[go: nahoru, domu]

US20040106130A1 - Bioarray chip reaction apparatus and its manufacture - Google Patents

Bioarray chip reaction apparatus and its manufacture Download PDF

Info

Publication number
US20040106130A1
US20040106130A1 US10/619,224 US61922403A US2004106130A1 US 20040106130 A1 US20040106130 A1 US 20040106130A1 US 61922403 A US61922403 A US 61922403A US 2004106130 A1 US2004106130 A1 US 2004106130A1
Authority
US
United States
Prior art keywords
fluid
substrate
bubble
cavity
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/619,224
Inventor
Donald Besemer
Virginia Goss
James Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affymetrix Inc
Original Assignee
Affymetrix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27048348&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040106130(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/485,452 external-priority patent/US5945334A/en
Priority to US10/619,224 priority Critical patent/US20040106130A1/en
Application filed by Affymetrix Inc filed Critical Affymetrix Inc
Priority to US10/789,678 priority patent/US20040166525A1/en
Priority to US10/795,603 priority patent/US20040171054A1/en
Publication of US20040106130A1 publication Critical patent/US20040106130A1/en
Priority to US10/877,666 priority patent/US20050003421A1/en
Priority to US10/976,077 priority patent/US20050158819A1/en
Priority to US10/980,454 priority patent/US20050084895A1/en
Priority to US10/992,043 priority patent/US20050106615A1/en
Priority to US10/995,882 priority patent/US20050208646A1/en
Priority to US10/996,291 priority patent/US20050089953A1/en
Priority to US10/996,201 priority patent/US20050106617A1/en
Priority to US11/015,197 priority patent/US20050106618A1/en
Priority to US11/259,418 priority patent/US20060040380A1/en
Priority to US11/378,954 priority patent/US20060234267A1/en
Priority to US12/265,048 priority patent/US20090143249A1/en
Priority to US12/842,977 priority patent/US20100298165A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/25Mixers with loose mixing elements, e.g. loose balls in a receptacle
    • B01F33/252Mixers with loose mixing elements, e.g. loose balls in a receptacle using bubbles as loose mixing element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/452Magnetic mixers; Mixers with magnetically driven stirrers using independent floating stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00353Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00371Pipettes comprising electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/00432Photolithographic masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00531Sheets essentially square
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00536Sheets in the shape of disks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00547Bar codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00639Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
    • B01J2219/00641Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being continuous, e.g. porous oxide substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • B01J2219/00662Two-dimensional arrays within two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00695Synthesis control routines, e.g. using computer programs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00731Saccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0605Valves, specific forms thereof check valves
    • B01L2400/0611Valves, specific forms thereof check valves duck bill valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/065Valves, specific forms thereof with moving parts sliding valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/12Libraries containing saccharides or polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B70/00Tags or labels specially adapted for combinatorial chemistry or libraries, e.g. fluorescent tags or bar codes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation

Definitions

  • the present inventions relate to the fabrication and placement of materials at known locations on a substrate.
  • one embodiment of the invention provides a method and associated apparatus for packaging a substrate having diverse sequences at known locations on its surface.
  • sequences on a substrate are known.
  • the sequences may be formed according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854 (Pirrung et al.), PCT WO 92/10092, or U.S. application Ser. No. 08/249,188, now U.S. Pat. No. 5,571,639, incorporated herein by reference for all purposes.
  • the prepared substrates will have a wide range of applications.
  • the substrates may be used for understanding the structure-activity relationship between different materials or determining the sequence of an unknown material.
  • the sequence of such unknown material may be determined by, for example, a process known as sequencing by hybridization.
  • a sequences of diverse materials are formed at known locations on the surface of a substrate.
  • a solution containing one or more targets to be sequenced is applied to the surface of the substrate.
  • the targets will bind or hybridize with only complementary sequences on the substrate.
  • the locations at which hybridization occurs can be detected with appropriate detection systems by labeling the targets with a fluorescent dye, radioactive isotope, enzyme, or other marker.
  • exemplary systems are described in U.S. Pat. No. 5,143,854 (Pirrung et al.) and U.S. patent application Ser. No. 08/143,312, also incorporated herein by reference for all purposes.
  • Information regarding target sequences can be extracted from the data obtained by such detection systems.
  • a body containing a cavity is provided.
  • a substrate having an array of probes is attached to the cavity using, for example, an adhesive.
  • the body includes inlets that allow fluids into and through the cavity.
  • a seal is provided for each inlet to retain the fluid within the cavity.
  • An opening is formed below the cavity to receive a temperature controller for controlling the temperature in the cavity.
  • the body is formed by acoustically welding two pieces together.
  • the concept of assembling the body from two pieces is advantageous.
  • the various features of the package i.e., the channels, sealing means, and orientation means
  • the packages are produced at a relatively low cost.
  • a method for making the chip package comprises the steps of first forming a plurality of probe arrays on a substrate and separating the substrate into a plurality of chips.
  • each chip contains at least one probe array.
  • a chip is then mated to a package having a reaction chamber with fluid inlets. When mated, the probe array is in fluid communication with the reaction chamber.
  • the present invention provides an apparatus for packaging a substrate.
  • the present apparatus includes a substrate having a first surface and a second surface.
  • the first surface includes a probe array and the second surface is an outer periphery of the first surface.
  • the present apparatus also includes a body having a mounting surface, an upper surface, and a cavity bounded by the mounting surface and the upper surface.
  • the second surface is attached to the cavity and the first surface is within the cavity.
  • a cover attached to the mounting surface for defining an upper boundary to the cavity is also included.
  • the cavity includes a diffuser and a concentrator. The diffuser and the concentrator permit laminar fluid flow through the cavity.
  • FIG. 1 a illustrates a wafer fabricated with a plurality of probe arrays.
  • FIG. 1 b illustrates a chip
  • FIG. 2 a illustrates a scribe and break device.
  • FIG. 2 b illustrates the wafer mounted on a pick and place frame.
  • FIGS. 2 c - 2 d illustrate the wafer, as displayed by the scribe and break device during alignment.
  • FIG. 3 illustrates a chip packaging device.
  • FIG. 4 illustrates the chip packaging device assembled from two components.
  • FIGS. 5 a - 5 b illustrate the top and bottom view of a top casing of the chip packaging device.
  • FIG. 5 c illustrates a different cavity orientation
  • FIG. 6 illustrates a cross sectional view of the packaging device.
  • FIG. 7 illustrates the bottom view of a bottom casing of the chip packaging device.
  • FIGS. 8 a - 8 b illustrate an acoustic welding system.
  • FIGS. 9 a - 9 c illustrate the acoustic welding process used in assembling the chip packaging device.
  • FIG. 10 illustrates an adhesive dispensing system used in attaching the chip to the chip packaging device.
  • FIGS. 11 - 13 illustrate in greater detail the adhesive dispensing system of FIG. 10.
  • FIGS. 14 a - 14 d illustrate the procedure for aligning the system of FIG. 10.
  • FIGS. 15 a - 15 e illustrate images obtained during the alignment process of FIGS. 14 a - 14 d.
  • FIGS. 16 a - 16 b illustrate an alternative embodiment of a packaging device.
  • FIGS. 17 a - 17 b illustrate another embodiment of a packaging device.
  • FIG. 18 illustrates an alternative embodiment for attaching the chip to the packaging device.
  • FIG. 19 illustrates another embodiment for attaching the chip to the packaging device.
  • FIGS. 20 a - 20 b illustrate yet another embodiment for attaching the chip to the packaging device.
  • FIG. 21 illustrates an alternative embodiment for attaching the chip to the packaging device.
  • FIG. 22 illustrates another embodiment for attaching the chip to the packaging device.
  • FIG. 23 illustrates an alternative embodiment for sealing the cavity on the packaging device.
  • FIG. 24 illustrates another alternative embodiment for sealing the cavity on the packaging device.
  • FIG. 25 illustrates yet another embodiment for sealing the cavity on the packaging device.
  • FIGS. 26 a - 26 b illustrate an alternative embodiment for sealing the cavity on the packaging device.
  • FIGS. 27 a - 27 b illustrate an alternative embodiment for mounting the chip.
  • FIG. 28 illustrates an agitation system
  • FIG. 29 illustrates an alternative embodiment of the agitation system.
  • FIG. 30 illustrates another embodiment of the agitation system.
  • FIG. 31 illustrates an alternative embodiment of a chip packaging device.
  • FIG. 32 illustrates side-views of the chip packaging device of FIG. 31.
  • FIGS. 33 - 35 illustrate in greater detail the chip packaging device of FIG. 31.
  • FIG. 36 illustrates a further alternative embodiment of a chip packaging device.
  • Probe is a surface-immobilized molecule that is recognized by a particular target and is sometimes referred to as a ligand.
  • probes that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., opioid peptides, steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides or nucleic acids, oligosaccharides, proteins, and monoclonal antibodies.
  • hormones e.g., opioid peptides, steroids, etc.
  • hormone receptors e.g., enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides or nucleic acids, oligosaccharides, proteins, and monoclonal antibodies.
  • Target is a molecule that has an affinity for a given probe and is sometimes referred to as a receptor.
  • Targets may be naturally-occurring or manmade molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Targets may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance.
  • targets which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, oligonucleotides or nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles.
  • Targets are sometimes referred to in the art as anti-probes or anti-ligands.
  • a “Probe Target Pair” is formed when two macromolecules have combined through molecular recognition to form a complex.
  • the present invention provides economical and efficient packaging devices for a substrate having an array of probes fabricated thereon.
  • the probe arrays may be fabricated according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854 (Pirrung et al.), PCT WO 92/10092, or U.S. application Ser. No. 08/249,188 filed May 24, 1994, already incorporated herein by reference for all purposes.
  • a plurality of probe arrays are immobilized at known locations on a large substrate or wafer.
  • FIG. 1 a illustrates a wafer 100 on which numerous probe arrays 110 are fabricated.
  • the wafer 100 may be composed of a wide range of material, either biological, nonbiological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc.
  • the wafer may have any convenient shape, such as a disc, square, sphere, circle, etc.
  • the wafer is preferably flat but may take on a variety of alternative surface configurations.
  • the wafer may contain raised or depressed regions on which a sample is located.
  • the wafer and its surface preferably form a rigid support on which the sample can be formed.
  • the wafer and its surface are also chosen to provide appropriate light-absorbing characteristics.
  • the wafer may be a polymerized Langmuir Blodgett film, functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, or combinations thereof.
  • gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, or combinations thereof.
  • Other materials with which the wafer can be composed of will be readily apparent to those skilled in the art upon review of this disclosure.
  • the wafer is flat glass or single-crystal silicon.
  • Surfaces on the solid wafer will usually, though not always, be composed of the same material as the wafer.
  • the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed wafer materials.
  • Wafer 100 includes a plurality of marks 145 that are located in streets 150 (area adjacent to the probe arrays). Such marks may be used for aligning the masks during the probe fabrication process. In effect, the marks identify the location at which each array 110 is to be fabricated.
  • the probe arrays may be formed in any geometric shape. In some embodiments, the shape of the array may be squared to minimize wasted wafer area. After the probe arrays have been fabricated, the wafer is separated into smaller units known as chips. The wafer, for example, may be about 5 ⁇ 5 inches on which 16 probe arrays, each occupying an area of about 12.8 cm 2 , are fabricated.
  • FIG. 1 b illustrates a chip that has been separated from the wafer.
  • chip 120 contains a probe array 110 and a plurality of alignment marks 145 .
  • the marks serve multiple functions, such as: 1) aligning the masks for fabricating the probe arrays, 2) aligning the scriber for separating the wafer into chips, and 3) aligning the chip to the package during the attachment process.
  • such chips may be of the type known as Very Large Scale Immobilized Polymer Synthesis (VLSIPSTM) chips.
  • VLSIPSTM Very Large Scale Immobilized Polymer Synthesis
  • the chip contains an array of genetic probes, such as an array of diverse RNA or DNA probes.
  • the probe array will be designed to detect or study a genetic tendency, characteristic, or disease.
  • the probe array may be designed to detect or identify genetic diseases such as cystic fibrosis or certain cancers (such as P53 gene relevant to some cancers), as disclosed in U.S. patent application Ser. No. 08/143,312, already incorporated by reference.
  • FIG. 2 a illustrates a fully programmable computer controlled scribe and break device, which in some embodiments is a DX-III Scriber breaker manufactured by Dynatex InternationalTM.
  • the device 200 includes a base 205 with a rotation stage 220 on which a wafer is mounted.
  • the rotation stage includes a vacuum chuck for fixing the wafer thereon.
  • a stepper motor which is controlled by the system, rotates stage 220 .
  • Located above the stage is a head unit 230 that includes a camera 232 and cutter 231 . Head unit 230 is mounted on a dual-axis frame.
  • the camera generates an image of the wafer on video display 210 .
  • the video display 210 includes a cross hair alignment mark 215 .
  • the camera which includes a zoom lens and a fiber optic light, allows a user to inspect the wafer on the video display 210 .
  • a control panel 240 is located on the base for operating device 200 .
  • a user places a wafer 100 on a frame 210 as illustrated in FIG. 2 b .
  • the surface of frame 210 is composed of a flexible and sticky material. The tackiness of the frame prevents the chips from being dispersed and damaged during the breaking process.
  • Frame 210 may be a pick and place frame or a hoop that is commonly associated with fabrication of semiconductors.
  • a user places the frame with the wafer on the rotation stage 220 . In some embodiments, the frame is held on the rotation stage by vacuum pressure. The user then aligns the wafer by examining the image displayed on the video display 210 .
  • wafer alignment is achieved in two steps. First, using the control panel 240 , the user rotates stage 220 . The stage is rotated until streets 150 are aligned with the cross hair 215 on the display, as illustrated in FIG. 2 c . Next, the user moves the cutter until it is aligned at the center of one of the streets. This step is performed by aligning horizontal line 216 of the cross hair between alignment marks 145 , as shown in FIG. 2 d.
  • the user instructs the device to scribe the wafer.
  • various options are available to the user, such as scribe angle, scribe pressure, and scribe depth. These parameters will vary depending on the composition and/or thickness of the wafer. Preferably, the parameters are set to scribe and break the wafer without causing any damage thereto or penetrating through the frame.
  • the device repeatedly scribes the wafer until all the streets in one axis have been scribed, which in one embodiment is repeated 5 times (a 4 ⁇ 4 matrix of probe arrays). The user then rotates the stage 90° to scribe the perpendicular streets.
  • the device 200 breaks the wafer by striking it beneath the scribe with an impulse bar located under the rotation table 220 .
  • the shock from the impulse bar fractures the wafer along the scribe. Since most of the force is dissipated along the scribe, device 200 is able to produce high breaking forces without exerting significant forces on the wafer. Thus, the chips are separated without causing any damage to the wafer. Once separated, the chips are then packaged.
  • other more conventional techniques such as the sawing technique disclosed in U.S. Pat. No. 4,016,855, incorporated herein by reference for all purposes, may be employed.
  • FIG. 3 illustrates a device for packaging the chips.
  • Package 300 contains a cavity 310 on which a chip is mounted.
  • the package includes inlets 350 and 360 which communicate with cavity 310 . Fluids are circulated through the cavity via inlets 350 and 360 .
  • a septum, plug, or other seal may be employed to seal the fluids in the cavity.
  • Alignment holes 330 and 335 may be provided for alignment purposes.
  • the package may include a non-flush edge 320 .
  • the packages may be inserted into a holder similar to an audio cassette tape. The asymmetrical design of the package will assure correct package orientation when inserted into the holder.
  • FIG. 4 illustrates one embodiment of the package.
  • the chip package is manufactured by mating two substantially complementary casings 410 and 420 to form finished assembly 300 .
  • casings 410 and 420 are made from injection molded plastic. Injection molding enables the casings to be formed inexpensively. Also, assembling the package from two parts simplifies the construction of various features, such as the internal channels for introducing fluids into the cavity. As a result, the packages may be manufactured at a relatively low cost.
  • FIGS. 5 a - 5 b show the top casing 410 in greater detail.
  • FIG. 5 a shows a top view
  • FIG. 5 b shows a bottom view.
  • top casing 410 includes an external planar surface 501 having a cavity 310 therein.
  • the surface area of casing 410 sufficiently accommodates the cavity.
  • the top casing is of sufficient size to accommodate identification labels or bar codes in addition to the cavity.
  • the top casing is about 1.5′′ wide, 2′′ long, and 0.2′′ high.
  • Cavity 310 is usually, though not always, located substantially at the center of surface 501 .
  • the cavity may have any conceivable size, shape, or orientation.
  • the cavity is slightly smaller than the surface area of the chip to be placed thereon and has a volume sufficient to perform hybridization.
  • the cavity may be about 0.58′′ wide, 0.58′′ long, and 0.2′′ deep.
  • Cavity 310 may include inlets 350 and 360 . Selected fluids are introduced into and out of the cavity via the inlets.
  • the inlets are located at opposite ends of the cavity. This configuration improves fluid circulation and regulation of bubble formation in the cavity. The bubbles agitate the fluid, increasing the hybridization rate between the targets and complementary probe sequences.
  • the inlets are located at the top and bottom end of the cavity when the package is oriented vertically such as at the opposite corners of the cavity. Locating the inlet at the highest and lowest positions in the cavity facilitates the removal of bubbles from the cavity.
  • FIG. 5 c illustrates an alternative embodiment in which cavity 310 is oriented such that the edges of the cavity 310 and the casing 410 are non-parallel. This configuration allows inlets 350 and 360 to be situated at the absolute highest and lowest locations in the cavity when the package is vertically oriented. As a result, bubbles or fluid droplets are prevented from being potentially trapped in the cavity.
  • a depression 550 surrounds the cavity.
  • a ridge 560 may be provided at the edge of the depression so as to form a trough.
  • the ridge serves to support the chip above the cavity.
  • an adhesive may be deposited in the trough. This configuration promotes efficient use of chip surface area, thus increasing the number of chips yielded from a wafer.
  • Top casing 410 includes alignment holes 330 and 335 .
  • holes 330 and 335 are different in size to ensure correct orientation of the package when mounted on an alignment table.
  • the holes may have different shapes to achieve this objective.
  • the holes taper radially inward from surface 501 toward 502 to reduce the friction against alignment pins while still maintaining adequate contact to prevent slippage.
  • channels 551 and 561 are optionally formed on internal surface 502 .
  • Channels 551 and 561 communicate with inlets 350 and 360 respectively.
  • a depression 590 is formed below cavity.
  • the shape of depression 590 is symmetrical to the cavity with exception to corners 595 and 596 , which accommodate the inlets.
  • the depth of depression 590 may be, for example, about 0.7′′.
  • the bottom wall of the cavity is about 0.05′′ thick.
  • Depression 590 may receive a temperature controller to monitor and maintain the cavity at the desired temperature. By separating the temperature controller and cavity with a minimum amount of material, the temperature within the cavity may be controlled more efficiently and accurately.
  • channels may be formed on surface 502 for circulating air or water to control the temperature within the cavity.
  • certain portions 595 of internal surface 502 may be eliminated or cored without interfering with the structural integrity of the package when assembled. Coring the casing reduces the wall thickness, causing less heat to be retained during the injection molding process; potential shrinkage or warpage of the casing is significantly reduced. Also, coring decreases the time required to cool the casing during the manufacturing process. Thus, manufacturing efficiency is improved.
  • the top casing and bottom casing are mated together using a technique known as acoustic or ultrasonic welding.
  • energy directors 510 are provided. Energy directors are raised ridges or points, preferably v-shaped, that are used in an acoustic welding process. The energy directors are strategically located, for example, to seal the channels without interfering with other features of the package and to provide an adequate bond between the two casings.
  • the casings may be mated together by screws, glue, clips, or other mating techniques.
  • FIGS. 6 shows a cross sectional view of the cavity 310 with chip 120 mounted thereon in detail.
  • a depression 550 is formed around cavity 310 .
  • the depression includes a ridge 560 which supports chip 120 .
  • the ridge and the depression create a trough around cavity 310 .
  • the trough is sufficiently large to receive an adhesive 630 for attaching the chip to the package.
  • the trough is about 0.08′′ wide and 0.06′′ deep.
  • the edge of the chip protrudes slightly beyond ridge 550 , but without contacting side 625 of the depression. This configuration permits the adhesive to be dispensed onto the trough and provides adequate surface area for the adhesive to attach chip 120 to the package.
  • the back surface 130 of chip 120 is at least flush or below the plane formed by surface 501 of casing 410 .
  • chip 120 is shielded by surface 501 from potential damage. This configuration also allows the packages to be easily stored with minimal storage area since the surfaces are substantially flat.
  • the bottom of the cavity includes a light absorptive material, such as a glass filter or carbon dye, to prevent impinging light from being scattered or reflected during imaging by detection systems.
  • a light absorptive material such as a glass filter or carbon dye
  • FIG. 7 shows the internal surface of bottom casing 420 in greater detail.
  • the bottom casing 420 is substantially planar and contains an opening 760 therein.
  • the casing 420 is slightly wider or slightly longer than the top casing.
  • casing 420 is about 1.6′′ wide, 2.0′′ long, and 0.1′′ deep, which creates a non-flush edge on the finish assembly. As previously mentioned, this design ensures that the package is correctly oriented when mounted onto the detection systems.
  • opening 760 is spatially located at about the depression below the cavity.
  • the opening also has substantially the same geometric configuration as the depression to allow the temperature controller to contact as much of the bottom of the cavity as possible.
  • Internal surface 701 of casing 420 includes depressions 730 and 740 .
  • a port 731 is located in depression 730 and a port 741 is located in depression 740 .
  • Ports 731 and 741 communicate with channels on the top casing ( 350 and 360 in FIG. 5 b ) when the package is assembled.
  • a seal 790 which may be a septum composed of rubber, teflon/rubber laminate, or other sealing material is provided for each depression.
  • the septum may be of the type commonly used to seal and reseal vessels when a needle is inserted into the septum for addition/removal of fluids.
  • the septums when seated in the depressions, extend slightly above surface, which in some embodiments is about 0.01′′.
  • casing 420 includes the complementary half alignment holes 330 and 335 , each tapering radially inward from the external surface. Further, certain areas 765 on internal surface 701 may be cored, as similar to the internal surface of the top casing.
  • FIG. 31 is a simplified illustration of an alternative embodiment of a chip packaging device 3100 according to the present invention.
  • the chip packaging device includes a plurality of casings 3200 , 3300 , and 3400 .
  • the casings may be defined as a top casing 3200 , a middle casing 3300 , and a bottom casing 3400 .
  • the casings are made of known plastic materials such as ABS plastic, polyvinylchloride, polyethylene, products sold under the trademarks TEFLONTM and KALREZTM and the like, among others.
  • the casings can be made by way of injection molding and the like. Assembling the chip packaging device from three casings simplifies construction for the fabrication of internal channels and the like, and can also be made at a relatively low cost.
  • Support structures exist at selected locations of the chip packing device.
  • the support structures can be used to mount or position the chip packaging device to an apparatus, e.g., scanner or the like.
  • the top casing 3200 includes support structures 3201 and 3203 on each side of a center opening 3209 .
  • the middle casing 3300 includes similar support structures 3313 and 3315 which are complementary to the support structures 3201 and 3203 , respectively, in the top casing.
  • the bottom casing also includes similar support structures 3403 and 3401 , respectively, which are complementary to the support structures in the top casing and the middle casing.
  • each of the support structures on each side of the center opening align with each other.
  • Each support structure is, for example, an aperture through the casing.
  • the aperture includes an outer periphery defined by a geometrical shape which may be round, rectangular, trapezoidal, hexagonal, or the like.
  • the present chip packaging device assembles with use of complementary alignment pins and bores on the casings.
  • the top casing aligns with and inserts into alignment bores 3301 , 3303 in the middle casing 3300 .
  • the middle casing can have alignment pins or the like and the top casing has the alignment bores or the like.
  • the bottom casing includes alignment pins 3407 and 3409 which align to and insert into alignment bores (not shown) in bottom portions of the middle casing.
  • the use of alignment bores and pins provide for ease in assembly of the chip carrier. Upon assembly, the alignment bores and pins on the casings prevent the casings from moving laterally relative to each other.
  • a center opening 3209 in the top casing overlies a center portion 3317 of the middle casing 3300 .
  • the center portion 3317 of the middle casing includes an inner annular region (or cavity edges) with a bottom portion which is preferably a flat bottom portion.
  • the flat bottom portion of the middle casing and portions of the bottom casing including edges define a cavity 3405 .
  • a chip is placed overlying an underlying portion of the cavity 3407 .
  • a temperature control mechanism such as a heater, a cooler, or a combination thereof is disposed into the center opening against the bottom portion of the middle casing.
  • the temperature control mechanism can be any suitable thermally controlled element such as a resistive element, a temperature controlled block or mass, thermoelectric modules, or the like.
  • the temperature control mechanism transfers heat via conduction to the bottom center portion, which transfers heat to, for example, fluid in the cavity or the chip.
  • the temperature control mechanism sinks heat away from, for example, fluid in the cavity or the chip through the bottom center portion.
  • the temperature control mechanism maintains a selected temperature in the cavity.
  • the temperature control mechanism also includes a temperature detection device such as a thermocouple which provides signals corresponding to temperature readings. A controller receives the signals corresponding to the temperature readings, and adjusts power output to the temperature control mechanism to maintain the selected temperature.
  • the top casing 3200 also includes channels 3205 and 3207 for fluid transfer.
  • the channels 3205 and 3207 communicate with annular regions 3309 and 3311 , respectively, on the middle casing 3300 for fluid transfer.
  • a septum, a plug, an o-ring, a gasket, or the like via annular regions 3309 and 3311 seals fluids within the top casing channels 3205 and 3207 and the middle casing.
  • the bottom casing includes channels 3411 and 3413 in communication with channels 3307 and 3305 , respectively.
  • a septum, a plug, an o-ring, a gasket, or the like seals the fluids within the bottom casing channels 3411 and 3413 and the middle casing channels 3305 and 3307 .
  • the chip packaging device provides an even distribution of fluid (or fluid flow) through the cavity over a top surface (or inner or active surface) of the chip. For example, a selected fluid enters channel 3207 , flows through channel 3307 , changes direction and flows through channel 3411 , and evenly distributes into the cavity 3405 over the top surface of the chip. As previously noted, the cavity is defined by the flat bottom portion and cavity edges. A selected fluid exits the cavity by way of channel 3413 , channel 3305 , and channel 3205 .
  • the fluid flow over the top surface of the chip is preferably laminar, but may also be turbulent, a combination thereof or the like. By way of the present chip packaging device, a substantial portion of turbulent flow remains at an upper portion of the channel 3411 , and does not enter the cavity.
  • a selected fluid enters the cavity by way of channel 3205 , channel 3305 , and channel 3413 .
  • the selected fluid exits the cavity through channel 3411 , channel 3307 , and channel 3207 .
  • the fluid flows against the direction of gravity through the cavity.
  • other fluid flow routes may also be employed depending upon the particular application.
  • FIG. 32 illustrates an assembled chip packaging device 3100 according to the present invention. As shown are a top-view 3200 , a side-view 3500 , a bottom-view 3400 , and a front-view 3600 of the assembled chip packaging device 3100 .
  • the assembled chip packaging device 3100 includes the bottom casing 3400 , the middle casing 3300 , and the top casing 3200 .
  • the top-view 3200 of the top casing includes alignment structures 3205 , 3215 surrounding opening 3209 .
  • the opening 3209 includes a bevelled annular region 3211 surrounding the periphery of the channel 3209 .
  • the alignment bores 3203 and 3201 also include bevelled annular regions 3213 and 3215 , respectively.
  • a bevelled annular region 3217 , 3221 also surrounds each fluid channel 3205 , 3207 to assist with fluid flow therethrough.
  • the bottom-view 3400 of the bottom casing includes alignment structures 3401 , 3403 surrounding the cavity 3405 .
  • the cavity includes a flat bottom peripheral portion 3415 , a bevelled portion 3417 extending from the flat bottom peripheral portion, and a flat upper portion 3419 surrounding the bevelled portion.
  • the chip includes an outer periphery which rests against the flat bottom peripheral portion 3415 .
  • the bevelled portion aligns the chip onto the flat bottom peripheral portion 3415 .
  • the top casing extends outside 3421 the middle and bottom casings.
  • the cavity 3405 is preferably located at a center of the bottom casing, but may also be at other locations.
  • the cavity may be round, square, rectangular, or any other shape, and orientation.
  • the cavity is preferably smaller than the surface area of the chip to be placed thereon, and has a volume sufficient to perform hybridization and the like.
  • the cavity includes dimensions such as a length of about 0.6 inch, a width of about 0.6 inch and a depth of about 0.07 inch.
  • the bottom casing with selected cavity dimensions may be removed from the middle and top casings, and replaced with another bottom casing with different cavity dimensions. This allows a user to attach a chip having a different size or shape by changing the bottom casing, thereby providing ease in using different chip sizes, shapes, and the like.
  • the size, shape, and orientation of the cavity will depend upon the particular application.
  • FIGS. 33 - 35 illustrate in greater detail the chip packaging device of FIG. 31.
  • FIG. 33 illustrates simplified top-view 3260 and bottom-view 3250 diagrams of the top casing 3200 .
  • the reference numerals refer to the same elements as the top casing of FIG. 31.
  • FIG. 34 illustrates a simplified top-view 3350 and bottom-view 3360 diagrams of the middle casing 3300 .
  • the reference numerals refer to the same elements as the middle casing of FIG. 31.
  • the bottom-view of the casing includes a substantially smooth and planar bottom surface 3361 . A portion of the bottom surface defines an upper portion of the cavity.
  • the bottom surface can also be textured, ridged, or the like to create turbulence or a selected fluid flow through the cavity.
  • the bottom surface is preferably a hydrophobic surface which enhances laminar flow through the cavity.
  • the type of bottom surface depends upon the particular application.
  • FIG. 35 illustrates simplified top-view 3460 and bottom-view 3450 diagrams of the bottom casing 3400 .
  • the reference numerals refer to the same elements as the bottom casing of FIG. 31.
  • fluid from channel 3305 changes direction at an upper portion 3431 of the channel and flows to a lower portion 3433 of the channel. Fluid evenly distributes from the lower portion 3433 via a fluid distribution point 3435 . The distributed fluid evenly passes over a slanted edge (or bevelled edge) 3437 which drops fluid evenly to a top surface of the chip in the cavity.
  • slanted edge 3427 which slopes up to a fluid concentration point 3425 , fluid leaves the cavity and enters the channel 3411 .
  • each channel includes a length L and a width W.
  • the distribution point and the concentration point are positioned at a distance away from the cavity to substantially prevent turbulence from forming in the cavity, and in particular over the top surface of the chip.
  • the channels are each angled at an angle ⁇ ranging from about 2 degrees to about 90 degrees, but is preferably about 5 degrees to about 45 degrees. The angle enhances an even distribution of laminar flow into the cavity.
  • the exact angle, channel shape, and dimensions depend upon the particular application.
  • FIG. 36 illustrates a simplified cross-sectional view of an alternative embodiment 3600 of the chip packaging device.
  • the chip packaging device includes the three casings 3200 , 3300 , and 3400 of the previous embodiment, and also includes hollow pins, needles, or the like 3601 and 3603 .
  • Each of the pins transfers a selected fluid to and from the cavity 3405 .
  • each pin 3601 includes an external opening 3609 , a tubular region 3611 , an inner opening 3607 , a pointed tip 3605 , and other elements.
  • the pin is made from a suitable material such as a glass, a stainless steel or any other high quality material to transfer fluids to and from the cavity 3405 .
  • each pin is inserted into its channel region 3205 or 3207 .
  • a point on the pin tip pierces through, for example, a septum at an annular region 3309 or 3311 .
  • a selected fluid travels through pin 3603 (through channel 3205 and at least a portion of 3305 ), enters the upper region of channel 3413 , and into the cavity 3405 .
  • the selected fluid travels from the cavity, through pin 3601 , and to the external apparatus.
  • the selected fluid enters the cavity via pin 3601 and exits the cavity via pin 3603 .
  • the selected fluid may also enter the cavity via pin and exit the cavity through the channels without use of a pin.
  • the selected fluid may further enter the cavity through the channels without use of a pin and exit through a pin.
  • the particular pin used and fluid flow will depend upon the application.
  • the even distribution of fluid flow through the cavity prevents “hot spots” from occurring in the cavity.
  • the even distribution of fluid through the cavity by way of the previous embodiment substantially prevents fluid from becoming substantially turbulent at certain locations. This prevents “hot spots” caused by such turbulent fluid.
  • the hot spots are often caused by higher chemical activity or exothermic reactions and the like by way of turbulence in such certain locations.
  • the top and bottom casing are attached by a technique known as ultrasonic or acoustic welding.
  • FIG. 8 a is a schematic diagram of acoustic welding system used for assembling the package.
  • the welding system 800 is a HS Dialog ultrasonic welder manufactured by Herrmann Ultrasonics Inc.
  • System 800 includes a platform 850 mounted on base 810 .
  • Platform 850 accommodates the top and bottom casings during the assembling process.
  • An acoustic horn 860 is mounted on a frame above platform 850 .
  • the horn translates vertically (toward and away from platform 850 ) on the frame by air pressure.
  • the horn is connected to a frequency generator 870 , which in some embodiments is a 20 KHz generator manufactured by Herrmann Ultrasonics Inc.
  • System 800 is controlled by a controller 880 , which, for example, may be a Dialog 2012 manufactured by Herrmann Ultrasonics Inc.
  • Controller 880 may be configured to accept commands from a digital computer system 890 .
  • Computer 890 may be any appropriately programmed digital computer of the type that is well known to those skilled in the art such as a Gateway 486DX operating at 33 MHz.
  • FIG. 8 b illustrates platform 850 in greater detail.
  • the platform 850 is substantially planar and includes alignment pins 851 and 852 .
  • Alignment pins 851 and 852 are used to align both the top and bottom casings during the welding process.
  • a pad 890 which may be composed of silicone rubber or other energy absorbing material, is located on platform 850 to prevent damage to the package during assembly.
  • FIG. 9 a illustrates the acoustic welding system in operation.
  • bottom casing 420 having a septum 790 seated in each depression, is mounted onto platform table 850 and held in place by alignment pins.
  • Top casing 410 is then aligned above the bottom casing with alignment pins. The system then commences the welding process by lowering horn 860 until it contacts the top surface of casing 410 .
  • FIG. 9 b illustrates the casing and horn in detail. As shown, the horn 860 presses against top casing 410 , thereby forcing energy directors 510 to interface with bottom casing 420 . The system then activates the frequency generator, causing the welding horn to vibrate.
  • FIG. 9 c illustrates in detail the energy directors during the welding process.
  • welding horn 860 forces energy directors 510 against bottom casing 420 .
  • the system vibrates the welding horn, which in some embodiments is at 20 KHz.
  • the energy generated by the horn melts the energy directors.
  • the horn translates downward against the package.
  • the pressure exerted by the horn causes the energy directors to fuse with the bottom casing.
  • the welding process is completed when the horn reaches its weld depth, for example, of about 0.01′′.
  • the various welding parameters may be varied, according to the composition of the materials used, to achieve optimum results.
  • an ultraviolet cured adhesive attaches the chip to the package.
  • FIG. 10 schematically illustrates an adhesive dispensing system used in attaching the chip.
  • the dispensing system 1000 includes an attachment table 1040 to accommodate the package during the attachment process.
  • a chip alignment table 1050 for aligning the chip is located adjacent to attachment table 1040 .
  • a head unit 1030 for dispensing the adhesive is located above tables 1040 and 1050 .
  • the head unit 1030 also includes a camera that generates an output to video display 1070 .
  • Video display 1070 in some embodiments, includes a cross hair alignment mark 1071 .
  • the head unit is mounted on a dual-axis (x-y) frame for positioning during alignment and attachment of the chip.
  • the operation of the dispensing system is controlled by a computer 1060 , which in some embodiments may be Gateway 486DX operating at 33 MHz.
  • FIG. 11 illustrates the attachment table in greater detail.
  • the attachment table 1040 has a substantially flat platform 1110 supported by a plurality of legs 1105 .
  • Alignment pins 1115 and 1116 which secure the package during the attachment process, are located on the surface of platform 1110 .
  • Needle 1120 includes a channel 1121 and is connected to a vacuum pump. In operation, the needle is inserted into one of the ports of the package in order to generate a vacuum in the cavity. The vacuum pressure secures the chip to the package during the attachment process.
  • FIG. 12 a shows table 1050 in greater detail.
  • Table 1050 includes a substantially flat platform 1210 having a depression 1240 for holding a chip.
  • a port 1241 is provided in depression 1240 .
  • Port 1241 is connected to a vacuum pump which creates a vacuum in the depression for immobilizing the chip therein.
  • Platform 1210 is mounted on a combination linear rotary stage 1246 , which in some embodiments may be a model 26LR manufactured by DARDAL, and a single axis translation stage 1245 , which may be a model CR2226HSE2 manufactured by DARDAL.
  • FIG. 12 b illustrates depression 1240 in greater detail.
  • a ledge 1241 surrounds the depression 1240 .
  • Ledge 1241 supports the chip when it is placed above depression 1240 . Since the chips are placed over the depression with the probes facing the table, this design protects the probes from being potentially damaged during alignment.
  • FIG. 13 illustrates the head unit 1030 in greater detail.
  • the head unit 1030 includes a camera assembly 1320 that generates an output to a video display.
  • a light 1360 is provided to enable the camera to focus and image an object of interest.
  • the head unit also includes an ultraviolet light 1350 for curing the adhesive, a vacuum pickup 1330 for moving chip during the attachment process, and an adhesive dispenser 1340 .
  • a chip package is placed onto table 1040 .
  • the alignment pins on the table immobilize the package.
  • the user begins the chip attachment process by calibrating the head unit. This may be done by moving the camera above the package and aligning it with a mark on the package, as shown in FIG. 14 a .
  • one of the alignment pins may be used as an alignment mark.
  • FIG. 14 b illustrates a typical image 1440 generated by the camera during this step.
  • the head unit is not aligned with pin 1480 .
  • the user translates it in both the x and y direction until pin 1480 is located at the intersection 1477 of the cross hair on the video display, as illustrated in FIG. 14 c.
  • FIG. 14 c is a flow chart indicating the steps for aligning the chip.
  • the system positions the camera (head unit) above one of the chip's alignment marks.
  • the camera images the alignment mark on the video display.
  • the mark is normally misaligned (i.e., the mark is not located at the intersection of the cross hair alignment mark).
  • the user adjusts the chip alignment table in both the x and y direction until the mark is substantially located at the intersection of the cross hair. Since no rotational adjustments were made, the mark may be misaligned angularly.
  • step 1430 the user instructs the system to move the camera above a second alignment mark, which usually is at an opposite corner of the chip. Again, an image of the alignment mark is displayed. At this stage, the alignment mark is probably misaligned in the x, y, and angular directions.
  • step 1440 the user adjusts the rotational stage, x-stage, and y-stage, if necessary, to align the mark with the cross hair on the video display. In instances where the rotational stage has been rotated, the first alignment mark will become slightly misaligned. To compensate for this shift, the user repeats the alignment process beginning at step 1450 until both marks are aligned.
  • image processing techniques may be applied for automated head unit and chip alignment.
  • FIG. 15 a is an example of an image displayed by the video screen during step 1410 .
  • the first alignment mark lower left corner of the chip
  • FIG. 15 b exemplifies an image of the first alignment mark after adjustments were made by the user.
  • FIG. 15 c illustrates a typical image displayed by video screen during step 1430 .
  • the second alignment mark upper right corner of the chip
  • FIG. 15 d illustrates an image of the second mark following initial adjustments by the user at step 1440 .
  • FIG. 15 e illustrates the orientation of the second alignment mark after the chip has been aligned.
  • the vacuum holding the chip on the attachment table is released. Thereafter, the pickup on the head unit removes the chip from the table and aligns it on the cavity of the package. In some embodiments, the chip is mated to the pickup by a vacuum.
  • the user may check to ensure that the chip is correctly aligned on the cavity by examining the chip's alignment marks with the camera. If the chip is out of position, the chip is removed and realigned on the alignment table. If the chip is correctly positioned, the system deposits an adhesive by moving the dispenser along the trough surrounding the cavity. In some embodiments, the vacuum is released before depositing the adhesive in the trough. This step is merely precautionary and implemented to ensure that the vacuum does not cause any adhesive to seep into the cavity. Once the adhesive is deposited, the system reexamines the chip to determine if the adhesive had moved the chip out of position. If the chip is still aligned, the head unit locates the ultraviolet light above the adhesive and cures it for a time sufficient to harden the adhesive, which in one embodiment is about 10 seconds. Otherwise, the chip is realigned.
  • the chip package Upon completion, the chip package will have a variety of uses. For example, the chip package will be useful in sequencing genetic material by hybridization. In sequencing by hybridization, the chip package is mounted on a hybridization station where it is connected to a fluid delivery system. Such system is connected to the package by inserting needles into the ports and puncturing the septums therein. In this manner, various fluids are introduced into the cavity for contacting the probes during the hybridization process.
  • hybridization is performed by first exposing the sample with a prehybridization solution. Next, the sample is incubated under binding conditions with a solution containing targets for a suitable binding period. Binding conditions will vary depending on the application and are selected in accordance with the general binding methods known including those referred to in: Maniatis et al., Molecular Cloning: A Laboratory Manual (1989), 2nd Ed., Cold Spring Harbor, N.Y. and Berger and Kimmel, Methods in Enzymology, Volume 152 , Guide to Molecular Cloning Techniques (1987), Academic Press, Inc., San Diego, Calif.; Young and Davis (1983) Proc. Natl. Acad. Sci . ( U.S.A.
  • the solution may contain about 1 molar of salt and about 1 to 50 nanomolar of targets.
  • the fluid delivery system includes an agitator to improve mixing in the cavity, which shortens the incubation period.
  • the sample is washed with a buffer, which may be 6 ⁇ SSPE buffer, to remove the unbound targets.
  • the cavity is filled with the buffer after washing the sample.
  • the package may be aligned on a detection or imaging system, such as those disclosed in U.S. Pat. No. 5,143,854 (Pirrung et al.) or U.S. patent application Ser. No. 08/495,889 (Attorney Docket Number 11509-117), already incorporated herein by reference for all purposes.
  • detection systems may take advantage of the package's asymmetry (i.e., non-flush edge) by employing a holder to match the shape of the package specifically.
  • the imaging systems are capable of qualitatively analyzing the reaction between the probes and targets. Based on this analysis, sequence information of the targets is extracted.
  • FIGS. 16 a - 16 b illustrate an alternative embodiment of the package.
  • FIG. 16 a shows a top view
  • FIG. 16 b shows a bottom view.
  • a cavity 1620 is located on a top surface 1610 of the package body 1600 .
  • the body includes alignment holes 1621 and 1622 that are used, for example, in mating the chip to the package.
  • a plurality of ridges 1690 is located at end 1660 of the body. The friction created by ridges 1690 allows the package to be handled easily without slippage.
  • the body also includes two substantially parallel edges 1630 and 1640 . As shown, edge 1640 is narrowed at end 1665 to create an uneven edge 1645 .
  • the asymmetrical design of the body facilitates correct orientation when mounted onto detection systems. For example, detection systems may contain a holder, similar to that of an audio cassette tape, in which end 1665 is inserted.
  • ports 1670 and 1671 communicate with cavity 1620 .
  • a seal is provided for each port to retain fluids in the cavity.
  • the bottom surface may optionally include a plurality of ridges 1690 at end 1660 .
  • FIGS. 17 a - 17 b illustrate an alternative embodiment of the package.
  • FIG. 17 a shows a top view
  • FIG. 17 b shows a bottom view.
  • a cavity 1720 is located on a top surface 1710 of the package body 1700 .
  • the body may be formed in the shape of a disk with two substantially parallel edges 1730 and 1740 .
  • Alignment holes 1721 and 1722 which may be different in size or shape, are located on the body.
  • the package is inserted like an audio cassette tape into detection systems in a direction parallel to edges 1730 and 1740 . Edges 1730 and 1740 and alignment holes prevent the package from being inserted incorrectly into the detection systems.
  • ports 1730 and 1740 are located on the bottom surface 1715 of the package. Ports 1730 and 1740 communicate with cavity 1720 and each include a seal 1780 for sealing fluids in the cavity.
  • FIG. 18 illustrates an alternative embodiment for attaching the chip to the package.
  • two concentric ledges 1810 and 1820 surround the perimeter of cavity 310 .
  • Ledge 1820 supports the chip 120 when mounted above cavity 310 .
  • Ledge 1810 which extends beyond chip 120 , receives an adhesive 1860 such as ultraviolet cured silicone, cement, or other adhesive for attaching the chip thereto.
  • FIG. 19 illustrates another embodiment for attaching the chip to the package.
  • a ledge 1910 is formed around cavity 310 .
  • the ledge is sufficiently large to accommodate an adhesive 1920 such as an adhesive film, adhesive layer, tape, or any other adhesive layer.
  • Chip 120 attaches to the package when it contacts the adhesive film.
  • FIG. 20 a illustrates yet another embodiment for attaching a chip to the package.
  • a clamp 2010 such as a frame having a plurality of fingers 2015 , attaches the chip to the package.
  • FIG. 20 b illustrates a cross sectional view.
  • a ridge 2020 on surface 501 surrounds cavity 310 .
  • the ridge includes a ledge 2025 upon which chip 120 rests.
  • a gasket or a seal 2070 is located between the ledge and chip to ensure a tight seal around cavity 310 .
  • Clamp 2010 is attached to side 2040 of ridge 2020 and surface 501 .
  • clamp 2010 is acoustically welded to the body.
  • clamp 2010 includes energy directors 2050 located at its bottom.
  • screws, clips, adhesives, or other attachment techniques may be used to mate clamp 2010 to the package.
  • fingers 2015 secure chip 120 to the package.
  • FIG. 21 illustrates an alternative embodiment for attaching the chip to the package.
  • a ridge 2110 having a notch 2115 at or near the top of ridge 2110 , encompasses the cavity 310 .
  • Chip 120 is wedged and held into position by notch 2115 .
  • a process known as heat staking is used to mount the chip. Heat staking includes applying heat and force at side 2111 of ridge, thus forcing ridge tightly against or around chip 120 .
  • FIG. 22 shows another embodiment of attaching a chip onto a package.
  • a channel 2250 surrounds cavity 310 .
  • a notch 2240 for receiving the chip 120 is formed along or near the top of the cavity 310 .
  • a gasket or seal 2270 is placed at the bottom of the notch to ensure a tight seal when the chip is attached.
  • a V-shaped wedge 2260 is inserted into channel 2250 . The wedge forces the body to press against chip's edges and seal 2260 , thus mating the chip to the package. This process is known as compression sealing.
  • FIG. 23 shows an alternative embodiment of package that employs check valves to seal the inlets.
  • depressions 2305 and 2315 communicate with cavity 310 through inlets 350 and 360 .
  • Check valves 2310 and 2320 which in some embodiments may be duck-billed check valves, are seated in depressions 2305 and 2315 .
  • a needle is inserted into the check valve. When the needle is removed, the check valve reseals itself to prevent leakage of the fluid.
  • FIG. 24 illustrates another package that uses reusable tape for sealing the cavity 310 .
  • a tape 2400 is located above inlets 350 and 360 .
  • end 2430 of tape is permanently fixed to surface 2480 while end 2410 remains unattached.
  • the mid section 2420 of the tape is comprised of non-permanent adhesive. This design allows inlets to be conveniently sealed or unsealed without completely separating the tape from the package.
  • FIG. 25 illustrates yet another embodiment of the package that uses plugs to retain fluids within the cavity.
  • depressions 2520 and 2530 communicate with cavity 310 via inlets 350 and 360 .
  • a plug 2510 which in some embodiment may be composed of rubber or other sealing material, is mated to each of the depressions. Plugs 2510 are easily inserted or removed for sealing and unsealing the cavity during the hybridization process.
  • FIG. 26 a illustrates a package utilizing sliding seals for retaining fluids within the cavity.
  • the seals are positioned in slots 2610 that are located above the inlets.
  • the slots act as runners for guiding the seals to and from the inlets.
  • FIG. 26 b illustrates the seal in greater detail.
  • Seal 2640 which may be composed of rubber, teflon rubber, or other sealing material, is mated to each slot 2610 .
  • the seal includes a handle 2650 which extends through the slot.
  • the bottom of the seal includes an annular protrusion 2645 to ensure mating with inlet 350 .
  • the inlet is sealed or unsealed by positioning the seal appropriately along the slot.
  • spring loaded balls, rotary ball valves, plug valves, or other fluid retention techniques may be employed.
  • FIG. 27 a illustrates a top view and FIG. 27 b shows a cross sectional view.
  • package 2700 includes a cavity 2710 on a surface 2705 .
  • a chip 2790 having an array of probes 2795 on surface 2791 is mated to the bottom of cavity 2710 with an adhesive 2741 .
  • the adhesive for example, may be silicone, adhesive tape, or other adhesive. Alternatively, clips or other mounting techniques may be employed.
  • the bottom of the cavity may include a depression in which a chip is seated.
  • This configuration provides several advantages such as: 1) permitting the use of any type of substrate (i.e., non-transparent or non-translucent), 2) yielding more chips per wafer since the chip does not require an edge for mounting, and 3) allowing chips of various sizes or multiple chips to be mated to the package.
  • a cover 2770 is mated to the package for sealing the cavity.
  • cover 2770 is composed of a transparent or translucent material such as glass, acrylic, or other material that is penetrable by light.
  • Cover 2270 may be mated to surface 2705 with an adhesive 2772 , which in some embodiments may be silicone, adhesive film, or other adhesive.
  • a depression may be formed around the cavity such that surface 2271 of the cover is at least flush with surface 2705 .
  • the cover may be mated to surface 2705 according to any of the chip attachment techniques described herein.
  • Inlets 2750 and 2751 are provided and communicate with cavity 2710 . Selected fluids are circulated through the cavity via inlets 2750 and 2751 . To seal the fluids in the cavity, a septum, plug, or other seal may be employed. In alternative embodiments, any of the fluid retention techniques described herein may be utilized.
  • the body is configured with a plurality of cavities.
  • the cavities may be in a 96 -well micro-titre format.
  • a chip is mounted individually to each cavity according to the methods described above.
  • the probe arrays may be formed on the wafer in a format matching that of the cavities. Accordingly, separating the wafer is not necessary before attaching the probe arrays to the package. This format provides significant increased throughput by enabling parallel testing of a plurality of samples.
  • FIG. 28 illustrates an agitation system in detail.
  • the agitation system 2800 includes two liquid containers 2810 and 2820 , which in the some embodiments are about 10 milliliters each.
  • Container 2810 communicates with port 350 via tube 2850 and container 2820 communicates with port 360 via tube 2860 .
  • An inlet port 2812 and a vent port 2811 are located at or near the top of container 2810 .
  • Container 2820 also includes an inlet port 2822 and a vent 2821 at or near its top.
  • Port 2812 of container 2810 and port 2822 of container 2820 are both connected to a valve assembly 2828 via valves 2840 and 2841 .
  • An agitator 2801 which may be a nitrogen gas (N 2 ) or other gas, is connected to valve assembly 2828 by fitting 2851 .
  • Valves 2840 and 2841 regulate the flow of N 2 into their respective containers.
  • additional containers may be provided, similar to container 2810 , for introducing a buffer and/or other fluid into the cavity.
  • a fluid is placed into container 2810 .
  • the fluid for example, may contain targets that are to be hybridized with probes on the chip.
  • Container 2810 is sealed by closing port 2811 while container 2820 is vented by opening port 2821 .
  • N 2 is injected into container 2810 , forcing the fluid through tube 2850 , cavity 310 , and finally into container 2820 .
  • the bubbles formed by the N 2 agitate the fluid as it circulates through the system.
  • the system reverses the flow of the fluid by closing valve 2840 and port 2821 and opening valve 2841 and port 2811 . This cycle is repeated until the reaction between the probes and targets is completed.
  • foaming may occur when N 2 interacts with the fluid. Foaming potentially inhibits the flow of the fluid through the system.
  • a detergent such as CTAB may be added to the fluid. In one embodiment, the amount of CTAB added is about 1 millimolar. Additionally, the CTAB affects the probes and targets positively by increasing the rate at which they bind, thus decreasing the reaction time required.
  • the system described in FIG. 28 may be operated in an alternative manner. According to this technique, back pressure formed in the second container is used to reverse the flow of the solution.
  • the fluid is placed in container 2810 and both ports 2811 and 2821 are closed.
  • the fluid is forced through tube 2850 , cavity 310 , and finally into container 2820 .
  • the vent port in container 2820 is closed, the pressure therein begins to build as the volume of fluid and N 2 increases.
  • the flow of N 2 into container 2810 is terminated by closing valve 2840 .
  • the circulatory system is vented by opening port 2811 of container 2810 .
  • the pressure in container 2820 forces the solution back through the system toward container 2810 .
  • the system is injected with N 2 for about 3 seconds and vented for about 3 seconds. This cycle is repeated until hybridization between the probes and targets is completed.
  • FIG. 29 illustrates an alternative embodiment of the agitation system.
  • System 2900 includes a vortexer 2910 on which the chip package 300 is mounted.
  • a container 2930 for holding the fluid communicates with inlet 350 via tube 2950 .
  • a valve 2935 may be provided to control the flow of solution into the cavity.
  • circulator 2901 which may be a N 2 source or other gas source, is connected to container 2930 .
  • a pump or other fluid transfer device may be employed.
  • the flow of N 2 into container 2930 is regulated by a valve 2936 .
  • Circulator 2901 is also connected to inlet tube 2950 via a valve 2902 .
  • a waste container 2920 communicates with port 360 via outlet tube 2955 .
  • a liquid sensor 2940 may be provided for sensing the presence of liquid in outlet tube 2955 .
  • Access to the waste container may be controlled by a valve 2921 .
  • additional containers (not shown), similar to container 2930 , may be employed for introducing a buffer or other fluid into the cavity.
  • valves 2936 , 2935 , and 2955 are opened. This allows N 2 to enter container 2930 which forces the fluid to flow through tube 2950 and into the cavity.
  • valves 2935 , 2936 , and 2955 are closed to seal the fluid in the cavity.
  • the vortexer is activated to vibrate the chip package, similar to a paint mixer. In some embodiments, the vortexer may vibrate the package at about 3000 cycles per minutes. The motion mixes the targets in the fluid, shortening the incubation period. In some embodiments, the vortexer rotates the chip package until hybridization is completed.
  • valve 2902 and 2955 are opened to allow N 2 into the cavity. The N 2 empties the fluid into waste container 2920 . Subsequently, the cavity may be filled with a buffer or other fluid.
  • FIG. 30 illustrates an alternative embodiment in which the agitation system is partially integrated into the chip package.
  • chip package 300 includes a cavity 310 on which the chip is mounted. Cavity 310 is provided with inlets 360 and 350 .
  • the package also includes chambers 3010 and 3020 .
  • a port 3021 is provided in chamber 3010 and is connected to inlet 360 by a channel 3025 .
  • Chamber 3010 is equipped with ports 3011 and 3012 .
  • Port 3012 communicates with inlet 350 through a channel 3015 .
  • Channel 3015 is provided with a waste port 3016 that communicates with a fluid disposal system 3500 via a tube 3501 .
  • a valve 3502 regulates the flow of fluids into the disposal system.
  • the disposal system includes a waste container 3510 and fluid recovery container 3520 which are connected to tube 3501 .
  • a valve 3530 is provided to direct the flow of fluids into either the waste container or recovery container.
  • Port 3011 is coupled to a fluid delivery system 3600 through a tube 3601 . Fluids flowing into chamber 3010 from the fluid delivery system are regulated by a valve 3602 .
  • the fluid delivery system includes fluid containers 3610 and 3620 that are interconnected with a tube 3690 .
  • Container 3610 which may hold a fluid containing targets, includes ports 3616 and 3615 .
  • Port 3616 is connected to tube 3690 .
  • a valve 3612 controls the flow of the fluid out of container 3610 .
  • a circulator 3605 which may be a N 2 source, is connected to port 3615 of container 3610 . Alternatively, any type of gas, pump or other fluid transfer device may be employed. The flow of N 2 into container 3610 is controlled by a valve 3618 .
  • a valve 3619 may also be provided to vent container 3610 .
  • Container 3620 which may hold a buffer, is provided with ports 3625 and 3626 .
  • Circulator 3605 is connected to port 3625 .
  • a valve 3621 is provided to control the flow of N 2 into container 3620 .
  • Port 3626 is connected to tube 3690 via a valve 3622 .
  • Valve 3622 regulates the flow of the buffer out of container 3620 .
  • additional containers (not shown), similar to container 3620 , may be configured for introducing other fluids into the cavity.
  • a valve 3690 connects circulator 3605 to tube 3690 for controlling the flow of N 2 directly into the package.
  • a valve 3652 is provided for venting the fluid delivery system.
  • valves 3602 , 3612 and 3618 are closed.
  • valves 3612 and 3618 are closed.
  • valve 3642 is opened, allowing N 2 to flow directly into chamber 3010 .
  • the N 2 agitates and circulates the fluid into cavity 310 and out to chamber 3020 .
  • valve 3642 is closed to stop the fluid flow.
  • the system is vented by opening valve 3652 . Venting the system allows the back pressure in chamber 3020 to reverse the flow of fluids back into chamber 3010 .
  • valve 3652 is closed and valve 3642 is opened to reverse the fluid flow. This cycle is repeated until hybridization is completed.
  • the system may be drained. This procedure depends on which chamber the fluid is located in. If the fluid is located in chamber 3020 , then valve 3502 is opened, while valve 3530 is positioned to direct the fluid into the appropriate container (recovery or waste). The pressure in chamber 3020 forces the fluid through port 3016 , tube 3501 , and into the disposal system. If the fluid is in chamber 3010 , then valve 3502 and 3642 are opened. As a result, N 2 forces the fluid in chamber 3010 through port 3501 and into the disposal system.
  • a buffer or other fluid may be introduced into the cavity.
  • the cavity may be filled with a buffer by opening valves 3601 , 3621 , and 3622 . This injects N 2 into container 3620 which forces the buffer therein to flow through the system until it fills cavity 310 .
  • ultrasonic radiation, heat, magnetic beads, or other agitation techniques may be employed.
  • the present inventions provide commercially feasible devices for packaging a probe chip. It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments will be apparent to those skilled in the art upon reviewing the above description. Merely as an example, the package may be molded or machined from a single piece of material instead of two. Also, other asymmetrical designs may be employed to orient the package onto the detection systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A body 300 having a cavity 310 for mounting a substrate 120 fabricated with probe sequences at known locations according to the methods disclosed in U.S. Pat. No. 5,143,854 and PCT WO 92/10092 or others, is provided. The cavity includes inlets 350 and 360 for introducing selected fluids into the cavity to contact the probes. Accordingly, a commercially feasible device for use in high throughput assay systems is provided.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/229,759, filed on Aug. 28, 2002, which is a continuation of U.S. patent application Ser. No. 10/046,623, filed Jan. 14, 2002, now U.S. Pat. No. 6,551,817, which is a continuation of U.S. patent application Ser. No. 09/907,196, filed Jul. 17, 2001, now U.S. Pat. No. 6,399,365, which is a continuation of U.S. patent application Ser. No. 09/302,052, filed Apr. 29, 1999, now U.S. Pat. No. 6,287,850, which is a continuation of U.S. patent application Ser. No. 08/485,452, filed Jun. 7, 1995, now U.S. Pat. No. 5,945,334, which is continuation-in-part U.S. patent application Ser. No. 08/255,682, filed Jun. 8, 1994, now U.S. Pat. No. 6,140,044. Each of these applications is incorporated herein by reference in its entirety for all purposes.[0001]
  • BACKGROUND OF THE INVENTION
  • The present inventions relate to the fabrication and placement of materials at known locations on a substrate. In particular, one embodiment of the invention provides a method and associated apparatus for packaging a substrate having diverse sequences at known locations on its surface. [0002]
  • Techniques for forming sequences on a substrate are known. For example, the sequences may be formed according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854 (Pirrung et al.), PCT WO 92/10092, or U.S. application Ser. No. 08/249,188, now U.S. Pat. No. 5,571,639, incorporated herein by reference for all purposes. The prepared substrates will have a wide range of applications. For example, the substrates may be used for understanding the structure-activity relationship between different materials or determining the sequence of an unknown material. The sequence of such unknown material may be determined by, for example, a process known as sequencing by hybridization. In one method of sequencing by hybridization, a sequences of diverse materials are formed at known locations on the surface of a substrate. A solution containing one or more targets to be sequenced is applied to the surface of the substrate. The targets will bind or hybridize with only complementary sequences on the substrate. [0003]
  • The locations at which hybridization occurs can be detected with appropriate detection systems by labeling the targets with a fluorescent dye, radioactive isotope, enzyme, or other marker. Exemplary systems are described in U.S. Pat. No. 5,143,854 (Pirrung et al.) and U.S. patent application Ser. No. 08/143,312, also incorporated herein by reference for all purposes. Information regarding target sequences can be extracted from the data obtained by such detection systems. [0004]
  • By combining various available technologies, such as photolithography and fabrication techniques, substantial progress has been made in the fabrication and placement of diverse materials on a substrate. For example, thousands of different sequences may be fabricated on a single substrate of about 1.28 cm[0005] 2 in only a small fraction of the time required by conventional methods. Such improvements make these substrates practical for use in various applications, such as biomedical research, clinical diagnostics, and other industrial markets, as well as the emerging field of genomics, which focuses on determining the relationship between genetic sequences and human physiology.
  • As commercialization of such substrates becomes widespread, an economically feasible and high-throughput device and method for packaging the substrates are desired. [0006]
  • SUMMARY OF THE INVENTION
  • Methods and devices for packaging a substrate having an array of probes fabricated on its surface are disclosed. In some embodiments, a body containing a cavity is provided. A substrate having an array of probes is attached to the cavity using, for example, an adhesive. The body includes inlets that allow fluids into and through the cavity. A seal is provided for each inlet to retain the fluid within the cavity. An opening is formed below the cavity to receive a temperature controller for controlling the temperature in the cavity. By forming a sealed thermostatically controlled chamber in which fluids can easily be introduced, a practical medium for sequencing by hybridization is provided. [0007]
  • In other embodiments, the body is formed by acoustically welding two pieces together. The concept of assembling the body from two pieces is advantageous. For example, the various features of the package (i.e., the channels, sealing means, and orientation means) are formed without requiring complex machining or designing. Thus, the packages are produced at a relatively low cost. [0008]
  • In connection with one aspect of the invention, a method for making the chip package is disclosed. In particular, the method comprises the steps of first forming a plurality of probe arrays on a substrate and separating the substrate into a plurality of chips. Typically, each chip contains at least one probe array. A chip is then mated to a package having a reaction chamber with fluid inlets. When mated, the probe array is in fluid communication with the reaction chamber. [0009]
  • In a specific embodiment, the present invention provides an apparatus for packaging a substrate. The present apparatus includes a substrate having a first surface and a second surface. The first surface includes a probe array and the second surface is an outer periphery of the first surface. The present apparatus also includes a body having a mounting surface, an upper surface, and a cavity bounded by the mounting surface and the upper surface. The second surface is attached to the cavity and the first surface is within the cavity. A cover attached to the mounting surface for defining an upper boundary to the cavity is also included. The cavity includes a diffuser and a concentrator. The diffuser and the concentrator permit laminar fluid flow through the cavity. [0010]
  • A further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1[0012] a illustrates a wafer fabricated with a plurality of probe arrays.
  • FIG. 1[0013] b illustrates a chip.
  • FIG. 2[0014] a illustrates a scribe and break device.
  • FIG. 2[0015] b illustrates the wafer mounted on a pick and place frame.
  • FIGS. 2[0016] c-2 d illustrate the wafer, as displayed by the scribe and break device during alignment.
  • FIG. 3 illustrates a chip packaging device. [0017]
  • FIG. 4 illustrates the chip packaging device assembled from two components. [0018]
  • FIGS. 5[0019] a-5 b illustrate the top and bottom view of a top casing of the chip packaging device.
  • FIG. 5[0020] c illustrates a different cavity orientation.
  • FIG. 6 illustrates a cross sectional view of the packaging device. [0021]
  • FIG. 7 illustrates the bottom view of a bottom casing of the chip packaging device. [0022]
  • FIGS. 8[0023] a-8 b illustrate an acoustic welding system.
  • FIGS. 9[0024] a-9 c illustrate the acoustic welding process used in assembling the chip packaging device.
  • FIG. 10 illustrates an adhesive dispensing system used in attaching the chip to the chip packaging device. [0025]
  • FIGS. [0026] 11-13 illustrate in greater detail the adhesive dispensing system of FIG. 10.
  • FIGS. 14[0027] a-14 d illustrate the procedure for aligning the system of FIG. 10.
  • FIGS. 15[0028] a-15 e illustrate images obtained during the alignment process of FIGS. 14a-14 d.
  • FIGS. 16[0029] a-16 b illustrate an alternative embodiment of a packaging device.
  • FIGS. 17[0030] a-17 b illustrate another embodiment of a packaging device.
  • FIG. 18 illustrates an alternative embodiment for attaching the chip to the packaging device. [0031]
  • FIG. 19 illustrates another embodiment for attaching the chip to the packaging device. [0032]
  • FIGS. 20[0033] a-20 b illustrate yet another embodiment for attaching the chip to the packaging device.
  • FIG. 21 illustrates an alternative embodiment for attaching the chip to the packaging device. [0034]
  • FIG. 22 illustrates another embodiment for attaching the chip to the packaging device. [0035]
  • FIG. 23 illustrates an alternative embodiment for sealing the cavity on the packaging device. [0036]
  • FIG. 24 illustrates another alternative embodiment for sealing the cavity on the packaging device. [0037]
  • FIG. 25 illustrates yet another embodiment for sealing the cavity on the packaging device. [0038]
  • FIGS. 26[0039] a-26 b illustrate an alternative embodiment for sealing the cavity on the packaging device.
  • FIGS. 27[0040] a-27 b illustrate an alternative embodiment for mounting the chip.
  • FIG. 28 illustrates an agitation system. [0041]
  • FIG. 29 illustrates an alternative embodiment of the agitation system. [0042]
  • FIG. 30 illustrates another embodiment of the agitation system. [0043]
  • FIG. 31 illustrates an alternative embodiment of a chip packaging device. [0044]
  • FIG. 32 illustrates side-views of the chip packaging device of FIG. 31. [0045]
  • FIGS. [0046] 33-35 illustrate in greater detail the chip packaging device of FIG. 31.
  • FIG. 36 illustrates a further alternative embodiment of a chip packaging device.[0047]
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS CONTENTS
  • I. Definitions [0048]
  • II. General [0049]
  • III. Details of One Embodiment of Invention [0050]
  • a. Chip Package [0051]
  • b. Assembly of Chip Package [0052]
  • c. Chip Attachment [0053]
  • IV. Details on Alternative Embodiments [0054]
  • a. Chip Package [0055]
  • b. Chip Attachment [0056]
  • c. Fluid Retention [0057]
  • d. Chip Orientation [0058]
  • e. Parallel Diagnostics [0059]
  • V. Details of an Agitation System [0060]
  • I. Definitions [0061]
  • The following terms are intended to have the following general meanings as they are used herein: [0062]
  • 1. Probe: A probe is a surface-immobilized molecule that is recognized by a particular target and is sometimes referred to as a ligand. Examples of probes that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., opioid peptides, steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides or nucleic acids, oligosaccharides, proteins, and monoclonal antibodies. [0063]
  • 2. Target: A target is a molecule that has an affinity for a given probe and is sometimes referred to as a receptor. Targets may be naturally-occurring or manmade molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Targets may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of targets which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, oligonucleotides or nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Targets are sometimes referred to in the art as anti-probes or anti-ligands. As the term “targets” is used herein, no difference in meaning is intended. A “Probe Target Pair” is formed when two macromolecules have combined through molecular recognition to form a complex. [0064]
  • II. General [0065]
  • The present invention provides economical and efficient packaging devices for a substrate having an array of probes fabricated thereon. The probe arrays may be fabricated according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854 (Pirrung et al.), PCT WO 92/10092, or U.S. application Ser. No. 08/249,188 filed May 24, 1994, already incorporated herein by reference for all purposes. According to one aspect of the techniques described therein, a plurality of probe arrays are immobilized at known locations on a large substrate or wafer. [0066]
  • FIG. 1[0067] a illustrates a wafer 100 on which numerous probe arrays 110 are fabricated. The wafer 100 may be composed of a wide range of material, either biological, nonbiological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc. The wafer may have any convenient shape, such as a disc, square, sphere, circle, etc. The wafer is preferably flat but may take on a variety of alternative surface configurations. For example, the wafer may contain raised or depressed regions on which a sample is located. The wafer and its surface preferably form a rigid support on which the sample can be formed. The wafer and its surface are also chosen to provide appropriate light-absorbing characteristics. For instance, the wafer may be a polymerized Langmuir Blodgett film, functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, or combinations thereof. Other materials with which the wafer can be composed of will be readily apparent to those skilled in the art upon review of this disclosure. In a preferred embodiment, the wafer is flat glass or single-crystal silicon.
  • Surfaces on the solid wafer will usually, though not always, be composed of the same material as the wafer. Thus, the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed wafer materials. [0068]
  • [0069] Wafer 100 includes a plurality of marks 145 that are located in streets 150 (area adjacent to the probe arrays). Such marks may be used for aligning the masks during the probe fabrication process. In effect, the marks identify the location at which each array 110 is to be fabricated. The probe arrays may be formed in any geometric shape. In some embodiments, the shape of the array may be squared to minimize wasted wafer area. After the probe arrays have been fabricated, the wafer is separated into smaller units known as chips. The wafer, for example, may be about 5×5 inches on which 16 probe arrays, each occupying an area of about 12.8 cm2, are fabricated.
  • FIG. 1[0070] b illustrates a chip that has been separated from the wafer. As illustrated, chip 120 contains a probe array 110 and a plurality of alignment marks 145. The marks serve multiple functions, such as: 1) aligning the masks for fabricating the probe arrays, 2) aligning the scriber for separating the wafer into chips, and 3) aligning the chip to the package during the attachment process. In some embodiments, such chips may be of the type known as Very Large Scale Immobilized Polymer Synthesis (VLSIPS™) chips.
  • According to a specific embodiment, the chip contains an array of genetic probes, such as an array of diverse RNA or DNA probes. In some embodiments, the probe array will be designed to detect or study a genetic tendency, characteristic, or disease. For example, the probe array may be designed to detect or identify genetic diseases such as cystic fibrosis or certain cancers (such as P53 gene relevant to some cancers), as disclosed in U.S. patent application Ser. No. 08/143,312, already incorporated by reference. [0071]
  • According to one embodiment, the wafer is separated into a plurality of chips using a technique known as scribe and break. FIG. 2[0072] a illustrates a fully programmable computer controlled scribe and break device, which in some embodiments is a DX-III Scriber breaker manufactured by Dynatex International™. As shown, the device 200 includes a base 205 with a rotation stage 220 on which a wafer is mounted. The rotation stage includes a vacuum chuck for fixing the wafer thereon. A stepper motor, which is controlled by the system, rotates stage 220. Located above the stage is a head unit 230 that includes a camera 232 and cutter 231. Head unit 230 is mounted on a dual-axis frame. The camera generates an image of the wafer on video display 210. The video display 210 includes a cross hair alignment mark 215. The camera, which includes a zoom lens and a fiber optic light, allows a user to inspect the wafer on the video display 210. A control panel 240 is located on the base for operating device 200.
  • In operation, a user places a [0073] wafer 100 on a frame 210 as illustrated in FIG. 2b. The surface of frame 210 is composed of a flexible and sticky material. The tackiness of the frame prevents the chips from being dispersed and damaged during the breaking process. Frame 210 may be a pick and place frame or a hoop that is commonly associated with fabrication of semiconductors. Referring back to FIG. 2a, a user places the frame with the wafer on the rotation stage 220. In some embodiments, the frame is held on the rotation stage by vacuum pressure. The user then aligns the wafer by examining the image displayed on the video display 210.
  • According to one embodiment, wafer alignment is achieved in two steps. First, using the control panel [0074] 240, the user rotates stage 220. The stage is rotated until streets 150 are aligned with the cross hair 215 on the display, as illustrated in FIG. 2c. Next, the user moves the cutter until it is aligned at the center of one of the streets. This step is performed by aligning horizontal line 216 of the cross hair between alignment marks 145, as shown in FIG. 2d.
  • Once the cutter is aligned, the user instructs the device to scribe the wafer. In some embodiments, various options are available to the user, such as scribe angle, scribe pressure, and scribe depth. These parameters will vary depending on the composition and/or thickness of the wafer. Preferably, the parameters are set to scribe and break the wafer without causing any damage thereto or penetrating through the frame. The device repeatedly scribes the wafer until all the streets in one axis have been scribed, which in one embodiment is repeated 5 times (a 4×4 matrix of probe arrays). The user then rotates the stage 90° to scribe the perpendicular streets. [0075]
  • Once the wafer has been scribed, the user instructs the device to break or separate the wafer into chips. Referring back to FIG. 2[0076] a, the device 200 breaks the wafer by striking it beneath the scribe with an impulse bar located under the rotation table 220. The shock from the impulse bar fractures the wafer along the scribe. Since most of the force is dissipated along the scribe, device 200 is able to produce high breaking forces without exerting significant forces on the wafer. Thus, the chips are separated without causing any damage to the wafer. Once separated, the chips are then packaged. Of course, other more conventional techniques, such as the sawing technique disclosed in U.S. Pat. No. 4,016,855, incorporated herein by reference for all purposes, may be employed.
  • III. Details of One Embodiment of the Invention [0077]
  • a. Chip Package [0078]
  • FIG. 3 illustrates a device for packaging the chips. Package [0079] 300 contains a cavity 310 on which a chip is mounted. The package includes inlets 350 and 360 which communicate with cavity 310. Fluids are circulated through the cavity via inlets 350 and 360. A septum, plug, or other seal may be employed to seal the fluids in the cavity. Alignment holes 330 and 335 may be provided for alignment purposes. In some embodiments, the package may include a non-flush edge 320. In some detection systems, the packages may be inserted into a holder similar to an audio cassette tape. The asymmetrical design of the package will assure correct package orientation when inserted into the holder.
  • FIG. 4 illustrates one embodiment of the package. As shown in FIG. 4, the chip package is manufactured by mating two substantially [0080] complementary casings 410 and 420 to form finished assembly 300. Preferably, casings 410 and 420 are made from injection molded plastic. Injection molding enables the casings to be formed inexpensively. Also, assembling the package from two parts simplifies the construction of various features, such as the internal channels for introducing fluids into the cavity. As a result, the packages may be manufactured at a relatively low cost.
  • FIGS. 5[0081] a-5 b show the top casing 410 in greater detail. FIG. 5a shows a top view and FIG. 5b shows a bottom view. Referring to FIG. 5a, top casing 410 includes an external planar surface 501 having a cavity 310 therein. In some embodiments, the surface area of casing 410 sufficiently accommodates the cavity. Preferably, the top casing is of sufficient size to accommodate identification labels or bar codes in addition to the cavity. In a specific embodiment, the top casing is about 1.5″ wide, 2″ long, and 0.2″ high.
  • [0082] Cavity 310 is usually, though not always, located substantially at the center of surface 501. The cavity may have any conceivable size, shape, or orientation. Preferably, the cavity is slightly smaller than the surface area of the chip to be placed thereon and has a volume sufficient to perform hybridization. In one embodiment, the cavity may be about 0.58″ wide, 0.58″ long, and 0.2″ deep.
  • [0083] Cavity 310 may include inlets 350 and 360. Selected fluids are introduced into and out of the cavity via the inlets. In some embodiments, the inlets are located at opposite ends of the cavity. This configuration improves fluid circulation and regulation of bubble formation in the cavity. The bubbles agitate the fluid, increasing the hybridization rate between the targets and complementary probe sequences. In one embodiment, the inlets are located at the top and bottom end of the cavity when the package is oriented vertically such as at the opposite corners of the cavity. Locating the inlet at the highest and lowest positions in the cavity facilitates the removal of bubbles from the cavity.
  • FIG. 5[0084] c illustrates an alternative embodiment in which cavity 310 is oriented such that the edges of the cavity 310 and the casing 410 are non-parallel. This configuration allows inlets 350 and 360 to be situated at the absolute highest and lowest locations in the cavity when the package is vertically oriented. As a result, bubbles or fluid droplets are prevented from being potentially trapped in the cavity.
  • Referring back to FIG. 5[0085] a, a depression 550 surrounds the cavity. In some embodiments, a ridge 560 may be provided at the edge of the depression so as to form a trough. The ridge serves to support the chip above the cavity. To attach the chip to the package, an adhesive may be deposited in the trough. This configuration promotes efficient use of chip surface area, thus increasing the number of chips yielded from a wafer.
  • [0086] Top casing 410 includes alignment holes 330 and 335. In some embodiments, holes 330 and 335 are different in size to ensure correct orientation of the package when mounted on an alignment table. Alternatively, the holes may have different shapes to achieve this objective. Optionally, the holes taper radially inward from surface 501 toward 502 to reduce the friction against alignment pins while still maintaining adequate contact to prevent slippage.
  • Referring to FIG. 5[0087] b, channels 551 and 561 are optionally formed on internal surface 502. Channels 551 and 561 communicate with inlets 350 and 360 respectively. A depression 590 is formed below cavity. According to some embodiments, the shape of depression 590 is symmetrical to the cavity with exception to corners 595 and 596, which accommodate the inlets. The depth of depression 590 may be, for example, about 0.7″. As a result, the bottom wall of the cavity is about 0.05″ thick. Depression 590 may receive a temperature controller to monitor and maintain the cavity at the desired temperature. By separating the temperature controller and cavity with a minimum amount of material, the temperature within the cavity may be controlled more efficiently and accurately. Alternatively, channels may be formed on surface 502 for circulating air or water to control the temperature within the cavity.
  • In some embodiments, [0088] certain portions 595 of internal surface 502 may be eliminated or cored without interfering with the structural integrity of the package when assembled. Coring the casing reduces the wall thickness, causing less heat to be retained during the injection molding process; potential shrinkage or warpage of the casing is significantly reduced. Also, coring decreases the time required to cool the casing during the manufacturing process. Thus, manufacturing efficiency is improved.
  • In one embodiment, the top casing and bottom casing are mated together using a technique known as acoustic or ultrasonic welding. Accordingly, “energy directors” [0089] 510 are provided. Energy directors are raised ridges or points, preferably v-shaped, that are used in an acoustic welding process. The energy directors are strategically located, for example, to seal the channels without interfering with other features of the package and to provide an adequate bond between the two casings. Alternatively, the casings may be mated together by screws, glue, clips, or other mating techniques.
  • FIGS. [0090] 6 shows a cross sectional view of the cavity 310 with chip 120 mounted thereon in detail. As shown, a depression 550 is formed around cavity 310. The depression includes a ridge 560 which supports chip 120. The ridge and the depression create a trough around cavity 310. In some embodiments, the trough is sufficiently large to receive an adhesive 630 for attaching the chip to the package. In one embodiment, the trough is about 0.08″ wide and 0.06″ deep. When mounted, the edge of the chip protrudes slightly beyond ridge 550, but without contacting side 625 of the depression. This configuration permits the adhesive to be dispensed onto the trough and provides adequate surface area for the adhesive to attach chip 120 to the package.
  • According to some embodiments, the [0091] back surface 130 of chip 120 is at least flush or below the plane formed by surface 501 of casing 410. As a result, chip 120 is shielded by surface 501 from potential damage. This configuration also allows the packages to be easily stored with minimal storage area since the surfaces are substantially flat.
  • Optionally, the bottom of the cavity includes a light absorptive material, such as a glass filter or carbon dye, to prevent impinging light from being scattered or reflected during imaging by detection systems. This feature improves the signal-to-noise ratio of such systems by significantly reducing the potential imaging of undesired reflected light. [0092]
  • FIG. 7 shows the internal surface of [0093] bottom casing 420 in greater detail. As shown, the bottom casing 420 is substantially planar and contains an opening 760 therein. Preferably, the casing 420 is slightly wider or slightly longer than the top casing. In one embodiment, casing 420 is about 1.6″ wide, 2.0″ long, and 0.1″ deep, which creates a non-flush edge on the finish assembly. As previously mentioned, this design ensures that the package is correctly oriented when mounted onto the detection systems.
  • In some embodiments, opening [0094] 760 is spatially located at about the depression below the cavity. The opening also has substantially the same geometric configuration as the depression to allow the temperature controller to contact as much of the bottom of the cavity as possible.
  • [0095] Internal surface 701 of casing 420 includes depressions 730 and 740. A port 731 is located in depression 730 and a port 741 is located in depression 740. Ports 731 and 741 communicate with channels on the top casing (350 and 360 in FIG. 5b) when the package is assembled. A seal 790, which may be a septum composed of rubber, teflon/rubber laminate, or other sealing material is provided for each depression. The septum may be of the type commonly used to seal and reseal vessels when a needle is inserted into the septum for addition/removal of fluids. The septums, when seated in the depressions, extend slightly above surface, which in some embodiments is about 0.01″.
  • This design causes [0096] casings 410 and 420 to exert pressure on the septum, forming a seal between the ports and the channels. The seal is maintained even after fluid is injected into the cavity since the pressure immediately forces the septum to reseal itself after the needle or other fluid injecting means is removed from the port. Thus, an efficient and economical seal for retaining fluid in the cavity is provided.
  • Also, casing [0097] 420 includes the complementary half alignment holes 330 and 335, each tapering radially inward from the external surface. Further, certain areas 765 on internal surface 701 may be cored, as similar to the internal surface of the top casing.
  • FIG. 31 is a simplified illustration of an alternative embodiment of a [0098] chip packaging device 3100 according to the present invention. The chip packaging device includes a plurality of casings 3200, 3300, and 3400. The casings may be defined as a top casing 3200, a middle casing 3300, and a bottom casing 3400. The casings are made of known plastic materials such as ABS plastic, polyvinylchloride, polyethylene, products sold under the trademarks TEFLON™ and KALREZ™ and the like, among others. Preferably, the casings can be made by way of injection molding and the like. Assembling the chip packaging device from three casings simplifies construction for the fabrication of internal channels and the like, and can also be made at a relatively low cost.
  • Support structures (or alignment holes) exist at selected locations of the chip packing device. The support structures can be used to mount or position the chip packaging device to an apparatus, e.g., scanner or the like. In an embodiment, the [0099] top casing 3200 includes support structures 3201 and 3203 on each side of a center opening 3209. The middle casing 3300 includes similar support structures 3313 and 3315 which are complementary to the support structures 3201 and 3203, respectively, in the top casing. The bottom casing also includes similar support structures 3403 and 3401, respectively, which are complementary to the support structures in the top casing and the middle casing. As shown, each of the support structures on each side of the center opening align with each other. Each support structure is, for example, an aperture through the casing. The aperture includes an outer periphery defined by a geometrical shape which may be round, rectangular, trapezoidal, hexagonal, or the like.
  • The present chip packaging device assembles with use of complementary alignment pins and bores on the casings. By way of alignment pins (not shown), the top casing aligns with and inserts into alignment bores [0100] 3301, 3303 in the middle casing 3300. Alternatively, the middle casing can have alignment pins or the like and the top casing has the alignment bores or the like. The bottom casing includes alignment pins 3407 and 3409 which align to and insert into alignment bores (not shown) in bottom portions of the middle casing. The use of alignment bores and pins provide for ease in assembly of the chip carrier. Upon assembly, the alignment bores and pins on the casings prevent the casings from moving laterally relative to each other.
  • A [0101] center opening 3209 in the top casing overlies a center portion 3317 of the middle casing 3300. The center portion 3317 of the middle casing includes an inner annular region (or cavity edges) with a bottom portion which is preferably a flat bottom portion. The flat bottom portion of the middle casing and portions of the bottom casing including edges define a cavity 3405. A chip is placed overlying an underlying portion of the cavity 3407.
  • Optionally, a temperature control mechanism such as a heater, a cooler, or a combination thereof is disposed into the center opening against the bottom portion of the middle casing. The temperature control mechanism can be any suitable thermally controlled element such as a resistive element, a temperature controlled block or mass, thermoelectric modules, or the like. The temperature control mechanism transfers heat via conduction to the bottom center portion, which transfers heat to, for example, fluid in the cavity or the chip. Alternatively, the temperature control mechanism sinks heat away from, for example, fluid in the cavity or the chip through the bottom center portion. The temperature control mechanism maintains a selected temperature in the cavity. The temperature control mechanism also includes a temperature detection device such as a thermocouple which provides signals corresponding to temperature readings. A controller receives the signals corresponding to the temperature readings, and adjusts power output to the temperature control mechanism to maintain the selected temperature. [0102]
  • The [0103] top casing 3200 also includes channels 3205 and 3207 for fluid transfer. The channels 3205 and 3207 communicate with annular regions 3309 and 3311, respectively, on the middle casing 3300 for fluid transfer. A septum, a plug, an o-ring, a gasket, or the like via annular regions 3309 and 3311 seals fluids within the top casing channels 3205 and 3207 and the middle casing. The bottom casing includes channels 3411 and 3413 in communication with channels 3307 and 3305, respectively. A septum, a plug, an o-ring, a gasket, or the like seals the fluids within the bottom casing channels 3411 and 3413 and the middle casing channels 3305 and 3307.
  • The chip packaging device provides an even distribution of fluid (or fluid flow) through the cavity over a top surface (or inner or active surface) of the chip. For example, a selected fluid enters [0104] channel 3207, flows through channel 3307, changes direction and flows through channel 3411, and evenly distributes into the cavity 3405 over the top surface of the chip. As previously noted, the cavity is defined by the flat bottom portion and cavity edges. A selected fluid exits the cavity by way of channel 3413, channel 3305, and channel 3205. The fluid flow over the top surface of the chip is preferably laminar, but may also be turbulent, a combination thereof or the like. By way of the present chip packaging device, a substantial portion of turbulent flow remains at an upper portion of the channel 3411, and does not enter the cavity.
  • Preferably, a selected fluid enters the cavity by way of [0105] channel 3205, channel 3305, and channel 3413. The selected fluid exits the cavity through channel 3411, channel 3307, and channel 3207. In a preferred embodiment, the fluid flows against the direction of gravity through the cavity. Of course, other fluid flow routes may also be employed depending upon the particular application.
  • FIG. 32 illustrates an assembled [0106] chip packaging device 3100 according to the present invention. As shown are a top-view 3200, a side-view 3500, a bottom-view 3400, and a front-view 3600 of the assembled chip packaging device 3100. The assembled chip packaging device 3100 includes the bottom casing 3400, the middle casing 3300, and the top casing 3200.
  • The top-[0107] view 3200 of the top casing includes alignment structures 3205, 3215 surrounding opening 3209. The opening 3209 includes a bevelled annular region 3211 surrounding the periphery of the channel 3209. The alignment bores 3203 and 3201 also include bevelled annular regions 3213 and 3215, respectively. A bevelled annular region 3217, 3221 also surrounds each fluid channel 3205, 3207 to assist with fluid flow therethrough.
  • The bottom-[0108] view 3400 of the bottom casing includes alignment structures 3401, 3403 surrounding the cavity 3405. The cavity includes a flat bottom peripheral portion 3415, a bevelled portion 3417 extending from the flat bottom peripheral portion, and a flat upper portion 3419 surrounding the bevelled portion. The chip includes an outer periphery which rests against the flat bottom peripheral portion 3415. The bevelled portion aligns the chip onto the flat bottom peripheral portion 3415. Similar to the previous embodiments, the top casing extends outside 3421 the middle and bottom casings.
  • The [0109] cavity 3405 is preferably located at a center of the bottom casing, but may also be at other locations. The cavity may be round, square, rectangular, or any other shape, and orientation. The cavity is preferably smaller than the surface area of the chip to be placed thereon, and has a volume sufficient to perform hybridization and the like. In one embodiment, the cavity includes dimensions such as a length of about 0.6 inch, a width of about 0.6 inch and a depth of about 0.07 inch.
  • In a preferred embodiment, the bottom casing with selected cavity dimensions may be removed from the middle and top casings, and replaced with another bottom casing with different cavity dimensions. This allows a user to attach a chip having a different size or shape by changing the bottom casing, thereby providing ease in using different chip sizes, shapes, and the like. Of course, the size, shape, and orientation of the cavity will depend upon the particular application. [0110]
  • FIGS. [0111] 33-35 illustrate in greater detail the chip packaging device of FIG. 31. FIG. 33 illustrates simplified top-view 3260 and bottom-view 3250 diagrams of the top casing 3200. As shown, the reference numerals refer to the same elements as the top casing of FIG. 31. FIG. 34 illustrates a simplified top-view 3350 and bottom-view 3360 diagrams of the middle casing 3300. As shown, the reference numerals refer to the same elements as the middle casing of FIG. 31. In addition, the bottom-view of the casing includes a substantially smooth and planar bottom surface 3361. A portion of the bottom surface defines an upper portion of the cavity. But the bottom surface can also be textured, ridged, or the like to create turbulence or a selected fluid flow through the cavity. The bottom surface is preferably a hydrophobic surface which enhances laminar flow through the cavity. Of course, the type of bottom surface depends upon the particular application.
  • FIG. 35 illustrates simplified top-[0112] view 3460 and bottom-view 3450 diagrams of the bottom casing 3400. As shown, the reference numerals refer to the same elements as the bottom casing of FIG. 31. In an embodiment, fluid from channel 3305 changes direction at an upper portion 3431 of the channel and flows to a lower portion 3433 of the channel. Fluid evenly distributes from the lower portion 3433 via a fluid distribution point 3435. The distributed fluid evenly passes over a slanted edge (or bevelled edge) 3437 which drops fluid evenly to a top surface of the chip in the cavity. By way of slanted edge 3427 which slopes up to a fluid concentration point 3425, fluid leaves the cavity and enters the channel 3411. In particular, fluid leaves the cavity and enters a lower portion 3423 of the channel, flows through the channel, and changes directions at an upper portion 3421 of the channel. Each channel includes a length L and a width W. The distribution point and the concentration point are positioned at a distance away from the cavity to substantially prevent turbulence from forming in the cavity, and in particular over the top surface of the chip. The channels are each angled at an angle Θ ranging from about 2 degrees to about 90 degrees, but is preferably about 5 degrees to about 45 degrees. The angle enhances an even distribution of laminar flow into the cavity. Of course, the exact angle, channel shape, and dimensions depend upon the particular application.
  • FIG. 36 illustrates a simplified cross-sectional view of an [0113] alternative embodiment 3600 of the chip packaging device. The chip packaging device includes the three casings 3200, 3300, and 3400 of the previous embodiment, and also includes hollow pins, needles, or the like 3601 and 3603. Each of the pins transfers a selected fluid to and from the cavity 3405. Preferably, each pin 3601 includes an external opening 3609, a tubular region 3611, an inner opening 3607, a pointed tip 3605, and other elements. The pin is made from a suitable material such as a glass, a stainless steel or any other high quality material to transfer fluids to and from the cavity 3405.
  • In a preferred embodiment, each pin is inserted into its [0114] channel region 3205 or 3207. A point on the pin tip pierces through, for example, a septum at an annular region 3309 or 3311. A selected fluid travels through pin 3603 (through channel 3205 and at least a portion of 3305), enters the upper region of channel 3413, and into the cavity 3405. The selected fluid travels from the cavity, through pin 3601, and to the external apparatus. Alternatively, the selected fluid enters the cavity via pin 3601 and exits the cavity via pin 3603. The selected fluid may also enter the cavity via pin and exit the cavity through the channels without use of a pin. The selected fluid may further enter the cavity through the channels without use of a pin and exit through a pin. Of course, the particular pin used and fluid flow will depend upon the application.
  • It should be noted that the even distribution of fluid flow through the cavity prevents “hot spots” from occurring in the cavity. For example, the even distribution of fluid through the cavity by way of the previous embodiment substantially prevents fluid from becoming substantially turbulent at certain locations. This prevents “hot spots” caused by such turbulent fluid. The hot spots are often caused by higher chemical activity or exothermic reactions and the like by way of turbulence in such certain locations. [0115]
  • b. Assembly of Chip Package [0116]
  • According to one embodiment, the top and bottom casing are attached by a technique known as ultrasonic or acoustic welding. FIG. 8[0117] a is a schematic diagram of acoustic welding system used for assembling the package. In some embodiments, the welding system 800 is a HS Dialog ultrasonic welder manufactured by Herrmann Ultrasonics Inc. System 800 includes a platform 850 mounted on base 810. Platform 850 accommodates the top and bottom casings during the assembling process.
  • An [0118] acoustic horn 860 is mounted on a frame above platform 850. The horn translates vertically (toward and away from platform 850) on the frame by air pressure. The horn is connected to a frequency generator 870, which in some embodiments is a 20 KHz generator manufactured by Herrmann Ultrasonics Inc. System 800 is controlled by a controller 880, which, for example, may be a Dialog 2012 manufactured by Herrmann Ultrasonics Inc. Controller 880 may be configured to accept commands from a digital computer system 890. Computer 890 may be any appropriately programmed digital computer of the type that is well known to those skilled in the art such as a Gateway 486DX operating at 33 MHz.
  • FIG. 8[0119] b illustrates platform 850 in greater detail. The platform 850 is substantially planar and includes alignment pins 851 and 852. Alignment pins 851 and 852 are used to align both the top and bottom casings during the welding process. In some embodiments, a pad 890, which may be composed of silicone rubber or other energy absorbing material, is located on platform 850 to prevent damage to the package during assembly.
  • FIG. 9[0120] a illustrates the acoustic welding system in operation. As shown, bottom casing 420, having a septum 790 seated in each depression, is mounted onto platform table 850 and held in place by alignment pins. Top casing 410 is then aligned above the bottom casing with alignment pins. The system then commences the welding process by lowering horn 860 until it contacts the top surface of casing 410.
  • FIG. 9[0121] b illustrates the casing and horn in detail. As shown, the horn 860 presses against top casing 410, thereby forcing energy directors 510 to interface with bottom casing 420. The system then activates the frequency generator, causing the welding horn to vibrate.
  • FIG. 9[0122] c illustrates in detail the energy directors during the welding process. As shown in step 9001, welding horn 860 forces energy directors 510 against bottom casing 420. At step 9002, the system vibrates the welding horn, which in some embodiments is at 20 KHz. The energy generated by the horn melts the energy directors. Simultaneously, the horn translates downward against the package. At step 9003, the pressure exerted by the horn causes the energy directors to fuse with the bottom casing. At step 9004, the welding process is completed when the horn reaches its weld depth, for example, of about 0.01″. Of course, the various welding parameters may be varied, according to the composition of the materials used, to achieve optimum results.
  • c. Chip Attachment [0123]
  • According to some embodiments, an ultraviolet cured adhesive attaches the chip to the package. FIG. 10 schematically illustrates an adhesive dispensing system used in attaching the chip. The [0124] dispensing system 1000 includes an attachment table 1040 to accommodate the package during the attachment process. A chip alignment table 1050 for aligning the chip is located adjacent to attachment table 1040. A head unit 1030 for dispensing the adhesive is located above tables 1040 and 1050. The head unit 1030 also includes a camera that generates an output to video display 1070. Video display 1070, in some embodiments, includes a cross hair alignment mark 1071. The head unit is mounted on a dual-axis (x-y) frame for positioning during alignment and attachment of the chip. The operation of the dispensing system is controlled by a computer 1060, which in some embodiments may be Gateway 486DX operating at 33 MHz.
  • FIG. 11 illustrates the attachment table in greater detail. The attachment table [0125] 1040 has a substantially flat platform 1110 supported by a plurality of legs 1105. Alignment pins 1115 and 1116, which secure the package during the attachment process, are located on the surface of platform 1110.
  • Optionally, a [0126] needle 1120 is provided. Needle 1120 includes a channel 1121 and is connected to a vacuum pump. In operation, the needle is inserted into one of the ports of the package in order to generate a vacuum in the cavity. The vacuum pressure secures the chip to the package during the attachment process.
  • FIG. 12[0127] a shows table 1050 in greater detail. Table 1050 includes a substantially flat platform 1210 having a depression 1240 for holding a chip. In some embodiments, a port 1241 is provided in depression 1240. Port 1241 is connected to a vacuum pump which creates a vacuum in the depression for immobilizing the chip therein. Platform 1210 is mounted on a combination linear rotary stage 1246, which in some embodiments may be a model 26LR manufactured by DARDAL, and a single axis translation stage 1245, which may be a model CR2226HSE2 manufactured by DARDAL.
  • FIG. 12[0128] b illustrates depression 1240 in greater detail. As shown, a ledge 1241 surrounds the depression 1240. Ledge 1241 supports the chip when it is placed above depression 1240. Since the chips are placed over the depression with the probes facing the table, this design protects the probes from being potentially damaged during alignment.
  • FIG. 13 illustrates the [0129] head unit 1030 in greater detail. As shown, the head unit 1030 includes a camera assembly 1320 that generates an output to a video display. A light 1360 is provided to enable the camera to focus and image an object of interest. The head unit also includes an ultraviolet light 1350 for curing the adhesive, a vacuum pickup 1330 for moving chip during the attachment process, and an adhesive dispenser 1340.
  • In operation, a chip package is placed onto table [0130] 1040. As previously described, the alignment pins on the table immobilize the package. The user begins the chip attachment process by calibrating the head unit. This may be done by moving the camera above the package and aligning it with a mark on the package, as shown in FIG. 14a. For convenience, one of the alignment pins may be used as an alignment mark. FIG. 14b illustrates a typical image 1440 generated by the camera during this step. As shown, the head unit is not aligned with pin 1480. To align the head unit, the user translates it in both the x and y direction until pin 1480 is located at the intersection 1477 of the cross hair on the video display, as illustrated in FIG. 14c.
  • Next, the chip is inserted into the depression on the chip alignment table. FIG. 14[0131] c is a flow chart indicating the steps for aligning the chip. At step 1410, the system positions the camera (head unit) above one of the chip's alignment marks. The camera images the alignment mark on the video display. At this point, the mark is normally misaligned (i.e., the mark is not located at the intersection of the cross hair alignment mark). At step 1420, the user adjusts the chip alignment table in both the x and y direction until the mark is substantially located at the intersection of the cross hair. Since no rotational adjustments were made, the mark may be misaligned angularly.
  • At [0132] step 1430, the user instructs the system to move the camera above a second alignment mark, which usually is at an opposite corner of the chip. Again, an image of the alignment mark is displayed. At this stage, the alignment mark is probably misaligned in the x, y, and angular directions. At step 1440, the user adjusts the rotational stage, x-stage, and y-stage, if necessary, to align the mark with the cross hair on the video display. In instances where the rotational stage has been rotated, the first alignment mark will become slightly misaligned. To compensate for this shift, the user repeats the alignment process beginning at step 1450 until both marks are aligned. Of course, image processing techniques may be applied for automated head unit and chip alignment.
  • FIG. 15[0133] a is an example of an image displayed by the video screen during step 1410. As shown, the first alignment mark (lower left corner of the chip) is not aligned with the cross hair marking. FIG. 15b exemplifies an image of the first alignment mark after adjustments were made by the user. FIG. 15c illustrates a typical image displayed by video screen during step 1430. As illustrated, the second alignment mark (upper right corner of the chip) is misaligned in the x, y, and angular directions. FIG. 15d illustrates an image of the second mark following initial adjustments by the user at step 1440. FIG. 15e illustrates the orientation of the second alignment mark after the chip has been aligned.
  • Once the chip is aligned, the vacuum holding the chip on the attachment table is released. Thereafter, the pickup on the head unit removes the chip from the table and aligns it on the cavity of the package. In some embodiments, the chip is mated to the pickup by a vacuum. [0134]
  • Optionally, the user may check to ensure that the chip is correctly aligned on the cavity by examining the chip's alignment marks with the camera. If the chip is out of position, the chip is removed and realigned on the alignment table. If the chip is correctly positioned, the system deposits an adhesive by moving the dispenser along the trough surrounding the cavity. In some embodiments, the vacuum is released before depositing the adhesive in the trough. This step is merely precautionary and implemented to ensure that the vacuum does not cause any adhesive to seep into the cavity. Once the adhesive is deposited, the system reexamines the chip to determine if the adhesive had moved the chip out of position. If the chip is still aligned, the head unit locates the ultraviolet light above the adhesive and cures it for a time sufficient to harden the adhesive, which in one embodiment is about 10 seconds. Otherwise, the chip is realigned. [0135]
  • Upon completion, the chip package will have a variety of uses. For example, the chip package will be useful in sequencing genetic material by hybridization. In sequencing by hybridization, the chip package is mounted on a hybridization station where it is connected to a fluid delivery system. Such system is connected to the package by inserting needles into the ports and puncturing the septums therein. In this manner, various fluids are introduced into the cavity for contacting the probes during the hybridization process. [0136]
  • Usually, hybridization is performed by first exposing the sample with a prehybridization solution. Next, the sample is incubated under binding conditions with a solution containing targets for a suitable binding period. Binding conditions will vary depending on the application and are selected in accordance with the general binding methods known including those referred to in: Maniatis et al., [0137] Molecular Cloning: A Laboratory Manual (1989), 2nd Ed., Cold Spring Harbor, N.Y. and Berger and Kimmel, Methods in Enzymology, Volume 152, Guide to Molecular Cloning Techniques (1987), Academic Press, Inc., San Diego, Calif.; Young and Davis (1983) Proc. Natl. Acad. Sci. (U.S.A.) 80: 1194, which are incorporated herein by reference. In some embodiments, the solution may contain about 1 molar of salt and about 1 to 50 nanomolar of targets. Optionally, the fluid delivery system includes an agitator to improve mixing in the cavity, which shortens the incubation period. Finally, the sample is washed with a buffer, which may be 6×SSPE buffer, to remove the unbound targets. In some embodiments, the cavity is filled with the buffer after washing the sample.
  • Thereafter, the package may be aligned on a detection or imaging system, such as those disclosed in U.S. Pat. No. 5,143,854 (Pirrung et al.) or U.S. patent application Ser. No. 08/495,889 (Attorney Docket Number 11509-117), already incorporated herein by reference for all purposes. Such detection systems may take advantage of the package's asymmetry (i.e., non-flush edge) by employing a holder to match the shape of the package specifically. Thus, the package is assured of being properly oriented and aligned for scanning. The imaging systems are capable of qualitatively analyzing the reaction between the probes and targets. Based on this analysis, sequence information of the targets is extracted. [0138]
  • IV. Details on Alternative Embodiments [0139]
  • a. Chip Package Orientation [0140]
  • FIGS. 16[0141] a-16 b illustrate an alternative embodiment of the package. FIG. 16a shows a top view and FIG. 16b shows a bottom view. As shown in FIG. 16a, a cavity 1620 is located on a top surface 1610 of the package body 1600. The body includes alignment holes 1621 and 1622 that are used, for example, in mating the chip to the package. Optionally, a plurality of ridges 1690 is located at end 1660 of the body. The friction created by ridges 1690 allows the package to be handled easily without slippage.
  • The body also includes two substantially [0142] parallel edges 1630 and 1640. As shown, edge 1640 is narrowed at end 1665 to create an uneven edge 1645. The asymmetrical design of the body facilitates correct orientation when mounted onto detection systems. For example, detection systems may contain a holder, similar to that of an audio cassette tape, in which end 1665 is inserted.
  • Referring to FIG. 16[0143] b, ports 1670 and 1671 communicate with cavity 1620. A seal is provided for each port to retain fluids in the cavity. Similar to the top surface, the bottom surface may optionally include a plurality of ridges 1690 at end 1660.
  • FIGS. 17[0144] a-17 b illustrate an alternative embodiment of the package. FIG. 17a shows a top view and FIG. 17b shows a bottom view. Referring to FIG. 17a, a cavity 1720 is located on a top surface 1710 of the package body 1700. The body may be formed in the shape of a disk with two substantially parallel edges 1730 and 1740. Alignment holes 1721 and 1722, which may be different in size or shape, are located on the body. In some embodiments, the package is inserted like an audio cassette tape into detection systems in a direction parallel to edges 1730 and 1740. Edges 1730 and 1740 and alignment holes prevent the package from being inserted incorrectly into the detection systems.
  • As shown in FIG. 17[0145] b, ports 1730 and 1740 are located on the bottom surface 1715 of the package. Ports 1730 and 1740 communicate with cavity 1720 and each include a seal 1780 for sealing fluids in the cavity.
  • b. Chip Attachment [0146]
  • FIG. 18 illustrates an alternative embodiment for attaching the chip to the package. As shown, two [0147] concentric ledges 1810 and 1820 surround the perimeter of cavity 310. Ledge 1820 supports the chip 120 when mounted above cavity 310. Ledge 1810, which extends beyond chip 120, receives an adhesive 1860 such as ultraviolet cured silicone, cement, or other adhesive for attaching the chip thereto.
  • FIG. 19 illustrates another embodiment for attaching the chip to the package. According to this embodiment, a [0148] ledge 1910 is formed around cavity 310. Preferably, the ledge is sufficiently large to accommodate an adhesive 1920 such as an adhesive film, adhesive layer, tape, or any other adhesive layer. Chip 120 attaches to the package when it contacts the adhesive film.
  • FIG. 20[0149] a illustrates yet another embodiment for attaching a chip to the package. As shown, a clamp 2010, such as a frame having a plurality of fingers 2015, attaches the chip to the package. FIG. 20b illustrates a cross sectional view. A ridge 2020 on surface 501 surrounds cavity 310. The ridge includes a ledge 2025 upon which chip 120 rests. Optionally, a gasket or a seal 2070 is located between the ledge and chip to ensure a tight seal around cavity 310. Clamp 2010 is attached to side 2040 of ridge 2020 and surface 501. In some embodiments, clamp 2010 is acoustically welded to the body. Accordingly, clamp 2010 includes energy directors 2050 located at its bottom. Alternatively, screws, clips, adhesives, or other attachment techniques may be used to mate clamp 2010 to the package. When mated, fingers 2015 secure chip 120 to the package.
  • FIG. 21 illustrates an alternative embodiment for attaching the chip to the package. A [0150] ridge 2110, having a notch 2115 at or near the top of ridge 2110, encompasses the cavity 310. Chip 120 is wedged and held into position by notch 2115. Thereafter, a process known as heat staking is used to mount the chip. Heat staking includes applying heat and force at side 2111 of ridge, thus forcing ridge tightly against or around chip 120.
  • FIG. 22 shows another embodiment of attaching a chip onto a package. As shown, a [0151] channel 2250 surrounds cavity 310. A notch 2240 for receiving the chip 120 is formed along or near the top of the cavity 310. In some embodiments, a gasket or seal 2270 is placed at the bottom of the notch to ensure a tight seal when the chip is attached. Once the chip is located at the notch, a V-shaped wedge 2260 is inserted into channel 2250. The wedge forces the body to press against chip's edges and seal 2260, thus mating the chip to the package. This process is known as compression sealing.
  • Other techniques such as insert molding, wave soldering, surface diffusion, laser welding, shrink wrap, o-ring seal, surface etching, or heat staking from the top may also be employed. [0152]
  • c. Fluid Retention [0153]
  • FIG. 23 shows an alternative embodiment of package that employs check valves to seal the inlets. As shown, [0154] depressions 2305 and 2315 communicate with cavity 310 through inlets 350 and 360. Check valves 2310 and 2320, which in some embodiments may be duck-billed check valves, are seated in depressions 2305 and 2315. To introduce a fluid into the cavity, a needle is inserted into the check valve. When the needle is removed, the check valve reseals itself to prevent leakage of the fluid.
  • FIG. 24 illustrates another package that uses reusable tape for sealing the [0155] cavity 310. As shown, a tape 2400 is located above inlets 350 and 360. Preferably, end 2430 of tape is permanently fixed to surface 2480 while end 2410 remains unattached. The mid section 2420 of the tape is comprised of non-permanent adhesive. This design allows inlets to be conveniently sealed or unsealed without completely separating the tape from the package.
  • FIG. 25 illustrates yet another embodiment of the package that uses plugs to retain fluids within the cavity. As shown, [0156] depressions 2520 and 2530 communicate with cavity 310 via inlets 350 and 360. A plug 2510, which in some embodiment may be composed of rubber or other sealing material, is mated to each of the depressions. Plugs 2510 are easily inserted or removed for sealing and unsealing the cavity during the hybridization process.
  • FIG. 26[0157] a illustrates a package utilizing sliding seals for retaining fluids within the cavity. The seals are positioned in slots 2610 that are located above the inlets. The slots act as runners for guiding the seals to and from the inlets. FIG. 26b illustrates the seal in greater detail. Seal 2640, which may be composed of rubber, teflon rubber, or other sealing material, is mated to each slot 2610. The seal includes a handle 2650 which extends through the slot. Optionally, the bottom of the seal includes an annular protrusion 2645 to ensure mating with inlet 350. The inlet is sealed or unsealed by positioning the seal appropriately along the slot. Alternatively, spring loaded balls, rotary ball valves, plug valves, or other fluid retention techniques may be employed.
  • d. Chip Orientation [0158]
  • FIGS. 27[0159] a-27 b illustrate an alternative embodiment of the package. FIG. 27a illustrates a top view and FIG. 27b shows a cross sectional view. As shown, package 2700 includes a cavity 2710 on a surface 2705. A chip 2790 having an array of probes 2795 on surface 2791 is mated to the bottom of cavity 2710 with an adhesive 2741. The adhesive, for example, may be silicone, adhesive tape, or other adhesive. Alternatively, clips or other mounting techniques may be employed. Optionally, the bottom of the cavity may include a depression in which a chip is seated.
  • This configuration provides several advantages such as: 1) permitting the use of any type of substrate (i.e., non-transparent or non-translucent), 2) yielding more chips per wafer since the chip does not require an edge for mounting, and 3) allowing chips of various sizes or multiple chips to be mated to the package. [0160]
  • A [0161] cover 2770 is mated to the package for sealing the cavity. Preferably, cover 2770 is composed of a transparent or translucent material such as glass, acrylic, or other material that is penetrable by light. Cover 2270 may be mated to surface 2705 with an adhesive 2772, which in some embodiments may be silicone, adhesive film, or other adhesive. Optionally, a depression may be formed around the cavity such that surface 2271 of the cover is at least flush with surface 2705. Alternatively, the cover may be mated to surface 2705 according to any of the chip attachment techniques described herein.
  • [0162] Inlets 2750 and 2751 are provided and communicate with cavity 2710. Selected fluids are circulated through the cavity via inlets 2750 and 2751. To seal the fluids in the cavity, a septum, plug, or other seal may be employed. In alternative embodiments, any of the fluid retention techniques described herein may be utilized.
  • e. Parallel Hybridization and Diagnostics [0163]
  • In an alternative embodiment, the body is configured with a plurality of cavities. The cavities, for example, may be in a [0164] 96-well micro-titre format. In some embodiments, a chip is mounted individually to each cavity according to the methods described above. Alternatively, the probe arrays may be formed on the wafer in a format matching that of the cavities. Accordingly, separating the wafer is not necessary before attaching the probe arrays to the package. This format provides significant increased throughput by enabling parallel testing of a plurality of samples.
  • V. Details of an Agitation System [0165]
  • FIG. 28 illustrates an agitation system in detail. As shown, the [0166] agitation system 2800 includes two liquid containers 2810 and 2820, which in the some embodiments are about 10 milliliters each. Container 2810 communicates with port 350 via tube 2850 and container 2820 communicates with port 360 via tube 2860. An inlet port 2812 and a vent port 2811 are located at or near the top of container 2810. Container 2820 also includes an inlet port 2822 and a vent 2821 at or near its top. Port 2812 of container 2810 and port 2822 of container 2820 are both connected to a valve assembly 2828 via valves 2840 and 2841. An agitator 2801, which may be a nitrogen gas (N2) or other gas, is connected to valve assembly 2828 by fitting 2851. Valves 2840 and 2841 regulate the flow of N2 into their respective containers. In some embodiments, additional containers (not shown) may be provided, similar to container 2810, for introducing a buffer and/or other fluid into the cavity.
  • In operation, a fluid is placed into [0167] container 2810. The fluid, for example, may contain targets that are to be hybridized with probes on the chip. Container 2810 is sealed by closing port 2811 while container 2820 is vented by opening port 2821. Next, N2 is injected into container 2810, forcing the fluid through tube 2850, cavity 310, and finally into container 2820. The bubbles formed by the N2 agitate the fluid as it circulates through the system. When the amount of fluid in container 2810 nears empty, the system reverses the flow of the fluid by closing valve 2840 and port 2821 and opening valve 2841 and port 2811. This cycle is repeated until the reaction between the probes and targets is completed.
  • In some applications, foaming may occur when N[0168] 2 interacts with the fluid. Foaming potentially inhibits the flow of the fluid through the system. To alleviate this problem, a detergent such as CTAB may be added to the fluid. In one embodiment, the amount of CTAB added is about 1 millimolar. Additionally, the CTAB affects the probes and targets positively by increasing the rate at which they bind, thus decreasing the reaction time required.
  • The system described in FIG. 28 may be operated in an alternative manner. According to this technique, back pressure formed in the second container is used to reverse the flow of the solution. In operation, the fluid is placed in [0169] container 2810 and both ports 2811 and 2821 are closed. As N2 is injected into container 2810, the fluid is forced through tube 2850, cavity 310, and finally into container 2820. Because the vent port in container 2820 is closed, the pressure therein begins to build as the volume of fluid and N2 increases. When the amount of fluid in container 2810 nears empty, the flow of N2 into container 2810 is terminated by closing valve 2840. Next, the circulatory system is vented by opening port 2811 of container 2810. As a result, the pressure in container 2820 forces the solution back through the system toward container 2810. In one embodiment, the system is injected with N2 for about 3 seconds and vented for about 3 seconds. This cycle is repeated until hybridization between the probes and targets is completed.
  • FIG. 29 illustrates an alternative embodiment of the agitation system. [0170] System 2900 includes a vortexer 2910 on which the chip package 300 is mounted. A container 2930 for holding the fluid communicates with inlet 350 via tube 2950. A valve 2935 may be provided to control the flow of solution into the cavity. In some embodiments, circulator 2901, which may be a N2 source or other gas source, is connected to container 2930. Alternatively, a pump or other fluid transfer device may be employed. The flow of N2 into container 2930 is regulated by a valve 2936. Circulator 2901 is also connected to inlet tube 2950 via a valve 2902.
  • A [0171] waste container 2920 communicates with port 360 via outlet tube 2955. In one embodiment, a liquid sensor 2940 may be provided for sensing the presence of liquid in outlet tube 2955. Access to the waste container may be controlled by a valve 2921. Optionally, additional containers (not shown), similar to container 2930, may be employed for introducing a buffer or other fluid into the cavity.
  • The system is initialized by closing all valves and filling [0172] container 2930 with, for example, a fluid containing targets. Next, valves 2936, 2935, and 2955 are opened. This allows N2 to enter container 2930 which forces the fluid to flow through tube 2950 and into the cavity. When the cavity is filled, valves 2935, 2936, and 2955 are closed to seal the fluid in the cavity. Next, the vortexer is activated to vibrate the chip package, similar to a paint mixer. In some embodiments, the vortexer may vibrate the package at about 3000 cycles per minutes. The motion mixes the targets in the fluid, shortening the incubation period. In some embodiments, the vortexer rotates the chip package until hybridization is completed. Upon completion, valve 2902 and 2955 are opened to allow N2 into the cavity. The N2 empties the fluid into waste container 2920. Subsequently, the cavity may be filled with a buffer or other fluid.
  • FIG. 30 illustrates an alternative embodiment in which the agitation system is partially integrated into the chip package. As shown, [0173] chip package 300 includes a cavity 310 on which the chip is mounted. Cavity 310 is provided with inlets 360 and 350. The package also includes chambers 3010 and 3020. A port 3021 is provided in chamber 3010 and is connected to inlet 360 by a channel 3025.
  • [0174] Chamber 3010 is equipped with ports 3011 and 3012. Port 3012 communicates with inlet 350 through a channel 3015. Channel 3015 is provided with a waste port 3016 that communicates with a fluid disposal system 3500 via a tube 3501. A valve 3502 regulates the flow of fluids into the disposal system. In some embodiments, the disposal system includes a waste container 3510 and fluid recovery container 3520 which are connected to tube 3501. A valve 3530 is provided to direct the flow of fluids into either the waste container or recovery container.
  • Port [0175] 3011 is coupled to a fluid delivery system 3600 through a tube 3601. Fluids flowing into chamber 3010 from the fluid delivery system are regulated by a valve 3602. The fluid delivery system includes fluid containers 3610 and 3620 that are interconnected with a tube 3690. Container 3610, which may hold a fluid containing targets, includes ports 3616 and 3615. Port 3616 is connected to tube 3690. A valve 3612 controls the flow of the fluid out of container 3610. A circulator 3605, which may be a N2 source, is connected to port 3615 of container 3610. Alternatively, any type of gas, pump or other fluid transfer device may be employed. The flow of N2 into container 3610 is controlled by a valve 3618. A valve 3619 may also be provided to vent container 3610.
  • [0176] Container 3620, which may hold a buffer, is provided with ports 3625 and 3626. Circulator 3605 is connected to port 3625. A valve 3621 is provided to control the flow of N2 into container 3620. Port 3626 is connected to tube 3690 via a valve 3622. Valve 3622 regulates the flow of the buffer out of container 3620. Optionally, additional containers (not shown), similar to container 3620, may be configured for introducing other fluids into the cavity. A valve 3690 connects circulator 3605 to tube 3690 for controlling the flow of N2 directly into the package. A valve 3652 is provided for venting the fluid delivery system.
  • In the initial operating state, all valves are shut. To start the hybridization process, a fluid containing targets is introduced into chamber [0177] 301 by opening valves 3602, 3612 and 3618. This injects N2 into container 3610 which forces the fluid to flow through 3601 and into chamber 3010. When chamber 3010 is filled, valves 3612 and 3618 are closed. Next, valve 3642 is opened, allowing N2 to flow directly into chamber 3010. The N2 agitates and circulates the fluid into cavity 310 and out to chamber 3020. As the volume of fluid and N2 in chamber 3020 increase, likewise does the pressure therein. When chamber 3020 approaches its capacity, valve 3642 is closed to stop the fluid flow. Thereafter, the system is vented by opening valve 3652. Venting the system allows the back pressure in chamber 3020 to reverse the flow of fluids back into chamber 3010. When chamber 3010 is filled, valve 3652 is closed and valve 3642 is opened to reverse the fluid flow. This cycle is repeated until hybridization is completed.
  • When hybridization is completed, the system may be drained. This procedure depends on which chamber the fluid is located in. If the fluid is located in [0178] chamber 3020, then valve 3502 is opened, while valve 3530 is positioned to direct the fluid into the appropriate container (recovery or waste). The pressure in chamber 3020 forces the fluid through port 3016, tube 3501, and into the disposal system. If the fluid is in chamber 3010, then valve 3502 and 3642 are opened. As a result, N2 forces the fluid in chamber 3010 through port 3501 and into the disposal system.
  • Once the system is emptied, all valves are closed. A buffer or other fluid may be introduced into the cavity. For example, the cavity may be filled with a buffer by opening [0179] valves 3601, 3621, and 3622. This injects N2 into container 3620 which forces the buffer therein to flow through the system until it fills cavity 310. In the alternative, ultrasonic radiation, heat, magnetic beads, or other agitation techniques may be employed.
  • The present inventions provide commercially feasible devices for packaging a probe chip. It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments will be apparent to those skilled in the art upon reviewing the above description. Merely as an example, the package may be molded or machined from a single piece of material instead of two. Also, other asymmetrical designs may be employed to orient the package onto the detection systems. [0180]
  • The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents. [0181]

Claims (92)

What is claimed is:
1. A method of making probe chips comprising the steps of:
forming a plurality of probe arrays on a substrate;
separating said substrate into a plurality of chips, each of said chips comprising at least one probe array thereon; and
mating at least one of said chips to a package, said package comprising a reaction chamber, said reaction chamber comprising inlets for flowing fluid therein, said at least one probe array in fluid communication with said reaction chamber.
2. The method as recited in claim 1 wherein said package is made by the steps of:
injection molding first and second halves of said package; and
mating said first and second halves together.
3. The method as recited in claim 2 wherein one of said halves comprises flow channels therein, said flow channels in communication with said inlets.
4. The method as recited in claim 3 further comprising the step of applying a reenterable seal to flow channels in said package.
5. The method as recited in claim 1 wherein said substrate comprises alignment marks for forming said probe arrays thereon in a desired position, and wherein said alignment marks are used to identify locations for said separating of said substrate into chips.
6. The method as recited in claim 1 wherein said package comprises an alignment structure thereon, wherein said step of mating said chip to said package uses said alignment structures to position said package at a desired position.
7. The method as recited in claim 1 wherein said package comprises an alignment structure thereon, and further comprising the step of identifying the location of at least one target on said probe array in a scanner, wherein said package is placed at a desired location in said scanner using said alignment structure.
8. The method as recited in claim 1 wherein said step of forming a plurality of probe arrays comprises the steps of:
selectively exposing said substrate to light;
coupling selected monomers to said substrate where said substrate has been exposed to light.
9. The method as recited in claim 1 wherein said step of separating comprises the steps of:
scribing said substrate in desired locations;
breaking said substrate along said scribe lines.
10. The method as recited in claim 1 wherein said step of forming a plurality of probe arrays on said substrate is a step of forming a plurality of oligonucleotide probe arrays on said substrate.
11. The method as recited in claim 10 further comprising the steps of flowing labeled oligonucleotide target molecules through said reaction chamber and identifying where said target molecules have bound to said substrate.
12. The method as recited in claim 11 wherein said package comprises a temperature probe and further comprising the step of monitoring and adjusting a temperature in said reaction chamber.
13. The method as recited in claim 1 wherein said package is formed by the steps of:
forming first and second package portions; and
acoustically welding said first and second package portions together.
14. The method as recited in claim 1 wherein said step of mating said chips to packages comprises the step of binding said chips to said package with an adhesive.
15. The method as recited in claim 14 wherein said packages comprise a recessed region thereon, whereby said chips do not extend above a surface of said packages.
16. The method as recited in claim 1 further comprising the step of flowing target molecules through said reaction chamber.
17. An apparatus for packaging a substrate, said apparatus comprising:
a substrate having a first surface and a second surface, said first surface comprising a probe array;
a body having a mounting surface with a fluid cavity, said second surface attached to said cavity; and
a cover attached to said mounting surface for sealing said cavity.
18. The apparatus of claim 17 wherein said cavity comprises an inlet port and an outlet port, said inlet and outlet ports permitting fluids to circulate into and through said cavity.
19. The apparatus of claim 18 wherein said inlet and outlet ports comprise a reenterable seal.
20. The apparatus of claim 17 wherein said probe array comprises an array of oligonucleotide probes.
21. An apparatus for packaging a substrate, said apparatus comprising:
a substrate having a first surface and a second surface, said first surface comprising a probe array and said second surface being an outer periphery of said first surface;
a body having a mounting surface, an upper surface, and a cavity bounded by said mounting surface and said upper surface, said second surface being attached to said cavity and said first surface being within said cavity; and
a cover attached to said mounting surface for defining an upper boundary to said cavity;
wherein said cavity comprises a diffuser and a concentrator, said diffuser and said concentrator permitting laminar fluid flow through said cavity.
22. The apparatus of claim 21 wherein said probe array comprises an array of oligonucleotide probes.
23. The apparatus of claim 21 wherein said cover comprises a depression for receiving a temperature control element to maintain a reaction temperature in said cavity.
24. The apparatus of claim 21 wherein said cover comprises a first half mated to a second half.
25. The apparatus of claim 24 wherein said first half comprises a first channel and a second channel, said first channel being in fluid communication with said diffuser and said second channel being in fluid communication with said concentrator.
26. The apparatus of claim 25 wherein said second half comprises a third channel and a fourth channel, said third channel being in fluid communication with said first channel, and said fourth channel being in fluid communication with said second channel. .
27. The apparatus of claim 26 wherein said first channel and said second channel comprise re-enterable seals for sealing fluid in said cavity.
28. An apparatus for mixing a fluid, the apparatus comprising:
a first substrate comprising a first inner surface functionalized with a microarray of reactive moieties;
a substantially parallel second substrate also comprising a second inner surface, wherein said first and second inner surfaces bound a closed chamber there between, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both surfaces;
at least one bubble disposed within said chamber; and
means for moving the chamber so that the bubble moves relative to the fluid to effect mixing of the fluid.
29. An apparatus for mixing a fluid, the apparatus comprising:
a first substrate comprising a first inner surface functionalized with a microarray of reactive moieties;
a substantially parallel second substrate also comprising a second inner surface, wherein said first and second inner surfaces bound a closed chamber there between, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both surfaces;
at least one bubble disposed within said chamber, wherein said bubble is a magnetic particle; and
means for moving the bubble relative to the fluid to effect mixing of the fluid.
30. The apparatus of claim 28, wherein the closed chamber has a thickness of less than about 2 millimeters.
31. The apparatus of claim 29, wherein the closed chamber has a thickness of less than about 2 millimeters.
32. The apparatus of claim 28, wherein both inner surfaces are functionalized with reactive moieties.
33. The apparatus of claim 29, wherein both inner surfaces are functionalized with reactive moieties.
34. The apparatus of claim 28, wherein the bubble comprises a gas.
35. The apparatus of claim 28, wherein the bubble comprises nitrogen.
36. The apparatus of claim 29, wherein said magnetic particle is a magnetic bead.
37. The apparatus of claim 28, wherein the bubble is produced by introducing a volume of the fluid that is less than the total volume of the closed chamber.
38. The apparatus of claim 28, further including a flexible seal between the inner surface of the first substrate and the inner surface of the second substrate.
39. The apparatus of claim 38, wherein said flexible seal includes a gasket.
40. The apparatus of claim 29, further including a flexible seal between the inner surface of the first substrate and the inner surface of the second substrate.
41. The apparatus of claim 40, wherein said flexible seal includes a gasket.
42. The apparatus of claim 28, further comprising means for introducing fluid into the closed chamber.
43. The apparatus of claim 29, further comprising means for introducing fluid into the closed chamber.
44. The apparatus of claim 28, wherein the first substrate and the second substrate are individually comprised of a material selected from the group consisting of glass, silicon, fused silica, plastic, and a combination thereof.
45. The apparatus of claim 29, wherein the first substrate and the second substrate are individually comprised of a material selected from the group consisting of glass, silicon, fused silica, plastic, and a combination thereof.
46. The apparatus of claim 28, wherein the first substrate is comprised of glass.
47. The apparatus of claim 29, wherein the first substrate is comprised of glass.
48. The apparatus of claim 28, wherein the means for moving the bubble is selected from the group consisting of rotating the apparatus about an axis, rolling the apparatus, and reciprocally shaking the apparatus.
49. A method for mixing a fluid, comprising:
providing an apparatus according to claim 28;
introducing a fluid into the closed chamber;
introducing a bubble within the fluid; and
moving the bubble in the fluid to effect mixing of the fluid.
50. A method for mixing a fluid, comprising:
providing an apparatus according to claim 29;
introducing a fluid into the closed chamber;
introducing a bubble within the fluid; and
moving the bubble in the fluid to effect mixing of the fluid.
51. A method for mixing a fluid, comprising:
providing an apparatus according to claim 30;
introducing a fluid into the closed chamber,
introducing a bubble within the fluid; and
moving the bubble in the fluid to effect mixing of the fluid.
52. A method for mixing a fluid, comprising:
providing an apparatus according to claim 31;
introducing a fluid into the closed chamber;
introducing a bubble within the fluid; and
moving the bubble in the fluid to effect mixing of the fluid.
53. A method for mixing a fluid, comprising:
providing an apparatus according to claim 36;
introducing a fluid into the closed chamber;
introducing a bubble within the fluid; and
moving the bubble in the fluid to effect mixing of the fluid.
54. A method for mixing a fluid, comprising:
providing an apparatus according to claim 48;
introducing a fluid into the closed chamber;
introducing a bubble within the fluid; and
moving the bubble in the fluid to effect mixing of the fluid.
55. An apparatus for mixing a fluid, comprising:
a first substrate and a second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces;
means for creating bubbles in the fluid within the apparatus, whereby each bubble displaces the fluid resulting in mixing; and
means for moving a bubble in the fluid.
56. The apparatus of claim 55, wherein the first substrate comprises a material selected from the group consisting of glass, silicon, fused silica, and plastic.
57. An apparatus for mixing a fluid, comprising:
a first substrate and a substantially parallel second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces;
means for providing bubbles in the fluid within the apparatus, whereby each said bubble displaces the fluid resulting in mixing; and
means for moving a bubble in the fluid.
58. An apparatus for mixing a fluid, comprising:
a first substrate and a second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces; and
means for creating bubbles in the fluid at selected locations within the apparatus, whereby each bubble displaces the fluid resulting in mixing; and wherein at least one of said inner surfaces is functionalized with reactive moieties.
59. The apparatus of claim 58 wherein the reactive moieties comprise monomeric species covalently bound to said inner surface, each of the monomeric species having at least one reactive site.
60. The apparatus of claim 59 wherein the monomeric species are nucleotides.
61. The apparatus of claim 60 wherein the monomeric species are amino acids.
62. The apparatus of claim 61 wherein the reactive moieties comprise reactive sites of monomeric species present at the terminus of a surface-bound polymer.
63. The apparatus of claim 62 wherein the surface-bound polymer comprises a polynucleotide.
64. The apparatus of claim 62 wherein the surface-bound polymer comprises a polyribonucleotide.
65. The apparatus of claim 64, wherein the surface-bound polymer comprises a polypeptide.
66. A method comprising:
providing a first substrate and a second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces, and wherein at least one of said inner surfaces is functionalized with polynucleotides, polypeptides, or polysaccharides;
introducing a fluid containing a plurality of components into the closed chamber so as to provide a quantity of fluid therein in contact with both inner surfaces;
providing a bubble in the fluid; and
moving a bubble within the fluid to result in mixing.
67. A method according to claim 66, wherein the polynucleotide is a polyribonucleotide.
68. A method according to claim 66, wherein the chamber is adapted to retain a film of fluid in contact with both inner surfaces.
69. A method according to claim 66 wherein the inner surfaces of the first and second substrates are substantially parallel.
70. A method according to claim 66, wherein the chamber is less than two millimeters in thickness.
71. A method according to claim 66 further including using heat for said mixing.
72. A method according to claim 66 further including using ultrasonic radiation for said mixing.
73. A method of claim 66, wherein the at least one of said inner surfaces is functionalized with polynucleotides.
74. A method of 66, wherein the at least one of said inner surfaces is functionalized with polypeptides.
75. A method comprising:
providing a first substrate and a second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces, and wherein at least one of said inner surfaces is functionalized with an array of RNA or DNA probes;
introducing a fluid sample containing DNA or RNA into the closed chamber so as to provide a quantity of fluid therein in contact with both inner surfaces;
providing a bubble in the fluid;
moving a bubble within the fluid to result in mixing;
after hybridization is complete, removing the sample from the apparatus; and
analyzing the functionalized inner surface for DNA or RNA that has hybridized.
76. A method according to claim 75 additionally comprising heating the DNA or RNA containing sample fluid while in the closed chamber.
77. A method according to claim 76 additionally comprising washing the functionalized inner surface prior to the analyzing.
78. A method according to claim 75, wherein the bubble is moved in a circular pattern.
79. A method according to claim 78, wherein the bubble is moved in the circular pattern that includes exiting the closed chamber.
80. A method comprising:
providing a first substrate and a second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces, and wherein at least one of said inner surfaces is functionalized with an immobilized biological polymer;
introducing a fluid containing a plurality of components into the closed chamber so as to provide a quantity of fluid therein in contact with both inner surfaces;
providing a bubble in the fluid; and
moving a bubble within the fluid to result in mixing.
81. A method according to claim 80, wherein said biological polymer includes a polynucleotide.
82. A method according to claim 81, wherein said polynucleotide is a polyribonucleotide.
83. A method according to claim 80, wherein said biological polymer includes polypeptides.
84. A method according to claim 80, wherein said biological polymer includes polysaccharides.
85. A method for mixing a film of fluid, comprising:
providing a first substrate and a substantially parallel second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces;
introducing a fluid containing a plurality of components into the closed chamber so as to provide a film of fluid therein; and
nucleating a bubble within the film of fluid, whereby, as the bubble is nucleated and dispelled, the fluid is displaced resulting in mixing.
86. The method of claim 85, wherein the dispelling comprises moving the bubble.
87. An apparatus for mixing a fluid, comprising:
a first substrate and a second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces;
means for nucleating bubbles in the fluid comprising discrete sources for creating individual bubbles at selected locations within the apparatus, whereby, as each bubble is nucleated and dispelled, the fluid is displaced resulting in mixing; and
means for moving a bubble in the fluid.
88. The apparatus of claim 87, wherein the means for moving a bubble includes a pump.
89. An apparatus for mixing a fluid, comprising:
a first substrate and a substantially parallel second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces;
means for nucleating bubbles in the fluid comprising discrete sources for creating individual bubbles at selected locations within the apparatus, whereby, as each bubble is nucleated and dispelled, the fluid is displaced resulting in mixing; and
means for moving a bubble in the fluid.
90. The apparatus of claim 89, wherein the means for moving a bubble includes a pump.
91. An apparatus for mixing a fluid, comprising:
a first substrate and a substantially parallel second substrate having inner surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both inner surfaces; and
means for nucleating bubbles in the fluid comprising discrete, heat sources for creating individual bubbles at selected locations within the apparatus, whereby, as each bubble is nucleated and dispelled, the fluid is displaced resulting in mixing; and wherein said means for nucleating bubbles also comprises means for moving a bubble in the fluid.
92. The apparatus of claim 91, wherein the means for moving a bubble includes a pump.
US10/619,224 1994-06-08 2003-07-12 Bioarray chip reaction apparatus and its manufacture Abandoned US20040106130A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US10/619,224 US20040106130A1 (en) 1994-06-08 2003-07-12 Bioarray chip reaction apparatus and its manufacture
US10/789,678 US20040166525A1 (en) 1994-06-08 2004-02-27 Bioarray chip reaction apparatus and its manufacture
US10/795,603 US20040171054A1 (en) 1994-06-08 2004-03-08 Bioarray chip reaction apparatus and its manufacture
US10/877,666 US20050003421A1 (en) 1994-06-08 2004-06-25 Bioarray chip reaction apparatus and its manufacture
US10/976,077 US20050158819A1 (en) 1994-06-08 2004-10-27 Bioarray chip reaction apparatus and its manufacture
US10/980,454 US20050084895A1 (en) 1994-06-08 2004-11-02 Bioarray chip reaction apparatus and its manufacture
US10/992,043 US20050106615A1 (en) 1994-06-08 2004-11-17 Bioarray chip reaction apparatus and its manufacture
US10/996,201 US20050106617A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/996,291 US20050089953A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/995,882 US20050208646A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US11/015,197 US20050106618A1 (en) 1994-06-08 2004-12-16 Bioarray chip reaction apparatus and its manufacture
US11/259,418 US20060040380A1 (en) 1994-06-08 2005-10-26 Bioarray chip reaction apparatus and its manufacture
US11/378,954 US20060234267A1 (en) 1994-06-08 2006-03-20 Bioarray chip reaction apparatus and its manufacture
US12/265,048 US20090143249A1 (en) 1994-06-08 2008-11-05 Bioarray chip reaction apparatus and its manufacture
US12/842,977 US20100298165A1 (en) 1994-06-08 2010-07-23 Bioarray chip reaction apparatus and its manufacture

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US25568294A 1994-06-08 1994-06-08
US08/485,452 US5945334A (en) 1994-06-08 1995-06-07 Apparatus for packaging a chip
US09/302,052 US6287850B1 (en) 1995-06-07 1999-04-29 Bioarray chip reaction apparatus and its manufacture
US09/907,196 US6399365B2 (en) 1994-06-08 2001-07-17 Bioarray chip reaction apparatus and its manufacture
US10/046,623 US6551817B2 (en) 1994-06-08 2002-01-14 Method and apparatus for hybridization
US10/229,759 US6733977B2 (en) 1994-06-08 2002-08-28 Hybridization device and method
US10/619,224 US20040106130A1 (en) 1994-06-08 2003-07-12 Bioarray chip reaction apparatus and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/229,759 Continuation US6733977B2 (en) 1994-06-08 2002-08-28 Hybridization device and method

Related Child Applications (11)

Application Number Title Priority Date Filing Date
US10/789,678 Continuation US20040166525A1 (en) 1994-06-08 2004-02-27 Bioarray chip reaction apparatus and its manufacture
US10/795,603 Continuation US20040171054A1 (en) 1994-06-08 2004-03-08 Bioarray chip reaction apparatus and its manufacture
US10/877,666 Continuation US20050003421A1 (en) 1994-06-08 2004-06-25 Bioarray chip reaction apparatus and its manufacture
US10/976,077 Continuation US20050158819A1 (en) 1994-06-08 2004-10-27 Bioarray chip reaction apparatus and its manufacture
US10/980,454 Continuation US20050084895A1 (en) 1994-06-08 2004-11-02 Bioarray chip reaction apparatus and its manufacture
US10/992,043 Continuation US20050106615A1 (en) 1994-06-08 2004-11-17 Bioarray chip reaction apparatus and its manufacture
US10/995,882 Continuation US20050208646A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/996,291 Continuation US20050089953A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/996,201 Continuation US20050106617A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US11/015,197 Continuation US20050106618A1 (en) 1994-06-08 2004-12-16 Bioarray chip reaction apparatus and its manufacture
US11/259,418 Continuation US20060040380A1 (en) 1994-06-08 2005-10-26 Bioarray chip reaction apparatus and its manufacture

Publications (1)

Publication Number Publication Date
US20040106130A1 true US20040106130A1 (en) 2004-06-03

Family

ID=27048348

Family Applications (18)

Application Number Title Priority Date Filing Date
US09/302,052 Expired - Lifetime US6287850B1 (en) 1994-06-08 1999-04-29 Bioarray chip reaction apparatus and its manufacture
US09/907,196 Expired - Lifetime US6399365B2 (en) 1994-06-08 2001-07-17 Bioarray chip reaction apparatus and its manufacture
US10/046,623 Expired - Fee Related US6551817B2 (en) 1994-06-08 2002-01-14 Method and apparatus for hybridization
US10/229,759 Expired - Fee Related US6733977B2 (en) 1994-06-08 2002-08-28 Hybridization device and method
US10/619,224 Abandoned US20040106130A1 (en) 1994-06-08 2003-07-12 Bioarray chip reaction apparatus and its manufacture
US10/639,696 Expired - Fee Related US7364895B2 (en) 1994-06-08 2003-08-11 Bioarray chip reaction apparatus and its manufacture
US10/789,678 Pending US20040166525A1 (en) 1994-06-08 2004-02-27 Bioarray chip reaction apparatus and its manufacture
US10/795,603 Abandoned US20040171054A1 (en) 1994-06-08 2004-03-08 Bioarray chip reaction apparatus and its manufacture
US10/877,666 Abandoned US20050003421A1 (en) 1994-06-08 2004-06-25 Bioarray chip reaction apparatus and its manufacture
US10/976,077 Abandoned US20050158819A1 (en) 1994-06-08 2004-10-27 Bioarray chip reaction apparatus and its manufacture
US10/980,454 Abandoned US20050084895A1 (en) 1994-06-08 2004-11-02 Bioarray chip reaction apparatus and its manufacture
US10/992,043 Abandoned US20050106615A1 (en) 1994-06-08 2004-11-17 Bioarray chip reaction apparatus and its manufacture
US10/996,291 Abandoned US20050089953A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/995,882 Abandoned US20050208646A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/996,201 Abandoned US20050106617A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US11/015,197 Abandoned US20050106618A1 (en) 1994-06-08 2004-12-16 Bioarray chip reaction apparatus and its manufacture
US11/259,418 Abandoned US20060040380A1 (en) 1994-06-08 2005-10-26 Bioarray chip reaction apparatus and its manufacture
US11/378,954 Abandoned US20060234267A1 (en) 1994-06-08 2006-03-20 Bioarray chip reaction apparatus and its manufacture

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/302,052 Expired - Lifetime US6287850B1 (en) 1994-06-08 1999-04-29 Bioarray chip reaction apparatus and its manufacture
US09/907,196 Expired - Lifetime US6399365B2 (en) 1994-06-08 2001-07-17 Bioarray chip reaction apparatus and its manufacture
US10/046,623 Expired - Fee Related US6551817B2 (en) 1994-06-08 2002-01-14 Method and apparatus for hybridization
US10/229,759 Expired - Fee Related US6733977B2 (en) 1994-06-08 2002-08-28 Hybridization device and method

Family Applications After (13)

Application Number Title Priority Date Filing Date
US10/639,696 Expired - Fee Related US7364895B2 (en) 1994-06-08 2003-08-11 Bioarray chip reaction apparatus and its manufacture
US10/789,678 Pending US20040166525A1 (en) 1994-06-08 2004-02-27 Bioarray chip reaction apparatus and its manufacture
US10/795,603 Abandoned US20040171054A1 (en) 1994-06-08 2004-03-08 Bioarray chip reaction apparatus and its manufacture
US10/877,666 Abandoned US20050003421A1 (en) 1994-06-08 2004-06-25 Bioarray chip reaction apparatus and its manufacture
US10/976,077 Abandoned US20050158819A1 (en) 1994-06-08 2004-10-27 Bioarray chip reaction apparatus and its manufacture
US10/980,454 Abandoned US20050084895A1 (en) 1994-06-08 2004-11-02 Bioarray chip reaction apparatus and its manufacture
US10/992,043 Abandoned US20050106615A1 (en) 1994-06-08 2004-11-17 Bioarray chip reaction apparatus and its manufacture
US10/996,291 Abandoned US20050089953A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/995,882 Abandoned US20050208646A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US10/996,201 Abandoned US20050106617A1 (en) 1994-06-08 2004-11-22 Bioarray chip reaction apparatus and its manufacture
US11/015,197 Abandoned US20050106618A1 (en) 1994-06-08 2004-12-16 Bioarray chip reaction apparatus and its manufacture
US11/259,418 Abandoned US20060040380A1 (en) 1994-06-08 2005-10-26 Bioarray chip reaction apparatus and its manufacture
US11/378,954 Abandoned US20060234267A1 (en) 1994-06-08 2006-03-20 Bioarray chip reaction apparatus and its manufacture

Country Status (1)

Country Link
US (18) US6287850B1 (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166593A1 (en) * 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
US20050106618A1 (en) * 1994-06-08 2005-05-19 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
EP1612560A1 (en) * 2004-07-02 2006-01-04 Roche Diagnostics GmbH Device for reliable analysis
KR100634545B1 (en) 2005-06-17 2006-10-13 삼성전자주식회사 Microchip assembly
US20060256350A1 (en) * 2005-02-01 2006-11-16 David Nolte Laser scanning interferometric surface metrology
US20070003925A1 (en) * 2005-02-01 2007-01-04 Nolte David D Multiplexed biological analyzer planar array apparatus and methods
US20070259366A1 (en) * 2006-05-03 2007-11-08 Greg Lawrence Direct printing of patterned hydrophobic wells
US20070267335A1 (en) * 2005-11-02 2007-11-22 Affymetrix, Inc. System and Method for Bubble Removal
US20080230605A1 (en) * 2006-11-30 2008-09-25 Brian Weichel Process and apparatus for maintaining data integrity
US20090181390A1 (en) * 2008-01-11 2009-07-16 Signosis, Inc. A California Corporation High throughput detection of micrornas and use for disease diagnosis
US7659968B2 (en) 2007-01-19 2010-02-09 Purdue Research Foundation System with extended range of molecular sensing through integrated multi-modal data acquisition
US7787126B2 (en) 2007-03-26 2010-08-31 Purdue Research Foundation Method and apparatus for conjugate quadrature interferometric detection of an immunoassay
US20110020818A1 (en) * 2007-12-24 2011-01-27 Honeywell International Inc. Reactor for the quantitative analysis of necleic acids
WO2011057061A1 (en) 2009-11-06 2011-05-12 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US8298831B2 (en) 2005-02-01 2012-10-30 Purdue Research Foundation Differentially encoded biological analyzer planar array apparatus and methods
US8309045B2 (en) 2011-02-11 2012-11-13 General Electric Company System and method for controlling emissions in a combustion system
WO2014026032A2 (en) 2012-08-08 2014-02-13 Apprise Bio, Inc. Increasing dynamic range for identifying multiple epitopes in cells
WO2014151117A1 (en) 2013-03-15 2014-09-25 The Board Of Trustees Of The Leland Stanford Junior University Identification and use of circulating nucleic acid tumor markers
WO2015021080A2 (en) 2013-08-05 2015-02-12 Twist Bioscience Corporation De novo synthesized gene libraries
US8961764B2 (en) 2010-10-15 2015-02-24 Lockheed Martin Corporation Micro fluidic optic design
US9067207B2 (en) 2009-06-04 2015-06-30 University Of Virginia Patent Foundation Optical approach for microfluidic DNA electrophoresis detection
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
US20160199838A1 (en) * 2013-03-13 2016-07-14 Denovo Sciences, Inc. System and method for capturing and analyzing cells
US9539571B2 (en) 2010-01-20 2017-01-10 Honeywell International Inc. Method to increase detection efficiency of real time PCR microarray by quartz material
US9677067B2 (en) 2015-02-04 2017-06-13 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US9689032B2 (en) 2011-04-01 2017-06-27 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
WO2017131951A1 (en) * 2016-01-28 2017-08-03 Becton, Dickinson And Company Enhanced composite liquid cell (clc) devices, and methods for using the same
US9802193B2 (en) 2013-03-13 2017-10-31 Denovo Sciences, Inc. System and method for capturing and analyzing cells
US9856535B2 (en) 2013-05-31 2018-01-02 Denovo Sciences, Inc. System for isolating cells
US9895673B2 (en) 2015-12-01 2018-02-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US10053688B2 (en) 2016-08-22 2018-08-21 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10072287B2 (en) 2009-09-10 2018-09-11 Centrillion Technology Holdings Corporation Methods of targeted sequencing
US10174368B2 (en) 2009-09-10 2019-01-08 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
US10190965B2 (en) 2011-08-01 2019-01-29 Celsee Diagnostics, Inc. Cell capture system and method of use
US10227647B2 (en) 2015-02-17 2019-03-12 Complete Genomics, Inc. DNA sequencing using controlled strand displacement
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US10509022B2 (en) 2013-03-13 2019-12-17 Celsee Diagnostics, Inc. System for imaging captured cells
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US10696965B2 (en) 2017-06-12 2020-06-30 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US10718007B2 (en) 2013-01-26 2020-07-21 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10722858B2 (en) 2013-03-15 2020-07-28 Lineage Biosciences, Inc. Methods and compositions for tagging and analyzing samples
WO2020180813A1 (en) 2019-03-06 2020-09-10 Qiagen Sciences, Llc Compositions and methods for adaptor design and nucleic acid library construction for rolony-based sequencing
US10821440B2 (en) 2017-08-29 2020-11-03 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10844373B2 (en) 2015-09-18 2020-11-24 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US10894959B2 (en) 2017-03-15 2021-01-19 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US10894242B2 (en) 2017-10-20 2021-01-19 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US10900032B2 (en) 2019-05-07 2021-01-26 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US10907274B2 (en) 2016-12-16 2021-02-02 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US10936953B2 (en) 2018-01-04 2021-03-02 Twist Bioscience Corporation DNA-based digital information storage with sidewall electrodes
US10947581B2 (en) 2019-04-16 2021-03-16 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
EP3836149A1 (en) 2011-11-07 2021-06-16 QIAGEN Redwood City, Inc. Methods and systems for identification of causal genomic variants
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US11332738B2 (en) 2019-06-21 2022-05-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
US11377676B2 (en) 2017-06-12 2022-07-05 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US11407837B2 (en) 2017-09-11 2022-08-09 Twist Bioscience Corporation GPCR binding proteins and synthesis thereof
US11492728B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for antibody optimization
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
US11492665B2 (en) 2018-05-18 2022-11-08 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
US11512347B2 (en) 2015-09-22 2022-11-29 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
US11550939B2 (en) 2017-02-22 2023-01-10 Twist Bioscience Corporation Nucleic acid based data storage using enzymatic bioencryption
EP4130350A1 (en) 2013-11-07 2023-02-08 The Board of Trustees of the Leland Stanford Junior University Cell-free nucleic acids for the analysis of the human microbiome and components thereof
WO2023063546A1 (en) * 2021-10-15 2023-04-20 주식회사 진시스템 Pcr reaction container having dispensing guide, and pcr kit comprising same
US11724256B2 (en) 2019-06-14 2023-08-15 Bio-Rad Laboratories, Inc. System and method for automated single cell processing and analyses
US11781959B2 (en) 2017-09-25 2023-10-10 Freenome Holdings, Inc. Methods and systems for sample extraction
WO2024123733A1 (en) 2022-12-05 2024-06-13 Twist Bioscience Corporation Enzymes for library preparation
US12091777B2 (en) 2019-09-23 2024-09-17 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2

Families Citing this family (274)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955915B2 (en) * 1989-06-07 2005-10-18 Affymetrix, Inc. Apparatus comprising polymers
WO1992010588A1 (en) * 1990-12-06 1992-06-25 Affymax Technologies N.V. Sequencing by hybridization of a target nucleic acid to a matrix of defined oligonucleotides
US6090555A (en) * 1997-12-11 2000-07-18 Affymetrix, Inc. Scanned image alignment systems and methods
US6741344B1 (en) * 1994-02-10 2004-05-25 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
US5631734A (en) 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
EP0695941B1 (en) * 1994-06-08 2002-07-31 Affymetrix, Inc. Method and apparatus for packaging a chip
US6121048A (en) * 1994-10-18 2000-09-19 Zaffaroni; Alejandro C. Method of conducting a plurality of reactions
US5959098A (en) 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process
US6720149B1 (en) * 1995-06-07 2004-04-13 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US6660233B1 (en) * 1996-01-16 2003-12-09 Beckman Coulter, Inc. Analytical biochemistry system with robotically carried bioarray
US6706875B1 (en) * 1996-04-17 2004-03-16 Affyemtrix, Inc. Substrate preparation process
AU2583899A (en) 1998-02-04 1999-08-23 Invitrogen Corporation Microarrays and uses therefor
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6406921B1 (en) * 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
US6576478B1 (en) * 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
US6186659B1 (en) * 1998-08-21 2001-02-13 Agilent Technologies Inc. Apparatus and method for mixing a film of fluid
US7612020B2 (en) 1998-12-28 2009-11-03 Illumina, Inc. Composite arrays utilizing microspheres with a hybridization chamber
US20030215821A1 (en) * 1999-04-20 2003-11-20 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US6893865B1 (en) * 1999-04-28 2005-05-17 Targeted Genetics Corporation Methods, compositions, and cells for encapsidating recombinant vectors in AAV particles
US20030073250A1 (en) * 1999-05-21 2003-04-17 Eric Henderson Method and apparatus for solid state molecular analysis
US6573369B2 (en) * 1999-05-21 2003-06-03 Bioforce Nanosciences, Inc. Method and apparatus for solid state molecular analysis
US20020042081A1 (en) 2000-10-10 2002-04-11 Eric Henderson Evaluating binding affinities by force stratification and force panning
US20030186311A1 (en) * 1999-05-21 2003-10-02 Bioforce Nanosciences, Inc. Parallel analysis of molecular interactions
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
CA2382436C (en) 1999-08-30 2011-05-17 Illumina, Inc. Methods for improving signal detection from an array
US7115423B1 (en) * 1999-10-22 2006-10-03 Agilent Technologies, Inc. Fluidic structures within an array package
US6642046B1 (en) 1999-12-09 2003-11-04 Motorola, Inc. Method and apparatus for performing biological reactions on a substrate surface
US20050214825A1 (en) * 2000-02-07 2005-09-29 John Stuelpnagel Multiplex sample analysis on universal arrays
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
US7955794B2 (en) * 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US6770441B2 (en) * 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
US20040146918A1 (en) * 2000-02-18 2004-07-29 Weiner Michael L. Hybrid nucleic acid assembly
US6897015B2 (en) * 2000-03-07 2005-05-24 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of pathogens and biological materials
KR20040010041A (en) * 2000-05-04 2004-01-31 예일 유니버시티 High density protein arrays for screening of protein activity
US6455007B1 (en) * 2000-06-13 2002-09-24 Symyx Technologies, Inc. Apparatus and method for testing compositions in contact with a porous medium
US6511277B1 (en) * 2000-07-10 2003-01-28 Affymetrix, Inc. Cartridge loader and methods
ATE402760T1 (en) * 2000-08-15 2008-08-15 Bioforce Nanosciences Inc DEVICE FOR FORMING NANOMOLECULAR NETWORKS
US7439056B2 (en) * 2000-11-08 2008-10-21 Surface Logix Inc. Peelable and resealable devices for arraying materials
WO2002063270A2 (en) * 2001-02-05 2002-08-15 Board Of Regents, The University Of Texas System The use of mesoscale self-assembly and recognition to effect delivery of sensing reagent for arrayed sensors
WO2002072264A1 (en) * 2001-03-09 2002-09-19 Biomicro Systems, Inc. Method and system for microfluidic interfacing to arrays
US7297518B2 (en) * 2001-03-12 2007-11-20 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension
AU2002322458A1 (en) * 2001-07-13 2003-01-29 Nanosphere, Inc. Method for immobilizing molecules onto surfaces
US7297553B2 (en) * 2002-05-28 2007-11-20 Nanosphere, Inc. Method for attachment of silylated molecules to glass surfaces
WO2003008941A2 (en) * 2001-07-17 2003-01-30 Bioforce Nanosciences, Inc. Combined molecular blinding detection through force microscopy and mass spectrometry
US20030064507A1 (en) * 2001-07-26 2003-04-03 Sean Gallagher System and methods for mixing within a microfluidic device
DE10142019A1 (en) * 2001-08-28 2003-03-20 Philips Corp Intellectual Pty Circuit arrangement for demodulating signals
US7042488B2 (en) 2001-09-27 2006-05-09 Fujinon Corporation Electronic endoscope for highlighting blood vessel
DE10149684B4 (en) * 2001-10-09 2005-02-17 Clondiag Chip Technologies Gmbh Device for holding a substance library carrier
US6767733B1 (en) 2001-10-10 2004-07-27 Pritest, Inc. Portable biosensor apparatus with controlled flow
JP2005513457A (en) * 2001-12-19 2005-05-12 アフィメトリックス インコーポレイテッド Array plate and method for constructing array plate
US6790620B2 (en) * 2001-12-24 2004-09-14 Agilent Technologies, Inc. Small volume chambers
DE10201463B4 (en) 2002-01-16 2005-07-21 Clondiag Chip Technologies Gmbh Reaction vessel for performing array method
US20090239233A1 (en) * 2002-01-25 2009-09-24 Applera Corporation Single-tube, ready-to-use assay kits, and methods using same
US20030143551A1 (en) * 2002-01-30 2003-07-31 Cattell Herbert F. Reading multiple chemical arrays
US20030152934A1 (en) * 2002-02-11 2003-08-14 Industrial Technology Research Institute High performance nucleic acid hybridization device and process
EP1345026B1 (en) * 2002-03-15 2010-05-05 Affymetrix, Inc. System and method for scanning of biological materials
EP1492887A1 (en) * 2002-04-11 2005-01-05 Sequenom, Inc. Methods and devices for performing chemical reactions on a solid support
US20040060987A1 (en) * 2002-05-07 2004-04-01 Green Larry R. Digital image analysis method for enhanced and optimized signals in fluorophore detection
US20050239193A1 (en) * 2002-05-30 2005-10-27 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of microorganisms and microparticles
US7919308B2 (en) * 2002-06-14 2011-04-05 Agilent Technologies, Inc. Form in place gaskets for assays
US7351379B2 (en) * 2002-06-14 2008-04-01 Agilent Technologies, Inc. Fluid containment structure
WO2003106032A1 (en) * 2002-06-14 2003-12-24 Axaron Bioscience Ag Hybridization chamber
US7371348B2 (en) * 2002-06-14 2008-05-13 Agilent Technologies Multiple array format
US20040101444A1 (en) * 2002-07-15 2004-05-27 Xeotron Corporation Apparatus and method for fluid delivery to a hybridization station
CN1235028C (en) * 2002-08-16 2006-01-04 清华大学 Ultrasonic method and equipment for cleaning solid matrix after hybridization reaction
EP1534747A2 (en) * 2002-08-23 2005-06-01 Epidauros Biotechnologie AG Polymorphisms in the human genes for oct1 and their use in diagnostic and therapeutic applications
US7595883B1 (en) * 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
US7498176B2 (en) * 2002-09-27 2009-03-03 Roche Nimblegen, Inc. Microarray with hydrophobic barriers
US20040110212A1 (en) * 2002-09-30 2004-06-10 Mccormick Mark Microarrays with visual alignment marks
US6913931B2 (en) * 2002-10-03 2005-07-05 3M Innovative Properties Company Devices, methods and systems for low volume microarray processing
US20040259105A1 (en) * 2002-10-03 2004-12-23 Jian-Bing Fan Multiplex nucleic acid analysis using archived or fixed samples
US9740817B1 (en) 2002-10-18 2017-08-22 Dennis Sunga Fernandez Apparatus for biological sensing and alerting of pharmaco-genomic mutation
US20040082058A1 (en) * 2002-10-29 2004-04-29 Arthur Schleifer Array hybridization apparatus and method for making uniform sample volumes
US20040101861A1 (en) * 2002-11-27 2004-05-27 Little Roger G. Resonant cavity photodiode array for rapid DNA microarray readout
US20040115654A1 (en) * 2002-12-16 2004-06-17 Intel Corporation Laser exposure of photosensitive masks for DNA microarray fabrication
CA2512181A1 (en) * 2003-01-02 2004-07-22 Bioforce Nanosciences, Inc. Method and apparatus for molecular analysis in small sample volumes
US20040150217A1 (en) * 2003-01-23 2004-08-05 Heffelfinger David M. Identifying indicia and focusing target
US20040157343A1 (en) * 2003-02-06 2004-08-12 Applera Corporation Devices and methods for biological sample preparation
US7192703B2 (en) * 2003-02-14 2007-03-20 Intel Corporation, Inc. Biomolecule analysis by rolling circle amplification and SERS detection
US20040235027A1 (en) * 2003-03-31 2004-11-25 Regent Of The University Of California Preparation and application of ligand-biopolymer conjugates
US20040214310A1 (en) * 2003-04-25 2004-10-28 Parker Russell A. Apparatus and method for array alignment
WO2004097371A2 (en) * 2003-04-25 2004-11-11 Board Of Regents, The University Of Texas System System and method for the detection of analytes
US7651850B2 (en) * 2003-05-16 2010-01-26 Board Of Regents, The University Of Texas System Image and part recognition technology
DE10323197B4 (en) * 2003-05-22 2008-10-02 Clondiag Chip Technologies Gmbh Device for holding and detecting substance libraries
US20040241659A1 (en) * 2003-05-30 2004-12-02 Applera Corporation Apparatus and method for hybridization and SPR detection
US7214382B2 (en) * 2003-06-05 2007-05-08 Adi Shefer Self-warming or self-heating cosmetic and dermatological compositions and method of use
US20040248323A1 (en) * 2003-06-09 2004-12-09 Protometrix, Inc. Methods for conducting assays for enzyme activity on protein microarrays
WO2004111610A2 (en) 2003-06-12 2004-12-23 Accupath Diagnostic Laboratories, Inc. Method and system for the analysis of high density cells samples
US20050064462A1 (en) * 2003-06-17 2005-03-24 Bernd Stein Methods, compositions, and kits for predicting the effect of compounds on hot flash symptoms
US20050032070A1 (en) * 2003-08-05 2005-02-10 Sebastian Raimundo Polymorphisms in the human gene for CYP2D6 and their use in diagnostic and therapeutic applications
US20050037424A1 (en) * 2003-08-13 2005-02-17 Schembri Carol T. Selectable length linear microarrays
US8346482B2 (en) * 2003-08-22 2013-01-01 Fernandez Dennis S Integrated biosensor and simulation system for diagnosis and therapy
US20050280811A1 (en) * 2003-09-19 2005-12-22 Donald Sandell Grooved high density plate
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
US7767468B2 (en) * 2003-11-05 2010-08-03 Exact Sciences Corporation Repetitive affinity separation and uses therefor
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
DE20317944U1 (en) * 2003-11-18 2004-03-11 Heiser, Volker, Dr. Sample carrier for molecules
US7238521B2 (en) * 2003-11-24 2007-07-03 Biocept, Inc. Microarray hybridization device having bubble-fracturing elements
US20050112292A1 (en) * 2003-11-25 2005-05-26 Parker Russell A. Methods for treating at least one member of a microarray structure and methods of using the same
DE602005020421D1 (en) 2004-02-19 2010-05-20 Helicos Biosciences Corp METHOD FOR THE ANALYSIS OF POLYNUCLEOTIDE SEQUENCES
US20050196761A1 (en) * 2004-03-08 2005-09-08 Thompson Allen C. Array hybridization apparatus and method
US20050202445A1 (en) * 2004-03-09 2005-09-15 Thompson Allen C. Thermoplastic array hybridization apparatus and method
DE102004011667B4 (en) * 2004-03-10 2006-03-23 Technische Fachhochschule Berlin Device with a semiconductor chip and a microfluidic system and method for the production
EP1733234B1 (en) * 2004-04-06 2011-09-14 Mount Sinai School Of Medicine Methods of determining allergen response using microarray immunoassay techinques
KR100624420B1 (en) 2004-04-10 2006-09-19 삼성전자주식회사 A microarray having microarray identification information stored in the form of a spot, method of producing the microarray and method of using the microarray
US20060003335A1 (en) * 2004-06-30 2006-01-05 Crispino John D Methods for diagnosing acute megakaryoblastic leukemia
US7220622B2 (en) * 2004-09-22 2007-05-22 Intel Corporation Method for attaching a semiconductor die to a substrate and heat spreader
US7407085B2 (en) * 2004-09-22 2008-08-05 Intel Corporation Apparatus and method for attaching a semiconductor die to a heat spreader
CA2582137A1 (en) * 2004-10-05 2007-02-15 Wyeth Probe arrays for detecting multiple strains of different species
US7682782B2 (en) 2004-10-29 2010-03-23 Affymetrix, Inc. System, method, and product for multiple wavelength detection using single source excitation
EP1652580A1 (en) * 2004-10-29 2006-05-03 Affymetrix, Inc. High throughput microarray, package assembly and methods of manufacturing arrays
DE102004056735A1 (en) * 2004-11-09 2006-07-20 Clondiag Chip Technologies Gmbh Device for performing and analyzing microarray experiments
KR100612879B1 (en) * 2004-12-06 2006-08-14 삼성전자주식회사 Hybridization device using the control of pump and valves in closed system
US20090136982A1 (en) 2005-01-18 2009-05-28 Biocept, Inc. Cell separation using microchannel having patterned posts
ES2437845T3 (en) 2005-01-18 2014-01-14 Biocept, Inc. Cell separation using a microchannel that has pillars with a configuration
US8158410B2 (en) 2005-01-18 2012-04-17 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
US20060252087A1 (en) * 2005-01-18 2006-11-09 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
WO2006088445A2 (en) * 2005-02-11 2006-08-24 Southern Illinois University Metabolic primers for the detection of (per)chlorate-reducing bacteria and methods of use thereof
US8178291B2 (en) 2005-02-18 2012-05-15 Monogram Biosciences, Inc. Methods and compositions for determining hypersusceptibility of HIV-1 to non-nucleoside reverse transcriptase inhibitors
CA2601922C (en) 2005-02-18 2020-11-24 Monogram Biosciences, Inc. Methods and compositions for determining anti-hiv drug susceptibility and replication capacity of hiv
US20060246576A1 (en) 2005-04-06 2006-11-02 Affymetrix, Inc. Fluidic system and method for processing biological microarrays in personal instrumentation
WO2006111967A2 (en) * 2005-04-18 2006-10-26 Mia Levite Method for augmenting the ability of t-cells and other cells for fighting disease and invade diseased organs, for elevating cd3 zeta and tnf-alpha expression in t-cells, and mixing t-cell boosting devices and kit particularly useful in such method
WO2007044088A2 (en) * 2005-05-23 2007-04-19 Biovitesse, Inc. Biomems cartridges
EP1896618A4 (en) 2005-05-27 2009-12-30 Monogram Biosciences Inc Methods and compositions for determining resistance of hiv-1 to protease inhibitors
WO2006133267A2 (en) * 2005-06-06 2006-12-14 Monogram Biosciences, Inc. Methods and compositions for determining altered susceptibility of hiv-1 to anti-hiv drugs
WO2006133266A2 (en) 2005-06-06 2006-12-14 Monogram Biosciences, Inc. Methods for determining resistance or susceptibility to hiv entry inhibitors
US8288151B2 (en) * 2005-06-29 2012-10-16 Canon Kabushiki Kaisha Biochemical reaction cassette
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
US7889347B2 (en) * 2005-11-21 2011-02-15 Plexera Llc Surface plasmon resonance spectrometer with an actuator driven angle scanning mechanism
WO2008002462A2 (en) * 2006-06-23 2008-01-03 Micronics, Inc. Methods and devices for microfluidic point-of-care immunoassays
US7763453B2 (en) 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
US9056291B2 (en) 2005-11-30 2015-06-16 Micronics, Inc. Microfluidic reactor system
US7463358B2 (en) * 2005-12-06 2008-12-09 Lumera Corporation Highly stable surface plasmon resonance plates, microarrays, and methods
US20090176208A1 (en) * 2006-01-04 2009-07-09 Simon Brodie Methods for detecting, identifying and reporting the presence of animal pathological agents
US7695956B2 (en) * 2006-01-12 2010-04-13 Biocept, Inc. Device for cell separation and analysis and method of using
US8055098B2 (en) 2006-01-27 2011-11-08 Affymetrix, Inc. System, method, and product for imaging probe arrays with small feature sizes
US9445025B2 (en) 2006-01-27 2016-09-13 Affymetrix, Inc. System, method, and product for imaging probe arrays with small feature sizes
WO2007098027A2 (en) * 2006-02-17 2007-08-30 Bioprocessors Corp. Microreactor with auxiliary fluid motion control
US20080309926A1 (en) * 2006-03-08 2008-12-18 Aaron Weber Systems and methods for reducing detected intensity non uniformity in a laser beam
US7397546B2 (en) * 2006-03-08 2008-07-08 Helicos Biosciences Corporation Systems and methods for reducing detected intensity non-uniformity in a laser beam
US7702468B2 (en) 2006-05-03 2010-04-20 Population Diagnostics, Inc. Evaluating genetic disorders
US10522240B2 (en) 2006-05-03 2019-12-31 Population Bio, Inc. Evaluating genetic disorders
US20100216657A1 (en) * 2006-05-16 2010-08-26 Arcxis Biotechnologies, Inc. Pcr-free sample preparation and detection systems for high speed biologic analysis and identification
CN101454653B (en) * 2006-05-17 2013-01-16 卢米尼克斯股份有限公司 Chip-based flow cytometer type systems for analyzing fluorescently tagged particles
US20080003667A1 (en) * 2006-05-19 2008-01-03 Affymetrix, Inc. Consumable elements for use with fluid processing and detection systems
US20100285973A1 (en) * 2006-05-30 2010-11-11 Synergenz Bioscience Limited of Sea Meadow House Methods and compositions for assessment of pulmonary function and disorders
EP2589668A1 (en) 2006-06-14 2013-05-08 Verinata Health, Inc Rare cell analysis using sample splitting and DNA tags
EP3406736B1 (en) 2006-06-14 2022-09-07 Verinata Health, Inc. Methods for the diagnosis of fetal abnormalities
CN101675169B (en) 2006-06-14 2018-01-02 维里纳塔健康公司 Rare cell analysis is carried out using sample splitting and DNA labels
DE102006030068A1 (en) * 2006-06-28 2008-01-03 M2P-Labs Gmbh Apparatus and method for the supply and removal of fluids in shaken microreactors arrays
US7700756B2 (en) * 2006-07-27 2010-04-20 Southern Illinois University Metabolic primers for the detection of perchlorate-reducing bacteria and methods of use thereof
EP2074224A4 (en) * 2006-10-17 2010-07-21 Synergenz Bioscience Ltd Methods and compositions for assessment of pulmonary function and disorders
US8168135B2 (en) * 2006-11-01 2012-05-01 Shimadzu Corporation Reaction container plate and its reaction processing equipment
NZ551157A (en) * 2006-11-08 2008-06-30 Rebecca Lee Roberts Method of identifying individuals at risk of thiopurine drug resistance and intolerance - GMPS
US20080144899A1 (en) * 2006-11-30 2008-06-19 Manoj Varma Process for extracting periodic features from images by template matching
US7522282B2 (en) 2006-11-30 2009-04-21 Purdue Research Foundation Molecular interferometric imaging process and apparatus
WO2008066596A2 (en) * 2006-11-30 2008-06-05 Johns Hopkins University Gene expression barcode for normal and diseased tissue classification
AU2007334740A1 (en) * 2006-12-19 2008-06-26 Synergenz Bioscience Limited Methods and compositions for the assessment of cardiovascular function and disorders
US8930178B2 (en) 2007-01-04 2015-01-06 Children's Hospital Medical Center Processing text with domain-specific spreading activation methods
CN102317470A (en) 2007-02-07 2012-01-11 解码遗传学私营有限责任公司 Genetic variants contributing to risk of prostate cancer
WO2008106115A2 (en) 2007-02-26 2008-09-04 Monogram Biosciences, Inc. Compositions and methods for determining whether a subject would benefit from co-receptor inhibitor therapy
US20080207960A1 (en) * 2007-02-28 2008-08-28 Eric Lin Methods, compositions, and kits for post-hybridization processing of arrays
EP2164984A2 (en) 2007-05-25 2010-03-24 Decode Genetics EHF. Genetic variants on chr 5pl2 and 10q26 as markers for use in breast cancer risk assessment, diagnosis, prognosis and treatment
US20090060786A1 (en) * 2007-08-29 2009-03-05 Gibum Kim Microfluidic apparatus for wide area microarrays
KR20090029053A (en) * 2007-09-17 2009-03-20 삼성전자주식회사 Methods of cutting substrate along pattern and chip by the same
US20100216655A1 (en) * 2007-10-12 2010-08-26 Patrick Sulem Sequence variants for inferring human pigmentation patterns
US8697360B2 (en) 2007-11-30 2014-04-15 Decode Genetics Ehf. Genetic variants on CHR 11Q and 6Q as markers for prostate and colorectal cancer predisposition
AU2009236729B2 (en) 2008-01-25 2012-12-06 Theranostics Laboratory Methods and compositions for the assessment of drug response
US20090203022A1 (en) * 2008-02-07 2009-08-13 Arizona Board Of Regents For And On Behalf Of Arizona State University Analysis
US8828657B2 (en) 2008-02-14 2014-09-09 Decode Genetics Ehf. Susceptibility variants for lung cancer
AU2009233327B2 (en) 2008-04-01 2014-11-13 Decode Genetics Ehf Susceptibility variants for peripheral arterial disease and abdominal aortic aneurysm
US20090269800A1 (en) * 2008-04-29 2009-10-29 Todd Covey Device and method for processing cell samples
KR101541458B1 (en) * 2008-07-03 2015-08-04 삼성전자주식회사 Method for Mixing Micro-fluids and Micro-fluidic Mixing Device
CN102137938B (en) * 2008-07-04 2015-01-21 解码遗传学私营有限责任公司 Copy number variations predictive of risk of schizophrenia
CA2729934A1 (en) 2008-07-07 2010-01-14 Decode Genetics Ehf Genetic variants for breast cancer risk assessment
US20100014741A1 (en) * 2008-07-10 2010-01-21 Banville Steven C Methods and apparatus related to gate boundaries within a data space
GB2474613A (en) * 2008-07-10 2011-04-20 Nodality Inc Methods and apparatus related to management of experiments
US9183237B2 (en) 2008-07-10 2015-11-10 Nodality, Inc. Methods and apparatus related to gate boundaries within a data space
US20100030719A1 (en) * 2008-07-10 2010-02-04 Covey Todd M Methods and apparatus related to bioinformatics data analysis
CA2733910A1 (en) * 2008-08-12 2010-02-18 Decode Genetics Ehf. Genetic variants useful for risk assessment of thyroid cancer
CA2734123A1 (en) * 2008-08-15 2010-02-18 Decode Genetics Ehf Genetic variants predictive of cancer risk
KR101523727B1 (en) * 2008-09-16 2015-05-29 삼성전자주식회사 Bio Chip Package Body, Method Of Forming The Bio Chip Package Body And Bio Chip Package Comprising The Bio Chip Package Body
US9034257B2 (en) * 2008-10-27 2015-05-19 Nodality, Inc. High throughput flow cytometry system and method
CH699853A1 (en) * 2008-11-13 2010-05-14 Tecan Trading Ag Meter and method for determining provided by a laboratory fluid system parameters.
US8039794B2 (en) 2008-12-16 2011-10-18 Quest Diagnostics Investments Incorporated Mass spectrometry assay for thiopurine-S-methyl transferase activity and products generated thereby
EP2393941A2 (en) * 2009-02-09 2011-12-14 Frederic Zenhausern Improvements in and relating to microfluidic devices for processing a sample
JP5730280B2 (en) 2009-03-16 2015-06-03 パング バイオファーマ リミテッド Compositions and methods comprising histidyl-tRNA synthetase splice variants having non-canonical biological activity
JP5848236B2 (en) 2009-03-31 2016-01-27 エータイアー ファーマ, インコーポレイテッド Compositions and methods comprising aspartyl tRNA synthetase with non-standard biological activity
WO2010113185A1 (en) 2009-04-03 2010-10-07 Decode Genetics Ehf Genetic markers for risk management of atrial fibrillation and stroke
EP2419204A2 (en) 2009-04-14 2012-02-22 Biocartis SA Hifu induced cavitation with reduced power threshold
TR201809597T4 (en) 2009-04-15 2018-07-23 Biocartis Nv Protection of bioanalytical sample reservoirs.
AU2010237532B2 (en) 2009-04-15 2014-11-20 Biocartis Nv Optical detection system for monitoring rtPCR reaction
EP2427270B1 (en) 2009-05-06 2015-04-01 Biocartis NV Device for cutting a sample carrier
AU2010245598A1 (en) * 2009-05-08 2011-11-17 Decode Genetics Ehf Genetic variants contributing to risk of prostate cancer
WO2010148365A2 (en) 2009-06-19 2010-12-23 The Arizona Board Of Regents, A Body Corporate Of The State Of Arizona For And On Behalf Of Arizona State University Compound arrays for sample profiling
WO2011004405A1 (en) 2009-07-10 2011-01-13 Decode Genetics Ehf Genetic markers associated with risk of diabetes mellitus
US8501122B2 (en) 2009-12-08 2013-08-06 Affymetrix, Inc. Manufacturing and processing polymer arrays
JP5601445B2 (en) * 2009-12-14 2014-10-08 セイコーエプソン株式会社 Method of filling test liquid
CN102740976B (en) 2010-01-29 2016-04-20 精密公司 Sampling-response microfluidic cartridge
KR20110090394A (en) * 2010-02-03 2011-08-10 삼성전자주식회사 Microarray reaction device and method for using the same
KR20110106684A (en) * 2010-03-23 2011-09-29 삼성전자주식회사 Microarray package device and method for manufacturing the same
CA2797093C (en) 2010-04-26 2019-10-29 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-trna synthetase
CN103096911B (en) 2010-04-27 2018-05-29 Atyr 医药公司 Treatment relevant with the protein fragments of Isoleucyl-tRNA synthetase, diagnosis and the innovation of antibody compositions are found
JP6008837B2 (en) 2010-04-28 2016-10-19 エータイアー ファーマ, インコーポレイテッド Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of alanyl tRNA synthetase
AU2011248490B2 (en) 2010-04-29 2016-11-10 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases
US9068177B2 (en) 2010-04-29 2015-06-30 Atyr Pharma, Inc Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-tRNA synthetases
AU2011246976B2 (en) 2010-04-29 2016-01-28 Allarity Therapeutics Europe ApS Methods and devices for predicting treatment efficacy
CA2797393C (en) 2010-04-29 2020-03-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl trna synthetases
CN103096912A (en) 2010-05-03 2013-05-08 Atyr医药公司 Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-tRNA synthetases
CA2797277C (en) 2010-05-03 2021-02-23 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of arginyl-trna synthetases
CA2797978C (en) 2010-05-03 2019-12-03 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-trna synthetases
AU2011248101B2 (en) 2010-05-04 2016-10-20 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-tRNA synthetase complex
CN103200953B (en) 2010-05-14 2017-02-15 Atyr 医药公司 Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases
US9034598B2 (en) 2010-05-17 2015-05-19 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of leucyl-tRNA synthetases
WO2011153277A2 (en) 2010-06-01 2011-12-08 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of lysyl-trna synthetases
EP2593125B1 (en) 2010-07-12 2017-11-01 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-trna synthetases
DK2601609T3 (en) 2010-08-02 2017-06-06 Population Bio Inc COMPOSITIONS AND METHODS FOR DISCOVERING MUTATIONS CAUSING GENETIC DISORDERS
EP2608801B1 (en) 2010-08-25 2019-08-21 aTyr Pharma, Inc. INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF TYROSYL-tRNA SYNTHETASES
EP2663656B1 (en) 2011-01-13 2016-08-24 Decode Genetics EHF Genetic variants as markers for use in urinary bladder cancer risk assessment
EP3401679A1 (en) 2011-04-20 2018-11-14 Life Technologies Corporation Methods, compositions and systems for sample deposition
CN103930563B (en) 2011-06-01 2016-11-09 医学预后研究所 For the method and apparatus predicting cancer return
CN102319593B (en) * 2011-08-16 2013-11-20 北京博晖创新光电技术股份有限公司 Cytosis polymer microfluidic chip and preparation method thereof
WO2013054200A2 (en) 2011-10-10 2013-04-18 The Hospital For Sick Children Methods and compositions for screening and treating developmental disorders
US9599561B2 (en) 2011-10-13 2017-03-21 Affymetrix, Inc. Methods, systems and apparatuses for testing and calibrating fluorescent scanners
EP2773779B1 (en) 2011-11-04 2020-10-14 Population Bio, Inc. Methods and compositions for diagnosing, prognosing, and treating neurological conditions
EP2785874B1 (en) 2011-11-30 2018-09-26 Children's Hospital Medical Center Personalized pain management and anesthesia: preemptive risk identification and therapeutic decision support
KR102090934B1 (en) 2012-01-09 2020-03-19 퍼킨엘머 헬스 사이언시즈, 아이엔씨. Microfluidic reactor system
US10407724B2 (en) 2012-02-09 2019-09-10 The Hospital For Sick Children Methods and compositions for screening and treating developmental disorders
MX356107B (en) 2012-02-16 2018-05-15 Atyr Pharma Inc Histidyl-trna synthetases for treating autoimmune and inflammatory diseases.
WO2014043519A1 (en) 2012-09-14 2014-03-20 Population Diagnostics Inc. Methods and compositions for diagnosing, prognosing, and treating neurological conditions
WO2014052855A1 (en) 2012-09-27 2014-04-03 Population Diagnostics, Inc. Methods and compositions for screening and treating developmental disorders
EP2917715B1 (en) 2012-11-06 2019-04-03 Biodot, Inc. Controlled printing of a cell sample for karyotyping
WO2014074942A1 (en) 2012-11-08 2014-05-15 Illumina, Inc. Risk variants of alzheimer's disease
CA2892822C (en) 2012-11-27 2023-08-08 Pontificia Universidad Catolica De Chile Compositions and methods for diagnosing thyroid tumors
KR102102123B1 (en) 2012-12-21 2020-04-20 퍼킨엘머 헬스 사이언시즈, 아이엔씨. Fluidic circuits and related manufacturing methods
JP6935167B2 (en) 2012-12-21 2021-09-15 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド Low elasticity film for microfluidic use
KR20150097764A (en) 2012-12-21 2015-08-26 마이크로닉스 인코포레이티드. Portable fluorescence detection system and microassay cartridge
US20140256586A1 (en) * 2013-03-09 2014-09-11 The Wistar Institute Of Anatomy And Biology Methods and compositions for diagnosis of colorectal cancer
CA2911303C (en) 2013-05-07 2021-02-16 Micronics, Inc. Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions
JP6484222B2 (en) 2013-05-07 2019-03-13 マイクロニクス, インコーポレイテッド Devices for nucleic acid preparation and analysis
US10386377B2 (en) 2013-05-07 2019-08-20 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
US10392667B2 (en) 2013-06-07 2019-08-27 Medical Prognosis Institute A/S Methods and devices for predicting treatment efficacy of fulvestrant in cancer patients
JP6706206B2 (en) 2013-11-11 2020-06-03 ライフ テクノロジーズ コーポレーション Rotor assembly and method for using same
DK2891722T3 (en) 2013-11-12 2019-01-07 Population Bio Inc METHODS AND COMPOSITIONS FOR DIAGNOSTICING, PROGRAMMING AND TREATMENT OF ENDOMETRIOSIS
CN106062531B (en) 2013-12-06 2019-03-08 百克特瑞欧扫描有限责任公司 The test tube component of optical measurement is carried out for the characteristic to particle in fluid sample
JP6581117B2 (en) 2014-02-24 2019-09-25 チルドレンズ ホスピタル メディカル センター Methods and compositions for personalized pain management
CN103873011A (en) * 2014-03-05 2014-06-18 随州泰华电子科技有限公司 Automatic folding device of tuning fork chip
WO2016008048A1 (en) 2014-07-15 2016-01-21 Ontario Institute For Cancer Research Methods and devices for predicting anthracycline treatment efficacy
WO2016023026A1 (en) 2014-08-08 2016-02-11 Children's Hospital Medical Center Diagnostic method for distinguishing forms of esophageal eosinophilia
GB2558326B (en) 2014-09-05 2021-01-20 Population Bio Inc Methods and compositions for inhibiting and treating neurological conditions
US10758886B2 (en) 2015-09-14 2020-09-01 Arizona Board Of Regents On Behalf Of Arizona State University Conditioned surfaces for in situ molecular array synthesis
WO2017089963A1 (en) * 2015-11-23 2017-06-01 King Abdullah University Of Science And Technology Methods of making microfluidic devices
CN105413613A (en) * 2015-12-22 2016-03-23 天津格信智能科技有限公司 Heat exchange device
EP4059570A1 (en) 2016-01-13 2022-09-21 Children's Hospital Medical Center Compositions and methods for treating allergic inflammatory conditions
US9659838B1 (en) * 2016-03-28 2017-05-23 Lockheed Martin Corporation Integration of chip level micro-fluidic cooling in chip packages for heat flux removal
WO2017223117A1 (en) 2016-06-20 2017-12-28 Healthtell Inc. Methods for diagnosis and treatment of autoimmune diseases
WO2017223116A2 (en) 2016-06-20 2017-12-28 Healthtell Inc. Methods for differential diagnosis of autoimmune diseases
EP3538893A4 (en) 2016-11-11 2020-09-23 Healthtell Inc. Methods for identifying candidate biomarkers
CN106807468A (en) * 2017-01-18 2017-06-09 广东顺德工业设计研究院(广东顺德创新设计研究院) Micro-fluidic chip clamp and droplet preparation system
WO2018136728A1 (en) 2017-01-20 2018-07-26 Children's Hospital Medical Center Methods and compositions relating to oprm1 dna methylation for personalized pain management
US10240205B2 (en) 2017-02-03 2019-03-26 Population Bio, Inc. Methods for assessing risk of developing a viral disease using a genetic test
JP7165651B2 (en) * 2017-05-12 2022-11-04 ユニバーサル・バイオ・リサーチ株式会社 Nucleic acid detection cartridge
US12025615B2 (en) 2017-09-15 2024-07-02 Arizona Board Of Regents On Behalf Of Arizona State University Methods of classifying response to immunotherapy for cancer
US11859250B1 (en) 2018-02-23 2024-01-02 Children's Hospital Medical Center Methods for treating eosinophilic esophagitis
JP2019158794A (en) * 2018-03-16 2019-09-19 シスメックス株式会社 Specimen treatment method, specimen treatment chip, and specimen treatment apparatus
HRP20221504T1 (en) 2018-08-08 2023-03-31 Pml Screening, Llc Methods for assessing the risk of developing progressive multifocal leukoencephalopathy caused by john cunningham virus by genetic testing
WO2020201267A1 (en) 2019-04-01 2020-10-08 Københavns Universitet Identification of pan-gamma secretase inhibitor (pan-gsi) theranostic response signatures for cancers
JP6886668B2 (en) * 2019-04-23 2021-06-16 住友ゴム工業株式会社 Medical testing equipment and cell testing method
WO2021067550A1 (en) 2019-10-02 2021-04-08 Arizona Board Of Regents On Behalf Of Arizona State University Methods and compositions for identifying neoantigens for use in treating and preventing cancer
EP4421491A2 (en) 2021-02-19 2024-08-28 10X Genomics, Inc. Method of using a modular assay support device
EP4063709A1 (en) * 2021-03-22 2022-09-28 Roche Diagnostics GmbH Laboratory system and corresponding method of operation

Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281860A (en) * 1964-11-09 1966-10-25 Dick Co Ab Ink jet nozzle
US3690836A (en) * 1966-03-01 1972-09-12 Promoveo Device for use in the study of chemical and biological reactions and method of making same
US3710933A (en) * 1971-12-23 1973-01-16 Atomic Energy Commission Multisensor particle sorter
US3802966A (en) * 1969-08-22 1974-04-09 Ethyl Corp Apparatus for delivering a fluid suspension to a forming unit clear reactor power plant
US4016855A (en) * 1974-09-04 1977-04-12 Hitachi, Ltd. Grinding method
US4121222A (en) * 1977-09-06 1978-10-17 A. B. Dick Company Drop counter ink replenishing system
US4125828A (en) * 1972-08-04 1978-11-14 Med-El Inc. Method and apparatus for automated classification and analysis of cells
US4204929A (en) * 1978-04-18 1980-05-27 University Patents, Inc. Isoelectric focusing method
US4373071A (en) * 1981-04-30 1983-02-08 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4458066A (en) * 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4500707A (en) * 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US4728502A (en) * 1984-05-02 1988-03-01 Hamill Brendan J Apparatus for the chemical synthesis of oligonucleotides
US4731325A (en) * 1984-02-17 1988-03-15 Orion-Yhtyma Arrays of alternating nucleic acid fragments for hybridization arrays
US4753775A (en) * 1985-04-12 1988-06-28 E. I. Du Pont De Nemours And Company Rapid assay processor
US4780504A (en) * 1985-06-20 1988-10-25 Roussel Uclaf Supports useful in solid phase synthesis of oligonucleotides
US4812512A (en) * 1985-06-27 1989-03-14 Roussel Uclaf Supports and their use
US4815274A (en) * 1984-11-19 1989-03-28 Vincent Patents Limited Exhaust systems for multi-cylinder internal combustion engines
US4845552A (en) * 1987-08-20 1989-07-04 Bruno Jaggi Quantitative light microscope using a solid state detector in the primary image plane
US4853335A (en) * 1987-09-28 1989-08-01 Olsen Duane A Colloidal gold particle concentration immunoassay
US4877745A (en) * 1986-11-17 1989-10-31 Abbott Laboratories Apparatus and process for reagent fluid dispensing and printing
US4878971A (en) * 1987-01-28 1989-11-07 Fuji Photo Film Co., Ltd. Method of continuously assembling chemical analysis slides
US4963498A (en) * 1985-08-05 1990-10-16 Biotrack Capillary flow device
US4992383A (en) * 1988-08-05 1991-02-12 Porton Instruments, Inc. Method for protein and peptide sequencing using derivatized glass supports
US5021550A (en) * 1986-10-07 1991-06-04 Thomas Jefferson University Method for preventing deletion sequences in solid phase synthesis
US5047524A (en) * 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5091652A (en) * 1990-01-12 1992-02-25 The Regents Of The University Of California Laser excited confocal microscope fluorescence scanner and method
US5141813A (en) * 1989-08-28 1992-08-25 Clontech Laboratories, Inc. Multifunctional controlled pore glass reagent for solid phase oligonucleotide synthesis
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5153319A (en) * 1986-03-31 1992-10-06 University Patents, Inc. Process for preparing polynucleotides
US5188963A (en) * 1989-11-17 1993-02-23 Gene Tec Corporation Device for processing biological specimens for analysis of nucleic acids
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5204253A (en) * 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5256549A (en) * 1986-03-28 1993-10-26 Chiron Corporation Purification of synthetic oligomers
US5281540A (en) * 1988-08-02 1994-01-25 Abbott Laboratories Test array for performing assays
US5281516A (en) * 1988-08-02 1994-01-25 Gene Tec Corporation Temperature control apparatus and method
US5287272A (en) * 1988-04-08 1994-02-15 Neuromedical Systems, Inc. Automated cytological specimen classification system and method
US5288514A (en) * 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5300779A (en) * 1985-08-05 1994-04-05 Biotrack, Inc. Capillary flow device
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5310469A (en) * 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
US5314829A (en) * 1992-12-18 1994-05-24 California Institute Of Technology Method for imaging informational biological molecules on a semiconductor substrate
US5320808A (en) * 1988-08-02 1994-06-14 Abbott Laboratories Reaction cartridge and carousel for biological sample analyzer
US5322799A (en) * 1988-02-03 1994-06-21 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Observation cell and mixing chamber
US5346672A (en) * 1989-11-17 1994-09-13 Gene Tec Corporation Devices for containing biological specimens for thermal processing
US5358691A (en) * 1992-03-27 1994-10-25 Abbott Laboratories Automated continuous and random access analytical system
US5374395A (en) * 1993-10-14 1994-12-20 Amoco Corporation Diagnostics instrument
US5382511A (en) * 1988-08-02 1995-01-17 Gene Tec Corporation Method for studying nucleic acids within immobilized specimens
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5486452A (en) * 1981-04-29 1996-01-23 Ciba-Geigy Corporation Devices and kits for immunological analysis
US5486335A (en) * 1992-05-01 1996-01-23 Trustees Of The University Of Pennsylvania Analysis based on flow restriction
US5494124A (en) * 1993-10-08 1996-02-27 Vortexx Group, Inc. Negative pressure vortex nozzle
US5498392A (en) * 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US5571639A (en) * 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5578832A (en) * 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US5589136A (en) * 1995-06-20 1996-12-31 Regents Of The University Of California Silicon-based sleeve devices for chemical reactions
US5631734A (en) * 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5639423A (en) * 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
US5639612A (en) * 1992-07-28 1997-06-17 Hitachi Chemical Company, Ltd. Method for detecting polynucleotides with immobilized polynucleotide probes identified based on Tm
US5677195A (en) * 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
US5698393A (en) * 1995-08-18 1997-12-16 Abbott Laboratories Method for elimination of rheumatoid factor interference in diagnostic assays
US5700367A (en) * 1995-04-28 1997-12-23 Ngk Spark Plug Co., Ltd. Method and apparatus for controlling the energizing of a heater in an oxygen sensor
US5757666A (en) * 1993-04-23 1998-05-26 Boehringer Mannheim Gmbh System for analyzing compounds contained liquid samples
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
US5851488A (en) * 1996-02-29 1998-12-22 Biocircuits Corporation Apparatus for automatic electro-optical chemical assay determination
US5910288A (en) * 1997-07-10 1999-06-08 Hewlett-Packard Company Method and apparatus for mixing a thin film of fluid
US5945334A (en) * 1994-06-08 1999-08-31 Affymetrix, Inc. Apparatus for packaging a chip
US5961923A (en) * 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US6096561A (en) * 1992-03-27 2000-08-01 Abbott Laboratories Scheduling operation of an automated analytical system
US6121048A (en) * 1994-10-18 2000-09-19 Zaffaroni; Alejandro C. Method of conducting a plurality of reactions
US6180351B1 (en) * 1999-07-22 2001-01-30 Agilent Technologies Inc. Chemical array fabrication with identifier
US6186659B1 (en) * 1998-08-21 2001-02-13 Agilent Technologies Inc. Apparatus and method for mixing a film of fluid
US6215894B1 (en) * 1999-02-26 2001-04-10 General Scanning, Incorporated Automatic imaging and analysis of microarray biochips
US6238910B1 (en) * 1998-08-10 2001-05-29 Genomic Solutions, Inc. Thermal and fluid cycling device for nucleic acid hybridization
US6258593B1 (en) * 1999-06-30 2001-07-10 Agilent Technologies Inc. Apparatus for conducting chemical or biochemical reactions on a solid surface within an enclosed chamber
US6287850B1 (en) * 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US6420114B1 (en) * 1999-12-06 2002-07-16 Incyte Genomics, Inc. Microarray hybridization chamber

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US618659A (en) * 1899-01-31 Centrifugal machine
US124029A (en) * 1872-02-27 Improvement in machines for setting button or lacing-hooks
US95073A (en) * 1869-09-21 Improvement in wheat-drills
US177159A (en) * 1876-05-09 Improvement in leather-punching machines
US113724A (en) * 1871-04-18 Improvement in sewing-machines
US203492A (en) * 1878-05-07 Improvement in electro-magnets
US3745091A (en) * 1970-11-18 1973-07-10 Miles Lab Biological reaction chamber apparatus
GB1320426A (en) * 1971-07-06 1973-06-13 Pfizer Multiple solution testing device
US4159875A (en) * 1976-10-21 1979-07-03 Abbott Laboratories Specimen holder
US4190040A (en) * 1978-07-03 1980-02-26 American Hospital Supply Corporation Resealable puncture housing for surgical implantation
US4382512A (en) * 1979-08-06 1983-05-10 The Radiochemical Centre Ltd. Container system for dangerous materials
WO1983001112A1 (en) * 1981-09-18 1983-03-31 Carter, Timothy Method for the determination of species in solution with an optical wave-guide
US4447140A (en) * 1982-09-29 1984-05-08 Campbell Jeptha E Microscope slides
US4543088A (en) * 1983-11-07 1985-09-24 American Hospital Supply Corporation Self-sealing subcutaneous injection site
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
GB8509491D0 (en) * 1985-04-12 1985-05-15 Plessey Co Plc Optic waveguide biosensors
FR2582221B1 (en) * 1985-05-21 1987-09-25 Applied Precision Ltd IMPLANTABLE CHRONIC INJECTION DEVICE FOR A SUBSTANCE, ESPECIALLY THERAPEUTIC
US5348855A (en) * 1986-03-05 1994-09-20 Miles Inc. Assay for nucleic acid sequences in an unpurified sample
US4912035A (en) * 1987-06-11 1990-03-27 Eastman Kodak Company Method for minimizing interference by reductants when detecting cells in biological fluids
EP0260965B2 (en) 1986-09-18 2002-01-16 Pacific Biotech Inc. Immunodiagnostic device
US5714380A (en) * 1986-10-23 1998-02-03 Amoco Corporation Closed vessel for isolating target molecules and for performing amplification
US6270961B1 (en) * 1987-04-01 2001-08-07 Hyseq, Inc. Methods and apparatus for DNA sequencing and DNA identification
US4945552A (en) * 1987-12-04 1990-07-31 Hitachi, Ltd. Imaging system for obtaining X-ray energy subtraction images
GB8810400D0 (en) 1988-05-03 1988-06-08 Southern E Analysing polynucleotide sequences
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
EP0427745A4 (en) 1988-07-14 1992-11-25 Baylor College Of Medicine Solid phase assembly and reconstruction of biopolymers
US4857053A (en) * 1988-08-29 1989-08-15 Dalton Michael J Matrix septum
GB8822228D0 (en) 1988-09-21 1988-10-26 Southern E M Support-bound oligonucleotides
GB8829942D0 (en) 1988-12-22 1989-02-15 Isis Innovations Ltd Method
EP0417305A4 (en) 1989-03-07 1992-04-22 Idemitsu Petrochemical Co. Ltd. Analyzer of liquid sample and analyzing method of liquid sample using said analyzer
US6955915B2 (en) * 1989-06-07 2005-10-18 Affymetrix, Inc. Apparatus comprising polymers
US5547839A (en) 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5196305A (en) * 1989-09-12 1993-03-23 Eastman Kodak Company Diagnostic and amplification methods using primers having thymine at 3' end to overcome primer-target mismatch at the 3' end
US5192503A (en) * 1990-05-23 1993-03-09 Mcgrath Charles M Probe clip in situ assay apparatus
US5100626A (en) * 1990-05-24 1992-03-31 Levin Andrew E Binding assay device with removable cassette and manifold
WO1992010588A1 (en) 1990-12-06 1992-06-25 Affymax Technologies N.V. Sequencing by hybridization of a target nucleic acid to a matrix of defined oligonucleotides
JPH06504997A (en) 1990-12-06 1994-06-09 アフィメトリックス, インコーポレイテッド Synthesis of immobilized polymers on a very large scale
DE69110032T2 (en) * 1991-06-08 1995-12-21 Hewlett Packard Gmbh Method and device for determining and / or determining the concentration of biomolecules.
US5189963A (en) * 1991-09-30 1993-03-02 Mann Carlton B Combustible atmosphere furnace control system
JP3207227B2 (en) * 1991-11-08 2001-09-10 ローム株式会社 Nonvolatile semiconductor memory device
US5324633A (en) * 1991-11-22 1994-06-28 Affymax Technologies N.V. Method and apparatus for measuring binding affinity
FR2684688B1 (en) 1991-12-04 1994-03-18 Bertin Et Cie METHOD FOR SELECTING AT LEAST ONE MUTATION SCREEN, ITS APPLICATION TO A PROCESS FOR QUICK IDENTIFICATION OF POLYMORPHIC ALLELES AND DEVICE FOR ITS IMPLEMENTATION.
EP0675966B1 (en) * 1992-02-19 2004-10-06 The Public Health Research Institute Of The City Of New York, Inc. Novel oligonucleotide arrays and their use for sorting, isolating, sequencing, and manipulating nucleic acids
AU677781B2 (en) 1992-05-01 1997-05-08 Trustees Of The University Of Pennsylvania, The Microfabricated sperm handling devices
JP2673078B2 (en) * 1992-05-27 1997-11-05 東芝電池株式会社 Paste type electrode for alkaline secondary battery
US5508200A (en) * 1992-10-19 1996-04-16 Tiffany; Thomas Method and apparatus for conducting multiple chemical assays
US5482591A (en) * 1992-10-30 1996-01-09 Specialty Silicone Products, Inc. Laminated seals and method of production
EP0679514B1 (en) * 1993-01-06 1999-03-24 Seiko Epson Corporation Ink jet head
CA2119286A1 (en) * 1993-04-15 1994-10-16 Hubert S. Smith, Iii Internally lubricated elastomers for use in biomedical applications
US6258325B1 (en) * 1993-04-19 2001-07-10 Ashok Ramesh Sanadi Method and apparatus for preventing cross-contamination of multi-well test plates
US5342581A (en) * 1993-04-19 1994-08-30 Sanadi Ashok R Apparatus for preventing cross-contamination of multi-well test plates
US5451475A (en) 1993-04-28 1995-09-19 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
US5919712A (en) * 1993-05-18 1999-07-06 University Of Utah Research Foundation Apparatus and methods for multi-analyte homogeneous fluoro-immunoassays
IL110298A (en) * 1993-07-13 1999-04-11 Brann Mark Robert Identification of ligands by selective amplification of cells transfected with receptors
US5443985A (en) * 1993-07-22 1995-08-22 Alberta Research Council Cell culture bioreactor
US5427948A (en) * 1993-07-29 1995-06-27 Michigan State University Apparatus for conducting hybridization
US5382512A (en) * 1993-08-23 1995-01-17 Chiron Corporation Assay device with captured particle reagent
US5645801A (en) * 1993-10-21 1997-07-08 Abbott Laboratories Device and method for amplifying and detecting target nucleic acids
US5421948A (en) * 1993-11-04 1995-06-06 Label-Aire Inc. Box corner labeler having a force reducer
US5925517A (en) * 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
FR2714061B1 (en) * 1993-12-16 1996-03-08 Genset Sa Process for the preparation of polynucleotides on solid support and apparatus allowing its implementation.
US5661923A (en) * 1994-05-10 1997-09-02 Fellowes; Robert Fishing weight apparatus
US5639428A (en) * 1994-07-19 1997-06-17 Becton Dickinson And Company Method and apparatus for fully automated nucleic acid amplification, nucleic acid assay and immunoassay
US5485277A (en) * 1994-07-26 1996-01-16 Physical Optics Corporation Surface plasmon resonance sensor and methods for the utilization thereof
US5599668A (en) * 1994-09-22 1997-02-04 Abbott Laboratories Light scattering optical waveguide method for detecting specific binding events
US5585069A (en) * 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5592289A (en) * 1995-01-09 1997-01-07 Molecular Dynamics Self-aligning mechanism for positioning analyte receptacles
US5497392A (en) * 1995-01-26 1996-03-05 The United States Of America As Represented By The United States Department Of Energy Segmented lasing tube for high temperature laser assembly
GB9506312D0 (en) * 1995-03-28 1995-05-17 Medical Res Council Improvements in or relating to sample processing
US6086561A (en) * 1995-05-01 2000-07-11 Science Incorporated Fluid delivery apparatus with reservoir fill assembly
US5575769A (en) * 1995-05-30 1996-11-19 Vaillancourt; Vincent L. Cannula for a slit septum and a lock arrangement therefore
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US5607968A (en) * 1995-06-07 1997-03-04 Avon Products, Inc. Topical alkyl-2-O-L-ascorbyl-phosphates
US6720149B1 (en) * 1995-06-07 2004-04-13 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5843655A (en) * 1995-09-18 1998-12-01 Affymetrix, Inc. Methods for testing oligonucleotide arrays
US5605653A (en) * 1995-11-09 1997-02-25 Devos; Jerry Liquid circulation apparatus
US5910568A (en) * 1996-01-11 1999-06-08 The Penn State Research Foundation Molecule involved in binding of sperm to egg surfaces and procedures for use of this molecule to enhance or decrease potential fertility
US6660233B1 (en) * 1996-01-16 2003-12-09 Beckman Coulter, Inc. Analytical biochemistry system with robotically carried bioarray
US5656174A (en) * 1996-02-16 1997-08-12 Solomon Venture Dredging system and method
US6114122A (en) * 1996-03-26 2000-09-05 Affymetrix, Inc. Fluidics station with a mounting system and method of using
US5939251A (en) * 1996-07-12 1999-08-17 Hu; Min Apparatus and method for simplifying the processes in creating a sealed space on slides to conduct molecular biological reactions therein
WO1998008092A1 (en) * 1996-08-21 1998-02-26 Smithkline Beecham Corporation Rapid process for arraying and synthesizing bead-based combinatorial libraries
US6054100A (en) * 1996-11-18 2000-04-25 Robbins Scientific Corporation Apparatus for multi-well microscale synthesis
US5855804A (en) * 1996-12-06 1999-01-05 Micron Technology, Inc. Method and apparatus for stopping mechanical and chemical-mechanical planarization of substrates at desired endpoints
US5763870A (en) * 1996-12-13 1998-06-09 Hewlett-Packard Company Method and system for operating a laser device employing an integral power-regulation sensor
US5837475A (en) * 1997-01-30 1998-11-17 Hewlett-Packard Co. Apparatus and method for scanning a chemical array
US6095561A (en) * 1997-03-07 2000-08-01 Automotive Systems Laboratory, Inc. Multi-chamber inflator
US6008892A (en) * 1997-05-23 1999-12-28 Molecular Dynamics, Inc. Optical substrate for enhanced detectability of fluorescence
US5948685A (en) * 1998-02-10 1999-09-07 Angros; Lee Analytic plate with containment border and method of use
US6713304B2 (en) * 1998-02-10 2004-03-30 Lee H. Angros Method of forming a containment border on an analytic plate
US6030582A (en) * 1998-03-06 2000-02-29 Levy; Abner Self-resealing, puncturable container cap
US6376619B1 (en) * 1998-04-13 2002-04-23 3M Innovative Properties Company High density, miniaturized arrays and methods of manufacturing same
GB9808140D0 (en) * 1998-04-17 1998-06-17 Smiths Industries Plc Self-sealing septa
US7060431B2 (en) * 1998-06-24 2006-06-13 Illumina, Inc. Method of making and decoding of array sensors with microspheres
US6090687A (en) * 1998-07-29 2000-07-18 Agilent Technolgies, Inc. System and method for bonding and sealing microfabricated wafers to form a single structure having a vacuum chamber therein
JP2000091077A (en) * 1998-09-11 2000-03-31 Sony Corp Organic electroluminescence element
US6165138A (en) * 1998-09-30 2000-12-26 Becton Dickinson And Company Self-sealing closure for a medical speciman collection container
US6429027B1 (en) * 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
DE69924225T2 (en) * 1998-12-29 2006-03-30 Kabushiki Kaisha Toshiba Acoustic surface wave arrangement
US6514768B1 (en) * 1999-01-29 2003-02-04 Surmodics, Inc. Replicable probe array
US20020150909A1 (en) * 1999-02-09 2002-10-17 Stuelpnagel John R. Automated information processing in randomly ordered arrays
US6555361B1 (en) * 1999-03-24 2003-04-29 Corning Incorporated Hybridization chamber for high density nucleic acid arrays
US20030108867A1 (en) * 1999-04-20 2003-06-12 Chee Mark S Nucleic acid sequencing using microsphere arrays
US6355431B1 (en) * 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US6221653B1 (en) * 1999-04-27 2001-04-24 Agilent Technologies, Inc. Method of performing array-based hybridization assays using thermal inkjet deposition of sample fluids
US6323043B1 (en) * 1999-04-30 2001-11-27 Agilent Technologies, Inc. Fabricating biopolymer arrays
US6544732B1 (en) * 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
CA2374390A1 (en) * 1999-05-20 2000-12-14 Illumina, Inc. Combinatorial decoding of random nucleic acid arrays
ATE338273T1 (en) * 1999-05-20 2006-09-15 Illumina Inc DEVICE FOR HOLDING AND PRESENTING AT LEAST ONE MICRO SPHERE MATRIX FOR SOLUTIONS AND/OR OPTICAL IMAGING SYSTEMS
US6399394B1 (en) * 1999-06-30 2002-06-04 Agilent Technologies, Inc. Testing multiple fluid samples with multiple biopolymer arrays
US6395483B1 (en) * 1999-09-02 2002-05-28 3M Innovative Properties Company Arrays with mask layers
US6232072B1 (en) * 1999-10-15 2001-05-15 Agilent Technologies, Inc. Biopolymer array inspection
EP1111391B1 (en) * 1999-12-21 2006-07-26 Tecan Trading AG Clamping device for holding and aligning an item such as a microtitration plate, and method for its use
CA2399733C (en) * 2000-02-07 2011-09-20 Illumina, Inc. Nucleic acid detection methods using universal priming
US7582420B2 (en) * 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
US6770441B2 (en) * 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
US6511277B1 (en) * 2000-07-10 2003-01-28 Affymetrix, Inc. Cartridge loader and methods
US6545758B1 (en) * 2000-08-17 2003-04-08 Perry Sandstrom Microarray detector and synthesizer
US20030096239A1 (en) * 2000-08-25 2003-05-22 Kevin Gunderson Probes and decoder oligonucleotides
US6864097B1 (en) * 2000-09-27 2005-03-08 Agilent Technologies, Inc. Arrays and their reading
US6648853B1 (en) * 2000-10-31 2003-11-18 Agilent Technologies Inc. Septum
US6905816B2 (en) * 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US6382512B1 (en) * 2001-04-09 2002-05-07 Yu-Chun Chang Signal reading control apparatus for barcode scanner
WO2003008943A1 (en) * 2001-07-19 2003-01-30 Tufts University Optical array device and methods of use thereof for screening, analysis and manipulation of particles
US6682702B2 (en) * 2001-08-24 2004-01-27 Agilent Technologies, Inc. Apparatus and method for simultaneously conducting multiple chemical reactions
JP2005528582A (en) * 2001-09-07 2005-09-22 コーニング インコーポレイテッド Array based on a microcolumn platform for high-throughput analysis
US20030087292A1 (en) * 2001-10-04 2003-05-08 Shiping Chen Methods and systems for promoting interactions between probes and target molecules in fluid in microarrays
US20030113724A1 (en) * 2001-10-12 2003-06-19 Schembri Carol T. Packaged microarray apparatus and a method of bonding a microarray into a package
AU2002337920A1 (en) * 2001-10-19 2003-04-28 Zymogenetics, Inc. Dimerized growth factor and materials and methods for producing it
KR100428514B1 (en) * 2001-11-16 2004-04-29 금호석유화학 주식회사 Polymer consisting of linear and nonlinear structure and process for its manufacture by anionic polymerization
JP2005513457A (en) * 2001-12-19 2005-05-12 アフィメトリックス インコーポレイテッド Array plate and method for constructing array plate
EP1332704A3 (en) * 2002-01-16 2004-03-17 Eastern Sources Housewares (Hong Kong) Limited Electric deep fryer
US7018842B2 (en) * 2002-02-28 2006-03-28 Agilent Technologies, Inc. Reading dry chemical arrays through the substrate
EP1345026B1 (en) * 2002-03-15 2010-05-05 Affymetrix, Inc. System and method for scanning of biological materials
US7125523B2 (en) * 2002-04-29 2006-10-24 Agilent Technologies, Inc. Holders for arrays
EP1375678A3 (en) * 2002-06-14 2004-03-10 Agilent Technologies, Inc. Methods and compositions for performing array based assays
US20030235520A1 (en) * 2002-06-21 2003-12-25 Shea Laurence R. Array assay devices and methods of using the same
US6835938B2 (en) * 2002-07-31 2004-12-28 Agilent Technologies, Inc. Biopolymer array substrate thickness dependent automated focus-distance determination method for biopolymer array scanners
US6913931B2 (en) * 2002-10-03 2005-07-05 3M Innovative Properties Company Devices, methods and systems for low volume microarray processing
US20040086868A1 (en) * 2002-10-30 2004-05-06 Parker Russell A. Enclosed arrays and their reading
US20040096914A1 (en) * 2002-11-20 2004-05-20 Ye Fang Substrates with stable surface chemistry for biological membrane arrays and methods for fabricating thereof
US20050026299A1 (en) * 2003-07-31 2005-02-03 Arindam Bhattacharjee Chemical arrays on a common carrier
US7223609B2 (en) * 2003-08-14 2007-05-29 Agilent Technologies, Inc. Arrays for multiplexed surface plasmon resonance detection of biological molecules

Patent Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281860A (en) * 1964-11-09 1966-10-25 Dick Co Ab Ink jet nozzle
US3690836A (en) * 1966-03-01 1972-09-12 Promoveo Device for use in the study of chemical and biological reactions and method of making same
US3802966A (en) * 1969-08-22 1974-04-09 Ethyl Corp Apparatus for delivering a fluid suspension to a forming unit clear reactor power plant
US3710933A (en) * 1971-12-23 1973-01-16 Atomic Energy Commission Multisensor particle sorter
US4125828A (en) * 1972-08-04 1978-11-14 Med-El Inc. Method and apparatus for automated classification and analysis of cells
US4016855A (en) * 1974-09-04 1977-04-12 Hitachi, Ltd. Grinding method
US4121222A (en) * 1977-09-06 1978-10-17 A. B. Dick Company Drop counter ink replenishing system
US4204929A (en) * 1978-04-18 1980-05-27 University Patents, Inc. Isoelectric focusing method
US4458066A (en) * 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4500707A (en) * 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US5486452A (en) * 1981-04-29 1996-01-23 Ciba-Geigy Corporation Devices and kits for immunological analysis
US4373071A (en) * 1981-04-30 1983-02-08 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4731325A (en) * 1984-02-17 1988-03-15 Orion-Yhtyma Arrays of alternating nucleic acid fragments for hybridization arrays
US4728502A (en) * 1984-05-02 1988-03-01 Hamill Brendan J Apparatus for the chemical synthesis of oligonucleotides
US4815274A (en) * 1984-11-19 1989-03-28 Vincent Patents Limited Exhaust systems for multi-cylinder internal combustion engines
US4753775A (en) * 1985-04-12 1988-06-28 E. I. Du Pont De Nemours And Company Rapid assay processor
US4780504A (en) * 1985-06-20 1988-10-25 Roussel Uclaf Supports useful in solid phase synthesis of oligonucleotides
US4812512A (en) * 1985-06-27 1989-03-14 Roussel Uclaf Supports and their use
US5300779A (en) * 1985-08-05 1994-04-05 Biotrack, Inc. Capillary flow device
US4963498A (en) * 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5256549A (en) * 1986-03-28 1993-10-26 Chiron Corporation Purification of synthetic oligomers
US5153319A (en) * 1986-03-31 1992-10-06 University Patents, Inc. Process for preparing polynucleotides
US5021550A (en) * 1986-10-07 1991-06-04 Thomas Jefferson University Method for preventing deletion sequences in solid phase synthesis
US4877745A (en) * 1986-11-17 1989-10-31 Abbott Laboratories Apparatus and process for reagent fluid dispensing and printing
US4878971A (en) * 1987-01-28 1989-11-07 Fuji Photo Film Co., Ltd. Method of continuously assembling chemical analysis slides
US4845552A (en) * 1987-08-20 1989-07-04 Bruno Jaggi Quantitative light microscope using a solid state detector in the primary image plane
US4853335A (en) * 1987-09-28 1989-08-01 Olsen Duane A Colloidal gold particle concentration immunoassay
US5322799A (en) * 1988-02-03 1994-06-21 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Observation cell and mixing chamber
US5287272B1 (en) * 1988-04-08 1996-08-27 Neuromedical Systems Inc Automated cytological specimen classification system and method
US5287272A (en) * 1988-04-08 1994-02-15 Neuromedical Systems, Inc. Automated cytological specimen classification system and method
US5281516A (en) * 1988-08-02 1994-01-25 Gene Tec Corporation Temperature control apparatus and method
US5320808A (en) * 1988-08-02 1994-06-14 Abbott Laboratories Reaction cartridge and carousel for biological sample analyzer
US5281540A (en) * 1988-08-02 1994-01-25 Abbott Laboratories Test array for performing assays
US5382511A (en) * 1988-08-02 1995-01-17 Gene Tec Corporation Method for studying nucleic acids within immobilized specimens
US4992383A (en) * 1988-08-05 1991-02-12 Porton Instruments, Inc. Method for protein and peptide sequencing using derivatized glass supports
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5466575A (en) * 1988-11-14 1995-11-14 I-Stat Corporation Process for the manufacture of wholly microfabricated biosensors
US5047524A (en) * 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5141813A (en) * 1989-08-28 1992-08-25 Clontech Laboratories, Inc. Multifunctional controlled pore glass reagent for solid phase oligonucleotide synthesis
US5346672A (en) * 1989-11-17 1994-09-13 Gene Tec Corporation Devices for containing biological specimens for thermal processing
US5188963A (en) * 1989-11-17 1993-02-23 Gene Tec Corporation Device for processing biological specimens for analysis of nucleic acids
US5436129A (en) * 1989-11-17 1995-07-25 Gene Tec Corp. Process for specimen handling for analysis of nucleic acids
US5451500A (en) * 1989-11-17 1995-09-19 Gene Tec Corporation Device for processing biological specimens for analysis of nucleic acids
US5091652A (en) * 1990-01-12 1992-02-25 The Regents Of The University Of California Laser excited confocal microscope fluorescence scanner and method
US5204253A (en) * 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
US5677195A (en) * 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5310469A (en) * 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
US5358691A (en) * 1992-03-27 1994-10-25 Abbott Laboratories Automated continuous and random access analytical system
US6096561A (en) * 1992-03-27 2000-08-01 Abbott Laboratories Scheduling operation of an automated analytical system
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5498392A (en) * 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5486335A (en) * 1992-05-01 1996-01-23 Trustees Of The University Of Pennsylvania Analysis based on flow restriction
US5639612A (en) * 1992-07-28 1997-06-17 Hitachi Chemical Company, Ltd. Method for detecting polynucleotides with immobilized polynucleotide probes identified based on Tm
US5639423A (en) * 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
US5288514A (en) * 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5314829A (en) * 1992-12-18 1994-05-24 California Institute Of Technology Method for imaging informational biological molecules on a semiconductor substrate
US5757666A (en) * 1993-04-23 1998-05-26 Boehringer Mannheim Gmbh System for analyzing compounds contained liquid samples
US5494124A (en) * 1993-10-08 1996-02-27 Vortexx Group, Inc. Negative pressure vortex nozzle
US5374395A (en) * 1993-10-14 1994-12-20 Amoco Corporation Diagnostics instrument
US5631734A (en) * 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
US5571639A (en) * 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US6140044A (en) * 1994-06-08 2000-10-31 Affymetrix, Inc. Method and apparatus for packaging a probe array
US6399365B2 (en) * 1994-06-08 2002-06-04 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US5945334A (en) * 1994-06-08 1999-08-31 Affymetrix, Inc. Apparatus for packaging a chip
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5578832A (en) * 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US6121048A (en) * 1994-10-18 2000-09-19 Zaffaroni; Alejandro C. Method of conducting a plurality of reactions
US5961923A (en) * 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US5700367A (en) * 1995-04-28 1997-12-23 Ngk Spark Plug Co., Ltd. Method and apparatus for controlling the energizing of a heater in an oxygen sensor
US6287850B1 (en) * 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US5589136A (en) * 1995-06-20 1996-12-31 Regents Of The University Of California Silicon-based sleeve devices for chemical reactions
US5698393A (en) * 1995-08-18 1997-12-16 Abbott Laboratories Method for elimination of rheumatoid factor interference in diagnostic assays
US5851488A (en) * 1996-02-29 1998-12-22 Biocircuits Corporation Apparatus for automatic electro-optical chemical assay determination
US5910288A (en) * 1997-07-10 1999-06-08 Hewlett-Packard Company Method and apparatus for mixing a thin film of fluid
US6238910B1 (en) * 1998-08-10 2001-05-29 Genomic Solutions, Inc. Thermal and fluid cycling device for nucleic acid hybridization
US6432696B2 (en) * 1998-08-10 2002-08-13 Genomic Solutions, Inc. Thermal and fluidic cycling device for nucleic acid hybridization
US6186659B1 (en) * 1998-08-21 2001-02-13 Agilent Technologies Inc. Apparatus and method for mixing a film of fluid
US6513968B2 (en) * 1998-08-21 2003-02-04 Agilent Technologies, Inc. Apparatus and method for mixing a film of fluid
US6215894B1 (en) * 1999-02-26 2001-04-10 General Scanning, Incorporated Automatic imaging and analysis of microarray biochips
US6258593B1 (en) * 1999-06-30 2001-07-10 Agilent Technologies Inc. Apparatus for conducting chemical or biochemical reactions on a solid surface within an enclosed chamber
US6180351B1 (en) * 1999-07-22 2001-01-30 Agilent Technologies Inc. Chemical array fabrication with identifier
US6420114B1 (en) * 1999-12-06 2002-07-16 Incyte Genomics, Inc. Microarray hybridization chamber

Cited By (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106618A1 (en) * 1994-06-08 2005-05-19 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US20080175755A1 (en) * 2001-06-22 2008-07-24 Nolte David D Apparatus for interferometric detection of presence or absence of a target analyte of a biological sample on a planar array
US20040166593A1 (en) * 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
US20060256676A1 (en) * 2001-06-22 2006-11-16 Nolte David D Method for inteferometric detection of presence or absence of a target analyte of a biological sample on a planar array
EP1612560A1 (en) * 2004-07-02 2006-01-04 Roche Diagnostics GmbH Device for reliable analysis
US20060002818A1 (en) * 2004-07-02 2006-01-05 Roche Molecular Systems, Inc. Chip based diagnostic device
US20110008225A1 (en) * 2004-07-02 2011-01-13 Roche Molecular Systems, Inc. Chip Based Diagnostic Device
US7820103B2 (en) 2004-07-02 2010-10-26 Roche Molecular Systems, Inc. Chip based diagnostic device
US20060256350A1 (en) * 2005-02-01 2006-11-16 David Nolte Laser scanning interferometric surface metrology
US7663092B2 (en) 2005-02-01 2010-02-16 Purdue Research Foundation Method and apparatus for phase contrast quadrature interferometric detection of an immunoassay
US8298831B2 (en) 2005-02-01 2012-10-30 Purdue Research Foundation Differentially encoded biological analyzer planar array apparatus and methods
US20070003925A1 (en) * 2005-02-01 2007-01-04 Nolte David D Multiplexed biological analyzer planar array apparatus and methods
US7910356B2 (en) 2005-02-01 2011-03-22 Purdue Research Foundation Multiplexed biological analyzer planar array apparatus and methods
US20070003436A1 (en) * 2005-02-01 2007-01-04 Nolte David D Method and apparatus for phase contrast quadrature interferometric detection of an immunoassay
KR100634545B1 (en) 2005-06-17 2006-10-13 삼성전자주식회사 Microchip assembly
US8075852B2 (en) 2005-11-02 2011-12-13 Affymetrix, Inc. System and method for bubble removal
US20070267335A1 (en) * 2005-11-02 2007-11-22 Affymetrix, Inc. System and Method for Bubble Removal
US20070259366A1 (en) * 2006-05-03 2007-11-08 Greg Lawrence Direct printing of patterned hydrophobic wells
US20080230605A1 (en) * 2006-11-30 2008-09-25 Brian Weichel Process and apparatus for maintaining data integrity
US7659968B2 (en) 2007-01-19 2010-02-09 Purdue Research Foundation System with extended range of molecular sensing through integrated multi-modal data acquisition
US8072585B2 (en) 2007-01-19 2011-12-06 Purdue Research Foundation System with extended range of molecular sensing through integrated multi-modal data acquisition
US7787126B2 (en) 2007-03-26 2010-08-31 Purdue Research Foundation Method and apparatus for conjugate quadrature interferometric detection of an immunoassay
US9480982B2 (en) 2007-12-24 2016-11-01 Honeywell International Inc. Reactor for the quantitative analysis of nucleic acids
US20110020818A1 (en) * 2007-12-24 2011-01-27 Honeywell International Inc. Reactor for the quantitative analysis of necleic acids
US20090181390A1 (en) * 2008-01-11 2009-07-16 Signosis, Inc. A California Corporation High throughput detection of micrornas and use for disease diagnosis
US9656261B2 (en) 2009-06-04 2017-05-23 Leidos Innovations Technology, Inc. DNA analyzer
US9067207B2 (en) 2009-06-04 2015-06-30 University Of Virginia Patent Foundation Optical approach for microfluidic DNA electrophoresis detection
US9649631B2 (en) 2009-06-04 2017-05-16 Leidos Innovations Technology, Inc. Multiple-sample microfluidic chip for DNA analysis
US10174368B2 (en) 2009-09-10 2019-01-08 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
US10072287B2 (en) 2009-09-10 2018-09-11 Centrillion Technology Holdings Corporation Methods of targeted sequencing
US10982275B2 (en) 2009-11-06 2021-04-20 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US8703652B2 (en) 2009-11-06 2014-04-22 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US10968479B2 (en) 2009-11-06 2021-04-06 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US10494669B2 (en) 2009-11-06 2019-12-03 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
WO2011057061A1 (en) 2009-11-06 2011-05-12 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US11098350B2 (en) 2009-11-06 2021-08-24 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US9845497B2 (en) 2009-11-06 2017-12-19 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US11597966B2 (en) 2009-11-06 2023-03-07 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US10329607B2 (en) 2009-11-06 2019-06-25 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US10988804B2 (en) 2009-11-06 2021-04-27 The Board Of Trustees Of The Leland Stanford Junior University Nucleic acid sequencing apparatus for monitoring status of a transplant recipient
US11390918B2 (en) 2009-11-06 2022-07-19 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US11384389B2 (en) 2009-11-06 2022-07-12 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
US9539571B2 (en) 2010-01-20 2017-01-10 Honeywell International Inc. Method to increase detection efficiency of real time PCR microarray by quartz material
US8961764B2 (en) 2010-10-15 2015-02-24 Lockheed Martin Corporation Micro fluidic optic design
US8309045B2 (en) 2011-02-11 2012-11-13 General Electric Company System and method for controlling emissions in a combustion system
US9689032B2 (en) 2011-04-01 2017-06-27 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
US10801062B2 (en) 2011-04-01 2020-10-13 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
US10408737B1 (en) 2011-08-01 2019-09-10 Celsee Diagnostics, Inc. Cell capture system and method of use
US10408736B1 (en) 2011-08-01 2019-09-10 Celsee Diagnostics, Inc. Cell capture system and method of use
US11237096B2 (en) 2011-08-01 2022-02-01 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US11275015B2 (en) 2011-08-01 2022-03-15 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US11073468B2 (en) 2011-08-01 2021-07-27 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10564090B2 (en) 2011-08-01 2020-02-18 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US11300496B2 (en) 2011-08-01 2022-04-12 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10591404B1 (en) 2011-08-01 2020-03-17 Celsee Diagnostics, Inc. Cell capture system and method of use
US12044614B2 (en) 2011-08-01 2024-07-23 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US10481077B1 (en) 2011-08-01 2019-11-19 Celsee Diagnostics, Inc. Cell capture system and method of use
US10641700B2 (en) 2011-08-01 2020-05-05 Celsee Diagnostics, Inc. Cell capture system and method of use
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US10921237B2 (en) 2011-08-01 2021-02-16 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10436700B1 (en) 2011-08-01 2019-10-08 Celsee Diagnostics, Inc. Cell capture system and method of use
US10190965B2 (en) 2011-08-01 2019-01-29 Celsee Diagnostics, Inc. Cell capture system and method of use
US10914672B2 (en) 2011-08-01 2021-02-09 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US10533936B1 (en) 2011-08-01 2020-01-14 Celsee Diagnostics, Inc. Cell capture system and method of use
US12066373B2 (en) 2011-08-01 2024-08-20 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US10345219B2 (en) 2011-08-01 2019-07-09 Celsee Diagnostics, Inc. Cell capture system and method of use
US10794817B1 (en) 2011-08-01 2020-10-06 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10782226B1 (en) 2011-08-01 2020-09-22 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10746648B2 (en) 2011-08-01 2020-08-18 Bio-Rad Laboratories, Inc. Cell capture and method of use
US11946855B2 (en) 2011-08-01 2024-04-02 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10401277B2 (en) 2011-08-01 2019-09-03 Celsee Diagnostics, Inc. Cell capture system and method of use
US11635365B2 (en) 2011-08-01 2023-04-25 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US11231355B2 (en) 2011-08-01 2022-01-25 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10416070B1 (en) 2011-08-01 2019-09-17 Celsee Diagnostics, Inc. Cell capture system and method of use
EP3836149A1 (en) 2011-11-07 2021-06-16 QIAGEN Redwood City, Inc. Methods and systems for identification of causal genomic variants
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
US9988676B2 (en) 2012-02-22 2018-06-05 Leidos Innovations Technology, Inc. Microfluidic cartridge
EP3578669A1 (en) 2012-08-08 2019-12-11 F. Hoffmann-La Roche AG Increasing dynamic range for identifying multiple epitopes in cells
EP4450644A2 (en) 2012-08-08 2024-10-23 F. Hoffmann-La Roche AG Increasing dynamic range for identifying multiple epitopes in cells
WO2014026032A2 (en) 2012-08-08 2014-02-13 Apprise Bio, Inc. Increasing dynamic range for identifying multiple epitopes in cells
US10718007B2 (en) 2013-01-26 2020-07-21 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US11345951B2 (en) 2013-01-26 2022-05-31 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10975422B2 (en) 2013-01-26 2021-04-13 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10690650B2 (en) 2013-03-13 2020-06-23 Bio-Rad Laboratories, Inc. System for imaging captured cells
US11199532B2 (en) 2013-03-13 2021-12-14 Bio-Rad Laboratories, Inc. System for imaging captured cells
US20160199838A1 (en) * 2013-03-13 2016-07-14 Denovo Sciences, Inc. System and method for capturing and analyzing cells
US20170151569A1 (en) * 2013-03-13 2017-06-01 Denovo Sciences, Inc. System and method for capturing and analyzing cells
US10509022B2 (en) 2013-03-13 2019-12-17 Celsee Diagnostics, Inc. System for imaging captured cells
US12030051B2 (en) 2013-03-13 2024-07-09 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US9707562B2 (en) * 2013-03-13 2017-07-18 Denovo Sciences, Inc. System for capturing and analyzing cells
US9802193B2 (en) 2013-03-13 2017-10-31 Denovo Sciences, Inc. System and method for capturing and analyzing cells
US10350601B2 (en) 2013-03-13 2019-07-16 Celsee Diagnostics, Inc. System and method for capturing and analyzing cells
US9925538B2 (en) 2013-03-13 2018-03-27 DeNovo Sciecnes, Inc. System and method for capturing and analyzing cells
US9821311B2 (en) * 2013-03-13 2017-11-21 Denovo Sciences, Inc. System for capturing and analyzing cells
US10722858B2 (en) 2013-03-15 2020-07-28 Lineage Biosciences, Inc. Methods and compositions for tagging and analyzing samples
EP4253558A1 (en) 2013-03-15 2023-10-04 The Board of Trustees of the Leland Stanford Junior University Identification and use of circulating nucleic acid tumor markers
EP3421613A1 (en) 2013-03-15 2019-01-02 The Board Of Trustees Of The Leland Stanford Junior University Identification and use of circulating nucleic acid tumor markers
WO2014151117A1 (en) 2013-03-15 2014-09-25 The Board Of Trustees Of The Leland Stanford Junior University Identification and use of circulating nucleic acid tumor markers
US11161087B2 (en) 2013-03-15 2021-11-02 Lineage Biosciences, Inc. Methods and compositions for tagging and analyzing samples
EP3795696A1 (en) 2013-03-15 2021-03-24 The Board of Trustees of the Leland Stanford Junior University Identification and use of circulating nucleic acid tumor markers
US11052396B2 (en) 2013-05-31 2021-07-06 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US9856535B2 (en) 2013-05-31 2018-01-02 Denovo Sciences, Inc. System for isolating cells
US10449543B2 (en) 2013-05-31 2019-10-22 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10851426B2 (en) 2013-05-31 2020-12-01 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11358147B2 (en) 2013-05-31 2022-06-14 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10512914B2 (en) 2013-05-31 2019-12-24 Celsee Diagnostics, Inc. System for isolating and analyzing cells in a single-cell format
US10533229B2 (en) 2013-05-31 2020-01-14 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10773232B2 (en) 2013-08-05 2020-09-15 Twist Bioscience Corporation De novo synthesized gene libraries
US10384188B2 (en) 2013-08-05 2019-08-20 Twist Bioscience Corporation De novo synthesized gene libraries
US11559778B2 (en) 2013-08-05 2023-01-24 Twist Bioscience Corporation De novo synthesized gene libraries
EP3722442A1 (en) 2013-08-05 2020-10-14 Twist Bioscience Corporation De novo synthesized gene libraries
US9839894B2 (en) 2013-08-05 2017-12-12 Twist Bioscience Corporation De novo synthesized gene libraries
US11452980B2 (en) 2013-08-05 2022-09-27 Twist Bioscience Corporation De novo synthesized gene libraries
US10272410B2 (en) 2013-08-05 2019-04-30 Twist Bioscience Corporation De novo synthesized gene libraries
US9403141B2 (en) 2013-08-05 2016-08-02 Twist Bioscience Corporation De novo synthesized gene libraries
US9555388B2 (en) 2013-08-05 2017-01-31 Twist Bioscience Corporation De novo synthesized gene libraries
US11185837B2 (en) 2013-08-05 2021-11-30 Twist Bioscience Corporation De novo synthesized gene libraries
US10583415B2 (en) 2013-08-05 2020-03-10 Twist Bioscience Corporation De novo synthesized gene libraries
US9409139B2 (en) 2013-08-05 2016-08-09 Twist Bioscience Corporation De novo synthesized gene libraries
US10618024B2 (en) 2013-08-05 2020-04-14 Twist Bioscience Corporation De novo synthesized gene libraries
US10632445B2 (en) 2013-08-05 2020-04-28 Twist Bioscience Corporation De novo synthesized gene libraries
EP4242321A2 (en) 2013-08-05 2023-09-13 Twist Bioscience Corporation De novo synthesized gene libraries
US10639609B2 (en) 2013-08-05 2020-05-05 Twist Bioscience Corporation De novo synthesized gene libraries
US9889423B2 (en) 2013-08-05 2018-02-13 Twist Bioscience Corporation De novo synthesized gene libraries
WO2015021080A2 (en) 2013-08-05 2015-02-12 Twist Bioscience Corporation De novo synthesized gene libraries
US9833761B2 (en) 2013-08-05 2017-12-05 Twist Bioscience Corporation De novo synthesized gene libraries
EP4130350A1 (en) 2013-11-07 2023-02-08 The Board of Trustees of the Leland Stanford Junior University Cell-free nucleic acids for the analysis of the human microbiome and components thereof
US11697668B2 (en) 2015-02-04 2023-07-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US9677067B2 (en) 2015-02-04 2017-06-13 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US11319588B2 (en) 2015-02-17 2022-05-03 Mgi Tech Co., Ltd. DNA sequencing using controlled strand displacement
US10227647B2 (en) 2015-02-17 2019-03-12 Complete Genomics, Inc. DNA sequencing using controlled strand displacement
US10744477B2 (en) 2015-04-21 2020-08-18 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US11691118B2 (en) 2015-04-21 2023-07-04 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US11807956B2 (en) 2015-09-18 2023-11-07 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US10844373B2 (en) 2015-09-18 2020-11-24 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US11512347B2 (en) 2015-09-22 2022-11-29 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
US9895673B2 (en) 2015-12-01 2018-02-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
US10987648B2 (en) 2015-12-01 2021-04-27 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
US10384189B2 (en) 2015-12-01 2019-08-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
WO2017131951A1 (en) * 2016-01-28 2017-08-03 Becton, Dickinson And Company Enhanced composite liquid cell (clc) devices, and methods for using the same
US10975372B2 (en) 2016-08-22 2021-04-13 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10053688B2 (en) 2016-08-22 2018-08-21 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US11263354B2 (en) 2016-09-21 2022-03-01 Twist Bioscience Corporation Nucleic acid based data storage
US10754994B2 (en) 2016-09-21 2020-08-25 Twist Bioscience Corporation Nucleic acid based data storage
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
US12056264B2 (en) 2016-09-21 2024-08-06 Twist Bioscience Corporation Nucleic acid based data storage
US11562103B2 (en) 2016-09-21 2023-01-24 Twist Bioscience Corporation Nucleic acid based data storage
US10907274B2 (en) 2016-12-16 2021-02-02 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US11550939B2 (en) 2017-02-22 2023-01-10 Twist Bioscience Corporation Nucleic acid based data storage using enzymatic bioencryption
US10894959B2 (en) 2017-03-15 2021-01-19 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US11377676B2 (en) 2017-06-12 2022-07-05 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US10696965B2 (en) 2017-06-12 2020-06-30 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US11332740B2 (en) 2017-06-12 2022-05-17 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US10821440B2 (en) 2017-08-29 2020-11-03 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11504714B2 (en) 2017-08-29 2022-11-22 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11865542B2 (en) 2017-08-29 2024-01-09 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11358146B2 (en) 2017-08-29 2022-06-14 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11407837B2 (en) 2017-09-11 2022-08-09 Twist Bioscience Corporation GPCR binding proteins and synthesis thereof
US11781959B2 (en) 2017-09-25 2023-10-10 Freenome Holdings, Inc. Methods and systems for sample extraction
US11745159B2 (en) 2017-10-20 2023-09-05 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US10894242B2 (en) 2017-10-20 2021-01-19 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US12086722B2 (en) 2018-01-04 2024-09-10 Twist Bioscience Corporation DNA-based digital information storage with sidewall electrodes
US10936953B2 (en) 2018-01-04 2021-03-02 Twist Bioscience Corporation DNA-based digital information storage with sidewall electrodes
US11732294B2 (en) 2018-05-18 2023-08-22 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US11492665B2 (en) 2018-05-18 2022-11-08 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US11492728B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for antibody optimization
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
WO2020180813A1 (en) 2019-03-06 2020-09-10 Qiagen Sciences, Llc Compositions and methods for adaptor design and nucleic acid library construction for rolony-based sequencing
US10947581B2 (en) 2019-04-16 2021-03-16 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US11814671B2 (en) 2019-04-16 2023-11-14 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US11866766B2 (en) 2019-04-16 2024-01-09 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US11578322B2 (en) 2019-05-07 2023-02-14 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11833507B2 (en) 2019-05-07 2023-12-05 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US10900032B2 (en) 2019-05-07 2021-01-26 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11724256B2 (en) 2019-06-14 2023-08-15 Bio-Rad Laboratories, Inc. System and method for automated single cell processing and analyses
US11332738B2 (en) 2019-06-21 2022-05-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
US12091777B2 (en) 2019-09-23 2024-09-17 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
WO2023063546A1 (en) * 2021-10-15 2023-04-20 주식회사 진시스템 Pcr reaction container having dispensing guide, and pcr kit comprising same
WO2024123733A1 (en) 2022-12-05 2024-06-13 Twist Bioscience Corporation Enzymes for library preparation

Also Published As

Publication number Publication date
US7364895B2 (en) 2008-04-29
US20050084895A1 (en) 2005-04-21
US20010041341A1 (en) 2001-11-15
US20030003499A1 (en) 2003-01-02
US20050208646A1 (en) 2005-09-22
US20050089953A1 (en) 2005-04-28
US20050106618A1 (en) 2005-05-19
US20040166525A1 (en) 2004-08-26
US20040171054A1 (en) 2004-09-02
US20050106617A1 (en) 2005-05-19
US20060234267A1 (en) 2006-10-19
US20020058331A1 (en) 2002-05-16
US20050158819A1 (en) 2005-07-21
US6551817B2 (en) 2003-04-22
US6399365B2 (en) 2002-06-04
US6733977B2 (en) 2004-05-11
US20050003421A1 (en) 2005-01-06
US20050191630A1 (en) 2005-09-01
US20060040380A1 (en) 2006-02-23
US20050106615A1 (en) 2005-05-19
US6287850B1 (en) 2001-09-11

Similar Documents

Publication Publication Date Title
US6551817B2 (en) Method and apparatus for hybridization
US5945334A (en) Apparatus for packaging a chip
JP3746658B2 (en) Method and apparatus for producing probe array using fine particles
US8697452B2 (en) Thermal cycling assay apparatus and method
US7670992B2 (en) Method of producing probe arrays for biological materials using fine particles
TWI447393B (en) Reaction chip and method of manufacturing the same
WO2005016532A2 (en) Automated reaction chamber system for biological assays
US20060286555A1 (en) Microarray support for bioprobe synthesis

Legal Events

Date Code Title Description
STCV Information on status: appeal procedure

Free format text: COURT PROCEEDINGS TERMINATED

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION