US20020095111A1 - Healing transmyocardial implant - Google Patents
Healing transmyocardial implant Download PDFInfo
- Publication number
- US20020095111A1 US20020095111A1 US10/095,165 US9516502A US2002095111A1 US 20020095111 A1 US20020095111 A1 US 20020095111A1 US 9516502 A US9516502 A US 9516502A US 2002095111 A1 US2002095111 A1 US 2002095111A1
- Authority
- US
- United States
- Prior art keywords
- coronary
- myocardial
- implant according
- implant
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/94—Stents retaining their form, i.e. not being deformable, after placement in the predetermined place
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/064—Blood vessels with special features to facilitate anastomotic coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2493—Transmyocardial revascularisation [TMR] devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/11—Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
- A61B2017/00252—Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/828—Means for connecting a plurality of stents allowing flexibility of the whole structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
Definitions
- This invention pertains to an implant for passing blood flow directly between a chamber of the heart and a coronary vessel. More particularly, this invention pertains to such an implant with an enhance design for promoting a healed layer of cells on an interior of the implant.
- the conduit is rigid and remains open for blood flow to pass through the conduit during both systole and diastole.
- the conduit penetrates into the left ventricle in order to prevent tissue growth and occlusions over an opening of the conduit.
- the '682 patent and '397 application also describe an embodiment where a portion of the implant passing through the heart wall is an open structural member lined by polyester (e.g., Dacron).
- a further embodiment discloses a portion of the implant in a coronary vessel as being an open cell, balloon-expandable stent.
- U.S. Pat. No. 5,429,144 to Wilk dated Jul. 4, 1995 teaches implants which are passed through the vasculature in a collapsed state and expanded when placed in the myocardium so as not to extend into either the coronary artery or the left ventricle.
- the described implants close once per cycle of the heart (e.g., during diastole in the embodiment of FIGS. 7A and 7B or during systole in the embodiment of FIGS. 2A and 2B). Either of these two designs may be lined with a graft.
- PCT International Application Publication No. WO 98/08456 describes a protrusive stent to form a passageway from the heart to a coronary vessel.
- the stent is described as wire mesh or other metal or polymeric material and may be self-expanding or pressure expandable.
- the application describes the stent may be covered by a partial or complete tubular covering of material including polyester, woven polyester, polytetraflouroethylene, expanded polytetraflouroethylene, polyurethane, silicone, polycarbonate, autologous tissue and xenograft tissue.
- Biocompatibility is an important design feature. Solid metal implants are formed of material (e.g., titanium or pyrolytic carbon) with low incidents of thrombus and platelet activation. While such materials are proven in use in a wide variety of products (e.g., heart valve components), they do not facilitate full healing. By “healing”, it is meant that over time, the patient's cells grow over the material of the implant so that blood flowing through the implant is exposed only (or at least primarily) to the patient's cells rather than to a foreign material.
- material e.g., titanium or pyrolytic carbon
- a transmyocardial implant for establishing a blood flow path through a myocardium between a heart chamber and a lumen of a coronary vessel residing on an exterior of the heart.
- the implant includes a coronary portion sized to be received with the vessel.
- a myocardial portion is sized to pass through the myocardium into the heart chamber.
- a transition portion connects the coronary and myocardial portions for directing blood flow from the myocardial portion and into the coronary portion.
- the coronary portion and the myocardial portion have an open construction for permitting tissue growth across a wall thickness of the coronary portion and the myocardial portion.
- the myocardial portion includes an agent for controlling the coagulation cascade and platelet activation, and promoting healing.
- FIG. 1 is a side-elevation view of a transmyocardial implant according to the present invention shown in place defining a blood flow path from a left ventricle to a coronary artery;
- FIG. 2 is a cross-sectional view of the implant of FIG. 1;
- FIG. 3 is a view of an alternative embodiment of the implant of FIG. 1 illustrating a portion of the implant expandable within a coronary artery;
- FIG. 4 is a view similar to FIG. 3 showing a transition portion of open cell construction
- FIG. 5 is a side section view of an alternative embodiment of FIG. 3 showing a balloon catheter admitted into the implant through an access port;
- FIG. 6 is a side sectional view of an expandable implant with a balloon catheter removable through a myocardial portion of the catheter.
- a conduit 10 is shown in the form of an L-shaped tube.
- the conduit 10 may be formed of titanium or other biocompatible material.
- the material of the conduit 10 is preferably radially rigid material in order to withstand contraction forces of the myocardium.
- the tube will have an outside diameter D O of about 3 millimeters and an internal diameter D I of about 2.5 millimeters to provide a wall thickness of about 0.25 millimeters.
- the tube 10 has a coronary portion 12 sized to be received within the lumen of a coronary vessel such as the lumen 80 of a coronary artery 82 distal to an obstruction 81 as illustrated in FIG. 1.
- the conduit 10 has a myocardial portion 14 extending at a right angle to the axis of portion 12 .
- the myocardial portion 14 is sized to extend from the coronary artery 82 directly through the myocardium 84 and protrude into the left ventricle 83 of a patient's heart.
- the coronary portion 12 has a first opening 16 .
- the myocardial portion 14 has a second opening 18 in communication with an interior 20 of the implant 10 . Therefore, blood can freely flow through the implant 10 between the left ventricle 83 and the lumen 80 of the coronary artery 82 . Blood flows axially out of opening 16 parallel with the axis of lumen 80 .
- the longitudinal axis of the coronary portion 12 is aligned with the axis of the lumen 80 .
- Sutures 24 secure the artery 82 to the coronary portion 12 .
- the proximal portion 82 a of the coronary artery is ligated by sutures 85 .
- the coronary and myocardial portions 12 , 14 have an open lattice construction 12 a , 14 a to define a plurality of open cells 12 b , 14 b extending through the wall thickness of the implant 10 .
- the coronary and myocardial portions 12 , 14 are joined by a transition portion 13 in a 90° bend between portions 12 , 14 .
- transition portion 13 can have an open lattice construction as portions 12 , 14
- transition portion 13 will preferably have smaller open areas in such an open construction or, as illustrated, will be of solid construction.
- Such construction permits the transition portion to deflect high velocity blood flows from the myocardial portion 14 into the coronary portion 12 .
- a lattice construction with large open cells in the transition portion could result in the high velocity flow damaging tissue (not shown) overlying the transition portion.
- FIG. 3 illustrates a coronary portion 12 ′ which is formed tapering from the transition portion 13 ′ to a reduced diameter open end 16 ′. The taper permits ease of insertion into a coronary artery. Following such insertion, the tapered coronary portion 12 ′ may be expanded to full size illustrated by the phantom lines in FIG. 3. Such expansion can be performed using balloon-tipped catheters as is conventional in stent angioplasty.
- a collapsed and subsequently expanded implant 10 where all portions 12 , 13 and 14 are expanded can permit use as a percutaneously deployed implant.
- the present drawings illustrate a presently preferred surgically deployed implant.
- the artery 82 is ligated.
- the implant 10 is passed through the epicardium and myocardium on a side of the artery 82 .
- FIG. 5 illustrates a balloon 100 placed in a tapered coronary portion 12 .
- a lead 102 from the balloon 100 is passed through an opening 113 ′ in the transition portion 13 ′.
- the opening 113 ′ can be closed with a plug 115 ′ after the balloon 100 and lead 102 are withdrawn through the opening 113 ′.
- the balloon lead can be passed through the openings of the transition portion 113 ′′.
- FIG. 6 illustrates passing the lead 102 through opening 18 of the myocardial portion.
- the lead 102 can be pulled upwardly from the exterior of the heart to remove the balloon 100 .
- the lead 102 can be pulled through a catheter (not shown) adjacent end 18 in the left ventricle.
- a flexible transition portion 13 (as would be achieved with a stent lattice construction) permits relative articulation between the coronary and myocardial portions 12 , 14 to ensure the coronary portion is axially aligned with the lumen 80 . Absent such articulation, such axial alignment is achieved by accurately controlling the position of the myocardial portion 14 such that the coronary portion 12 is axially aligned with the lumen 80 following implantation.
- the open cell construction of the coronary and myocardial portions 12 , 14 permit tissue growth through the open cells 12 c , 14 c following implant.
- the healing procedure in the coronary portion 12 is the same as that in coronary stents.
- Vascular endothelial cells grow over to coat the structural material 12 a of portion 12 .
- portion 14 myocardial tissue, if not obstructed, will grow through the cells 14 c . Furthermore, the myocardium is highly thrombogenic. Therefore, uncontrolled contact between the myocardium 82 and the implant interior 20 can result in thrombosis of the implant 10 . Further, it is believed that the epicardium (i.e., outer layer of the myocardium) has a greater density of myocardial growth cells which contribute to healing.
- a liner 30 is provided in the myocardial portion 14 .
- the liner 30 is any porous material for accepting tissue growth and, preferably, is a polyester fabric (e.g., Dacron).
- the porous liner 30 has interstial spaces smaller than the open cells 12 c , 14 c .
- the liner 30 is shown on an interior of the myocardial portion 14 but could also or alternatively surround the exterior.
- the liner 30 has an upper end 32 secured through any suitable means (e.g., sutures not shown) to the upper end of the myocardial portion 14 .
- a lower end 34 is folded over the opening of the myocardial portion 14 and secured to the exterior of the portion 14 by sutures 36 .
- the myocardial portion 14 is sized to protrude into the left ventricle 83 with only the folded over liner material exposed to the interior of the left ventricle 83 .
- the liner 30 acts as a porous substrate into which tissue may grow.
- the liner 30 is impregnated with an agent for controlling coagulation cascade and platelet activation and adhesion.
- an agent for controlling coagulation cascade and platelet activation and adhesion is heparin but could be any anticoagulant or antiplatelet.
- an agent such as a basic fibroblast growth factor could be used to accelerate healing.
- the agent permits structural cells to grow on the liner by limiting thrombus formation which, uncontrolled, would occlude the implant. Due to the open construction, the structural, healing cells of the epicardium can grow onto the liner. Subsequently, endothelial cells can grow on the structural cells.
- an open cells structure will permit tissue growth as in the coronary portion 12 . Such growth may also occur in the solid construction.
- the liner 30 can be extended into the transition portion 13 .
- the open cell structure in the transition portion 13 can permit articulation between the coronary portion and the myocardial portion.
- FIG. 4 The open transition portion 13 ′′ is formed by a coil 13 a ′′ between the coronary portion 12 ′′ and the myocardial portion 14 ′′. This structure permits bending at the transition portion. As a result, the coronary portion can be axially aligned in the artery without first accurately positioning the myocardial portion.
- the liner 30 can take many constructions including PTFE, expanded-PTFE, polyurethane, polypropylene or any biologically compatible paving material or natural tissue. Further, restenosis of the coronary portion 12 can be prevented with radioactivity therapy (such as providing the coronary portion with a short half-life beta emitter). Also, the liner 30 may be either a resorbable or non-resorbable material. Genetically engineered cells can be transformed to secrete anticoagulants and other agents to keep the blood fluid (such as tissue plasminogen activator and smooth muscle cells altered to express nitric acid).
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
- Electrotherapy Devices (AREA)
- Lubricants (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
A transmyocardial implant establishes a blood flow path through a myocardium between a heart chamber and a lumen of a coronary vessel residing on an exterior of the heart. The implant includes a coronary portion sized to be received within the vessel. A myocardial portion is sized to pass through the myocardium into the heart chamber. A transition portion connects the coronary and myocardial portions for directing blood flow from the myocardial portion to the coronary portion. The coronary portion and the myocardial portion have an open construction for permitting tissue growth across a wall thickness of the coronary portion and the myocardial portion. The myocardial portion includes an agent for controlling a coagulation cascade and platelet formation.
Description
- 1. Field of the Invention
- This invention pertains to an implant for passing blood flow directly between a chamber of the heart and a coronary vessel. More particularly, this invention pertains to such an implant with an enhance design for promoting a healed layer of cells on an interior of the implant.
- 2. Description of the Prior Art
- Commonly assigned U.S. Pat. No. 5,755,682 issued May 26, 1998 and commonly assigned and co-pending U.S. patent application Ser. No. 08/882,397 filed Jun. 25, 1997, entitled “Method and Apparatus for Performing Coronary Bypass Surgery”, and filed in the name of inventors Mark B. Knudson and William L. Giese (published as PCT International Application Publication No. WO 98/06356) both teach an implant for defining a blood flow conduit directly from a chamber of the heart to a lumen of a coronary vessel. In one embodiment, an L-shaped implant is received within a lumen of a coronary artery and passed through the myocardium to extend into the left ventricle of the heart. The conduit is rigid and remains open for blood flow to pass through the conduit during both systole and diastole. The conduit penetrates into the left ventricle in order to prevent tissue growth and occlusions over an opening of the conduit. The '682 patent and '397 application also describe an embodiment where a portion of the implant passing through the heart wall is an open structural member lined by polyester (e.g., Dacron). A further embodiment discloses a portion of the implant in a coronary vessel as being an open cell, balloon-expandable stent.
- U.S. Pat. No. 5,429,144 to Wilk dated Jul. 4, 1995 teaches implants which are passed through the vasculature in a collapsed state and expanded when placed in the myocardium so as not to extend into either the coronary artery or the left ventricle. The described implants close once per cycle of the heart (e.g., during diastole in the embodiment of FIGS. 7A and 7B or during systole in the embodiment of FIGS. 2A and 2B). Either of these two designs may be lined with a graft.
- Commonly assigned and co-pending U.S. patent application Ser. No. 08/944,313 filed Oct. 6, 1997, entitled “Transmyocardial Implant”, and filed in the name of inventors Katherine S. Tweden, Guy P. Vanney and Thomas L. Odland, teaches an implant such as that shown in the aforementioned '397 application and '682 patent with an enhanced fixation structure. The enhanced fixation structure includes a fabric surrounding at least a portion of the conduit to facilitate tissue growth on the exterior of the implant.
- PCT International Application Publication No. WO 98/08456 describes a protrusive stent to form a passageway from the heart to a coronary vessel. The stent is described as wire mesh or other metal or polymeric material and may be self-expanding or pressure expandable. The application describes the stent may be covered by a partial or complete tubular covering of material including polyester, woven polyester, polytetraflouroethylene, expanded polytetraflouroethylene, polyurethane, silicone, polycarbonate, autologous tissue and xenograft tissue.
- Biocompatibility is an important design feature. Solid metal implants are formed of material (e.g., titanium or pyrolytic carbon) with low incidents of thrombus and platelet activation. While such materials are proven in use in a wide variety of products (e.g., heart valve components), they do not facilitate full healing. By “healing”, it is meant that over time, the patient's cells grow over the material of the implant so that blood flowing through the implant is exposed only (or at least primarily) to the patient's cells rather than to a foreign material.
- According to a preferred embodiment of the present invention, a transmyocardial implant is disclosed for establishing a blood flow path through a myocardium between a heart chamber and a lumen of a coronary vessel residing on an exterior of the heart. The implant includes a coronary portion sized to be received with the vessel. A myocardial portion is sized to pass through the myocardium into the heart chamber. A transition portion connects the coronary and myocardial portions for directing blood flow from the myocardial portion and into the coronary portion. The coronary portion and the myocardial portion have an open construction for permitting tissue growth across a wall thickness of the coronary portion and the myocardial portion. The myocardial portion includes an agent for controlling the coagulation cascade and platelet activation, and promoting healing.
- FIG. 1 is a side-elevation view of a transmyocardial implant according to the present invention shown in place defining a blood flow path from a left ventricle to a coronary artery;
- FIG. 2 is a cross-sectional view of the implant of FIG. 1;
- FIG. 3 is a view of an alternative embodiment of the implant of FIG. 1 illustrating a portion of the implant expandable within a coronary artery;
- FIG. 4 is a view similar to FIG. 3 showing a transition portion of open cell construction;
- FIG. 5 is a side section view of an alternative embodiment of FIG. 3 showing a balloon catheter admitted into the implant through an access port; and
- FIG. 6 is a side sectional view of an expandable implant with a balloon catheter removable through a myocardial portion of the catheter.
- With initial reference to FIG. 1, a
conduit 10 is shown in the form of an L-shaped tube. Theconduit 10 may be formed of titanium or other biocompatible material. The material of theconduit 10 is preferably radially rigid material in order to withstand contraction forces of the myocardium. By way of non-limiting example, the tube will have an outside diameter DO of about 3 millimeters and an internal diameter DI of about 2.5 millimeters to provide a wall thickness of about 0.25 millimeters. - The
tube 10 has acoronary portion 12 sized to be received within the lumen of a coronary vessel such as thelumen 80 of acoronary artery 82 distal to anobstruction 81 as illustrated in FIG. 1. Theconduit 10 has amyocardial portion 14 extending at a right angle to the axis ofportion 12. Themyocardial portion 14 is sized to extend from thecoronary artery 82 directly through themyocardium 84 and protrude into theleft ventricle 83 of a patient's heart. - The
coronary portion 12 has afirst opening 16. Themyocardial portion 14 has asecond opening 18 in communication with aninterior 20 of theimplant 10. Therefore, blood can freely flow through theimplant 10 between theleft ventricle 83 and thelumen 80 of thecoronary artery 82. Blood flows axially out of opening 16 parallel with the axis oflumen 80. - The longitudinal axis of the
coronary portion 12 is aligned with the axis of thelumen 80.Sutures 24 secure theartery 82 to thecoronary portion 12. The proximal portion 82 a of the coronary artery is ligated bysutures 85. - The coronary and
myocardial portions open cells implant 10. Preferably, the coronary andmyocardial portions transition portion 13 in a 90° bend betweenportions transition portion 13 can have an open lattice construction asportions transition portion 13 will preferably have smaller open areas in such an open construction or, as illustrated, will be of solid construction. Such construction permits the transition portion to deflect high velocity blood flows from themyocardial portion 14 into thecoronary portion 12. A lattice construction with large open cells in the transition portion could result in the high velocity flow damaging tissue (not shown) overlying the transition portion. - Any one or all of the
coronary portion 12,transition portion 13 andmyocardial portion 14 could be formed in final size as rigid units or could be formed in small diameter sizes which are subsequently expanded to full size. For example, FIG. 3 illustrates acoronary portion 12′ which is formed tapering from thetransition portion 13′ to a reduced diameteropen end 16′. The taper permits ease of insertion into a coronary artery. Following such insertion, the taperedcoronary portion 12′ may be expanded to full size illustrated by the phantom lines in FIG. 3. Such expansion can be performed using balloon-tipped catheters as is conventional in stent angioplasty. A collapsed and subsequently expandedimplant 10 where allportions artery 82 is ligated. Theimplant 10 is passed through the epicardium and myocardium on a side of theartery 82. - FIG. 5 illustrates a
balloon 100 placed in a taperedcoronary portion 12. A lead 102 from theballoon 100 is passed through an opening 113′ in thetransition portion 13′. The opening 113′ can be closed with a plug 115′ after theballoon 100 and lead 102 are withdrawn through the opening 113′. Alternatively, in atransition portion 13″ with open cell construction (FIG. 4), the balloon lead can be passed through the openings of the transition portion 113″. FIG. 6 illustrates passing thelead 102 through opening 18 of the myocardial portion. Thelead 102 can be pulled upwardly from the exterior of the heart to remove theballoon 100. Alternatively, thelead 102 can be pulled through a catheter (not shown)adjacent end 18 in the left ventricle. - In either percutaneous or surgical implants, a flexible transition portion13 (as would be achieved with a stent lattice construction) permits relative articulation between the coronary and
myocardial portions lumen 80. Absent such articulation, such axial alignment is achieved by accurately controlling the position of themyocardial portion 14 such that thecoronary portion 12 is axially aligned with thelumen 80 following implantation. - The open cell construction of the coronary and
myocardial portions coronary portion 12 is the same as that in coronary stents. Vascular endothelial cells grow over to coat the structural material 12 a ofportion 12. - In
portion 14, myocardial tissue, if not obstructed, will grow through the cells 14 c. Furthermore, the myocardium is highly thrombogenic. Therefore, uncontrolled contact between themyocardium 82 and theimplant interior 20 can result in thrombosis of theimplant 10. Further, it is believed that the epicardium (i.e., outer layer of the myocardium) has a greater density of myocardial growth cells which contribute to healing. - To control growth in the
myocardial portion 14, aliner 30 is provided in themyocardial portion 14. Theliner 30 is any porous material for accepting tissue growth and, preferably, is a polyester fabric (e.g., Dacron). Theporous liner 30 has interstial spaces smaller than the open cells 12 c, 14 c. Theliner 30 is shown on an interior of themyocardial portion 14 but could also or alternatively surround the exterior. - The
liner 30 has anupper end 32 secured through any suitable means (e.g., sutures not shown) to the upper end of themyocardial portion 14. Alower end 34 is folded over the opening of themyocardial portion 14 and secured to the exterior of theportion 14 bysutures 36. Themyocardial portion 14 is sized to protrude into theleft ventricle 83 with only the folded over liner material exposed to the interior of theleft ventricle 83. - The
liner 30 acts as a porous substrate into which tissue may grow. To prevent thrombus, theliner 30 is impregnated with an agent for controlling coagulation cascade and platelet activation and adhesion. An example of such an agent is heparin but could be any anticoagulant or antiplatelet. Also, an agent such as a basic fibroblast growth factor could be used to accelerate healing. - The agent permits structural cells to grow on the liner by limiting thrombus formation which, uncontrolled, would occlude the implant. Due to the open construction, the structural, healing cells of the epicardium can grow onto the liner. Subsequently, endothelial cells can grow on the structural cells.
- Therefore, the structure described promotes a three-stage healing process:
- 1. the drug agents control healing by minimizing coagulation and platelet activation which would otherwise be stimulated by agents from the myocardium; and
- 2. structural cells grow into and on the
liner 30 now lined with the thrombus to initially heal and form a vascular bed; and - 3. endothelial cells grow over the structural cells.
- In the
transition portion 13, an open cells structure will permit tissue growth as in thecoronary portion 12. Such growth may also occur in the solid construction. Alternatively, theliner 30 can be extended into thetransition portion 13. Additionally, the open cell structure in thetransition portion 13 can permit articulation between the coronary portion and the myocardial portion. Such a structure is shown in FIG. 4. Theopen transition portion 13″ is formed by acoil 13 a″ between thecoronary portion 12″ and themyocardial portion 14″. This structure permits bending at the transition portion. As a result, the coronary portion can be axially aligned in the artery without first accurately positioning the myocardial portion. - Having disclosed the present invention in a preferred embodiment, it will be appreciated that modifications and equivalents may occur to one of ordinary skill in the art having the benefits of the teachings of the present invention. It is intended that such modifications shall be included within the scope of the claims appended hereto. For example, the
liner 30 can take many constructions including PTFE, expanded-PTFE, polyurethane, polypropylene or any biologically compatible paving material or natural tissue. Further, restenosis of thecoronary portion 12 can be prevented with radioactivity therapy (such as providing the coronary portion with a short half-life beta emitter). Also, theliner 30 may be either a resorbable or non-resorbable material. Genetically engineered cells can be transformed to secrete anticoagulants and other agents to keep the blood fluid (such as tissue plasminogen activator and smooth muscle cells altered to express nitric acid).
Claims (17)
1. A transmyocardial implant for defining a blood flow pathway directly from a left ventricle to a coronary vessel, the implant comprising:
a coronary portion sized to be received within the vessel;
a myocardial portion sized to pass through the myocardium into the left ventricle;
a transition portion connecting the coronary and myocardial portion for directing blood flow from the myocardial portion to the coronary portion;
at least the coronary portion and the myocardial portion having an open construction for permitting tissue growth across a wall thickness of the coronary portion and the myocardial portion; and
at least the myocardial portion including an agent for controlling a coagulation cascade and platelet activation.
2. An implant according to claim 1 further comprising an agent for encouraging healing.
3. An implant according to claim 1 further comprising a porous lining in at least the myocardial portion with the porous lining have pores smaller than openings of the open construction of the myocardial portion.
4. An implant according to claim 1 wherein the porous lining contains the agent.
5. An implant according to claim 1 wherein the agent is heparin.
6. An implant according to claim 1 wherein the agent is an anti-coagulant.
7. An implant according to claim 1 wherein the agent is an anti-platelet.
8. An implant according to claim 2 wherein the agent for encouraging healing is a growth factor.
9. An implant according to claim 1 wherein the coronary portion is expandable from a first diameter to an enlarged second diameter.
10. An implant according to claim 1 wherein the myocardial portion is expandable from a first diameter to an enlarged second diameter.
11. An implant according to claim 1 wherein the transition portion permits articulation between the coronary portion and the myocardial portion.
12. A transmyocardial implant for defining a blood flow pathway directly from a left ventricle to a coronary vessel, the implant comprising:
a coronary portion sized to be received within the vessel;
a myocardial portion sized to pass through the myocardium into the left ventricle;
a transition portion connecting the coronary and myocardial portion for directing blood flow from the myocardial portion to the coronary portion; and
the myocardial portion including a construction to facilitate tissue integration and including an agent for controlling a coagulation cascade and platelet activation.
13. An implant according to claim 12 wherein the coronary portion includes an open structure to facilitate growth of vascular endothelial cells along the coronary portion.
14. An implant according to claim 12 wherein the myocardial portion includes a porous structure for facilitating growth of vascular endothelial cells into the myocardial portion.
15. An implant according to claim 14 wherein the porous structure includes a fabric liner.
16. An implant according to claim 14 wherein the myocardial portion further includes a wall structure for facilitating growth of structural cells into the interior of the myocardial portion.
17. An implant according to claim 16 wherein the wall structure is an open cell construction of the myocardial portion.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/095,165 US20020095111A1 (en) | 1998-08-27 | 2002-03-08 | Healing transmyocardial implant |
US10/639,614 US20040077988A1 (en) | 1998-08-27 | 2003-08-11 | Healing transmyocardial implant |
US11/266,237 US20060052736A1 (en) | 1998-08-27 | 2005-11-04 | Healing transmyocardial implant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/141,284 US6406488B1 (en) | 1998-08-27 | 1998-08-27 | Healing transmyocardial implant |
US10/095,165 US20020095111A1 (en) | 1998-08-27 | 2002-03-08 | Healing transmyocardial implant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/141,284 Continuation US6406488B1 (en) | 1998-08-27 | 1998-08-27 | Healing transmyocardial implant |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/639,614 Continuation US20040077988A1 (en) | 1998-08-27 | 2003-08-11 | Healing transmyocardial implant |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020095111A1 true US20020095111A1 (en) | 2002-07-18 |
Family
ID=22495012
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/141,284 Expired - Fee Related US6406488B1 (en) | 1998-08-27 | 1998-08-27 | Healing transmyocardial implant |
US10/095,165 Abandoned US20020095111A1 (en) | 1998-08-27 | 2002-03-08 | Healing transmyocardial implant |
US10/639,614 Abandoned US20040077988A1 (en) | 1998-08-27 | 2003-08-11 | Healing transmyocardial implant |
US11/266,237 Abandoned US20060052736A1 (en) | 1998-08-27 | 2005-11-04 | Healing transmyocardial implant |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/141,284 Expired - Fee Related US6406488B1 (en) | 1998-08-27 | 1998-08-27 | Healing transmyocardial implant |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/639,614 Abandoned US20040077988A1 (en) | 1998-08-27 | 2003-08-11 | Healing transmyocardial implant |
US11/266,237 Abandoned US20060052736A1 (en) | 1998-08-27 | 2005-11-04 | Healing transmyocardial implant |
Country Status (11)
Country | Link |
---|---|
US (4) | US6406488B1 (en) |
EP (2) | EP1107710B1 (en) |
JP (1) | JP2002523177A (en) |
AT (1) | ATE284182T1 (en) |
AU (1) | AU5686999A (en) |
CA (1) | CA2341521A1 (en) |
DE (1) | DE69922514T2 (en) |
DK (1) | DK1107710T3 (en) |
ES (1) | ES2235505T3 (en) |
PT (1) | PT1107710E (en) |
WO (1) | WO2000012029A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6582444B2 (en) | 1999-08-04 | 2003-06-24 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US6605113B2 (en) | 1999-08-04 | 2003-08-12 | Percardia Inc. | Vascular graft bypass |
US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
US6610100B2 (en) | 1998-09-10 | 2003-08-26 | Percardia, Inc. | Designs for left ventricular conduit |
US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
US6694983B2 (en) | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US7704222B2 (en) | 1998-09-10 | 2010-04-27 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US12121461B2 (en) | 2016-03-17 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6406488B1 (en) * | 1998-08-27 | 2002-06-18 | Heartstent Corporation | Healing transmyocardial implant |
US6196230B1 (en) * | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
EP1112041A1 (en) * | 1998-09-10 | 2001-07-04 | Percardia, Inc. | Tmr shunt |
US6854467B2 (en) * | 2000-05-04 | 2005-02-15 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
SE517410C2 (en) * | 2000-09-20 | 2002-06-04 | Jan Otto Solem | Device and insertion device for providing a complementary blood flow to a coronary artery |
US6976990B2 (en) * | 2001-01-25 | 2005-12-20 | Percardia, Inc. | Intravascular ventriculocoronary bypass via a septal passageway |
US20050148925A1 (en) | 2001-04-20 | 2005-07-07 | Dan Rottenberg | Device and method for controlling in-vivo pressure |
US8091556B2 (en) | 2001-04-20 | 2012-01-10 | V-Wave Ltd. | Methods and apparatus for reducing localized circulatory system pressure |
US20030097170A1 (en) * | 2001-09-25 | 2003-05-22 | Curative Ag | Implantation device for an aorta in an aortic arch |
US6949118B2 (en) * | 2002-01-16 | 2005-09-27 | Percardia, Inc. | Encased implant and methods |
US7008397B2 (en) * | 2002-02-13 | 2006-03-07 | Percardia, Inc. | Cardiac implant and methods |
US20030216801A1 (en) * | 2002-05-17 | 2003-11-20 | Heartstent Corporation | Transmyocardial implant with natural vessel graft and method |
US20030220661A1 (en) * | 2002-05-21 | 2003-11-27 | Heartstent Corporation | Transmyocardial implant delivery system |
FR2846520B1 (en) * | 2002-11-06 | 2006-09-29 | Roquette Freres | USE OF MALTODEXTRINS BRANCHED AS BLEACHES OF GRANULATION |
IES20030539A2 (en) * | 2003-07-22 | 2005-05-18 | Medtronic Vascular Connaught | Stents and stent delivery system |
US9681948B2 (en) | 2006-01-23 | 2017-06-20 | V-Wave Ltd. | Heart anchor device |
SG172018A1 (en) * | 2008-12-31 | 2011-07-28 | Kcl Licensing Inc | Systems for inducing fluid flow to stimulate tissue growth |
US10076403B1 (en) | 2009-05-04 | 2018-09-18 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US20210161637A1 (en) | 2009-05-04 | 2021-06-03 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US9034034B2 (en) | 2010-12-22 | 2015-05-19 | V-Wave Ltd. | Devices for reducing left atrial pressure, and methods of making and using same |
WO2010128501A1 (en) | 2009-05-04 | 2010-11-11 | V-Wave Ltd. | Device and method for regulating pressure in a heart chamber |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US10456239B2 (en) | 2011-06-15 | 2019-10-29 | Phraxis Inc. | Anastomotic connector and system for delivery |
US11135054B2 (en) | 2011-07-28 | 2021-10-05 | V-Wave Ltd. | Interatrial shunts having biodegradable material, and methods of making and using same |
US9629715B2 (en) | 2011-07-28 | 2017-04-25 | V-Wave Ltd. | Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
EP2861182B1 (en) * | 2012-06-15 | 2019-02-20 | Phraxis Inc. | Arterial and venous anchor devices forming an anastomotic connector |
US10098551B2 (en) | 2013-01-31 | 2018-10-16 | Pacesetter, Inc. | Wireless MEMS left atrial pressure sensor |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
CN105555204B (en) | 2013-05-21 | 2018-07-10 | V-波有限责任公司 | For delivering the equipment for the device for reducing left atrial pressure |
US10667931B2 (en) * | 2014-07-20 | 2020-06-02 | Restore Medical Ltd. | Pulmonary artery implant apparatus and methods of use thereof |
EP3291773A4 (en) | 2015-05-07 | 2019-05-01 | The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center | Temporary interatrial shunts |
CN108601645B (en) | 2015-12-15 | 2021-02-26 | 内奥瓦斯克迪亚拉公司 | Transseptal delivery system |
EP4183372A1 (en) | 2016-01-29 | 2023-05-24 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US20170340460A1 (en) | 2016-05-31 | 2017-11-30 | V-Wave Ltd. | Systems and methods for making encapsulated hourglass shaped stents |
US10835394B2 (en) | 2016-05-31 | 2020-11-17 | V-Wave, Ltd. | Systems and methods for making encapsulated hourglass shaped stents |
US11771434B2 (en) | 2016-09-28 | 2023-10-03 | Restore Medical Ltd. | Artery medical apparatus and methods of use thereof |
EP3541462A4 (en) | 2016-11-21 | 2020-06-17 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
US11291807B2 (en) | 2017-03-03 | 2022-04-05 | V-Wave Ltd. | Asymmetric shunt for redistributing atrial blood volume |
AU2018228451B2 (en) | 2017-03-03 | 2022-12-08 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US11364132B2 (en) | 2017-06-05 | 2022-06-21 | Restore Medical Ltd. | Double walled fixed length stent like apparatus and methods of use thereof |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US10898698B1 (en) | 2020-05-04 | 2021-01-26 | V-Wave Ltd. | Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same |
WO2019142152A1 (en) | 2018-01-20 | 2019-07-25 | V-Wave Ltd. | Devices and methods for providing passage between heart chambers |
US11458287B2 (en) | 2018-01-20 | 2022-10-04 | V-Wave Ltd. | Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same |
AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
US11666464B2 (en) | 2019-01-28 | 2023-06-06 | Tensor Flow Ventures Llc | Magnetic stent and stent delivery |
US11998467B2 (en) | 2019-01-28 | 2024-06-04 | Tensor Flow Ventures Llc | Stent delivery for vascular surgery |
CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
CN113811265A (en) | 2019-04-01 | 2021-12-17 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve deployable in a controlled manner |
US11612385B2 (en) | 2019-04-03 | 2023-03-28 | V-Wave Ltd. | Systems and methods for delivering implantable devices across an atrial septum |
AU2020271896B2 (en) | 2019-04-10 | 2022-10-13 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
US11865282B2 (en) | 2019-05-20 | 2024-01-09 | V-Wave Ltd. | Systems and methods for creating an interatrial shunt |
WO2020236931A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
JP2023540220A (en) | 2020-08-25 | 2023-09-22 | シファメド・ホールディングス・エルエルシー | Adjustable interatrial flow diverter and related systems and methods |
EP4243915A4 (en) | 2020-11-12 | 2024-08-07 | Shifamed Holdings Llc | Adjustable implantable devices and associated methods |
US11234702B1 (en) | 2020-11-13 | 2022-02-01 | V-Wave Ltd. | Interatrial shunt having physiologic sensor |
US12090290B2 (en) | 2021-03-09 | 2024-09-17 | Shifamed Holdings, Llc | Shape memory actuators for adjustable shunting systems, and associated systems and methods |
AU2023252664A1 (en) | 2022-04-14 | 2024-10-17 | V-Wave Ltd. | Interatrial shunt with expanded neck region |
Family Cites Families (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123917A (en) * | 1990-04-27 | 1992-06-23 | Lee Peter Y | Expandable intraluminal vascular graft |
US5389096A (en) * | 1990-12-18 | 1995-02-14 | Advanced Cardiovascular Systems | System and method for percutaneous myocardial revascularization |
US5833982A (en) | 1991-02-28 | 1998-11-10 | Zymogenetics, Inc. | Modified factor VII |
US5316023A (en) * | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
USRE36370E (en) * | 1992-01-13 | 1999-11-02 | Li; Shu-Tung | Resorbable vascular wound dressings |
CA2087132A1 (en) * | 1992-01-31 | 1993-08-01 | Michael S. Williams | Stent capable of attachment within a body lumen |
US5683448A (en) * | 1992-02-21 | 1997-11-04 | Boston Scientific Technology, Inc. | Intraluminal stent and graft |
US5758663A (en) * | 1992-04-10 | 1998-06-02 | Wilk; Peter J. | Coronary artery by-pass method |
US5287861A (en) * | 1992-10-30 | 1994-02-22 | Wilk Peter J | Coronary artery by-pass method and associated catheter |
US5429144A (en) | 1992-10-30 | 1995-07-04 | Wilk; Peter J. | Coronary artery by-pass method |
US5409019A (en) * | 1992-10-30 | 1995-04-25 | Wilk; Peter J. | Coronary artery by-pass method |
US5797960A (en) * | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5441515A (en) * | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5855598A (en) * | 1993-10-21 | 1999-01-05 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5723004A (en) * | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5449373A (en) * | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
ATE310839T1 (en) | 1994-04-29 | 2005-12-15 | Scimed Life Systems Inc | STENT WITH COLLAGEN |
US5637113A (en) * | 1994-12-13 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
US5575818A (en) * | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
US5571168A (en) * | 1995-04-05 | 1996-11-05 | Scimed Lifesystems Inc | Pull back stent delivery system |
DE19514638C2 (en) * | 1995-04-20 | 1998-06-04 | Peter Dr Med Boekstegers | Device for the selective suction and retroinfusion of a fluid from or into body veins controlled by venous pressure |
US5545217A (en) | 1995-04-20 | 1996-08-13 | C.M. Offray & Son, Inc. | Breast implant |
US6251104B1 (en) * | 1995-05-10 | 2001-06-26 | Eclipse Surgical Technologies, Inc. | Guiding catheter system for ablating heart tissue |
US6224584B1 (en) * | 1997-01-14 | 2001-05-01 | Eclipse Surgical Technologies, Inc. | Therapeutic and diagnostic agent delivery |
KR19990064209A (en) * | 1995-10-13 | 1999-07-26 | 트랜스바스큘라, 인코포레이티드 | Apparatus, Systems, and Methods for Interstitial Acupoint Intervention |
US6375615B1 (en) * | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
EP0954248B1 (en) * | 1995-10-13 | 2004-09-15 | Transvascular, Inc. | Apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6283951B1 (en) * | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US6726677B1 (en) * | 1995-10-13 | 2004-04-27 | Transvascular, Inc. | Stabilized tissue penetrating catheters |
US5824040A (en) * | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US5873881A (en) * | 1995-12-05 | 1999-02-23 | Mcewen; James Allen | Linear drive dermatome |
ATE248621T1 (en) * | 1996-01-19 | 2003-09-15 | Scimed Life Systems Inc | CATHETER WITH AN INCREASING RADIUS CURVE |
JP2000505316A (en) | 1996-02-02 | 2000-05-09 | トランスバスキュラー インコーポレイテッド | Method and apparatus for joining openings formed in adjacent blood vessels or other anatomical structures |
US6709444B1 (en) * | 1996-02-02 | 2004-03-23 | Transvascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
IL125415A (en) * | 1996-02-02 | 2004-02-19 | Transvascular Inc | Device and system for interstitial transvascular intervention |
US5810836A (en) * | 1996-03-04 | 1998-09-22 | Myocardial Stents, Inc. | Device and method for trans myocardial revascularization (TMR) |
US5709644A (en) * | 1996-06-14 | 1998-01-20 | Pacesetter, Inc. | Implantable suture sleeve modified to reduce tissue ingrowth |
US5662124A (en) * | 1996-06-19 | 1997-09-02 | Wilk Patent Development Corp. | Coronary artery by-pass method |
US5871436A (en) * | 1996-07-19 | 1999-02-16 | Advanced Cardiovascular Systems, Inc. | Radiation therapy method and device |
US6080170A (en) * | 1996-07-26 | 2000-06-27 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
US6569147B1 (en) * | 1996-07-26 | 2003-05-27 | Kensey Nash Corporation | Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes |
US5755682A (en) * | 1996-08-13 | 1998-05-26 | Heartstent Corporation | Method and apparatus for performing coronary artery bypass surgery |
EP1006916A4 (en) | 1996-08-26 | 2004-11-10 | Transvascular Inc | Methods and apparatus for transmyocardial direct coronary revascularization |
US5655548A (en) | 1996-09-16 | 1997-08-12 | Circulation, Inc. | Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
US6186972B1 (en) * | 1996-09-16 | 2001-02-13 | James A. Nelson | Methods and apparatus for treating ischemic heart disease by providing transvenous myocardial perfusion |
ES2227609T3 (en) | 1996-10-11 | 2005-04-01 | Alain Fouere | EXPANSIBLE CASE ADJUSTABLE FOR SURGICAL USE FOR THE DILATATION OF PHYSIOLOGICAL DUCTS. |
US6379319B1 (en) * | 1996-10-11 | 2002-04-30 | Transvascular, Inc. | Systems and methods for directing and snaring guidewires |
US20020029079A1 (en) * | 1996-10-11 | 2002-03-07 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
US6053924A (en) * | 1996-11-07 | 2000-04-25 | Hussein; Hany | Device and method for trans myocardial revascularization |
WO1998020810A1 (en) * | 1996-11-12 | 1998-05-22 | Medtronic, Inc. | Flexible, radially expansible luminal prostheses |
US6067988A (en) * | 1996-12-26 | 2000-05-30 | Eclipse Surgical Technologies, Inc. | Method for creation of drug delivery and/or stimulation pockets in myocardium |
US20040088042A1 (en) * | 1997-01-31 | 2004-05-06 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
US6010449A (en) * | 1997-02-28 | 2000-01-04 | Lumend, Inc. | Intravascular catheter system for treating a vascular occlusion |
US6217549B1 (en) * | 1997-02-28 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for treating vascular occlusions |
US6508825B1 (en) * | 1997-02-28 | 2003-01-21 | Lumend, Inc. | Apparatus for treating vascular occlusions |
US6026814A (en) * | 1997-03-06 | 2000-02-22 | Scimed Life Systems, Inc. | System and method for percutaneous coronary artery bypass |
US6045565A (en) * | 1997-11-04 | 2000-04-04 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization growth factor mediums and method |
US6035856A (en) * | 1997-03-06 | 2000-03-14 | Scimed Life Systems | Percutaneous bypass with branching vessel |
US6093177A (en) * | 1997-03-07 | 2000-07-25 | Cardiogenesis Corporation | Catheter with flexible intermediate section |
US5876373A (en) * | 1997-04-04 | 1999-03-02 | Eclipse Surgical Technologies, Inc. | Steerable catheter |
CA2284720C (en) * | 1997-04-11 | 2006-09-12 | Transvascular, Inc. | Methods and apparatus for transmyocardial direct coronary revascularization |
US5843172A (en) * | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US6213126B1 (en) * | 1997-06-19 | 2001-04-10 | Scimed Life Systems, Inc. | Percutaneous artery to artery bypass using heart tissue as a portion of a bypass conduit |
US6071292A (en) * | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
US5908029A (en) * | 1997-08-15 | 1999-06-01 | Heartstent Corporation | Coronary artery bypass with reverse flow |
US6565594B1 (en) * | 1997-09-24 | 2003-05-20 | Atrium Medical Corporation | Tunneling device |
US5984956A (en) | 1997-10-06 | 1999-11-16 | Heartstent Corporation | Transmyocardial implant |
US5980548A (en) * | 1997-10-29 | 1999-11-09 | Kensey Nash Corporation | Transmyocardial revascularization system |
US6056743A (en) * | 1997-11-04 | 2000-05-02 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization device and method |
US6330884B1 (en) * | 1997-11-14 | 2001-12-18 | Transvascular, Inc. | Deformable scaffolding multicellular stent |
US6251418B1 (en) * | 1997-12-18 | 2001-06-26 | C.R. Bard, Inc. | Systems and methods for local delivery of an agent |
US6197324B1 (en) * | 1997-12-18 | 2001-03-06 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
US6217527B1 (en) * | 1998-09-30 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for crossing vascular occlusions |
US6231546B1 (en) * | 1998-01-13 | 2001-05-15 | Lumend, Inc. | Methods and apparatus for crossing total occlusions in blood vessels |
US6081738A (en) * | 1998-01-15 | 2000-06-27 | Lumend, Inc. | Method and apparatus for the guided bypass of coronary occlusions |
US6250305B1 (en) * | 1998-01-20 | 2001-06-26 | Heartstent Corporation | Method for using a flexible transmyocardial implant |
US6200311B1 (en) * | 1998-01-20 | 2001-03-13 | Eclipse Surgical Technologies, Inc. | Minimally invasive TMR device |
US6214041B1 (en) * | 1998-01-20 | 2001-04-10 | Heartstent Corporation | Transmyocardial implant with septal perfusion |
US6193734B1 (en) * | 1998-01-23 | 2001-02-27 | Heartport, Inc. | System for performing vascular anastomoses |
US6808498B2 (en) * | 1998-02-13 | 2004-10-26 | Ventrica, Inc. | Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber |
US6651670B2 (en) * | 1998-02-13 | 2003-11-25 | Ventrica, Inc. | Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication |
US6093185A (en) * | 1998-03-05 | 2000-07-25 | Scimed Life Systems, Inc. | Expandable PMR device and method |
IL138666A0 (en) * | 1998-03-31 | 2001-10-31 | Transvascular Inc | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
US6561998B1 (en) * | 1998-04-07 | 2003-05-13 | Transvascular, Inc. | Transluminal devices, systems and methods for enlarging interstitial penetration tracts |
US6076529A (en) * | 1998-04-20 | 2000-06-20 | Heartstent Corporation | Transmyocardial implant with inserted vessel |
US6029672A (en) * | 1998-04-20 | 2000-02-29 | Heartstent Corporation | Transmyocardial implant procedure and tools |
US6036697A (en) * | 1998-07-09 | 2000-03-14 | Scimed Life Systems, Inc. | Balloon catheter with balloon inflation at distal end of balloon |
US6171251B1 (en) * | 1998-07-14 | 2001-01-09 | Eclipse Surgical Technologies, Inc. | Method and apparatus for optimizing direct vessel implants for myocardial revascularization |
US6053942A (en) * | 1998-08-18 | 2000-04-25 | Heartstent Corporation | Transmyocardial implant with coronary stent |
US6406488B1 (en) * | 1998-08-27 | 2002-06-18 | Heartstent Corporation | Healing transmyocardial implant |
EP1669042A3 (en) * | 1998-09-10 | 2006-06-28 | Percardia, Inc. | TMR shunt |
-
1998
- 1998-08-27 US US09/141,284 patent/US6406488B1/en not_active Expired - Fee Related
-
1999
- 1999-08-24 JP JP2000567153A patent/JP2002523177A/en active Pending
- 1999-08-24 AU AU56869/99A patent/AU5686999A/en not_active Abandoned
- 1999-08-24 DE DE69922514T patent/DE69922514T2/en not_active Expired - Fee Related
- 1999-08-24 EP EP99943852A patent/EP1107710B1/en not_active Expired - Lifetime
- 1999-08-24 CA CA002341521A patent/CA2341521A1/en not_active Abandoned
- 1999-08-24 DK DK99943852T patent/DK1107710T3/en active
- 1999-08-24 AT AT99943852T patent/ATE284182T1/en not_active IP Right Cessation
- 1999-08-24 PT PT99943852T patent/PT1107710E/en unknown
- 1999-08-24 WO PCT/US1999/019208 patent/WO2000012029A1/en active IP Right Grant
- 1999-08-24 ES ES99943852T patent/ES2235505T3/en not_active Expired - Lifetime
- 1999-08-24 EP EP04028704A patent/EP1516599A3/en not_active Withdrawn
-
2002
- 2002-03-08 US US10/095,165 patent/US20020095111A1/en not_active Abandoned
-
2003
- 2003-08-11 US US10/639,614 patent/US20040077988A1/en not_active Abandoned
-
2005
- 2005-11-04 US US11/266,237 patent/US20060052736A1/en not_active Abandoned
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6610100B2 (en) | 1998-09-10 | 2003-08-26 | Percardia, Inc. | Designs for left ventricular conduit |
US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
US6694983B2 (en) | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US7704222B2 (en) | 1998-09-10 | 2010-04-27 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US7736327B2 (en) | 1998-09-10 | 2010-06-15 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US8216174B2 (en) | 1998-09-10 | 2012-07-10 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US8597226B2 (en) | 1998-09-10 | 2013-12-03 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US6605113B2 (en) | 1999-08-04 | 2003-08-12 | Percardia Inc. | Vascular graft bypass |
US6582444B2 (en) | 1999-08-04 | 2003-06-24 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11154398B2 (en) | 2008-02-26 | 2021-10-26 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US12121461B2 (en) | 2016-03-17 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
Also Published As
Publication number | Publication date |
---|---|
JP2002523177A (en) | 2002-07-30 |
CA2341521A1 (en) | 2000-03-09 |
WO2000012029A1 (en) | 2000-03-09 |
ATE284182T1 (en) | 2004-12-15 |
EP1107710A1 (en) | 2001-06-20 |
DE69922514T2 (en) | 2005-12-15 |
US20040077988A1 (en) | 2004-04-22 |
ES2235505T3 (en) | 2005-07-01 |
AU5686999A (en) | 2000-03-21 |
EP1516599A3 (en) | 2005-10-12 |
US6406488B1 (en) | 2002-06-18 |
EP1107710B1 (en) | 2004-12-08 |
DK1107710T3 (en) | 2005-03-14 |
PT1107710E (en) | 2005-04-29 |
EP1516599A2 (en) | 2005-03-23 |
DE69922514D1 (en) | 2005-01-13 |
US20060052736A1 (en) | 2006-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6406488B1 (en) | Healing transmyocardial implant | |
US10765511B2 (en) | Transcatheter heart valve with plication tissue anchors | |
US6182668B1 (en) | Transmyocardial implant with induced tissue flap | |
CN108697517B (en) | Implantable prosthesis for thoracic aortic disease involving aortic valve dysfunction | |
US8597226B2 (en) | Methods and conduits for flowing blood from a heart chamber to a blood vessel | |
US20200093589A1 (en) | Side-delivered transcatheter heart valve replacement | |
US6926690B2 (en) | Transmyocardial shunt and its attachment mechanism, for left ventricular revascularization | |
US6692520B1 (en) | Systems and methods for imbedded intramuscular implants | |
US20070244546A1 (en) | Stent Foundation for Placement of a Stented Valve | |
US20210386541A1 (en) | Implant for the treatment and/or for replacement of an inflammed, thrombosed or degenerated heart valve | |
US20010014813A1 (en) | Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth | |
JP2004510490A (en) | Intraluminally placed vascular graft | |
AU777443B2 (en) | Methods and apparatus for direct coronary revascularization | |
JP4933450B2 (en) | Apparatus and method for deploying an implantable device in a body | |
WO2003103513A1 (en) | Anastomotic device and method for open and endoscopic surgical anatomosis | |
US20010047197A1 (en) | Methods and devices for in situ formation of vascular structures suitable for use as blood vessels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |