US20040133158A1 - Balloon catheter with distal guide wire lumen - Google Patents
Balloon catheter with distal guide wire lumen Download PDFInfo
- Publication number
- US20040133158A1 US20040133158A1 US10/741,574 US74157403A US2004133158A1 US 20040133158 A1 US20040133158 A1 US 20040133158A1 US 74157403 A US74157403 A US 74157403A US 2004133158 A1 US2004133158 A1 US 2004133158A1
- Authority
- US
- United States
- Prior art keywords
- catheter
- guide wire
- shaft section
- section
- proximal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/104—Balloon catheters used for angioplasty
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
- A61M25/0662—Guide tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M25/0026—Multi-lumen catheters with stationary elements
- A61M2025/0034—Multi-lumen catheters with stationary elements characterized by elements which are assembled, connected or fused, e.g. splittable tubes, outer sheaths creating lumina or separate cores
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0074—Dynamic characteristics of the catheter tip, e.g. openable, closable, expandable or deformable
- A61M2025/0079—Separate user-activated means, e.g. guidewires, guide tubes, balloon catheters or sheaths, for sealing off an orifice, e.g. a lumen or side holes, of a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M2025/0098—Catheters; Hollow probes having a strain relief at the proximal end, e.g. sleeve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M2025/0183—Rapid exchange or monorail catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09191—Guide wires made of twisted wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1056—Balloon catheters with special features or adapted for special applications having guide wire lumens outside the main shaft, i.e. the guide wire lumen is within or on the surface of the balloon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1061—Balloon catheters with special features or adapted for special applications having separate inflations tubes, e.g. coaxial tubes or tubes otherwise arranged apart from the catheter tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1079—Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M25/0026—Multi-lumen catheters with stationary elements
- A61M25/0029—Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the middle part of the catheter, e.g. slots, flaps, valves, cuffs, apertures, notches, grooves or rapid exchange ports
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M25/0026—Multi-lumen catheters with stationary elements
- A61M25/0032—Multi-lumen catheters with stationary elements characterized by at least one unconventionally shaped lumen, e.g. polygons, ellipsoids, wedges or shapes comprising concave and convex parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M25/0054—Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
Definitions
- over-the-wire catheters Two commonly used types of dilatation catheters are referred to as “over-the-wire” catheters and “non-over-the-wire” catheters.
- An over-the-wire catheter is one in which a separate guide wire lumen is provided in the catheter so that a guide wire can be used to establish the path through the stenoses. The dilatation catheter can then be advanced over the guide wire until the balloon on the catheter is positioned within the stenoses.
- One problem with the over-the-wire catheter is the requirement of a larger profile and a generally larger outer diameter along the entire length of the catheter in order to allow for a separate guide wire lumen therethrough.
- This shortened guide wire lumen type of dilatation catheter design thus offers the advantages associated with the rapid exchangeability of catheters.
- the design also presents the potential to provide a smaller catheter shaft, since the guide wire is not contained within the proximal portion of the catheter shaft.
- the smaller catheter shaft thus allows for better contrast media injection and, as a result, better visualization.
- standard non-extendable guide wires of approximately 175 centimeters in length may be used.
- the guide wire is contained in only a distal shorter guide wire lumen of the catheter, free wire movement is enhanced when compared to a standard over-the-wire catheter where the guide wire extends through a guide wire lumen extending along the entire length of the catheter.
- FIG. 10 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- the guide wire 50 Adjacent the distal end 30 of the main shaft section 22 , the guide wire 50 enters the structure of the catheter 20 and extends distally therethrough until it exits the catheter structure adjacent the distal waist 40 of the distal balloon segment 26 .
- a separate guide wire lumen 52 is provided in the catheter 20 through the intermediate sleeve section 24 and distal balloon section 26 thereof.
- the guide wire 50 thus is only entrained within the catheter 20 within this guide wire lumen 52 , which is much shorter than the total length of the catheter 20 (e.g., the guide wire lumen 52 is approximately 30 cm long).
- the guide wire 50 has a proximal end 53 and a distal end 54 and is of a typical structure for guiding angioplasty catheters. At its distal end 54 , the guide wire 50 preferably has a coiled and rounded tip structure which is bendable for steerability of the guide wire.
- a longitudinal crimp 68 is provided which extends laterally inwardly from one side of the distal section 66 .
- the distal shaft section 66 has three sections, a proximal tubular region 70 , a transition region 72 , and a distal bonding region 74 .
- the crimp 68 extends from its proximal origin in the transition region 72 to its greatest lateral depth in the bonding region 74 .
- the crimp 68 as further illustrated in FIG. 3, does not seal off or close the inflation lumen 62 , but does transform the inflation lumen from, a circular lumen 62 to a crescent shape through the bonding region 74 , as seen at 63 in FIG. 3.
- the intermediate sleeve structure defined above is the basic sleeve structure for all embodiments of the present invention contemplated and disclosed herein—namely, an inner core tube bonded to a distal portion of the main catheter shaft, with an outer sleeve forming an annular continuation of the inflation lumen through the main shaft between the core tube and outer sleeve.
- an inner core tube bonded to a distal portion of the main catheter shaft
- an outer sleeve forming an annular continuation of the inflation lumen through the main shaft between the core tube and outer sleeve.
- various configurations of the connections and components relative to the formation of the distal guide wire lumen including the coupling of the main shaft to the intermediate sleeve section, are contemplated.
- the balloon section 26 is forced from a compliant balloon material (e.g., polyolefin), although a balloon formed from thin-walled non-compliant material (e.g., PET—polyethylene terephthalate) is also contemplated.
- a compliant balloon material e.g., polyolefin
- a balloon formed from thin-walled non-compliant material e.g., PET—polyethylene terephthalate
- the coil member 112 preferably has its coils spaced uniformly apart, and is preferably formed from a spiral ribbon of stainless steel placed about the outer sleeve 82 along that portion thereof extending over the bonding region 74 and distally therefrom.
- the coil member 112 is secured to the outer sleeve 82 by suitable adhesive means, such as by epoxy.
- suitable adhesive means such as by epoxy.
- a heat-shrinkable sheath 114 is fitted over the coil member 112 .
- FIG. 5 a modified main shaft section 22 B is illustrated.
- the main shaft section 22 B is formed as a thin-walled, high strength stainless steel tube or hypotube, but is defined as a single tubular shaft 117 from its proximal end to its distal end 30 B.
- the single shaft 117 has a longitudinally extending inflation lumen 62 B therethrough, and at its proximal end (not shown) the single shaft 117 is mounted to an inflation device in a manner such as that illustrated for the catheter of FIG. 2. Adjacent its distal end 30 B, the single shaft 117 has a longitudinal crimp 68 B which extends laterally inwardly from one side of the single shaft 117 .
- the coil member 212 is preferably formed from stainless steel (either from a wire or ribbon) and may have uniform coil spacing or increasingly spaced coils as the coil member 212 extends distally from the main shaft section 22 B.
- the coil member 212 is secured to the core tube 80 B by suitable means, such as by embedding the coil member 212 in an epoxy layer 214 about the core tube 80 B.
- a proximal end 100 B of the outer sleeve 82 B is bonded about the main shaft section 22 B and inner tube 80 B and coil structure 210 in the bonding region 74 B thereof, as seen in FIGS. 5 and 6.
- an alternative embodiment of the catheter of the present invention has a proximal main shaft section 22 C formed from thin-walled, high strength stainless steel tubing.
- a longitudinally extending inflation lumen 62 C extends therethrough from a proximal end of the main shaft section 22 C to its distal end 30 C.
- the main shaft 22 C is formed from two stainless steel tube sections, a proximal relatively long shaft section 64 C and a distal relatively short shaft section 66 C bonded on the distal end of the proximal section 64 C.
- This two-part main shaft section structure thus allows a substantial length of the main shaft section 22 C to be formed from the proximal shaft section 64 C which has a smaller diameter than the distal shaft section 66 C.
- kink-resistant structure 310 includes coil member 312 (of a wire or ribbon-like structure) which is bonded about the outer sleeve 82 C to extend distally from the distal end 30 C of the main shaft section 22 C.
- the coil member 312 does not extend about any portion of the main shaft 22 C.
- the coil member 312 is secured to the outer sleeve 82 C by suitable adhesive means, such as epoxy 314 , and is embedded therein to firmly hold the coil member 312 in place about the intermediate sleeve section 24 C.
- the coil member 312 is illustrated with its coils being spaced increasingly longitudinally apart as the coil member 312 extends distally along the catheter.
- FIGS. 8 - 13 also illustrate embodiments of the catheter of the present invention wherein an aperture is provided through the main shaft section wall to accommodate the proximal outlet for the relatively short, distal guide wire lumen.
- the embodiments illustrated in FIGS. 8 - 13 show the main shaft section as a single shaft rather than as a multi-part shaft.
- FIG. 8 illustrates a catheter structure identical to that of FIG. 7, except that the main shaft section 22 D is shown as a single shaft 217 , rather than having proximal and distal shaft sections 64 C and 66 C as seen in FIG. 7.
- the catheter inflation lumen includes longitudinally extending inflation lumens 62 D, 125 D and 104 D.
- FIG. 9 is an embodiment of the catheter of the present invention otherwise similar to FIG. 8, except that kink-resistant structure 410 has coil member 412 with uniformly spaced coils along the entire length. Again, the entire coil member 412 is fixed to the outer sleeve 82 C of the intermediate sleeve section 24 C by embedding the coil member 412 within a suitable material such as epoxy or cyanoacrylate 414 .
- the outer sleeve 82 F has an enlarged diameter at its proximal end to accommodate the main shaft section 22 D and the kink-resistant structure 610 , and so that the annular inflation lumens 125 F and 104 F about the core tube 80 F remain sufficiently large to provide proper inflation and deflation pressures to the balloon of the catheter.
- kink-resistant structure 810 is illustrated, as formed from a polyimide or other stiff polymer tube 829 which is bonded to the inner surfaces of both the main shaft section 22 D and an outer sleeve 82 H of an intermediate sleeve section 24 H at a bonding region 121 H.
- the tube 829 thus provides not only a kink-resistant structure to accommodate the change in stiffness of the main shaft section and intermediate sleeve section, but also provides a substrate for bonding the to catheter sections together by a suitable adhesive, such as epoxy or cyanoacrylate.
- a core tube 80 H of the sleeve section 24 H extends through the interior of the tube 829 to the aperture 119 on the main shaft section 22 D.
- the crimped shaft design also provides additional stiffness in the transition region where the guide wire enters and exits the catheter proximally of the balloon thereof, thereby creating a more rigorous catheter structure. Because the catheter of the present invention is based upon a relatively stiff proximal main shaft section, and such a catheter must have a relatively flexible distal portion for working through the tortuous arterial anatomy, a strain relief or kink-resistant structure is provided to make a more gradual transition between the relatively stiff main catheter shaft and the relatively flexible distal portion of the catheter.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Anesthesiology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Child & Adolescent Psychology (AREA)
- Vascular Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
An over-the-wire balloon dilatation catheter has a stainless steel hypotube catheter shaft, an intermediate sleeve section bonded to the shaft and a distal balloon section connected to the sleeve section. The sleeve section is formed from relatively flexible polymer materials and includes an inner core tube which defines a guide wire lumen extending only through a distal portion of the catheter (including its sleeve and balloon sections) to facilitate fast balloon catheter exchanges. A distal end of the hypotube shaft is crimped laterally and the core tube is nested and bonded within the crimp to provide a proximal outlet for the guide wire lumen. The hypotube shaft provides an inflation lumen for the balloon, with the inflation lumen being continued as an annular inflation lumen through the sleeve section where an outer sleeve is bonded about the core tube and extends from the distal end of the hypotube shaft to the balloon section. A kink-resistant coil structure extends distally from the distal end of the hypotube shaft to provide a gradual change in stiffness along the length of the catheter from the relatively stiff hypotube shaft to the relatively flexible distal portion of the catheter.
Description
- This is a Continuation Application of pending prior application Ser. No. 07/792,786, filed on Nov. 15, 1991, which is a Continuation of prior application Ser. No. 07/574,265, filed on Aug. 28, 1990, which issued as U.S. Pat. No. 5,16,594, on Oct. 20, 1992.
- The present invention relates to the field of angioplasty. In particular, the present invention relates to a dilatation balloon catheter of the “over-the-wire” type having a relatively short distal guide wire lumen extending through the balloon of the catheter.
- Angioplasty procedures have gained wide acceptance in recent years as efficient and effective methods for treating types of vascular disease. In particular, angioplasty is widely used for opening stenoses in the coronary arteries, although it is also used for the treatment of stenoses in other parts of the vascular system.
- The most widely used form of angioplasty makes use of a dilatation catheter which has an inflatable balloon at its distal end. Typically, a hollow guide catheter is used in guiding the dilatation catheter through the vascular system to a position near the stenoses (e.g., to the coronary artery ostia). Using fluoroscopy, the physician guides the dilatation catheter the remaining distance through the vascular system until a balloon is positioned to cross the stenoses. The balloon is then inflated by supplying fluid under pressure through an inflation lumen in the catheter to the balloon. The inflation of the balloon causes stretching of the artery and pressing of the lesion into the artery wall, to reestablish acceptable blood flow through the artery.
- There has been a continuing effort to reduce the profile and shaft size of the dilatation catheter so that the catheter not only can reach but also can cross a very tight stenosis. A successful dilatation catheter must also be sufficiently flexible to pass through tight curvatures, especially in the coronary arteries. A further requirement of a successful dilatation catheter is its “pushability”. This involves the transmission of longitudinal forces along the catheter from its proximal end to its distal end, so that a physician can push the catheter through the vascular system and the stenoses.
- Two commonly used types of dilatation catheters are referred to as “over-the-wire” catheters and “non-over-the-wire” catheters. An over-the-wire catheter is one in which a separate guide wire lumen is provided in the catheter so that a guide wire can be used to establish the path through the stenoses. The dilatation catheter can then be advanced over the guide wire until the balloon on the catheter is positioned within the stenoses. One problem with the over-the-wire catheter is the requirement of a larger profile and a generally larger outer diameter along the entire length of the catheter in order to allow for a separate guide wire lumen therethrough.
- A non-over-wire catheter acts as its own guide wire, and thus there is no need for a separate guide wire lumen. One advantage of a non-over-the-wire catheter is its potential for a reduced outer diameter along its main shaft since no discrete guide wire lumen is required. However, one disadvantage is the inability to maintain the position of the guide wire within the vascular system when removing the catheter and exchanging it for a catheter having a smaller (or larger) balloon diameter. Thus, to accomplish an exchange with a non-over-the-wire catheter, the path to the stenoses rust be reestablished when replacing the catheter with one having a different balloon diameter.
- In an effort to combine the advantages of an over-the-wire catheter with a non-over-the-wire catheter, catheters have been developed which have guide wire lumens which extend from a distal end of the catheter through the dilatation balloon and then exit the catheter at a point proximal of the dilatation balloon. The guide wire thus does not extend through the entire length of the catheter and no separate guide wire lumen is required along a substantially proximal section of the catheter. That proximal section can thus have a smaller outer diameter since it is only necessary to provide an inflation lumen therethrough for catheter operation. A further advantage of this type of modified over-the-wire-catheter is that the frictional forces involved between the guide wire and the shortened guide wire lumen are reduced, thereby reducing resistance to catheter pushability and enhancing the “feel” and responsiveness of the catheter to a physician.
- Perhaps the most significant advantage of using a shortened guide wire lumen is in the ease of exchange of the catheter over the guide wire. In performing an angioplasty procedure using such a catheter, the catheter is “back loaded” over the guide wire by inserting the proximal tip of the guide wire into a distal opening of the guide wire lumen in the catheter. The catheter is then advanced by “feeding” the catheter distally over the guide wire while holding the guide wire stationary. The proximal end of the guide wire will then emerge out of the proximal opening of the guide wire lumen (which is substantially spaced distally from the proximal end of the catheter itself) and is accessible again for gripping by the physician. The catheter can be preloaded onto the guide wire in this manner before the guide wire is inserted into the guide catheter or after. The either case, the guide wire is steered and passed through the guide catheter, coronary vessels and across a lesion. The exposed portion of the guide wire is then grasped while the catheter is advanced distally along the guide wire across the lesion. Using this procedure, little axial movement of the guide wire occurs during catheter loading and positioning for angioplasty.
- If the dilatation balloon is found to be inadequate (too small or too large), the catheter can be similarly withdrawn without removing the guide wire from across the lesion. The guide wire is grasped while the catheter is withdrawn, and when the proximal opening of the guide wire lumen is reached, the grasping hand must be moved incrementally away from the proximal opening as the catheter is incrementally withdrawn, until the catheter is fully removed from the guide catheter and the guide wire is thus again exposed and accessible adjacent to the proximal end of the guide catheter.
- This shortened guide wire lumen type of dilatation catheter design thus offers the advantages associated with the rapid exchangeability of catheters. The design also presents the potential to provide a smaller catheter shaft, since the guide wire is not contained within the proximal portion of the catheter shaft. The smaller catheter shaft thus allows for better contrast media injection and, as a result, better visualization. In addition, because of the rapid exchangeability features, standard non-extendable guide wires of approximately 175 centimeters in length may be used. Further, because the guide wire is contained in only a distal shorter guide wire lumen of the catheter, free wire movement is enhanced when compared to a standard over-the-wire catheter where the guide wire extends through a guide wire lumen extending along the entire length of the catheter.
- While several structures for such shortened guide wire lumen dilatation catheter have been proposed these structures suffer from several disadvantages. Such catheters have been one piece polyethylene catheters having dual lumen configurations adjacent their distal regions. Typically, such catheters have larger than necessary shaft sizes and are stiffer in their distal regions than would be desired, including those portions bearing the dilatation balloon. A further disadvantage is that the proximal shaft portion of such catheters is relatively flexible, and has low column strength shaft, so that it tends to “bunch” and buckle when advanced across a lesion. To counteract this deficiency in such designs, additional stiffener elements have been provided in the shaft, which necessarily require a larger catheter shaft to accommodate the stiffener element structure. The known dilatation balloon catheter designs which include shortened guide wire lumens extending through the distal portion of the catheter suffer from the disadvantages mentioned above and do not take advantage of the unique opportunities presented by the possibilities of such designs in construction and application.
- The present invention is an over-the-wire dilatation balloon catheter which has a guide wire lumen extending through only a distal portion of the catheter. The guide wire lumen extends from a distal end of the catheter proximally through a balloon of the catheter and exits the catheter at a point proximal of the balloon, but substantially distally from a proximal end of the catheter itself.
- The present invention for a balloon dilatation catheter includes a thin-walled, high strength metallic tube having a longitudinal inflation lumen extending therethrough from its proximal end to its distal end. An intermediate sleeve section extends distally from the metallic tube. The sleeve section is more flexible than the metallic tube, and includes a proximal segment of inner core tube which has a longitudinal guide wire lumen extending therethrough and an outer sleeve which extends over the proximal segment of the core tube to define a longitudinally extending annular inflation lumen therebetween that is in fluid communication with the inflation lumen of the metallic tube. The guide wire lumen has an outlet at a proximal end of the proximal segment of the core tube, and the core tube has a distal segment which extends distally beyond the distal end of the outer sleeve. Means are provided for exposing the guide wire lumen outlet to the exterior of the catheter adjacent and proximal to the distal end of the metallic tube, without compromising the integrity of the inflation lumens extending through the catheter. An inflatable balloon extends over the distal segment of the core tube and has its proximal end connected to the distal end of the outer sleeve. A distal end of the balloon is connected to the core tube so that an interior of the balloon is in fluid communication with the annular inflation lumen in the sleeve section. Means are provided for preventing significant closure of the guide wire lumen and annular inflation lumen in the sleeve section adjacent the distal end of the metallic tube when the more flexible sleeve section is bent laterally relative to the metallic tube.
- In a preferred embodiment of the present invention, the metallic tube is formed from a proximal relatively long stainless steel tube and a distal relatively short stainless steel tube bonded thereto. The outer diameter of the proximal tube is smaller than the outer diameter of the distal tube, thus providing a catheter structure which is highly trackable and has a generally all shaft cuter diameter, yet is very pushable and responsive to a doctor controlling movement of the catheter from its proximal end. Preferably, the means for exposing includes a longitudinal crimp adjacent the distal end of the distal stainless steel tube. The crimp extends laterally inwardly from one side of the distal tube, and has a proximal transition region and distal bonding region. The proximal end of the inner core tube is nested within the distal bonding region of the crimp and bonded thereto. The outer sleeve extends over at least a distal portion of the bonding region and is sealably affixed thereabout.
- The means for preventing closure of a present invention may take a number of different forms. In a preferred embodiment, the means for preventing closure comprises a coil member affixed to the sleeve section adjacent the distal end of the metallic tube. As such, the coil member may be affixed about the outer sleeve to extend distally from the metallic tube or about the inner core tube to extend distally from the metallic tube. Such a coil member further nay have its coils spaced uniformly apart or spaced increasingly apart as it extends distally from the metallic tube. Preferably, the coil member is formed from a spirally shaded ribbon. A compression sheath is provided to envelope the coil member and maintain the coil member in secure engagement to the sleeve section. In an alternative embodiment, the means for preventing closure comprises a tubular member affixed to the sleeve section adjacent the distal end of the metallic tube, with the tubular member being formed from a polyimide material.
- Such closure preventing means thus provide a bending relief design between the relatively stiff metallic tube and more flexible distal region of the balloon dilatation catheter, to prevent kinking during catheter preparation work and handling (prior to insertion of the dilatation catheter into the guide catheter and patient). Such kinking or “crimping” of the catheter can result in a binding on the guide wire as it extends through the guide wire lumen or a reduction in size of the annular inflation lumen between the metallic tube and balloon or a compromise in strength of the catheter tubings, all of which will compromise the utility and responsiveness of the dilatation catheter. In addition, the closure preventing means reduces the possibility of a failure or separation of the bonds adjacent the distal end of the metallic tube which may be caused by excess strain placed on such bonds during catheter preparation or handling.
- FIG. 1 is a side elevational view of a balloon dilatation catheter of the present invention having a distal guide wire lumen therethrough and showing a guide wire.
- FIG. 2 is a sectional side elevational view of the balloon dilatation catheter of FIG. 1.
- FIG. 3 is an enlarged sectional view as taken along lines3-3 in FIG. 2.
- FIG. 4 is a sectional side elevational view of a portion of the catheter of the present invention, illustrating an alternative structure for a reinforcing coil member thereon.
- FIG. 5 is a sectional side elevational view of a portion of the catheter of the present invention, illustrating an alternative structure for a reinforcing coil member thereon.
- FIG. 6 is an enlarged sectional view as taken along lines6-6 in FIG. 5.
- FIG. 7 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- FIG. 8 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- FIG. 9 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- FIG. 10 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- FIG. 11 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- FIG. 12 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- FIG. 13 is a sectional view of a portion of an alternative embodiment of the catheter of the present invention.
- Although the above-identified drawing figures set forth various embodiments of the invention, other embodiments of the invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art which will fall within the scope and spirit of the principles of this invention.
- A
balloon dilatation catheter 20 of the present invention is illustrated generally in FIG. 1. Thecatheter 20 has a proximalmain shaft section 22, anintermediate sleeve section 24 and adistal balloon section 26. Themain shaft section 22 has aproximal end 28 and adistal end 30. Likewise, theintermediate sleeve section 24 has aproximal end 32 and adistal end 34. Thedistal balloon section 26 has aproximal waist 36, an intermediateexpandable segment 38 and adistal waist 40. - As illustrated in FIG. 1, the
distal end 30 of themain shaft section 22 is connected to theproximal end 32 of thesleeve section 24, and thedistal end 34 of thesleeve section 24 is connected to theproximal waist 36 of theballoon section 26. In use, thecatheter 20 is coupled to an inflation device (not shown) by aluer manifold 42 connected to theproximal end 28 of therain shaft section 22. The inflation device thus provides or removes inflation solution from thecatheter 20 to selectably inflate or deflate the intermediateexpandable segment 38 of the distal balloon section 26 (in FIG. 1,expandable segment 38 is shown in its inflated configuration). - The
catheter 20 of the present invention is designed for use in combination with a catheter guide element such as aguide wire 50. In use in a coronary application, both theguide wire 50 and thecatheter 20 are fed through and guided to an arterial lesion by means of a tabular guide catheter (not shown). Both thecatheter 20 andguide wire 50 are therefore longer than the guide catheter, with a typical catheter length of approximately 135 cm and a typical guide wire length of approximately 175 cm. As illustrated in FIG. 1, theguide wire 50 extends longitudinally along the exterior of themain shaft section 22 of thecatheter 20. Adjacent thedistal end 30 of themain shaft section 22, theguide wire 50 enters the structure of thecatheter 20 and extends distally therethrough until it exits the catheter structure adjacent thedistal waist 40 of thedistal balloon segment 26. As seen FIG. 2, a separateguide wire lumen 52 is provided in thecatheter 20 through theintermediate sleeve section 24 anddistal balloon section 26 thereof. Theguide wire 50 thus is only entrained within thecatheter 20 within thisguide wire lumen 52, which is much shorter than the total length of the catheter 20 (e.g., theguide wire lumen 52 is approximately 30 cm long). Theguide wire 50 has a proximal end 53 and adistal end 54 and is of a typical structure for guiding angioplasty catheters. At itsdistal end 54, theguide wire 50 preferably has a coiled and rounded tip structure which is bendable for steerability of the guide wire. - Referring now to FIG. 2, which shoes the
catheter 20 in greater detail, it is seen that theproximal end 28 of therain shaft section 22 further has astrain relief tube 60 disposed between theluer manifold 42 andshaft section 22. Thestrain relief tube 60 is larger than themain shaft section 22, and thus provides a step-wise strain relief function between theinflexible luer manifold 42 and the more flexiblemain shaft section 22. Themain shaft section 22,tubular member 60 andluer manifold 42 are secured together respectively by suitable adhesive means, such as epoxy or cyanoacrylate. - The
main shaft section 22 is preferably formed as a thin-walled, high strength stainless steel tube structure, which is referred to as hypodermic tubing or hypotube. As a tubular structure themain shaft section 22 thus has a longitudinally extendinginflation lumen 62 extending therethrough from itsproximal end 28 to itsdistal end 30, which provides a means for the movement and pressurization of inflation fluid through thecatheter 20 to and from thedistal balloon section 26. - In a preferred embodiment, the
main shaft section 22 is formed from two stainless steel tube sections, a proximal relativelylong shaft section 64 and a distal relativelyshort shaft section 66. A distal end of theproximal shaft section 64 and a proximal end of thedistal shaft section 66 are sealably affixed together by suitable means, such as by a solder joint. The proximal end of thedistal shaft section 66 fits coaxially over the distal end of theproximal shaft section 64, as seen in FIG. 2, thereby allowing theproximal shaft section 64 to assume a smaller outer diameter than thedistal shaft section 66. Themain shaft section 22 is provided with a lubricous coating (such as polytetraflouroethylene) to lessen frictional resistance (at least to the extent that theproximal shaft section 64 is so coated). The use of a thin-walled (e.g., 0.003 inch wall thickness), metallic tube structure for themain shaft section 22 thus provides a stiff enough shaft for pushability yet allows for a relatively small diameter shaft, thereby enhancing catheter visualization via fluoroscopy and catheter versatility. The inherent high strength nature of such a structure also allows it to withstand the fluid pressures necessary for proper catheter operation, which in a plastic shaft structure would require thicker walls. The high column strength and thickness of a hypotube shaft also gives improved responsiveness to the catheter. Thus, the balloon and distal regions of the catheter move definitively (in a 1:1 relationship) with motions imparted at the catheter's proximal end by a physician. This feature allows the physician to actually “sense” the pathway as the catheter is tracked, which gives valuable information in the passage of the catheter to and through the lesion. - In the
distal shaft section 66 of themain shaft section 22, alongitudinal crimp 68 is provided which extends laterally inwardly from one side of thedistal section 66. Thedistal shaft section 66 has three sections, a proximaltubular region 70, atransition region 72, and adistal bonding region 74. Thecrimp 68 extends from its proximal origin in thetransition region 72 to its greatest lateral depth in thebonding region 74. Thecrimp 68, as further illustrated in FIG. 3, does not seal off or close theinflation lumen 62, but does transform the inflation lumen from, acircular lumen 62 to a crescent shape through thebonding region 74, as seen at 63 in FIG. 3. - The
intermediate sleeve section 24 extends distally from themain shalt section 22, and is bonded thereto adjacent thebonding region 74 of thedistal shaft section 66. Theintermediate sleeve section 24 has two primary longitudinal components, aninner core tube 80 and an cuter sleeve ortube 82. Theinner core tube 80 has aproximal segment 84 within thesleeve section 24 and adistal segment 86 within thedistal balloon section 26. Theinner core tube 80 andouter sleeve 82 are both preferably formed from thin-walled high density polyethylene. - The
inner core tube 80 has aproximal end 88 and adistal end 90. At itsproximal end 88, thecore tube 80 is nested within thebonding region 74 of thedistal shaft section 66 and bonded thereto by suitable means, such as epoxy or cyanoacrylate. Thecore tube 80 is thus affixed to themain shaft section 22 in an “off-axis” alignment at thebonding region 74. However, as seen in FIG. 2, as thecore tube 80 extends distally from themain shaft section 22, it is aligned generally coaxially with theshaft section 22. - The
core tube 80 defines theguide wire lumen 52 extending through thecatheter 20. The guide wire lumen thus has aproximal outlet 92 adjacent the proximal end of thecore tube 80 and adistal cutlet 94 adjacent thedistal end 80 of thecore tube 80. At least one marker band 96 is provided about the core tube 80 (preferably centered within theexpandable segment 38 of the distal balloon section 26) to aid in illuminating the position of thecatheter 20 via fluoroscopy during an angioplasty procedure. - The
cuter sleeve 82 is generally tubular in form, and has aproximal end 100 and adistal end 102. Theouter sleeve 82 is bonded about thedistal shaft section 66 and thecore tube 80 adjacent thebonding region 74, as seen in FIGS. 2 and 3 and is held in place thereto by suitable means, such as epoxy or cyanoacrylate. Theouter sleeve 82 extends distally from themain shaft section 22 over theproximal segment 84 of thecore tube 80, and as such, defines a distal continuation of the inflation lumen of thecatheter 20. A longitudinally extendingannular inflation lumen 104 is formed between thecore tube 80 andouter sleeve 82. Of course, theproximal end 100 of theouter sleeve 82 is securely sealed about thedistal shaft section 66 and thecore tube 80 so that thelongitudinal inflation lumens catheter 20 are not compromised to the exterior ofcatheter 20, but are in fluid communication therethrough. - The intermediate sleeve structure defined above is the basic sleeve structure for all embodiments of the present invention contemplated and disclosed herein—namely, an inner core tube bonded to a distal portion of the main catheter shaft, with an outer sleeve forming an annular continuation of the inflation lumen through the main shaft between the core tube and outer sleeve. As discussed below and illustrated herein, various configurations of the connections and components relative to the formation of the distal guide wire lumen, including the coupling of the main shaft to the intermediate sleeve section, are contemplated.
- The
distal balloon section 26 is connected to the components of theintermediate sleeve section 24. Theproximal waist 36 of theballoon section 26 is connected to thedistal end 102 of theouter sleeve 82 by suitable means, such as by epoxy or cyanoacrylate. Thedistal waist 40 of theballoon section 26 is bonded to thecore tube 80 adjacent itsdistal end 90 by suitable means, such as by epoxy or cyanoacrylate. An interior 106 of theballoon section 26 is thus sealed and in fluid communication with theannular inflation lumen 104 within thesleeve section 24. In a preferred embodiment, theballoon section 26 is forced from a compliant balloon material (e.g., polyolefin), although a balloon formed from thin-walled non-compliant material (e.g., PET—polyethylene terephthalate) is also contemplated. - The metallic
main shaft section 22 is relatively stiff compared to the polyethyleneintermediate sleeve section 24. This creates a rather abrupt chance in the flexibility of the materials for thecatheter 20 adjacent thedistal end 30 of the main shaft section 22 (at the bonding region 74). The use of a hypotube for themain shaft section 22 in thecatheter 20 creates a catheter which is considerably stiffer than most previous over-the-wire angioplasty balloon catheter designs. Such stiffness is not a concern as long as the metallicmain shaft section 22 remains in the relatively straight guide catheter within the patient, and indeed such stiffness provides distinct benefits in use of thecatheter 20, as described above. In the distal portions of the catheter 20 (intermediate sleeve section 24 and distal balloon section 26), thecatheter 20 must be very trackable and flexible in order to negotiate the tortuous coronary anatomy to and across the lesion. The relatively sharp transition in stiffness as the catheter structure changes from the metallicmain shaft section 22 to the much more flexible polymerintermediate sleeve section 24 creates two concerns. First, during handling of the catheter prior to usage, there is a potential to kink the catheter structure at that flexibility transition point. Secondly, when the catheter is in vivo, thedistal end 30 of themain shaft section 22 could potentially “dig in” to the guide catheter and create excessive friction due to the lack of bending support from a the more flexibleintermediate sleeve section 24. - To address these concerns, a kink-
resistant structure 110 is provided to prevent kinking and possible damage to theintermediate sleeve section 24 during catheter preparation, handling and use. In its simplest form, this kink-resistant structure 110 provides a member of intermediate stiffness or transitory stiffness and kink-resistant nature between the relatively stiffmain shaft section 22 and the relatively flexibleintermediate sleeve section 24. The kink-resistant structure 110 includes acoil member 112 affixed to theintermediate sleeve section 24 adjacent thedistal end 30 of themain shaft section 22. Thecoil member 112 creates an intermediate stiffener element between the relatively stiffmain shaft section 22 and the relatively flexibleintermediate sleeve section 24 to allow bending of the catheter without kinking. Thecoil member 112 preferably has its coils spaced uniformly apart, and is preferably formed from a spiral ribbon of stainless steel placed about theouter sleeve 82 along that portion thereof extending over thebonding region 74 and distally therefrom. Thecoil member 112 is secured to theouter sleeve 82 by suitable adhesive means, such as by epoxy. To further secure thecoil member 112 to theintermediate sleeve section 24, a heat-shrinkable sheath 114 is fitted over thecoil member 112. Preferably thesheath 114 is formed from a polyimide or polyolefin material which is expanded radially outwardly and then shrunk down over thecoil member 112 andouter sleeve 82 to secure thecoil member 112 thereto. To further secure thesheath 114 andcoil member 112 in place, some adhesive is provided between thesheath 114 and theintermediate sleeve section 24. By covering the ends of thecoil member 112, thesheath 114 also lessens the chances of those ends providing a rough edge or catch as thecatheter 20 is advanced through the guide catheter or artery. - Although the kirk-resistant structure is described and illustrated in connection with a balloon dilatation catheter, it is contemplated that such a structure be employed in any catheter shaft as a transition from a first thin-walled, high strength metallic tube structure to a second tube structure which is more flexible than the metallic tube structure. Such a kink-resistant structure, as described above (and also below in various embodiments), may be employed in a single lumen catheter shaft, or in multiple lumen catheter shaft having a central core tube such as the multi-lumen shaft illustrated by the intermediate sleeve section of the catheter disclosed in FIGS.1-4.
- Numerous alternative embodiments of the catheter of the present invention are contemplated. For example, several alternative arrangements for the main shaft section and intermediate sleeve structure portion of the catheter are illustrated and discussed herein, but it is not intended that the illustrated embodiments are all inclusive of those structures and designs which are included within the spirit and scope of the present invention. In the following discussion of further alternative embodiments of the present invention, to the extent a component is identical to that of a previously described embodiment, like reference numerals are used.
- FIG. 4 illustrates an alternative embodiment for the distal portion of a catheter according to the present invention. Specifically, the outer sleeve (of the intermediate sleeve section) and the distal balloon section are formed from the same component, as a unitary member. Thus, proximal waist36A of distal balloon section 26A is elongated proximally and acts as the outer sleeve for
intermediate sleeve section 24A. Aproximal end 115 of the proximal waist 36A is sealably fixed about thecore tube 80 andmain shaft section 22 adjacent thebonding region 74 thereof. It should be understood that the prospect of having a unitary outer sleeve and balloon member is applicable to all embodiments disclosed herein and contemplated, although it is only illustrated and discussed with respect to the catheter structure of FIG. 4. - FIG. 4 also shows another variation for the catheter's structure illustrated in FIGS.1-3. In FIG. 4, kink-resistant structure 110A includes
coil member 112A which is defined as a spiral ribbon of stainless steel placed about a proximal portion of theproximal waist 36 along thebonding region 74 and distally therefrom. Thecoil member 112A does not have its coils uniformly spaced apart, but rather has its coils spaced increasingly further apart as the coil member extends distally from themain shaft section 22. This results in acoil member 112A which becomes increasingly more flexible, thereby “feathering out” the change in relative stiffness and strain or kink relief between the relatively inflexiblemain shaft section 22 and the relatively flexibleintermediate sleeve section 24A. As before, a heat-shrinkable sheath 114A is fitted over thecoil member 112A to further secure thecoil member 112A to thesleeve section 24A. - In FIG. 5, a modified main shaft section22B is illustrated. The main shaft section 22B is formed as a thin-walled, high strength stainless steel tube or hypotube, but is defined as a single
tubular shaft 117 from its proximal end to itsdistal end 30B. Thesingle shaft 117 has a longitudinally extendinginflation lumen 62B therethrough, and at its proximal end (not shown) thesingle shaft 117 is mounted to an inflation device in a manner such as that illustrated for the catheter of FIG. 2. Adjacent itsdistal end 30B, thesingle shaft 117 has alongitudinal crimp 68B which extends laterally inwardly from one side of thesingle shaft 117. Thesingle shaft 117 thus has three sections, a proximal, relatively elongatedtubular region 70B, a relatively shortdistal transition region 72B and a relatively shortdistal bonding region 74B. Thecrimp 68B extends from its proximal origin in thetransition region 72B to its greatest lateral depth in thebonding region 74B. Thecrimp 68B does not seal or close off theinflation lumen 62B, but rather transforms theinflation lumen 62B from a circular lumen to a half-moon lumen through thebonding region 74B, as seen at 63B in FIG. 6. It is again understood that the use of a single tube to define the main shaft section of the catheter of the present invention is applicable to the other alternative embodiments of the catheter structures disclosed herein. - FIGS. 5 and 6 also illustrate an alternative arrangement for the kirk-resistant structure of the inventive catheter. Kink-
resistant structure 210 includescoil member 212. Thesleeve section 24B includes anouter sleeve 82B and aninner core tube 80B, with thecore tube 80B adapted to be nested within and bonded to the main shaft section 22B in itsdistal bonding region 74B. Thecoil member 212 of the kink-resistant structure 210 is positioned about thecore tube 80B within thedistal bonding region 74B and extending distally therefrom. Thecoil member 212 is preferably formed from stainless steel (either from a wire or ribbon) and may have uniform coil spacing or increasingly spaced coils as thecoil member 212 extends distally from the main shaft section 22B. Thecoil member 212 is secured to thecore tube 80B by suitable means, such as by embedding thecoil member 212 in anepoxy layer 214 about thecore tube 80B. A proximal end 100B of theouter sleeve 82B is bonded about the main shaft section 22B andinner tube 80B andcoil structure 210 in thebonding region 74B thereof, as seen in FIGS. 5 and 6. In theintermediate sleeve section 24B, theinner core tube 80B thus provides aguide wire lumen 52B therethrough, and anannular inflation lumen 104B is provided, between theinner tube 80B andouter sleeve 82B. Although the kink-resistant structure 210 is within theannular inflation lumen 104 and theouter sleeve 82B necks down distally front the main shaft section 22B, the size of theannular inflating lumen 104 is sufficient to provide proper fluid flow to and from the catheter's balloon. - FIGS.7-13 illustrate an alternative configuration for that portion of the catheter adjacent the proximal inlet of the guide wire lumen. Instead of providing a crimp structure in the distal end of the main shaft section, an aperture is provided adjacent to and proximal of the distal end of the main shaft section. The aperture is aligned and sealably coupled to the inner tube to define the guide wire lumen proximal outlet. In all disclosed embodiments, the main shaft section is preferably formed from a hypotube-like material.
- As seen in FIG. 7, an alternative embodiment of the catheter of the present invention has a proximal main shaft section22C formed from thin-walled, high strength stainless steel tubing. A longitudinally extending
inflation lumen 62C extends therethrough from a proximal end of the main shaft section 22C to itsdistal end 30C. In the embodiment seen in FIG. 7, the main shaft 22C is formed from two stainless steel tube sections, a proximal relatively long shaft section 64C and a distal relatively short shaft section 66C bonded on the distal end of the proximal section 64C. This two-part main shaft section structure thus allows a substantial length of the main shaft section 22C to be formed from the proximal shaft section 64C which has a smaller diameter than the distal shaft section 66C. - The distal shaft section66C has an oval-shaped
aperture 119 extending through its wall, with the oval being elongated in the longitudinal direction of the main shaft section 22C. Theaperture 119 is spaced proximally from a distal end of the distal shaft section 66C (thedistal end 30C of the main shaft section 22C). The space between theaperture 119 anddistal end 30C thus defines in part abonding region 121 for connecting the main shaft section 22C to a distally extendingintermediate sleeve section 24C. - As before, the
intermediate sleeve section 24C includes aninner core tube 80C and anouter sleeve 82C. A proximal end 88C of thecore tube 80C is sealably bonded about theaperture 119 to align the proximal end 88C andaperture 119 and thereby define aproximal outlet 92C for aguide wire lumen 52C extending through thecore tube 80C. As seen in FIG. 7, aproximal portion 123 of thecore tube 80C extends laterally from theaperture 119 into the distal shaft section 66C and turns longitudinally and distally relative thereto to be aligned generally coaxially therewith. As such, theinflation lumen 62C is continued distally past theaperture 119 as a generally annular inflation lumen 125, between thecore tube 80C and distal shaft section 66C (along the bonding region 121). Proximal end 100C of theouter sleeve 82C is bonded about the distal shaft section 66C in thebonding region 121 by a suitable means, such as by epoxy or cyanoacrylate. As seen in FIG. 7, theouter sleeve 82C extends distally from the main shaft section 22C over thecore tube 80C and defines a longitudinally extendingannular inflation lumen 104C between thecore tube 80C andouter sleeve 82C. The proximal end 100C of theouter sleeve 82C is sealed about the distal shaft section 66C so that thelongitudinal inflation lumens - In FIG. 7, kink-resistant structure310 includes coil member 312 (of a wire or ribbon-like structure) which is bonded about the
outer sleeve 82C to extend distally from thedistal end 30C of the main shaft section 22C. In this embodiment, the coil member 312 does not extend about any portion of the main shaft 22C. The coil member 312 is secured to theouter sleeve 82C by suitable adhesive means, such asepoxy 314, and is embedded therein to firmly hold the coil member 312 in place about theintermediate sleeve section 24C. In the embodiment of FIG. 7, the coil member 312 is illustrated with its coils being spaced increasingly longitudinally apart as the coil member 312 extends distally along the catheter. - FIGS.8-13 also illustrate embodiments of the catheter of the present invention wherein an aperture is provided through the main shaft section wall to accommodate the proximal outlet for the relatively short, distal guide wire lumen. As opposed to the embodiment of FIG. 7, however, the embodiments illustrated in FIGS. 8-13 show the main shaft section as a single shaft rather than as a multi-part shaft. Indeed, FIG. 8 illustrates a catheter structure identical to that of FIG. 7, except that the main shaft section 22D is shown as a
single shaft 217, rather than having proximal and distal shaft sections 64C and 66C as seen in FIG. 7. As such, the catheter inflation lumen includes longitudinally extendinginflation lumens - FIG. 9 is an embodiment of the catheter of the present invention otherwise similar to FIG. 8, except that kink-
resistant structure 410 hascoil member 412 with uniformly spaced coils along the entire length. Again, theentire coil member 412 is fixed to theouter sleeve 82C of theintermediate sleeve section 24C by embedding thecoil member 412 within a suitable material such as epoxy or cyanoacrylate 414. - In the catheter structure of FIG. 10,
intermediate section 24B has aninner core tube 80E and anouter sleeve 82E. The structure of the catheter is otherwise the same as the catheter of FIG. 9, except that the kink-resistant structure thereof is positioned inside theouter sleeve 82E rather than outside of the outer sleeve. Kink-resistant structure 510 is affixed to an inner surface of theouter sleeve 82E distally of the main shaft section 22D by a suitable means, such as embeddedadhesive 514. The kink-resistant 510 includescoil member 512 which provides an intermediate stiffener between the relatively stiff main shaft section 22D and the relatively flexibleintermediate sleeve section 24E. As seen, theouter sleeve 82E necks down distally from the kink-resistant structure 510 to provide a lower profile for the catheter in its distal regions. Anannular inflation lumen 104E formed between theinner tube 80E andouter sleeve 82E (and at a proximal end thereof, between theinner tube 80B and the kink-resistant structure 510) is not compromised by such a necked-down sleeve design but maintained at sufficient size to provide for adequate and quick inflation and deflation of the balloon. - In FIG. 11 intermediate sleeve section24F includes an
inner core tube 80F and anouter sleeve 82F. Kink-resistant structure 610 is mounted about theinner tube 80F along thebonding region 121 and extending distally from the main shaft section 22D into the intermediate sleeve section 24F. The kink-resistant structure includes coil member 612 which is affixed about thecore tube 80F by suitable means such as being embedded in epoxy or another suitable adhesive 614. As seen in FIG. 11, theouter sleeve 82F has an enlarged diameter at its proximal end to accommodate the main shaft section 22D and the kink-resistant structure 610, and so that theannular inflation lumens core tube 80F remain sufficiently large to provide proper inflation and deflation pressures to the balloon of the catheter. - FIGS. 12 and 13 illustrate a further variation of the kink-resistant structure of the present invention. In the embodiments of FIGS. 12 and 13, the kink-resistance structure does not include a coil member, is formed from a polymer tube which is of intermediate stiffness between the main shaft section and intermediate sleeve section. In FIG. 12, kink-
resistant structure 710 is provided which is formed from a polyimide or otherstiff polymer tube 727. Thetube 727 is bonded about an inner core tube 80G of the intermediate sleeve section 24G by a suitable adhesive, such as epoxy or cyanoacrylate. Thetube 727 extends through a distal portion of thebonding region 121 and distally beyond the main shaft section 22D into the intermediate sleeve section 24G. Again, an outer sleeve 82G of the sleeve section 24G has an enlarged diameter at its proximal end to accommodate the main shaft section 22D and the kink-resistant structure 710, and so that the components are dimensioned such thatannular inflation lumens - In FIG. 13, kink-
resistant structure 810 is illustrated, as formed from a polyimide or otherstiff polymer tube 829 which is bonded to the inner surfaces of both the main shaft section 22D and anouter sleeve 82H of an intermediate sleeve section 24H at abonding region 121H. Thetube 829 thus provides not only a kink-resistant structure to accommodate the change in stiffness of the main shaft section and intermediate sleeve section, but also provides a substrate for bonding the to catheter sections together by a suitable adhesive, such as epoxy or cyanoacrylate. Acore tube 80H of the sleeve section 24H extends through the interior of thetube 829 to theaperture 119 on the main shaft section 22D. Thus, an annular longitudinally extendinginflation lumen 131 is formed as a “bridge lumen” (between thecore tube 80H and tube 829) from theinflation lumen 62D to anannular inflation lumen 104H within the sleeve section 24H. - As mentioned above, various combinations of these alternative component and catheter structures are contemplated and are intended to be considered, although not explicitly shown. For example, it is contemplated that a two-part main shaft section structure (such as illustrated in FIGS. 2, 4 and7) may be combined with any one of the kink-resistant structure such as that illustrated in FIGS. 8-13. By way of example and not limitation, a further example of such a combination may include the use of a distal balloon section having an elongated proximal waist (such as shown in FIG. 4) with any of the alternative kink-resistant structures disclosed herein.
- The balloon dilatation catheter of the present invention is an over-the-wire catheter structure with a distal guide wire lumen which optimizes the features of such a catheter in a way not previously considered or achieved. The use of a hypotube-type main shaft for the catheter allows the attainment of a high strength, pushable shaft having thin walls and small diameter. The further use of a two-part hypotube shaft structure allows an even smaller diameter for the proximal elongated section of the main catheter shaft. Employing a crimp as a means for aligning and creating a proximal outlet for the relatively short guide wire lumen also serves to provide a transition region for exit of the guide wire from the catheter itself which is relatively gradual. The crimped shaft design also provides additional stiffness in the transition region where the guide wire enters and exits the catheter proximally of the balloon thereof, thereby creating a more rigorous catheter structure. Because the catheter of the present invention is based upon a relatively stiff proximal main shaft section, and such a catheter must have a relatively flexible distal portion for working through the tortuous arterial anatomy, a strain relief or kink-resistant structure is provided to make a more gradual transition between the relatively stiff main catheter shaft and the relatively flexible distal portion of the catheter. Various configurations of strain relief and kink-resistant structures are disclosed herein, and all are believed suitable to accomplish the desired end of preventing significant closure of the guide wire lumen and annular inflation lumen in the more flexible distal portions of the catheter, especially adjacent the distal end of the main catheter shaft.
- Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Claims (48)
1. A balloon dilatation catheter comprising:
a tube formed from a relatively stiff material composition, the tube defining a first shaft section having a proximal end and a distal end;
a second shaft section, more flexible than the first shaft section, disposed distally of the first shaft section;
the first and second shaft sections having an inflation lumen defined therethrough;
a dilatation balloon attached to the distal end of the second shaft section, the dilatation balloon being in fluid communication with the inflation lumen such that inflation pressure may be provided to the balloon therethrough;
an intermediate section disposed between the first shaft section and the second shaft section, the intermediate section configured to include a stiffness between the stiffness of the first shaft section and the stiffness of the second shaft section; and
wherein the second shaft section includes a second lumen extending through the interior of the balloon, the second lumen being shorter than the inflation lumen, the second lumen having a proximal guide wire opening at its proximal end and a distal guide wire opening at its distal end, and the second lumen being formed and aligned to receive a guide wire there in such that the catheter may be slidably moved on the guide wire.
2. The balloon dilatation catheter of claim 1 wherein the proximal guide wire opening is disposed adjacent the proximal end of the second shaft section.
3. The balloon dilatation catheter of claim 1 wherein the proximal guide wire opening is disposed adjacent the distal end of the first shaft section.
4. The balloon dilatation catheter of claim 1 wherein the proximal, guide wire opening is disposed along the intermediate section.
5. The balloon dilatation catheter of claim 1 wherein the intermediate section has a portion of relatively constant stiffness therealong.
6. The balloon dilatation catheter of claim 1 wherein the intermediate section includes a metallic member adjacent the proximal guide wire lumen opening.
7. The balloon dilatation catheter of claim 6 wherein the metallic member has a relatively uniform metallic dimension therealong.
8. The balloon dilatation catheter of claim 6 wherein the metallic member is located at least in part around the inflation lumen.
9. The balloon dilatation catheter of claim 6 wherein the metallic member comprises a coil.
10. The balloon dilatation catheter of claim 6 wherein the metallic member has a distal terminal end spaced proximally from the balloon.
11. The balloon dilatation catheter of claim 1 wherein at least a portion of the intermediate section is offset axially relative to the first and second shaft sections.
12. The balloon dilatation catheter of claim 11 wherein the proximal guide wire lumen opening is disposed along that portion of the intermediate section which is offset axially relative to the first and second shaft sections.
13. The balloon catheter of claim 1 wherein the tube is formed from a metallic material.
14. In an elongate dilatation catheter of the type that can be slidably moved along a guide wire that can extend past a distal end of the catheter, wherein the guide wire is received in a guide wire lumen of the catheter, the guide wire extending from a distal guide wire lumen opening to a proximal guide wire lumen opening disposed in a portion of the catheter that is spaced distally from a proximal end of the catheter, the dilatation catheter including an inflatable balloon and an inflation lumen extending through the catheter separate from the guide wire lumen, an improvement comprising:
a tube formed from a relatively stiff material composition, the tube defining a first shaft section having a proximal end and a distal end;
a second shaft section disposed distally of the first shaft section, the second shaft section being relatively more flexible than the first shaft section and having the guide wire lumen extending through a portion thereof; and
an intermediate section disposed between the first shaft section and the second shaft section, the intermediate section including an intermediate member adjacent the proximal guide wire lumen opening which is of diminished dimension relative to the tube such that at least a portion of the intermediate section is more flexible than the first shaft section and less flexible than the second shaft section.
15. The improved catheter of claim 14 wherein the tube is formed from a metallic material.
16. The improved catheter of claim 14 wherein the intermediate metallic member has a relatively uniform metallic dimension therealong.
17. The improved catheter of claim 14 wherein the intermediate metallic member is located at least in part around the inflation lumen.
18. The improved catheter of claim 14 wherein the intermediate metallic member comprises a coil.
19. The improved catheter of claim 14 wherein the intermediate section extends at least in part across the proximal guide wire lumen opening.
20. The improved catheter of claim 14 wherein the proximal guide wire lumen opening is disposed adjacent the proximal end of the second shaft section.
21. The improved catheter of claim 14 wherein the proximal guide wire lumen opening is disposed adjacent the distal end of the first shaft section.
22. The improved catheter of claim 14 wherein the proximal guide wire opening is disposed along the intermediate section.
23. The improved catheter of claim 14 wherein at least a portion of the intermediate section is adopted to impart a stepped transition in flexibility between the first shaft section and the second shaft section.
24. The improved catheter of claim 14 wherein at least a portion of the intermediate section is offset axially relative to the first and second shaft sections.
25. The improved catheter of claim 14 wherein the proximal guide wire lumen opening is disposed along that portion of the intermediate section which is offset axially relative to the first and second shaft sections.
26. In an elongate dilatation catheter which has an inflatable balloon and a inflation lumen extending through the catheter, wherein the catheter is of the type that can be slidably roved along a guide wire that can extend past a distal end of the catheter through a guide wire lumen of the catheter, wherein the guide wire lumen is separate from the inflation lumen and extends from a distal guide wire lumen opening to a proximal guide wire lumen opening located in a portion of the catheter that is spaced distally from a proximal end of the catheter so that the guide wire lumen is shorter than the inflation lumen, an improvement comprising:
a first proximal shaft section of the catheter defined by a tubing of relatively rigid material;
a second shaft section disposed distally of the first shaft section, the second shaft section being relatively more flexible than the first shaft section; and
a transition section disposed between the first shaft section and the second shaft section and including a metallic element of diminished dimension relative to the tubing, the transition section extending adjacent to the proximal guide wire lumen opening and having an intermediate rigidity to provide a stepped transition between the first shaft section and the second shaft section.
27. The improved catheter of claim 26 in which the tubing is formed from a metallic material.
28. The improved catheter of claim 26 in which the metallic element extends at least in part distally of the proximal guide wire lumen opening.
29. The improved catheter of claim 26 in which the metallic element extends at least in part around the inflation lumen.
30. The improved catheter of claim 26 in which the metallic element comprises a coil.
31. The improved catheter of claim 26 in which the metallic element has a distal terminal end spaced proximally from the balloon.
32. The improved catheter, of claim 26 in which the proximal guide wire lumen opening is disposed adjacent the proximal end of the second shaft section.
33. The improved catheter of claim 26 in which the proximal guide wire lumen opening is disposed adjacent the distal end of the first shaft section.
34. In an elongate dilatation catheter which has an inflatable balloon and an inflation lumen extending through the catheter, wherein the catheter is of the type that can be slidably moved along a guide wire which can extend past a distal end of the catheter through a guide wire lumen of the catheter, wherein the guide wire lumen is separate from the inflation lumen and extends from a distal guide wire lumen opening to a proximal guide wire lumen opening disposed in a portion of the catheter that is spaced distally from a proximal end of the catheter so that the guide wire lumen is shorter than the inflation lumen, an improvement comprising:
a first proximal shaft section of the catheter defined by a tubing of relatively rigid material;
a second shaft section disposed distally of the first shaft section, the second shaft section being relatively more flexible than the first shaft section; and
a transition section disposed between the first shaft section and the second shaft section and extending adjacent to the proximal guide wire lumen opening, the transition section having decreased rigidity relative to the tubing to provide a stepped transition in flexibility between the first shaft section and the second shaft section.
35. The improved catheter of claim 34 in which the tubing is formed from a metallic material.
36. The improved catheter of claim 34 in which the transition section extends at least in part distally of the proximal guide wire lumen opening.
37. The improved catheter of claim 34 in which the transition section extends at least in part around the inflation lumen.
38. The improved catheter of claim 34 in which the transition section comprises a coil.
39. The improved catheter of claim 34 in which the transition section is metallic and of reduced dimension relative to the metallic tube.
40. The improved catheter of claim 34 in which the transition section has a distal terminal end spaced proximally from the balloon.
41. The improved catheter of claim 34 in which the proximal guide wire lumen opening is disposed adjacent the proximal end of the second shaft section.
42. The improved catheter of claim 34 in which the proximal guide wire lumen opening is disposed adjacent the distal end of the first shaft section.
43. In an elongate dilatation catheter of the type that has a relatively long proximal shaft section, a second shorter distal shaft section disposed distally of the first shaft section, an inflatable balloon attached to the distal end of the second shaft section wherein the first and second shaft sections have an inflation lumen defined therethrough so that the balloon is in fluid communication with the inflation lumen, and wherein the catheter is of the type that can be slidably moved along a guide wire which can extend through a guide wire lumen of the catheter, the guide wire lumen being separate from the inflation lumen and extending from a distal guide wire lumen opening at the distal end of the catheter to a proximal guide wire lumen opening adjacent the proximal end of the second shaft section so that the guide wire lumen is shorter than the inflation lumen, an improvement comprising:
the first proximal shaft section of the catheter defined by a tubing of relatively rigid material;
the second shaft section of the catheter being relatively more flexible than the first shaft section and having a relatively short reinforced proximal portion and a relatively long nonreinforced distal portion; and
the reinforced proximal portion including a transition member disposed adjacent to the proximal guide wire lumen opening and extending distally along the second shaft section to provide a reinforcement therefore the transition member including a metallic element having a uniform reduced dimension relative to the tubing as it extends distally along the catheter to provide a stepped transition in rigidity in the distal direction, the transition member having a distal terminal end spaced from the balloon by the length of the nonreinforced distal portion of the second shaft section.
44. The improved catheter of claim 43 in which the tubing is formed from a metallic member.
45. The improved catheter of claim 43 in which the transition member extends at least in part distally of the proximal guide wire lumen opening.
46. The improved catheter of claim 43 in which the transition member extends at least in part around the inflation lumen.
47. The improved catheter of claim 43 in which the transition member comprises a coil.
48. The improved catheter of claim 43 in which the proximal guide wire lumen opening is disposed adjacent the distal end of the first shaft section.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/741,574 US20040133158A1 (en) | 1990-08-28 | 2003-12-19 | Balloon catheter with distal guide wire lumen |
US12/270,605 US20090062734A1 (en) | 1990-08-28 | 2008-11-13 | Balloon catheter with distal guide wire lumen |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/574,265 US5156594A (en) | 1990-08-28 | 1990-08-28 | Balloon catheter with distal guide wire lumen |
US07/792,786 US5217482A (en) | 1990-08-28 | 1991-11-15 | Balloon catheter with distal guide wire lumen |
US08/035,254 US5395334A (en) | 1990-08-28 | 1993-03-22 | Balloon catheter with distal guide wire lumen |
US34493194A | 1994-11-23 | 1994-11-23 | |
US08/521,460 US5522818A (en) | 1990-08-28 | 1995-08-30 | Balloon catheter with distal guide wire lumen |
US08/657,013 US5702439A (en) | 1990-08-28 | 1996-05-30 | Balloon catheter with distal guide wire lumen |
US95504997A | 1997-10-21 | 1997-10-21 | |
US09/132,119 US6273879B1 (en) | 1990-08-28 | 1998-08-11 | Balloon catheter with distal guide wire lumen |
US09/886,328 US6733487B2 (en) | 1990-08-28 | 2001-06-21 | Balloon catheter with distal guide wire lumen |
US10/741,574 US20040133158A1 (en) | 1990-08-28 | 2003-12-19 | Balloon catheter with distal guide wire lumen |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/886,328 Continuation US6733487B2 (en) | 1990-08-28 | 2001-06-21 | Balloon catheter with distal guide wire lumen |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/270,605 Continuation US20090062734A1 (en) | 1990-08-28 | 2008-11-13 | Balloon catheter with distal guide wire lumen |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040133158A1 true US20040133158A1 (en) | 2004-07-08 |
Family
ID=27076342
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/792,786 Expired - Lifetime US5217482A (en) | 1990-08-28 | 1991-11-15 | Balloon catheter with distal guide wire lumen |
US08/035,254 Expired - Lifetime US5395334A (en) | 1990-08-28 | 1993-03-22 | Balloon catheter with distal guide wire lumen |
US08/521,460 Expired - Lifetime US5522818A (en) | 1990-08-28 | 1995-08-30 | Balloon catheter with distal guide wire lumen |
US08/657,013 Expired - Lifetime US5702439A (en) | 1990-08-28 | 1996-05-30 | Balloon catheter with distal guide wire lumen |
US09/132,119 Expired - Fee Related US6273879B1 (en) | 1990-08-28 | 1998-08-11 | Balloon catheter with distal guide wire lumen |
US09/886,328 Expired - Fee Related US6733487B2 (en) | 1990-08-28 | 2001-06-21 | Balloon catheter with distal guide wire lumen |
US10/741,574 Abandoned US20040133158A1 (en) | 1990-08-28 | 2003-12-19 | Balloon catheter with distal guide wire lumen |
US12/270,605 Abandoned US20090062734A1 (en) | 1990-08-28 | 2008-11-13 | Balloon catheter with distal guide wire lumen |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/792,786 Expired - Lifetime US5217482A (en) | 1990-08-28 | 1991-11-15 | Balloon catheter with distal guide wire lumen |
US08/035,254 Expired - Lifetime US5395334A (en) | 1990-08-28 | 1993-03-22 | Balloon catheter with distal guide wire lumen |
US08/521,460 Expired - Lifetime US5522818A (en) | 1990-08-28 | 1995-08-30 | Balloon catheter with distal guide wire lumen |
US08/657,013 Expired - Lifetime US5702439A (en) | 1990-08-28 | 1996-05-30 | Balloon catheter with distal guide wire lumen |
US09/132,119 Expired - Fee Related US6273879B1 (en) | 1990-08-28 | 1998-08-11 | Balloon catheter with distal guide wire lumen |
US09/886,328 Expired - Fee Related US6733487B2 (en) | 1990-08-28 | 2001-06-21 | Balloon catheter with distal guide wire lumen |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/270,605 Abandoned US20090062734A1 (en) | 1990-08-28 | 2008-11-13 | Balloon catheter with distal guide wire lumen |
Country Status (1)
Country | Link |
---|---|
US (8) | US5217482A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060142704A1 (en) * | 2004-12-15 | 2006-06-29 | Cook Incorporated | Multifilar cable catheter |
US20060224112A1 (en) * | 2005-04-04 | 2006-10-05 | Cook Incorporated | Scored catheter device |
US20070088257A1 (en) * | 2005-10-13 | 2007-04-19 | Conor Medsystems, Inc. | Rapid exchange catheter with hypotube and short exchange length |
US20080077085A1 (en) * | 2006-09-27 | 2008-03-27 | Boston Scientific Scimed, Inc. | Catheter shaft designs |
US20080114435A1 (en) * | 2006-03-07 | 2008-05-15 | Med Institute, Inc. | Flexible delivery system |
US20080287786A1 (en) * | 2007-05-15 | 2008-11-20 | Cook Incorporated | Multifilar cable catheter |
EP2111160A2 (en) * | 2007-01-22 | 2009-10-28 | Taylor Medical, Inc. | Catheter with guidewire lumen with tubular portion and sleeve |
WO2010060888A1 (en) * | 2008-11-26 | 2010-06-03 | Blue Medical Devices Bv | Medical balloon catheter with hollow wire cable rope guidewire duct |
US20110054585A1 (en) * | 2005-12-23 | 2011-03-03 | Cook Incorporated | Prosthesis deployment system |
WO2011140535A1 (en) * | 2010-05-07 | 2011-11-10 | Entellus Medical, Inc. | Sinus balloon dilation catheters and sinus surgury tools |
EP2099516B1 (en) | 2002-03-22 | 2016-04-06 | Cordis Corporation | Rapid-exchange balloon catheter shaft |
WO2020091914A1 (en) * | 2018-10-31 | 2020-05-07 | Vishal Gupta | System and method for controller delivery of medical devices into patient bodies |
WO2020206101A1 (en) * | 2019-04-05 | 2020-10-08 | Traverse Vascular, Inc. | Reentry catheters for traversing chronic total occlusions |
WO2024104827A1 (en) * | 2022-11-18 | 2024-05-23 | Medtronic Ireland Manufacturing Unlimited Company | Cryoablation catheter with varying cross-sectional shape |
Families Citing this family (413)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5217482A (en) | 1990-08-28 | 1993-06-08 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
EP0563179B1 (en) | 1990-12-17 | 1997-08-27 | Cardiovascular Imaging Systems, Inc. | Vascular catheter having low-profile distal end |
US6733473B1 (en) | 1991-04-05 | 2004-05-11 | Boston Scientific Corporation | Adjustably stiffenable convertible catheter assembly |
DK0578777T3 (en) * | 1991-04-05 | 1998-03-30 | Boston Scient Corp | Adjustable catheter construction |
US6682557B1 (en) | 1991-04-11 | 2004-01-27 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5628783A (en) | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US6309379B1 (en) * | 1991-05-23 | 2001-10-30 | Lloyd K. Willard | Sheath for selective delivery of multiple intravascular devices and methods of use thereof |
US5976107A (en) * | 1991-07-05 | 1999-11-02 | Scimed Life Systems. Inc. | Catheter having extendable guide wire lumen |
US5645533A (en) * | 1991-07-05 | 1997-07-08 | Scimed Life Systems, Inc. | Apparatus and method for performing an intravascular procedure and exchanging an intravascular device |
CA2079417C (en) | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
ES2105316T3 (en) * | 1992-08-25 | 1997-10-16 | Bard Connaught | EXPANSION CATHETER WITH REINFORCEMENT WIRE. |
US20020177841A1 (en) * | 1992-08-25 | 2002-11-28 | Noreen Moloney | Dilatation catheter with stiffening wire |
US5413559A (en) * | 1993-07-08 | 1995-05-09 | Sirhan; Motasim M. | Rapid exchange type over-the-wire catheter |
CA2173482A1 (en) * | 1993-10-07 | 1995-04-13 | Erik Andersen | Dilatation catheter |
US5383890A (en) * | 1993-10-27 | 1995-01-24 | Baxter International Inc. | Low-profile single-lumen perfusion balloon catheter |
US5387193A (en) * | 1994-02-09 | 1995-02-07 | Baxter International Inc. | Balloon dilation catheter with hypotube |
US5591194A (en) * | 1994-02-18 | 1997-01-07 | C. R. Bard, Inc. | Telescoping balloon catheter and method of use |
JPH09504980A (en) * | 1994-03-10 | 1997-05-20 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Catheter with variable stiffness axis |
US5470307A (en) * | 1994-03-16 | 1995-11-28 | Lindall; Arnold W. | Catheter system for controllably releasing a therapeutic agent at a remote tissue site |
US6156028A (en) | 1994-03-21 | 2000-12-05 | Prescott; Marvin A. | Method and apparatus for therapeutic laser treatment of wounds |
US5527307A (en) * | 1994-04-01 | 1996-06-18 | Minimed Inc. | Implantable medication infusion pump with discharge side port |
US5824044A (en) | 1994-05-12 | 1998-10-20 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system |
US5423774A (en) * | 1994-05-17 | 1995-06-13 | Arrow International Investment Corp. | Introducer sheath with irregular outer surface |
US5454795A (en) * | 1994-06-27 | 1995-10-03 | Target Therapeutics, Inc. | Kink-free spiral-wound catheter |
US5496294A (en) * | 1994-07-08 | 1996-03-05 | Target Therapeutics, Inc. | Catheter with kink-resistant distal tip |
US5658264A (en) * | 1994-11-10 | 1997-08-19 | Target Therapeutics, Inc. | High performance spiral-wound catheter |
US5599326A (en) * | 1994-12-20 | 1997-02-04 | Target Therapeutics, Inc. | Catheter with multi-layer section |
US5667493A (en) * | 1994-12-30 | 1997-09-16 | Janacek; Jaroslav | Dilation catheter |
JP2865428B2 (en) * | 1995-04-28 | 1999-03-08 | ターゲット セラピューティクス, インコーポレイテッド | High performance braided catheter |
US5702373A (en) * | 1995-08-31 | 1997-12-30 | Target Therapeutics, Inc. | Composite super-elastic alloy braid reinforced catheter |
US5891112A (en) * | 1995-04-28 | 1999-04-06 | Target Therapeutics, Inc. | High performance superelastic alloy braid reinforced catheter |
US6824553B1 (en) | 1995-04-28 | 2004-11-30 | Target Therapeutics, Inc. | High performance braided catheter |
US5827241A (en) * | 1995-06-07 | 1998-10-27 | C. R. Bard, Inc. | Rapid exchange guidewire mechanism |
US5690642A (en) | 1996-01-18 | 1997-11-25 | Cook Incorporated | Rapid exchange stent delivery balloon catheter |
US6053904A (en) * | 1996-04-05 | 2000-04-25 | Robert M. Scribner | Thin wall catheter introducer system |
US6090099A (en) * | 1996-05-24 | 2000-07-18 | Target Therapeutics, Inc. | Multi-layer distal catheter section |
US5782811A (en) | 1996-05-30 | 1998-07-21 | Target Therapeutics, Inc. | Kink-resistant braided catheter with distal side holes |
US5868707A (en) * | 1996-08-15 | 1999-02-09 | Advanced Cardiovascular Systems, Inc. | Protective sheath for catheter balloons |
US5971975A (en) * | 1996-10-09 | 1999-10-26 | Target Therapeutics, Inc. | Guide catheter with enhanced guidewire tracking |
US7220275B2 (en) * | 1996-11-04 | 2007-05-22 | Advanced Stent Technologies, Inc. | Stent with protruding branch portion for bifurcated vessels |
US6325826B1 (en) * | 1998-01-14 | 2001-12-04 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6692483B2 (en) | 1996-11-04 | 2004-02-17 | Advanced Stent Technologies, Inc. | Catheter with attached flexible side sheath |
US7341598B2 (en) | 1999-01-13 | 2008-03-11 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US6599316B2 (en) | 1996-11-04 | 2003-07-29 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US7591846B2 (en) | 1996-11-04 | 2009-09-22 | Boston Scientific Scimed, Inc. | Methods for deploying stents in bifurcations |
EP0944366B1 (en) * | 1996-11-04 | 2006-09-13 | Advanced Stent Technologies, Inc. | Extendible double stent |
US8211167B2 (en) * | 1999-12-06 | 2012-07-03 | Boston Scientific Scimed, Inc. | Method of using a catheter with attached flexible side sheath |
US6835203B1 (en) * | 1996-11-04 | 2004-12-28 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US5730734A (en) * | 1996-11-14 | 1998-03-24 | Scimed Life Systems, Inc. | Catheter systems with interchangeable parts |
US6159187A (en) * | 1996-12-06 | 2000-12-12 | Target Therapeutics, Inc. | Reinforced catheter with a formable distal tip |
US5807355A (en) * | 1996-12-09 | 1998-09-15 | Advanced Cardiovascular Systems, Inc. | Catheter with rapid exchange and OTW operative modes |
US5968009A (en) * | 1997-01-29 | 1999-10-19 | Baxter International Inc. | Double lumen tubing design for catheter |
US5795326A (en) * | 1997-01-29 | 1998-08-18 | Baxter International Inc. | Double lumen tubing design for catheter |
US6355016B1 (en) * | 1997-03-06 | 2002-03-12 | Medtronic Percusurge, Inc. | Catheter core wire |
US5810867A (en) * | 1997-04-28 | 1998-09-22 | Medtronic, Inc. | Dilatation catheter with varied stiffness |
US6152912A (en) * | 1997-06-10 | 2000-11-28 | Target Therapeutics, Inc. | Optimized high performance spiral-wound vascular catheter |
US5951539A (en) * | 1997-06-10 | 1999-09-14 | Target Therpeutics, Inc. | Optimized high performance multiple coil spiral-wound vascular catheter |
US6258080B1 (en) | 1997-07-01 | 2001-07-10 | Target Therapeutics, Inc. | Kink-free spiral-wound catheter |
DE19734220C2 (en) * | 1997-08-07 | 2000-01-13 | Pulsion Verwaltungs Gmbh & Co | Catheter system with an insertion wire |
US7753950B2 (en) | 1997-08-13 | 2010-07-13 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US5891114A (en) * | 1997-09-30 | 1999-04-06 | Target Therapeutics, Inc. | Soft-tip high performance braided catheter |
US6217566B1 (en) | 1997-10-02 | 2001-04-17 | Target Therapeutics, Inc. | Peripheral vascular delivery catheter |
US6048338A (en) | 1997-10-15 | 2000-04-11 | Scimed Life Systems, Inc. | Catheter with spiral cut transition member |
WO2009117663A2 (en) | 2008-03-20 | 2009-09-24 | Medrad, Inc. | Direct stream hydrodynamic catheter system |
US9586023B2 (en) | 1998-02-06 | 2017-03-07 | Boston Scientific Limited | Direct stream hydrodynamic catheter system |
US6875193B1 (en) * | 1998-02-06 | 2005-04-05 | Possis Medical, Inc. | Rapid exchange fluid jet thrombectomy device and method |
US7879022B2 (en) * | 1998-02-06 | 2011-02-01 | Medrad, Inc. | Rapid exchange fluid jet thrombectomy device and method |
US6746422B1 (en) | 2000-08-23 | 2004-06-08 | Norborn Medical, Inc. | Steerable support system with external ribs/slots that taper |
US20060074442A1 (en) * | 2000-04-06 | 2006-04-06 | Revascular Therapeutics, Inc. | Guidewire for crossing occlusions or stenoses |
US6059767A (en) * | 1998-02-25 | 2000-05-09 | Norborn Medical, Inc. | Steerable unitary infusion catheter/guide wire incorporating detachable infusion port assembly |
US20080140101A1 (en) * | 2006-12-07 | 2008-06-12 | Revascular Therapeutic, Inc. | Apparatus for crossing occlusions or stenoses |
US9254143B2 (en) * | 1998-02-25 | 2016-02-09 | Revascular Therapeutics, Inc. | Guidewire for crossing occlusions or stenoses having a shapeable distal end |
US20070225615A1 (en) * | 2006-03-22 | 2007-09-27 | Revascular Therapeutics Inc. | Guidewire controller system |
US20050119615A1 (en) * | 2000-04-06 | 2005-06-02 | Norborn Medical, Inc. | Guidewire for crossing occlusions or stenoses |
US6824550B1 (en) | 2000-04-06 | 2004-11-30 | Norbon Medical, Inc. | Guidewire for crossing occlusions or stenosis |
US6475187B1 (en) * | 1998-03-04 | 2002-11-05 | Scimed Life Systems, Inc. | Convertible catheter incorporating distal force transfer mechanism |
US6099499A (en) * | 1998-04-28 | 2000-08-08 | Medtronic, Inc. | Device for in vivo radiation delivery and method for delivery |
IT1300577B1 (en) * | 1998-05-29 | 2000-05-23 | Invatec Srl | STRUCTURE OF EXPANSION CATHETER |
US20020007145A1 (en) | 1998-10-23 | 2002-01-17 | Timothy Stivland | Catheter having improved bonding region |
US6102890A (en) * | 1998-10-23 | 2000-08-15 | Scimed Life Systems, Inc. | Catheter having improved proximal shaft design |
EP1137455B1 (en) | 1998-12-09 | 2008-05-21 | Boston Scientific Scimed, Inc. | Catheter having improved flexibility control |
US20050060027A1 (en) * | 1999-01-13 | 2005-03-17 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US7655030B2 (en) | 2003-07-18 | 2010-02-02 | Boston Scientific Scimed, Inc. | Catheter balloon systems and methods |
US7905879B2 (en) * | 1999-04-21 | 2011-03-15 | Medtronic Cryocath Lp | Cryoablation catheter handle |
US20030028182A1 (en) * | 1999-04-21 | 2003-02-06 | Cryocath Technologies Inc. | Cryoablation catheter handle |
US6440126B1 (en) | 1999-04-21 | 2002-08-27 | Cryocath Technologies | Cryoblation catheter handle |
US6648854B1 (en) | 1999-05-14 | 2003-11-18 | Scimed Life Systems, Inc. | Single lumen balloon-tipped micro catheter with reinforced shaft |
US6884258B2 (en) | 1999-06-04 | 2005-04-26 | Advanced Stent Technologies, Inc. | Bifurcation lesion stent delivery using multiple guidewires |
US7387639B2 (en) * | 1999-06-04 | 2008-06-17 | Advanced Stent Technologies, Inc. | Short sleeve stent delivery catheter and methods |
US6066122A (en) * | 1999-06-09 | 2000-05-23 | Fisher; John | Needle apparatus and method for marking lesions |
US6193686B1 (en) | 1999-06-30 | 2001-02-27 | Advanced Cardiovascular Systems, Inc. | Catheter with enhanced flexibility |
US6689120B1 (en) | 1999-08-06 | 2004-02-10 | Boston Scientific Scimed, Inc. | Reduced profile delivery system |
US6179810B1 (en) | 1999-08-17 | 2001-01-30 | Advanced Cardiovascular Systems, Inc. | Catheter with a flexible and pushable shaft |
US6689156B1 (en) * | 1999-09-23 | 2004-02-10 | Advanced Stent Technologies, Inc. | Stent range transducers and methods of use |
JP2001095923A (en) | 1999-09-28 | 2001-04-10 | Terumo Corp | Catheter |
US6738661B1 (en) * | 1999-10-22 | 2004-05-18 | Biosynergetics, Inc. | Apparatus and methods for the controllable modification of compound concentration in a tube |
US6299595B1 (en) | 1999-12-17 | 2001-10-09 | Advanced Cardiovascular Systems, Inc. | Catheters having rapid-exchange and over-the-wire operating modes |
US6548010B1 (en) * | 2000-03-23 | 2003-04-15 | Scimed Life Systems, Inc. | Transition region for an intravascular catheter |
US6575958B1 (en) * | 2000-05-23 | 2003-06-10 | Advanced Cardiovascular Systems, Inc. | Catheter with improved transition |
US6409863B1 (en) * | 2000-06-12 | 2002-06-25 | Scimed Life Systems, Inc. | Methods of fabricating a catheter shaft having one or more guidewire ports |
US6475184B1 (en) | 2000-06-14 | 2002-11-05 | Scimed Life Systems, Inc. | Catheter shaft |
US6663648B1 (en) | 2000-06-15 | 2003-12-16 | Cordis Corporation | Balloon catheter with floating stiffener, and procedure |
US20020016597A1 (en) * | 2000-08-02 | 2002-02-07 | Dwyer Clifford J. | Delivery apparatus for a self-expanding stent |
US7381198B2 (en) | 2000-08-23 | 2008-06-03 | Revascular Therapeutics, Inc. | Steerable distal support system |
US6461326B1 (en) | 2000-10-26 | 2002-10-08 | Scimed Life Systems, Inc. | Fluorescent dyed adhesive for bonding various components in a medical device |
US6623504B2 (en) | 2000-12-08 | 2003-09-23 | Scimed Life Systems, Inc. | Balloon catheter with radiopaque distal tip |
US6585719B2 (en) | 2001-01-04 | 2003-07-01 | Scimed Life Systems, Inc. | Low profile metal/polymer tubes |
US7097635B2 (en) * | 2001-01-09 | 2006-08-29 | Rex Medical, L.P. | Guidewire retrieval member for catheter insertion |
US6986752B2 (en) * | 2001-01-09 | 2006-01-17 | Rex Medical, Lp | Peritoneal dialysis catheter and insertion method |
US7077829B2 (en) * | 2001-01-09 | 2006-07-18 | Rex Medical, L.P. | Dialysis catheter |
US8323228B2 (en) | 2007-04-12 | 2012-12-04 | Rex Medical L.P. | Dialysis catheter |
US6858019B2 (en) * | 2001-01-09 | 2005-02-22 | Rex Medical, L.P. | Dialysis catheter and methods of insertion |
US6592549B2 (en) * | 2001-03-14 | 2003-07-15 | Scimed Life Systems, Inc. | Rapid exchange stent delivery system and associated components |
US6636758B2 (en) | 2001-05-01 | 2003-10-21 | Concentric Medical, Inc. | Marker wire and process for using it |
US7422579B2 (en) | 2001-05-01 | 2008-09-09 | St. Jude Medical Cardiology Divison, Inc. | Emboli protection devices and related methods of use |
US7604612B2 (en) * | 2001-05-01 | 2009-10-20 | St. Jude Medical, Cardiology Division, Inc. | Emboli protection devices and related methods of use |
US8617231B2 (en) | 2001-05-18 | 2013-12-31 | Boston Scientific Scimed, Inc. | Dual guidewire exchange catheter system |
US6702782B2 (en) | 2001-06-26 | 2004-03-09 | Concentric Medical, Inc. | Large lumen balloon catheter |
US6638245B2 (en) | 2001-06-26 | 2003-10-28 | Concentric Medical, Inc. | Balloon catheter |
DE60216593T2 (en) | 2001-07-05 | 2007-09-27 | Precision Vascular Systems, Inc., West Valley City | MEDICAL DEVICE WITH A TORQUE TRANSMITTED SOFT END PIECE AND METHOD FOR ITS FORMING |
US6863678B2 (en) | 2001-09-19 | 2005-03-08 | Advanced Cardiovascular Systems, Inc. | Catheter with a multilayered shaft section having a polyimide layer |
US6716223B2 (en) | 2001-11-09 | 2004-04-06 | Micrus Corporation | Reloadable sheath for catheter system for deploying vasoocclusive devices |
US10258340B2 (en) * | 2001-11-09 | 2019-04-16 | DePuy Synthes Products, Inc. | Reloadable sheath for catheter system for deploying vasoocclusive devices |
US6652508B2 (en) | 2001-11-09 | 2003-11-25 | Scimed Life Systems, Inc. | Intravascular microcatheter having hypotube proximal shaft with transition |
US7037291B2 (en) | 2001-12-04 | 2006-05-02 | Advanced Cardiovascular Systems, Inc. | Catheter shaft junction having a polymeric reinforcing member with a high glass transition temperature |
JP2003175110A (en) * | 2001-12-07 | 2003-06-24 | Kanegafuchi Chem Ind Co Ltd | Balloon catheter and method for manufacturing the same |
US7488338B2 (en) | 2001-12-27 | 2009-02-10 | Boston Scientific Scimed, Inc. | Catheter having an improved torque transmitting shaft |
US7294124B2 (en) * | 2001-12-28 | 2007-11-13 | Boston Scientific Scimed, Inc. | Hypotube with improved strain relief |
US20030135231A1 (en) * | 2002-01-17 | 2003-07-17 | Goodin Richardf L. | Catheter bond configuration |
US6758836B2 (en) | 2002-02-07 | 2004-07-06 | C. R. Bard, Inc. | Split tip dialysis catheter |
US7169170B2 (en) | 2002-02-22 | 2007-01-30 | Cordis Corporation | Self-expanding stent delivery system |
DE10217868A1 (en) * | 2002-04-22 | 2003-10-30 | Jomed N V | Balloon Catheter |
DE10258702A1 (en) * | 2002-06-21 | 2004-01-08 | Curative Medical Devices Gmbh | Catheter arrangement has distal and proximal catheters with lumen, bendable distal point, side slit and guide wire |
US7029468B2 (en) * | 2002-06-25 | 2006-04-18 | Enpath Medical, Inc. | Catheter assembly with side wall exit lumen and method therefor |
JP3813112B2 (en) * | 2002-06-26 | 2006-08-23 | テルモ株式会社 | Catheter and medical tubing |
US20040006318A1 (en) * | 2002-07-02 | 2004-01-08 | Ramanathan Periakaruppan | Side hole in catheter |
US20050065596A1 (en) * | 2002-07-24 | 2005-03-24 | Xufan Tseng | Stents capable of controllably releasing histone deacetylase inhibitors |
US7914467B2 (en) | 2002-07-25 | 2011-03-29 | Boston Scientific Scimed, Inc. | Tubular member having tapered transition for use in a medical device |
US6929635B2 (en) * | 2002-08-20 | 2005-08-16 | Scimed Life Systems, Inc. | Reinforced multi-lumen medical shaft |
DE10245009B4 (en) * | 2002-09-20 | 2007-09-06 | Karl Storz Gmbh & Co. Kg | Medical instrument for sucking and rinsing and process for its preparation |
US7488304B2 (en) * | 2002-10-08 | 2009-02-10 | Boston Scientific Scimed, Inc. | Covered hypotube to distal port bond |
US7189215B2 (en) * | 2002-11-12 | 2007-03-13 | Medtronic Vascular, Inc. | Catheter with full-length core wire shaft for core wire interchangeability |
US20040092868A1 (en) * | 2002-11-12 | 2004-05-13 | Medtronic Ave, Inc. | Catheter with full-length core wire shaft for core wire interchangeability |
EP1435253B1 (en) | 2002-12-31 | 2007-01-17 | Abbott Laboratories Vascular Enterprises Limited | Catheter having a more flexible part between shaft and tip and method of manufacturing thereof |
US7195611B1 (en) * | 2002-12-31 | 2007-03-27 | Advanced Cardiovascular Systems, Inc. | Rapid exchange balloon catheter having a reinforced inner tubular member |
US8377035B2 (en) | 2003-01-17 | 2013-02-19 | Boston Scientific Scimed, Inc. | Unbalanced reinforcement members for medical device |
US8535370B1 (en) | 2003-01-23 | 2013-09-17 | Endovascular Technologies, Inc. | Radiopaque markers for endovascular graft alignment |
JP2006518625A (en) * | 2003-02-14 | 2006-08-17 | サルヴィアック・リミテッド | Stent delivery and placement system |
US7393339B2 (en) | 2003-02-21 | 2008-07-01 | C. R. Bard, Inc. | Multi-lumen catheter with separate distal tips |
DE602004022397D1 (en) * | 2003-04-14 | 2009-09-17 | Cook Inc | DEPOSIT CATHETER / SLING WITH LARGE DIAMETER |
US7582740B2 (en) * | 2003-04-17 | 2009-09-01 | The Trustees Of Columbia University In The City Of New York | Methods and kits for detecting SARS-associated coronavirus |
US7208001B2 (en) * | 2003-04-24 | 2007-04-24 | Medtronic Vascular, Inc. | Catheter with detached proximal inflation and guidewire shafts |
US11000670B2 (en) * | 2003-04-28 | 2021-05-11 | Cook Medical Technologies Llc | Flexible sheath with varying durometer |
US7632288B2 (en) | 2003-05-12 | 2009-12-15 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved pushability |
US8685053B2 (en) * | 2003-05-22 | 2014-04-01 | Boston Scientific Scimed, Inc. | Tether equipped catheter |
US20040243095A1 (en) | 2003-05-27 | 2004-12-02 | Shekhar Nimkar | Methods and apparatus for inserting multi-lumen spit-tip catheters into a blood vessel |
US7758604B2 (en) | 2003-05-29 | 2010-07-20 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved balloon configuration |
US20060129091A1 (en) | 2004-12-10 | 2006-06-15 | Possis Medical, Inc. | Enhanced cross stream mechanical thrombectomy catheter with backloading manifold |
US7662143B2 (en) * | 2003-07-29 | 2010-02-16 | Boston Scientific Scimed, Inc. | Apparatus and method for treating intravascular disease |
DE602004014283D1 (en) * | 2003-07-31 | 2008-07-17 | Wilson Cook Medical Inc | System for the introduction of several medical devices |
US8211087B2 (en) * | 2003-07-31 | 2012-07-03 | Cook Medical Technologies Llc | Distal wire stop |
US7780626B2 (en) * | 2003-08-08 | 2010-08-24 | Boston Scientific Scimed, Inc. | Catheter shaft for regulation of inflation and deflation |
US7887557B2 (en) | 2003-08-14 | 2011-02-15 | Boston Scientific Scimed, Inc. | Catheter having a cutting balloon including multiple cavities or multiple channels |
US7615043B2 (en) * | 2003-08-20 | 2009-11-10 | Boston Scientific Scimed, Inc. | Medical device incorporating a polymer blend |
US7824392B2 (en) | 2003-08-20 | 2010-11-02 | Boston Scientific Scimed, Inc. | Catheter with thin-walled braid |
US8298280B2 (en) * | 2003-08-21 | 2012-10-30 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US7780716B2 (en) * | 2003-09-02 | 2010-08-24 | Abbott Laboratories | Delivery system for a medical device |
US7794489B2 (en) * | 2003-09-02 | 2010-09-14 | Abbott Laboratories | Delivery system for a medical device |
JP4713478B2 (en) * | 2003-09-02 | 2011-06-29 | アボット・ラボラトリーズ | Medical device delivery system |
US7662328B2 (en) | 2003-09-02 | 2010-02-16 | Boston Scientific Scimed, Inc. | Proximal guidewire port |
US7235083B1 (en) | 2003-09-10 | 2007-06-26 | Endovascular Technologies, Inc. | Methods and devices for aiding in situ assembly of repair devices |
US7367967B2 (en) * | 2003-09-17 | 2008-05-06 | Boston Scientific Scimed, Inc. | Catheter with sheathed hypotube |
US20050070880A1 (en) * | 2003-09-26 | 2005-03-31 | Medtronic Vascular, Inc. | Transition section for a catheter |
US20050070881A1 (en) * | 2003-09-26 | 2005-03-31 | Richard Gribbons | Transition section for a catheter |
US20050070879A1 (en) * | 2003-09-26 | 2005-03-31 | Medtronic Vascular, Inc | Transition section for a catheter |
US20050070847A1 (en) * | 2003-09-29 | 2005-03-31 | Van Erp Wilhelmus Petrus Martinus Maria | Rapid-exchange balloon catheter with hypotube shaft |
US7344557B2 (en) * | 2003-11-12 | 2008-03-18 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US7261730B2 (en) * | 2003-11-14 | 2007-08-28 | Lumerx, Inc. | Phototherapy device and system |
US7135008B2 (en) * | 2003-12-02 | 2006-11-14 | Chf Solutions, Inc. | Method and apparatus for ultrafiltration utilizing a peripheral access dual lumen venous cannula |
US7022104B2 (en) * | 2003-12-08 | 2006-04-04 | Angioscore, Inc. | Facilitated balloon catheter exchange |
US7258697B1 (en) | 2003-12-22 | 2007-08-21 | Advanced Cardiovascular Systems, Inc. | Stent with anchors to prevent vulnerable plaque rupture during deployment |
US7824345B2 (en) | 2003-12-22 | 2010-11-02 | Boston Scientific Scimed, Inc. | Medical device with push force limiter |
US7468051B2 (en) * | 2004-03-02 | 2008-12-23 | Boston Scientific Scimed, Inc. | Occlusion balloon catheter with external inflation lumen |
US8252014B2 (en) | 2004-03-03 | 2012-08-28 | Innovational Holdings Llc. | Rapid exchange balloon catheter with braided shaft |
US7780715B2 (en) * | 2004-03-04 | 2010-08-24 | Y Med, Inc. | Vessel treatment devices |
US7753951B2 (en) * | 2004-03-04 | 2010-07-13 | Y Med, Inc. | Vessel treatment devices |
US7766951B2 (en) * | 2004-03-04 | 2010-08-03 | Y Med, Inc. | Vessel treatment devices |
US9050437B2 (en) * | 2004-03-04 | 2015-06-09 | YMED, Inc. | Positioning device for ostial lesions |
US8491636B2 (en) * | 2004-03-23 | 2013-07-23 | Medtronic Cryopath LP | Method and apparatus for inflating and deflating balloon catheters |
US7727228B2 (en) * | 2004-03-23 | 2010-06-01 | Medtronic Cryocath Lp | Method and apparatus for inflating and deflating balloon catheters |
US9555223B2 (en) | 2004-03-23 | 2017-01-31 | Medtronic Cryocath Lp | Method and apparatus for inflating and deflating balloon catheters |
US7754047B2 (en) | 2004-04-08 | 2010-07-13 | Boston Scientific Scimed, Inc. | Cutting balloon catheter and method for blade mounting |
US7566319B2 (en) | 2004-04-21 | 2009-07-28 | Boston Scientific Scimed, Inc. | Traction balloon |
US7815627B2 (en) * | 2004-05-27 | 2010-10-19 | Abbott Laboratories | Catheter having plurality of stiffening members |
ATE442879T1 (en) * | 2004-05-27 | 2009-10-15 | Abbott Lab | CATHETER WITH FIRST AND SECOND GUIDE WIRE TUBE AND GAP IN BETWEEN |
US7785318B2 (en) * | 2004-05-27 | 2010-08-31 | Abbott Laboratories | Catheter having plurality of stiffening members |
US7794448B2 (en) * | 2004-05-27 | 2010-09-14 | Abbott Laboratories | Multiple lumen catheter and method of making same |
US7658723B2 (en) * | 2004-05-27 | 2010-02-09 | Abbott Laboratories | Catheter having plurality of stiffening members |
WO2005118045A1 (en) * | 2004-05-27 | 2005-12-15 | Abbott Laboratories | Catheter having main body portion with coil-defined guidewire passage |
US20070078439A1 (en) * | 2004-05-27 | 2007-04-05 | Axel Grandt | Multiple lumen catheter and method of making same |
US7628769B2 (en) * | 2004-05-27 | 2009-12-08 | Abbott Laboratories | Catheter having overlapping stiffening members |
US7785439B2 (en) * | 2004-09-29 | 2010-08-31 | Abbott Laboratories Vascular Enterprises Limited | Method for connecting a catheter balloon with a catheter shaft of a balloon catheter |
US8992454B2 (en) | 2004-06-09 | 2015-03-31 | Bard Access Systems, Inc. | Splitable tip catheter with bioresorbable adhesive |
US20050283179A1 (en) * | 2004-06-17 | 2005-12-22 | Lentz David J | Introducer sheath |
US7662144B2 (en) | 2004-06-22 | 2010-02-16 | Boston Scientific Scimed, Inc. | Catheter shaft with improved manifold bond |
US7166100B2 (en) * | 2004-06-29 | 2007-01-23 | Cordis Neurovascular, Inc. | Balloon catheter shaft design |
US20060030835A1 (en) * | 2004-06-29 | 2006-02-09 | Sherman Darren R | Catheter shaft tubes and methods of making |
EP1771221B1 (en) * | 2004-07-29 | 2010-09-22 | Wilson-Cook Medical Inc. | Catheter with splittable wall shaft |
US7572244B2 (en) * | 2004-08-02 | 2009-08-11 | Medrad, Inc. | Miniature cross stream thrombectomy catheter |
US8414527B2 (en) * | 2004-09-21 | 2013-04-09 | Boston Scientific Scimed, Inc. | Rapid exchange catheters having a sealed guidewire lumen and methods of making the same |
US7354419B2 (en) | 2004-10-15 | 2008-04-08 | Futuremed Interventional, Inc. | Medical balloon having strengthening rods |
US7309324B2 (en) | 2004-10-15 | 2007-12-18 | Futuremed Interventional, Inc. | Non-compliant medical balloon having an integral woven fabric layer |
US7682335B2 (en) | 2004-10-15 | 2010-03-23 | Futurematrix Interventional, Inc. | Non-compliant medical balloon having an integral non-woven fabric layer |
US7914487B2 (en) | 2004-10-15 | 2011-03-29 | Futurematrix Interventional, Inc. | Non-compliant medical balloon having braided or knitted reinforcement |
US20060084939A1 (en) * | 2004-10-20 | 2006-04-20 | Lentz David J | Articulation segment for a catheter |
US8038691B2 (en) | 2004-11-12 | 2011-10-18 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having flexible atherotomes |
US20060111649A1 (en) * | 2004-11-19 | 2006-05-25 | Scimed Life Systems, Inc. | Catheter having improved torque response and curve retention |
US7892592B1 (en) * | 2004-11-30 | 2011-02-22 | Advanced Cardiovascular Systems, Inc. | Coating abluminal surfaces of stents and other implantable medical devices |
US8038696B2 (en) * | 2004-12-06 | 2011-10-18 | Boston Scientific Scimed, Inc. | Sheath for use with an embolic protection filter |
US7815599B2 (en) * | 2004-12-10 | 2010-10-19 | Boston Scientific Scimed, Inc. | Catheter having an ultra soft tip and methods for making the same |
US7744574B2 (en) | 2004-12-16 | 2010-06-29 | Boston Scientific Scimed, Inc. | Catheter tip to reduce wire lock |
US8109981B2 (en) * | 2005-01-25 | 2012-02-07 | Valam Corporation | Optical therapies and devices |
US7699862B2 (en) * | 2005-01-25 | 2010-04-20 | Micrus Corporation | Resheathing tool |
US9272120B2 (en) | 2006-01-25 | 2016-03-01 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US9572954B2 (en) | 2005-01-26 | 2017-02-21 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US9044571B2 (en) | 2006-01-25 | 2015-06-02 | Leonard Pinchuk | Stretch valve balloon catheter and methods for producing and using same |
US9586022B2 (en) | 2006-01-25 | 2017-03-07 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US7883503B2 (en) | 2005-01-26 | 2011-02-08 | Kalser Gary | Illuminating balloon catheter and method for using the catheter |
US8591497B2 (en) | 2006-01-25 | 2013-11-26 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US9642992B2 (en) | 2005-01-26 | 2017-05-09 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US8382708B2 (en) | 2005-01-26 | 2013-02-26 | Mayser, Llc | Zero-pressure balloon catheter and method for using the catheter |
US9056192B2 (en) | 2006-01-25 | 2015-06-16 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US9675237B2 (en) | 2005-01-26 | 2017-06-13 | Mayser, Llc | Illuminating balloon catheter and method for using the catheter |
US20060184191A1 (en) | 2005-02-11 | 2006-08-17 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
US20060206199A1 (en) * | 2005-03-12 | 2006-09-14 | Churchwell Stacey D | Aneurysm treatment devices |
US20060206198A1 (en) * | 2005-03-12 | 2006-09-14 | Churchwell Stacey D | Aneurysm treatment devices and methods |
US7947207B2 (en) | 2005-04-12 | 2011-05-24 | Abbott Cardiovascular Systems Inc. | Method for retaining a vascular stent on a catheter |
US7763198B2 (en) | 2005-04-12 | 2010-07-27 | Abbott Cardiovascular Systems Inc. | Method for retaining a vascular stent on a catheter |
US20060270977A1 (en) * | 2005-05-26 | 2006-11-30 | Conor Medsystems, Inc. | Rapid exchange balloon catheter with reinforced shaft |
US7500982B2 (en) * | 2005-06-22 | 2009-03-10 | Futurematrix Interventional, Inc. | Balloon dilation catheter having transition from coaxial lumens to non-coaxial multiple lumens |
WO2007005799A1 (en) * | 2005-06-30 | 2007-01-11 | Abbott Laboratories | Delivery system for a medical device |
US7544201B2 (en) * | 2005-07-05 | 2009-06-09 | Futurematrix Interventional, Inc. | Rapid exchange balloon dilation catheter having reinforced multi-lumen distal portion |
US8221348B2 (en) | 2005-07-07 | 2012-07-17 | St. Jude Medical, Cardiology Division, Inc. | Embolic protection device and methods of use |
US7276905B2 (en) * | 2005-07-11 | 2007-10-02 | General Electric Company | Method and system of tracking an intracorporeal device with MR imaging |
US20070043389A1 (en) * | 2005-08-05 | 2007-02-22 | Shintech, Llc | System for treating chronic total occlusion caused by lower extremity arterial disease |
US9445784B2 (en) | 2005-09-22 | 2016-09-20 | Boston Scientific Scimed, Inc | Intravascular ultrasound catheter |
US8012117B2 (en) | 2007-02-06 | 2011-09-06 | Medrad, Inc. | Miniature flexible thrombectomy catheter |
US20080188793A1 (en) * | 2007-02-06 | 2008-08-07 | Possis Medical, Inc. | Miniature flexible thrombectomy catheter |
US7850623B2 (en) | 2005-10-27 | 2010-12-14 | Boston Scientific Scimed, Inc. | Elongate medical device with continuous reinforcement member |
US8876763B2 (en) * | 2005-11-01 | 2014-11-04 | Boston Scientific Scimed, Inc. | Composite balloon |
DE602006009545D1 (en) * | 2005-11-16 | 2009-11-12 | William Cook Europe As | FAST EXCHANGEABLE BALLOON CATHETER AND MANUFACTURING METHOD THEREFOR |
US8162878B2 (en) | 2005-12-05 | 2012-04-24 | Medrad, Inc. | Exhaust-pressure-operated balloon catheter system |
WO2007084370A1 (en) | 2006-01-13 | 2007-07-26 | C.R. Bard, Inc. | Stent delivery system |
US11026822B2 (en) | 2006-01-13 | 2021-06-08 | C. R. Bard, Inc. | Stent delivery system |
US20070167877A1 (en) * | 2006-01-17 | 2007-07-19 | Euteneuer Charles L | Medical catheters and methods |
US20070167876A1 (en) * | 2006-01-17 | 2007-07-19 | Euteneuer Charles L | Occluding guidewire and methods |
US20070167972A1 (en) * | 2006-01-17 | 2007-07-19 | Euteneuer Charles L | Balloon apparatus and methods |
US9713698B2 (en) | 2006-01-25 | 2017-07-25 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US9669193B2 (en) | 2006-01-25 | 2017-06-06 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US8821561B2 (en) * | 2006-02-22 | 2014-09-02 | Boston Scientific Scimed, Inc. | Marker arrangement for bifurcation catheter |
US7927305B2 (en) * | 2006-04-21 | 2011-04-19 | Abbott Laboratories | Systems, methods, and devices for injecting media contrast |
US8246574B2 (en) * | 2006-04-21 | 2012-08-21 | Abbott Laboratories | Support catheter |
US20080065014A1 (en) * | 2006-04-21 | 2008-03-13 | Abbott Laboratories | Systems, Methods, and Devices to Facilitate Wire and Device Crossings of Obstructions in Body Lumens |
WO2007124501A2 (en) * | 2006-04-21 | 2007-11-01 | Abbott Laboratories | Stiffening support catheter |
US8206370B2 (en) * | 2006-04-21 | 2012-06-26 | Abbott Laboratories | Dual lumen guidewire support catheter |
US7993303B2 (en) * | 2006-04-21 | 2011-08-09 | Abbott Laboratories | Stiffening support catheter and methods for using the same |
US20070250149A1 (en) * | 2006-04-21 | 2007-10-25 | Abbott Laboratories | Stiffening Support Catheters and Methods for Using the Same |
US8048032B2 (en) | 2006-05-03 | 2011-11-01 | Vascular Solutions, Inc. | Coaxial guide catheter for interventional cardiology procedures |
US7901378B2 (en) * | 2006-05-11 | 2011-03-08 | Y-Med, Inc. | Systems and methods for treating a vessel using focused force |
US8486025B2 (en) * | 2006-05-11 | 2013-07-16 | Ronald J. Solar | Systems and methods for treating a vessel using focused force |
US8241246B2 (en) * | 2006-05-22 | 2012-08-14 | Abbott Laboratories Vascular Enterprises Ltd. | Side by side lumen catheter and method of manufacture thereof |
US8382738B2 (en) | 2006-06-30 | 2013-02-26 | Abbott Cardiovascular Systems, Inc. | Balloon catheter tapered shaft having high strength and flexibility and method of making same |
US7906066B2 (en) * | 2006-06-30 | 2011-03-15 | Abbott Cardiovascular Systems, Inc. | Method of making a balloon catheter shaft having high strength and flexibility |
GB0615658D0 (en) | 2006-08-07 | 2006-09-13 | Angiomed Ag | Hand-held actuator device |
US8021352B2 (en) * | 2006-08-23 | 2011-09-20 | Codman & Shurtleff, Inc. | Unfused catheter body feature and methods of manufacture |
US7917229B2 (en) | 2006-08-31 | 2011-03-29 | Cardiac Pacemakers, Inc. | Lead assembly including a polymer interconnect and methods related thereto |
US8551020B2 (en) | 2006-09-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Crossing guidewire |
US8574219B2 (en) * | 2006-09-18 | 2013-11-05 | Boston Scientific Scimed, Inc. | Catheter shaft including a metallic tapered region |
US7815601B2 (en) * | 2007-02-05 | 2010-10-19 | Boston Scientific Scimed, Inc. | Rapid exchange enteral stent delivery system |
CN101626799A (en) * | 2007-03-15 | 2010-01-13 | 迈科洛斯血管腔内治疗公司 | Improved wire guide device and forming tool |
US7850078B2 (en) * | 2007-04-23 | 2010-12-14 | Lear Corporation | Remote control reactivation |
US9149610B2 (en) | 2007-05-31 | 2015-10-06 | Abbott Cardiovascular Systems Inc. | Method and apparatus for improving delivery of an agent to a kidney |
US9364586B2 (en) | 2007-05-31 | 2016-06-14 | Abbott Cardiovascular Systems Inc. | Method and apparatus for improving delivery of an agent to a kidney |
US8216209B2 (en) | 2007-05-31 | 2012-07-10 | Abbott Cardiovascular Systems Inc. | Method and apparatus for delivering an agent to a kidney |
US9144509B2 (en) | 2007-05-31 | 2015-09-29 | Abbott Cardiovascular Systems Inc. | Method and apparatus for delivering an agent to a kidney |
US8974418B2 (en) * | 2007-06-12 | 2015-03-10 | Boston Scientific Limited | Forwardly directed fluid jet crossing catheter |
US20080319386A1 (en) * | 2007-06-20 | 2008-12-25 | Possis Medical, Inc. | Forwardly directable fluid jet crossing catheter |
US8292872B2 (en) * | 2007-06-29 | 2012-10-23 | Cook Medical Technologies Llc | Distal wire stop having adjustable handle |
GB0713497D0 (en) | 2007-07-11 | 2007-08-22 | Angiomed Ag | Device for catheter sheath retraction |
US8486134B2 (en) | 2007-08-01 | 2013-07-16 | Boston Scientific Scimed, Inc. | Bifurcation treatment system and methods |
US8409114B2 (en) | 2007-08-02 | 2013-04-02 | Boston Scientific Scimed, Inc. | Composite elongate medical device including distal tubular member |
US8105246B2 (en) | 2007-08-03 | 2012-01-31 | Boston Scientific Scimed, Inc. | Elongate medical device having enhanced torque and methods thereof |
US8821477B2 (en) | 2007-08-06 | 2014-09-02 | Boston Scientific Scimed, Inc. | Alternative micromachined structures |
US8313601B2 (en) | 2007-08-06 | 2012-11-20 | Bard Peripheral Vascular, Inc. | Non-compliant medical balloon |
US8002744B2 (en) | 2007-08-06 | 2011-08-23 | Bard Peripheral Vascular, Inc | Non-compliant medical balloon |
US9808595B2 (en) | 2007-08-07 | 2017-11-07 | Boston Scientific Scimed, Inc | Microfabricated catheter with improved bonding structure |
US7979108B2 (en) * | 2007-08-27 | 2011-07-12 | William Harrison Zurn | Automated vessel repair system, devices and methods |
WO2009050265A1 (en) * | 2007-10-17 | 2009-04-23 | Angiomed Gmbh & Co. Medizintechnik Kg | Delivery system for a self-expanding device for placement in a bodily lumen |
US8114144B2 (en) | 2007-10-17 | 2012-02-14 | Abbott Cardiovascular Systems Inc. | Rapid-exchange retractable sheath self-expanding delivery system with incompressible inner member and flexible distal assembly |
EP2214765A4 (en) | 2007-10-17 | 2011-08-10 | Bard Access Systems Inc | Manufacture of split tip catheters |
US8066660B2 (en) | 2007-10-26 | 2011-11-29 | C. R. Bard, Inc. | Split-tip catheter including lateral distal openings |
US8292841B2 (en) | 2007-10-26 | 2012-10-23 | C. R. Bard, Inc. | Solid-body catheter including lateral distal openings |
US8092415B2 (en) | 2007-11-01 | 2012-01-10 | C. R. Bard, Inc. | Catheter assembly including triple lumen tip |
US9579485B2 (en) | 2007-11-01 | 2017-02-28 | C. R. Bard, Inc. | Catheter assembly including a multi-lumen configuration |
US20090149700A1 (en) * | 2007-11-02 | 2009-06-11 | Ruben Garcia | Method and apparatus for pubic sling insertion |
US7841994B2 (en) * | 2007-11-02 | 2010-11-30 | Boston Scientific Scimed, Inc. | Medical device for crossing an occlusion in a vessel |
US8303538B2 (en) | 2007-12-17 | 2012-11-06 | Medrad, Inc. | Rheolytic thrombectomy catheter with self-inflating distal balloon |
US8403885B2 (en) | 2007-12-17 | 2013-03-26 | Abbott Cardiovascular Systems Inc. | Catheter having transitioning shaft segments |
WO2009082669A1 (en) | 2007-12-26 | 2009-07-02 | Medrad, Inc. | Rheolytic thrombectomy catheter with self-inflating proximal balloon with drug infusion capabilities |
US8747456B2 (en) * | 2007-12-31 | 2014-06-10 | Boston Scientific Scimed, Inc. | Bifurcation stent delivery system and methods |
US8066677B2 (en) * | 2008-03-21 | 2011-11-29 | Medtronic Vascular, Inc | Rapid exchange catheter with tear resistant guidewire shaft |
US8376961B2 (en) | 2008-04-07 | 2013-02-19 | Boston Scientific Scimed, Inc. | Micromachined composite guidewire structure with anisotropic bending properties |
US8858520B2 (en) * | 2008-04-22 | 2014-10-14 | Convatec Technologies Inc. | Temporary ostomy appliance |
GB0815339D0 (en) * | 2008-08-21 | 2008-10-01 | Angiomed Ag | Method of loading a stent into a sheath |
WO2009135934A1 (en) * | 2008-05-09 | 2009-11-12 | Angiomed Gmbh & Co. Medizintechnik Kg | Method of loading a stent into a sheath |
US8377108B2 (en) | 2008-06-02 | 2013-02-19 | Boston Scientific Scimed, Inc. | Staggered two balloon bifurcation catheter assembly and methods |
EP2299945B1 (en) * | 2008-06-05 | 2016-03-23 | Boston Scientific Scimed, Inc. | Balloon bifurcated lumen treatment |
US8827954B2 (en) * | 2008-06-05 | 2014-09-09 | Boston Scientific Scimed, Inc. | Deflatable bifurcated device |
US8219209B2 (en) * | 2008-08-15 | 2012-07-10 | Cardiac Pacemakers, Inc. | Implantable medical lead having reduced dimension tubing transition |
US8535243B2 (en) | 2008-09-10 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices and tapered tubular members for use in medical devices |
US8657821B2 (en) * | 2008-11-14 | 2014-02-25 | Revascular Therapeutics Inc. | Method and system for reversibly controlled drilling of luminal occlusions |
US8052638B2 (en) | 2008-11-26 | 2011-11-08 | Abbott Cardiovascular Systems, Inc. | Robust multi-layer balloon |
US8162891B2 (en) * | 2008-11-26 | 2012-04-24 | Revascular Therapeutics, Inc. | Delivery and exchange catheter for storing guidewire |
US8444608B2 (en) | 2008-11-26 | 2013-05-21 | Abbott Cardivascular Systems, Inc. | Robust catheter tubing |
US8795254B2 (en) | 2008-12-10 | 2014-08-05 | Boston Scientific Scimed, Inc. | Medical devices with a slotted tubular member having improved stress distribution |
WO2010070684A1 (en) * | 2008-12-18 | 2010-06-24 | Invatec S.P.A. | Catheter, catheter assembly and relevant method |
GB0823716D0 (en) | 2008-12-31 | 2009-02-04 | Angiomed Ag | Stent delivery device with rolling stent retaining sheath |
US8728110B2 (en) * | 2009-01-16 | 2014-05-20 | Bard Peripheral Vascular, Inc. | Balloon dilation catheter shaft having end transition |
WO2010096708A1 (en) * | 2009-02-20 | 2010-08-26 | Boston Scientific Scimed, Inc. | Balloon catheter for placemnt of a stent in a bifurcated vessel |
US8057430B2 (en) * | 2009-02-20 | 2011-11-15 | Boston Scientific Scimed, Inc. | Catheter with skived tubular member |
JP5784506B2 (en) * | 2009-02-20 | 2015-09-24 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Manipulable catheter having a transition region with intermediate stiffness |
EP2398547A1 (en) * | 2009-02-20 | 2011-12-28 | Boston Scientific Scimed, Inc. | Torqueable balloon catheter |
US8814899B2 (en) | 2009-02-23 | 2014-08-26 | Futurematrix Interventional, Inc. | Balloon catheter pressure relief valve |
US9259559B2 (en) | 2009-02-23 | 2016-02-16 | Futurematrix Interventional, Inc. | Balloon catheter pressure relief valve |
CH700478A1 (en) * | 2009-02-27 | 2010-08-31 | Schwager Medica | Catheter. |
US8764727B2 (en) | 2009-03-06 | 2014-07-01 | Cook Medical Technologies Llc | Reinforced rapid exchange catheter |
GB2471517B (en) * | 2009-07-02 | 2011-09-21 | Cook William Europ | Implant deployment catheter |
US20120238806A1 (en) * | 2009-08-24 | 2012-09-20 | Quali-Med Gmbh | Implantation system with handle and catheter and method of use thereof |
US8771335B2 (en) * | 2009-09-21 | 2014-07-08 | Boston Scientific Scimed, Inc. | Rapid exchange stent delivery system |
US9211391B2 (en) | 2009-09-24 | 2015-12-15 | Bard Peripheral Vascular, Inc. | Balloon with variable pitch reinforcing fibers |
US9782560B2 (en) * | 2009-09-30 | 2017-10-10 | Cook Medical Technologies, Llc. | Short wire cable catheter |
US8137293B2 (en) | 2009-11-17 | 2012-03-20 | Boston Scientific Scimed, Inc. | Guidewires including a porous nickel-titanium alloy |
GB0921240D0 (en) * | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
GB0921238D0 (en) * | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
GB0921237D0 (en) * | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
GB0921236D0 (en) * | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
US8597314B2 (en) | 2009-12-29 | 2013-12-03 | Cook Medical Technologies Llc | Helically advancing constriction crossing mechanism and wire guide positioning method for performing percutaneous vascular procedures |
WO2011122444A1 (en) * | 2010-03-30 | 2011-10-06 | テルモ株式会社 | Stent delivery system |
US8551021B2 (en) | 2010-03-31 | 2013-10-08 | Boston Scientific Scimed, Inc. | Guidewire with an improved flexural rigidity profile |
US8591450B2 (en) | 2010-06-07 | 2013-11-26 | Rex Medical L.P. | Dialysis catheter |
US9101455B2 (en) | 2010-08-13 | 2015-08-11 | Cook Medical Technologies Llc | Preloaded wire for endoluminal device |
CA2747610C (en) | 2010-08-13 | 2014-09-16 | Cook Medical Technologies Llc | Precannulated fenestration |
GB201017834D0 (en) | 2010-10-21 | 2010-12-01 | Angiomed Ag | System to deliver a bodily implant |
US11813421B2 (en) | 2010-11-10 | 2023-11-14 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
US10137282B2 (en) | 2010-11-10 | 2018-11-27 | Mayser, Llc | Stretch valve balloon catheter and methods for producing and using same |
GB201020373D0 (en) | 2010-12-01 | 2011-01-12 | Angiomed Ag | Device to release a self-expanding implant |
US8597240B2 (en) | 2011-02-02 | 2013-12-03 | Futurematrix Interventional, Inc. | Coaxial catheter shaft having balloon attachment feature with axial fluid path |
EP2670470B1 (en) | 2011-02-04 | 2019-04-24 | Boston Scientific Scimed, Inc. | Guidewires |
US9072874B2 (en) | 2011-05-13 | 2015-07-07 | Boston Scientific Scimed, Inc. | Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices |
CN107007921B (en) | 2011-05-26 | 2020-01-21 | 雅培心血管系统有限公司 | Through tip of catheter |
EP2714180B1 (en) | 2011-05-26 | 2018-11-07 | Abbott Cardiovascular Systems Inc. | Catheter with stepped skived hypotube |
US20120310209A1 (en) | 2011-06-02 | 2012-12-06 | Cook Medical Technologies LLC. | Catheter And Treatment Methods For Lower Leg Ischemia |
WO2013003450A1 (en) | 2011-06-27 | 2013-01-03 | Boston Scientific Scimed, Inc. | Stent delivery systems and methods for making and using stent delivery systems |
JP2014521462A (en) | 2011-08-05 | 2014-08-28 | シルク・ロード・メディカル・インコーポレイテッド | Method and system for treating acute ischemic stroke |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US8663209B2 (en) | 2012-01-24 | 2014-03-04 | William Harrison Zurn | Vessel clearing apparatus, devices and methods |
US8684963B2 (en) | 2012-07-05 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Catheter with a dual lumen monolithic shaft |
US9833207B2 (en) | 2012-08-08 | 2017-12-05 | William Harrison Zurn | Analysis and clearing module, system and method |
US20140194918A1 (en) * | 2013-01-04 | 2014-07-10 | St. Jude Medical Puerto Rico Llc | Rapid exchange temporary blood flow cessation device for large bore closure |
EP2954923B1 (en) * | 2013-02-07 | 2020-08-12 | Terumo Clinical Supply Co., Ltd. | Balloon catheter |
USD748252S1 (en) | 2013-02-08 | 2016-01-26 | C. R. Bard, Inc. | Multi-lumen catheter tip |
US9962533B2 (en) | 2013-02-14 | 2018-05-08 | William Harrison Zurn | Module for treatment of medical conditions; system for making module and methods of making module |
US9764067B2 (en) | 2013-03-15 | 2017-09-19 | Boston Scientific Scimed, Inc. | Superhydrophobic coating for airway mucus plugging prevention |
MX2015015276A (en) | 2013-05-03 | 2016-02-18 | Bard Inc C R | Peelable protective sheath. |
JP5896478B2 (en) * | 2013-09-24 | 2016-03-30 | 朝日インテック株式会社 | Balloon catheter |
US10046145B2 (en) | 2013-12-11 | 2018-08-14 | Cook Medical Technologies Llc | Balloon catheter and method of making same |
US9265512B2 (en) | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
US9433427B2 (en) | 2014-04-08 | 2016-09-06 | Incuvate, Llc | Systems and methods for management of thrombosis |
US10357647B2 (en) | 2014-06-02 | 2019-07-23 | Medtronic, Inc. | Tunneling tool |
US10258768B2 (en) | 2014-07-14 | 2019-04-16 | C. R. Bard, Inc. | Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features |
EP2977071A1 (en) | 2014-07-25 | 2016-01-27 | Cook Medical Technologies LLC | Supportive balloon catheter |
US10086175B2 (en) | 2014-09-04 | 2018-10-02 | Abbott Cardiovascular Systems Inc. | Balloon catheter |
JP6706888B2 (en) | 2014-09-04 | 2020-06-10 | アボット カーディオバスキュラー システムズ インコーポレイテッド | Balloon catheter |
EP3202452B1 (en) * | 2014-09-30 | 2019-04-10 | Piolax Medical Devices, Inc. | Balloon catheter |
US20160175569A1 (en) * | 2014-12-22 | 2016-06-23 | Richard R. Heuser | Device for treating vascular occlusion |
US11020133B2 (en) | 2017-01-10 | 2021-06-01 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
ES2770321T3 (en) | 2015-02-04 | 2020-07-01 | Route 92 Medical Inc | Rapid Aspiration Thrombectomy System |
US11065019B1 (en) | 2015-02-04 | 2021-07-20 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
JP6304713B2 (en) | 2015-03-10 | 2018-04-04 | 朝日インテック株式会社 | Balloon catheter |
JP6342843B2 (en) * | 2015-05-01 | 2018-06-13 | 朝日インテック株式会社 | Balloon catheter |
CN205322986U (en) | 2015-05-19 | 2016-06-22 | 雅培心血管系统有限公司 | Utricule pipe with integral multilayer distally external member |
US10406318B2 (en) | 2015-05-19 | 2019-09-10 | Abbott Cardiovascular Systems, Inc. | Balloon catheter |
CN107278160B (en) | 2015-05-26 | 2019-02-15 | 泰利福创新有限责任公司 | Seal wire ligamentopexis |
US11219740B2 (en) * | 2015-05-29 | 2022-01-11 | Covidien Lp | Catheter including tapering coil member |
US10398874B2 (en) | 2015-05-29 | 2019-09-03 | Covidien Lp | Catheter distal tip configuration |
US10357631B2 (en) | 2015-05-29 | 2019-07-23 | Covidien Lp | Catheter with tapering outer diameter |
US10940299B2 (en) | 2015-08-10 | 2021-03-09 | Gyms Acmi, Inc. | Center marker for dilatation balloon |
US20170100142A1 (en) | 2015-10-09 | 2017-04-13 | Incuvate, Llc | Systems and methods for management of thrombosis |
US9700322B2 (en) * | 2015-10-14 | 2017-07-11 | Three Rivers Medical Inc. | Mechanical embolization delivery apparatus and methods |
US10130465B2 (en) | 2016-02-23 | 2018-11-20 | Abbott Cardiovascular Systems Inc. | Bifurcated tubular graft for treating tricuspid regurgitation |
US10751514B2 (en) | 2016-12-09 | 2020-08-25 | Teleflex Life Sciences Limited | Guide extension catheter |
WO2018129455A1 (en) | 2017-01-09 | 2018-07-12 | Boston Scientific Scimed, Inc. | Guidewire with tactile feel |
CN110461401B (en) | 2017-01-20 | 2022-06-07 | 92号医疗公司 | Single operator intracranial medical device delivery system and method of use |
US10575973B2 (en) | 2018-04-11 | 2020-03-03 | Abbott Cardiovascular Systems Inc. | Intravascular stent having high fatigue performance |
JP2021523793A (en) | 2018-05-17 | 2021-09-09 | ルート92メディカル・インコーポレイテッドRoute 92 Medical, Inc. | Suction catheter system and how to use |
JP6906883B2 (en) * | 2018-06-04 | 2021-07-21 | 日本ライフライン株式会社 | Balloon catheter |
US11389627B1 (en) | 2018-10-02 | 2022-07-19 | Lutonix Inc. | Balloon protectors, balloon-catheter assemblies, and methods thereof |
US11524142B2 (en) | 2018-11-27 | 2022-12-13 | Teleflex Life Sciences Limited | Guide extension catheter |
US20200188639A1 (en) * | 2018-12-16 | 2020-06-18 | Koninklijke Philips N.V. | Variable stiffness intraluminal device |
WO2020131227A1 (en) | 2018-12-19 | 2020-06-25 | Teleflex Life Sciences Limited | Guide extension catheter |
WO2020146035A1 (en) | 2019-01-07 | 2020-07-16 | Teleflex Life Sciences Limited | Guide extension catheter |
WO2020176670A1 (en) * | 2019-02-26 | 2020-09-03 | Percassist, Inc. | Apparatus, systems, and methods for percutaneous pneumatic cardiac assistance |
US10821264B1 (en) | 2019-12-10 | 2020-11-03 | Inneuroco, Inc. | Mixed coil catheter and process for making same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748982A (en) * | 1987-01-06 | 1988-06-07 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US4917666A (en) * | 1988-11-14 | 1990-04-17 | Medtronic Versaflex, Inc. | Steerable thru-lumen catheter |
US5102403A (en) * | 1990-06-18 | 1992-04-07 | Eckhard Alt | Therapeutic medical instrument for insertion into body |
US5156594A (en) * | 1990-08-28 | 1992-10-20 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
US5217482A (en) * | 1990-08-28 | 1993-06-08 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1249A1 (en) | 1923-09-05 | 1924-09-15 | Г.Б. Красин | Friction transmission |
US2687131A (en) * | 1952-09-17 | 1954-08-24 | Davol Rubber Co | Female incontinence catheter |
US2936760A (en) * | 1956-09-10 | 1960-05-17 | Davol Rubber Co | Positive pressure catheter |
US3225762A (en) * | 1963-10-25 | 1965-12-28 | Yolan R Guttman | Intravenous stylet catheter |
US3720210A (en) * | 1971-03-03 | 1973-03-13 | Baxter Laboratories Inc | Indwelling catheter device |
US3884242A (en) * | 1971-03-29 | 1975-05-20 | Mpc Kurgisil | Catheter assembly |
SU627828A1 (en) * | 1975-08-06 | 1978-10-15 | Borisenko Valentin A | Catheter |
US4044765A (en) * | 1975-12-17 | 1977-08-30 | Medical Evaluation Devices And Instruments Corporation | Flexible tube for intra-venous feeding |
DE2828447C2 (en) * | 1978-06-29 | 1980-05-14 | Willy Ruesch Gmbh & Co Kg, 7053 Kernen | Laryngeal tube |
US4383268A (en) * | 1980-07-07 | 1983-05-10 | Rca Corporation | High-current, high-voltage semiconductor devices having a metallurgical grade substrate |
US4354495A (en) * | 1980-10-30 | 1982-10-19 | Sherwood Medical Industries Inc. | Method of connecting plastic tube to a plastic part |
US4468224A (en) * | 1982-01-28 | 1984-08-28 | Advanced Cardiovascular Systems, Inc. | System and method for catheter placement in blood vessels of a human patient |
US4489961A (en) * | 1983-04-18 | 1984-12-25 | The Singer Company | Terminal for flexible tube |
US4662368A (en) * | 1983-06-13 | 1987-05-05 | Trimedyne Laser Systems, Inc. | Localized heat applying medical device |
US4509877A (en) * | 1983-11-09 | 1985-04-09 | Sobin Sidney S | Tapered torque strain relief coupling |
US4705507A (en) * | 1984-05-02 | 1987-11-10 | Boyles Paul W | Arterial catheter means |
SU1251914A1 (en) * | 1984-05-04 | 1986-08-23 | Челябинский государственный институт по проектированию металлургических заводов "Челябгипромез" | Pneumatic cardiodilator |
US4597755A (en) * | 1984-05-30 | 1986-07-01 | Advanced Cardiovascular Systems, Inc. | Large bore catheter having flexible tip construction |
DE3442736C2 (en) * | 1984-11-23 | 1987-03-05 | Tassilo Dr.med. 7800 Freiburg Bonzel | Dilatation catheter |
US5102390A (en) * | 1985-05-02 | 1992-04-07 | C. R. Bard, Inc. | Microdilatation probe and system for performing angioplasty in highly stenosed blood vessels |
US4917088A (en) * | 1985-05-02 | 1990-04-17 | C. R. Bard, Inc. | Balloon dilation probe |
US4748952A (en) * | 1985-05-30 | 1988-06-07 | Honda Giken Kogyo Kabushiki Kaisha | Ignition timing control system for internal combustion engine |
US5449343A (en) | 1985-07-30 | 1995-09-12 | Advanced Cardiovascular Systems, Inc. | Steerable dilatation catheter |
US4823805A (en) * | 1985-08-01 | 1989-04-25 | C. R. Bard, Inc. | Catheter incorporating strain relief |
US5040548A (en) * | 1989-06-01 | 1991-08-20 | Yock Paul G | Angioplasty mehtod |
US5061273A (en) * | 1989-06-01 | 1991-10-29 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
US4798598A (en) * | 1986-05-23 | 1989-01-17 | Sarcem S.A. | Guide for a catheter |
US4846174A (en) * | 1986-08-08 | 1989-07-11 | Scimed Life Systems, Inc. | Angioplasty dilating guide wire |
US4719924A (en) * | 1986-09-09 | 1988-01-19 | C. R. Bard, Inc. | Small diameter steerable guidewire with adjustable tip |
US4723948A (en) * | 1986-11-12 | 1988-02-09 | Pharmacia Nu Tech | Catheter attachment system |
FR2608037A1 (en) * | 1986-12-10 | 1988-06-17 | Lenck Lucien | INTUBATION METHOD FOR PERMITTING THE TRANSPLANTATION OF EGG OR EMBRYONIC MATTER, AND MEANS FOR IMPLEMENTING THE SAME |
US4976720A (en) * | 1987-01-06 | 1990-12-11 | Advanced Cardiovascular Systems, Inc. | Vascular catheters |
US4771777A (en) * | 1987-01-06 | 1988-09-20 | Advanced Cardiovascular Systems, Inc. | Perfusion type balloon dilatation catheter, apparatus and method |
US4988356A (en) * | 1987-02-27 | 1991-01-29 | C. R. Bard, Inc. | Catheter and guidewire exchange system |
US4824435A (en) * | 1987-05-18 | 1989-04-25 | Thomas J. Fogarty | Instrument guidance system |
US4820349A (en) * | 1987-08-21 | 1989-04-11 | C. R. Bard, Inc. | Dilatation catheter with collapsible outer diameter |
US4881547A (en) * | 1987-08-31 | 1989-11-21 | Danforth John W | Angioplasty dilitation balloon catheter |
US4953553A (en) * | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
US5050606A (en) * | 1987-09-30 | 1991-09-24 | Advanced Cardiovascular Systems, Inc. | Method for measuring pressure within a patient's coronary artery |
US4906241A (en) * | 1987-11-30 | 1990-03-06 | Boston Scientific Corporation | Dilation balloon |
JPH01145074A (en) * | 1987-12-01 | 1989-06-07 | Terumo Corp | Balloon catheter |
US4921478A (en) * | 1988-02-23 | 1990-05-01 | C. R. Bard, Inc. | Cerebral balloon angioplasty system |
US4943278A (en) * | 1988-02-29 | 1990-07-24 | Scimed Life Systems, Inc. | Dilatation balloon catheter |
US4944745A (en) * | 1988-02-29 | 1990-07-31 | Scimed Life Systems, Inc. | Perfusion balloon catheter |
US5425711A (en) | 1988-02-29 | 1995-06-20 | Scimed Life Systems, Inc. | Intravascular catheter with distal guide wire lumen and transition member |
US4838268A (en) * | 1988-03-07 | 1989-06-13 | Scimed Life Systems, Inc. | Non-over-the wire balloon catheter |
US4896670A (en) * | 1988-04-19 | 1990-01-30 | C. R. Bard, Inc. | Kissing balloon catheter |
US4940062A (en) * | 1988-05-26 | 1990-07-10 | Advanced Cardiovascular Systems, Inc. | Guiding member with deflectable tip |
US4998917A (en) * | 1988-05-26 | 1991-03-12 | Advanced Cardiovascular Systems, Inc. | High torque steerable dilatation catheter |
EP0344530A1 (en) * | 1988-05-27 | 1989-12-06 | Advanced Cardiovascular Systems, Inc. | Vascular catheter assembly with a guiding sleeve |
US4877031A (en) * | 1988-07-22 | 1989-10-31 | Advanced Cardiovascular Systems, Inc. | Steerable perfusion dilatation catheter |
US4998923A (en) * | 1988-08-11 | 1991-03-12 | Advanced Cardiovascular Systems, Inc. | Steerable dilatation catheter |
DE68919996T2 (en) * | 1988-10-20 | 1995-05-24 | Terumo Corp | Expandable element catheter and its manufacturing process. |
FR2638364A1 (en) * | 1988-10-27 | 1990-05-04 | Farcot Jean Christian | APPARATUS FOR PERFORMING PROLONGED ANGIOPLASTY |
MY104678A (en) * | 1988-11-10 | 1994-05-31 | Bard Inc C R | Balloon dilatation catheter with integral guidewire. |
US5032113A (en) * | 1989-04-13 | 1991-07-16 | Scimed Life Systems, Inc. | Innerless catheter |
US5035705A (en) * | 1989-01-13 | 1991-07-30 | Scimed Life Systems, Inc. | Method of purging a balloon catheter |
US5035686A (en) * | 1989-01-27 | 1991-07-30 | C. R. Bard, Inc. | Catheter exchange system with detachable luer fitting |
US5728067A (en) | 1989-01-30 | 1998-03-17 | C. R. Bard, Inc. | Rapidly exchangeable coronary catheter |
ES2049204T3 (en) * | 1989-01-30 | 1994-07-16 | Bard Inc C R | RAPIDLY CHANGEABLE CORONARY CATHETER. |
US4946466A (en) * | 1989-03-03 | 1990-08-07 | Cordis Corporation | Transluminal angioplasty apparatus |
US4928693A (en) * | 1989-03-13 | 1990-05-29 | Schneider (Usa), Inc. | Pressure monitor catheter |
US5112304A (en) * | 1989-03-17 | 1992-05-12 | Angeion Corporation | Balloon catheter |
US5047045A (en) * | 1989-04-13 | 1991-09-10 | Scimed Life Systems, Inc. | Multi-section coaxial angioplasty catheter |
US5042985A (en) * | 1989-05-11 | 1991-08-27 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter suitable for peripheral arteries |
US4976690A (en) * | 1989-08-10 | 1990-12-11 | Scimed Life Systems, Inc. | Variable stiffness angioplasty catheter |
US5053015A (en) * | 1989-08-30 | 1991-10-01 | The Kendall Company | Locking catheter adapter |
US5226898A (en) * | 1989-08-30 | 1993-07-13 | The Kendall Company | Catheter adapter with strain relief |
US5180367A (en) * | 1989-09-06 | 1993-01-19 | Datascope Corporation | Procedure and balloon catheter system for relieving arterial or veinal restrictions without exchanging balloon catheters |
US5034001A (en) * | 1989-09-08 | 1991-07-23 | Advanced Cardiovascular Systems, Inc. | Method of repairing a damaged blood vessel with an expandable cage catheter |
US5169386A (en) * | 1989-09-11 | 1992-12-08 | Bruce B. Becker | Method and catheter for dilatation of the lacrimal system |
US5176637A (en) * | 1990-04-19 | 1993-01-05 | Terumo Kabushiki Kaisha | Catheter equipped with a dilation element |
US5395332A (en) | 1990-08-28 | 1995-03-07 | Scimed Life Systems, Inc. | Intravascualr catheter with distal tip guide wire lumen |
US5154725A (en) | 1991-06-07 | 1992-10-13 | Advanced Cardiovascular Systems, Inc. | Easily exchangeable catheter system |
US5242396A (en) | 1991-12-19 | 1993-09-07 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with reinforcing mandrel |
US5643209A (en) | 1995-12-15 | 1997-07-01 | Medtronic, Inc. | High pressure balloon tip |
-
1991
- 1991-11-15 US US07/792,786 patent/US5217482A/en not_active Expired - Lifetime
-
1993
- 1993-03-22 US US08/035,254 patent/US5395334A/en not_active Expired - Lifetime
-
1995
- 1995-08-30 US US08/521,460 patent/US5522818A/en not_active Expired - Lifetime
-
1996
- 1996-05-30 US US08/657,013 patent/US5702439A/en not_active Expired - Lifetime
-
1998
- 1998-08-11 US US09/132,119 patent/US6273879B1/en not_active Expired - Fee Related
-
2001
- 2001-06-21 US US09/886,328 patent/US6733487B2/en not_active Expired - Fee Related
-
2003
- 2003-12-19 US US10/741,574 patent/US20040133158A1/en not_active Abandoned
-
2008
- 2008-11-13 US US12/270,605 patent/US20090062734A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748982A (en) * | 1987-01-06 | 1988-06-07 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US4917666A (en) * | 1988-11-14 | 1990-04-17 | Medtronic Versaflex, Inc. | Steerable thru-lumen catheter |
US5102403A (en) * | 1990-06-18 | 1992-04-07 | Eckhard Alt | Therapeutic medical instrument for insertion into body |
US5156594A (en) * | 1990-08-28 | 1992-10-20 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
US5217482A (en) * | 1990-08-28 | 1993-06-08 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
US5395334A (en) * | 1990-08-28 | 1995-03-07 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
US5522818A (en) * | 1990-08-28 | 1996-06-04 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
US5702439A (en) * | 1990-08-28 | 1997-12-30 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
US6273879B1 (en) * | 1990-08-28 | 2001-08-14 | Scimed Life Systems Inc | Balloon catheter with distal guide wire lumen |
US6733487B2 (en) * | 1990-08-28 | 2004-05-11 | Scimed Life Systems, Inc. | Balloon catheter with distal guide wire lumen |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2099516B1 (en) | 2002-03-22 | 2016-04-06 | Cordis Corporation | Rapid-exchange balloon catheter shaft |
US20060142704A1 (en) * | 2004-12-15 | 2006-06-29 | Cook Incorporated | Multifilar cable catheter |
US20110218612A1 (en) * | 2004-12-15 | 2011-09-08 | Cook Medical Technologies Llc | Multifilar cable catheter |
US7959660B2 (en) | 2004-12-15 | 2011-06-14 | Cook Medical Technologies Llc | Multifilar cable catheter |
US7727187B2 (en) | 2005-04-04 | 2010-06-01 | Cook Incorporated | Scored catheter device |
US20060224112A1 (en) * | 2005-04-04 | 2006-10-05 | Cook Incorporated | Scored catheter device |
US20070088257A1 (en) * | 2005-10-13 | 2007-04-19 | Conor Medsystems, Inc. | Rapid exchange catheter with hypotube and short exchange length |
WO2007047039A2 (en) * | 2005-10-13 | 2007-04-26 | Conor Medsystems, Inc. | Rapid exchange catheter with hypotube and short exchange length |
WO2007047039A3 (en) * | 2005-10-13 | 2007-10-25 | Conor Medsystems Inc | Rapid exchange catheter with hypotube and short exchange length |
US20110054585A1 (en) * | 2005-12-23 | 2011-03-03 | Cook Incorporated | Prosthesis deployment system |
US8709060B2 (en) | 2005-12-23 | 2014-04-29 | Cook Medical Technologies Llc | Prosthesis deployment system |
US20080114435A1 (en) * | 2006-03-07 | 2008-05-15 | Med Institute, Inc. | Flexible delivery system |
EP3120892A1 (en) * | 2006-09-27 | 2017-01-25 | Boston Scientific Limited | Catheter shaft designs |
US10315018B2 (en) | 2006-09-27 | 2019-06-11 | Boston Scientific Scimed Inc. | Catheter shaft designs |
US9339632B2 (en) * | 2006-09-27 | 2016-05-17 | Boston Scientific Scimed, Inc. | Catheter shaft designs |
WO2008039846A1 (en) * | 2006-09-27 | 2008-04-03 | Boston Scientific Limited | Catheter shaft designs |
US20080077085A1 (en) * | 2006-09-27 | 2008-03-27 | Boston Scientific Scimed, Inc. | Catheter shaft designs |
EP2111160A2 (en) * | 2007-01-22 | 2009-10-28 | Taylor Medical, Inc. | Catheter with guidewire lumen with tubular portion and sleeve |
EP2111160A4 (en) * | 2007-01-22 | 2011-11-16 | Taylor Medical Inc | Catheter with guidewire lumen with tubular portion and sleeve |
US8657845B2 (en) | 2007-05-15 | 2014-02-25 | Cook Medical Technologies Llc | Multifilar cable catheter |
US20080287786A1 (en) * | 2007-05-15 | 2008-11-20 | Cook Incorporated | Multifilar cable catheter |
WO2010060888A1 (en) * | 2008-11-26 | 2010-06-03 | Blue Medical Devices Bv | Medical balloon catheter with hollow wire cable rope guidewire duct |
US9192748B2 (en) * | 2010-05-07 | 2015-11-24 | Entellus Medical, Inc. | Sinus balloon dilation catheters and sinus surgury tools |
US20130072958A1 (en) * | 2010-05-07 | 2013-03-21 | Entellus Medical, Inc. | Sinus balloon dilation catheters and sinus surgury tools |
WO2011140535A1 (en) * | 2010-05-07 | 2011-11-10 | Entellus Medical, Inc. | Sinus balloon dilation catheters and sinus surgury tools |
US10238846B2 (en) | 2010-05-07 | 2019-03-26 | Entellus Medical, Inc. | Sinus balloon dilation catheters and sinus surgery tools |
US11207508B2 (en) | 2010-05-07 | 2021-12-28 | Entellus Medical, Inc. | Sinus balloon dilation catheters and sinus surgery tools |
US10980653B2 (en) * | 2018-10-31 | 2021-04-20 | Anchor Balloon, Llc | System and method for controlled delivery of medical devices into patient bodies |
WO2020091914A1 (en) * | 2018-10-31 | 2020-05-07 | Vishal Gupta | System and method for controller delivery of medical devices into patient bodies |
AU2019370133B2 (en) * | 2018-10-31 | 2022-11-17 | Anchor Balloon, Inc. | System And Method For Controlled Delivery Of Medical Devices Into Patient Bodies |
US11684500B2 (en) | 2018-10-31 | 2023-06-27 | Anchor Balloon, Inc. | System and method for controlled delivery of medical devices into patient bodies |
WO2020206101A1 (en) * | 2019-04-05 | 2020-10-08 | Traverse Vascular, Inc. | Reentry catheters for traversing chronic total occlusions |
US11154312B2 (en) | 2019-04-05 | 2021-10-26 | Traverse Vascular, Inc. | Reentry catheter for crossing a vascular occlusion |
US11369392B2 (en) | 2019-04-05 | 2022-06-28 | Traverse Vascular, Inc. | Intravascular catheter with fluoroscopically visible indicium of rotational orientation |
US11602362B2 (en) | 2019-04-05 | 2023-03-14 | Traverse Vascular, Inc. | Reentry catheters and methods for traversing chronic total occlusions |
US12035930B2 (en) | 2019-04-05 | 2024-07-16 | Traverse Vascular, Inc. | Reentry catheter for crossing a vascular occlusion |
WO2024104827A1 (en) * | 2022-11-18 | 2024-05-23 | Medtronic Ireland Manufacturing Unlimited Company | Cryoablation catheter with varying cross-sectional shape |
Also Published As
Publication number | Publication date |
---|---|
US5702439A (en) | 1997-12-30 |
US5522818A (en) | 1996-06-04 |
US6273879B1 (en) | 2001-08-14 |
US20090062734A1 (en) | 2009-03-05 |
US5395334A (en) | 1995-03-07 |
US5217482A (en) | 1993-06-08 |
US6733487B2 (en) | 2004-05-11 |
US20010037085A1 (en) | 2001-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6273879B1 (en) | Balloon catheter with distal guide wire lumen | |
EP0821981B1 (en) | Catheter shaft | |
US7959660B2 (en) | Multifilar cable catheter | |
US5300025A (en) | Dilatation catheter having a coil supported inflation lumen | |
EP1517720B1 (en) | Ballon catheter | |
US20050070879A1 (en) | Transition section for a catheter | |
US7189215B2 (en) | Catheter with full-length core wire shaft for core wire interchangeability | |
US20040092868A1 (en) | Catheter with full-length core wire shaft for core wire interchangeability | |
KR20050016954A (en) | Ballon catheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |