage service 108.
Once the worker manager 140 locates one of the virtual machine instances in the warming pool 130A that can be used to serve the user code execution request, the warming pool manager 130 or the worker manger 140 takes the instance out of the warming pool 130A and assigns it to the user associated with the request. The assigned virtual machine instance is taken out of the warming pool 130A and placed in the active pool 140A. In some embodiments, once the virtual machine instance has been assigned to a particular user, the same virtual machine instance cannot be used to service requests of any other user. This provides security benefits to users by preventing possible co-mingling of user resources. Alternatively, in some embodiments, multiple containers belonging to different users (or assigned to requests associated with different users) may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity.
In some embodiments, the virtual compute system 110 may maintain a separate cache in which user codes are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and a web-based network storage (e.g., accessible via the network 104). The various scenarios that the worker manager 140 may encounter in servicing the request are described in greater detail below with reference to FIG. 4 .
After the user code has been executed, the worker manager 140 may tear down the container used to execute the user code to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager 140 may keep the container running to use it to service additional requests from the same user. For example, if another request associated with the same user code that has already been loaded in the container, the request can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the user code in the container. In some embodiments, the worker manager 140 may tear down the instance in which the container used to execute the user code was created. Alternatively, the worker manager 140 may keep the instance running to use it to service additional requests from the same user. The determination of whether to keep the container and/or the instance running after the user code is done executing may be based on a threshold time, the type of the user, average request volume of the user, and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., running of the code), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released. In some embodiments, the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.
In some embodiments, the virtual compute system 110 may provide data to one or more of the auxiliary services 106 as it services incoming code execution requests. For example, the virtual compute system 110 may communicate with the monitoring/logging/billing services 107. The monitoring/logging/billing services 107 may include: a monitoring service for managing monitoring information received from the virtual compute system 110, such as statuses of containers and instances on the virtual compute system 110; a logging service for managing logging information received from the virtual compute system 110, such as activities performed by containers and instances on the virtual compute system 110; and a billing service for generating billing information associated with executing user code on the virtual compute system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service). In addition to the system-level activities that may be performed by the monitoring/logging/billing services 107 (e.g., on behalf of the virtual compute system 110) as described above, the monitoring/logging/billing services 107 may provide application-level services on behalf of the user code executed on the virtual compute system 110. For example, the monitoring/logging/billing services 107 may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the user code being executed on the virtual compute system 110. Although shown as a single block, the monitoring, logging, and billing services 107 may be provided as separate services.
In some embodiments, the worker manager 140 may perform health checks on the instances and containers managed by the worker manager 140 (e.g., those in the active pool 140A). For example, the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, the worker manager 140 performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks. In other embodiments, the frequency of the health checks may be adjusted based on user requests. In some embodiments, the worker manager 140 may perform similar health checks on the instances and/or containers in the warming pool 130A. The instances and/or the containers in the warming pool 130A may be managed either together with those instances and containers in the active pool 140A or separately. In some embodiments, in the case where the health of the instances and/or the containers in the warming pool 130A is managed separately from the active pool 140A, the warming pool manager 130, instead of the worker manager 140, may perform the health checks described above on the instances and/or the containers in the warming pool 130A.
In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code shortly after it is received (e.g., by the frontend 120). A time period can be determined as the difference in time between initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user) and receiving a request to execute the user code (e.g., received by a frontend). Another time period can be determined as the difference in time between (1) detection of an event on an event-triggering service and (2a) receiving a request to execute the user code (e.g., received by a frontend) and/or (2b) initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user). Another time period can be determined as the difference in time between (1) retrieving, accessing, or receiving an event message (e.g., directly or indirectly from on an event-triggering service) and (2) initiating processing of a request to execute the user code (e.g., in a container on a virtual machine instance associated with the user). The virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration. In one embodiment, the predetermined duration is 500 ms. In another embodiment, the predetermined duration is 300 ms. In another embodiment, the predetermined duration is 100 ms. In another embodiment, the predetermined duration is 50 ms. In another embodiment, the predetermined duration is 10 ms. In another embodiment, the predetermined duration may be any value chosen from the range of 10 ms to 500 ms. In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration if one or more conditions are satisfied. For example, the one or more conditions may include any one of: (1) the user code is loaded on a container in the active pool 140A at the time the request is received; (2) the user code is stored in the code cache of an instance in the active pool 140A at the time the request is received; (3) the active pool 140A contains an instance assigned to the user associated with the request at the time the request is received; or (4) the warming pool 130A has capacity to handle the request at the time the request is received.
The worker manager 140 may include an instance allocation unit for finding compute capacity (e.g., containers) to service incoming code execution requests and a user code execution module for facilitating the execution of user codes on those containers. An example configuration of the frontend 120 is described in greater detail below with reference to FIG. 2 .
The memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure. The memory 180 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer-readable media. The memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the worker manager 140. The memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, the memory 180 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.
In addition to and/or in combination with the user interface unit 182, the memory 180 may include an event/request processing unit 188 which may include an event message polling unit 186A and an event message conversion unit 186B that may be executed by the processing unit 190. In one embodiment, the user interface unit 182, the event message polling unit 186A, and the event message conversion unit 186B individually or collectively implement various aspects of the present disclosure, e.g., processing an event message for a request to executed user code, as described herein. In another embodiment, a separate polling service may be implemented, for example via a polling fleet configured to poll an event source or a message queue and perform at least an initial message conversion or processing to prepare the event message for further processing by the frontend 120 and/or another component of the virtual compute system 100.
The event message polling unit 186A periodically polls for event messages to be processed into requests to execute user code. For example, the event message polling unit 186A may periodically access a message queue, such as the message queue service 105 or any other message queue service or message bus, to determine or detect whether an event message has been placed in the message queue for processing by the virtual compute system 110. An event message may be placed in the message queue according to, for example, the routine described herein with reference to FIG. 3 . In response to determining or detecting an event message in the message queue, the event message polling unit 186A may retrieve the message event from the message queue and initiate further processing of the event message as further described herein. In another embodiment, the event message polling unit 186A may poll the event-triggering service 106A directly rather than from a message queue. For example, some event-triggering services such as certain types of databases may support direct polling of event messages that need not necessarily rely on an intermediary message queue.
The event message conversion unit 186B manages the conversion of the event message (e.g., as accessed or retrieved from a message queue such as the message queue 105) into a request to execute user code (e.g., ready for further processing in accordance with the processes described in U.S. application Ser. No. 14/502,992, titled “THREADING AS A SERVICE,” filed on Sep. 30, 2014, which was previously incorporated by reference in its entirety above). Conversion of the event message is described in more detail with reference to FIG. 4 herein. In one embodiment the event message is generated in a format representative of a remote procedure call to facilitate rapid conversion and/or immediate function invocation by the virtual compute system 110 when the event message is processed. Such an implementation enables a high degree of functional transparency and reduced latency between an auxiliary system responding to an event trigger and the virtual compute system 110 processing the event message generated by the auxiliary system responsive to the event trigger.
While the event message polling unit 186A and the event message conversion unit 186B are shown in FIG. 2 as part of the frontend 120, in other embodiments, all or a portion of the event message polling unit 186A and the event message conversion unit 186B may be implemented by other components of the virtual compute system 110 and/or another computing device. For example, in certain embodiments of the present disclosure, another computing device in communication with the virtual compute system 110 may include several modules or components that operate similarly to the modules and components illustrated as part of the frontend 120. In some embodiments, the frontend 120 may further include components other than those illustrated in FIG. 2 .
Turning now to FIG. 3 , a routine 300 implemented by one or more components of the auxiliary service 106, such as the storage service 108, configured to operate as an event triggering service 106A, will be described. Although routine 300 is described with regard to implementation by event triggering service 106A, one skilled in the relevant art will appreciate that alternative components, such as a user device 102 or the virtual compute system 110, may implement routine 300 or that one or more of the blocks may be implemented by a different component or in a distributed manner.
At block 302 of the illustrative routine 300, the event triggering service 106A detects an event or activity that has been designated to trigger or activate execution of a user code on the virtual compute system 110. For example, in some embodiments the event triggering service 106A may be configured to enable or activate event notifications for one or more events. In one embodiment the event trigger and notification configuration settings may be provided or specified by a user. For example, when the user provides or uploads user code to the virtual compute system 110 and/or to the storage service 108, the user may at that time specify one or more events for which the event triggering service 106A should listen, and which corresponding functions or routines of the user code are to be executed in response to detection of the one or more events. As one illustrative example, a user may upload (or have previously uploaded or otherwise provided to the virtual compute system 110) a user code to generate a thumbnail image, and further specify that the code to generate a thumbnail image is to be executed in response to an end user uploading a new image to an auxiliary system (such as an image sharing system). In this example the image sharing system will then monitor or detect an image upload event. In some embodiments the event trigger and notification configuration settings may be provided or specified by a configuration file or other data format that may be provided, for example, with the user code. In various embodiments, the user uploading the user code and the end user performing some other action with respect to the auxiliary service configured as an event-triggering service (such as uploading a new image) may be separate and distinct users or entities.
Next, at block 304, the event triggering service 106A generates an event message in association with the detected activity/event. For example, the event triggering service 106A may generate the event message according to the event trigger and notification configuration settings previously provided by the user. The configuration settings can specify, for example, a schema, a code model, or an API associated with the user code to be executed by the virtual compute system in response to the event being triggered. For example the event message may be generated to comprise, among other things, a user account identifier associated with the user, a function identifier to identify a function to be invoked on the virtual compute system, and one or more event message parameters including any input parameters (required and/or optional) to be provided with the function invocation.
In some embodiments, the event message may include data or metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code. For example, the event message may specify that the user code is to be executed on “Operating System A” using “Language Runtime X.” When the event message is processed by the virtual compute system 110 (see, e.g., FIG. 4 ), the virtual compute system 110 or one of its components may locate a virtual machine instance that has been pre-configured with “Operating System A” and “Language Runtime X” and assigned to the user. The virtual compute system 110 may then create a container on the virtual machine instance for executing the user code therein. If a container having the code already exists on the virtual machine instance, the virtual compute system 110 can buffer the current request for execution on the container once the container becomes available.
In one embodiment the format of the event message (or at least a portion of the event message) may represent a standard remote procedure call such that the event triggering service 106A may only need to perform minimal processing to provide relevant information in the event message that may be needed to invoke the function on the virtual compute system. For example, such a standard remote procedure call format may enable an auxiliary system 106 which runs a different operating system or language runtime than the virtual compute system 110 to seamlessly communicate with the virtual compute system 110 via the event message generated in such a standard format. In one embodiment the format of the remote procedure call may be provided by the user and designed to match or correspond to the user code to be executed. For example, when an image upload event is detected, the format of the event message may represent a remote procedure call to a function to be executed in response on the virtual compute system, such as “invoke (generateThumbnail, userID, imageName, imagePath)”, or “generateThumbnail (userID, imageName, imagePath),” or similar.
In some embodiments, such as certain instances where a trusted or secure relationship is established between the event triggering service 106A and the virtual compute system 110, the event message may further comprise the user code to be executed by the virtual compute system 110. For example, the user may provide the user code to the event triggering service 106A instead of or in addition to providing the user code to the virtual compute system 110, and further designate that the user code is to be provided with the event message to the virtual compute system 110 for execution at runtime. In another embodiment, the event message may comprise a location (such as a URI) of the user code to be executed by the virtual compute system 110, such that the virtual compute system 110 can remotely invoke the user code via the URI.
At block 306, the event triggering service 106A provides the event message for further processing by the virtual compute system. For example, in one embodiment the event message is provided to a message queue, such as the message queue 105. The message queue service 105 may be a component of the auxiliary system 106 (e.g., as shown in FIG. 1 ) or it may be a separate system or service in communication with the auxiliary system 106 and/or the virtual compute system 110 over the network 160. The particular format of the event message may be based at least in part on a specification associated with the message queue being used to transport the event message. Additionally, a particular message queue being used may be based on the type of event message being generated and provided to the virtual compute system. For example, a particular message queue may be suited to transport messages relating to database operations, and thus an event message generated in response to a database event trigger may be provided using the particular message queue. How the virtual compute system accesses and processes the event message is described in greater detail below with reference to FIG. 4 . In another embodiment, the event message may be provided or made available for access by the virtual compute system 110 directly, without the need for an intermediary message queue. For example, the event triggering service 106A may provide or enable an API which the virtual compute system 110 may invoke in order to request one or more available event messages from the event triggering service 106A. The virtual compute system 100 may then invoke the API, for example on a periodic basis, instead of or in combination with polling a message queue in order to access and/or retrieve event messages for processing.
While the routine 300 of FIG. 3 has been described above with reference to blocks 302-306, the embodiments described herein are not limited as such, and one or more blocks may be omitted, modified, or switched without departing from the spirit of the present disclosure.
Turning now to FIG. 4 , a routine 400 implemented by one or more components of the virtual compute system 110 (e.g., the frontend 120) will be described. Although routine 400 is described with regard to implementation by the frontend 120, one skilled in the relevant art will appreciate that alternative components may implement routine 400 or that one or more of the blocks may be implemented by a different component or in a distributed manner.
At block 402 of the illustrative routine 400, the frontend 120 may optionally periodically poll a message queue (e.g., message queue 105) for an event message which may represent a request to execute user code. For example, the block 402 may continue the event messaging process from the block 306 of FIG. 3 in scenarios where the event triggering service 106A provides event messages via the message queue.
Next, at block 404, the frontend 120 accesses or retrieves an event message for processing by the virtual compute system 110. In one embodiment, the event message is accessed or retrieved from the message queue. Retrieval of the event message removes the event message from the message queue to prevent duplication of further processing associated with the event. In another embodiment, the event message may be accessed or retrieved from the event triggering service directly, such as by invocation of an API provided by the event trigger service by which the frontend 120 can request and receive event messages ready for processing by the virtual compute system 110. The event message can include or comprise any of the information and metadata described above with reference to FIG. 3 , including for example, a user account identifier associated with the user, a function identifier to identify a function to be invoked on the virtual compute system, and one or more event message parameters including any input parameters (required and/or optional) to be provided with the function invocation.
At block 406, the frontend 120 converts the event message into a request to execute user code, such that the request to execute user code may be further processed by the virtual compute system 110 (including, for example, as described in U.S. application Ser. No. 14/502,992, titled “THREADING AS A SERVICE,” filed on Sep. 30, 2014, which was previously incorporated by reference in its entirety above). Conversion of the event message may involve parsing the event message to identify and/or extract the function identifier, any input parameters, and other metadata that may be needed to generate a request to execute the user code which was designated by the user to be executed in response to the event trigger. For example, the event message may include or comprise at least one or more of the following: information related to an event payload (e.g., event data), which may conform to a known or defined schema or other format; an event wrapper or “envelope” provided, for example, by the event message bus or by the event-triggering service (for example, which may part of an implicit lease on the event message provided by the message queue service); and/or event metadata associated with the event, including an identity for which the event message was signed, an identity of the event producer or source of the event trigger (for example, which event-triggering service triggered the event), a name or owner of the message queue on which the event message was transported; and so on.
As described with reference to FIG. 3 , in one embodiment the format of the event message may represent a standard remote procedure call, such that once retrieved from the message queue, the frontend 120 may only need to perform minimal processing to generate a corresponding request to execute the user code. For example, when an image upload event is detected, the format of the event message may represent a remote procedure call to a function to be executed in response on the virtual compute system, such as “invoke (generateThumbnail, userID, imageName, imagePath)”, or “generateThumbnail (userID, imageName, imagePath),” or similar. Thus, in one embodiment, the frontend 120 may extract this remote procedure call and immediately invoke the specified function to initiate a request. Further, as discussed above with reference to FIG. 3 , the request to execute the user code may further specify that the user code is to be executed on “Operating System A” using “Language Runtime X,” which may be included as additional inputs for the request to execute the user code.
At block 408, the frontend 120 may optionally verify security access and/or authenticate the user associated with a user account identifier provided with the event message and determine that the user is authorized to access the specified user code. In some embodiments the security and/or authentication may be omitted or performed in a separate process or as part of the processing of the request to execute the user code. In some embodiments the security and/or authentication may be performed earlier in the routine 400, such as prior to the conversion performed at block 406.
At block 410, the frontend 120 provides the request to execute the user code to the virtual compute system 110. In certain embodiments the frontend 120 itself may perform further processing of the request, for example as described in U.S. application Ser. No. 14/502,992, titled “THREADING AS A SERVICE,” filed on Sep. 30, 2014, which was previously incorporated by reference in its entirety above. The request can include a program code composed in a programming language. Various program languages including Java, PHP, C++, Python, etc. can be used to compose the user code. The request can include configuration information relating to code-execution requirements. For example, the request can include information about program language in which the program code is written, information about language runtime and/or language library to execute the user code. The configuration information need not include any specific information regarding the virtual machine instance that can host the user code.
While the routine 400 of FIG. 4 has been described above with reference to blocks 402-410, the embodiments described herein are not limited as such, and one or more blocks may be omitted, modified, or switched without departing from the spirit of the present disclosure. For example, the block 402 may be modified such that the frontend 120 receives an event message from the user device 102.
The routine 400 of FIG. 4 may include different processes or routines which may be performed in a different order. One alternative example is provided as follows, although other variations may be possible. First, an event message may be received or accessed by the frontend 120, which parses the event message (using a schema if one is available). The frontend 120 may combine the parsed event message with additional event metadata (e.g., an event wrapper, information about the message queue identity or source of the event trigger, and so on) in order to determine or establish information about the event, the source or owner of the event, and other information which may be provided to the virtual compute system 110. The frontend 120 may then perform at least an initial authorization and/or security check as needed to verify secured access and related execution of user code. The frontend 120 may then evaluate the parsed event message and additional event metadata in order to route the message to an appropriate program or user code to be called in response to the event. The frontend 120 may then perform mapping of the event message into a request to execute the user code by, for example, converting the content of the message and/or the event metadata into arguments, variables, and other inputs in the programming language of the user code selected to process the event message. Additional information may be added to the request to execute the user code including, for example, an identity associated with the signer or provider of the event message. The frontend 120 may then call a function, method, or other entry point in the programming language (optionally with conditions based on aspects of the event message and/or event metadata) to initiate processing of the request.
During processing of the request to execute user code the frontend 120 may continue to perform additional processes to facilitate processing of the event message or payload. For example, if the original event message or payload comprised an aggregate collection of one or more sub-events, each sub-event may be relayed to the virtual compute system 110 for execution via the user code one at a time. The frontend 120 may be configured to manage splitting the original, aggregate event message payload into multiple single events. The frontend 120 may also be configured to, for example, facilitate intermediate or aggregate checkpoint services which may be required as part of processing of the original event message. For example, an aggregate event message comprising multiple events may require some of first events to be processed and completed first before later, second or tertiary events; in this case the frontend 120 may be further configured to facilitate processing of the first events, check for status of completion of the first events before routing the later, second or tertiary events for processing/execution by the virtual compute system.
After processing/execution of the user code for an event message, the frontend 120 may be further configured to provide additional post-processing. For example, the frontend 120 may perform certain cleanup operations (for example, releasing a lease on the associated event message/wrapper), perform result calculations, provide return values (if needed), perform checkpoint operations (which, for example, as described above, may occur during processing or in between processing of sub-events related to an aggregate event message), and so on. In some embodiments, the frontend 120 may perform logging, monitoring, alarming/notifications, and/or other reporting associated with the completion (successful or unsuccessful) of the event on behalf of the user program. In some cases such logging, monitoring, and so on may be performed in addition to any logging, monitoring, and related processes performed during execution of the user code itself. For example, the frontend 120 may be configured to report on the outcome of the event (and related execution of user code in response to the event), for example back to the event-triggering service 106A or to the user.
It will be appreciated by those skilled in the art and others that all of the functions described in this disclosure may be embodied in software executed by one or more physical processors of the disclosed components and mobile communication devices. The software may be persistently stored in any type of non-volatile storage.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable storage medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms, and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Claims (20)
1. A system for processing event messages to cause execution of program codes on one or more virtual machine instances, the system comprising:
a front end computing system comprising one or more hardware computing devices executing specific computer-executable instructions, said front end computing system in communication with (i) a message queue system configured to store event messages and (ii) a virtual compute system configured to execute program codes, the front end computing system configured to at least:
retrieve, from the message queue system, a first event message including event data relating to a first triggering event;
identify, based on the event data included in the first event message, (i) a first program code to be executed by the virtual compute system and (ii) one or more input parameters to the first program code; and
cause the virtual compute system to execute the first program code using the one or more input parameters.
2. The system of claim 1 , wherein the first triggering event comprises a data file being uploaded to a remote storage system in communication with the message queue system.
3. The system of claim 1 , wherein the first triggering event comprises a database table being updated in a database system in communication with the message queue system.
4. The system of claim 1 , wherein the event data comprises one or more of (i) a user account identifier identifying a user account associated with the first program code, (ii) a program code identifier associated with the first program code, and (iii) one or more input parameter identifiers identifying the one or more input parameters to the first program code.
5. The system of claim 1 , wherein the message queue system is separate and distinct from the virtual compute system.
6. The system of claim 1 , wherein the event data is indicative of one or more of (i) an operating system on which the first program code is to be executed and (ii) a program language in which the first program code is written.
7. A computer-implemented method for executing program codes in response to triggering events comprising:
as implemented by one or more computing devices configured with specific executable instructions,
receiving an event message including event data relating to a first triggering event;
identifying, based on the event data included in the event message, (i) a first program code to be executed by a virtual compute system configured to execute program codes on one or more virtual machine instances and (ii) one or more input parameters to the first program code, the first program code configured to be executed in response to an occurrence of the first triggering event;
identifying a virtual machine instance to be used to execute the first program code; and
executing the first program code on the virtual machine instance using the one or more input parameters.
8. The computer-implemented method of claim 7 , wherein the event message includes one or more of (i) a user account identifier identifying a user account associated with the first program code, (ii) a program code identifier associated with the first program code, and (iii) one or more input parameter identifiers identifying the one or more input parameters to the first program code.
9. The computer-implemented method of claim 7 , wherein the event message includes an indication that the event message was generated in response to the occurrence of the first triggering event.
10. The computer-implemented method of claim 7 , wherein the event message includes an indication of an event source environment in which the first triggering event occurred.
11. The computer-implemented method of claim 7 , wherein the first triggering event comprises a first file being uploaded onto a file storage system configured to store data files, wherein the first program code is configured to generate a second file based on a content of the first file.
12. The computer-implemented method of claim 7 , wherein the first triggering event comprises a first file being uploaded onto a file storage system configured to store data files, wherein the virtual compute system is further configured to execute the first program code with the first file as an input to the first program code.
13. The computer-implemented method of claim 7 , wherein the virtual compute system is further configured to identify the first program code based on a mapping configured to map a given event message to one or more of a plurality of program codes.
14. The computer-implemented method of claim 7 , wherein the event message is an aggregate event message associated with multiple program codes, wherein the virtual compute system is further configured to determine, prior to causing one or more second ones of the multiple program codes to be execute, that a first one of the multiple program codes has finished executing, wherein the first one of the multiple program codes is different from any of the one or more second ones of the multiple program codes.
15. The computer-implemented method of claim 7 , further comprising receiving the event message from an event source that is provided by a computing system separate and distinct from the virtual compute system.
16. The computer-implemented method of claim 7 , further comprising causing the first program code to be executed inside a container created on the virtual machine instance assigned to a user account associated with the first program code.
17. Non-transitory physical computer storage comprising computer executable instructions that, when executed by one or more hardware processors, configure the one or more hardware processors to:
access an event message including event data relating to a triggering event;
identify, based on the event data included in the event message, (i) a first program code to be executed by a virtual compute system configured to execute program codes on one or more virtual machine instances and (ii) one or more input parameters to the first program code;
identify a virtual machine instance on which to execute the first program code; and
cause the first program code to be executed on the virtual machine instance using the one or more input parameters.
18. The non-transitory physical computer storage of claim 17 , wherein the computer executable instructions further cause the one or more hardware processors to access the event message at an auxiliary service configured to store event messages generated in response to respective triggering events, wherein the auxiliary service is provided by a computing system that is separate and distinct from the virtual compute system.
19. The non-transitory physical computer storage of claim 17 , wherein the event data is indicative of one or more of (i) an operating system on which the first program code is to be executed and (ii) a program language in which the first program code is written.
20. The computer-readable, non-transitory storage medium of claim 17 , wherein the computer executable instructions further cause the one or more hardware processors to cause the first program code to be executed inside a container created on the virtual machine instance assigned to a user account associated with the first program code.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/340,825 US10162688B2 (en) | 2014-09-30 | 2016-11-01 | Processing event messages for user requests to execute program code |
US16/223,934 US11467890B2 (en) | 2014-09-30 | 2018-12-18 | Processing event messages for user requests to execute program code |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/502,741 US9146764B1 (en) | 2014-09-30 | 2014-09-30 | Processing event messages for user requests to execute program code |
US14/869,886 US9483335B1 (en) | 2014-09-30 | 2015-09-29 | Processing event messages for user requests to execute program code |
US15/340,825 US10162688B2 (en) | 2014-09-30 | 2016-11-01 | Processing event messages for user requests to execute program code |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/869,886 Continuation US9483335B1 (en) | 2014-09-30 | 2015-09-29 | Processing event messages for user requests to execute program code |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/223,934 Continuation US11467890B2 (en) | 2014-09-30 | 2018-12-18 | Processing event messages for user requests to execute program code |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170116051A1 US20170116051A1 (en) | 2017-04-27 |
US10162688B2 true US10162688B2 (en) | 2018-12-25 |
Family
ID=54149603
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/502,741 Active US9146764B1 (en) | 2014-09-30 | 2014-09-30 | Processing event messages for user requests to execute program code |
US14/869,886 Active US9483335B1 (en) | 2014-09-30 | 2015-09-29 | Processing event messages for user requests to execute program code |
US15/340,825 Active US10162688B2 (en) | 2014-09-30 | 2016-11-01 | Processing event messages for user requests to execute program code |
US16/223,934 Active 2034-11-17 US11467890B2 (en) | 2014-09-30 | 2018-12-18 | Processing event messages for user requests to execute program code |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/502,741 Active US9146764B1 (en) | 2014-09-30 | 2014-09-30 | Processing event messages for user requests to execute program code |
US14/869,886 Active US9483335B1 (en) | 2014-09-30 | 2015-09-29 | Processing event messages for user requests to execute program code |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/223,934 Active 2034-11-17 US11467890B2 (en) | 2014-09-30 | 2018-12-18 | Processing event messages for user requests to execute program code |
Country Status (1)
Country | Link |
---|---|
US (4) | US9146764B1 (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10365985B2 (en) | 2015-12-16 | 2019-07-30 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10387177B2 (en) | 2015-02-04 | 2019-08-20 | Amazon Technologies, Inc. | Stateful virtual compute system |
US10402231B2 (en) | 2016-06-29 | 2019-09-03 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions |
US10506008B2 (en) * | 2017-08-28 | 2019-12-10 | Banjo, Inc. | Detecting an event from streaming data |
US10552193B2 (en) | 2015-02-04 | 2020-02-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US10564946B1 (en) | 2017-12-13 | 2020-02-18 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10565021B2 (en) * | 2017-11-30 | 2020-02-18 | Microsoft Technology Licensing, Llc | Automated capacity management in distributed computing systems |
US10581945B2 (en) | 2017-08-28 | 2020-03-03 | Banjo, Inc. | Detecting an event from signal data |
US10592269B2 (en) | 2014-09-30 | 2020-03-17 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US10623476B2 (en) | 2015-04-08 | 2020-04-14 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US10691498B2 (en) | 2015-12-21 | 2020-06-23 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US10725752B1 (en) | 2018-02-13 | 2020-07-28 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10733085B1 (en) | 2018-02-05 | 2020-08-04 | Amazon Technologies, Inc. | Detecting impedance mismatches due to cross-service calls |
US10754701B1 (en) | 2015-12-16 | 2020-08-25 | Amazon Technologies, Inc. | Executing user-defined code in response to determining that resources expected to be utilized comply with resource restrictions |
US10776171B2 (en) | 2015-04-08 | 2020-09-15 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US10776091B1 (en) | 2018-02-26 | 2020-09-15 | Amazon Technologies, Inc. | Logging endpoint in an on-demand code execution system |
US10824484B2 (en) | 2014-09-30 | 2020-11-03 | Amazon Technologies, Inc. | Event-driven computing |
US10831898B1 (en) | 2018-02-05 | 2020-11-10 | Amazon Technologies, Inc. | Detecting privilege escalations in code including cross-service calls |
US10884787B1 (en) | 2016-09-23 | 2021-01-05 | Amazon Technologies, Inc. | Execution guarantees in an on-demand network code execution system |
US10884812B2 (en) | 2018-12-13 | 2021-01-05 | Amazon Technologies, Inc. | Performance-based hardware emulation in an on-demand network code execution system |
US10884722B2 (en) | 2018-06-26 | 2021-01-05 | Amazon Technologies, Inc. | Cross-environment application of tracing information for improved code execution |
US10884802B2 (en) | 2014-09-30 | 2021-01-05 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US10891145B2 (en) | 2016-03-30 | 2021-01-12 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US10908927B1 (en) | 2019-09-27 | 2021-02-02 | Amazon Technologies, Inc. | On-demand execution of object filter code in output path of object storage service |
US10915371B2 (en) | 2014-09-30 | 2021-02-09 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US10942795B1 (en) | 2019-11-27 | 2021-03-09 | Amazon Technologies, Inc. | Serverless call distribution to utilize reserved capacity without inhibiting scaling |
US10949237B2 (en) | 2018-06-29 | 2021-03-16 | Amazon Technologies, Inc. | Operating system customization in an on-demand network code execution system |
US10956185B2 (en) | 2014-09-30 | 2021-03-23 | Amazon Technologies, Inc. | Threading as a service |
US10977097B2 (en) | 2018-04-13 | 2021-04-13 | Banjo, Inc. | Notifying entities of relevant events |
US10996961B2 (en) | 2019-09-27 | 2021-05-04 | Amazon Technologies, Inc. | On-demand indexing of data in input path of object storage service |
US11010188B1 (en) | 2019-02-05 | 2021-05-18 | Amazon Technologies, Inc. | Simulated data object storage using on-demand computation of data objects |
US11016815B2 (en) | 2015-12-21 | 2021-05-25 | Amazon Technologies, Inc. | Code execution request routing |
US11025693B2 (en) | 2017-08-28 | 2021-06-01 | Banjo, Inc. | Event detection from signal data removing private information |
US11023311B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | On-demand code execution in input path of data uploaded to storage service in multiple data portions |
US11023416B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | Data access control system for object storage service based on owner-defined code |
US11055112B2 (en) | 2019-09-27 | 2021-07-06 | Amazon Technologies, Inc. | Inserting executions of owner-specified code into input/output path of object storage service |
US11099870B1 (en) | 2018-07-25 | 2021-08-24 | Amazon Technologies, Inc. | Reducing execution times in an on-demand network code execution system using saved machine states |
US11099917B2 (en) | 2018-09-27 | 2021-08-24 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US11106477B2 (en) | 2019-09-27 | 2021-08-31 | Amazon Technologies, Inc. | Execution of owner-specified code during input/output path to object storage service |
US11115404B2 (en) | 2019-06-28 | 2021-09-07 | Amazon Technologies, Inc. | Facilitating service connections in serverless code executions |
US11119826B2 (en) | 2019-11-27 | 2021-09-14 | Amazon Technologies, Inc. | Serverless call distribution to implement spillover while avoiding cold starts |
US11119813B1 (en) | 2016-09-30 | 2021-09-14 | Amazon Technologies, Inc. | Mapreduce implementation using an on-demand network code execution system |
US11119809B1 (en) | 2019-06-20 | 2021-09-14 | Amazon Technologies, Inc. | Virtualization-based transaction handling in an on-demand network code execution system |
US11126469B2 (en) | 2014-12-05 | 2021-09-21 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US11132213B1 (en) | 2016-03-30 | 2021-09-28 | Amazon Technologies, Inc. | Dependency-based process of pre-existing data sets at an on demand code execution environment |
US11146569B1 (en) | 2018-06-28 | 2021-10-12 | Amazon Technologies, Inc. | Escalation-resistant secure network services using request-scoped authentication information |
US11159528B2 (en) | 2019-06-28 | 2021-10-26 | Amazon Technologies, Inc. | Authentication to network-services using hosted authentication information |
US11190609B2 (en) | 2019-06-28 | 2021-11-30 | Amazon Technologies, Inc. | Connection pooling for scalable network services |
US11188391B1 (en) | 2020-03-11 | 2021-11-30 | Amazon Technologies, Inc. | Allocating resources to on-demand code executions under scarcity conditions |
US11243953B2 (en) | 2018-09-27 | 2022-02-08 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US11250007B1 (en) | 2019-09-27 | 2022-02-15 | Amazon Technologies, Inc. | On-demand execution of object combination code in output path of object storage service |
US11263034B2 (en) | 2014-09-30 | 2022-03-01 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US11263220B2 (en) | 2019-09-27 | 2022-03-01 | Amazon Technologies, Inc. | On-demand execution of object transformation code in output path of object storage service |
US11360948B2 (en) | 2019-09-27 | 2022-06-14 | Amazon Technologies, Inc. | Inserting owner-specified data processing pipelines into input/output path of object storage service |
US11386230B2 (en) | 2019-09-27 | 2022-07-12 | Amazon Technologies, Inc. | On-demand code obfuscation of data in input path of object storage service |
US11388210B1 (en) | 2021-06-30 | 2022-07-12 | Amazon Technologies, Inc. | Streaming analytics using a serverless compute system |
US11394761B1 (en) | 2019-09-27 | 2022-07-19 | Amazon Technologies, Inc. | Execution of user-submitted code on a stream of data |
US11416628B2 (en) | 2019-09-27 | 2022-08-16 | Amazon Technologies, Inc. | User-specific data manipulation system for object storage service based on user-submitted code |
US11467890B2 (en) | 2014-09-30 | 2022-10-11 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US11550713B1 (en) | 2020-11-25 | 2023-01-10 | Amazon Technologies, Inc. | Garbage collection in distributed systems using life cycled storage roots |
US11550944B2 (en) | 2019-09-27 | 2023-01-10 | Amazon Technologies, Inc. | Code execution environment customization system for object storage service |
US11593270B1 (en) | 2020-11-25 | 2023-02-28 | Amazon Technologies, Inc. | Fast distributed caching using erasure coded object parts |
US11656892B1 (en) | 2019-09-27 | 2023-05-23 | Amazon Technologies, Inc. | Sequential execution of user-submitted code and native functions |
US11714682B1 (en) | 2020-03-03 | 2023-08-01 | Amazon Technologies, Inc. | Reclaiming computing resources in an on-demand code execution system |
US11775640B1 (en) | 2020-03-30 | 2023-10-03 | Amazon Technologies, Inc. | Resource utilization-based malicious task detection in an on-demand code execution system |
US11861386B1 (en) | 2019-03-22 | 2024-01-02 | Amazon Technologies, Inc. | Application gateways in an on-demand network code execution system |
US11875173B2 (en) | 2018-06-25 | 2024-01-16 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US11943093B1 (en) | 2018-11-20 | 2024-03-26 | Amazon Technologies, Inc. | Network connection recovery after virtual machine transition in an on-demand network code execution system |
US11968280B1 (en) | 2021-11-24 | 2024-04-23 | Amazon Technologies, Inc. | Controlling ingestion of streaming data to serverless function executions |
US12015603B2 (en) | 2021-12-10 | 2024-06-18 | Amazon Technologies, Inc. | Multi-tenant mode for serverless code execution |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8782434B1 (en) | 2010-07-15 | 2014-07-15 | The Research Foundation For The State University Of New York | System and method for validating program execution at run-time |
US9063721B2 (en) | 2012-09-14 | 2015-06-23 | The Research Foundation For The State University Of New York | Continuous run-time validation of program execution: a practical approach |
US9069782B2 (en) | 2012-10-01 | 2015-06-30 | The Research Foundation For The State University Of New York | System and method for security and privacy aware virtual machine checkpointing |
US10516733B2 (en) | 2014-11-25 | 2019-12-24 | Auth0, Inc. | Multi-tenancy via code encapsulated in server requests |
US9727725B2 (en) | 2015-02-04 | 2017-08-08 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9471775B1 (en) | 2015-02-04 | 2016-10-18 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US10505881B2 (en) * | 2015-09-23 | 2019-12-10 | Amazon Technologies, Inc. | Generating message envelopes for heterogeneous events |
US9928108B1 (en) * | 2015-09-29 | 2018-03-27 | Amazon Technologies, Inc. | Metaevent handling for on-demand code execution environments |
US10042660B2 (en) | 2015-09-30 | 2018-08-07 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US9811363B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10013267B1 (en) | 2015-12-16 | 2018-07-03 | Amazon Technologies, Inc. | Pre-triggers for code execution environments |
US9830175B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9830449B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Execution locations for request-driven code |
US10002026B1 (en) | 2015-12-21 | 2018-06-19 | Amazon Technologies, Inc. | Acquisition and maintenance of dedicated, reserved, and variable compute capacity |
US9928103B1 (en) * | 2015-12-31 | 2018-03-27 | VCE IP Holding Company LLC | Methods, systems, and computer readable mediums for managing distributed computing systems using an event driven framework |
US10554491B2 (en) | 2016-02-26 | 2020-02-04 | Red Hat, Inc. | Customizable event processing for third party infrastructure events |
US10162672B2 (en) | 2016-03-30 | 2018-12-25 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
US9952896B2 (en) | 2016-06-28 | 2018-04-24 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US10282229B2 (en) | 2016-06-28 | 2019-05-07 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US9977691B2 (en) | 2016-06-29 | 2018-05-22 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions based on communication between frontends |
US10203990B2 (en) | 2016-06-30 | 2019-02-12 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US10277708B2 (en) | 2016-06-30 | 2019-04-30 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US10061613B1 (en) | 2016-09-23 | 2018-08-28 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US11824863B2 (en) * | 2016-11-03 | 2023-11-21 | Nicira, Inc. | Performing services on a host |
US10417049B2 (en) * | 2016-11-28 | 2019-09-17 | Amazon Technologies, Inc. | Intra-code communication in a localized device coordinator |
EP3545414A1 (en) * | 2016-11-28 | 2019-10-02 | Amazon Technologies Inc. | On-demand code execution in a localized device coordinator |
US10783016B2 (en) | 2016-11-28 | 2020-09-22 | Amazon Technologies, Inc. | Remote invocation of code execution in a localized device coordinator |
US10637817B2 (en) | 2016-11-28 | 2020-04-28 | Amazon Technologies, Inc. | Managing messaging protocol communications |
US10372486B2 (en) * | 2016-11-28 | 2019-08-06 | Amazon Technologies, Inc. | Localized device coordinator |
US10216540B2 (en) | 2016-11-28 | 2019-02-26 | Amazon Technologies, Inc. | Localized device coordinator with on-demand code execution capabilities |
US10608973B2 (en) | 2016-11-28 | 2020-03-31 | Amazon Technologies, Inc. | Embedded codes in messaging protocol communications |
US10452439B2 (en) * | 2016-11-28 | 2019-10-22 | Amazon Technologies, Inc. | On-demand code execution in a localized device coordinator |
US10467143B1 (en) * | 2017-02-27 | 2019-11-05 | Amazon Technologies, Inc. | Event-driven cache |
CN106933589B (en) * | 2017-03-13 | 2020-07-28 | 车智互联(北京)科技有限公司 | Message queue assembly based on configuration and integration method thereof |
CN108737143A (en) * | 2017-04-21 | 2018-11-02 | 中兴通讯股份有限公司 | A kind of short-message system and its control method |
US10409654B2 (en) | 2017-07-13 | 2019-09-10 | International Business Machines Corporation | Facilitating event-driven processing using unikernels |
US11151022B1 (en) * | 2017-09-29 | 2021-10-19 | Amazon Technologies, Inc. | Testing of executable code for local device coordinator |
US10833881B1 (en) * | 2017-11-06 | 2020-11-10 | Amazon Technologies, Inc. | Distributing publication messages to devices |
US11134019B1 (en) * | 2017-12-11 | 2021-09-28 | Amazon Technologies, Inc. | Automatic scaling of resources for message processing |
US10303492B1 (en) | 2017-12-13 | 2019-05-28 | Amazon Technologies, Inc. | Managing custom runtimes in an on-demand code execution system |
US10572375B1 (en) | 2018-02-05 | 2020-02-25 | Amazon Technologies, Inc. | Detecting parameter validity in code including cross-service calls |
US10353678B1 (en) | 2018-02-05 | 2019-07-16 | Amazon Technologies, Inc. | Detecting code characteristic alterations due to cross-service calls |
WO2020041592A1 (en) * | 2018-08-22 | 2020-02-27 | Chromera, Inc. | Evaluating user actions related to polymodal display information |
US10691433B2 (en) | 2018-08-31 | 2020-06-23 | Databricks Inc. | Split front end for flexible back end cluster processing |
US10884778B1 (en) * | 2018-09-28 | 2021-01-05 | Amazon Technologies, Inc. | Adjusting dynamically scalable instance hosting based on compute resource usage |
US10877786B1 (en) | 2018-09-28 | 2020-12-29 | Amazon Technologies, Inc. | Managing compute resource usage based on prior usage |
US11200331B1 (en) | 2018-11-21 | 2021-12-14 | Amazon Technologies, Inc. | Management of protected data in a localized device coordinator |
GB2580709B (en) * | 2019-01-28 | 2021-12-15 | Osirium Ltd | Task engine |
US11372654B1 (en) | 2019-03-25 | 2022-06-28 | Amazon Technologies, Inc. | Remote filesystem permissions management for on-demand code execution |
CN111078383A (en) * | 2019-12-24 | 2020-04-28 | 浙江诺诺网络科技有限公司 | Timed task management method, device, equipment and storage medium |
US11573775B2 (en) | 2020-06-17 | 2023-02-07 | Bank Of America Corporation | Software code converter for resolving redundancy during code development |
US11347500B2 (en) | 2020-06-17 | 2022-05-31 | Bank Of America Corporation | Software code converter for resolving conflicts during code development |
US11782685B2 (en) | 2020-06-17 | 2023-10-10 | Bank Of America Corporation | Software code vectorization converter |
US12020197B2 (en) * | 2021-12-16 | 2024-06-25 | Rakuten Mobile, Inc. | Event-driven enhancement of event messages |
Citations (301)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4949254A (en) | 1988-09-29 | 1990-08-14 | Ibm Corp. | Method to manage concurrent execution of a distributed application program by a host computer and a large plurality of intelligent work stations on an SNA network |
US5283888A (en) | 1991-08-27 | 1994-02-01 | International Business Machines Corporation | Voice processing interface unit employing virtual screen communications for accessing a plurality of primed applications |
US5970488A (en) | 1997-05-05 | 1999-10-19 | Northrop Grumman Corporation | Real-time distributed database system and method |
US6385636B1 (en) | 1997-07-30 | 2002-05-07 | International Business Machines Corporation | Distributed processing system and client node, server node and distributed processing method |
JP2002287974A (en) | 2001-03-26 | 2002-10-04 | Ricoh Co Ltd | Method and device related to control for registering and starting application program |
US6463509B1 (en) | 1999-01-26 | 2002-10-08 | Motive Power, Inc. | Preloading data in a cache memory according to user-specified preload criteria |
US20020172273A1 (en) | 2001-05-21 | 2002-11-21 | Baker Albert D. | Adaptive resource management in a communication system |
US20030071842A1 (en) | 2001-10-12 | 2003-04-17 | National Instruments Corporation | Dynamic and user-defined events for a graphical program |
US20030084434A1 (en) | 2001-07-16 | 2003-05-01 | Yuqing Ren | Embedded software update system |
US20030229794A1 (en) | 2002-06-07 | 2003-12-11 | Sutton James A. | System and method for protection against untrusted system management code by redirecting a system management interrupt and creating a virtual machine container |
US6708276B1 (en) | 1999-08-03 | 2004-03-16 | International Business Machines Corporation | Architecture for denied permissions in Java |
US20040098154A1 (en) | 2000-10-04 | 2004-05-20 | Mccarthy Brendan | Method and apparatus for computer system engineering |
US20040249947A1 (en) | 2003-05-22 | 2004-12-09 | Hewlett-Packard Development Company, L.P. | Concurrent cluster environment |
US20040268358A1 (en) | 2003-06-30 | 2004-12-30 | Microsoft Corporation | Network load balancing with host status information |
US20050044301A1 (en) | 2003-08-20 | 2005-02-24 | Vasilevsky Alexander David | Method and apparatus for providing virtual computing services |
US20050120160A1 (en) | 2003-08-20 | 2005-06-02 | Jerry Plouffe | System and method for managing virtual servers |
US20050132368A1 (en) | 1999-10-21 | 2005-06-16 | Harlan Sexton | Using a virtual machine instance as the basic unit of user execution in a server environment |
US20050132167A1 (en) | 2003-12-10 | 2005-06-16 | Giuseppe Longobardi | Workload scheduler with cumulative weighting indexes |
US20050193113A1 (en) | 2003-04-14 | 2005-09-01 | Fujitsu Limited | Server allocation control method |
US20050193283A1 (en) | 2003-12-30 | 2005-09-01 | Reinhardt Steven K. | Buffering unchecked stores for fault detection in redundant multithreading systems using speculative memory support |
US20050257051A1 (en) | 2003-08-18 | 2005-11-17 | Philippe Richard | Adaptive data transformation engine |
JP2006107599A (en) | 2004-10-04 | 2006-04-20 | Sekisui Chem Co Ltd | Optical disk |
US7036121B1 (en) | 1999-12-01 | 2006-04-25 | International Business Machines Corporation | Method and system for maintaining software via network |
US20060123066A1 (en) | 2001-08-30 | 2006-06-08 | Bea Systems, Inc. | Cluster caching with concurrency checking |
US20060129684A1 (en) | 2004-11-10 | 2006-06-15 | Chutney Technologies, Inc. | Apparatus and method for distributing requests across a cluster of application servers |
US20060184669A1 (en) | 2004-08-13 | 2006-08-17 | Kalyanaraman Vaidyanathan | Monitoring system-calls to identify runaway processes within a computer system |
US20060200668A1 (en) | 2005-02-04 | 2006-09-07 | Jean Hybre | Process for the secure management of the execution of an application |
US20060212332A1 (en) | 2005-03-16 | 2006-09-21 | Cluster Resources, Inc. | Simple integration of on-demand compute environment |
US20060242647A1 (en) | 2005-04-21 | 2006-10-26 | Kimbrel Tracy J | Dynamic application placement under service and memory constraints |
US20060248195A1 (en) | 2005-04-27 | 2006-11-02 | Kunihiko Toumura | Computer system with a packet transfer device using a hash value for transferring a content request |
US20070094396A1 (en) | 2005-10-20 | 2007-04-26 | Hitachi, Ltd. | Server pool management method |
US20070130341A1 (en) | 2005-12-06 | 2007-06-07 | Cisco Technology, Inc. | System for power savings in server farms |
US20070255604A1 (en) | 2006-05-01 | 2007-11-01 | Seelig Michael J | Systems and methods to automatically activate distribution channels provided by business partners |
US20080028409A1 (en) | 2006-07-25 | 2008-01-31 | Ludmila Cherkasova | System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance |
US20080082977A1 (en) | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Automatic load and balancing for virtual machines to meet resource requirements |
US20080104608A1 (en) | 2006-10-27 | 2008-05-01 | Hyser Chris D | Starting up at least one virtual machine in a physical machine by a load balancer |
US20080104247A1 (en) | 2006-10-31 | 2008-05-01 | Sun Microsystems, Inc. | Adaptive management of computing resources |
US20080126486A1 (en) | 2006-09-15 | 2008-05-29 | Bea Systems, Inc. | Personal messaging application programming interface for integrating an application with groupware systems |
US20080126110A1 (en) | 2006-11-27 | 2008-05-29 | Tilmann Haeberle | Integrated software support for a distributed business application with seamless backend communications |
US20080189468A1 (en) | 2007-02-02 | 2008-08-07 | Vmware, Inc. | High Availability Virtual Machine Cluster |
US20080201711A1 (en) | 2007-02-15 | 2008-08-21 | Amir Husain Syed M | Maintaining a Pool of Free Virtual Machines on a Server Computer |
WO2008114454A1 (en) | 2007-03-20 | 2008-09-25 | Fujitsu Limited | Renewing system, program executing device, and computer program |
US20090013153A1 (en) | 2007-07-04 | 2009-01-08 | Hilton Ronald N | Processor exclusivity in a partitioned system |
US20090025009A1 (en) | 2007-07-18 | 2009-01-22 | Frank Brunswig | Co-execution of objects from divergent runtime environments |
US20090055810A1 (en) | 2007-08-21 | 2009-02-26 | Nce Technologies Inc. | Method And System For Compilation And Execution Of Software Codes |
US20090055829A1 (en) | 2007-08-24 | 2009-02-26 | Gibson Gary A | Method and apparatus for fine grain performance management of computer systems |
US20090070355A1 (en) | 2007-09-11 | 2009-03-12 | International Business Machines Corporation | Transitioning between historical and real time data streams in the processing of data change messages |
US20090077569A1 (en) | 2007-09-14 | 2009-03-19 | Chris Appleton | Network management system event notification shortcut |
US20090125902A1 (en) | 2007-03-01 | 2009-05-14 | Ghosh Anup K | On-demand disposable virtual work system |
US20090158275A1 (en) | 2007-12-13 | 2009-06-18 | Zhikui Wang | Dynamically Resizing A Virtual Machine Container |
US20090193410A1 (en) | 2007-09-28 | 2009-07-30 | Xcerion Aktiebolag | Network operating system |
US20090198769A1 (en) | 2008-02-01 | 2009-08-06 | Microsoft Corporation | Virtual Application Server With Version Control |
US20090204964A1 (en) | 2007-10-12 | 2009-08-13 | Foley Peter F | Distributed trusted virtualization platform |
WO2009137567A1 (en) | 2008-05-08 | 2009-11-12 | Google Inc. | Method for safely executing an untrusted native code module on a computing device |
US20090288084A1 (en) | 2008-05-02 | 2009-11-19 | Skytap | Multitenant hosted virtual machine infrastructure |
US20090300599A1 (en) | 2008-05-30 | 2009-12-03 | Matthew Thomas Piotrowski | Systems and methods of utilizing virtual machines to protect computer systems |
US20100023940A1 (en) | 2008-07-28 | 2010-01-28 | Fujitsu Limited | Virtual machine system |
US20100031325A1 (en) | 2006-12-22 | 2010-02-04 | Virtuallogix Sa | System for enabling multiple execution environments to share a device |
US20100031274A1 (en) | 2004-05-10 | 2010-02-04 | Siew Yong Sim-Tang | Method and system for real-time event journaling to provide enterprise data services |
US20100036925A1 (en) | 2008-08-07 | 2010-02-11 | Tactara, Llc | Alias management platforms |
US7665090B1 (en) | 2004-03-08 | 2010-02-16 | Swsoft Holdings, Ltd. | System, method, and computer program product for group scheduling of computer resources |
US20100064299A1 (en) | 2008-09-09 | 2010-03-11 | Kace Networks, Inc. | Deployment and Management of Virtual Containers |
US20100070678A1 (en) | 2008-09-12 | 2010-03-18 | Vmware, Inc. | Saving and Restoring State Information for Virtualized Computer Systems |
US20100070725A1 (en) | 2008-09-05 | 2010-03-18 | Anand Prahlad | Systems and methods for management of virtualization data |
US7707579B2 (en) | 2005-07-14 | 2010-04-27 | International Business Machines Corporation | Method and system for application profiling for purposes of defining resource requirements |
US20100114825A1 (en) | 2008-10-27 | 2010-05-06 | Vmware, Inc. | Version control environment for virtual machines |
US20100115098A1 (en) | 2008-11-04 | 2010-05-06 | Novell, Inc. | Dynamic and automatic colocation and combining of service providers and service clients in a grid of resources |
US20100122343A1 (en) | 2008-09-12 | 2010-05-13 | Anup Ghosh | Distributed Sensor for Detecting Malicious Software |
US20100131959A1 (en) | 2008-11-26 | 2010-05-27 | Spiers Adam Z | Proactive application workload management |
US7730464B2 (en) | 2005-09-14 | 2010-06-01 | Microsoft Corporation | Code compilation management service |
US20100186011A1 (en) | 2009-01-20 | 2010-07-22 | Oracle International Corporation | Methods and systems for implementing transcendent page caching |
US20100198972A1 (en) | 2009-02-04 | 2010-08-05 | Steven Michael Umbehocker | Methods and Systems for Automated Management of Virtual Resources In A Cloud Computing Environment |
US20100199285A1 (en) | 2009-02-05 | 2010-08-05 | Vmware, Inc. | Virtual machine utility computing method and system |
US7774191B2 (en) | 2003-04-09 | 2010-08-10 | Gary Charles Berkowitz | Virtual supercomputer |
US20100257116A1 (en) | 2009-04-06 | 2010-10-07 | Accenture Global Services, Gmbh | Estimating a computing job complexity |
US20100269109A1 (en) | 2009-04-17 | 2010-10-21 | John Cartales | Methods and Systems for Evaluating Historical Metrics in Selecting a Physical Host for Execution of a Virtual Machine |
US7823186B2 (en) | 2006-08-24 | 2010-10-26 | Novell, Inc. | System and method for applying security policies on multiple assembly caches |
US20110010722A1 (en) | 2009-03-12 | 2011-01-13 | Canon Kabushiki Kaisha | Memory swap management method and apparatus, and storage medium |
US20110029970A1 (en) | 2009-07-31 | 2011-02-03 | International Business Machines Corporation | Optimizing on demand allocation of virtual machines using a stateless preallocation pool |
US7886021B2 (en) | 2008-04-28 | 2011-02-08 | Oracle America, Inc. | System and method for programmatic management of distributed computing resources |
US20110055378A1 (en) | 2009-08-31 | 2011-03-03 | James Michael Ferris | Methods and systems for metering software infrastructure in a cloud computing environment |
US20110055396A1 (en) | 2009-08-31 | 2011-03-03 | Dehaan Michael Paul | Methods and systems for abstracting cloud management to allow communication between independently controlled clouds |
US20110078679A1 (en) | 2009-09-30 | 2011-03-31 | International Business Machines Corporation | Provisioning virtual machine placement |
US20110099551A1 (en) | 2009-10-26 | 2011-04-28 | Microsoft Corporation | Opportunistically Scheduling and Adjusting Time Slices |
US20110131572A1 (en) | 2009-11-30 | 2011-06-02 | Vitaly Elyashev | Controlling permissions in virtualization environment using hierarchical labeling |
US20110134761A1 (en) | 2009-12-03 | 2011-06-09 | International Business Machines Corporation | Dynamically provisioning virtual machines |
US20110141124A1 (en) | 2009-12-14 | 2011-06-16 | David Halls | Methods and systems for securing sensitive information using a hypervisor-trusted client |
US20110153838A1 (en) | 2009-12-18 | 2011-06-23 | Microsoft Corporation | Session monitoring of virtual desktops in a virtual machine farm |
US20110153727A1 (en) | 2009-12-17 | 2011-06-23 | Hong Li | Cloud federation as a service |
US20110154353A1 (en) | 2009-12-22 | 2011-06-23 | Bmc Software, Inc. | Demand-Driven Workload Scheduling Optimization on Shared Computing Resources |
US20110179162A1 (en) | 2010-01-15 | 2011-07-21 | Mayo Mark G | Managing Workloads and Hardware Resources in a Cloud Resource |
US20110184993A1 (en) | 2010-01-27 | 2011-07-28 | Vmware, Inc. | Independent Access to Virtual Machine Desktop Content |
US8010990B2 (en) | 2006-10-26 | 2011-08-30 | Intel Corporation | Acceleration of packet flow classification in a virtualized system |
US20110225277A1 (en) | 2010-03-11 | 2011-09-15 | International Business Machines Corporation | Placement of virtual machines based on server cost and network cost |
US8024564B2 (en) | 2006-12-06 | 2011-09-20 | International Business Machines Corporation | Automating configuration of software applications |
US20110231680A1 (en) | 2010-03-22 | 2011-09-22 | Microsoft Corporation | Energy savings for a networked computer |
US20110247005A1 (en) | 2010-03-31 | 2011-10-06 | International Business Machines Corporation | Methods and Apparatus for Resource Capacity Evaluation in a System of Virtual Containers |
US20110265164A1 (en) | 2010-04-26 | 2011-10-27 | Vmware, Inc. | Cloud platform architecture |
US8051180B2 (en) | 2006-01-24 | 2011-11-01 | Citrix Systems, Inc. | Methods and servers for establishing a connection between a client system and a virtual machine executing in a terminal services session and hosting a requested computing environment |
US8051266B2 (en) | 2007-06-11 | 2011-11-01 | International Business Machines Corporation | Automatic memory management (AMM) |
US8065682B2 (en) | 2007-02-27 | 2011-11-22 | Microsoft Corporation | Enforcing system resource usage limits on query requests based on grouping query requests into workgroups and assigning workload groups to resource pools |
US8065676B1 (en) | 2007-04-24 | 2011-11-22 | Hewlett-Packard Development Company, L.P. | Automated provisioning of virtual machines for a virtual machine buffer pool and production pool |
JP2011257847A (en) | 2010-06-07 | 2011-12-22 | Nippon Telegr & Teleph Corp <Ntt> | Communication system and communication system update method |
US20110314465A1 (en) | 2010-06-17 | 2011-12-22 | Timothy Smith | Method and system for workload distributing and processing across a network of replicated virtual machines |
US20110321033A1 (en) | 2010-06-24 | 2011-12-29 | Bmc Software, Inc. | Application Blueprint and Deployment Model for Dynamic Business Service Management (BSM) |
US8095931B1 (en) | 2006-04-27 | 2012-01-10 | Vmware, Inc. | Controlling memory conditions in a virtual machine |
US20120016721A1 (en) | 2010-07-15 | 2012-01-19 | Joseph Weinman | Price and Utility Optimization for Cloud Computing Resources |
US20120041970A1 (en) | 2010-08-12 | 2012-02-16 | Cdnetworks Co., Ltd. | Distributed data cache for on-demand application acceleration |
US8127284B2 (en) | 2007-10-16 | 2012-02-28 | Microsoft Corporation | On-demand loading of types of software code of a program executing on a computing device |
US20120054744A1 (en) | 2010-05-10 | 2012-03-01 | Manbinder Pal Singh | Redirection of Information from Secure Virtual Machines to Unsecure Virtual Machines |
US20120072914A1 (en) | 2010-09-17 | 2012-03-22 | Canon Kabushiki Kaisha | Cloud computing system and method for controlling same |
US8146073B2 (en) | 2004-09-30 | 2012-03-27 | Microsoft Corporation | Updating software while it is running |
US20120096468A1 (en) | 2010-10-13 | 2012-04-19 | Microsoft Corporation | Compute cluster with balanced resources |
US20120096271A1 (en) | 2010-10-15 | 2012-04-19 | Microsoft Corporation | Remote Access to Hosted Virtual Machines By Enterprise Users |
US8166304B2 (en) | 2007-10-02 | 2012-04-24 | International Business Machines Corporation | Support for multiple security policies on a unified authentication architecture |
US20120102333A1 (en) | 2010-10-20 | 2012-04-26 | Advanced Micro Devices, Inc. | Method and apparatus for including architecture for protecting multi-user sensitive code and data |
US8171473B2 (en) | 2007-08-31 | 2012-05-01 | International Business Machines Corporation | Method and apparatus for determining a service cluster topology based on static analysis |
US20120110155A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Management of a data network of a computing environment |
US20120110164A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Managing a workload of a plurality of virtual servers of a computing environment |
US20120110588A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Unified resource manager providing a single point of control |
US20120131379A1 (en) | 2010-01-05 | 2012-05-24 | Hitachi, Ltd. | Computer system and availability method thereof |
US8209695B1 (en) | 2006-07-28 | 2012-06-26 | Hewlett-Packard Development Company, L.P. | Reserving resources in a resource-on-demand system for user desktop utility demand |
US8219987B1 (en) | 2007-08-24 | 2012-07-10 | Vmware, Inc. | Optimized virtual machine specification for provisioning application specific runtime environment |
US20120192184A1 (en) | 2009-12-18 | 2012-07-26 | International Business Machines Corporation | Virtual image deployment with a warm cache |
US20120197958A1 (en) | 2011-01-31 | 2012-08-02 | Microsoft Corporation | Parallel Serialization of Request Processing |
US20120233464A1 (en) | 2011-03-11 | 2012-09-13 | Resource Interactive, Llc | Pci dss compliant proxy service |
US8321554B2 (en) | 2004-12-17 | 2012-11-27 | International Business Machines Corporation | System and program to automatically identify a server on which to deploy an application |
US8321558B1 (en) | 2009-03-31 | 2012-11-27 | Amazon Technologies, Inc. | Dynamically monitoring and modifying distributed execution of programs |
US8336079B2 (en) | 2008-12-31 | 2012-12-18 | Hytrust, Inc. | Intelligent security control system for virtualized ecosystems |
US20120331113A1 (en) | 2011-06-27 | 2012-12-27 | Microsoft Corporation | Resource management for cloud computing platforms |
US20130014101A1 (en) | 2011-07-06 | 2013-01-10 | Microsoft Corporation | Offering Network Performance Guarantees in Multi-Tenant Datacenters |
US20130042234A1 (en) | 2011-08-09 | 2013-02-14 | International Business Machines Corporation | Virtual machine management |
US20130054804A1 (en) | 2011-08-25 | 2013-02-28 | At&T Intellectual Property I, L.P. | System for Consolidating Heterogeneous Data Centers Through Virtualization of Services |
US20130055262A1 (en) | 2011-08-25 | 2013-02-28 | Vincent G. Lubsey | Systems and methods of host-aware resource management involving cluster-based resource pools |
US20130054927A1 (en) | 2011-08-30 | 2013-02-28 | Bipul Raj | System and method for retaining deduplication in a storage object after a clone split operation |
US20130061208A1 (en) | 2011-09-07 | 2013-03-07 | Microsoft Corporation | Transformational context-aware data source management |
US20130067494A1 (en) | 2011-09-09 | 2013-03-14 | Microsoft Corporation | Resuming Applications and/or Exempting Applications from Suspension |
US20130080641A1 (en) | 2011-09-26 | 2013-03-28 | Knoa Software, Inc. | Method, system and program product for allocation and/or prioritization of electronic resources |
US20130097601A1 (en) | 2011-10-12 | 2013-04-18 | International Business Machines Corporation | Optimizing virtual machines placement in cloud computing environments |
US8429282B1 (en) | 2011-03-22 | 2013-04-23 | Amazon Technologies, Inc. | System and method for avoiding system overload by maintaining an ideal request rate |
US20130111469A1 (en) | 2011-10-30 | 2013-05-02 | Kamath Harish B | Service provider management of virtual instances corresponding to hardware resources managed by other service providers |
US8448165B1 (en) | 2009-09-15 | 2013-05-21 | Symantec Corporation | System and method for logging operations of virtual machines |
US20130132942A1 (en) | 2011-11-22 | 2013-05-23 | Huawei Technologies Co., Ltd. | Application software installation method and application software installation apparatus |
US20130139152A1 (en) | 2011-11-29 | 2013-05-30 | International Business Machines Corporation | Cloud provisioning accelerator |
US20130139166A1 (en) | 2011-11-24 | 2013-05-30 | Alibaba Group Holding Limited | Distributed data stream processing method and system |
US20130151648A1 (en) | 2011-12-07 | 2013-06-13 | Seven Networks, Inc. | Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic allieviation |
US20130152047A1 (en) | 2011-11-22 | 2013-06-13 | Solano Labs, Inc | System for distributed software quality improvement |
US20130179574A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corportaion | Assignment of resources in virtual machine pools |
US20130179894A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Platform as a service job scheduling |
US20130179881A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Decoupling paas resources, jobs, and scheduling |
US20130185729A1 (en) | 2012-01-13 | 2013-07-18 | Rutgers, The State University Of New Jersey | Accelerating resource allocation in virtualized environments using workload classes and/or workload signatures |
US20130185719A1 (en) | 2012-01-17 | 2013-07-18 | Microsoft Corporation | Throttling guest write ios based on destination throughput |
US20130191924A1 (en) | 2012-01-25 | 2013-07-25 | Gianni Tedesco | Approaches for Protecting Sensitive Data Within a Guest Operating System |
US20130198319A1 (en) | 2012-01-31 | 2013-08-01 | Vmware, Inc. | Elastic allocation of computing resources to software applications |
US20130198743A1 (en) | 2012-01-26 | 2013-08-01 | Empire Technology Development Llc | Data center with continuous world switch security |
US20130205092A1 (en) | 2012-02-06 | 2013-08-08 | Empire Technology Development Llc | Multicore computer system with cache use based adaptive scheduling |
US20130219390A1 (en) | 2012-02-21 | 2013-08-22 | Hon Hai Precision Industry Co., Ltd. | Cloud server and method for creating virtual machines |
US20130227097A1 (en) | 2010-09-14 | 2013-08-29 | Hitachi, Ltd. | Multi-tenancy information processing system, management server, and configuration management method |
US20130227641A1 (en) | 2012-01-06 | 2013-08-29 | Optio Labs, LLC | Systems and methods to enforce security policies on the loading, linking, and execution of native code by mobile applications running inside of virtual machines |
US20130227563A1 (en) | 2012-02-29 | 2013-08-29 | Michael P. McGrath | Mechanism for Creating and Maintaining Multi-Tenant Applications in a Platform-as-a-Service (PaaS) Environment of a Cloud Computing System |
US20130232480A1 (en) | 2012-03-02 | 2013-09-05 | Vmware, Inc. | Single, logical, multi-tier application blueprint used for deployment and management of multiple physical applications in a cloud environment |
US20130239125A1 (en) | 2012-03-06 | 2013-09-12 | Francesco Iorio | Application level speculative processing |
US20130263117A1 (en) | 2012-03-28 | 2013-10-03 | International Business Machines Corporation | Allocating resources to virtual machines via a weighted cost ratio |
US20130262556A1 (en) | 2012-03-28 | 2013-10-03 | Microsoft Corporation | Enhanced Computer Cluster Operation Using Resource Allocation Requests |
US20130275975A1 (en) | 2010-10-27 | 2013-10-17 | Hitachi, Ltd. | Resource management server, resource management method and storage medium in which resource management program is stored |
US20130290538A1 (en) | 2012-04-27 | 2013-10-31 | Daniel Juergen Gmach | Evaluation of cloud computing services |
US20130297964A1 (en) | 2012-05-03 | 2013-11-07 | Vmware, Inc. | Virtual Machine Placement With Automatic Deployment Error Recovery |
EP2663052A1 (en) | 2012-05-09 | 2013-11-13 | Netflix, Inc. | API Platform That Includes Server-Executed Client-Based Code |
US8613070B1 (en) | 2012-10-12 | 2013-12-17 | Citrix Systems, Inc. | Single sign-on access in an orchestration framework for connected devices |
US20130339950A1 (en) | 2012-06-19 | 2013-12-19 | Microsoft Corporation | Intermediary virtual machine task management |
US20130346994A1 (en) | 2012-06-20 | 2013-12-26 | Platform Computing Corporation | Job distribution within a grid environment |
US20130347095A1 (en) | 2012-06-25 | 2013-12-26 | International Business Machines Corporation | Isolation and security hardening among workloads in a multi-tenant networked environment |
US20130346987A1 (en) | 2012-06-21 | 2013-12-26 | Kristopher Len Raney | Systems and methods for distributing tasks and/or processing recources in a system |
US20130346964A1 (en) | 2011-09-08 | 2013-12-26 | Hitachi Solutions, Ltd. | OSGi PROGRAM, OSGi SYSTEM |
US20130346946A1 (en) | 2012-06-21 | 2013-12-26 | Microsoft Corporation | System for hosted, shared, source control build |
US20140007097A1 (en) | 2012-06-29 | 2014-01-02 | Brocade Communications Systems, Inc. | Dynamic resource allocation for virtual machines |
US20140019966A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for continuous optimization of computing systems with automated assignment of virtual machines and physical machines to hosts |
US20140019965A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for automated assignment of virtual machines and physical machines to hosts with right-sizing |
US20140040343A1 (en) | 2005-09-15 | 2014-02-06 | Peter Nickolov | Globally Distributed Utility Computing Cloud |
US20140040857A1 (en) | 2012-05-04 | 2014-02-06 | International Business Machines Corporation | Instrumentation of software applications for configuration thereof |
US20140040880A1 (en) | 2012-08-02 | 2014-02-06 | International Business Machines Corporation | Application deployment in heterogeneous environments |
US20140059226A1 (en) | 2012-08-21 | 2014-02-27 | Rackspace Us, Inc. | Multi-Level Cloud Computing System |
US20140068611A1 (en) | 2012-09-06 | 2014-03-06 | Michael P. McGrath | Mechanism for Automatic Scaling of Application Resources in a Multi-Tenant Platform-as-a-Service (PaaS) Environment in a Cloud Computing System |
US8677359B1 (en) * | 2013-03-14 | 2014-03-18 | Joyent, Inc. | Compute-centric object stores and methods of use |
US20140082165A1 (en) | 2012-09-20 | 2014-03-20 | Michael David Marr | Automated profiling of resource usage |
US8694996B2 (en) | 2011-12-14 | 2014-04-08 | International Business Machines Corporation | Application initiated negotiations for resources meeting a performance parameter in a virtualized computing environment |
US20140101649A1 (en) | 2012-10-05 | 2014-04-10 | International Business Machines Corporation | Virtual machine based controller and upgrade mechanism |
US20140109087A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Virtual machine provisioning using replicated containers |
US20140109088A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Augmented allocation of virtual machines for application |
US8719415B1 (en) | 2010-06-28 | 2014-05-06 | Amazon Technologies, Inc. | Use of temporarily available computing nodes for dynamic scaling of a cluster |
US20140130040A1 (en) | 2012-11-02 | 2014-05-08 | The Boeing Company | Systems and methods for migrating virtual machines |
US20140129667A1 (en) | 2011-06-14 | 2014-05-08 | Nec Corporation | Content delivery system, controller and content delivery method |
US8725702B1 (en) | 2012-03-15 | 2014-05-13 | Symantec Corporation | Systems and methods for repairing system files |
US8756696B1 (en) | 2010-10-30 | 2014-06-17 | Sra International, Inc. | System and method for providing a virtualized secure data containment service with a networked environment |
US20140173616A1 (en) | 2012-12-19 | 2014-06-19 | International Business Machines Corporation | Adaptive resource usage limits for workload management |
US20140173614A1 (en) | 2012-12-18 | 2014-06-19 | International Business Machines Corporation | Sending tasks between virtual machines based on expiration times |
US20140180862A1 (en) | 2010-09-14 | 2014-06-26 | Amazon Technologies, Inc. | Managing operational throughput for shared resources |
US8769519B2 (en) | 2011-12-08 | 2014-07-01 | Microsoft Corporation | Personal and pooled virtual machine update |
US20140189677A1 (en) | 2013-01-02 | 2014-07-03 | International Business Machines Corporation | Effective Migration and Upgrade of Virtual Machines in Cloud Environments |
US20140201735A1 (en) | 2013-01-16 | 2014-07-17 | VCE Company LLC | Master automation service |
US20140207912A1 (en) | 2013-01-18 | 2014-07-24 | Limelight Networks, Inc. | Selective content pre-warming in content delivery networks based on user actions and content categorizations |
US20140215073A1 (en) | 2013-01-28 | 2014-07-31 | International Business Machines Corporation | Computing optimized virtual machine allocations using equivalence combinations |
US8799879B2 (en) | 2009-06-30 | 2014-08-05 | Oracle America, Inc. | Method and apparatus for protecting translated code in a virtual machine |
US8819679B2 (en) | 2011-07-28 | 2014-08-26 | International Business Machines Corporation | Methods and systems for on-boarding applications to a cloud |
US20140245297A1 (en) | 2013-02-27 | 2014-08-28 | International Business Machines Corporation | Managing allocation of hardware resources in a virtualized environment |
US8825964B1 (en) | 2011-09-26 | 2014-09-02 | Emc Corporation | Adaptive integration of cloud data services with a data storage system |
US20140279581A1 (en) | 2013-03-14 | 2014-09-18 | Rockethouse, Llc | Rendering |
US20140280325A1 (en) | 2013-03-15 | 2014-09-18 | Cisco Technology, Inc. | Suspending and resuming continuous queries over data streams |
US20140282615A1 (en) | 2013-03-15 | 2014-09-18 | Mark Cavage | Versioning schemes for compute-centric object stores |
US20140289286A1 (en) | 2013-03-25 | 2014-09-25 | Salesforce.Com, Inc. | System and method for performance tuning of garbage collection algorithms |
US20140304815A1 (en) | 2011-11-15 | 2014-10-09 | Japan Science And Technology Agency | Program analysis/verification service provision system, control method for same, control program, control program for directing computer to function, program analysis/verification device, program analysis/verification tool management device |
US20140304698A1 (en) | 2012-06-18 | 2014-10-09 | Tellabs Operations, Inc. | Methods and Apparatus for Performing In-Service Software Upgrade for a Network Device Using System Virtulization |
US20140380085A1 (en) | 2013-06-23 | 2014-12-25 | Willam C. Rash | Machine check architecture execution environment for non-microcoded processor |
US20150039891A1 (en) | 2013-08-02 | 2015-02-05 | Ologn Technologies Ag | Secure Server on a System with Virtual Machines |
US20150052258A1 (en) | 2014-09-29 | 2015-02-19 | Weaved, Inc. | Direct map proxy system and protocol |
US20150074659A1 (en) | 2013-09-06 | 2015-03-12 | Vmware, Inc. | Methods and Apparatus to Perform Web-Based Installations and/or Upgrade Architectures for Enterprise Software |
US20150081885A1 (en) | 2012-04-30 | 2015-03-19 | Jeffery Darrel Thomas | Automated event management |
US8997093B2 (en) | 2012-04-17 | 2015-03-31 | Sap Se | Application installation management by selectively reuse or terminate virtual machines based on a process status |
US20150106805A1 (en) | 2013-10-15 | 2015-04-16 | Cisco Technology, Inc. | Accelerated instantiation of cloud resource |
US20150120928A1 (en) | 2013-10-24 | 2015-04-30 | Vmware, Inc. | Container virtual machines for hadoop |
US9027087B2 (en) | 2013-03-14 | 2015-05-05 | Rackspace Us, Inc. | Method and system for identity-based authentication of virtual machines |
US20150135287A1 (en) | 2013-11-13 | 2015-05-14 | Evident.io, Inc. | Automated sdk ingestion |
US9038068B2 (en) | 2012-11-15 | 2015-05-19 | Bank Of America Corporation | Capacity reclamation and resource adjustment |
US20150143381A1 (en) | 2013-11-20 | 2015-05-21 | International Business Machines Corporation | Computing session workload scheduling and management of parent-child tasks |
WO2015078394A1 (en) | 2013-11-29 | 2015-06-04 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for scheduling blocking tasks |
US20150178110A1 (en) | 2013-12-20 | 2015-06-25 | Vmware, Inc. | State Customization of Forked Virtual Machines |
US20150186129A1 (en) | 2014-01-02 | 2015-07-02 | International Business Machines Corporation | Method and system for deploying a program module |
US9086897B2 (en) | 2011-07-01 | 2015-07-21 | Electronics And Telecommunications Research Institute | Method and architecture for virtual desktop service |
WO2015108539A1 (en) | 2014-01-20 | 2015-07-23 | Hewlett-Packard Development Company, L.P. | Determining a permission of a first tenant with respect to a second tenant |
US9092837B2 (en) | 2012-11-29 | 2015-07-28 | International Business Machines Corporation | Use of snapshots to reduce risk in migration to a standard virtualized environment |
US9110732B1 (en) | 2013-06-07 | 2015-08-18 | Amazon Technologies, Inc. | Proxy for injecting configuration information |
US20150235144A1 (en) | 2010-12-10 | 2015-08-20 | Salesforce.Com, Inc. | Methods and systems for making effective use of system resources |
US20150242225A1 (en) | 2014-02-26 | 2015-08-27 | Red Hat Israel, Ltd. | Execution of a script based on properties of a virtual device associated with a virtual machine |
US20150256621A1 (en) | 2012-11-19 | 2015-09-10 | Hitachi, Ltd. | Management system and management method |
US20150261578A1 (en) | 2014-03-17 | 2015-09-17 | Ca, Inc. | Deployment of virtual machines to physical host machines based on infrastructure utilization decisions |
US9146764B1 (en) | 2014-09-30 | 2015-09-29 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US20150289220A1 (en) | 2012-11-05 | 2015-10-08 | Lg Electronics Inc. | Method and apparatus for generating synchronous signal in wireless access system for supporting super-high frequency band |
US20150309923A1 (en) | 2014-04-28 | 2015-10-29 | Fujitsu Limited | Storage control apparatus and storage system |
US20150319160A1 (en) | 2014-05-05 | 2015-11-05 | Microsoft Corporation | Secure Management of Operations on Protected Virtual Machines |
US9183019B2 (en) | 2012-04-25 | 2015-11-10 | Empire Technology Development Llc | Certification for flexible resource demand applications |
US20150332048A1 (en) | 2014-05-15 | 2015-11-19 | Lynx Software Technologies, Inc. | Systems and Methods Involving Features of Hardware Virtualization, Hypervisor, APIs of Interest, and/or Other Features |
US20150350701A1 (en) | 2014-05-28 | 2015-12-03 | Verizon Patent And Licensing Inc. | Methods and Systems for Managing Storage of Media Program Copies Within a Network Digital Video Recording System |
US9208007B2 (en) | 2012-01-18 | 2015-12-08 | International Business Machines Corporation | Open resilience framework for simplified and coordinated orchestration of multiple availability managers |
US20150363181A1 (en) | 2014-06-13 | 2015-12-17 | International Business Machines Corporation | Software deployment in a distributed virtual machine environment |
US20150371244A1 (en) | 2014-06-23 | 2015-12-24 | Ca, Inc. | Forecasting information technology workload demand |
US9223966B1 (en) | 2014-05-04 | 2015-12-29 | Symantec Corporation | Systems and methods for replicating computing system environments |
US9223561B2 (en) | 2011-06-27 | 2015-12-29 | Orange | Method for providing an on-demand software execution service |
US20150378765A1 (en) | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Methods and apparatus to scale application deployments in cloud computing environments using virtual machine pools |
US20150378764A1 (en) | 2014-06-30 | 2015-12-31 | Bmc Software, Inc. | Capacity risk management for virtual machines |
US20150379167A1 (en) | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Crowd-sourced operational metric analysis of virtual appliances |
US20160012099A1 (en) | 2014-07-14 | 2016-01-14 | Oracle International Corporation | Age-based policies for determining database cache hits |
US9250893B2 (en) | 2014-05-14 | 2016-02-02 | Western Digital Technologies, Inc. | Virtualized and automated software build system |
US20160072727A1 (en) | 2011-03-08 | 2016-03-10 | Rackspace Us, Inc. | Pluggable Allocation in a Cloud Computing System |
US9298633B1 (en) | 2013-09-18 | 2016-03-29 | Emc Corporation | Adaptive prefecth for predicted write requests |
US20160092250A1 (en) | 2014-09-30 | 2016-03-31 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US20160098285A1 (en) | 2014-10-02 | 2016-04-07 | Vmware, Inc. | Using virtual machine containers in a virtualized computing platform |
WO2016053973A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
WO2016053950A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Threading as a service |
US20160100036A1 (en) | 2014-10-06 | 2016-04-07 | VMFive Inc. | System, method, server and device for trial use of application software |
US9317689B2 (en) | 2012-06-15 | 2016-04-19 | Visa International Service Association | Method and apparatus for secure application execution |
US20160117254A1 (en) | 2014-10-22 | 2016-04-28 | Netapp, Inc. | Cache optimization technique for large working data sets |
US20160140180A1 (en) | 2012-09-28 | 2016-05-19 | Oracle International Corporation | Hybrid execution of continuous and scheduled queries |
US9361145B1 (en) | 2014-06-27 | 2016-06-07 | Amazon Technologies, Inc. | Virtual machine state replication using DMA write records |
WO2016090292A1 (en) | 2014-12-05 | 2016-06-09 | Amazon Technologies, Inc. | Automatic management of resource sizing |
US20160224785A1 (en) | 2015-02-04 | 2016-08-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US20160224360A1 (en) | 2015-02-04 | 2016-08-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
WO2016126731A1 (en) | 2015-02-04 | 2016-08-11 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9436555B2 (en) | 2014-09-22 | 2016-09-06 | Commvault Systems, Inc. | Efficient live-mount of a backed up virtual machine in a storage management system |
US20160285906A1 (en) | 2015-03-23 | 2016-09-29 | Empire Technology Development Llc | Virtual machine placement |
US9461996B2 (en) | 2010-05-07 | 2016-10-04 | Citrix Systems, Inc. | Systems and methods for providing a single click access to enterprise, SAAS and cloud hosted application |
US20160292016A1 (en) | 2015-04-02 | 2016-10-06 | Microsoft Technology Licensing, Llc | Complex event processor for historic/live/replayed data |
US20160294614A1 (en) | 2014-07-07 | 2016-10-06 | Symphony Teleca Corporation | Remote Embedded Device Update Platform Apparatuses, Methods and Systems |
US20160299790A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US20160301739A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US9489227B2 (en) | 2013-06-10 | 2016-11-08 | Electronics And Telecommunications Research Institute | Apparatus and method for virtual desktop service |
US20160364265A1 (en) | 2015-06-15 | 2016-12-15 | International Business Machines Corporation | Managed services coordinator |
US20160371127A1 (en) | 2015-06-19 | 2016-12-22 | Vmware, Inc. | Resource management for containers in a virtualized environment |
US20160378554A1 (en) | 2015-06-29 | 2016-12-29 | Vmware, Inc. | Parallel and Distributed Computing Using Multiple Virtual Machines |
US9588790B1 (en) | 2015-02-04 | 2017-03-07 | Amazon Technologies, Inc. | Stateful virtual compute system |
US20170083381A1 (en) | 2015-09-21 | 2017-03-23 | Alibaba Group Holding Limited | System and method for processing task resources |
US20170085447A1 (en) | 2015-09-21 | 2017-03-23 | Splunk Inc. | Adaptive control of data collection requests sent to external data sources |
US20170090961A1 (en) | 2015-09-30 | 2017-03-30 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US20170093920A1 (en) | 2014-03-18 | 2017-03-30 | British Telecommunications Public Limited Company | User authentication |
US9652617B1 (en) | 2013-06-25 | 2017-05-16 | Amazon Technologies, Inc. | Analyzing security of applications |
US9661011B1 (en) | 2014-12-17 | 2017-05-23 | Amazon Technologies, Inc. | Techniques for data routing and management using risk classification and data sampling |
US9678773B1 (en) | 2014-09-30 | 2017-06-13 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US9678778B1 (en) | 2014-05-07 | 2017-06-13 | Google Inc. | Virtual cluster as a service (VCIaaS) |
US20170177413A1 (en) | 2015-12-21 | 2017-06-22 | Amazon Technologies, Inc. | Code execution request routing |
US20170286143A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US20170286156A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
WO2017172440A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on-demand code execution environment |
US9811434B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9811363B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9830193B1 (en) | 2014-09-30 | 2017-11-28 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US9830175B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9830449B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Execution locations for request-driven code |
US20170371703A1 (en) | 2016-06-28 | 2017-12-28 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US20180004553A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US20180004572A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US9928108B1 (en) | 2015-09-29 | 2018-03-27 | Amazon Technologies, Inc. | Metaevent handling for on-demand code execution environments |
US9952896B2 (en) | 2016-06-28 | 2018-04-24 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
Family Cites Families (461)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19500957A1 (en) | 1994-07-19 | 1996-01-25 | Bosch Gmbh Robert | Procedures for the control of technical processes or processes |
GB2302966A (en) | 1995-06-30 | 1997-02-05 | Ibm | Transaction processing with a reduced-kernel operating system |
JPH10255112A (en) | 1997-03-12 | 1998-09-25 | Oki Electric Ind Co Ltd | Automatic teller machine monitoring method and system therefor |
US6237005B1 (en) | 1998-06-29 | 2001-05-22 | Compaq Computer Corporation | Web server mechanism for processing multiple transactions in an interpreted language execution environment |
US6501736B1 (en) | 1999-03-19 | 2002-12-31 | Lucent Technologies Inc. | System for increasing the call capacity of a wireless communication system |
JP2000305796A (en) | 1999-04-22 | 2000-11-02 | Hitachi Ltd | Method for transferring job between electronic computers and its system |
US6523035B1 (en) | 1999-05-20 | 2003-02-18 | Bmc Software, Inc. | System and method for integrating a plurality of disparate database utilities into a single graphical user interface |
US7472349B1 (en) | 1999-06-01 | 2008-12-30 | Oracle International Corporation | Dynamic services infrastructure for allowing programmatic access to internet and other resources |
US20050027610A1 (en) | 1999-08-26 | 2005-02-03 | Wharton Brian K. | Electronic commerce systems and methods providing unified checkout steps |
FR2801118B1 (en) | 1999-11-17 | 2001-12-21 | Bull Cp8 | METHOD FOR LOADING APPLICATIONS IN A MULTI-APPLICATION ON-BOARD SYSTEM, CORRESPONDING ON-BOARD SYSTEM, AND METHOD FOR EXECUTING AN APPLICATION OF THE ON-BOARD SYSTEM |
KR100357850B1 (en) | 2000-03-29 | 2002-10-25 | 삼성전자 주식회사 | Distributed objects oriented communication system and method for common service various protocolby used corba proxy module therefor |
EP1292892A4 (en) | 2000-04-14 | 2006-11-15 | Goahead Software Inc | A system and method for upgrading networked devices |
JP2001331333A (en) | 2000-05-18 | 2001-11-30 | Hitachi Ltd | Computer system and method for controlling computer system |
US20040205493A1 (en) | 2001-08-08 | 2004-10-14 | Simpson Shell S. | Web based imaging application that creates customized content based on user selections |
US7269833B2 (en) | 2001-12-12 | 2007-09-11 | Sun Microsystems, Inc. | Scriptable plug-in application programming interface |
US7174566B2 (en) | 2002-02-01 | 2007-02-06 | Intel Corporation | Integrated network intrusion detection |
US7093004B2 (en) | 2002-02-04 | 2006-08-15 | Datasynapse, Inc. | Using execution statistics to select tasks for redundant assignment in a distributed computing platform |
US7577722B1 (en) | 2002-04-05 | 2009-08-18 | Vmware, Inc. | Provisioning of computer systems using virtual machines |
US8527408B2 (en) | 2002-05-06 | 2013-09-03 | Bottom Line Technologies (De), Inc. | Integrated payment system |
US7308463B2 (en) | 2002-06-26 | 2007-12-11 | Hewlett-Packard Development Company, L.P. | Providing requested file mapping information for a file on a storage device |
US7228354B2 (en) | 2002-06-28 | 2007-06-05 | International Business Machines Corporation | Method for improving performance in a computer storage system by regulating resource requests from clients |
US7107585B2 (en) | 2002-07-29 | 2006-09-12 | Arm Limited | Compilation of application code in a data processing apparatus |
US7386855B2 (en) | 2002-08-12 | 2008-06-10 | Ntt Docomo, Inc. | Application mobility service |
US9207958B1 (en) | 2002-08-12 | 2015-12-08 | Arm Finance Overseas Limited | Virtual machine coprocessor for accelerating software execution |
US8108656B2 (en) | 2002-08-29 | 2012-01-31 | Qst Holdings, Llc | Task definition for specifying resource requirements |
JP2004102597A (en) | 2002-09-09 | 2004-04-02 | Fujitsu Ltd | Compile processing program, compile processing method, and compile processing program recording medium |
CN100518176C (en) | 2002-12-02 | 2009-07-22 | Sap股份公司 | Session-return enabling stateful web applications |
US7031958B2 (en) | 2003-02-06 | 2006-04-18 | International Business Machines Corporation | Patterned based query optimization |
US7360215B2 (en) | 2003-05-15 | 2008-04-15 | Sap Ag | Application interface for analytical tasks |
US7340522B1 (en) | 2003-07-31 | 2008-03-04 | Hewlett-Packard Development Company, L.P. | Method and system for pinning a resource having an affinity to a user for resource allocation |
US7937493B2 (en) | 2003-08-14 | 2011-05-03 | Oracle International Corporation | Connection pool use of runtime load balancing service performance advisories |
US7743029B2 (en) | 2003-12-30 | 2010-06-22 | Sap Ag | Log configuration and online deployment services |
JP2005198201A (en) | 2004-01-09 | 2005-07-21 | Ntt Docomo Inc | Network topology constitution method and node |
US7587721B2 (en) | 2004-05-20 | 2009-09-08 | Sap Ag | Sharing objects in runtime systems |
US20050268308A1 (en) | 2004-05-28 | 2005-12-01 | Nokia Corporation | System and method for implementing a general application program interface |
US7587755B2 (en) | 2004-07-02 | 2009-09-08 | Citrix Systems, Inc. | System and method for executing interactive applications with minimal privileges |
US7886293B2 (en) | 2004-07-07 | 2011-02-08 | Intel Corporation | Optimizing system behavior in a virtual machine environment |
US20060080678A1 (en) | 2004-09-07 | 2006-04-13 | Bailey Mark W | Task distribution method for protecting servers and tasks in a distributed system |
US8095940B2 (en) * | 2005-09-19 | 2012-01-10 | Citrix Systems, Inc. | Method and system for locating and accessing resources |
JP4191672B2 (en) | 2004-12-14 | 2008-12-03 | ザイオソフト株式会社 | Image processing system such as volume rendering |
US7793290B2 (en) | 2004-12-20 | 2010-09-07 | Sap Ag | Grip application acceleration by executing grid application based on application usage history prior to user request for application execution |
CN100337218C (en) | 2005-02-23 | 2007-09-12 | 北京邦诺存储科技有限公司 | Data managing method for network storage system and network storage system constituted thereby |
US7860013B2 (en) | 2005-03-09 | 2010-12-28 | Comcast Cable Holdings, Llc | Methods and systems for using in-stream data within an on demand content delivery path |
US8863143B2 (en) | 2006-03-16 | 2014-10-14 | Adaptive Computing Enterprises, Inc. | System and method for managing a hybrid compute environment |
US7558719B1 (en) | 2005-04-14 | 2009-07-07 | Xilinx, Inc. | System and method for runtime analysis of system models for variable fidelity performance analysis |
US7603712B2 (en) | 2005-04-21 | 2009-10-13 | Microsoft Corporation | Protecting a computer that provides a Web service from malware |
JP4690767B2 (en) | 2005-05-11 | 2011-06-01 | 株式会社日立製作所 | Network system, server device, and communication method |
US8555061B2 (en) | 2005-05-13 | 2013-10-08 | Microsoft Corporation | Transparent code |
US8571913B2 (en) | 2005-08-04 | 2013-10-29 | Jeffrey K. Johnson | System and method for managing data within a calendaring framework |
WO2007022454A2 (en) | 2005-08-18 | 2007-02-22 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media protecting a digital data processing device from attack |
JP4580845B2 (en) | 2005-08-24 | 2010-11-17 | パナソニック株式会社 | Task execution device |
JP2007080161A (en) | 2005-09-16 | 2007-03-29 | Nec Personal Products Co Ltd | Data distribution system, partial content storing server, method and program for increasing response speed |
US20070101325A1 (en) | 2005-10-19 | 2007-05-03 | Juraj Bystricky | System and method for utilizing a remote memory to perform an interface save/restore procedure |
US7933923B2 (en) * | 2005-11-04 | 2011-04-26 | International Business Machines Corporation | Tracking and reconciling database commands |
US8266609B2 (en) | 2005-12-07 | 2012-09-11 | Microsoft Corporation | Efficient placement of software transactional memory operations around procedure calls |
US7739239B1 (en) | 2005-12-29 | 2010-06-15 | Amazon Technologies, Inc. | Distributed storage system with support for distinct storage classes |
US7725574B2 (en) | 2006-01-23 | 2010-05-25 | International Business Machines Corporation | Web browser-based programming language error determination and reporting |
US7818798B2 (en) | 2006-02-03 | 2010-10-19 | Microsoft Corporation | Software system with controlled access to objects |
BRPI0707780A2 (en) | 2006-02-13 | 2011-05-10 | Maria Gaos | system and method for generating and running a platform emulation based on a selected application |
US8769511B2 (en) | 2006-02-16 | 2014-07-01 | The Regents Of The University Of California | Dynamic incremental compiler and method |
US20070220009A1 (en) | 2006-03-15 | 2007-09-20 | Morris Robert P | Methods, systems, and computer program products for controlling access to application data |
US8190682B2 (en) | 2006-03-31 | 2012-05-29 | Amazon Technologies, Inc. | Managing execution of programs by multiple computing systems |
US7801128B2 (en) | 2006-03-31 | 2010-09-21 | Amazon Technologies, Inc. | Managing communications between computing nodes |
US7792944B2 (en) | 2006-03-31 | 2010-09-07 | Amazon Technologies, Inc. | Executing programs based on user-specified constraints |
US7831464B1 (en) | 2006-04-06 | 2010-11-09 | ClearPoint Metrics, Inc. | Method and system for dynamically representing distributed information |
US8015294B2 (en) | 2006-08-22 | 2011-09-06 | Embarq Holdings Company, LP | Pin-hole firewall for communicating data packets on a packet network |
CA2557343C (en) | 2006-08-28 | 2015-09-22 | Ibm Canada Limited-Ibm Canada Limitee | Runtime code modification in a multi-threaded environment |
US8584109B2 (en) | 2006-10-27 | 2013-11-12 | Microsoft Corporation | Virtualization for diversified tamper resistance |
US7644204B2 (en) | 2006-10-31 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | SCSI I/O coordinator |
JP4308241B2 (en) | 2006-11-10 | 2009-08-05 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Job execution method, job execution system, and job execution program |
WO2008084826A1 (en) | 2007-01-11 | 2008-07-17 | Nec Corporation | Provisioning system, method, and program |
US8655623B2 (en) | 2007-02-13 | 2014-02-18 | International Business Machines Corporation | Diagnostic system and method |
US8793676B2 (en) | 2007-02-15 | 2014-07-29 | Microsoft Corporation | Version-resilient loader for custom code runtimes |
JP5018133B2 (en) | 2007-02-27 | 2012-09-05 | 富士通株式会社 | Job management apparatus, cluster system, and job management program |
US7996786B2 (en) | 2007-03-05 | 2011-08-09 | Microsoft Corporation | Dynamically rendering visualizations of data sets |
US8949457B1 (en) * | 2007-03-08 | 2015-02-03 | Aurea Software, Inc. | Local transparent extensibility and routing slip extensibility for business process execution language |
CN101267334B (en) | 2007-03-13 | 2011-01-26 | 联想(北京)有限公司 | A method and device for dynamic device allocation |
US8522209B2 (en) | 2007-03-30 | 2013-08-27 | Sap Ag | Method and system for integrating profiling and debugging |
US8667471B2 (en) | 2007-03-30 | 2014-03-04 | Sap Ag | Method and system for customizing profiling sessions |
US8479195B2 (en) | 2007-05-16 | 2013-07-02 | Vmware, Inc. | Dynamic selection and application of multiple virtualization techniques |
US9588821B2 (en) | 2007-06-22 | 2017-03-07 | Red Hat, Inc. | Automatic determination of required resource allocation of virtual machines |
US20090006897A1 (en) | 2007-06-27 | 2009-01-01 | Microsoft Corporation | Automated service testing |
EP2015179A1 (en) | 2007-07-13 | 2009-01-14 | Alcatel Lucent | A remote management system and method for service objects |
US8391295B2 (en) | 2007-07-31 | 2013-03-05 | Oracle International Corporation | Temporal affinity-based routing of workloads |
US20090158407A1 (en) | 2007-12-13 | 2009-06-18 | Fiberlink Communications Corporation | Api translation for network access control (nac) agent |
US20110040812A1 (en) | 2007-12-20 | 2011-02-17 | Virtual Computer, Inc. | Layered Virtual File System |
US8473956B2 (en) | 2008-01-15 | 2013-06-25 | Microsoft Corporation | Priority based scheduling system for server |
US9928260B2 (en) | 2008-02-11 | 2018-03-27 | Nuix Pty Ltd | Systems and methods for scalable delocalized information governance |
US8156503B2 (en) | 2008-02-12 | 2012-04-10 | International Business Machines Corporation | System, method and computer program product for accessing a memory space allocated to a virtual machine |
CN101534418A (en) | 2008-03-11 | 2009-09-16 | 深圳华为通信技术有限公司 | Digital television program booking and broadcasting method, set-top box equipment and broadcast system |
US8387075B1 (en) | 2008-03-28 | 2013-02-26 | Emc Corporation | Common scheduling and synchronization primitives |
US9086924B2 (en) | 2008-04-24 | 2015-07-21 | International Business Machines Corporation | Executing a distributed java application on a plurality of compute nodes |
US8543998B2 (en) | 2008-05-30 | 2013-09-24 | Oracle International Corporation | System and method for building virtual appliances using a repository metadata server and a dependency resolution service |
US8321850B2 (en) | 2008-06-06 | 2012-11-27 | Vmware, Inc. | Sharing and persisting code caches |
JP5120121B2 (en) | 2008-07-15 | 2013-01-16 | コニカミノルタビジネステクノロジーズ株式会社 | Relay server, relay method, and relay program |
US8560713B2 (en) | 2008-07-31 | 2013-10-15 | Sap Ag | Method and system for mediating enterprise service access for smart devices |
US8725967B2 (en) | 2008-08-08 | 2014-05-13 | Amazon Technologies, Inc. | Providing executing programs with access to stored block data of others |
JP5215779B2 (en) | 2008-09-01 | 2013-06-19 | キヤノン株式会社 | Information processing apparatus and information processing method |
US20100094816A1 (en) | 2008-09-09 | 2010-04-15 | Lockheed Martin Corporation | Safety-Critical Data Checking In Object-Oriented Systems |
US8417723B1 (en) | 2008-09-12 | 2013-04-09 | Salesforce.Com, Inc. | System, method and computer program product for enabling access to a resource of a multi-tenant on-demand database service utilizing a token |
US9798560B1 (en) | 2008-09-23 | 2017-10-24 | Gogrid, LLC | Automated system and method for extracting and adapting system configurations |
US7937625B2 (en) | 2008-09-26 | 2011-05-03 | Microsoft Corporation | Evaluating effectiveness of memory management techniques selectively using mitigations to reduce errors |
US8180604B2 (en) | 2008-09-30 | 2012-05-15 | Hewlett-Packard Development Company, L.P. | Optimizing a prediction of resource usage of multiple applications in a virtual environment |
US20100106926A1 (en) | 2008-10-25 | 2010-04-29 | International Business Machines Corporation | Second failure data capture problem determination using user selective memory protection to trace application failures |
US8214795B2 (en) | 2008-11-26 | 2012-07-03 | Optumsoft, Inc. | Efficient automated translation of procedures in constraint-based language |
WO2010116676A1 (en) | 2009-03-30 | 2010-10-14 | 日本電気株式会社 | Service providing apparatus, service providing system, service providing apparatus data processing method and computer program |
US9817695B2 (en) | 2009-04-01 | 2017-11-14 | Vmware, Inc. | Method and system for migrating processes between virtual machines |
JP5091912B2 (en) | 2009-05-21 | 2012-12-05 | 株式会社東芝 | Multi-core processor system |
US10768611B2 (en) | 2009-06-16 | 2020-09-08 | Applied Materials, Inc. | Counter and timer constraints |
US8955108B2 (en) | 2009-06-17 | 2015-02-10 | Microsoft Corporation | Security virtual machine for advanced auditing |
US8140668B2 (en) | 2009-06-24 | 2012-03-20 | Red Hat Israel, Ltd. | Pre-scheduling the timelines of virtual machines |
WO2011002785A1 (en) | 2009-06-29 | 2011-01-06 | Fiberlink Communications Corporation | Universal connections data collection |
US20110010690A1 (en) | 2009-07-07 | 2011-01-13 | Howard Robert S | System and Method of Automatically Transforming Serial Streaming Programs Into Parallel Streaming Programs |
US8769529B2 (en) | 2009-07-24 | 2014-07-01 | Novell, Inc. | Generating and automatically loading reduced operating system based on usage pattern of applications |
US8832778B2 (en) | 2009-08-04 | 2014-09-09 | Carnegie Mellon University | Methods and apparatuses for user-verifiable trusted path in the presence of malware |
US20110055683A1 (en) | 2009-09-02 | 2011-03-03 | Facebook Inc. | Page caching for rendering dynamic web pages |
JP5069730B2 (en) | 2009-09-15 | 2012-11-07 | ヤフー株式会社 | Event notification function providing device, event notification function providing method, and event notification function providing program |
US8412856B2 (en) | 2009-10-26 | 2013-04-02 | Sony Computer Entertainment America Llc. | File input/output scheduler using immediate data chunking |
US20110153541A1 (en) | 2009-12-22 | 2011-06-23 | Caterpillar Inc. | Systems and methods for machine control in designated areas |
US8924982B2 (en) | 2010-01-12 | 2014-12-30 | Amazon Technologies, Inc. | Managing private use of program execution capacity |
WO2011100197A1 (en) * | 2010-02-12 | 2011-08-18 | Ngm Biopharmaceuticals, Inc. | Methods of treating glucose metabolism disorders |
WO2011116987A1 (en) | 2010-03-26 | 2011-09-29 | Software Diagnostics Technology Gmbh | A method for automatically generating a trace data set for a software system, a computer system, and a computer program product |
US8413142B2 (en) | 2010-03-30 | 2013-04-02 | Citrix Systems, Inc. | Storage optimization selection within a virtualization environment |
US9111031B2 (en) | 2010-04-16 | 2015-08-18 | Salesforce.Com, Inc. | Method and system for simulating and analyzing code execution in an on-demand service environment |
US8959496B2 (en) | 2010-04-21 | 2015-02-17 | Microsoft Corporation | Automatic parallelization in a tracing just-in-time compiler system |
US9104484B2 (en) | 2010-04-21 | 2015-08-11 | Salesforce.Com, Inc. | Methods and systems for evaluating bytecode in an on-demand service environment including translation of apex to bytecode |
US8713565B2 (en) | 2010-04-28 | 2014-04-29 | International Business Machines Corporation | Automated tuning in a virtual machine computing environment |
US20110276963A1 (en) | 2010-05-04 | 2011-11-10 | Riverbed Technology, Inc. | Virtual Data Storage Devices and Applications Over Wide Area Networks |
US8566792B2 (en) | 2010-05-07 | 2013-10-22 | Salesforce, Inc. | Validating visual components |
US8972980B2 (en) | 2010-05-28 | 2015-03-03 | Bromium, Inc. | Automated provisioning of secure virtual execution environment using virtual machine templates based on requested activity |
US9116733B2 (en) | 2010-05-28 | 2015-08-25 | Bromium, Inc. | Automated provisioning of secure virtual execution environment using virtual machine templates based on requested activity |
US8887163B2 (en) | 2010-06-25 | 2014-11-11 | Ebay Inc. | Task scheduling based on dependencies and resources |
US8739170B1 (en) | 2010-06-30 | 2014-05-27 | Amazon Technologies, Inc. | Managing requests for computing capacity |
US8473949B2 (en) | 2010-07-08 | 2013-06-25 | Microsoft Corporation | Methods for supporting users with task continuity and completion across devices and time |
US8782434B1 (en) | 2010-07-15 | 2014-07-15 | The Research Foundation For The State University Of New York | System and method for validating program execution at run-time |
AU2011293350B2 (en) | 2010-08-24 | 2015-10-29 | Solano Labs, Inc. | Method and apparatus for clearing cloud compute demand |
US8359496B1 (en) | 2010-08-31 | 2013-01-22 | Google Inc. | Fault-resistant just-in-time compiler |
US8490088B2 (en) | 2010-09-10 | 2013-07-16 | International Business Machines Corporation | On demand virtual machine image streaming |
JP5644307B2 (en) | 2010-09-17 | 2014-12-24 | 富士通株式会社 | Information processing apparatus, control method for information processing apparatus, and control program |
US8661120B2 (en) | 2010-09-21 | 2014-02-25 | Amazon Technologies, Inc. | Methods and systems for dynamically managing requests for computing capacity |
US8661076B2 (en) | 2010-09-23 | 2014-02-25 | Salesforce.Com, Inc. | Business networking information feed alerts |
SG10201508046QA (en) | 2010-09-30 | 2015-10-29 | Amazon Tech Inc | Virtual resource cost tracking with dedicated implementation resources |
JP5278624B2 (en) | 2010-10-12 | 2013-09-04 | 富士通株式会社 | Simulation apparatus, method, and program |
US8296267B2 (en) | 2010-10-20 | 2012-10-23 | Microsoft Corporation | Upgrade of highly available farm server groups |
US8375389B2 (en) | 2010-10-20 | 2013-02-12 | Microsoft Corporation | Ordered scheduling of suspended processes based on resumption events |
US9753713B2 (en) | 2010-10-22 | 2017-09-05 | Microsoft Technology Licensing, Llc | Coordinated upgrades in distributed systems |
US9645839B2 (en) | 2010-10-27 | 2017-05-09 | Microsoft Technology Licensing, Llc | Stateful applications operating in a stateless cloud computing environment |
RO127693A2 (en) | 2010-12-02 | 2012-07-30 | Adobe Systems Incorporated | Html native integrated transmission |
US8601323B2 (en) | 2010-12-13 | 2013-12-03 | Sap Ag | Advanced management of runtime errors |
US8560699B1 (en) | 2010-12-28 | 2013-10-15 | Amazon Technologies, Inc. | Enforceable launch configurations |
WO2012091948A2 (en) | 2010-12-28 | 2012-07-05 | Citrix Systems, Inc. | Systems and methods for database proxy request switching |
US8745734B1 (en) | 2010-12-29 | 2014-06-03 | Amazon Technologies, Inc. | Managing virtual computing testing |
US8713566B2 (en) | 2011-01-31 | 2014-04-29 | International Business Machines Corporation | Method and system for delivering and executing virtual container on logical partition of target computing device |
US8756581B2 (en) | 2011-02-03 | 2014-06-17 | International Business Machines Corporation | Adaptive next-executing-cycle trace selection for trace-driven code optimizers |
US9967318B2 (en) | 2011-02-09 | 2018-05-08 | Cisco Technology, Inc. | Apparatus, systems, and methods for cloud agnostic multi-tier application modeling and deployment |
US8903943B2 (en) | 2011-02-15 | 2014-12-02 | Salesforce.Com, Inc. | Integrating cloud applications and remote jobs |
US8555281B1 (en) | 2011-02-16 | 2013-10-08 | Google Inc. | Scheduling of tasks based upon historical execution times |
US8495648B1 (en) | 2011-02-28 | 2013-07-23 | Amazon Technologies, Inc. | Managing allocation of computing capacity |
US9552215B2 (en) | 2011-03-08 | 2017-01-24 | Rackspace Us, Inc. | Method and system for transferring a virtual machine |
US8392558B1 (en) | 2011-03-22 | 2013-03-05 | Amazon Technologies, Inc. | System and method for determining overload state for service requests |
CN102722412A (en) | 2011-03-31 | 2012-10-10 | 国际商业机器公司 | Combined computational device and method |
US9798831B2 (en) | 2011-04-01 | 2017-10-24 | Google Inc. | Processing data in a MapReduce framework |
US9002871B2 (en) | 2011-04-26 | 2015-04-07 | Brian J. Bulkowski | Method and system of mapreduce implementations on indexed datasets in a distributed database environment |
US8910156B1 (en) | 2011-04-29 | 2014-12-09 | Netapp, Inc. | Virtual machine dependency |
US9104477B2 (en) | 2011-05-05 | 2015-08-11 | Alcatel Lucent | Scheduling in MapReduce-like systems for fast completion time |
US20120324236A1 (en) | 2011-06-16 | 2012-12-20 | Microsoft Corporation | Trusted Snapshot Generation |
US8756322B1 (en) | 2011-06-16 | 2014-06-17 | Amazon Technologies, Inc | Fulfillment of requests for computing capacity |
US8615589B1 (en) | 2011-06-27 | 2013-12-24 | Amazon Technologies, Inc. | Resource optimization recommendations |
EP2726980A1 (en) | 2011-06-29 | 2014-05-07 | Hewlett-Packard Development Company, L.P. | Application migration with dynamic operating system containers |
US8813074B2 (en) | 2011-08-05 | 2014-08-19 | Vmware, Inc. | Detecting and correcting network interruptions using network address translation |
US9152405B2 (en) | 2011-08-22 | 2015-10-06 | International Business Machines Corporation | Rapid provisioning of virtual machines based on multi-dimensional user request patterns in a cloud |
US8898676B2 (en) | 2011-08-26 | 2014-11-25 | Vmware, Inc. | Management of software updates for software components in a virtualized environment of a datacenter using dependency relationships |
US8635607B2 (en) | 2011-08-30 | 2014-01-21 | Microsoft Corporation | Cloud-based build service |
US20130061220A1 (en) | 2011-09-06 | 2013-03-07 | Xerox Corporation | Method for on-demand inter-cloud load provisioning for transient bursts of computing needs |
US8621439B2 (en) | 2011-09-06 | 2013-12-31 | Microsoft Corporation | Modern application tracing |
JP2013061700A (en) | 2011-09-12 | 2013-04-04 | Sony Corp | Information processor, information processing method, recording medium, and information processing system |
US8839035B1 (en) | 2011-09-14 | 2014-09-16 | Amazon Technologies, Inc. | Cloud-based test execution |
US8825863B2 (en) | 2011-09-20 | 2014-09-02 | International Business Machines Corporation | Virtual machine placement within a server farm |
US9497136B1 (en) | 2011-09-28 | 2016-11-15 | Emc Corporation | Method and system for providing usage metrics to manage utilzation of cloud computing resources |
US8914515B2 (en) | 2011-10-28 | 2014-12-16 | International Business Machines Corporation | Cloud optimization using workload analysis |
JP5624973B2 (en) | 2011-11-04 | 2014-11-12 | 株式会社日立製作所 | Filtering device |
US9003141B2 (en) | 2011-11-14 | 2015-04-07 | Ca, Inc. | Enhanced software application platform |
TWI478063B (en) | 2011-11-21 | 2015-03-21 | Inst Information Industry | System and method for providing application program utilizing virtual machine and computer readable storage medium storing the method |
US9363099B2 (en) | 2011-12-13 | 2016-06-07 | Ericsson Ab | UPnP/DLNA with RADA hive |
US9635132B1 (en) | 2011-12-15 | 2017-04-25 | Amazon Technologies, Inc. | Service and APIs for remote volume-based block storage |
US10310878B2 (en) | 2011-12-16 | 2019-06-04 | Vmware, Inc. | Execution of an application in a runtime environment installed in a virtual appliance |
US9372735B2 (en) | 2012-01-09 | 2016-06-21 | Microsoft Technology Licensing, Llc | Auto-scaling of pool of virtual machines based on auto-scaling rules of user associated with the pool |
US9262238B2 (en) | 2012-01-31 | 2016-02-16 | Red Hat, Inc. | Connection management for an application in a computing platform |
US20130227710A1 (en) | 2012-02-27 | 2013-08-29 | Computer Associates Think, Inc. | System and method for securing leased images in a cloud environment |
US9112935B2 (en) | 2012-03-05 | 2015-08-18 | Microsoft Technology Licensing, Llc | Manipulating binary large objects |
CN103294554A (en) | 2012-03-05 | 2013-09-11 | 中兴通讯股份有限公司 | SOC multiprocessor dispatching method and apparatus |
US10222926B2 (en) | 2012-03-19 | 2019-03-05 | Citrix Systems, Inc. | Systems and methods for providing user interfaces for management applications |
CN104321782B (en) | 2012-03-30 | 2018-01-12 | 爱迪德技术有限公司 | The safety execution of web applications |
US9462081B2 (en) | 2012-04-17 | 2016-10-04 | Igt | Cloud based virtual environment validation |
US9256413B2 (en) | 2012-04-17 | 2016-02-09 | Sap Se | Automatic identification of services |
US9053603B2 (en) | 2012-04-17 | 2015-06-09 | Igt | Cloud based virtual environment authentication |
US20130283141A1 (en) | 2012-04-20 | 2013-10-24 | Latitude Geographics Group Ltd. | Client Agnostic Spatial Workflow Form Definition and Rendering |
US8955091B2 (en) | 2012-04-30 | 2015-02-10 | Zscaler, Inc. | Systems and methods for integrating cloud services with information management systems |
US8850514B2 (en) | 2012-05-01 | 2014-09-30 | Red Hat, Inc. | Cartridges in a multi-tenant platforms-as-a-service (PaaS) system implemented in a cloud computing environment |
CN103384237B (en) | 2012-05-04 | 2017-02-22 | 华为技术有限公司 | Method for sharing IaaS cloud account, shared platform and network device |
WO2013171787A2 (en) | 2012-05-15 | 2013-11-21 | Hitachi, Ltd. | File storage system and load distribution method |
US8806644B1 (en) | 2012-05-25 | 2014-08-12 | Symantec Corporation | Using expectation measures to identify relevant application analysis results |
US8850432B2 (en) | 2012-05-30 | 2014-09-30 | Red Hat, Inc. | Controlling utilization in a multi-tenant platform-as-a-service (PaaS) environment in a cloud computing system |
US8904402B2 (en) | 2012-05-30 | 2014-12-02 | Red Hat, Inc. | Controlling capacity in a multi-tenant platform-as-a-service environment in a cloud computing system |
US8799236B1 (en) | 2012-06-15 | 2014-08-05 | Amazon Technologies, Inc. | Detecting duplicated content among digital items |
US9098308B2 (en) | 2012-06-26 | 2015-08-04 | Marvell World Trade Ltd. | Method and apparatus for code performance analysis based on execution trace information |
US10031782B2 (en) | 2012-06-26 | 2018-07-24 | Juniper Networks, Inc. | Distributed processing of network device tasks |
US20150095822A1 (en) | 2012-07-02 | 2015-04-02 | eScoreMusic, Inc. | Systems and methods for music display, collaboration, annotation, composition, and editing |
US9298497B2 (en) | 2012-07-13 | 2016-03-29 | Wisconsin Alumni Research Foundation | Computer processor providing exception handling with reduced state storage |
US8825550B2 (en) | 2012-08-23 | 2014-09-02 | Amazon Technologies, Inc. | Scaling a virtual machine instance |
US20140059552A1 (en) | 2012-08-24 | 2014-02-27 | International Business Machines Corporation | Transparent efficiency for in-memory execution of map reduce job sequences |
US9110844B2 (en) | 2012-08-27 | 2015-08-18 | Microsoft Technology Licensing, Llc | State maintenance as a service |
US9575871B2 (en) | 2012-09-04 | 2017-02-21 | Salesforce.Com, Inc. | System and method for dynamically debugging data in a multi-tenant database environment |
US8966495B2 (en) | 2012-09-05 | 2015-02-24 | Cisco Technology, Inc. | Dynamic virtual machine consolidation |
US20140073300A1 (en) | 2012-09-10 | 2014-03-13 | Genband Us Llc | Managing Telecommunication Services using Proximity-based Technologies |
US9379995B2 (en) | 2012-09-11 | 2016-06-28 | Vmware, Inc. | Resource allocation diagnosis on distributed computer systems based on resource hierarchy |
US9116680B2 (en) | 2012-09-26 | 2015-08-25 | International Business Machines Corporation | Dynamically building locale objects or subsections of locale objects based on historical data |
JP2014075046A (en) | 2012-10-04 | 2014-04-24 | International Business Maschines Corporation | Trace generation method, device, and program, and multilevel compilation using the method |
US20140109176A1 (en) | 2012-10-15 | 2014-04-17 | Citrix Systems, Inc. | Configuring and providing profiles that manage execution of mobile applications |
US9081682B2 (en) | 2012-10-15 | 2015-07-14 | Red Hat Israel, Ltd. | Virtual machine installation image caching |
US20160019536A1 (en) | 2012-10-17 | 2016-01-21 | Royal Bank Of Canada | Secure processing of data |
US9083757B2 (en) | 2012-11-21 | 2015-07-14 | Telefonaktiebolaget L M Ericsson LLP | Multi-objective server placement determination |
US9052935B1 (en) | 2012-11-27 | 2015-06-09 | Symantec Corporation | Systems and methods for managing affinity rules in virtual-machine environments |
US9363367B2 (en) | 2012-12-05 | 2016-06-07 | Future Dial, Inc. | Using automatically collected device problem information to route and guide users' requests |
US9052932B2 (en) | 2012-12-17 | 2015-06-09 | International Business Machines Corporation | Hybrid virtual machine configuration management |
US9329900B2 (en) | 2012-12-28 | 2016-05-03 | Intel Corporation | Hetergeneous processor apparatus and method |
US10223431B2 (en) | 2013-01-31 | 2019-03-05 | Facebook, Inc. | Data stream splitting for low-latency data access |
US10552774B2 (en) | 2013-02-11 | 2020-02-04 | Amazon Technologies, Inc. | Cost-minimizing task scheduler |
JP5953421B2 (en) | 2013-02-25 | 2016-07-20 | 株式会社日立製作所 | Management method of tenant network configuration in virtual server and non-virtual server mixed environment |
US9524489B2 (en) | 2013-03-14 | 2016-12-20 | Samsung Electronics Co., Ltd. | Computing system with task transfer mechanism and method of operation thereof |
US9311221B2 (en) | 2013-03-15 | 2016-04-12 | Ab Initio Technology Llc | Recording program execution |
EP2973051A4 (en) | 2013-03-15 | 2016-11-16 | Amazon Tech Inc | Scalable analysis platform for semi-structured data |
US8893088B2 (en) | 2013-04-02 | 2014-11-18 | Apple Inc. | Dynamic program evaluation for system adaptation |
US10019297B2 (en) * | 2013-04-03 | 2018-07-10 | Salesforce.Com, Inc. | Systems and methods for implementing bulk handling in asynchronous processing |
AU2014252699A1 (en) | 2013-04-13 | 2015-10-29 | Kiss Digital Media Pty Ltd | Methods, systems, apparatus, products, articles and data structures for cross-platform digital content |
US9329881B2 (en) | 2013-04-23 | 2016-05-03 | Sap Se | Optimized deployment of data services on the cloud |
US9929916B1 (en) | 2013-05-02 | 2018-03-27 | Aspen Technology, Inc. | Achieving stateful application software service behavior in distributed stateless systems |
US9104848B2 (en) | 2013-05-08 | 2015-08-11 | International Business Machines Corporation | Cross-platform authentication from within a rich client |
US9628332B2 (en) | 2013-05-20 | 2017-04-18 | Microsoft Technology Licensing, Llc | Resource allocation to game titles in a remote gaming environment |
US10572124B2 (en) | 2013-05-20 | 2020-02-25 | Citrix Systems, Inc. | Bound based contextual zoom |
US20140365781A1 (en) | 2013-06-07 | 2014-12-11 | Technische Universitaet Darmstadt | Receiving a Delegated Token, Issuing a Delegated Token, Authenticating a Delegated User, and Issuing a User-Specific Token for a Resource |
US9767138B2 (en) | 2013-06-12 | 2017-09-19 | Oracle International Corporation | In-database sharded queue for a shared-disk database |
US9990499B2 (en) | 2013-08-05 | 2018-06-05 | Netflix, Inc. | Dynamic security testing |
US9111037B1 (en) | 2013-08-21 | 2015-08-18 | Ca, Inc. | Method and apparatus to enable mainframe computer testing for software testing management platform |
US9591003B2 (en) | 2013-08-28 | 2017-03-07 | Amazon Technologies, Inc. | Dynamic application security verification |
US20150067019A1 (en) | 2013-08-28 | 2015-03-05 | Soeren Balko | Method and system for using arbitrary computing devices for distributed data processing |
US9680772B2 (en) | 2013-09-09 | 2017-06-13 | Vmware, Inc. | System and method for managing configuration of virtual switches in a virtual machine network |
US10339236B2 (en) | 2013-09-10 | 2019-07-02 | Vmware, Inc. | Techniques for improving computational throughput by using virtual machines |
US10635644B2 (en) | 2013-11-11 | 2020-04-28 | Amazon Technologies, Inc. | Partition-based data stream processing framework |
US9298485B2 (en) | 2013-11-19 | 2016-03-29 | International Business Machines Corporation | Maintaining virtual machines for cloud-based operators in a streaming application in a ready state |
CN103946807B (en) | 2013-11-20 | 2016-03-09 | 华为技术有限公司 | A kind of mthods, systems and devices of generating snapshot |
US9213572B2 (en) | 2013-12-02 | 2015-12-15 | Vmware, Inc. | Interdependent virtual machine management |
US20160306613A1 (en) | 2013-12-03 | 2016-10-20 | Hewlett Packard Enterprise Development Lp | Code routine performance prediction using test results from code integration tool |
RU2571723C2 (en) | 2013-12-05 | 2015-12-20 | Закрытое акционерное общество "Лаборатория Касперского" | System and method of reducing load on operating system when executing antivirus application |
US9164754B1 (en) | 2013-12-18 | 2015-10-20 | Amazon Technologies, Inc. | Runtime patching of native-code programs |
US9501345B1 (en) | 2013-12-23 | 2016-11-22 | Intuit Inc. | Method and system for creating enriched log data |
US10809866B2 (en) | 2013-12-31 | 2020-10-20 | Vmware, Inc. | GUI for creating and managing hosts and virtual machines |
CN103731427B (en) | 2013-12-31 | 2017-04-12 | 华为技术有限公司 | Conversation processing method, device and system |
EP2894564A1 (en) | 2014-01-10 | 2015-07-15 | Fujitsu Limited | Job scheduling based on historical job data |
EP3103239B1 (en) | 2014-02-07 | 2023-10-11 | Oracle International Corporation | Cloud service custom execution environment |
US10133741B2 (en) | 2014-02-13 | 2018-11-20 | Amazon Technologies, Inc. | Log data service in a virtual environment |
WO2015130262A1 (en) | 2014-02-25 | 2015-09-03 | Hewlett-Packard Development Company, L.P. | Multiple pools in a multi-core system |
US9110770B1 (en) | 2014-03-04 | 2015-08-18 | Amazon Technologies, Inc. | Assessing quality of code in an open platform environment |
US20150254248A1 (en) | 2014-03-07 | 2015-09-10 | Printeron Inc. | System for suggesting network resource for use by a network terminal based on network resource ranking |
US9491145B2 (en) | 2014-03-14 | 2016-11-08 | Soha Systems, Inc. | Secure application delivery system with dial out and associated method |
US10572817B2 (en) | 2014-03-19 | 2020-02-25 | Peopleconnect, Inc. | Graph-based organization entity resolution |
US10218633B2 (en) | 2014-03-28 | 2019-02-26 | Amazon Technologies, Inc. | Implementation of a service that coordinates the placement and execution of containers |
US9720661B2 (en) | 2014-03-31 | 2017-08-01 | International Businesss Machines Corporation | Selectively controlling use of extended mode features |
US9459860B2 (en) | 2014-04-30 | 2016-10-04 | Paypal, Inc. | Mixed mode session management |
US9858060B2 (en) | 2014-05-09 | 2018-01-02 | International Business Machines Corporation | Automated deployment of a private modular cloud-computing environment |
US20150324229A1 (en) | 2014-05-09 | 2015-11-12 | International Business Machines Corporation | Propagation of task progress through the use of coalesced time intervals |
US20150332195A1 (en) | 2014-05-13 | 2015-11-19 | Linkedln Corporation | Facilitating performance monitoring for periodically scheduled workflows |
WO2015175942A1 (en) | 2014-05-15 | 2015-11-19 | Carnegie Mellon University | Method and apparatus for on-demand i/o channels for secure applications |
FR3021108B1 (en) | 2014-05-16 | 2016-05-06 | Thales Sa | METHOD FOR REAL-TIME SERVICE EXECUTION, IN PARTICULAR FLIGHT MANAGEMENT, AND REAL-TIME SYSTEM USING SUCH A METHOD |
US9703681B2 (en) | 2014-05-29 | 2017-07-11 | Microsoft Technology Licensing, Llc | Performance optimization tip presentation during debugging |
US9390260B2 (en) | 2014-06-09 | 2016-07-12 | Lehigh University | Methods for enforcing control flow of a computer program |
US9361102B2 (en) | 2014-06-09 | 2016-06-07 | Lehigh University | Methods for enforcing control flow of a computer program |
US10061687B2 (en) | 2014-06-17 | 2018-08-28 | Paypal, Inc. | Self-learning and self-validating declarative testing |
US9405582B2 (en) | 2014-06-20 | 2016-08-02 | International Business Machines Corporation | Dynamic parallel distributed job configuration in a shared-resource environment |
US10255090B2 (en) | 2014-06-23 | 2019-04-09 | Vmware, Inc. | Hypervisor context switching using a redirection exception vector in processors having more than two hierarchical privilege levels |
US10162655B2 (en) | 2014-06-23 | 2018-12-25 | Vmware, Inc. | Hypervisor context switching using TLB tags in processors having more than two hierarchical privilege levels |
US9760443B2 (en) | 2014-06-28 | 2017-09-12 | Vmware, Inc. | Using a recovery snapshot during live migration |
US9613127B1 (en) | 2014-06-30 | 2017-04-04 | Quantcast Corporation | Automated load-balancing of partitions in arbitrarily imbalanced distributed mapreduce computations |
US20150378762A1 (en) | 2014-06-30 | 2015-12-31 | Vmware, Inc. | Monitoring and dynamic configuration of virtual-machine memory-management |
US9983901B2 (en) | 2014-07-09 | 2018-05-29 | Google Llc | Dynamic shard allocation adjustment |
US20160019081A1 (en) | 2014-07-21 | 2016-01-21 | Vmware,Inc. | Viewing a snapshot of a virtual machine |
US9612859B2 (en) | 2014-07-21 | 2017-04-04 | Vmware, Inc. | Comparing states of a virtual machine |
US20160026486A1 (en) | 2014-07-25 | 2016-01-28 | Soft Machines, Inc. | An allocation and issue stage for reordering a microinstruction sequence into an optimized microinstruction sequence to implement an instruction set agnostic runtime architecture |
US20160070714A1 (en) | 2014-09-10 | 2016-03-10 | Netapp, Inc. | Low-overhead restartable merge operation with efficient crash recovery |
US9582301B2 (en) | 2014-09-17 | 2017-02-28 | International Business Machines Corporation | Method of defining javascript objects |
CN104243479B (en) | 2014-09-19 | 2018-05-08 | 北京电游互动科技有限公司 | A kind of external equipment polyplant and method |
US9823983B2 (en) | 2014-09-25 | 2017-11-21 | Nxp Usa, Inc. | Electronic fault detection unit |
US20160092493A1 (en) | 2014-09-29 | 2016-03-31 | International Business Machines Corporation | Executing map-reduce jobs with named data |
US10048974B1 (en) | 2014-09-30 | 2018-08-14 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US9563513B2 (en) | 2014-10-09 | 2017-02-07 | International Business Machines Corporation | O(1) virtual machine (VM) snapshot management |
US9930133B2 (en) | 2014-10-23 | 2018-03-27 | Netapp, Inc. | System and method for managing application performance |
JP5904514B1 (en) | 2014-10-28 | 2016-04-13 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Method of automatically applying an update to a snapshot of a virtual machine, and its computer system and computer system program |
US20160125059A1 (en) | 2014-11-04 | 2016-05-05 | Rubrik, Inc. | Hybrid cloud data management system |
US10516733B2 (en) | 2014-11-25 | 2019-12-24 | Auth0, Inc. | Multi-tenancy via code encapsulated in server requests |
US9864636B1 (en) | 2014-12-10 | 2018-01-09 | Amazon Technologies, Inc. | Allocating processor resources based on a service-level agreement |
WO2016094840A2 (en) | 2014-12-11 | 2016-06-16 | Ghosh Sudeep | System, method & computer readable medium for software protection via composable process-level virtual machines |
CN104459306B (en) | 2014-12-18 | 2017-02-22 | 东北大学 | Power demand quantity remote monitoring system and method for magnesium electrical smelting group furnaces |
US20160191420A1 (en) | 2014-12-27 | 2016-06-30 | Intel Corporation | Mitigating traffic steering inefficiencies in distributed uncore fabric |
WO2016106516A1 (en) | 2014-12-29 | 2016-07-07 | 华为技术有限公司 | Method and device for scheduling user request in distributed resource system |
US11494447B2 (en) | 2015-01-13 | 2022-11-08 | Google Llc | Distributed file system for virtualized computing clusters |
US10033570B2 (en) | 2015-01-15 | 2018-07-24 | International Business Machines Corporation | Distributed map reduce network |
US9563613B1 (en) | 2015-01-23 | 2017-02-07 | Sprint Communications Company L.P. | System and method for dynamic portable document file generation |
US9921864B2 (en) | 2015-02-26 | 2018-03-20 | Vmware, Inc. | Dynamic host performance tuning of a network stack |
US9625984B2 (en) | 2015-03-27 | 2017-04-18 | Intel Corporation | Technologies for managing power during an activation cycle |
US9430290B1 (en) | 2015-03-31 | 2016-08-30 | International Business Machines Corporation | Determining storage tiers for placement of data sets during execution of tasks in a workflow |
US9658942B2 (en) | 2015-04-02 | 2017-05-23 | International Business Machines Corporation | Dynamic tracing framework for debugging in virtualized environments |
EP3082038A1 (en) | 2015-04-15 | 2016-10-19 | Hybridserver Tec AG | Method, device and system for creating a massively parallelized executable object |
US9756020B2 (en) | 2015-04-27 | 2017-09-05 | Microsoft Technology Licensing, Llc | Persistent uniform resource locators (URLs) for client applications acting as web services |
US20160350099A1 (en) | 2015-05-29 | 2016-12-01 | Hewlett Packard Enterprise Development Lp | Application deployment to virtual machines |
US9715416B2 (en) | 2015-06-03 | 2017-07-25 | Intel Corporation | Adaptive queued locking for control of speculative execution |
US9785424B2 (en) | 2015-06-05 | 2017-10-10 | Apple Inc. | Capability attributes based application packaging |
US10481982B2 (en) | 2015-06-16 | 2019-11-19 | Mongodb, Inc. | System and method for facilitating replication in a distributed database |
US9880837B2 (en) | 2015-06-24 | 2018-01-30 | Vmware, Inc. | Artifact manager for release automation |
US20160378547A1 (en) | 2015-06-29 | 2016-12-29 | Amazon Technologies, Inc. | Preserving state during virtual machine instance migration |
US10146635B1 (en) | 2015-06-30 | 2018-12-04 | EMC IP Holding Company LLC | Virtual machine backup |
WO2017003747A1 (en) | 2015-07-01 | 2017-01-05 | Zest Finance, Inc. | Systems and methods for type coercion |
US10531226B1 (en) | 2015-07-10 | 2020-01-07 | WeWork Companies Inc. | Determining qualified devices using zone information |
US9946874B2 (en) | 2015-08-06 | 2018-04-17 | International Business Machines Corporation | Authenticating application legitimacy |
US9660809B2 (en) | 2015-08-07 | 2017-05-23 | Adobe Systems Incorporated | Cross-site request forgery defense |
US9852012B2 (en) | 2015-08-26 | 2017-12-26 | International Business Machines Corporation | Scheduling mapReduce tasks based on estimated workload distribution |
US10235209B2 (en) | 2015-08-28 | 2019-03-19 | Vmware, Inc. | Hybrid task framework |
US10198281B2 (en) | 2015-08-28 | 2019-02-05 | Vmware, Inc. | Hybrid infrastructure provisioning framework tethering remote datacenters |
US10083073B2 (en) | 2015-09-14 | 2018-09-25 | Dynatrace Llc | Method and system for real-time causality and root cause determination of transaction and infrastructure related events provided by multiple, heterogeneous agents |
US10198298B2 (en) | 2015-09-16 | 2019-02-05 | Salesforce.Com, Inc. | Handling multiple task sequences in a stream processing framework |
US10104123B2 (en) | 2015-09-23 | 2018-10-16 | Ca, Inc. | Fetching a policy definition library from a policy server at mobile device runtime of an application package to control access to mobile device resources |
US10361972B2 (en) | 2015-09-23 | 2019-07-23 | Citrix Systems, Inc. | Systems and methods to support VXLAN in partition environment where a single system acts as multiple logical systems to support multitenancy |
IN2015CH05184A (en) | 2015-09-28 | 2015-10-16 | Wipro Ltd | |
US10356206B2 (en) | 2015-11-08 | 2019-07-16 | Vmware, Inc. | Deploying an application in multiple cloud computing environments |
US10382409B2 (en) | 2015-11-25 | 2019-08-13 | Visa International Service Association | Secure multi-party protocol |
US20170161059A1 (en) | 2015-12-08 | 2017-06-08 | Paypal, Inc. | Management of multiple application programming interface versions for development environments |
US10846117B1 (en) | 2015-12-10 | 2020-11-24 | Fireeye, Inc. | Technique for establishing secure communication between host and guest processes of a virtualization architecture |
US9514037B1 (en) | 2015-12-16 | 2016-12-06 | International Business Machines Corporation | Test program scheduling based on analysis of test data sets |
US10013267B1 (en) | 2015-12-16 | 2018-07-03 | Amazon Technologies, Inc. | Pre-triggers for code execution environments |
US10754701B1 (en) | 2015-12-16 | 2020-08-25 | Amazon Technologies, Inc. | Executing user-defined code in response to determining that resources expected to be utilized comply with resource restrictions |
US9787779B2 (en) | 2015-12-21 | 2017-10-10 | Amazon Technologies, Inc. | Analyzing deployment pipelines used to update production computing services using a live pipeline template process |
US10002026B1 (en) | 2015-12-21 | 2018-06-19 | Amazon Technologies, Inc. | Acquisition and maintenance of dedicated, reserved, and variable compute capacity |
US10067801B1 (en) | 2015-12-21 | 2018-09-04 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US10831556B2 (en) | 2015-12-23 | 2020-11-10 | Intel IP Corporation | Virtual CPU consolidation to avoid physical CPU contention between virtual machines |
WO2017117455A1 (en) | 2015-12-29 | 2017-07-06 | Quixey, Inc. | Message based application state and card sharing methods for user devices |
US11089152B2 (en) | 2016-02-08 | 2021-08-10 | Aawaaz Inc. | Placement of a missed call |
US10608908B2 (en) | 2016-02-10 | 2020-03-31 | Nicira, Inc. | On-demand connection ping |
US10379824B2 (en) | 2016-02-26 | 2019-08-13 | Oracle International Corporation | Method for static security enforcement of a DSL |
US10182460B2 (en) | 2016-03-14 | 2019-01-15 | Zynga Inc. | Multitenancy gaming services platform |
WO2017160765A1 (en) | 2016-03-15 | 2017-09-21 | Carbon Black, Inc. | System and method for process hollowing detection |
US11106705B2 (en) | 2016-04-20 | 2021-08-31 | Zestfinance, Inc. | Systems and methods for parsing opaque data |
US10310820B2 (en) | 2016-05-12 | 2019-06-04 | Basal Nuclei Inc | Programming model and interpreted runtime environment for high performance services with implicit concurrency control |
JP6719079B2 (en) | 2016-05-31 | 2020-07-08 | パナソニックIpマネジメント株式会社 | Information equipment, data processing system, data processing method and computer program |
US9900765B2 (en) | 2016-06-02 | 2018-02-20 | Apple Inc. | Method and apparatus for creating and using a roaming list based on a user roaming plan |
US10768920B2 (en) | 2016-06-15 | 2020-09-08 | Microsoft Technology Licensing, Llc | Update coordination in a multi-tenant cloud computing environment |
US10592279B2 (en) | 2016-06-23 | 2020-03-17 | Advanced Micro Devices, Inc. | Multi-processor apparatus and method of detection and acceleration of lagging tasks |
US10139876B2 (en) | 2016-06-23 | 2018-11-27 | Vmware Inc. | Efficient reboot of an operating system executed in a virtual machine |
US10650241B2 (en) | 2016-06-27 | 2020-05-12 | Facebook, Inc. | Systems and methods for identifying matching content |
US20190020913A9 (en) | 2016-06-27 | 2019-01-17 | Facebook, Inc. | Systems and methods for identifying matching content |
US10102040B2 (en) | 2016-06-29 | 2018-10-16 | Amazon Technologies, Inc | Adjusting variable limit on concurrent code executions |
US9977691B2 (en) | 2016-06-29 | 2018-05-22 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions based on communication between frontends |
US11625257B2 (en) | 2016-06-29 | 2023-04-11 | Vmware, Inc. | Provisioning executable managed objects of a virtualized computing environment from non-executable managed objects |
CN109478134B (en) | 2016-06-30 | 2022-08-26 | 亚马逊技术有限公司 | Executing on-demand network code with cross-account aliases |
US9596350B1 (en) | 2016-07-21 | 2017-03-14 | Genesys Telecommunications Laboratories, Inc. | Virtual interactions in contact center operations |
US10089135B2 (en) | 2016-08-09 | 2018-10-02 | International Business Machines Corporation | Expediting the provisioning of virtual machines based on cached repeated portions of a template |
US9977670B2 (en) | 2016-08-10 | 2018-05-22 | Bank Of America Corporation | Application programming interface for providing access to computing platform definitions |
US10296498B2 (en) | 2016-08-23 | 2019-05-21 | Oracle International Corporation | Coordinated hash table indexes to facilitate reducing database reconfiguration time |
US20180060221A1 (en) | 2016-08-24 | 2018-03-01 | Google Inc. | Multi-layer test suite generation |
US20180060133A1 (en) | 2016-09-01 | 2018-03-01 | Amazon Technologies, Inc. | Event-driven resource pool management |
US10191861B1 (en) | 2016-09-06 | 2019-01-29 | Fireeye, Inc. | Technique for implementing memory views using a layered virtualization architecture |
US10572395B2 (en) | 2016-09-07 | 2020-02-25 | Intel Corporation | Non-enclave access prevention |
US10831641B2 (en) | 2016-09-08 | 2020-11-10 | At&T Intellectual Property I, L.P. | Method and apparatus for determining a performance impact by a software upgrade of a mobile user endpoint device |
US10545792B2 (en) | 2016-09-12 | 2020-01-28 | Seven Bridges Genomics Inc. | Hashing data-processing steps in workflow environments |
US10884787B1 (en) | 2016-09-23 | 2021-01-05 | Amazon Technologies, Inc. | Execution guarantees in an on-demand network code execution system |
US10061613B1 (en) | 2016-09-23 | 2018-08-28 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US11151097B2 (en) | 2016-09-25 | 2021-10-19 | Microsoft Technology Licensing, Llc | Dynamic schema inference and enforcement |
US11023463B2 (en) | 2016-09-26 | 2021-06-01 | Splunk Inc. | Converting and modifying a subquery for an external data system |
US10430591B1 (en) | 2016-10-04 | 2019-10-01 | Bromium, Inc. | Using threat model to monitor host execution in a virtualized environment |
US10346625B2 (en) | 2016-10-31 | 2019-07-09 | International Business Machines Corporation | Automated mechanism to analyze elevated authority usage and capability |
US10102229B2 (en) | 2016-11-09 | 2018-10-16 | Palantir Technologies Inc. | Validating data integrations using a secondary data store |
US10608973B2 (en) | 2016-11-28 | 2020-03-31 | Amazon Technologies, Inc. | Embedded codes in messaging protocol communications |
US10417049B2 (en) | 2016-11-28 | 2019-09-17 | Amazon Technologies, Inc. | Intra-code communication in a localized device coordinator |
EP3545662B1 (en) | 2016-11-28 | 2023-10-18 | Amazon Technologies, Inc. | Managing messaging protocol communications |
EP3545414A1 (en) | 2016-11-28 | 2019-10-02 | Amazon Technologies Inc. | On-demand code execution in a localized device coordinator |
US10637817B2 (en) | 2016-11-28 | 2020-04-28 | Amazon Technologies, Inc. | Managing messaging protocol communications |
US10193839B2 (en) | 2016-11-28 | 2019-01-29 | Amazon Technologies, Inc | Managing security in messaging protocol communications |
US9983982B1 (en) | 2017-01-04 | 2018-05-29 | Visa International Service Association | Testing software code in a production environment |
US10209962B2 (en) | 2017-02-06 | 2019-02-19 | International Business Machines Corporation | Reconstructing a high level compilable program from an instruction trace |
US20180239636A1 (en) | 2017-02-22 | 2018-08-23 | Nutanix, Inc. | Task execution framework using idempotent subtasks |
US10754685B2 (en) | 2017-03-03 | 2020-08-25 | Microsoft Technology Licensing Llc | Cross-device task registration and resumption |
EP3379413A1 (en) | 2017-03-21 | 2018-09-26 | Nokia Solutions and Networks Oy | Optimization of a software image layer stack |
US10360067B1 (en) | 2017-03-28 | 2019-07-23 | Amazon Technologies, Inc. | Dynamic function calls in an on-demand network code execution system |
US10514909B2 (en) | 2017-03-29 | 2019-12-24 | Technion Research & Development Foundation Limited | Similarity of binaries |
US20180300109A1 (en) | 2017-04-17 | 2018-10-18 | International Business Machines Corporation | Preserving dynamic trace purity |
US10650156B2 (en) | 2017-04-26 | 2020-05-12 | International Business Machines Corporation | Environmental security controls to prevent unauthorized access to files, programs, and objects |
US10382291B2 (en) | 2017-04-26 | 2019-08-13 | Oracle International Corporation | Provisioning framework for binding related cloud services |
US10423158B1 (en) | 2017-05-03 | 2019-09-24 | Amazon Technologies, Inc. | Multi-core processor with independently executing flight control programs |
US10459822B1 (en) | 2017-05-04 | 2019-10-29 | Amazon Technologies, Inc. | Iterative static analysis using stored partial results |
US10397230B2 (en) | 2017-06-15 | 2019-08-27 | International Business Machines Corporation | Service processor and system with secure booting and monitoring of service processor integrity |
US10445140B1 (en) | 2017-06-21 | 2019-10-15 | Amazon Technologies, Inc. | Serializing duration-limited task executions in an on demand code execution system |
US10725826B1 (en) | 2017-06-21 | 2020-07-28 | Amazon Technologies, Inc. | Serializing duration-limited task executions in an on demand code execution system |
US10742750B2 (en) | 2017-07-20 | 2020-08-11 | Cisco Technology, Inc. | Managing a distributed network of function execution environments |
US10325392B2 (en) | 2017-08-01 | 2019-06-18 | Cimpress Schweiz Gmbh | Content replacement system using visual design object models |
US11047837B2 (en) | 2017-09-06 | 2021-06-29 | Green Ocean Sciences, Inc. | Mobile integrated device and electronic data platform for chemical analysis |
US10360025B2 (en) | 2017-09-08 | 2019-07-23 | Accenture Global Solutions Limited | Infrastructure instantiation, collaboration, and validation architecture for serverless execution frameworks |
US10686605B2 (en) | 2017-09-29 | 2020-06-16 | Intel Corporation | Technologies for implementing mutually distrusting domains |
US10615984B1 (en) | 2017-10-03 | 2020-04-07 | EMC IP Holding Company LLC | Enhanced authentication method for Hadoop job containers |
EP3596642B1 (en) | 2017-10-25 | 2021-03-10 | Google LLC | Privacy-preserving identity verification |
US10587412B2 (en) | 2017-11-07 | 2020-03-10 | International Business Machines Corporation | Virtual machine structure |
US10565083B2 (en) | 2017-12-08 | 2020-02-18 | Cisco Technology, Inc. | Simulating hosted application performance |
US10564946B1 (en) | 2017-12-13 | 2020-02-18 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10303492B1 (en) | 2017-12-13 | 2019-05-28 | Amazon Technologies, Inc. | Managing custom runtimes in an on-demand code execution system |
US10803180B2 (en) | 2017-12-13 | 2020-10-13 | Jayant Shukla | Deterministic method for detecting and blocking of exploits on interpreted code |
US10803029B2 (en) | 2017-12-19 | 2020-10-13 | Salesforce.Com, Inc. | Generating javascript object notation (JSON) schema from JSON payloads |
US10402178B2 (en) | 2018-01-26 | 2019-09-03 | Accenture Global Solutions Limited | Cross platform content management and distribution system |
US10503626B2 (en) | 2018-01-29 | 2019-12-10 | Oracle International Corporation | Hybrid instrumentation framework for multicore low power processors |
US10924511B2 (en) | 2018-01-30 | 2021-02-16 | EMC IP Holding Company LLC | Systems and methods of chunking data for secure data storage across multiple cloud providers |
US10353678B1 (en) | 2018-02-05 | 2019-07-16 | Amazon Technologies, Inc. | Detecting code characteristic alterations due to cross-service calls |
US10733085B1 (en) | 2018-02-05 | 2020-08-04 | Amazon Technologies, Inc. | Detecting impedance mismatches due to cross-service calls |
US10831898B1 (en) | 2018-02-05 | 2020-11-10 | Amazon Technologies, Inc. | Detecting privilege escalations in code including cross-service calls |
US10572375B1 (en) | 2018-02-05 | 2020-02-25 | Amazon Technologies, Inc. | Detecting parameter validity in code including cross-service calls |
US10649792B1 (en) | 2018-02-09 | 2020-05-12 | American Megatrends International, Llc | Cloning of firmware configuration settings using rest over IPMI interface |
US10725752B1 (en) | 2018-02-13 | 2020-07-28 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US11157300B2 (en) | 2018-02-13 | 2021-10-26 | Sophos Limited | Managing virtual machine security resources |
US10728034B2 (en) | 2018-02-23 | 2020-07-28 | Webroot Inc. | Security privilege escalation exploit detection and mitigation |
US10776091B1 (en) | 2018-02-26 | 2020-09-15 | Amazon Technologies, Inc. | Logging endpoint in an on-demand code execution system |
US10860367B2 (en) | 2018-03-14 | 2020-12-08 | Microsoft Technology Licensing, Llc | Opportunistic virtual machine migration |
US10621004B2 (en) | 2018-03-19 | 2020-04-14 | Accenture Global Solutions Limited | Resource control stack based system for multiple domain presentation of cloud computing resource control |
US11416605B2 (en) | 2018-03-27 | 2022-08-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Trusted execution environment instances licenses management |
US10466986B2 (en) | 2018-03-30 | 2019-11-05 | Oracle International Corporation | Optimized recompilation using hardware tracing |
US10984098B2 (en) | 2018-04-06 | 2021-04-20 | Palo Alto Networks, Inc. | Process privilege escalation protection in a computing environment |
US10503634B1 (en) | 2018-05-25 | 2019-12-10 | Microsoft Technology Licensing, Llc | Semantic comparison of computer compiler traces |
WO2020005764A1 (en) | 2018-06-25 | 2020-01-02 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US10853115B2 (en) | 2018-06-25 | 2020-12-01 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US10817331B2 (en) | 2018-06-25 | 2020-10-27 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US10649749B1 (en) | 2018-06-26 | 2020-05-12 | Amazon Technologies, Inc. | Cross-environment application of tracing information for improved code execution |
US10719367B1 (en) | 2018-06-27 | 2020-07-21 | Amazon Technologies, Inc. | Management of workers executing program code functions |
US10911367B2 (en) | 2018-06-27 | 2021-02-02 | Oracle International Corporation | Computerized methods and systems for managing cloud computer services |
US10949237B2 (en) | 2018-06-29 | 2021-03-16 | Amazon Technologies, Inc. | Operating system customization in an on-demand network code execution system |
US10877774B2 (en) | 2018-07-17 | 2020-12-29 | Sap Se | Cloud integration of application runtime |
US10715630B2 (en) | 2018-07-20 | 2020-07-14 | Dell Products L.P. | Common information model interoperability system |
US10713080B1 (en) | 2018-07-25 | 2020-07-14 | Amazon Technologies, Inc. | Request-based virtual machine memory transitioning in an on-demand network code execution system |
US10705928B2 (en) | 2018-08-28 | 2020-07-07 | Salesforce.Com, Inc. | Systems, methods, and apparatuses for tenant-to-tenant failover in a multi-tenant cloud computing environment |
US20200073987A1 (en) | 2018-09-04 | 2020-03-05 | Salesforce.Com, Inc. | Technologies for runtime selection of query execution engines |
US20200081745A1 (en) | 2018-09-10 | 2020-03-12 | Nuweba Labs Ltd. | System and method for reducing cold start latency of serverless functions |
US11099917B2 (en) | 2018-09-27 | 2021-08-24 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US11243953B2 (en) | 2018-09-27 | 2022-02-08 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US10740208B2 (en) | 2018-10-03 | 2020-08-11 | Capital One Services, Llc | Cloud infrastructure optimization |
US20200120102A1 (en) | 2018-10-10 | 2020-04-16 | Nuweba Labs Ltd. | Techniques for protecting against flow manipulation of serverless functions |
US10331462B1 (en) | 2018-11-06 | 2019-06-25 | Cloudflare, Inc. | Cloud computing platform that executes third-party code in a distributed cloud computing network |
US11075985B2 (en) | 2018-11-09 | 2021-07-27 | Cisco Technology, Inc. | Early action on deploying and executing functions in a serverless environment |
US11327814B2 (en) | 2018-11-28 | 2022-05-10 | International Business Machines Corporation | Semaphores for serverless computing |
US10884812B2 (en) | 2018-12-13 | 2021-01-05 | Amazon Technologies, Inc. | Performance-based hardware emulation in an on-demand network code execution system |
US11044117B2 (en) | 2018-12-26 | 2021-06-22 | Citrix Systems, Inc. | Intelligent and dynamic overlay tunnel formation via automatic discovery of citrivity/SDWAN peer in the datapath in a pure plug and play environment with zero networking |
US11010188B1 (en) | 2019-02-05 | 2021-05-18 | Amazon Technologies, Inc. | Simulated data object storage using on-demand computation of data objects |
US11323348B2 (en) | 2019-05-17 | 2022-05-03 | Citrix Systems, Inc. | API dependency error and latency injection |
US11115404B2 (en) | 2019-06-28 | 2021-09-07 | Amazon Technologies, Inc. | Facilitating service connections in serverless code executions |
US11190609B2 (en) | 2019-06-28 | 2021-11-30 | Amazon Technologies, Inc. | Connection pooling for scalable network services |
US11159528B2 (en) | 2019-06-28 | 2021-10-26 | Amazon Technologies, Inc. | Authentication to network-services using hosted authentication information |
US10942795B1 (en) | 2019-11-27 | 2021-03-09 | Amazon Technologies, Inc. | Serverless call distribution to utilize reserved capacity without inhibiting scaling |
US11119826B2 (en) | 2019-11-27 | 2021-09-14 | Amazon Technologies, Inc. | Serverless call distribution to implement spillover while avoiding cold starts |
CN114930295B (en) | 2019-11-27 | 2024-03-15 | 亚马逊技术有限公司 | Serverless call allocation method and system utilizing reserved capacity without inhibiting scaling |
-
2014
- 2014-09-30 US US14/502,741 patent/US9146764B1/en active Active
-
2015
- 2015-09-29 US US14/869,886 patent/US9483335B1/en active Active
-
2016
- 2016-11-01 US US15/340,825 patent/US10162688B2/en active Active
-
2018
- 2018-12-18 US US16/223,934 patent/US11467890B2/en active Active
Patent Citations (333)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4949254A (en) | 1988-09-29 | 1990-08-14 | Ibm Corp. | Method to manage concurrent execution of a distributed application program by a host computer and a large plurality of intelligent work stations on an SNA network |
US5283888A (en) | 1991-08-27 | 1994-02-01 | International Business Machines Corporation | Voice processing interface unit employing virtual screen communications for accessing a plurality of primed applications |
US5970488A (en) | 1997-05-05 | 1999-10-19 | Northrop Grumman Corporation | Real-time distributed database system and method |
US6385636B1 (en) | 1997-07-30 | 2002-05-07 | International Business Machines Corporation | Distributed processing system and client node, server node and distributed processing method |
US6463509B1 (en) | 1999-01-26 | 2002-10-08 | Motive Power, Inc. | Preloading data in a cache memory according to user-specified preload criteria |
US6708276B1 (en) | 1999-08-03 | 2004-03-16 | International Business Machines Corporation | Architecture for denied permissions in Java |
US20050132368A1 (en) | 1999-10-21 | 2005-06-16 | Harlan Sexton | Using a virtual machine instance as the basic unit of user execution in a server environment |
US7036121B1 (en) | 1999-12-01 | 2006-04-25 | International Business Machines Corporation | Method and system for maintaining software via network |
US20040098154A1 (en) | 2000-10-04 | 2004-05-20 | Mccarthy Brendan | Method and apparatus for computer system engineering |
JP2002287974A (en) | 2001-03-26 | 2002-10-04 | Ricoh Co Ltd | Method and device related to control for registering and starting application program |
US20020172273A1 (en) | 2001-05-21 | 2002-11-21 | Baker Albert D. | Adaptive resource management in a communication system |
US20030084434A1 (en) | 2001-07-16 | 2003-05-01 | Yuqing Ren | Embedded software update system |
US20060123066A1 (en) | 2001-08-30 | 2006-06-08 | Bea Systems, Inc. | Cluster caching with concurrency checking |
US20030071842A1 (en) | 2001-10-12 | 2003-04-17 | National Instruments Corporation | Dynamic and user-defined events for a graphical program |
US20030229794A1 (en) | 2002-06-07 | 2003-12-11 | Sutton James A. | System and method for protection against untrusted system management code by redirecting a system management interrupt and creating a virtual machine container |
US7774191B2 (en) | 2003-04-09 | 2010-08-10 | Gary Charles Berkowitz | Virtual supercomputer |
US20050193113A1 (en) | 2003-04-14 | 2005-09-01 | Fujitsu Limited | Server allocation control method |
US20040249947A1 (en) | 2003-05-22 | 2004-12-09 | Hewlett-Packard Development Company, L.P. | Concurrent cluster environment |
US20040268358A1 (en) | 2003-06-30 | 2004-12-30 | Microsoft Corporation | Network load balancing with host status information |
US20050257051A1 (en) | 2003-08-18 | 2005-11-17 | Philippe Richard | Adaptive data transformation engine |
US20050044301A1 (en) | 2003-08-20 | 2005-02-24 | Vasilevsky Alexander David | Method and apparatus for providing virtual computing services |
US20050120160A1 (en) | 2003-08-20 | 2005-06-02 | Jerry Plouffe | System and method for managing virtual servers |
US20050132167A1 (en) | 2003-12-10 | 2005-06-16 | Giuseppe Longobardi | Workload scheduler with cumulative weighting indexes |
US20050193283A1 (en) | 2003-12-30 | 2005-09-01 | Reinhardt Steven K. | Buffering unchecked stores for fault detection in redundant multithreading systems using speculative memory support |
US7665090B1 (en) | 2004-03-08 | 2010-02-16 | Swsoft Holdings, Ltd. | System, method, and computer program product for group scheduling of computer resources |
US20100031274A1 (en) | 2004-05-10 | 2010-02-04 | Siew Yong Sim-Tang | Method and system for real-time event journaling to provide enterprise data services |
US20060184669A1 (en) | 2004-08-13 | 2006-08-17 | Kalyanaraman Vaidyanathan | Monitoring system-calls to identify runaway processes within a computer system |
US8146073B2 (en) | 2004-09-30 | 2012-03-27 | Microsoft Corporation | Updating software while it is running |
JP2006107599A (en) | 2004-10-04 | 2006-04-20 | Sekisui Chem Co Ltd | Optical disk |
US20060129684A1 (en) | 2004-11-10 | 2006-06-15 | Chutney Technologies, Inc. | Apparatus and method for distributing requests across a cluster of application servers |
US8321554B2 (en) | 2004-12-17 | 2012-11-27 | International Business Machines Corporation | System and program to automatically identify a server on which to deploy an application |
US20060200668A1 (en) | 2005-02-04 | 2006-09-07 | Jean Hybre | Process for the secure management of the execution of an application |
US20060212332A1 (en) | 2005-03-16 | 2006-09-21 | Cluster Resources, Inc. | Simple integration of on-demand compute environment |
US8631130B2 (en) | 2005-03-16 | 2014-01-14 | Adaptive Computing Enterprises, Inc. | Reserving resources in an on-demand compute environment from a local compute environment |
US9112813B2 (en) | 2005-03-16 | 2015-08-18 | Adaptive Computing Enterprises, Inc. | On-demand compute environment |
US20060242647A1 (en) | 2005-04-21 | 2006-10-26 | Kimbrel Tracy J | Dynamic application placement under service and memory constraints |
US20060248195A1 (en) | 2005-04-27 | 2006-11-02 | Kunihiko Toumura | Computer system with a packet transfer device using a hash value for transferring a content request |
US7707579B2 (en) | 2005-07-14 | 2010-04-27 | International Business Machines Corporation | Method and system for application profiling for purposes of defining resource requirements |
US7730464B2 (en) | 2005-09-14 | 2010-06-01 | Microsoft Corporation | Code compilation management service |
US20140040343A1 (en) | 2005-09-15 | 2014-02-06 | Peter Nickolov | Globally Distributed Utility Computing Cloud |
US20070094396A1 (en) | 2005-10-20 | 2007-04-26 | Hitachi, Ltd. | Server pool management method |
US20070130341A1 (en) | 2005-12-06 | 2007-06-07 | Cisco Technology, Inc. | System for power savings in server farms |
US8051180B2 (en) | 2006-01-24 | 2011-11-01 | Citrix Systems, Inc. | Methods and servers for establishing a connection between a client system and a virtual machine executing in a terminal services session and hosting a requested computing environment |
US8095931B1 (en) | 2006-04-27 | 2012-01-10 | Vmware, Inc. | Controlling memory conditions in a virtual machine |
US20070255604A1 (en) | 2006-05-01 | 2007-11-01 | Seelig Michael J | Systems and methods to automatically activate distribution channels provided by business partners |
US20080028409A1 (en) | 2006-07-25 | 2008-01-31 | Ludmila Cherkasova | System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance |
US8046765B2 (en) | 2006-07-25 | 2011-10-25 | Hewlett-Packard Development Company, L.P. | System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance |
US8209695B1 (en) | 2006-07-28 | 2012-06-26 | Hewlett-Packard Development Company, L.P. | Reserving resources in a resource-on-demand system for user desktop utility demand |
US7823186B2 (en) | 2006-08-24 | 2010-10-26 | Novell, Inc. | System and method for applying security policies on multiple assembly caches |
US20080126486A1 (en) | 2006-09-15 | 2008-05-29 | Bea Systems, Inc. | Personal messaging application programming interface for integrating an application with groupware systems |
US20080082977A1 (en) | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Automatic load and balancing for virtual machines to meet resource requirements |
US8010990B2 (en) | 2006-10-26 | 2011-08-30 | Intel Corporation | Acceleration of packet flow classification in a virtualized system |
US20080104608A1 (en) | 2006-10-27 | 2008-05-01 | Hyser Chris D | Starting up at least one virtual machine in a physical machine by a load balancer |
US20080104247A1 (en) | 2006-10-31 | 2008-05-01 | Sun Microsystems, Inc. | Adaptive management of computing resources |
US20080126110A1 (en) | 2006-11-27 | 2008-05-29 | Tilmann Haeberle | Integrated software support for a distributed business application with seamless backend communications |
US8024564B2 (en) | 2006-12-06 | 2011-09-20 | International Business Machines Corporation | Automating configuration of software applications |
US20100031325A1 (en) | 2006-12-22 | 2010-02-04 | Virtuallogix Sa | System for enabling multiple execution environments to share a device |
US20080189468A1 (en) | 2007-02-02 | 2008-08-07 | Vmware, Inc. | High Availability Virtual Machine Cluster |
US20080201711A1 (en) | 2007-02-15 | 2008-08-21 | Amir Husain Syed M | Maintaining a Pool of Free Virtual Machines on a Server Computer |
US8065682B2 (en) | 2007-02-27 | 2011-11-22 | Microsoft Corporation | Enforcing system resource usage limits on query requests based on grouping query requests into workgroups and assigning workload groups to resource pools |
US20090125902A1 (en) | 2007-03-01 | 2009-05-14 | Ghosh Anup K | On-demand disposable virtual work system |
WO2008114454A1 (en) | 2007-03-20 | 2008-09-25 | Fujitsu Limited | Renewing system, program executing device, and computer program |
US8065676B1 (en) | 2007-04-24 | 2011-11-22 | Hewlett-Packard Development Company, L.P. | Automated provisioning of virtual machines for a virtual machine buffer pool and production pool |
US8051266B2 (en) | 2007-06-11 | 2011-11-01 | International Business Machines Corporation | Automatic memory management (AMM) |
US20090013153A1 (en) | 2007-07-04 | 2009-01-08 | Hilton Ronald N | Processor exclusivity in a partitioned system |
US20090025009A1 (en) | 2007-07-18 | 2009-01-22 | Frank Brunswig | Co-execution of objects from divergent runtime environments |
US20090055810A1 (en) | 2007-08-21 | 2009-02-26 | Nce Technologies Inc. | Method And System For Compilation And Execution Of Software Codes |
US8219987B1 (en) | 2007-08-24 | 2012-07-10 | Vmware, Inc. | Optimized virtual machine specification for provisioning application specific runtime environment |
US20090055829A1 (en) | 2007-08-24 | 2009-02-26 | Gibson Gary A | Method and apparatus for fine grain performance management of computer systems |
US8171473B2 (en) | 2007-08-31 | 2012-05-01 | International Business Machines Corporation | Method and apparatus for determining a service cluster topology based on static analysis |
US20090070355A1 (en) | 2007-09-11 | 2009-03-12 | International Business Machines Corporation | Transitioning between historical and real time data streams in the processing of data change messages |
US20090077569A1 (en) | 2007-09-14 | 2009-03-19 | Chris Appleton | Network management system event notification shortcut |
US20090193410A1 (en) | 2007-09-28 | 2009-07-30 | Xcerion Aktiebolag | Network operating system |
US8166304B2 (en) | 2007-10-02 | 2012-04-24 | International Business Machines Corporation | Support for multiple security policies on a unified authentication architecture |
US20090204964A1 (en) | 2007-10-12 | 2009-08-13 | Foley Peter F | Distributed trusted virtualization platform |
US8127284B2 (en) | 2007-10-16 | 2012-02-28 | Microsoft Corporation | On-demand loading of types of software code of a program executing on a computing device |
US8806468B2 (en) | 2007-10-16 | 2014-08-12 | Microsoft Corporation | On-demand loading of types of software code of a program executing on a computing device |
US20090158275A1 (en) | 2007-12-13 | 2009-06-18 | Zhikui Wang | Dynamically Resizing A Virtual Machine Container |
US20090198769A1 (en) | 2008-02-01 | 2009-08-06 | Microsoft Corporation | Virtual Application Server With Version Control |
US7886021B2 (en) | 2008-04-28 | 2011-02-08 | Oracle America, Inc. | System and method for programmatic management of distributed computing resources |
US20090288084A1 (en) | 2008-05-02 | 2009-11-19 | Skytap | Multitenant hosted virtual machine infrastructure |
WO2009137567A1 (en) | 2008-05-08 | 2009-11-12 | Google Inc. | Method for safely executing an untrusted native code module on a computing device |
US20090300599A1 (en) | 2008-05-30 | 2009-12-03 | Matthew Thomas Piotrowski | Systems and methods of utilizing virtual machines to protect computer systems |
US20100023940A1 (en) | 2008-07-28 | 2010-01-28 | Fujitsu Limited | Virtual machine system |
US20100036925A1 (en) | 2008-08-07 | 2010-02-11 | Tactara, Llc | Alias management platforms |
US20100070725A1 (en) | 2008-09-05 | 2010-03-18 | Anand Prahlad | Systems and methods for management of virtualization data |
US20100064299A1 (en) | 2008-09-09 | 2010-03-11 | Kace Networks, Inc. | Deployment and Management of Virtual Containers |
US20100070678A1 (en) | 2008-09-12 | 2010-03-18 | Vmware, Inc. | Saving and Restoring State Information for Virtualized Computer Systems |
US20100122343A1 (en) | 2008-09-12 | 2010-05-13 | Anup Ghosh | Distributed Sensor for Detecting Malicious Software |
US20100114825A1 (en) | 2008-10-27 | 2010-05-06 | Vmware, Inc. | Version control environment for virtual machines |
US20100115098A1 (en) | 2008-11-04 | 2010-05-06 | Novell, Inc. | Dynamic and automatic colocation and combining of service providers and service clients in a grid of resources |
US20100131959A1 (en) | 2008-11-26 | 2010-05-27 | Spiers Adam Z | Proactive application workload management |
US8336079B2 (en) | 2008-12-31 | 2012-12-18 | Hytrust, Inc. | Intelligent security control system for virtualized ecosystems |
US20100186011A1 (en) | 2009-01-20 | 2010-07-22 | Oracle International Corporation | Methods and systems for implementing transcendent page caching |
US20100198972A1 (en) | 2009-02-04 | 2010-08-05 | Steven Michael Umbehocker | Methods and Systems for Automated Management of Virtual Resources In A Cloud Computing Environment |
US20100199285A1 (en) | 2009-02-05 | 2010-08-05 | Vmware, Inc. | Virtual machine utility computing method and system |
US20110010722A1 (en) | 2009-03-12 | 2011-01-13 | Canon Kabushiki Kaisha | Memory swap management method and apparatus, and storage medium |
US8321558B1 (en) | 2009-03-31 | 2012-11-27 | Amazon Technologies, Inc. | Dynamically monitoring and modifying distributed execution of programs |
US20100257116A1 (en) | 2009-04-06 | 2010-10-07 | Accenture Global Services, Gmbh | Estimating a computing job complexity |
US20100269109A1 (en) | 2009-04-17 | 2010-10-21 | John Cartales | Methods and Systems for Evaluating Historical Metrics in Selecting a Physical Host for Execution of a Virtual Machine |
US8799879B2 (en) | 2009-06-30 | 2014-08-05 | Oracle America, Inc. | Method and apparatus for protecting translated code in a virtual machine |
US20110029970A1 (en) | 2009-07-31 | 2011-02-03 | International Business Machines Corporation | Optimizing on demand allocation of virtual machines using a stateless preallocation pool |
US20110055378A1 (en) | 2009-08-31 | 2011-03-03 | James Michael Ferris | Methods and systems for metering software infrastructure in a cloud computing environment |
US20110055396A1 (en) | 2009-08-31 | 2011-03-03 | Dehaan Michael Paul | Methods and systems for abstracting cloud management to allow communication between independently controlled clouds |
US8448165B1 (en) | 2009-09-15 | 2013-05-21 | Symantec Corporation | System and method for logging operations of virtual machines |
US20110078679A1 (en) | 2009-09-30 | 2011-03-31 | International Business Machines Corporation | Provisioning virtual machine placement |
US20110099551A1 (en) | 2009-10-26 | 2011-04-28 | Microsoft Corporation | Opportunistically Scheduling and Adjusting Time Slices |
US20110131572A1 (en) | 2009-11-30 | 2011-06-02 | Vitaly Elyashev | Controlling permissions in virtualization environment using hierarchical labeling |
US20110134761A1 (en) | 2009-12-03 | 2011-06-09 | International Business Machines Corporation | Dynamically provisioning virtual machines |
US20110141124A1 (en) | 2009-12-14 | 2011-06-16 | David Halls | Methods and systems for securing sensitive information using a hypervisor-trusted client |
US20110153727A1 (en) | 2009-12-17 | 2011-06-23 | Hong Li | Cloud federation as a service |
US20110153838A1 (en) | 2009-12-18 | 2011-06-23 | Microsoft Corporation | Session monitoring of virtual desktops in a virtual machine farm |
US20120192184A1 (en) | 2009-12-18 | 2012-07-26 | International Business Machines Corporation | Virtual image deployment with a warm cache |
US20110154353A1 (en) | 2009-12-22 | 2011-06-23 | Bmc Software, Inc. | Demand-Driven Workload Scheduling Optimization on Shared Computing Resources |
US20120131379A1 (en) | 2010-01-05 | 2012-05-24 | Hitachi, Ltd. | Computer system and availability method thereof |
US20110179162A1 (en) | 2010-01-15 | 2011-07-21 | Mayo Mark G | Managing Workloads and Hardware Resources in a Cloud Resource |
US20110184993A1 (en) | 2010-01-27 | 2011-07-28 | Vmware, Inc. | Independent Access to Virtual Machine Desktop Content |
US20110225277A1 (en) | 2010-03-11 | 2011-09-15 | International Business Machines Corporation | Placement of virtual machines based on server cost and network cost |
US20110231680A1 (en) | 2010-03-22 | 2011-09-22 | Microsoft Corporation | Energy savings for a networked computer |
US20110247005A1 (en) | 2010-03-31 | 2011-10-06 | International Business Machines Corporation | Methods and Apparatus for Resource Capacity Evaluation in a System of Virtual Containers |
US20110265164A1 (en) | 2010-04-26 | 2011-10-27 | Vmware, Inc. | Cloud platform architecture |
US9461996B2 (en) | 2010-05-07 | 2016-10-04 | Citrix Systems, Inc. | Systems and methods for providing a single click access to enterprise, SAAS and cloud hosted application |
US20120054744A1 (en) | 2010-05-10 | 2012-03-01 | Manbinder Pal Singh | Redirection of Information from Secure Virtual Machines to Unsecure Virtual Machines |
JP2011257847A (en) | 2010-06-07 | 2011-12-22 | Nippon Telegr & Teleph Corp <Ntt> | Communication system and communication system update method |
US20110314465A1 (en) | 2010-06-17 | 2011-12-22 | Timothy Smith | Method and system for workload distributing and processing across a network of replicated virtual machines |
US20110321033A1 (en) | 2010-06-24 | 2011-12-29 | Bmc Software, Inc. | Application Blueprint and Deployment Model for Dynamic Business Service Management (BSM) |
US8719415B1 (en) | 2010-06-28 | 2014-05-06 | Amazon Technologies, Inc. | Use of temporarily available computing nodes for dynamic scaling of a cluster |
US20120016721A1 (en) | 2010-07-15 | 2012-01-19 | Joseph Weinman | Price and Utility Optimization for Cloud Computing Resources |
US20120041970A1 (en) | 2010-08-12 | 2012-02-16 | Cdnetworks Co., Ltd. | Distributed data cache for on-demand application acceleration |
US20140180862A1 (en) | 2010-09-14 | 2014-06-26 | Amazon Technologies, Inc. | Managing operational throughput for shared resources |
US20130227097A1 (en) | 2010-09-14 | 2013-08-29 | Hitachi, Ltd. | Multi-tenancy information processing system, management server, and configuration management method |
US20120072914A1 (en) | 2010-09-17 | 2012-03-22 | Canon Kabushiki Kaisha | Cloud computing system and method for controlling same |
US20120096468A1 (en) | 2010-10-13 | 2012-04-19 | Microsoft Corporation | Compute cluster with balanced resources |
US20120096271A1 (en) | 2010-10-15 | 2012-04-19 | Microsoft Corporation | Remote Access to Hosted Virtual Machines By Enterprise Users |
US20120102333A1 (en) | 2010-10-20 | 2012-04-26 | Advanced Micro Devices, Inc. | Method and apparatus for including architecture for protecting multi-user sensitive code and data |
US20120102307A1 (en) | 2010-10-20 | 2012-04-26 | Advanced Micro Devices, Inc. | Method and apparatus including architecture for protecting sensitive code and data |
US20130275975A1 (en) | 2010-10-27 | 2013-10-17 | Hitachi, Ltd. | Resource management server, resource management method and storage medium in which resource management program is stored |
US8756696B1 (en) | 2010-10-30 | 2014-06-17 | Sra International, Inc. | System and method for providing a virtualized secure data containment service with a networked environment |
US20120110164A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Managing a workload of a plurality of virtual servers of a computing environment |
US20120110155A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Management of a data network of a computing environment |
US20120110588A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Unified resource manager providing a single point of control |
US20150235144A1 (en) | 2010-12-10 | 2015-08-20 | Salesforce.Com, Inc. | Methods and systems for making effective use of system resources |
US20120197958A1 (en) | 2011-01-31 | 2012-08-02 | Microsoft Corporation | Parallel Serialization of Request Processing |
US20160072727A1 (en) | 2011-03-08 | 2016-03-10 | Rackspace Us, Inc. | Pluggable Allocation in a Cloud Computing System |
US20120233464A1 (en) | 2011-03-11 | 2012-09-13 | Resource Interactive, Llc | Pci dss compliant proxy service |
US8429282B1 (en) | 2011-03-22 | 2013-04-23 | Amazon Technologies, Inc. | System and method for avoiding system overload by maintaining an ideal request rate |
US20140129667A1 (en) | 2011-06-14 | 2014-05-08 | Nec Corporation | Content delivery system, controller and content delivery method |
US20120331113A1 (en) | 2011-06-27 | 2012-12-27 | Microsoft Corporation | Resource management for cloud computing platforms |
US9223561B2 (en) | 2011-06-27 | 2015-12-29 | Orange | Method for providing an on-demand software execution service |
US9086897B2 (en) | 2011-07-01 | 2015-07-21 | Electronics And Telecommunications Research Institute | Method and architecture for virtual desktop service |
US20130014101A1 (en) | 2011-07-06 | 2013-01-10 | Microsoft Corporation | Offering Network Performance Guarantees in Multi-Tenant Datacenters |
US8819679B2 (en) | 2011-07-28 | 2014-08-26 | International Business Machines Corporation | Methods and systems for on-boarding applications to a cloud |
US20130042234A1 (en) | 2011-08-09 | 2013-02-14 | International Business Machines Corporation | Virtual machine management |
US20130055262A1 (en) | 2011-08-25 | 2013-02-28 | Vincent G. Lubsey | Systems and methods of host-aware resource management involving cluster-based resource pools |
US20130054804A1 (en) | 2011-08-25 | 2013-02-28 | At&T Intellectual Property I, L.P. | System for Consolidating Heterogeneous Data Centers Through Virtualization of Services |
US20130054927A1 (en) | 2011-08-30 | 2013-02-28 | Bipul Raj | System and method for retaining deduplication in a storage object after a clone split operation |
US20130061208A1 (en) | 2011-09-07 | 2013-03-07 | Microsoft Corporation | Transformational context-aware data source management |
US20130346964A1 (en) | 2011-09-08 | 2013-12-26 | Hitachi Solutions, Ltd. | OSGi PROGRAM, OSGi SYSTEM |
US20130067494A1 (en) | 2011-09-09 | 2013-03-14 | Microsoft Corporation | Resuming Applications and/or Exempting Applications from Suspension |
US8825964B1 (en) | 2011-09-26 | 2014-09-02 | Emc Corporation | Adaptive integration of cloud data services with a data storage system |
US20130080641A1 (en) | 2011-09-26 | 2013-03-28 | Knoa Software, Inc. | Method, system and program product for allocation and/or prioritization of electronic resources |
US20130097601A1 (en) | 2011-10-12 | 2013-04-18 | International Business Machines Corporation | Optimizing virtual machines placement in cloud computing environments |
US20130111469A1 (en) | 2011-10-30 | 2013-05-02 | Kamath Harish B | Service provider management of virtual instances corresponding to hardware resources managed by other service providers |
US20140304815A1 (en) | 2011-11-15 | 2014-10-09 | Japan Science And Technology Agency | Program analysis/verification service provision system, control method for same, control program, control program for directing computer to function, program analysis/verification device, program analysis/verification tool management device |
US20130132942A1 (en) | 2011-11-22 | 2013-05-23 | Huawei Technologies Co., Ltd. | Application software installation method and application software installation apparatus |
US20130152047A1 (en) | 2011-11-22 | 2013-06-13 | Solano Labs, Inc | System for distributed software quality improvement |
US20130139166A1 (en) | 2011-11-24 | 2013-05-30 | Alibaba Group Holding Limited | Distributed data stream processing method and system |
US20130139152A1 (en) | 2011-11-29 | 2013-05-30 | International Business Machines Corporation | Cloud provisioning accelerator |
US20130151648A1 (en) | 2011-12-07 | 2013-06-13 | Seven Networks, Inc. | Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic allieviation |
US8769519B2 (en) | 2011-12-08 | 2014-07-01 | Microsoft Corporation | Personal and pooled virtual machine update |
US8694996B2 (en) | 2011-12-14 | 2014-04-08 | International Business Machines Corporation | Application initiated negotiations for resources meeting a performance parameter in a virtualized computing environment |
US20130227641A1 (en) | 2012-01-06 | 2013-08-29 | Optio Labs, LLC | Systems and methods to enforce security policies on the loading, linking, and execution of native code by mobile applications running inside of virtual machines |
US8904008B2 (en) | 2012-01-09 | 2014-12-02 | Microsoft Corporation | Assignment of resources in virtual machine pools |
US20130179894A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Platform as a service job scheduling |
US20130179881A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Decoupling paas resources, jobs, and scheduling |
US20130179574A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corportaion | Assignment of resources in virtual machine pools |
US20130185729A1 (en) | 2012-01-13 | 2013-07-18 | Rutgers, The State University Of New Jersey | Accelerating resource allocation in virtualized environments using workload classes and/or workload signatures |
US20130185719A1 (en) | 2012-01-17 | 2013-07-18 | Microsoft Corporation | Throttling guest write ios based on destination throughput |
US9208007B2 (en) | 2012-01-18 | 2015-12-08 | International Business Machines Corporation | Open resilience framework for simplified and coordinated orchestration of multiple availability managers |
US20130191924A1 (en) | 2012-01-25 | 2013-07-25 | Gianni Tedesco | Approaches for Protecting Sensitive Data Within a Guest Operating System |
US20130198743A1 (en) | 2012-01-26 | 2013-08-01 | Empire Technology Development Llc | Data center with continuous world switch security |
US20130198319A1 (en) | 2012-01-31 | 2013-08-01 | Vmware, Inc. | Elastic allocation of computing resources to software applications |
US20130205092A1 (en) | 2012-02-06 | 2013-08-08 | Empire Technology Development Llc | Multicore computer system with cache use based adaptive scheduling |
US20130219390A1 (en) | 2012-02-21 | 2013-08-22 | Hon Hai Precision Industry Co., Ltd. | Cloud server and method for creating virtual machines |
US20130227563A1 (en) | 2012-02-29 | 2013-08-29 | Michael P. McGrath | Mechanism for Creating and Maintaining Multi-Tenant Applications in a Platform-as-a-Service (PaaS) Environment of a Cloud Computing System |
US20130232480A1 (en) | 2012-03-02 | 2013-09-05 | Vmware, Inc. | Single, logical, multi-tier application blueprint used for deployment and management of multiple physical applications in a cloud environment |
US20130239125A1 (en) | 2012-03-06 | 2013-09-12 | Francesco Iorio | Application level speculative processing |
US8725702B1 (en) | 2012-03-15 | 2014-05-13 | Symantec Corporation | Systems and methods for repairing system files |
US20130262556A1 (en) | 2012-03-28 | 2013-10-03 | Microsoft Corporation | Enhanced Computer Cluster Operation Using Resource Allocation Requests |
US20130263117A1 (en) | 2012-03-28 | 2013-10-03 | International Business Machines Corporation | Allocating resources to virtual machines via a weighted cost ratio |
US8997093B2 (en) | 2012-04-17 | 2015-03-31 | Sap Se | Application installation management by selectively reuse or terminate virtual machines based on a process status |
US9183019B2 (en) | 2012-04-25 | 2015-11-10 | Empire Technology Development Llc | Certification for flexible resource demand applications |
US20130290538A1 (en) | 2012-04-27 | 2013-10-31 | Daniel Juergen Gmach | Evaluation of cloud computing services |
US20150081885A1 (en) | 2012-04-30 | 2015-03-19 | Jeffery Darrel Thomas | Automated event management |
US20130297964A1 (en) | 2012-05-03 | 2013-11-07 | Vmware, Inc. | Virtual Machine Placement With Automatic Deployment Error Recovery |
US20140040857A1 (en) | 2012-05-04 | 2014-02-06 | International Business Machines Corporation | Instrumentation of software applications for configuration thereof |
EP2663052A1 (en) | 2012-05-09 | 2013-11-13 | Netflix, Inc. | API Platform That Includes Server-Executed Client-Based Code |
US9317689B2 (en) | 2012-06-15 | 2016-04-19 | Visa International Service Association | Method and apparatus for secure application execution |
US20140304698A1 (en) | 2012-06-18 | 2014-10-09 | Tellabs Operations, Inc. | Methods and Apparatus for Performing In-Service Software Upgrade for a Network Device Using System Virtulization |
US20130339950A1 (en) | 2012-06-19 | 2013-12-19 | Microsoft Corporation | Intermediary virtual machine task management |
US20130346994A1 (en) | 2012-06-20 | 2013-12-26 | Platform Computing Corporation | Job distribution within a grid environment |
US20130346987A1 (en) | 2012-06-21 | 2013-12-26 | Kristopher Len Raney | Systems and methods for distributing tasks and/or processing recources in a system |
US20130346946A1 (en) | 2012-06-21 | 2013-12-26 | Microsoft Corporation | System for hosted, shared, source control build |
US20130347095A1 (en) | 2012-06-25 | 2013-12-26 | International Business Machines Corporation | Isolation and security hardening among workloads in a multi-tenant networked environment |
US20140007097A1 (en) | 2012-06-29 | 2014-01-02 | Brocade Communications Systems, Inc. | Dynamic resource allocation for virtual machines |
US20140019966A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for continuous optimization of computing systems with automated assignment of virtual machines and physical machines to hosts |
US20140019965A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for automated assignment of virtual machines and physical machines to hosts with right-sizing |
US20140040880A1 (en) | 2012-08-02 | 2014-02-06 | International Business Machines Corporation | Application deployment in heterogeneous environments |
US20140059226A1 (en) | 2012-08-21 | 2014-02-27 | Rackspace Us, Inc. | Multi-Level Cloud Computing System |
US20140068611A1 (en) | 2012-09-06 | 2014-03-06 | Michael P. McGrath | Mechanism for Automatic Scaling of Application Resources in a Multi-Tenant Platform-as-a-Service (PaaS) Environment in a Cloud Computing System |
US20140082165A1 (en) | 2012-09-20 | 2014-03-20 | Michael David Marr | Automated profiling of resource usage |
US20160140180A1 (en) | 2012-09-28 | 2016-05-19 | Oracle International Corporation | Hybrid execution of continuous and scheduled queries |
US20140101649A1 (en) | 2012-10-05 | 2014-04-10 | International Business Machines Corporation | Virtual machine based controller and upgrade mechanism |
US8613070B1 (en) | 2012-10-12 | 2013-12-17 | Citrix Systems, Inc. | Single sign-on access in an orchestration framework for connected devices |
US20140109087A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Virtual machine provisioning using replicated containers |
US20140109088A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Augmented allocation of virtual machines for application |
US20140130040A1 (en) | 2012-11-02 | 2014-05-08 | The Boeing Company | Systems and methods for migrating virtual machines |
US20150289220A1 (en) | 2012-11-05 | 2015-10-08 | Lg Electronics Inc. | Method and apparatus for generating synchronous signal in wireless access system for supporting super-high frequency band |
US9038068B2 (en) | 2012-11-15 | 2015-05-19 | Bank Of America Corporation | Capacity reclamation and resource adjustment |
US20150256621A1 (en) | 2012-11-19 | 2015-09-10 | Hitachi, Ltd. | Management system and management method |
US9092837B2 (en) | 2012-11-29 | 2015-07-28 | International Business Machines Corporation | Use of snapshots to reduce risk in migration to a standard virtualized environment |
US20140173614A1 (en) | 2012-12-18 | 2014-06-19 | International Business Machines Corporation | Sending tasks between virtual machines based on expiration times |
US20140173616A1 (en) | 2012-12-19 | 2014-06-19 | International Business Machines Corporation | Adaptive resource usage limits for workload management |
US20140189677A1 (en) | 2013-01-02 | 2014-07-03 | International Business Machines Corporation | Effective Migration and Upgrade of Virtual Machines in Cloud Environments |
US20140201735A1 (en) | 2013-01-16 | 2014-07-17 | VCE Company LLC | Master automation service |
US20140207912A1 (en) | 2013-01-18 | 2014-07-24 | Limelight Networks, Inc. | Selective content pre-warming in content delivery networks based on user actions and content categorizations |
US20140215073A1 (en) | 2013-01-28 | 2014-07-31 | International Business Machines Corporation | Computing optimized virtual machine allocations using equivalence combinations |
US20140245297A1 (en) | 2013-02-27 | 2014-08-28 | International Business Machines Corporation | Managing allocation of hardware resources in a virtualized environment |
US9027087B2 (en) | 2013-03-14 | 2015-05-05 | Rackspace Us, Inc. | Method and system for identity-based authentication of virtual machines |
US8677359B1 (en) * | 2013-03-14 | 2014-03-18 | Joyent, Inc. | Compute-centric object stores and methods of use |
US20140279581A1 (en) | 2013-03-14 | 2014-09-18 | Rockethouse, Llc | Rendering |
US20140282615A1 (en) | 2013-03-15 | 2014-09-18 | Mark Cavage | Versioning schemes for compute-centric object stores |
US20140280325A1 (en) | 2013-03-15 | 2014-09-18 | Cisco Technology, Inc. | Suspending and resuming continuous queries over data streams |
US20140289286A1 (en) | 2013-03-25 | 2014-09-25 | Salesforce.Com, Inc. | System and method for performance tuning of garbage collection algorithms |
US9110732B1 (en) | 2013-06-07 | 2015-08-18 | Amazon Technologies, Inc. | Proxy for injecting configuration information |
US9489227B2 (en) | 2013-06-10 | 2016-11-08 | Electronics And Telecommunications Research Institute | Apparatus and method for virtual desktop service |
US20140380085A1 (en) | 2013-06-23 | 2014-12-25 | Willam C. Rash | Machine check architecture execution environment for non-microcoded processor |
US9652617B1 (en) | 2013-06-25 | 2017-05-16 | Amazon Technologies, Inc. | Analyzing security of applications |
US20150039891A1 (en) | 2013-08-02 | 2015-02-05 | Ologn Technologies Ag | Secure Server on a System with Virtual Machines |
US20150074659A1 (en) | 2013-09-06 | 2015-03-12 | Vmware, Inc. | Methods and Apparatus to Perform Web-Based Installations and/or Upgrade Architectures for Enterprise Software |
US9298633B1 (en) | 2013-09-18 | 2016-03-29 | Emc Corporation | Adaptive prefecth for predicted write requests |
US20150106805A1 (en) | 2013-10-15 | 2015-04-16 | Cisco Technology, Inc. | Accelerated instantiation of cloud resource |
US20150120928A1 (en) | 2013-10-24 | 2015-04-30 | Vmware, Inc. | Container virtual machines for hadoop |
US20150135287A1 (en) | 2013-11-13 | 2015-05-14 | Evident.io, Inc. | Automated sdk ingestion |
US20150143381A1 (en) | 2013-11-20 | 2015-05-21 | International Business Machines Corporation | Computing session workload scheduling and management of parent-child tasks |
WO2015078394A1 (en) | 2013-11-29 | 2015-06-04 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for scheduling blocking tasks |
US20150178110A1 (en) | 2013-12-20 | 2015-06-25 | Vmware, Inc. | State Customization of Forked Virtual Machines |
US20150186129A1 (en) | 2014-01-02 | 2015-07-02 | International Business Machines Corporation | Method and system for deploying a program module |
WO2015108539A1 (en) | 2014-01-20 | 2015-07-23 | Hewlett-Packard Development Company, L.P. | Determining a permission of a first tenant with respect to a second tenant |
US20150242225A1 (en) | 2014-02-26 | 2015-08-27 | Red Hat Israel, Ltd. | Execution of a script based on properties of a virtual device associated with a virtual machine |
US20150261578A1 (en) | 2014-03-17 | 2015-09-17 | Ca, Inc. | Deployment of virtual machines to physical host machines based on infrastructure utilization decisions |
US20170093920A1 (en) | 2014-03-18 | 2017-03-30 | British Telecommunications Public Limited Company | User authentication |
US20150309923A1 (en) | 2014-04-28 | 2015-10-29 | Fujitsu Limited | Storage control apparatus and storage system |
US9223966B1 (en) | 2014-05-04 | 2015-12-29 | Symantec Corporation | Systems and methods for replicating computing system environments |
US20150319160A1 (en) | 2014-05-05 | 2015-11-05 | Microsoft Corporation | Secure Management of Operations on Protected Virtual Machines |
US9678778B1 (en) | 2014-05-07 | 2017-06-13 | Google Inc. | Virtual cluster as a service (VCIaaS) |
US9250893B2 (en) | 2014-05-14 | 2016-02-02 | Western Digital Technologies, Inc. | Virtualized and automated software build system |
US20150332048A1 (en) | 2014-05-15 | 2015-11-19 | Lynx Software Technologies, Inc. | Systems and Methods Involving Features of Hardware Virtualization, Hypervisor, APIs of Interest, and/or Other Features |
US20150350701A1 (en) | 2014-05-28 | 2015-12-03 | Verizon Patent And Licensing Inc. | Methods and Systems for Managing Storage of Media Program Copies Within a Network Digital Video Recording System |
US20150363181A1 (en) | 2014-06-13 | 2015-12-17 | International Business Machines Corporation | Software deployment in a distributed virtual machine environment |
US20150371244A1 (en) | 2014-06-23 | 2015-12-24 | Ca, Inc. | Forecasting information technology workload demand |
US20150378765A1 (en) | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Methods and apparatus to scale application deployments in cloud computing environments using virtual machine pools |
US20150379167A1 (en) | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Crowd-sourced operational metric analysis of virtual appliances |
US9361145B1 (en) | 2014-06-27 | 2016-06-07 | Amazon Technologies, Inc. | Virtual machine state replication using DMA write records |
US20150378764A1 (en) | 2014-06-30 | 2015-12-31 | Bmc Software, Inc. | Capacity risk management for virtual machines |
US20160294614A1 (en) | 2014-07-07 | 2016-10-06 | Symphony Teleca Corporation | Remote Embedded Device Update Platform Apparatuses, Methods and Systems |
US20160012099A1 (en) | 2014-07-14 | 2016-01-14 | Oracle International Corporation | Age-based policies for determining database cache hits |
US9436555B2 (en) | 2014-09-22 | 2016-09-06 | Commvault Systems, Inc. | Efficient live-mount of a backed up virtual machine in a storage management system |
US20150052258A1 (en) | 2014-09-29 | 2015-02-19 | Weaved, Inc. | Direct map proxy system and protocol |
WO2016053973A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US20180039506A1 (en) | 2014-09-30 | 2018-02-08 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US9600312B2 (en) | 2014-09-30 | 2017-03-21 | Amazon Technologies, Inc. | Threading as a service |
US20170192804A1 (en) | 2014-09-30 | 2017-07-06 | Amazon Technologies, Inc. | Threading as a service |
US9146764B1 (en) | 2014-09-30 | 2015-09-29 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US20170199766A1 (en) | 2014-09-30 | 2017-07-13 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US9678773B1 (en) | 2014-09-30 | 2017-06-13 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US20160239318A1 (en) | 2014-09-30 | 2016-08-18 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US9323556B2 (en) | 2014-09-30 | 2016-04-26 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US9760387B2 (en) | 2014-09-30 | 2017-09-12 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
WO2016053968A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US20160092250A1 (en) | 2014-09-30 | 2016-03-31 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
WO2016053950A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Threading as a service |
US9715402B2 (en) | 2014-09-30 | 2017-07-25 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US20170371724A1 (en) | 2014-09-30 | 2017-12-28 | Amazon Technologies, Inc. | Event-driven computing |
US9483335B1 (en) | 2014-09-30 | 2016-11-01 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US9830193B1 (en) | 2014-09-30 | 2017-11-28 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US9652306B1 (en) | 2014-09-30 | 2017-05-16 | Amazon Technologies, Inc. | Event-driven computing |
US20160098285A1 (en) | 2014-10-02 | 2016-04-07 | Vmware, Inc. | Using virtual machine containers in a virtualized computing platform |
US20160100036A1 (en) | 2014-10-06 | 2016-04-07 | VMFive Inc. | System, method, server and device for trial use of application software |
US20160117254A1 (en) | 2014-10-22 | 2016-04-28 | Netapp, Inc. | Cache optimization technique for large working data sets |
US9413626B2 (en) | 2014-12-05 | 2016-08-09 | Amazon Technologies, Inc. | Automatic management of resource sizing |
US9537788B2 (en) | 2014-12-05 | 2017-01-03 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US20170206116A1 (en) | 2014-12-05 | 2017-07-20 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
WO2016090292A1 (en) | 2014-12-05 | 2016-06-09 | Amazon Technologies, Inc. | Automatic management of resource sizing |
US9661011B1 (en) | 2014-12-17 | 2017-05-23 | Amazon Technologies, Inc. | Techniques for data routing and management using risk classification and data sampling |
US9471775B1 (en) | 2015-02-04 | 2016-10-18 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9588790B1 (en) | 2015-02-04 | 2017-03-07 | Amazon Technologies, Inc. | Stateful virtual compute system |
US9727725B2 (en) | 2015-02-04 | 2017-08-08 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9733967B2 (en) | 2015-02-04 | 2017-08-15 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US20170177391A1 (en) | 2015-02-04 | 2017-06-22 | Amazon Technologies, Inc. | Stateful virtual compute system |
WO2016126731A1 (en) | 2015-02-04 | 2016-08-11 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US20160224360A1 (en) | 2015-02-04 | 2016-08-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US20160224785A1 (en) | 2015-02-04 | 2016-08-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US20160285906A1 (en) | 2015-03-23 | 2016-09-29 | Empire Technology Development Llc | Virtual machine placement |
US20160292016A1 (en) | 2015-04-02 | 2016-10-06 | Microsoft Technology Licensing, Llc | Complex event processor for historic/live/replayed data |
WO2016164638A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US20180121245A1 (en) | 2015-04-08 | 2018-05-03 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US9930103B2 (en) | 2015-04-08 | 2018-03-27 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US20160299790A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US20160301739A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
WO2016164633A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US9785476B2 (en) | 2015-04-08 | 2017-10-10 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US20160364265A1 (en) | 2015-06-15 | 2016-12-15 | International Business Machines Corporation | Managed services coordinator |
US20160371127A1 (en) | 2015-06-19 | 2016-12-22 | Vmware, Inc. | Resource management for containers in a virtualized environment |
US20160378554A1 (en) | 2015-06-29 | 2016-12-29 | Vmware, Inc. | Parallel and Distributed Computing Using Multiple Virtual Machines |
US20170085447A1 (en) | 2015-09-21 | 2017-03-23 | Splunk Inc. | Adaptive control of data collection requests sent to external data sources |
US20170083381A1 (en) | 2015-09-21 | 2017-03-23 | Alibaba Group Holding Limited | System and method for processing task resources |
US9928108B1 (en) | 2015-09-29 | 2018-03-27 | Amazon Technologies, Inc. | Metaevent handling for on-demand code execution environments |
US20170090961A1 (en) | 2015-09-30 | 2017-03-30 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US9830449B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Execution locations for request-driven code |
US9830175B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9811363B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9811434B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US20170177413A1 (en) | 2015-12-21 | 2017-06-22 | Amazon Technologies, Inc. | Code execution request routing |
WO2017112526A1 (en) | 2015-12-21 | 2017-06-29 | Amazon Technologies, Inc. | Code execution request routing |
US9910713B2 (en) | 2015-12-21 | 2018-03-06 | Amazon Technologies, Inc. | Code execution request routing |
WO2017172440A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on-demand code execution environment |
US20170286143A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US20170286156A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
US20170371703A1 (en) | 2016-06-28 | 2017-12-28 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US9952896B2 (en) | 2016-06-28 | 2018-04-24 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US20180004572A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US20180004553A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
Non-Patent Citations (38)
Title |
---|
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages. |
Amazon, "AWS Lambda: Developer Guide", Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf. |
Anonymous: "Docker run reference", Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017]. |
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages. |
Ben-Yehuda et al., "Deconstructing Amazon EC2 Spot Instance Pricing", ACM Transactions on Economics and Computation 1.3, 2013, 15 pages. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices-Supplemental Issue, Apr. 2012. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012. |
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages. |
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37. |
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)-Part 2, Cardinalpath, Sep. 2015, 15 pages. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages. |
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017 |
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017. |
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017. |
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017. |
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017. |
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017. |
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017. |
International Search Report and Written Opinidn in PCT/US2015/064071dated Mar. 16, 2016. |
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015. |
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016. |
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015. |
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016. |
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016. |
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016. |
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016. |
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017. |
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017. |
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578. |
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321. |
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages. |
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010. |
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011. |
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012. |
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '151 Jun. 15, 2015, Portland, Oregon, pp. 31-38. |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10915371B2 (en) | 2014-09-30 | 2021-02-09 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US11561811B2 (en) | 2014-09-30 | 2023-01-24 | Amazon Technologies, Inc. | Threading as a service |
US11263034B2 (en) | 2014-09-30 | 2022-03-01 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US10884802B2 (en) | 2014-09-30 | 2021-01-05 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US10592269B2 (en) | 2014-09-30 | 2020-03-17 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US10824484B2 (en) | 2014-09-30 | 2020-11-03 | Amazon Technologies, Inc. | Event-driven computing |
US10956185B2 (en) | 2014-09-30 | 2021-03-23 | Amazon Technologies, Inc. | Threading as a service |
US11467890B2 (en) | 2014-09-30 | 2022-10-11 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US11126469B2 (en) | 2014-12-05 | 2021-09-21 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US10552193B2 (en) | 2015-02-04 | 2020-02-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US11461124B2 (en) | 2015-02-04 | 2022-10-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US10387177B2 (en) | 2015-02-04 | 2019-08-20 | Amazon Technologies, Inc. | Stateful virtual compute system |
US11360793B2 (en) | 2015-02-04 | 2022-06-14 | Amazon Technologies, Inc. | Stateful virtual compute system |
US10853112B2 (en) | 2015-02-04 | 2020-12-01 | Amazon Technologies, Inc. | Stateful virtual compute system |
US10623476B2 (en) | 2015-04-08 | 2020-04-14 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US10776171B2 (en) | 2015-04-08 | 2020-09-15 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US10365985B2 (en) | 2015-12-16 | 2019-07-30 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10754701B1 (en) | 2015-12-16 | 2020-08-25 | Amazon Technologies, Inc. | Executing user-defined code in response to determining that resources expected to be utilized comply with resource restrictions |
US11016815B2 (en) | 2015-12-21 | 2021-05-25 | Amazon Technologies, Inc. | Code execution request routing |
US11243819B1 (en) | 2015-12-21 | 2022-02-08 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US10691498B2 (en) | 2015-12-21 | 2020-06-23 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US11132213B1 (en) | 2016-03-30 | 2021-09-28 | Amazon Technologies, Inc. | Dependency-based process of pre-existing data sets at an on demand code execution environment |
US10891145B2 (en) | 2016-03-30 | 2021-01-12 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US10402231B2 (en) | 2016-06-29 | 2019-09-03 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions |
US11354169B2 (en) | 2016-06-29 | 2022-06-07 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions |
US10884787B1 (en) | 2016-09-23 | 2021-01-05 | Amazon Technologies, Inc. | Execution guarantees in an on-demand network code execution system |
US11119813B1 (en) | 2016-09-30 | 2021-09-14 | Amazon Technologies, Inc. | Mapreduce implementation using an on-demand network code execution system |
US11122100B2 (en) | 2017-08-28 | 2021-09-14 | Banjo, Inc. | Detecting events from ingested data |
US10581945B2 (en) | 2017-08-28 | 2020-03-03 | Banjo, Inc. | Detecting an event from signal data |
US10506008B2 (en) * | 2017-08-28 | 2019-12-10 | Banjo, Inc. | Detecting an event from streaming data |
US11025693B2 (en) | 2017-08-28 | 2021-06-01 | Banjo, Inc. | Event detection from signal data removing private information |
US10565021B2 (en) * | 2017-11-30 | 2020-02-18 | Microsoft Technology Licensing, Llc | Automated capacity management in distributed computing systems |
US10564946B1 (en) | 2017-12-13 | 2020-02-18 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10831898B1 (en) | 2018-02-05 | 2020-11-10 | Amazon Technologies, Inc. | Detecting privilege escalations in code including cross-service calls |
US10733085B1 (en) | 2018-02-05 | 2020-08-04 | Amazon Technologies, Inc. | Detecting impedance mismatches due to cross-service calls |
US10725752B1 (en) | 2018-02-13 | 2020-07-28 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10776091B1 (en) | 2018-02-26 | 2020-09-15 | Amazon Technologies, Inc. | Logging endpoint in an on-demand code execution system |
US10977097B2 (en) | 2018-04-13 | 2021-04-13 | Banjo, Inc. | Notifying entities of relevant events |
US11875173B2 (en) | 2018-06-25 | 2024-01-16 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US10884722B2 (en) | 2018-06-26 | 2021-01-05 | Amazon Technologies, Inc. | Cross-environment application of tracing information for improved code execution |
US11146569B1 (en) | 2018-06-28 | 2021-10-12 | Amazon Technologies, Inc. | Escalation-resistant secure network services using request-scoped authentication information |
US10949237B2 (en) | 2018-06-29 | 2021-03-16 | Amazon Technologies, Inc. | Operating system customization in an on-demand network code execution system |
US11099870B1 (en) | 2018-07-25 | 2021-08-24 | Amazon Technologies, Inc. | Reducing execution times in an on-demand network code execution system using saved machine states |
US11836516B2 (en) | 2018-07-25 | 2023-12-05 | Amazon Technologies, Inc. | Reducing execution times in an on-demand network code execution system using saved machine states |
US11099917B2 (en) | 2018-09-27 | 2021-08-24 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US11243953B2 (en) | 2018-09-27 | 2022-02-08 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US11943093B1 (en) | 2018-11-20 | 2024-03-26 | Amazon Technologies, Inc. | Network connection recovery after virtual machine transition in an on-demand network code execution system |
US10884812B2 (en) | 2018-12-13 | 2021-01-05 | Amazon Technologies, Inc. | Performance-based hardware emulation in an on-demand network code execution system |
US11010188B1 (en) | 2019-02-05 | 2021-05-18 | Amazon Technologies, Inc. | Simulated data object storage using on-demand computation of data objects |
US11861386B1 (en) | 2019-03-22 | 2024-01-02 | Amazon Technologies, Inc. | Application gateways in an on-demand network code execution system |
US11714675B2 (en) | 2019-06-20 | 2023-08-01 | Amazon Technologies, Inc. | Virtualization-based transaction handling in an on-demand network code execution system |
US11119809B1 (en) | 2019-06-20 | 2021-09-14 | Amazon Technologies, Inc. | Virtualization-based transaction handling in an on-demand network code execution system |
US11115404B2 (en) | 2019-06-28 | 2021-09-07 | Amazon Technologies, Inc. | Facilitating service connections in serverless code executions |
US11190609B2 (en) | 2019-06-28 | 2021-11-30 | Amazon Technologies, Inc. | Connection pooling for scalable network services |
US11159528B2 (en) | 2019-06-28 | 2021-10-26 | Amazon Technologies, Inc. | Authentication to network-services using hosted authentication information |
US11023416B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | Data access control system for object storage service based on owner-defined code |
US11386230B2 (en) | 2019-09-27 | 2022-07-12 | Amazon Technologies, Inc. | On-demand code obfuscation of data in input path of object storage service |
US11055112B2 (en) | 2019-09-27 | 2021-07-06 | Amazon Technologies, Inc. | Inserting executions of owner-specified code into input/output path of object storage service |
US10908927B1 (en) | 2019-09-27 | 2021-02-02 | Amazon Technologies, Inc. | On-demand execution of object filter code in output path of object storage service |
US10996961B2 (en) | 2019-09-27 | 2021-05-04 | Amazon Technologies, Inc. | On-demand indexing of data in input path of object storage service |
US11860879B2 (en) | 2019-09-27 | 2024-01-02 | Amazon Technologies, Inc. | On-demand execution of object transformation code in output path of object storage service |
US11394761B1 (en) | 2019-09-27 | 2022-07-19 | Amazon Technologies, Inc. | Execution of user-submitted code on a stream of data |
US11656892B1 (en) | 2019-09-27 | 2023-05-23 | Amazon Technologies, Inc. | Sequential execution of user-submitted code and native functions |
US11023311B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | On-demand code execution in input path of data uploaded to storage service in multiple data portions |
US11106477B2 (en) | 2019-09-27 | 2021-08-31 | Amazon Technologies, Inc. | Execution of owner-specified code during input/output path to object storage service |
US11250007B1 (en) | 2019-09-27 | 2022-02-15 | Amazon Technologies, Inc. | On-demand execution of object combination code in output path of object storage service |
US11550944B2 (en) | 2019-09-27 | 2023-01-10 | Amazon Technologies, Inc. | Code execution environment customization system for object storage service |
US11360948B2 (en) | 2019-09-27 | 2022-06-14 | Amazon Technologies, Inc. | Inserting owner-specified data processing pipelines into input/output path of object storage service |
US11263220B2 (en) | 2019-09-27 | 2022-03-01 | Amazon Technologies, Inc. | On-demand execution of object transformation code in output path of object storage service |
US11416628B2 (en) | 2019-09-27 | 2022-08-16 | Amazon Technologies, Inc. | User-specific data manipulation system for object storage service based on user-submitted code |
US11119826B2 (en) | 2019-11-27 | 2021-09-14 | Amazon Technologies, Inc. | Serverless call distribution to implement spillover while avoiding cold starts |
US10942795B1 (en) | 2019-11-27 | 2021-03-09 | Amazon Technologies, Inc. | Serverless call distribution to utilize reserved capacity without inhibiting scaling |
US11714682B1 (en) | 2020-03-03 | 2023-08-01 | Amazon Technologies, Inc. | Reclaiming computing resources in an on-demand code execution system |
US11188391B1 (en) | 2020-03-11 | 2021-11-30 | Amazon Technologies, Inc. | Allocating resources to on-demand code executions under scarcity conditions |
US11775640B1 (en) | 2020-03-30 | 2023-10-03 | Amazon Technologies, Inc. | Resource utilization-based malicious task detection in an on-demand code execution system |
US11550713B1 (en) | 2020-11-25 | 2023-01-10 | Amazon Technologies, Inc. | Garbage collection in distributed systems using life cycled storage roots |
US11593270B1 (en) | 2020-11-25 | 2023-02-28 | Amazon Technologies, Inc. | Fast distributed caching using erasure coded object parts |
US11388210B1 (en) | 2021-06-30 | 2022-07-12 | Amazon Technologies, Inc. | Streaming analytics using a serverless compute system |
US11968280B1 (en) | 2021-11-24 | 2024-04-23 | Amazon Technologies, Inc. | Controlling ingestion of streaming data to serverless function executions |
US12015603B2 (en) | 2021-12-10 | 2024-06-18 | Amazon Technologies, Inc. | Multi-tenant mode for serverless code execution |
Also Published As
Publication number | Publication date |
---|---|
US9146764B1 (en) | 2015-09-29 |
US9483335B1 (en) | 2016-11-01 |
US20170116051A1 (en) | 2017-04-27 |
US20190196884A1 (en) | 2019-06-27 |
US11467890B2 (en) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11467890B2 (en) | Processing event messages for user requests to execute program code | |
US9760387B2 (en) | Programmatic event detection and message generation for requests to execute program code | |
US11263034B2 (en) | Low latency computational capacity provisioning | |
US11561811B2 (en) | Threading as a service | |
US11461124B2 (en) | Security protocols for low latency execution of program code | |
US11016815B2 (en) | Code execution request routing | |
US10884802B2 (en) | Message-based computation request scheduling | |
US9715402B2 (en) | Dynamic code deployment and versioning | |
US9471775B1 (en) | Security protocols for low latency execution of program code |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |