US20030170316A1 - Treating asthma by preventing and/or accomodating for S-nitrosothiol breakdown - Google Patents
Treating asthma by preventing and/or accomodating for S-nitrosothiol breakdown Download PDFInfo
- Publication number
- US20030170316A1 US20030170316A1 US10/403,287 US40328703A US2003170316A1 US 20030170316 A1 US20030170316 A1 US 20030170316A1 US 40328703 A US40328703 A US 40328703A US 2003170316 A1 US2003170316 A1 US 2003170316A1
- Authority
- US
- United States
- Prior art keywords
- nitrosothiol
- breakdown
- inhibitor
- asthma
- donor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- ICRHORQIUXBEPA-UHFFFAOYSA-N thionitrous acid Chemical compound SN=O ICRHORQIUXBEPA-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 208000006673 asthma Diseases 0.000 title claims abstract description 80
- 230000015556 catabolic process Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000003246 corticosteroid Substances 0.000 claims abstract description 12
- 230000009885 systemic effect Effects 0.000 claims abstract description 6
- 239000003112 inhibitor Substances 0.000 claims description 62
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 23
- 229910052737 gold Inorganic materials 0.000 claims description 23
- 239000010931 gold Substances 0.000 claims description 23
- 229940079593 drug Drugs 0.000 claims description 21
- 239000003814 drug Substances 0.000 claims description 21
- 239000002840 nitric oxide donor Substances 0.000 claims description 18
- 208000024891 symptom Diseases 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 16
- XHVAWZZCDCWGBK-WYRLRVFGSA-M Aurothioglucose Chemical compound OC[C@H]1O[C@H](S[Au])[C@H](O)[C@@H](O)[C@@H]1O XHVAWZZCDCWGBK-WYRLRVFGSA-M 0.000 claims description 15
- 230000002255 enzymatic effect Effects 0.000 claims description 14
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 claims description 14
- 229960001799 aurothioglucose Drugs 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 101710107035 Gamma-glutamyltranspeptidase Proteins 0.000 claims description 11
- 101710173228 Glutathione hydrolase proenzyme Proteins 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 11
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 claims description 11
- 150000003278 haem Chemical class 0.000 claims description 9
- 238000001727 in vivo Methods 0.000 claims description 9
- 102000004169 proteins and genes Human genes 0.000 claims description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 9
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 9
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 8
- AUJRCFUBUPVWSZ-XTZHGVARSA-M auranofin Chemical compound CCP(CC)(CC)=[Au]S[C@@H]1O[C@H](COC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O AUJRCFUBUPVWSZ-XTZHGVARSA-M 0.000 claims description 8
- 229960005207 auranofin Drugs 0.000 claims description 8
- 102100033220 Xanthine oxidase Human genes 0.000 claims description 7
- 108010093894 Xanthine oxidase Proteins 0.000 claims description 7
- 229940015045 gold sodium thiomalate Drugs 0.000 claims description 7
- AGHLUVOCTHWMJV-UHFFFAOYSA-J sodium;gold(3+);2-sulfanylbutanedioate Chemical compound [Na+].[Au+3].[O-]C(=O)CC(S)C([O-])=O.[O-]C(=O)CC(S)C([O-])=O AGHLUVOCTHWMJV-UHFFFAOYSA-J 0.000 claims description 7
- 229960000278 theophylline Drugs 0.000 claims description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000048 adrenergic agonist Substances 0.000 claims description 6
- 229940098165 atrovent Drugs 0.000 claims description 6
- 239000002738 chelating agent Substances 0.000 claims description 6
- KEWHKYJURDBRMN-XSAPEOHZSA-M chembl2134724 Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-XSAPEOHZSA-M 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 229960000265 cromoglicic acid Drugs 0.000 claims description 6
- IMZMKUWMOSJXDT-UHFFFAOYSA-N cromoglycic acid Chemical compound O1C(C(O)=O)=CC(=O)C2=C1C=CC=C2OCC(O)COC1=CC=CC2=C1C(=O)C=C(C(O)=O)O2 IMZMKUWMOSJXDT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- RXJKFRMDXUJTEX-UHFFFAOYSA-N triethylphosphine Chemical compound CCP(CC)CC RXJKFRMDXUJTEX-UHFFFAOYSA-N 0.000 claims description 6
- QAWIHIJWNYOLBE-OKKQSCSOSA-N acivicin Chemical compound OC(=O)[C@@H](N)[C@@H]1CC(Cl)=NO1 QAWIHIJWNYOLBE-OKKQSCSOSA-N 0.000 claims description 5
- 229950008427 acivicin Drugs 0.000 claims description 5
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 3
- 229960001153 serine Drugs 0.000 claims description 3
- 238000011282 treatment Methods 0.000 abstract description 10
- 239000003795 chemical substances by application Substances 0.000 abstract description 5
- 229960001334 corticosteroids Drugs 0.000 abstract description 2
- 230000001668 ameliorated effect Effects 0.000 abstract 1
- 230000002250 progressing effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 17
- 239000000443 aerosol Substances 0.000 description 14
- 206010011224 Cough Diseases 0.000 description 9
- 229940124630 bronchodilator Drugs 0.000 description 8
- 108010001742 S-Nitrosoglutathione Proteins 0.000 description 7
- HYHSBSXUHZOYLX-WDSKDSINSA-N S-nitrosoglutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CSN=O)C(=O)NCC(O)=O HYHSBSXUHZOYLX-WDSKDSINSA-N 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 208000000059 Dyspnea Diseases 0.000 description 6
- 206010013975 Dyspnoeas Diseases 0.000 description 6
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 6
- 208000037656 Respiratory Sounds Diseases 0.000 description 6
- 206010047924 Wheezing Diseases 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 201000004193 respiratory failure Diseases 0.000 description 6
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 description 5
- 238000007910 systemic administration Methods 0.000 description 5
- 229960000195 terbutaline Drugs 0.000 description 5
- 241000700199 Cavia porcellus Species 0.000 description 4
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 4
- 206010035664 Pneumonia Diseases 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 125000002887 hydroxy group Chemical class [H]O* 0.000 description 4
- 238000006303 photolysis reaction Methods 0.000 description 4
- 230000015843 photosynthesis, light reaction Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- FBTSQILOGYXGMD-LURJTMIESA-N 3-nitro-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C([N+]([O-])=O)=C1 FBTSQILOGYXGMD-LURJTMIESA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 3
- 229960003459 allopurinol Drugs 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229960004618 prednisone Drugs 0.000 description 3
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- XOWVFANEOZMPKG-UWTATZPHSA-N (2s)-2-amino-3-nitrososulfanylpropanoic acid Chemical compound OC(=O)[C@H](N)CSN=O XOWVFANEOZMPKG-UWTATZPHSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010011703 Cyanosis Diseases 0.000 description 2
- 102000010918 Cysteinyl leukotriene receptors Human genes 0.000 description 2
- 108050001116 Cysteinyl leukotriene receptors Proteins 0.000 description 2
- 102000006587 Glutathione peroxidase Human genes 0.000 description 2
- 108700016172 Glutathione peroxidases Proteins 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 102000013090 Thioredoxin-Disulfide Reductase Human genes 0.000 description 2
- 108010079911 Thioredoxin-disulfide reductase Proteins 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 2
- 230000001078 anti-cholinergic effect Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- FBKZHCDISZZXDK-UHFFFAOYSA-N bathocuproine disulfonic acid Chemical compound C=12C=CC3=C(C=4C=CC(=CC=4)S(O)(=O)=O)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=C(S(O)(=O)=O)C=C1 FBKZHCDISZZXDK-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- AVOLMBLBETYQHX-UHFFFAOYSA-N etacrynic acid Chemical compound CCC(=C)C(=O)C1=CC=C(OCC(O)=O)C(Cl)=C1Cl AVOLMBLBETYQHX-UHFFFAOYSA-N 0.000 description 2
- 229960003199 etacrynic acid Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 229940065725 leukotriene receptor antagonists for obstructive airway diseases Drugs 0.000 description 2
- 239000003199 leukotriene receptor blocking agent Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 210000002464 muscle smooth vascular Anatomy 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 229960002052 salbutamol Drugs 0.000 description 2
- 125000000467 secondary amino group Chemical class [H]N([*:1])[*:2] 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 238000002627 tracheal intubation Methods 0.000 description 2
- QTJKCQPXTOYYHJ-BYPYZUCNSA-N (2r)-2-acetamido-3-nitrososulfanylpropanoic acid Chemical compound CC(=O)N[C@H](C(O)=O)CSN=O QTJKCQPXTOYYHJ-BYPYZUCNSA-N 0.000 description 1
- KNSMFAYATDJFEI-LNFGEOLWSA-N (2r,5r,6s)-6-aminooxy-2-(hydroxymethyl)-6-sulfanyl-2,5-dihydropyran-3,4,5-triol Chemical compound NO[C@@]1(S)O[C@H](CO)C(O)=C(O)[C@H]1O KNSMFAYATDJFEI-LNFGEOLWSA-N 0.000 description 1
- MRXDGVXSWIXTQL-HYHFHBMOSA-N (2s)-2-[[(1s)-1-(2-amino-1,4,5,6-tetrahydropyrimidin-6-yl)-2-[[(2s)-4-methyl-1-oxo-1-[[(2s)-1-oxo-3-phenylpropan-2-yl]amino]pentan-2-yl]amino]-2-oxoethyl]carbamoylamino]-3-phenylpropanoic acid Chemical compound C([C@H](NC(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C=O)C1NC(N)=NCC1)C(O)=O)C1=CC=CC=C1 MRXDGVXSWIXTQL-HYHFHBMOSA-N 0.000 description 1
- QWPCKAAAWDCDCW-VKHMYHEASA-N (2s)-2-amino-4-nitrososulfanylbutanoic acid Chemical compound OC(=O)[C@@H](N)CCSN=O QWPCKAAAWDCDCW-VKHMYHEASA-N 0.000 description 1
- YCXQDCDFQROPND-WDSKDSINSA-N (2s)-2-amino-5-[[(2r)-1-(carboxymethylamino)-3-nitrosulfanyl-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS[N+]([O-])=O)C(=O)NCC(O)=O YCXQDCDFQROPND-WDSKDSINSA-N 0.000 description 1
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OLVPQBGMUGIKIW-UHFFFAOYSA-N Chymostatin Natural products C=1C=CC=CC=1CC(C=O)NC(=O)C(C(C)CC)NC(=O)C(C1NC(N)=NCC1)NC(=O)NC(C(O)=O)CC1=CC=CC=C1 OLVPQBGMUGIKIW-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-WFVLMXAXSA-N DEAE-cellulose Chemical compound OC1C(O)C(O)C(CO)O[C@H]1O[C@@H]1C(CO)OC(O)C(O)C1O GUBGYTABKSRVRQ-WFVLMXAXSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 239000012839 Krebs-Henseleit buffer Substances 0.000 description 1
- JCYZMTMYPZHVBF-UHFFFAOYSA-N Melarsoprol Chemical compound NC1=NC(N)=NC(NC=2C=CC(=CC=2)[As]2SC(CO)CS2)=N1 JCYZMTMYPZHVBF-UHFFFAOYSA-N 0.000 description 1
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 1
- GHAZCVNUKKZTLG-UHFFFAOYSA-N N-ethyl-succinimide Natural products CCN1C(=O)CCC1=O GHAZCVNUKKZTLG-UHFFFAOYSA-N 0.000 description 1
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical compound CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 206010059411 Prolonged expiration Diseases 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 108700008425 S-nitroglutathione Proteins 0.000 description 1
- 150000004007 S-nitroso compounds Chemical class 0.000 description 1
- XOWVFANEOZMPKG-REOHCLBHSA-N S-nitroso-L-cysteine Chemical compound OC(=O)[C@@H](N)CSN=O XOWVFANEOZMPKG-REOHCLBHSA-N 0.000 description 1
- UOHAKHBEJRPHQZ-VKHMYHEASA-N S-nitroso-L-cysteinylglycine Chemical compound O=NSC[C@H](N)C(=O)NCC(O)=O UOHAKHBEJRPHQZ-VKHMYHEASA-N 0.000 description 1
- ZIIQCSMRQKCOCT-YFKPBYRVSA-N S-nitroso-N-acetyl-D-penicillamine Chemical compound CC(=O)N[C@@H](C(O)=O)C(C)(C)SN=O ZIIQCSMRQKCOCT-YFKPBYRVSA-N 0.000 description 1
- IOEJYZSZYUROLN-UHFFFAOYSA-M Sodium diethyldithiocarbamate Chemical compound [Na+].CCN(CC)C([S-])=S IOEJYZSZYUROLN-UHFFFAOYSA-M 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 241000289690 Xenarthra Species 0.000 description 1
- RXDLGFMMQFNVLI-UHFFFAOYSA-N [Na].[Na].[Ca] Chemical compound [Na].[Na].[Ca] RXDLGFMMQFNVLI-UHFFFAOYSA-N 0.000 description 1
- YQNRIGHGNPSVLD-UPHRSURJSA-N [O-]C(/C=C\C(O)=[S+]N=O)=O Chemical compound [O-]C(/C=C\C(O)=[S+]N=O)=O YQNRIGHGNPSVLD-UPHRSURJSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 208000024716 acute asthma Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000009798 acute exacerbation Effects 0.000 description 1
- 210000005091 airway smooth muscle Anatomy 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960003116 amyl nitrite Drugs 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000007885 bronchoconstriction Effects 0.000 description 1
- 230000003435 bronchoconstrictive effect Effects 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 108010086192 chymostatin Proteins 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 150000001944 cysteine derivatives Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000002283 elective surgery Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- DUYAAUVXQSMXQP-UHFFFAOYSA-N ethanethioic S-acid Chemical compound CC(S)=O DUYAAUVXQSMXQP-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- JDNTWHVOXJZDSN-UHFFFAOYSA-N iodoacetic acid Chemical compound OC(=O)CI JDNTWHVOXJZDSN-UHFFFAOYSA-N 0.000 description 1
- 238000005399 mechanical ventilation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229960001728 melarsoprol Drugs 0.000 description 1
- 229960001810 meprednisone Drugs 0.000 description 1
- PIDANAQULIKBQS-RNUIGHNZSA-N meprednisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)CC2=O PIDANAQULIKBQS-RNUIGHNZSA-N 0.000 description 1
- NZWOPGCLSHLLPA-UHFFFAOYSA-N methacholine Chemical compound C[N+](C)(C)CC(C)OC(C)=O NZWOPGCLSHLLPA-UHFFFAOYSA-N 0.000 description 1
- 229960002329 methacholine Drugs 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- CSDTZUBPSYWZDX-UHFFFAOYSA-N n-pentyl nitrite Chemical compound CCCCCON=O CSDTZUBPSYWZDX-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 229960001639 penicillamine Drugs 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 230000007958 sleep Effects 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 230000016160 smooth muscle contraction Effects 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- YQDGWZZYGYKDLR-UZVLBLASSA-K sodium stibogluconate Chemical compound O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].O1[C@H]([C@H](O)CO)[C@H](O2)[C@H](C([O-])=O)O[Sb]21([O-])O[Sb]1(O)(O[C@H]2C([O-])=O)O[C@H]([C@H](O)CO)[C@@H]2O1 YQDGWZZYGYKDLR-UZVLBLASSA-K 0.000 description 1
- 229960001567 sodium stibogluconate Drugs 0.000 description 1
- 229960005346 succimer Drugs 0.000 description 1
- ACTRVOBWPAIOHC-XIXRPRMCSA-N succimer Chemical compound OC(=O)[C@@H](S)[C@@H](S)C(O)=O ACTRVOBWPAIOHC-XIXRPRMCSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 208000008203 tachypnea Diseases 0.000 description 1
- 206010043089 tachypnoea Diseases 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 210000005062 tracheal ring Anatomy 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/223—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of alpha-aminoacids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
Definitions
- This invention is directed to treating a patient with asthma to ameliorate the symptoms thereof, to treating patients with mild or moderate asthma to inhibit progression to more severe asthma, and to reducing corticosteroid requirements in patients with severe asthma.
- a patient presenting with severe asthma is treated with a series of drugs including inhaled beta 2 -agonist and anticholinergic and systemic corticosteroid medications, and is given oxygen to achieve O 2 saturation ⁇ 90%.
- Any patient with impending or actual respiratory failure is treated with parenteral beta 2 -agonist, inhaled anticholinergic and parenteral corticosteroid medications, and if no favorable response is shown, by endotracheal intubation and mechanical ventilation and treatment in an intensive care unit.
- Annually several thousand patients with severe asthma die.
- the invention herein is based on the discoveries that severe asthma is associated with a deficiency of endogenous S-nitrosothiols (whereas NO levels are known to be high), that airway tissue contains activities, including enzymatic activities, which break down S-nitrosothiols to NO suggesting that such activities may be elevated in the case of asthma, that activities that break down S-nitrosothiols to NO and other low mass nitrogen oxides attenuate their bronchodilator activity, and that agents which inhibit catalyst for S-nitrosothiol breakdown restore the bronchodilator activity.
- the invention herein is directed to a method for treating a patient with asthma to ameliorate symptoms thereof comprising administering to said patient (a) a therapeutically effective amount of an inhibitor of S-nitrosothiol breakdown except for the gold-containing compounds heretofore used to treat asthma including aurothioglucose, gold sodium thiomalate, and (1-thio-beta-D-glucopyranose-2,3,4,6-tetraacetato-S)(triethylphosphine)gold (Auranofin) or (b) therapeutically effective amounts of an NO donor and of an inhibitor of S-nitrosothiol breakdown, or (c) a therapeutically effective amount of an NO donor which is itself an S-nitrosothiol or which generates on S-nitrosothiol in vivo which is resistant to breakdown by catalysts which cause S-nitrosothiol breakdown.
- an inhibitor of S-nitrosothiol breakdown except for the gold-containing compounds heretofore used to
- the administrations of (a), (b) or (c) are carried out for the treatment of severe asthma in combination with systemic administration of a therapeutically effective amount of corticosteroid which is 10-80% of the dose of systemic corticosteroid utilized for the treatment of severe asthma if administrations of (a) or (b) or (c) are not utilized.
- the invention herein is directed to a method for treating patients with mild or moderate asthma to inhibit progression to more severe asthma comprising administering to said patient (a) a therapeutically effective amount of an inhibitor of S-nitrosothiol breakdown except for gold containing compounds heretofore used to treat asthma including aurothioglucose, gold sodium thiomalate and (1-thio-beta-D-glucopyranose-2,3,4,5-tetraacetato-S)(triethylphosphine)gold (Auranofin) or (b) therapeutically effective amounts of an NO donor and of an inhibitor of S-nitrosothiol breakdown or (c) a therapeutically effective amount of an NO donor which is itself an S-nitrosothiol or which generates an S-nitrosothiol in vivo which is resistant to breakdown by catalysts which cause S-nitrosothiol breakdown.
- an inhibitor of S-nitrosothiol breakdown except for gold containing compounds heretofore used to treat asthma
- Gold-containing compounds which have heretofore been used to treat asthma are excluded in (a), above, to provide novelty.
- Administration of inhibitors of S-nitrosothiol breakdown different from these gold-containing compounds is not obvious from prior art administration of gold-containing compounds to treat asthma because the therapeutic mechanism of action of said gold-containing compounds in treating asthma has not heretofore been known.
- Gold-containing compounds are not excluded from inhibitors of nitrosothiol breakdown in (b), above, for the broad invention because gold-containing compounds have not heretofore been administered in combination with NO donors to treat asthma. While S-nitrosothiols have been administered previously to those with asthma to relax non-vascular smooth muscle including airway smooth muscle (see Stamler et al. U.S. Pat. Nos.
- S-nitrosothiol is used herein to mean organic compound with NO group bonded to S.
- S-nitrosothiol breakdown is used herein to mean a biologic process that causes decomposition of S-nitrosothiols such that they have less or no non-vascular smooth muscle relaxing effect. Both enzymatic and non-enzymatic processes are embraced. In one embodiment herein, non-enzymatic breakdown by superoxide is excluded.
- inhibitor of S-nitrosothiol breakdown is used herein to mean treating agent which inhibits decomposition of S-nitrosothiol breakdown so that the smooth muscle relaxing effect of the S-nitrosothiol persists longer.
- terapéuticaally effective amount is used herein to mean an asthma symptom ameliorating effective amount and, in the case of patients with mild or moderate asthma, an amount effective to inhibit progression to more severe asthma. In all cases, a therapeutically effective amount is also an amount that effects an increase in S-nitrosothiol concentration or efficacy in airway tissue.
- FIG. 1 shows that guinea big trachea and lung parenchyma contain activities that break down S-nitrosothiols to NO and depicts results of Background Example 2.
- FIG. 2 shows that incubation of s-nitrosoglutathione with fractions that break down S-nitrosothiol to NO attenuate their bronchodilator activity and that inhibition of these activities with aurothioglucose partly reverses the breakdown, and depicts results of Background Example 3.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, include inhibitors of gamma-glutamyltranspeptidase.
- the enzyme gamma-glutamyltranspeptidase removes the glutamyl residue from S-nitrosoglutathione forming S-nitrosocysteinylglycine, a compound prone to release NO quickly.
- Low mass ( ⁇ 10 kD) S-nitrosothiols have been found to constitute greater than 90% of the S-nitrosothiols in severely asthmatic subjects consistent with previous observations in normal subjects, so inhibiting gamma-glutamyltranspeptidase has a significant effect on inhibiting S-nitrosothiol breakdown.
- Inhibitors of gamma-glutamyltranspeptidase include, for example, L-gamma-glutamyl-(o-carboxy)phenylhydrazide, D-gamma-glutamyl-(o-carboxy)phenylhydrazide, acivicin and the combination of L-serine and borate.
- the dosage for inhibitors of gamma-glutamyl transpeptidase is a therapeutically effective amount and generally ranges from 0.01 to 10 mmol/kg body weight when given systemically or 0.01 to 100 ⁇ mol/kg body weight when given via inhalation.
- the route of administration is preferably via inhalation in the form of an aerosol.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, include inhibitors of xanthine oxidase.
- the enzyme xanthine oxidase directly catalyzes the breakdown of S-nitrosocysteine.
- Inhibitors of xanthine oxidase include allopurinol. Dosage for allopurinol is 100 to 800 mg per day when given orally and 0.01 to 10 mg when given by inhalation.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, also include chelators of copper and/or heme or non-heme iron. These include, for example, bathocuproine disulfonate, diethylenetriaminepentaacetic acid, deferoxamine, diethylcarbamodithioic acid sodium salt, edentate calcium disodium, penicillamine, pentetic acid, succimer and trientine.
- the dosage for chelators of copper and/or heme iron is a therapeutically effective amount and generally ranges from 0.01 ⁇ mol/kg to 1 mmol/kg body weight.
- the route of administration is preferably via inhalation in the form of an aerosol.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, also include inhibitors of enzymes and non-enzymatic proteins containing thiol groups and/or selenothiol groups including inhibitors of glutathione peroxidase and thioredoxin reductase which are not gold containing compounds which have previously been used to treat asthma.
- ethacrynic acid (10 to 200 mg/day dosage for systemic administration and 0.001 to 10 mg via inhalation as an aerosol)
- melarsoprol (0.01 to 20 mg/kg dosage for systemic administration and 0.0001 to 50 mg via inhalation as an aerosol
- sodium stibogluconate (0.01 to 50 mg/kg dosage for systemic administration and 0.0001-50 mg via inhalation as an aerosol)
- N-ethylmaleimide 0.001-10 mg via inhalation as an aerosol
- iodoacetic acid (0.001-10 mg via inhalation as an aerosol).
- all gold-based drugs are excluded for (a), above.
- all gold-based drugs are excluded for (b), above.
- inhibitors of enzymes and non-enzymatic proteins containing thiol groups and/or selenothiol groups including inhibitors of glutathione peroxidase and inhibitors of thioredoxin reductase, which are gold containing compounds which have previously been used to treat
- the dosage for these gold-based drugs is a therapeutically effective amount and normally ranges from 0.001 to 50 mg for Solganal and Myochrisine and from 0.001 to 6 mg for Auranofin.
- the route of administration is preferably via inhalation in the form of an aerosol.
- Oral and parenteral routes of administration of said gold-containing compounds are conventional in the case of treating asthma and are also appropriate here.
- S-nitrosoglutathione S-nitroso-N-acetylcysteine, S-nitrosohomocysteine, S-nitrosothiomaleate, S-nitrosomethylmercaptan, S-nitrosotrifluoromethylmercaptan, S-nitrosothioglucose, and S-nitroso-derivatives of cysteine containing peptides of 2 to 20 amino acids.
- the S-nitrosothiols having a molecular weight less than 150 may be preferred as these are volatile at body temperature and are therefore more readily utilized on inhalation.
- the L-isomers constitute the NO donors of (b) and D-isomers constitute the NO donors of (c) which are discussed hereinafter.
- the NO donors which can form S-nitrosothiols in vivo include, for example, nitroglycerin, amylnitrite, NONOates and N-nitroso hexosamines and disaccharide derivatives thereof.
- the dosage is a therapeutically effective amount.
- the preferred dosage ranges from 0.001 to 100 mg.
- the route of administration is preferably via inhalation in the form of an aerosol.
- the NO donors include, for example, NO x derivatives of asthma drugs selected from the group consisting of ⁇ 2 -adrenergic agonists (e.g., metaproterinol, terbutaline, and albuterol), cromolyn, theophylline, atrovent and cysteinyl leukotriene receptor antagonists, where x ranges from 1 to 2, and preferably are S-nitrosothiol derivatives of asthma drugs selected from the group consisting of ⁇ 2 -adrenergic agonists, cromolyn, theophylline, atrovent and cysteinyl leukotriene receptor antagonists.
- ⁇ 2 -adrenergic agonists e.g., metaproterinol, terbutaline, and albuterol
- cromolyn theophylline
- atrovent and cysteinyl leukotriene receptor antagonists where x ranges from 1 to 2
- S-nitrosothiol derivatives of asthma drugs are prepared, for example, by substitution of primary or secondary amino groups or hydroxyl groups with a thiol acid (e.g., thiolacetic acid) to give the corresponding amide or ester and provide a thiol group which is converted to S-nitrosothiol by treatment with acidified sodium nitrite.
- a thiol acid e.g., thiolacetic acid
- SH which is converted to S-nitrosothiol.
- NO donors which are NO x derivatives of asthma drugs which are not S-nitrosothiol derivatives of asthma drugs are prepared, for example, by substitution of hydroxy groups with NO to form nitrite esters or with NO 2 to form nitrate esters and by substitution of a primary or secondary amino group with a hydroxy acid (e.g., glycolic acid) followed by conversion of the hydroxy groups to nitrite esters and nitrate esters.
- the derivatives of asthma drugs can be administered in dosages which are equimolar to the dosages of the asthma drugs from which they are derived and are administered by the same routes of administration as the asthma drugs from which they are derived.
- S-nitrosothiols include, for example, compounds in which the thiol is on a tertiary carbon (e.g., S-nitroso-tert-butylmercaptan and S-nitroso-N-acetylpenicillamine), and D-isomers of S-nitroso-compounds mentioned for (b), above; the dosage is a therapeutically effective amount with the preferred dosage ranging from 0.001 to 100 mg, and the route of administration is preferably via inhalation in the form of an aerosol.
- the NO donors (c) may be administered in combination with the No donors of (b) and/or in combination with the inhibitors of S-nitrosothiol breakdown as set forth for (b), above, in the dosages and with the routes of administration set forth for said inhibitors for (b).
- Agents given herein by inhalation may also be given intranasally.
- Asthmatic children in respiratory failure were studied within 24 hours of endotracheal intubation. Asthma was defined as (1) a history of three or more albuterol responsive episodes of expiratory flow limitation; (2) an inspiratory- to expiratory-time ratio of less than 0.33; and (3) no evidence of pneumonia. Control subjects had no history of respiratory disease and were undergoing elective, non-thoracic surgery. Three additional subjects who were endotracheally intubated for pneumonia (6.4+/ ⁇ 5.5 years old; pathogens: Pneumocytis carinii, Pseudomonas aeruginosa, and aerobic flora) were also evaluated.
- Amounts of S-nitrosothiols were determined by two separate methods. The first involved photolytic cleavage of the S-nitrosothiol bond followed by measurement of evolved NO by chemiluminescence (Nitrolyte, Thermedix, Woburn, MA and a homemade unit). Parallel samples were treated with mercuric dichloride which selectively destroys the S-nitrosothiol bond, extinguishing the NO signal elicited by photolysis.
- S-nitrosothiols are defined by NO signals that are generated by photolysis and eliminated by mercuric dichloride.
- CuCl cysteine-cuprous chloride
- Guinea-pig tracheal and lung parenchymal tissue were separately homogenized in 1 mM ethylenediaminetetraacetic acid, 50 mM TRIS HCl buffer, pH 7.4, 10 mg/liter soybean trypsin inhibitor, 10 mg/liter pepstatin, 10 mg/liter chymostatin and 100 mg/liter phenylmethylsulfonyl fluoride at 4° C. and underwent centrifugation (5,000 g; 5 min) and filtration. The supernatant was loaded onto a DEAE cellulose column and eluted with a linear gradient of 0-250 mM NaCl. The S-nitrosoglutathione degrading activity was assayed as NO evolution.
- results are depicted in FIG. 1 (fractions causing a net loss of NO are represented by diamonds).
- the results show that guinea-pig trachea and lung parenchyma contain activities which break down nitrosothiol to NO, suggesting that such activity may be elevated in asthma.
- a 13 year old boy with severe asthma developing symptoms of dyspnea, tachypnea, wheezing and cough is administered a 50 mM solution of L-gamma-glutamyl-(o-carboxy)phenylhydrazide as an aerosol via inhalation at a dosage of 0.01 ml/kg. His symptoms improve.
- a 24 year old woman with severe asthma with symptoms of dyspnea on exertion, cough and prolonged expiration is administered a 10 mM solution of bathocuproine disulfonate via inhalation as an aerosol at a dose of 0.01 ml/kg. Her symptoms improve.
- terbutaline (5 ⁇ g/kg/min) by continuous IV-infusion. No improvement occurs.
- the terbutaline is replaced with an equimolar amount of terbutaline substituted with S-nitrosothiol group. Amelioration of her symptoms is obtained.
- a 30 year old man has respiratory failure with symptoms of wheezing, cough and cyanosis. No improvement occurs with parenteral methylprednisone (4 mg/kg) and terbutaline (5 ⁇ g/kg/min). The patient is treated with nebulized acivicin (0.01 mmol/kg) and his symptoms improve.
- a 20 year old severe asthmatic with chronic dyspnea is given 30 mg daily prednisone.
- the dosage is able to be decreased to 30 mg every other day when the patient is treated with inhalation of an aerosol of a 10 mM solution of each of S-nitrosoglutathione and aurothioglucose, at a dosage of 0.01 ml/kg.
- a severe asthmatic is treated with inhalation of 1 mg allopurinol. Symptoms improve.
- a severe asthmatic is treated with inhalation of a 10 mM solution of each of S-nitrosomethylmercaptan and ethacrynic acid, at a dosage of 0.01 ml/kg. Symptoms improve.
- a 10 year old boy wakes up every night coughing and coughs on exertion.
- the patient is given inhalations of 0.01 ml/kg of a 10 mM solution of S-nitroso-D-cysteine.
- the patient sleeps through the night and is able to participate in sports without shortness of breath.
- a 40 year old man has wheezing and coughing, which does not limit his activity, three times a year following a respiratory infection.
- the patient takes nebulized acivicin (0.01 mmol/kg) and becomes a symptomatic.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- [0001] This invention was made at least in part with Government support under Grants MNCSD S-94-LH-016 and S-93-LH-113 from The Department of the Navy, and under Grants HL02582 and HL52529 from The National Institutes of Health. The United States Government has certain rights in the invention.
- This invention is directed to treating a patient with asthma to ameliorate the symptoms thereof, to treating patients with mild or moderate asthma to inhibit progression to more severe asthma, and to reducing corticosteroid requirements in patients with severe asthma.
- About 10 million asthmatics live in the USA. Asthma sufferers are subject to acute attacks characterized by increased responsiveness of the tracheobronchial tree to various stimuli, which leads to generalized airway constriction manifested by dyspnea, cough and wheezing. Asthma sufferers often experience acute exacerbations of bronchoconstriction, which may be life-threatening. The degrees of severity of an acute asthma attack have been classified as mild, moderate and severe in NIH Publication No. 97-4051 (April1997) of the National Heart, Lung and Blood Institute of the National Institutes of Health and these classifications are used herein and NIH Publication No. 97-4051 is incorporated herein by reference.
- A patient presenting with severe asthma is treated with a series of drugs including inhaled beta2-agonist and anticholinergic and systemic corticosteroid medications, and is given oxygen to achieve O2 saturation≧90%. Any patient with impending or actual respiratory failure is treated with parenteral beta2-agonist, inhaled anticholinergic and parenteral corticosteroid medications, and if no favorable response is shown, by endotracheal intubation and mechanical ventilation and treatment in an intensive care unit. Annually several thousand patients with severe asthma die.
- Elder et al. U.S. Pat. No. 5,603,963 states “Recently, gold-based drugs, particularly Auranofin, have also been used to treat asthma . . . . ” Auranofin is (1-thio-beta-D-glucopyranose-2,3,4,6-tetraacetato-S)(triethylphosphine)gold. No therapeutic mechanism for this drug is said to have been clearly established.
- It is an object herein to provide novel methods for treating a patient with asthma to ameliorate the symptoms thereof and to treat patients with mild or moderate asthma to inhibit progression to more severe asthma.
- It is an object of one embodiment herein to provide a method for treating severe asthma which reduces corticosteroid requirements.
- The invention herein is based on the discoveries that severe asthma is associated with a deficiency of endogenous S-nitrosothiols (whereas NO levels are known to be high), that airway tissue contains activities, including enzymatic activities, which break down S-nitrosothiols to NO suggesting that such activities may be elevated in the case of asthma, that activities that break down S-nitrosothiols to NO and other low mass nitrogen oxides attenuate their bronchodilator activity, and that agents which inhibit catalyst for S-nitrosothiol breakdown restore the bronchodilator activity.
- In one embodiment, the invention herein is directed to a method for treating a patient with asthma to ameliorate symptoms thereof comprising administering to said patient (a) a therapeutically effective amount of an inhibitor of S-nitrosothiol breakdown except for the gold-containing compounds heretofore used to treat asthma including aurothioglucose, gold sodium thiomalate, and (1-thio-beta-D-glucopyranose-2,3,4,6-tetraacetato-S)(triethylphosphine)gold (Auranofin) or (b) therapeutically effective amounts of an NO donor and of an inhibitor of S-nitrosothiol breakdown, or (c) a therapeutically effective amount of an NO donor which is itself an S-nitrosothiol or which generates on S-nitrosothiol in vivo which is resistant to breakdown by catalysts which cause S-nitrosothiol breakdown.
- In another embodiment herein the administrations of (a), (b) or (c) are carried out for the treatment of severe asthma in combination with systemic administration of a therapeutically effective amount of corticosteroid which is 10-80% of the dose of systemic corticosteroid utilized for the treatment of severe asthma if administrations of (a) or (b) or (c) are not utilized.
- In still another embodiment, the invention herein is directed to a method for treating patients with mild or moderate asthma to inhibit progression to more severe asthma comprising administering to said patient (a) a therapeutically effective amount of an inhibitor of S-nitrosothiol breakdown except for gold containing compounds heretofore used to treat asthma including aurothioglucose, gold sodium thiomalate and (1-thio-beta-D-glucopyranose-2,3,4,5-tetraacetato-S)(triethylphosphine)gold (Auranofin) or (b) therapeutically effective amounts of an NO donor and of an inhibitor of S-nitrosothiol breakdown or (c) a therapeutically effective amount of an NO donor which is itself an S-nitrosothiol or which generates an S-nitrosothiol in vivo which is resistant to breakdown by catalysts which cause S-nitrosothiol breakdown.
- Gold-containing compounds which have heretofore been used to treat asthma are excluded in (a), above, to provide novelty. Administration of inhibitors of S-nitrosothiol breakdown different from these gold-containing compounds is not obvious from prior art administration of gold-containing compounds to treat asthma because the therapeutic mechanism of action of said gold-containing compounds in treating asthma has not heretofore been known. Gold-containing compounds are not excluded from inhibitors of nitrosothiol breakdown in (b), above, for the broad invention because gold-containing compounds have not heretofore been administered in combination with NO donors to treat asthma. While S-nitrosothiols have been administered previously to those with asthma to relax non-vascular smooth muscle including airway smooth muscle (see Stamler et al. U.S. Pat. Nos. 5,380,758; 5,574,068; 5,593,876 and 5,612,314), they have not been administered in combination with agents that prevent S-nitrosothiol breakdown to replace or add to the function of endogenous S-nitrosothiols. The combination is not obvious because it was not heretofore appreciated that S-nitrosothiols are subject to accelerated breakdown in asthma and that the combining of S-nitrosothiols with breakdown inhibitors makes more S-nitrosothiol available and provides synergistic result.
- The term “S-nitrosothiol” is used herein to mean organic compound with NO group bonded to S.
- The term “S-nitrosothiol breakdown” is used herein to mean a biologic process that causes decomposition of S-nitrosothiols such that they have less or no non-vascular smooth muscle relaxing effect. Both enzymatic and non-enzymatic processes are embraced. In one embodiment herein, non-enzymatic breakdown by superoxide is excluded.
- The term “inhibitor of S-nitrosothiol breakdown” is used herein to mean treating agent which inhibits decomposition of S-nitrosothiol breakdown so that the smooth muscle relaxing effect of the S-nitrosothiol persists longer.
- The term “therapeutically effective amount” is used herein to mean an asthma symptom ameliorating effective amount and, in the case of patients with mild or moderate asthma, an amount effective to inhibit progression to more severe asthma. In all cases, a therapeutically effective amount is also an amount that effects an increase in S-nitrosothiol concentration or efficacy in airway tissue.
- FIG. 1 shows that guinea big trachea and lung parenchyma contain activities that break down S-nitrosothiols to NO and depicts results of Background Example 2.
- FIG. 2 shows that incubation of s-nitrosoglutathione with fractions that break down S-nitrosothiol to NO attenuate their bronchodilator activity and that inhibition of these activities with aurothioglucose partly reverses the breakdown, and depicts results of Background Example 3.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, include inhibitors of gamma-glutamyltranspeptidase. The enzyme gamma-glutamyltranspeptidase removes the glutamyl residue from S-nitrosoglutathione forming S-nitrosocysteinylglycine, a compound prone to release NO quickly. Low mass (<10 kD) S-nitrosothiols have been found to constitute greater than 90% of the S-nitrosothiols in severely asthmatic subjects consistent with previous observations in normal subjects, so inhibiting gamma-glutamyltranspeptidase has a significant effect on inhibiting S-nitrosothiol breakdown. Inhibitors of gamma-glutamyltranspeptidase include, for example, L-gamma-glutamyl-(o-carboxy)phenylhydrazide, D-gamma-glutamyl-(o-carboxy)phenylhydrazide, acivicin and the combination of L-serine and borate. The dosage for inhibitors of gamma-glutamyl transpeptidase is a therapeutically effective amount and generally ranges from 0.01 to 10 mmol/kg body weight when given systemically or 0.01 to 100 μmol/kg body weight when given via inhalation. The route of administration is preferably via inhalation in the form of an aerosol.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, include inhibitors of xanthine oxidase. The enzyme xanthine oxidase directly catalyzes the breakdown of S-nitrosocysteine. Inhibitors of xanthine oxidase include allopurinol. Dosage for allopurinol is 100 to 800 mg per day when given orally and 0.01 to 10 mg when given by inhalation.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, also include chelators of copper and/or heme or non-heme iron. These include, for example, bathocuproine disulfonate, diethylenetriaminepentaacetic acid, deferoxamine, diethylcarbamodithioic acid sodium salt, edentate calcium disodium, penicillamine, pentetic acid, succimer and trientine. The dosage for chelators of copper and/or heme iron is a therapeutically effective amount and generally ranges from 0.01 μmol/kg to 1 mmol/kg body weight. The route of administration is preferably via inhalation in the form of an aerosol.
- Inhibitors of S-nitrosothiol breakdown for (a) and (b), above, also include inhibitors of enzymes and non-enzymatic proteins containing thiol groups and/or selenothiol groups including inhibitors of glutathione peroxidase and thioredoxin reductase which are not gold containing compounds which have previously been used to treat asthma. These include, for example, ethacrynic acid (10 to 200 mg/day dosage for systemic administration and 0.001 to 10 mg via inhalation as an aerosol), melarsoprol (0.01 to 20 mg/kg dosage for systemic administration and 0.0001 to 50 mg via inhalation as an aerosol), sodium stibogluconate (0.01 to 50 mg/kg dosage for systemic administration and 0.0001-50 mg via inhalation as an aerosol), N-ethylmaleimide (0.001-10 mg via inhalation as an aerosol), and iodoacetic acid (0.001-10 mg via inhalation as an aerosol). In one alternative, all gold-based drugs are excluded for (a), above. In another alternative, all gold-based drugs are excluded for (b), above.
- Inhibitors of S-nitrosothiol breakdown for (b), above, in one alternative, also include inhibitors of enzymes and non-enzymatic proteins containing thiol groups and/or selenothiol groups including inhibitors of glutathione peroxidase and inhibitors of thioredoxin reductase, which are gold containing compounds which have previously been used to treat asthma including aurothioglucose (Solganal), gold sodium thiomalate (Myochrisine) and (1-thio-beta-D-glucopyranose-2,3,4,6- tetraacetato-S)(triethylphosphine)gold (Auranofin). The dosage for these gold-based drugs is a therapeutically effective amount and normally ranges from 0.001 to 50 mg for Solganal and Myochrisine and from 0.001 to 6 mg for Auranofin. The route of administration is preferably via inhalation in the form of an aerosol. Oral and parenteral routes of administration of said gold-containing compounds are conventional in the case of treating asthma and are also appropriate here.
- We turn now to the NO donors for (b), above. These are S-nitrosothiols which are subject to breakdown by catalysts which cause S-nitrosothiol breakdown in asthma when inhibitors of breakdown are not concurrently administered or which form S-nitrosothiols in vivo which have this characteristic. These are preferably S-nitrosothiols. These include, for example, S-nitrosoglutathione, S-nitroso-N-acetylcysteine, S-nitrosohomocysteine, S-nitrosothiomaleate, S-nitrosomethylmercaptan, S-nitrosotrifluoromethylmercaptan, S-nitrosothioglucose, and S-nitroso-derivatives of cysteine containing peptides of 2 to 20 amino acids. The S-nitrosothiols having a molecular weight less than 150 (e.g., S-nitrosomethylmercaptan and S-nitrosothrifluoromethylmercaptan) may be preferred as these are volatile at body temperature and are therefore more readily utilized on inhalation. Where optical isomers exist, the L-isomers constitute the NO donors of (b) and D-isomers constitute the NO donors of (c) which are discussed hereinafter. The NO donors which can form S-nitrosothiols in vivo include, for example, nitroglycerin, amylnitrite, NONOates and N-nitroso hexosamines and disaccharide derivatives thereof. The dosage is a therapeutically effective amount. The preferred dosage ranges from 0.001 to 100 mg. The route of administration is preferably via inhalation in the form of an aerosol.
- We turn now to the NO donors of (c), i.e., the NO donors which are themselves S-nitrosothiols or which generate S-nitrosothiols in vivo which are resistant to breakdown by catalysts which cause S-nitrosothiol breakdown. These are compounds which are “sterically hindered” so as not to be subject to enzymatic or non-enzymatic breakdown. The NO donors include, for example, NOx derivatives of asthma drugs selected from the group consisting of β2-adrenergic agonists (e.g., metaproterinol, terbutaline, and albuterol), cromolyn, theophylline, atrovent and cysteinyl leukotriene receptor antagonists, where x ranges from 1 to 2, and preferably are S-nitrosothiol derivatives of asthma drugs selected from the group consisting of β2-adrenergic agonists, cromolyn, theophylline, atrovent and cysteinyl leukotriene receptor antagonists. The S-nitrosothiol derivatives of asthma drugs are prepared, for example, by substitution of primary or secondary amino groups or hydroxyl groups with a thiol acid (e.g., thiolacetic acid) to give the corresponding amide or ester and provide a thiol group which is converted to S-nitrosothiol by treatment with acidified sodium nitrite. Alternatively hydroxyl groups in the drugs are replaced by SH which is converted to S-nitrosothiol. NO donors which are NOx derivatives of asthma drugs which are not S-nitrosothiol derivatives of asthma drugs, are prepared, for example, by substitution of hydroxy groups with NO to form nitrite esters or with NO2 to form nitrate esters and by substitution of a primary or secondary amino group with a hydroxy acid (e.g., glycolic acid) followed by conversion of the hydroxy groups to nitrite esters and nitrate esters. The derivatives of asthma drugs can be administered in dosages which are equimolar to the dosages of the asthma drugs from which they are derived and are administered by the same routes of administration as the asthma drugs from which they are derived. Other “sterically hindered” S-nitrosothiols include, for example, compounds in which the thiol is on a tertiary carbon (e.g., S-nitroso-tert-butylmercaptan and S-nitroso-N-acetylpenicillamine), and D-isomers of S-nitroso-compounds mentioned for (b), above; the dosage is a therapeutically effective amount with the preferred dosage ranging from 0.001 to 100 mg, and the route of administration is preferably via inhalation in the form of an aerosol. The NO donors (c) may be administered in combination with the No donors of (b) and/or in combination with the inhibitors of S-nitrosothiol breakdown as set forth for (b), above, in the dosages and with the routes of administration set forth for said inhibitors for (b).
- We turn now to the embodiment herein where the administrations of (a), (b) or (c) are carried out for the treatment of severe asthma in combination with systemic administration of a therapeutically effective amount of systemic corticosteroid which is 10-80% of the dose utilized for the treatment of severe asthma where the administration of (a), (b) or (c) are not utilized. Preferably the dosage of corticosteroid is reduced more than one-third compared to where systemic corticosteroid is utilized and the administration of (a), (b) or (c) are not employed. The systemically administered corticosteroids include, for example, prednisone and prednisolone. Initial dosages for prednisone and prednisolone for conventional treatment of severe asthma are listed in Table 28-3 of “Goodman & Gilman's The Pharmacological Basis of Therapeutic” Ninth Edition, which is incorporated herein by reference.
- Agents given herein by inhalation may also be given intranasally.
- The inventions herein should be considered in light of the following Background Examples and are illustrated, but not limited, by the following Examples.
- Asthmatic children in respiratory failure were studied within 24 hours of endotracheal intubation. Asthma was defined as (1) a history of three or more albuterol responsive episodes of expiratory flow limitation; (2) an inspiratory- to expiratory-time ratio of less than 0.33; and (3) no evidence of pneumonia. Control subjects had no history of respiratory disease and were undergoing elective, non-thoracic surgery. Three additional subjects who were endotracheally intubated for pneumonia (6.4+/−5.5 years old; pathogens:Pneumocytis carinii, Pseudomonas aeruginosa, and aerobic flora) were also evaluated.
- Specimens (one from each subject and control) were obtained with routine tracheal suctioning. In most cases, the sample was obtained without airway irrigation. When irrigation was required (three asthmatic and no control or pneumonia subjects), Methylene Blue (10 μM)—containing saline was used to determine the degree of dilution (E664=41, 700 M−1 cm−1). Each specimen underwent centrifugation and was frozen (−80° C.) within 15 minutes of sampling to prevent S-nitrosothiol decomposition. Total S-nitrosothiol concentration was measured on all samples.
- Amounts of S-nitrosothiols were determined by two separate methods. The first involved photolytic cleavage of the S-nitrosothiol bond followed by measurement of evolved NO by chemiluminescence (Nitrolyte, Thermedix, Woburn, MA and a homemade unit). Parallel samples were treated with mercuric dichloride which selectively destroys the S-nitrosothiol bond, extinguishing the NO signal elicited by photolysis. Here, S-nitrosothiols are defined by NO signals that are generated by photolysis and eliminated by mercuric dichloride. This assay is linear over the
concentration range 5 nM to 100 μM (r2=0.99), and does not detect nitrite (NO2 −), nitrate (NO3 −) or 3-nitrotyrosine (3NT). Additionally, some samples were assayed using a cysteine-cuprous chloride (CuCl) technique involving treatment of samples with 1 mmol/liter cysteine and 100 μmol/liter CuCl (50° C.) which reductively catalyzes release of NO from S-nitrosothiols. The NO measurement is once again made by chemiluminescence. This latter assay was nearly as sensitive (r2=0.99; 10 nM-1 μM) and as specific (lower limit of NO2 − detection: 10 μM) as the photolysis method, failing to detect 100 μM 3NT or NO3 −. - Asthmatic subjects were found to have airway S-nitrosothiol concentrations (65+/−45 nM; n=8) substantially lower than in control children undergoing elective surgery representing normal non-asthmatic subjects (502+/−429 nM; n=21) as measured by photolysis signal and verified using the CuCl method in three subjects. High S-nitrosothiol concentrations (2486+/−1270 nM) were observed in children with pneumonia.
- The experiment shows that asthma is associated with a previously unrecognized deficiency of S-nitrosothiols, endogenous bronchodilators which are over 100-fold more potent than theophylline. This observation indicates that depletion of bronchodilator S-nitrosothiols contributes to the pathophysiology of airflow obstruction. This is a novel finding because asthma is classically characterized by an excess of bronchoconstricting and inflammatory mediators, not by a bronchodilator deficiency.
- The above suggested to us that reversal of the defect, i.e., low airway S-nitrosothiols in asthmatics, may be therapeutic.
- The subject matter of this Background Example is from a manuscript titled “Bronchodilator S-Nitrosothiol Deficiency in Asthmatic Respiratory Failure,” which published in The Lancet on May 2, 1998 by authors Gaston, B., et al.
- Guinea-pig tracheal and lung parenchymal tissue were separately homogenized in 1 mM ethylenediaminetetraacetic acid, 50 mM TRIS HCl buffer, pH 7.4, 10 mg/liter soybean trypsin inhibitor, 10 mg/liter pepstatin, 10 mg/liter chymostatin and 100 mg/liter phenylmethylsulfonyl fluoride at 4° C. and underwent centrifugation (5,000 g; 5 min) and filtration. The supernatant was loaded onto a DEAE cellulose column and eluted with a linear gradient of 0-250 mM NaCl. The S-nitrosoglutathione degrading activity was assayed as NO evolution. The results are depicted in FIG. 1 (fractions causing a net loss of NO are represented by diamonds). The results show that guinea-pig trachea and lung parenchyma contain activities which break down nitrosothiol to NO, suggesting that such activity may be elevated in asthma.
- Guinea-pig tracheal rings were suspended in Krebs-Henseleit buffer (pH 7.4, 37 degrees C., equilibrated with 95% oxygen/5% carbon dioxide) and equilibrated under one gram tension. Smooth muscle contraction was monitored using a force transducer. After contraction with 5 μM methacholine, rings were exposed to S-nitrosoglutathione which had been incubated (30 minutes, pH 7.4, 25 degrees C.) (a) in phosphate buffered saline alone, (b) with guinea-pig lung protein fractions having S-nitroglutathione breakdown activity isolated as described in Background Example 2, and (c) with active lung fractions and 100 μM aurothioglucose. The results are shown in FIG. 2, wherein the results of (a) are depicted as circles, the results of (b) are depicted as triangles, and the results of (c) are depicted as squares, (n=7) in each experiment. Data in FIG. 2 are presented as mean, +/−S.E. The data show that relaxation was nearly completely inhibited by incubation with active fractions (p<0.005 for all concentrations>500 nM) and was partially restored by aurothioglucose (p<0.001 at 50 μM). The data show that incubation of S-nitrosothiol with fractions that break down S-nitrosothiol to NO attenuate their bronchodilator activity and that inhibition of these activities with aurothioglucose partly reverses the attenuation.
- A 13 year old boy with severe asthma developing symptoms of dyspnea, tachypnea, wheezing and cough is administered a 50 mM solution of L-gamma-glutamyl-(o-carboxy)phenylhydrazide as an aerosol via inhalation at a dosage of 0.01 ml/kg. His symptoms improve.
- A 24 year old woman with severe asthma with symptoms of dyspnea on exertion, cough and prolonged expiration is administered a 10 mM solution of bathocuproine disulfonate via inhalation as an aerosol at a dose of 0.01 ml/kg. Her symptoms improve.
- A 60 year old woman with severe asthma with chronic symptoms of night-time cough, dyspnea and wheezing is maintained on inhalations of an aerosol of a 10 mM solution of each of S-nitrosoglutathione and aurothioglucose, at a dosage of 0.01 ml/kg. Her symptoms improve.
- A 6 year old girl with severe asthma and impending respiratory failure with symptoms of wheezing, cough and cyanosis is given terbutaline (5 μg/kg/min) by continuous IV-infusion. No improvement occurs. The terbutaline is replaced with an equimolar amount of terbutaline substituted with S-nitrosothiol group. Amelioration of her symptoms is obtained.
- A 30 year old man has respiratory failure with symptoms of wheezing, cough and cyanosis. No improvement occurs with parenteral methylprednisone (4 mg/kg) and terbutaline (5 μg/kg/min). The patient is treated with nebulized acivicin (0.01 mmol/kg) and his symptoms improve.
- A 35 year old man with respiratory failure with symptoms as described in Example V is given inhalation of a 10 mmol solution of S-nitroso-D-cysteine, 0.01 ml/kg. Improvement occurs.
- A 20 year old severe asthmatic with chronic dyspnea is given 30 mg daily prednisone. The dosage is able to be decreased to 30 mg every other day when the patient is treated with inhalation of an aerosol of a 10 mM solution of each of S-nitrosoglutathione and aurothioglucose, at a dosage of 0.01 ml/kg.
- A severe asthmatic is treated with inhalation of 1 mg allopurinol. Symptoms improve.
- A severe asthmatic is treated with inhalation of a 10 mM solution of each of S-nitrosomethylmercaptan and ethacrynic acid, at a dosage of 0.01 ml/kg. Symptoms improve.
- A 10 year old boy wakes up every night coughing and coughs on exertion. The patient is given inhalations of 0.01 ml/kg of a 10 mM solution of S-nitroso-D-cysteine. The patient sleeps through the night and is able to participate in sports without shortness of breath.
- A 40 year old man has wheezing and coughing, which does not limit his activity, three times a year following a respiratory infection. The patient takes nebulized acivicin (0.01 mmol/kg) and becomes a symptomatic.
- Variations in the treatment methods will be evident to those skilled in the art. Therefore, the scope of the invention is to be determined by the scope of the claims.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/403,287 US20030170316A1 (en) | 1997-05-21 | 2003-04-01 | Treating asthma by preventing and/or accomodating for S-nitrosothiol breakdown |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4733697P | 1997-05-21 | 1997-05-21 | |
US8174098P | 1998-04-15 | 1998-04-15 | |
US09/403,775 US6617355B1 (en) | 1997-05-21 | 1998-05-07 | Treating asthma by preventing and/or accomodating S-nitrosothiol breakdown |
US10/403,287 US20030170316A1 (en) | 1997-05-21 | 2003-04-01 | Treating asthma by preventing and/or accomodating for S-nitrosothiol breakdown |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/008978 Division WO1998052580A1 (en) | 1997-05-21 | 1998-05-07 | Treating asthma by preventing and/or accommodating for s-nitrosothiol breakdown |
US09/403,775 Division US6617355B1 (en) | 1997-05-21 | 1998-05-07 | Treating asthma by preventing and/or accomodating S-nitrosothiol breakdown |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030170316A1 true US20030170316A1 (en) | 2003-09-11 |
Family
ID=26724901
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/403,775 Expired - Lifetime US6617355B1 (en) | 1997-05-21 | 1998-05-07 | Treating asthma by preventing and/or accomodating S-nitrosothiol breakdown |
US10/403,287 Abandoned US20030170316A1 (en) | 1997-05-21 | 2003-04-01 | Treating asthma by preventing and/or accomodating for S-nitrosothiol breakdown |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/403,775 Expired - Lifetime US6617355B1 (en) | 1997-05-21 | 1998-05-07 | Treating asthma by preventing and/or accomodating S-nitrosothiol breakdown |
Country Status (2)
Country | Link |
---|---|
US (2) | US6617355B1 (en) |
WO (1) | WO1998052580A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009137071A1 (en) * | 2008-05-09 | 2009-11-12 | Duke University | Treatment for diseases relying on discovery that thioredoxin mediates nitric oxide release in cells |
WO2022040696A1 (en) * | 2020-08-20 | 2022-02-24 | The Uab Research Foundation | Generation of nitric oxide and delivery systems |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002211222B2 (en) | 2000-10-16 | 2006-02-09 | Duke University | Therapeutic use of aerosolized S-nitrosoglutathione in cystic fibrosis |
US6627602B2 (en) * | 2001-11-13 | 2003-09-30 | Duke University | Preventing desensitization of receptors |
US20040110691A1 (en) * | 2001-11-13 | 2004-06-10 | Stamler Jonathan S. | Thiol reactive agents as a therapeutic modality |
WO2009100121A1 (en) * | 2008-02-04 | 2009-08-13 | The Board Of Regents Of The University Of Oklahoma | Gamma-glutamyl transpeptidase inhibitors and methods of use |
US8741937B2 (en) | 2008-02-04 | 2014-06-03 | The Board Of Regents Of The University Of Oklahoma | Gamma glutamyl transpeptidase inhibitors and methods of use |
KR101704815B1 (en) * | 2009-08-21 | 2017-02-09 | 포항공과대학교 산학협력단 | Combination preparation for treating IL-17 mediated inflammatory diseases and the treatment method using the same |
AT508648B1 (en) | 2009-08-26 | 2012-12-15 | Siemens Vai Metals Tech Gmbh | LUBRICATION FOR SINTERING MATERIAL |
US9540337B2 (en) | 2012-03-23 | 2017-01-10 | The Board Of Regents Of The University Of Oklahoma | Gamma-glutamyl transpeptidase inhibitors and methods of use |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5380758A (en) * | 1991-03-29 | 1995-01-10 | Brigham And Women's Hospital | S-nitrosothiols as smooth muscle relaxants and therapeutic uses thereof |
US5593876A (en) * | 1991-11-14 | 1997-01-14 | Brigham And Women's Hospital | Nitrosylation of protein SH groups and amino acid residues as a therapeutic modality |
US5612314A (en) * | 1995-04-21 | 1997-03-18 | Brigham & Women's Hospital | Nitrosylated neuropeptides |
US6331543B1 (en) * | 1996-11-01 | 2001-12-18 | Nitromed, Inc. | Nitrosated and nitrosylated phosphodiesterase inhibitors, compositions and methods of use |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL101406A (en) * | 1991-03-29 | 1998-02-08 | Brigham & Womens Hospital | Pharmaceutical compositions containing s-nitrosothiol derivatives |
BR9303645A (en) * | 1993-08-31 | 1995-04-25 | Oliveira Marques Antonio Se De | Food product manufacturing process |
-
1998
- 1998-05-07 US US09/403,775 patent/US6617355B1/en not_active Expired - Lifetime
- 1998-05-07 WO PCT/US1998/008978 patent/WO1998052580A1/en active Application Filing
-
2003
- 2003-04-01 US US10/403,287 patent/US20030170316A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5380758A (en) * | 1991-03-29 | 1995-01-10 | Brigham And Women's Hospital | S-nitrosothiols as smooth muscle relaxants and therapeutic uses thereof |
US5574068A (en) * | 1991-03-29 | 1996-11-12 | Brigham And Woman's Hospital | S-nitrosothiols as smooth muscle relaxants and therapeutic uses thereof |
US5593876A (en) * | 1991-11-14 | 1997-01-14 | Brigham And Women's Hospital | Nitrosylation of protein SH groups and amino acid residues as a therapeutic modality |
US5612314A (en) * | 1995-04-21 | 1997-03-18 | Brigham & Women's Hospital | Nitrosylated neuropeptides |
US6331543B1 (en) * | 1996-11-01 | 2001-12-18 | Nitromed, Inc. | Nitrosated and nitrosylated phosphodiesterase inhibitors, compositions and methods of use |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009137071A1 (en) * | 2008-05-09 | 2009-11-12 | Duke University | Treatment for diseases relying on discovery that thioredoxin mediates nitric oxide release in cells |
US20110104308A1 (en) * | 2008-05-09 | 2011-05-05 | Duke University | Treatment For Diseases Relying On Discovery That Thioredoxin Mediates Nitric Oxide |
JP2011521908A (en) * | 2008-05-09 | 2011-07-28 | デューク ユニバーシティ | Treatment of diseases based on the finding that thioredoxin regulates nitric oxide release in cells |
AU2009244790B2 (en) * | 2008-05-09 | 2013-09-12 | Duke University | Treatment for diseases relying on discovery that thioredoxin mediates nitric oxide release in cells |
WO2022040696A1 (en) * | 2020-08-20 | 2022-02-24 | The Uab Research Foundation | Generation of nitric oxide and delivery systems |
Also Published As
Publication number | Publication date |
---|---|
US6617355B1 (en) | 2003-09-09 |
WO1998052580A1 (en) | 1998-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yates et al. | Effect of a nitric oxide synthase inhibitor and a glucocorticosteroid on exhaled nitric oxide. | |
Kelley et al. | Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. | |
Biswas et al. | Environmental toxicity, redox signaling and lung inflammation: the role of glutathione | |
US6617355B1 (en) | Treating asthma by preventing and/or accomodating S-nitrosothiol breakdown | |
US8138158B2 (en) | Compositions and methods for therapy for diseases characterized by defective chloride transport | |
US20040224899A1 (en) | Use of s-nitrosothiol signaling to treat disordered control of breathing | |
Mokra et al. | Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury | |
Correa et al. | AcuteLead Acetate Administration Potentiates Ethanol‐Induced Locomotor Activity in Mice: The Role of Brain Catalase | |
Fujie et al. | Inhibition of elastase-induced acute inflammation and pulmonary emphysema in hamsters by a novel neutrophil elastase inhibitor FR901277 | |
Griffith et al. | Hyperoxic exposure in humans: effects of 50 percent oxygen on alveolar macrophage leukotriene B4 synthesis | |
Howarth et al. | Epithelially derived endothelin and nitric oxide in asthma | |
Murlas et al. | Aerosolized neutral endopeptidase reverses ozone-induced airway hyperreactivity to substance P | |
Mansour et al. | Mechanisms of metabisulfite-induced bronchoconstriction: evidence for bradykinin B2-receptor stimulation | |
Eisenberg et al. | Safety of repeated intermittent courses of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis | |
Persson et al. | Ca2+-dependent and Ca2+-independent exhaled nitric oxide, presence in germ-free animals, and inhibition by arginine analogues | |
US20040156917A1 (en) | Novel methods and devices for treating lung dysfunction | |
Kloek et al. | Glutathione prevents the early asthmatic reaction and airway hyperresponsiveness in guinea pigs | |
Allen | Opportunities for the use of aerosolized α1-antitrypsin for the treatment of cystic fibrosis | |
KR20100022044A (en) | Treatment of allergic disease with immunomodulator compounds | |
Kumar et al. | Occurrence of neutral endopeptidase activity in the cat carotid body and its significance in chemoreception | |
EP1225913B1 (en) | Use of nitric oxide for the treatment of airway constriction | |
US8404230B2 (en) | Therapeutic combination comprising a pulmonary surfactant and antioxidant enzymes | |
RU2799046C2 (en) | Stable compositions of ascorbic acid and methods of their use | |
WO2023014887A1 (en) | Methods of treating compromised lung function and assessing clinical improvement | |
Millar et al. | Effect of Hypoxia and β 2-Agonists on the Activity of the Renin-Angiotensin System in Normal Subjects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MCW RESEARCH FOUNDATION, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRIFFITH, OWEN W.;REEL/FRAME:016449/0788 Effective date: 20050817 Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:016449/0656 Effective date: 20050728 Owner name: UNIVERSITY OF VIRGINIA, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GASTON, BENJAMIN M.;REEL/FRAME:016449/0549 Effective date: 20050602 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:021035/0110 Effective date: 20031112 |