US20060036324A1 - Adjustable spinal implant device and method - Google Patents
Adjustable spinal implant device and method Download PDFInfo
- Publication number
- US20060036324A1 US20060036324A1 US11/197,569 US19756905A US2006036324A1 US 20060036324 A1 US20060036324 A1 US 20060036324A1 US 19756905 A US19756905 A US 19756905A US 2006036324 A1 US2006036324 A1 US 2006036324A1
- Authority
- US
- United States
- Prior art keywords
- spinous process
- implant
- spinal implant
- screw
- spine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
- A61B17/7067—Devices bearing against one or more spinous processes and also attached to another part of the spine; Tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7053—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant with parts attached to bones or to each other by flexible wires, straps, sutures or cables
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
- A61B17/7064—Devices acting on, attached to, or simulating the effect of, vertebral facets; Tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
- A61B17/707—Devices acting on, or attached to, a transverse process or rib; Tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/02—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
- A61B17/025—Joint distractors
- A61B2017/0256—Joint distractors for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B2017/564—Methods for bone or joint treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B2017/681—Alignment, compression, or distraction mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
Definitions
- the invention relates to devices to treat the spine, including but not limited to spinal stabilization devices, dynamic stabilizers, spinal deformity correction devices, devices to treat pain associated with the spine, and other spinal treatment devices.
- Back pain e.g., pain associated with the spinal column or mechanical back pain
- back pain may be caused by structural defects, by injuries or over the course of time from the aging process.
- back pain is frequently caused by repetitive and/or high stress loads on or increased motion around certain boney or soft tissue structures.
- the natural course of aging leads to degeneration of the disc, loss of disc height, and instability of the spine among other structural manifestations at or around the spine.
- the posterior elements of the spine bear increased loads with disc height loss, and subsequently attempt to compensate with the formation of osteophytes and thickening of various stabilizing spinal ligaments.
- the facet joints may develop pain due to arthritic changes caused by increased loads.
- osteophytes in the neural foramina and thickening of spinal ligaments can lead to spinal stenosis, or impingement of nerve roots in the spinal canal or neural foramina. Scoliosis may also create disproportionate loading on various elements of the spine and may require correction, stabilization or fusion.
- Spinal fusion is one way of stabilizing the spine to reduce pain.
- anterior interbody or posterior fusion prevents movement between one or more joints where pain is occurring from irritating motion. Fusion typically involves removal of the native disc, packing bone graft material into the resulting intervertebral space, and anterior stabilization, e.g., with intervertebral fusion cages or posterior stabilization, e.g., supporting the spinal column with internal fixation devices such as rods and screws. Internal fixation is typically an adjunct to attain intervertebral fusion.
- Many types of spine implants are available for performing spinal fixation, including the Harrington hook and rod, pedicle screws and rods, interbody fusion cages, and sublaminar wires.
- the typical techniques for fusion, distraction, decompression, and dynamic stabilization require open surgical procedures with removal of stabilizing muscles from the spinal column, leading to pain, blood loss, and prolonged recovery periods after surgery due in part to the disruption of associated body structures or tissue during the procedures.
- some methods of fusion have been proposed that do not require the extensive stripping of muscles away from the spinal column of earlier approaches. These involve posteriorly or laterally accessing the spine and creating spaces adjacent the spine for posterior stabilization. Some of these procedures include fusion via small working channels, created with dilator type devices or an external guide to create a trajectory channel between two ipsilateral neighboring pedicle screws. Also, placing support structures between adjacent pedicle screws and across a joint requires accessing and working in an area from a difficult angle (the support structure is typically oriented somewhat perpendicular to an angle of access and through muscle and connective tissue).
- these stabilization devices typically involve the use of 4 pedicle screws (each having a risk associated with it when placed in the spine), two on each side of a motion segment, and are not ideally suited for percutaneous stabilization required across more than one or two segments. Accordingly, it would be desirable to provide a less invasive or less disruptive segmental spine stabilization procedure and implant that has a reduced risk of damage or injury to associated tissue. It would also be desirable to provide an implanted posterior spine system that may be used to stabilize more than two motion segments in a less disruptive or less invasive manner.
- Scoliosis is typically considered an abnormal lateral curvature of the vertebral column.
- correction of scoliosis has been attempted a number of ways. Typically correction is followed by fusion.
- a Harrington rod has been used where a compressing or distracting rod is attached above and below a curved arch of the deformity. The spine is stretched longitudinally to straighten the spine as the rod is lengthened. The spine is then fused.
- the correction force in this device and in similar devices is a distraction force that may have several drawbacks including possible spinal cord damage, as well as the high loading on the upper and lower attachment sites.
- segmental hook and screw fixation exists for distraction and derotation corrective forces.
- a Luque device has been used where the spine is wired to a rod at multiple fixation points along the rod and pulls the spine to the rod. The spine is pulled to the rod with a wire and the spine is then fused. This does not provide significant adjustment over time and requires fusion. Once completed this does not provide an opportunity for delayed adjustment over time.
- Anterior procedures also exist in the form of fusion and newer technology involving staples across the disc space that obviate the need for fusion but still correct the deformity. The corrective force is derotation with or without compression.
- a translaminar facet screw as used by some surgeons goes through the base of spinous process to access the cancellous bone of the lamina.
- a disadvantage of this device is that it is not suitable for attaching to a pedicle screw and the depth and angle during deployment can be very difficult to track or visualize, thus increasing the possibility that the screw would extend into the spinal canal.
- a facet screw is screwed between opposing facets of a zygapophyseal joint.
- One aspect of the present invention is directed to providing a device and method for alleviating discomfort and or deformity associated with the spinal column. Another aspect of the present invention is directed to providing a minimally invasive implant and method for alleviating discomfort associated with the spinal column. Another aspect of the present invention provides an anchoring device and method that requires less surrounding tissue damage or disruption. Another aspect of the present invention provides reinforcement of the spinous process for use in various spinal systems. Another aspect of the invention provides a minimally invasive, non-invasive, or remote adjustment or lengthening of an orthopedic device. Another aspect of the invention provides a minimally invasive, non-invasive, or remote adjustment, lengthening or shortening of a stabilization device.
- Another aspect of the present invention also provides an implant system and device suitable for minimally invasive, minimally disruptive and/or percutaneous posterior deployment across a plurality of motion segments and more than two motion segments.
- Different aspects of the invention may provide distraction forces to relieve pressure on certain structures, compression forces to fix or stabilize motion across structures, shock absorbing qualities to help relieve load from certain structures, and therapeutic activity to reduce inflammation and pain.
- Other aspects of the invention may supplement or bear load for degenerated, painful, or surgically removed joints, e.g., the facet joint.
- Another aspect of the invention may provide a method and system for treating deformities such as scoliosis.
- Other aspects of the invention may include sensors associated with implants or implanted at or near the bones, soft tissue, or joints of the spine and may provide feedback regarding the joint on an ongoing basis. The sensors may also be part of a feedback system that alters a property of an implant in response to sensing information.
- Another aspect of the invention may provide a device or method for delivering therapeutic substances at or near the spine.
- a reinforcement structure for supporting the spinous process and if desired, in addition, the lamina of a spine.
- the invention further provides a method and system for forming or implanting such structure in the spinous process or a region of cancellous bone in the lamina of a spine.
- the reinforcement system may include one or more systems of reinforcement and may be used before, during and/or after a spinal device (e.g. a stabilization, distraction or prosthetic device, etc.) is coupled to the spinous process.
- FIG. 1A is a lateral posterior view of a vertebra with a reinforcement structure in accordance with the invention.
- FIG. 1B is a side view of the vertebra and reinforcement structure of FIG. 1A .
- FIG. 2A is a lateral posterior view of a vertebra with a reinforcement structure in accordance with the invention.
- FIG. 2B is a side view of the vertebra and reinforcement structure of FIG. 2B .
- FIG. 3A is a lateral posterior view of a vertebra with a reinforcement structure in accordance with the invention.
- FIG. 3B is a side view of the vertebra and reinforcement structure of FIG. 3A .
- FIG. 4A is a lateral posterior view of vertebrae with a reinforcement structure and implant in accordance with the invention.
- FIG. 4B is a side view of the reinforcement structure and implant of FIG. 4A .
- FIG. 4C is a top view of a reinforcement structure and implant in accordance with the invention.
- FIG. 4D is a posterior view of the reinforcement structure and implant of FIG. 4C .
- FIG. 5 is a posterior view of a reinforcement structure and implant in accordance with the invention.
- FIG. 6 is a posterior view of a reinforcement structure and implant in accordance with the invention
- FIG. 7A is a top view of an implant implanted adjacent a motion segment in accordance with the invention.
- FIG. 7B is a posterior view of the implant as shown in FIG. 7A .
- FIG. 8A is a top view of an implant implanted through the lamina and the zygapophyseal joint in accordance with the invention.
- FIG. 8B is a posterior view of the implant as shown in FIG. 8A .
- FIG. 9A is a top view of a dynamic implant in accordance with the invention.
- FIG. 9B is a posterior view of the implant as shown in FIG. 9A .
- FIG. 10 is a schematic posterior portal cross sectional view of a reinforcement device and implant in accordance with the invention.
- FIG. 11 is schematic posterior partial cross sectional view of a reinforcement device and implant in accordance with the invention.
- FIG. 12A is an exploded perspective view of a reinforcement device and implant in accordance with the invention.
- FIG. 12B is a top view of the reinforcement device and implant of FIG. 12A .
- FIG. 13A is a schematic partial cross sectional view of an implant in accordance with the invention in a first position.
- FIG. 13B is a schematic partial cross sectional view of the implant of FIG. 13A in a second, and implanted position.
- FIG. 14A is a schematic partial cross sectional view of an implant in accordance with the invention in a first position.
- FIG. 14B is a schematic partial cross sectional view of the implant of FIG. 14A in a second position.
- FIG. 4B is a posterior lateral perspective view of a distraction system implanted in a spine in accordance with the invention.
- FIG. 15 is a schematic side view of a connector of an implant in accordance with the invention.
- FIG. 16 is a schematic side view of a connector of an implant in accordance with the invention.
- FIG. 17 is a schematic perspective view of a connector in accordance with the invention.
- FIG. 18 is a schematic side perspective view of a dynamic element in accordance with the invention.
- FIG. 19 is a schematic side perspective view of an adjustable implant element in accordance with the invention.
- FIG. 20 is a schematic side perspective view of an adjustable implant element in accordance with the invention.
- FIG. 21 is a schematic side perspective view of an adjustable implant element in accordance with the invention.
- FIG. 22A is a schematic view of a spine deformity correction device in accordance with the invention.
- FIG. 22B is a cross section of FIG. 22A along the lines 22 B- 22 B.
- FIG. 22C is a schematic view of an adjustable pedicle attachment device in a first position in accordance with the invention.
- FIG. 22D is a schematic view of the adjustable pedicle attachment device of FIG. 22C in accordance with the invention.
- FIG. 22E is a schematic side partial cross sectional view of an alternative connector of the spine deformity device of FIG. 22A .
- FIG. 22F is a schematic side partial cross-sectional view of an alternative connector of the spine deformity device of FIG. 22A .
- FIG. 22G is a schematic side partial cross sectional view of an alternative connector of the spine deformity device of FIG. 22A .
- FIG. 22H is a schematic side partial cross sectional view of an alternative connector of the spine deformity device of FIG. 22A .
- FIG. 23A is a schematic side view of a spine deformity correction device in accordance with the invention.
- FIG. 23B is a posterior view.
- FIG. 24 is a schematic top view of an implant in accordance with the invention.
- FIG. 25 is a schematic posterior lateral perspective view of a therapeutic substance delivery device in accordance with the invention.
- FIG. 26 is a schematic posterior lateral perspective view of a therapeutic substance delivery device in accordance with the invention.
- FIGS. 1A and 1B illustrate a reinforced posterior arch 100 of a first vertebra 91 of a spine 90 , including a spinous process 101 and lamina 103 .
- the first vertebra 100 of the spine 90 as illustrated includes a first spinous process 101 with a superior portion 102 having a posterior ridge 104 into which a hole 105 is drilled.
- the hole 105 may be drilled with a drill, a trocar, a large bore IV needle or similar sharp object through the external and relatively hard cortical bone, to reach the internal cancellous bone within the spinous process 101 and adjacent the lamina 103 .
- a tool such as a balloon tamp, or other expandable member or small crushing or drilling member is used to create a cavity 107 or cavities within the cancellous bone by compressing, crushing or drilling out the bone material.
- X-rays may be used to determine how far to drill into the bone.
- the cavity 107 may be in the spinous process, through to the base of the spinous process, or through the spinous process and into the lamina. In one embodiment the cavity is cone shaped or widens as it moves anteriorly towards the lamina.
- a reinforcing material is then delivered into the cancellous bone or cavity 107 of the spinous process 101 and/or within the lamina 103 .
- the material is selected to provide reinforcing properties to the spinous process 101 and/or lamina 103 sufficient to support (whether alone or in combination with other support elements) a spine support structure, a prosthesis, or other device attached to the spinous process and or supported lamina.
- the material may be a bone cement or polymer with strength and hardness properties selected to provide sufficient reinforcement to the region so that the spinous process may be used at least in part, to support an implant structure for attaching to and manipulating the biomechanics of the spine. Examples include but are not limited to polymers such as acrylic cement developed for use in vertebroplasty procedures.
- the material may be a flowable polymer material that cures within the cavity. Suitable materials may be readily selected by one of ordinary skill in the art.
- Reinforcement structures may be placed within the cavity prior to, during or after injection of flowable material for further strength properties.
- an additional support structure 106 is provided within the cavity.
- the support structure 106 may be inserted through a cannula and released to expand as a spring-like or self-expanding member, into the cavity.
- the support structure 106 provides further support of the spinous process and/or lamina.
- one or more posts or struts may be provided within the cavity or extending out of the spinous process or lamina from the area of cancellous bone, to supplement the support of the spinous process or lamina in combination with the polymer or other curable material.
- the reinforcement structures may be formed of a number of different materials such as, e.g., a metal or biocompatible polymer. Such reinforcement structures may also be used in other bony areas of the spine including the vertebra, the pedicles, facets, the transverse process, etc.
- an inferior portion 109 of a spinous process 108 may also be reinforced.
- a hole 110 is drilled in the inferior portion of the spinous process 108 and a cavity 111 is formed.
- the cavity 111 is similarly filled with a curable polymer and is reinforced by reinforcing elements 112 positioned within the cavity.
- the reinforcement structure may be used in a number of applications including increasing the strength of healthy bone to support the load and fixation of orthopedic implants, as well as increasing the strength of bone weakened by osteoporosis, chronic steroid use, avascular necrosis, weakened by injury and cancer involving the bone.
- the reinforcement structure comprises a material that provides sufficient strength including but not limited to suitable polymers, e.g. PEAK, titanium, steel and carbon fiber.
- the stabilizing and/or distracting devices described herein may be formed of a material that provides sufficient column strength including but not limited to suitable polymers, e.g. PEAK, titanium, steel, and carbon fiber.
- suitable polymers e.g. PEAK, titanium, steel, and carbon fiber.
- the support structure 120 allows the anchoring of implants under physiologic loads on the spinous process 101 while shielding underlying bone from loads that would normally cause the bone to fracture.
- the implants may alternatively or in addition be anchored or attached to the lamina 103 , e.g., with addition of small screws, barbs or adhesive that engage with the lamina while avoiding injuring the spinal cord surrounded by the lamina.
- the support structure 120 comprises a hood like element positioned over the posterior arch 100 , i.e., the spinous process 101 and lamina 103 of a spine 90 .
- the support structure 120 may be made of a moldable or malleable material (e.g.
- the support structure of filling material to support the spinous process may be constructed or formed of moldable composites that can cure into hard material such as, e.g., ground glass powder or glass fiber fillers mixed into an acrylic matrix and activated with light or other biophysical modalities. Other cements or other curable materials may be suitable as well.
- the support structure 120 further comprises openings 121 to guide drill bits and/or for the placement of screws, reinforcement posts, or other instruments or supplemental support structures.
- the guide may insure accurate positioning of the implant.
- the support structure 120 may be anchored on the posterior arch by mold bending or forming the structure about the anatomy.
- the support structure 120 may be anchored into the lamina or spinous process by anchoring elements, such as, e.g., screws or barbs.
- the support structure 120 may also be anchored via screws or posts.
- the support structure 120 could be a preformed implant with contours that fit the anatomy of the posterior arch 100 or that are malleable or moldable to the anatomy.
- the support structure 20 may be anchored into the pedicles 122 with screws, into the underlying bone with barbs, screws, bone anchors, or adhesives, over the edges of structures with hooks, or may be constructed of a plurality of pieces that may be assembled into one piece around the bone. Wings 120 a of support structure may be placed over the lamina to spread the force of any device attached to the support structure 120
- a sensor 120 b is positioned on the support structure 120 .
- the sensor 120 b may be embedded in the material.
- the sensor may sense stress on the support structure 120 from implants secured to it, or may sense other information that may be desirable to monitor.
- the sensor may include a communication element configured to communicate sensed information to an external device, e.g., when interrogated.
- a support structure 130 is illustrated positioned over a posterior portion 132 of a spinous process 131 with wings 130 a over the lamina 103 including small screws 130 b into lamina 103 .
- Wings 130 a may help spread the force from any devices attached or coupled to the support structure 130 .
- Pedicle screws 135 are anchored into pedicles 136 and are further anchored into the spinous process 131 through screws 134 positioned through holes 133 in the support structure 130 .
- the screw 134 includes a sensor 134 a that may be used to sense loads on the device. Use of such sensors is described further herein.
- the pedicle screw 135 includes a screw capture device 135 a for receiving a screw or rod of a spinous process screw or other rod.
- the capture device 135 a may be a polyaxial head of a pedicle screw it may include a hole, a threaded screw hole with a washer or cap.
- Cross bar 135 b is positioned across the spine between heads of pedicle screws 135 to prevent pedical screws from creeping laterally.
- Another nut 134 b may be positioned between support structure 120 and pedicle screw, and secure against the support structure 120 .
- FIG. 5 illustrates the spinous process screws 134 coupled to a spinous process 101 of a first vertebra 91 through a hood or support structure 130 in a manner similar to that described above with respect to FIGS. 4A-4D .
- the screws 134 extend bilaterally across the posterior of a second vertebra 92 and are anchored to capture elements 135 a of pedicle screws 135 anchored into pedicles 93 a of a third vertebra 93 .
- FIG. 6 illustrates a device for stabilizing or distracting the spine with pedicle screws 135 and cross bar 135 b positioned as in FIG. 4D .
- Hood structure 132 includes openings for receiving screws 132 b coupled to the hood 132 on one end and to the heads 135 a of pedicle screws 135 and on the other end. The screws 132 b do not penetrate the spinous process. Obliquely threaded nuts secure the screws 132 b against the hood 132 .
- the reinforcement or supporting devices described herein may be used in conjunction with a number of different spine devices, including, for example, the various distraction, fusing or dynamic stabilizing devices described herein.
- the hoods or reinforcement devices herein may also be customized, for example by using stereolithography.
- the hoods or reinforcement devices may be used for example with a brace.
- the pedicle screw may be telescoping as described with respect to FIGS. 22C and 22D .
- the devices described herein may be coupled to the spinous process using minimally invasive techniques. These techniques may include percutaneously accessing the spinous process and/or using dilators to access the spinous process at an oblique angle with respect to median plane m and/or horizontal plane h through the spine of the patient.
- FIG. 7A is a side view of a joint of the spine with a fixation device percutaneously implanted to fuse adjacent vertebrae by fixation of the facet joints.
- Pedicle screw 146 in the pedicle 143 of the adjacent vertebral members 141 , 142 .
- the pedicle screw 146 has a polyaxial screw head 147 for receiving a spinous process screw 148 having a tapered tip.
- the spinous process screw 148 is screwed from the contralateral side of the spinous process, through the spinous process 140 of vertebral member 141 , adjacent the facet joint 149 between the vertebral member 141 and vertebral member 142 , and then captured or placed into the head 147 of the pedicle screw 146 .
- the pedicle screws When implanted, the pedicle screws are positioned in the pedicles in a generally known manner.
- the facet joint or facet joints between the spinal members that are to be fused, are debrided and grafted.
- a flank stab wound is made to expose the base of the spinous process.
- the spinous process screw is then inserted and navigated through the wound to the spinous process and/or soft tissue. Tissue dilators or retractors may be used to facilitate insertion of the spinous process screw through soft tissue.
- the spinous process screw 148 is then placed through the spinous process 140 , and into and captured by the head 147 of the pedicle screw 146 .
- Compression across and the facet joint 149 may be provided using a nut placet in the polyaxial head of the pedicle screw.
- external compression may be used prior to placement of the oblique rod of the spinous process screw.
- a similar screw may also be placed from the spinous process 140 to the contralateral pedicle.
- the spinous process 140 may be reinforced prior to or after placing the screw 148 .
- Pedicle screw 156 is positioned in the pedicle 153 of the adjacent vertebral members 151 , 152 .
- the pedicle screw 156 has a polyaxial screw head 157 for receiving a spinous process screw 158 having a tapered tip.
- the spinous process screw 158 is screwed from the contralateral side of the spinous process 150 , through the spinous process 150 of vertebral member 151 , through the facet joint 159 between the vertebral member 151 and vertebral member 152 and then into the head 157 of the pedicle screw 156 .
- An oblique skin stab wound is made to navigate to the base of the spinous process 150 , which may be exposed under direct vision.
- the spinous process screw 158 (or other device) is then placed through the spinous process 150 , across (adjacent or through) the facet joint 159 , and into the head 157 of the pedicle screw 156 (or otherwise attached to a pedicle attachment device for attaching devices to the pedicle), immobilizing the facet joint 159 .
- a similar screw may also be placed from the spinous process 150 to the contralateral pedicle.
- the spinous process may be reinforced prior to or after placing the screw or other device.
- the other devices attached or coupled to the spinous process as described herein may be similarly deployed.
- the devices described herein may be coupled to the spinous process using minimally invasive techniques. These techniques may include percutaneously accessing the spinous process and/or using dilators to access the spinous process at an oblique angle with respect to median plane and/or horizontal plane through the spine of the patient.
- a spinous process screw 168 is placed from the contralateral side of the spinous process 160 , through the spinous process 160 of a first vertebra 161 and across the facet joint 169 between the first vertebra 161 and an adjacent second vertebra 162 , and into the pedicle 164 of the second vertebra 162 .
- the spinous process screw of FIGS. 9A-9B may be configured to exert flexible, stabilizing, nonfusion forces to the motion segment. For example, this may be used in the event that patient suffers from pain due to laxity or other dysfunction of the spinal structures (e.g. degenerative spondylolisthesis). In other words, the looseness or other dysfunction of the joint and surrounding tissue may cause pain.
- the present invention provides a device and method for dynamically stabilizing (or reducing) such a joint while allowing some flexibility and movement.
- the device and method provide such stabilization on an oblique angle with respect to the rotational axis of the spine, i.e. at an oblique angle with respect to the median and horizontal planes of the spine.
- the spinous process and a pedicle could also be used to anchor a device exerting a stabilizing or compression or contractile force between the two anchors on an oblique angle.
- Devices that may be used to exert such a contractile force may include, for example, polymeric materials, super elastic metals, and fabrics.
- the spinous process screw 168 includes a sensor 165 a that may be used to sense motion of the distraction device. The forces or stresses on the device may be monitored and used to determine if it is necessary to convert the device to a fusion type device or to otherwise reduce or alter motion. The sensor may also be used as a diagnostic device to measure the amount of joint motion upon insertion of the implant or over time.
- FIGS. 9A and 9B may also be used for the treatment of spondylolysis, to attain stability across the pars interarticularis.
- the spinous processes 140 , 150 , 160 may be reinforced in a manner as described herein.
- the various rods or screws through the spinous processes 140 , 150 , 160 may also be positioned through a posterior arch reinforcing member as described herein.
- FIG. 10 illustrates a spinous process rod or screw 60 in accordance with the invention.
- the spinous process rod or screw 60 comprises an elongate portion 61 configured to extend through the reinforcement hood 51 (for example, as described in further detail herein with reference to FIGS. 3A-4D positioned around spinous process 50 and into an adjacent element such as, e.g. a pedicle screw.
- the spinous process rod or screw 60 may include threaded portions.
- the distal end 62 of the rod may be threaded or otherwise configured to engage an adjacent element.
- the spinous process screw or rod 60 further comprises a proximal securing element 65 located on the proximal portion 64 of the spinous process screw or rod 60 .
- the proximal securing element 65 is configured to engage a first wall 52 portion of the spinous process 60 or reinforcement hood 51 .
- “Engage” as used herein means to either directly or indirectly engage.
- the distal securing element 63 comprises an obliquely threaded nut that is configured to receive screw 61 which is coupled to the hood 51 at an oblique angle with respect to the wall 53 .
- the oblique threaded nut may be used in other applications where a screw is oblique with respect to the abject to which is engaged, coupled or attached.
- the obliquely threaded nut may have a predetermined angle at which it directs the screw with respect to the hood to guide the desired angle or directions of the screw placement.
- a distal securing element 63 is provided more distal of the proximal securing element 65 .
- the distal securing element is configured to engage a second wall portion 53 generally opposite the first wall portion 52 so that the spinous process element is secured or fixed to the hood and spinous process.
- the term “fix” as used herein means either directly or indirectly fix to and may include dynamic elements.
- FIG. 11 illustrates a spinous process rod or screw 80 in accordance with the invention.
- the spinous process rod or screw 80 comprises an elongate portion 81 configured to extend through the reinforcement hood 71 (for example, as described in further detail herein with reference to FIGS. 3A-4D ) positioned around spinous process 70 and into an adjacent element such as, e.g. a pedicle screw.
- the spinous process rod or screw 80 may include threaded portions.
- the distal end 82 of the rod may be threaded or otherwise configured to engage an adjacent element, e.g. with a connecting member, including but not limited to connecting members described herein.
- the spinous process screw or rod 80 further comprises a proximal securing element 85 located on the proximal portion 84 of the spinous process screw or rod 80 .
- the proximal securing element 85 is configured to engage a first wall 72 portion of the spinous process 70 or reinforcement hood 71 .
- a hollow space or chamber 74 is formed in the reinforcement hood 71 so that the hollow chamber may engageably receive one or more securing elements, e.g. first and second securing elements 86 , 87 therein.
- the securing elements 86 , 87 may be positioned on either or both sides of the spinous process 70 through which the screw or rod 80 is positioned. As illustrated in FIG.
- securing element 86 is positioned on the proximal portion 84 of the screw 80 while securing portion 87 is positioned on the distal portion 82 of the screw 80 .
- Securing elements 86 , 87 may be obliquely threaded nuts, for example, as described with respect to nut 80 b in FIG. 3E .
- Securing elements may be attached a variety of ways, for example as illustrated in FIGS. 12A-12B and 13 A- 13 B.
- FIGS. 12A-12B illustrate manual insertion of securing elements in accordance with the invention.
- Spinous process screw 80 a is placed through both wings of the hood 71 while passing through holes 1000 as shown.
- FIGS. 13A-13B illustrate automatic deployment of securing elements in accordance with the invention.
- the securing elements 86 b and 87 b could be positioned in recesses 1004 in the spinous process screw 80 b and spring loaded with springs 1003 attached inside of the recesses 1004 .
- An external sheath 1005 is positioned around the spinous process screw 80 b .
- the screw 80 b is positioned through a spinous process and a hood.
- the securing elements are then deployed upon removal of an external sheath 1005 .
- the securing element 86 , 86 a , or 86 b is configured to engage the first wall portion of the spinous process (or hood) from within the hood 71 .
- the securing element 87 , 87 a , or 87 b is configured to engage a second wall portion 73 generally opposite the first wall portion 72 so that the spinous process element is secured to the hood and spinous process.
- FIGS. 14A and 14B illustrate a spinous process rod or screw 54 in accordance with the invention.
- the spinous process rod or screw 54 comprises an elongate outer tube portion 55 and an inner rod portion 56 .
- the inner rod portion 56 is configured to move longitudinally within the tube portion 55 to lengthen or shorten the spinous process screw or rod 54 .
- the inner wall of the tube portion 55 may include a threaded inner wall that mates with a threaded outer wall of the rod 54 so that the rod may be screwed to advance the rod 56 and thereby lengthen or shorten the spinous process screw or rod 54 .
- the spinous process screw or rod 54 may then be lengthened as shown in FIG. 14B to extend through the reinforcement hood 51 .
- the lengthened spinous process screw may be used to distract the spinal segment or segments as well.
- the pedicle attachment devices herein may include a sensor that may be used to sensor one or more parameters e.g., strain, pressure, motion, position change, that provides information about possible screw failure.
- the sensor may communicate the information to an external device, e.g. telemetrically, and may be passively powered by an external device.
- a rod is provided that is anchored to with pedicle screws with screw heads made of or attached to swivel collars, polyaxial heads, or other movable fasteners to allow for near physiologic levels of motion of the spinal motion segment.
- Angular movement may be provided where a distracting element attaches on either side of a motion segment so that when distracting or lengthening the device, there is accommodation in the device for the change of angle that occurs.
- FIG. 15 illustrates an enlarged portion of a spinal prosthesis.
- the prosthesis 280 may provide support of the load on the spine where a facet has been removed or may provide other support or distraction.
- the prosthesis 280 comprises a distraction bar 281 used to distract a motion segment of the spine in a number of manners including the distraction devices described herein.
- a pedicle screw 283 is screwed into a pedicle of the spine or other anatomical location.
- the distraction bar 281 includes and articulating cup 282 having an inner surface 282 a .
- the pedicle screw 283 has a ball 284 received by and coupled to the cup 282 of the distraction bar 281 .
- the distraction bar 281 also articulates with a portion of the spine to which the pedicle screw 283 is attached.
- FIG. 16 illustrates a variation of the prosthesis 280 described with respect to FIG. 15 .
- the prosthesis 285 comprises a distraction bar 286 and an articulating ball 287 configured to engage and couple with an articulation cup 289 of a pedicle screw 288 .
- the prosthesis 285 operates in a similar manner as prosthesis 280 .
- FIG. 17 illustrates a variation of the prostheses 280 , 285 described herein respectively with respect to FIGS. 15 and 16 .
- the prosthesis 290 comprises a distraction bar 291 having an end 292 with a lumen 293 for slidably receiving the end 296 of a pedicle screw 295 .
- the end 296 of the pedicle screw 295 comprises a ball portion 297 attached to a neck 298 .
- the ball 297 portion is configured to slide within the lumen 293 of the distraction bar 291 which contains the ball portion 297 .
- the neck 298 of the pedicle screw 295 extends out of the distraction bar 291 through a longitudinal slit 294 that slidably receives the narrower neck portion 298 of the pedicle screw 295 .
- One embodiment of the invention is a rod anchored at each end across a motion segment that can be “switched” between dynamic stabilization and rigid fixation in a minimally invasive, percutaneous, or non-invasive fashion.
- One way for this to occur is injection of a flowable material within the lumen of the device, which would cure, and immobilize the components which allow for motion. Electrical current, heat, mechanical energy, or other techniques could also be used to render movable components fixed.
- Another method is insertion of a rigid implant axially along the length of the dynamic implant. This method of rendering a flexible prosthesis rigid may be applied to the design of other combination motion/fixation prostheses, including disc, facet hip, knee, fingers shoulder, elbows, and ankle prostheses, etc.
- FIGS. 18-21 illustrate convertible or adjustable dynamic stabilization devices for joints.
- the stiffness or flexibility of the device may be altered or titrated after implantation to adapt the stiffness to a particular patient, and/or to adjust the stiffness over time, for example when laxity of the joint increases with age.
- FIG. 18 illustrates a dynamic stabilization prosthesis 350 .
- the prosthesis comprises a flexible coil 352 contained in a tube member 351 comprising telescoping tubes.
- the prosthesis 350 may be used in a number of manners affixed across a joint motion segment to dynamically stabilize the joint.
- the coil 352 may be energy absorbing.
- the coil 352 may also be configured to exert a distracting force on the joint when implanted.
- the prosthesis 350 includes a slit 353 for receiving a rigid wire member 354 .
- the rigid wire member 354 is inserted into the slit 353 to form the prosthesis from a dynamic prosthesis into a rigid prosthesis.
- a flexible coil of a selected stiffness may be inserted to change the stiffness of the dynamic prosthesis.
- the tube may alternatively comprise a ferromagnetic material contained therein and an electromagnetic field is applied that causes the prosthesis to become stiffer. The field may be varied to provide a variety of gradients in stiffness.
- the device may also include a sensor that operates as sensor 170 a described herein.
- the stiffness of the prosthesis adjusted accordingly.
- the stiffness may be varied when implanted using patient feedback so that the implant is more or less flexible depending upon an individual patient's needs.
- the stiffness may be changed at different times during the course of the implants lifetime. For example, the stiffness may be increased when an increased amount of stabilization is required.
- FIG. 20 illustrates an alternative prosthesis 360 also comprising a flexible coil 362 contained in a tube member 361 .
- the tube member is configured to receive a fluid material such as a curable polymer 364 that cures in the tubular member to create a rigid prosthesis.
- a rigid prosthesis is formed from a dynamic prosthesis by injecting the polymer material 364 into the tubular member 361 .
- the flexibility/stiffness properties of the prosthesis may be selected by selecting such properties of the polymer to be injected.
- a flexible prosthesis 365 is illustrated.
- the flexibility of the prosthesis 365 is adjustable by injecting a polymer material into one or more of the columnar cavities 367 , 368 , 369 .
- the polymer may be injected into each cavity at a different time so the stiffness of the prosthesis may be increased gradually over time.
- the stiffness/flexibility properties of the polymer injected may also be selected according to a desired stiffness/flexibility of the implant.
- the dynamic stabilizer may comprise a shock absorber that has both energy absorbing and energy dissipating properties.
- the tension band effect of the posterior columns may also offload the pressures borne by anterior column of the spine. So in addition to helping to protect the facet joints, other aspects of the invention would help slow the progression of degenerative disc disease, annular degradation, disc herniation, and vertebral compression fractures.
- Another aspect of the invention is to supplement implants or repair procedures of the anterior column with a posterior shock absorber device (rod, screw, plate).
- implants or procedures include total disc replacements, annular repair, artificial nucleus, and vertebroplasty/kyphoplasty.
- Another aspect of the invention is to supplement implants or repair procedures of the posterior column with a shock absorber rod.
- implants or procedures include interspinous distraction wedges, facet joint replacements, and posterior arch replacements.
- Implant components may include springs, coils, hydraulic or fluid filled piston chambers, or elastic materials. Each end of the device could be anchored in such a fashion so the rod bridges the facet joint, reducing the loads borne by the joint. This is believed to reduce wear of the facets and resulting pain and altered spinal biomechanics.
- An improved device that utilizes the spinous process, the pedicle, adjacent ribs and/or a transverse process or a combination including one or more of these anatomical structures, to correct or stabilize a deformed spine.
- the device may be used to correct scoliosis using one or more of these anatomical structures and multiple points at a plurality of spine segments. The correction may be made incrementally over time and may or may not include a fusion process.
- a percutaneously and obliquely placed rigid or dynamic stabilizer is provided.
- Stabilizer segments are anchored to base of spinous process at one end and a pedicle screw at the other end, as a unilateral temporary stabilizer.
- the dynamic stabilizers described herein may be adjusted over time to gradually bring the spine in alignment.
- the stabilizer may be used to derotate (untorque) and correct the spine.
- a stabilizer placed across a motion segment, i.e., not at the same vertebral level may be used to create overgrowth where desired, i.e. on the non-instrumented side of the motion segment. Such overgrowth may help stabilization or correction of the spine.
- FIGS. 22A-24 illustrate an explantable, temporary scoliosis stabilization device.
- the system is configured to be manipulable once it is installed.
- the systems illustrated are configured to alter the orientation of a vertebral body and in particular to untorque the spine about the axis of the spinal column as well as applying a corrective straightening or translation force with respect to a vertical rod.
- a device for correcting deformities of the spine is provided where the device may be adjusted over time to direct the corrective forces as needed over time.
- a multipoint stabilizing device is coupled to the posterior portions of the spine.
- the systems illustrated in FIGS. 22A-24 comprise a multipoint anchoring mechanism that provides for multidimensional correction of the spinal or spinal segments by positioning the anchor at a plurality of locations on a spine.
- the multiple locations include the spinous process and pedicle of a particular vertebra.
- a bar is attached between the spinous process and pedicle.
- a force directing device couples the bar to a vertical rod.
- the multiple locations include the spinous process of one level and the pedicle of another level (e.g. an adjacent level).
- the multiple locations include the spinous process, through a transverse process 605 into a costal aspect of a rib 606 .
- the vertical rod in these figures is attached or coupled to the spine at neutral and balanced vertebra, typically only at the most upper and most lower positions.
- the device comprises a telescoping rod (or plate) 536 to which various segments of the spinal column are to be fixed.
- the rod 536 telescopes to adjust the height to accommodate particular segments or a height of the spine.
- a portion 500 of the spine comprises a plurality of adjacent segments 501 , 502 , 503 , 504 , 505 , (additional adjacent segments may also be corrected).
- the portion 500 of the spine exhibits a concave curvature between segments 501 and 505 .
- Pedicle screws 506 , 507 , 508 , 509 , 510 are attached to pedicles of segments 50 , 502 , 503 , 504 , 505 , respectively.
- Dynamic stabilizers 516 , 517 , 518 , 519 , 520 are attached to pedicle screws 506 , 507 , 508 , 509 , 510 and to spinous processes 521 , 522 , 523 , 524 , 525 respectively of segments 501 , 502 , 503 , 504 , 505 .
- Wires 526 , 527 , 528 , 529 , 530 attached to the rod 536 via hooks 531 , 532 , 533 , 534 , 535 attached to the rod 536 .
- the wires 526 , 527 , 528 , 529 , 530 are used to tension the portion of the spine 500 to pull on the concavity. If the portion has a convexity, rods may be used in place of wires to push on the convexity to straighten the spine.
- FIG. 22B is a cross section of FIG. 22A along the lines 22 B- 22 B.
- the pedicle screw 508 includes a screw capture device 508 a for receiving a screw head or rod of a dynamic stabilizer, in this case, a spinous process screw 518 .
- the capture device may be a hole, a threaded screw hole with a washer or cap.
- the pedicle screw 508 may be configured to telescope outwards or inwards to be positioned to receive the screw head or rod of a dynamic stabilizer 518 as shown in FIGS. 22C and 22D .
- the spinous process screw 518 is shown in 22 C where, given the trajectory of the spinous process screw 518 , its end does not intercept the capture device 508 a of the pedicle screw 508 .
- the pedicle screw's trunk 508 b is lengthened with a telescoping or other similar lengthening mechanism so that the end of the spinous process screw 518 may be positioned in the capture device 508
- the spinous process screw 518 is anchored through the reinforced spinous process 523 (having a reinforcement hood 523 a or is otherwise reinforced as described herein.
- the reinforcement hood may have a single lamina wing where a single screw is attached as opposed to bilateral screws.) with a head portion 518 a engaging the pedicle screw 503 and a rod portion 518 b extending through a reinforced spinous process 523 .
- the dynamic stabilizer 518 includes a loop connector end 518 c for receiving a hook 518 d of a wire (or a telescoping rod) 528 that is attached to the rod 536 with a ratcheted connector 533 .
- the wire may also be a rod, spring, elastic band or other force-directing device.
- the loop connector end 518 c may also be a poly axial connector that allows translation in a variety of directions or places, i.e., so that an oblique angle rod can be captured.
- the wire 528 may be adjusted or tightened at various times with the ratcheted connector 533 , e.g., during a period of time where the spine is being corrected. As the spine is straightened, excess wire may be trimmed off. This procedure may be done percutaneously, e.g. by accessing wire near the skin. Each dynamic stabilizer is similarly constructed.
- FIGS. 22E-22H illustrate various dynamic stabilizers that may be used to correct spinal deformity.
- Dynamic stabilizers 518 e , 518 i , and 518 m are coupled by coupling mechanisms 541 a - c to the telescoping rod 536 .
- the coupling mechanisms 541 a - c may be positioned on or through the plate or telescoping rod 536 .
- Dynamic stabilizer 518 e includes rod 518 f that will extend through a reinforced spinous process and is coupled by a coupling mechanism 518 g to rod 518 h in an end-to-end fashion.
- Rod 518 h slidably extends through opening in coupling mechanism 541 a attached to the telescoping rod 536 .
- the rod 518 h is adjustable within the coupling mechanism 541 a to lengthen or shorten the distance of the dynamic stabilizer 518 e between the spinous process and the telescoping rod 536 .
- the coupling mechanism 541 a is configured to clamp down on the rod 518 h to secure it in place once the distance has been adjusted.
- the coupling mechanisms 541 a - c may include a screw, cam or clamp mechanism to clamp or lockably engage rods 518 h, l , and p as described in use herein.
- dynamic stabilizer 518 i includes rod 518 j that will extend through a reinforced spinous process and is coupled by a coupling mechanism 518 k to rod 518 l in an end to side fashion.
- Rod 518 l slidably extends through opening in coupling mechanism 541 b attached to the telescoping rod 536 .
- the rod 518 l is adjustable within the coupling mechanism 541 b to lengthen or shorten the distance of the dynamic stabilizer 518 i between the spinous process and the telescoping rod 536 .
- the coupling mechanism 541 b is configured to clamp down on the rod 518 l to secure it in place once the distance has been adjusted.
- Dynamic stabilizer 518 m includes a rod 518 n that will extend through a reinforced spinous process and is coupled by a threaded coupling 518 o to rod 518 p .
- the rod 518 p is slidably and rotatably positioned within a cylindrical hole in coupling mechanism 541 c attached to the telescoping rod 536 .
- the rod 518 p may be rotated, i.e., screwed or unscrewed so that the stabilizer lengthens or shortens at the threaded coupling 518 o .
- the rotation or screwing may be actuated at or near the skin where the rod 518 p is positioned in the coupling mechanism 541 c.
- Dynamic stabilizer 518 q includes a rod 518 r that will extend through a reinforced spinous process and is coupled by a multiaxial coupling 518 s similar to a multiaxial screw head type coupling, to rod 518 t .
- the rod 518 t is a telescoping rod and is coupled by coupling mechani 8 sm 541 d to the vertical rod 536 .
- Each of the dynamic stabilizers may include sensors located thereon to sense data corresponding to a parameter of the dynamic stabilization device or the spine.
- FIG. 22E-22H illustrate sensors 542 a - 542 d located on the dynamic stabilizer.
- the sensors may comprise, e.g., a strain, stress, pressure, position or motion sensor.
- Such sensors may include a variety of sensors that are generally know.
- strain gauges, accelerometers or piezo electric sensors may be employed to sense parameters that correspond, e.g., to the position of the spine, a vertebra, a dynamic stabilizer, as well as the parameters relating to the forces or mechanical loads that are effecting the device.
- Each of the sensors may individually sense information or information relative to each of the other sensors may be sensed and compared.
- the information may be used to set tension on the device, to identify when repositioning is necessary or to otherwise provide information as to the status of the device or portions thereof, or status of the spine that is being treated.
- the sensors may include some level or circuitry including, e.g. a telemetry circuit that transmits information concerning the sensors to an external device.
- the sensors may be battery powered or may use passive circuits that are powered by an external device.
- the information may be used to identify when one of the stabilizers no longer has tension associated with the stabilizer thus identifying when the tension needs to be modified in the device. Accordingly, each segment may be moved separately, monitored separately and adjusted separately form the other segments. Each segment may be moved to a different degree and in different directions or at different angles with varying forces.
- FIG. 23A illustrates an alternative configuration of the correction device according to the invention.
- a portion 550 of the spine comprises a plurality of adjacent segments 551 , 552 , 553 , 554 , 555 , 555 a (additional adjacent segments may also be corrected).
- the portion 550 of the spine exhibits a concave curvature between segments 551 and 555 a .
- Pedicle screws 556 , 557 , 558 , 559 , 560 are attached to pedicles of segments 551 , 552 , 553 , 554 , 555 , respectively.
- Dynamic stabilizers 566 , 567 , 568 , 569 , 570 are attached to pedicle screws 556 , 557 , 558 , 559 , 560 and through spinous processes, 572 , 573 , 574 , 575 , 576 respectively of adjacent segments 555 a , 551 , 552 , 553 , 554 .
- the dynamic stabilizers are positioned across the motion segments between the corresponding adjacent segments.
- the dynamic stabilizers 566 , 567 , 568 , 569 , 570 attached to the telescoping rod 576 in one or more manners such as, for example, the dynamic stabilizers 518 , 518 e , 518 i , 518 m , 518 q as illustrated in FIGS. 22A-22H , herein.
- the dynamic stabilizers 566 , 567 , 568 , 569 , 570 are used to tension the portion of the spine 500 to pull on the concavity, or if the portion has a convexity, to push , pull on, or translate the convexity to straighten the spine.
- each of the dynamic stabilizers are attached a plurality of locations on the spine and operate to stabilize adjacent segments with respect to each other.
- FIG. 23B illustrates a pedicle screw and dynamic stabilizer in greater detail.
- the pedicle screw 558 is screwed into pedicle 563 of vertebra 553 .
- the pedicle screw 558 includes a screw hole 558 a for receiving a screw head or rod of a dynamic stabilizer 568 .
- a screw capture device 568 b such as a nut or a threaded portion of the pedicle screw is configured to capture and receive the dynamic stabilizer screw or rod portion 568 a .
- the capture device 568 b of the stabilizer engages the pedicle screw 558 and a rod portion 568 b extends through a reinforced spinous process 574 .
- the dynamic stabilizer 568 includes a connector end 580 for receiving a wire 578 or a hook of a telescoping rod that is attached to the telescoping rod 576 .
- the dynamic stabilizer 568 is anchored through the reinforced spinous process 574 of an adjacent vertebra 554 ( FIG. 17A ) thus immobilizing or stabilizing the motion segment between the vertebra 553 , 554 .
- This device may also be used in fusion, i.e. to fuse the motion segments across vertebra of a multipoint connector.
- the device may also be used to encourage overgrowth at certain locations. In particular it may encourage overgrowth on the non-fused lateral side of a vertebra (opposing the fused lateral side) stabilized with the multipoint connector between two vertebrae.
- FIG. 24 illustrates a device for treating a deformity such as scoliosis.
- the device includes a dynamic stabilizer 600 comprising a spinous process screw 601 and a pedicle screw 602 including a spinous process screw capture device 603 .
- the spinous process screw is configured to be positioned through a reinforced spinous process 604 and through a transverse process 605 into a costal aspect of a rib 606 .
- the dynamic stabilizer 600 includes a connector portion 607 configured to be connected to a telescoping rod as described herein with reference to FIGS. 22 A-H and 23 A- 23 B. Similar to FIGS.
- a plurality of segments may be secured to a telescoping rod with a plurality of dynamic stabilizers.
- the pedicle screw in this and all other embodiments described in this application may include a telescoping portion that can adjust the length of the screw head from the anchoring point where the pedicle screw is anchored into the bone.
- the pedicle screw 602 also includes a sensor 608 located thereon (or incorporated therewith).
- the sensor may comprise, for example, a motion detector, a position detector, a pressure sensor, a strain gauge, and ultrasonic transducer/sensor. The sensor may sense a change in strain on the screw that may be due to loosening or repositioning of the screw.
- the sensor may also sense a change in position of the screw that indicates a change in alignment and corresponding loosening or repositioning of the screw.
- the sensor may also sense a change in pressure due to loosening or repositioning of the screw.
- the sensor may also include an ultrasonic transducer and transmitter that can determine change in positioning of the screw, e.g. loosening of the screw indicated by a change in interfaces of materials or characteristic property change indicating screw loosening or repositioning.
- the sensor may include some electronics such as a telemetry circuit that allows it to communicate with an external device.
- the sensor may also be powered by an external device e.g., in a manner generally known in the art.
- the various embodiments of the invention described herein may include sensors integrated with or provided on a structural spinal implant. A number of factors may be detected as described herein. Additional factors may include, e.g., local inflammation, pressure, tension, edema, motion, water content, and electrolytes or other chemicals.
- the sensors allow a doctor to monitor patients for response to healing, or may be used by the doctor to guide serial adjustments to the patient's treatment. For example, measurements from the sensing means could lead the doctor to change the length or tension of a distraction rod or stabilization device. Patients could adjust therapy based on measurements from the sensing device, or could be alerted to notify their doctor should certain measurements be of concern.
- the sensor is configured to be adjustable to sensed stresses.
- the sensor may for example, be a strain gauge, a pressure sensor accelerometer, position sensor, imaging device, etc.
- the sensor may be used in the initial adjustment of the prosthesis or may be monitored over time.
- the sensor may sense shear/torsion tension/compression.
- Sensors may sense stresses at various motion segments.
- the sensor may be used to compare stresses at various motion segments or locations.
- Various sensors may be selected from sensors that are known to one of skill in the art or that are commercially available.
- One embodiment of the invention comprises an anchor device with a therapeutic substance or drug delivery device, e.g. a drug port and/or reservoir, or matrix attached to a vertebra.
- the device is anchored adjacent a site near where pain is present.
- the port is configured to deliver steroids or anesthetic agents via a catheter to a desired location, for example, the facet joint, neural foramen, vertebral body, annulus, nucleus, back muscles, back ligaments, bone metastases, intrathecal space, epidural space, or other targets in, on, or around the spine.
- the catheter can direct the drug to the correct location by positioning the end of the catheter at a target location.
- the port is configured to be refilled periodically percutaneously, e.g.
- the device further comprises a patient actuation mechanism for patient control of drug delivery as needed for pain relief, manually or remotely using a telemetrically triggered delivery from an external telemetry control device.
- a device is attached to a boney structure of the spine.
- Other device that may be attached to the spine may include sensory or therapeutic devices, including nerve stimulators, bone growth stimulators and radioactive seeds.
- a structural implant could be anchored to bone, to which a sensory or therapeutic device could be attached.
- the sensory or therapeutic device could be placed external to the bone, on the surface of the bone, or internal to the bone.
- FIGS. 25 and 26 illustrate drug delivery devices 370 , 380 , respectively, in accordance with the invention.
- the drug delivery device 370 includes a reservoir 375 attached by an anchor 371 configured to anchor the reservoir 375 to the bone of the spine.
- the anchor 371 comprises a pedicle screw that anchors the device to the pedicle 373 of a vertebra 372 .
- the reservoir 375 includes a catheter 376 in communication with the contents of the reservoir 375 and having an end positioned adjacent or in a zygapophyseal joint 378 where the drug is directed to have a therapeutic effect on the joint 378 .
- the device may include a telemetrically actuable pump mechanism for delivering the drug to the joint upon telemetric actuation by an external control device.
- the device 370 further comprises a port 377 for receiving (e.g. via a percutaneously introduced needle) into the reservoir 375 , refills of the therapeutic substance or drug.
- Device 380 comprises a similar catheter 386 , and reservoir 385 attached by an anchor 381 to the spinous process 383 or alternatively an adjacent lamina 384 .
- the spinous process 383 or lamina 384 may be reinforced prior to attachment of the anchor 381 or may be attached to a reinforcement device positioned at the posterior arch of the spine, as described herein with reference to FIGS. 1A-7B .
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
- The present application claims the priority of Provisional Application No. 60/598,882, filed Aug. 3, 2004 and entitled: Spine Treatment Devices and Methods.
- The invention relates to devices to treat the spine, including but not limited to spinal stabilization devices, dynamic stabilizers, spinal deformity correction devices, devices to treat pain associated with the spine, and other spinal treatment devices.
- Certain spine conditions, defects, deformities (e.g., scoliosis) as well as injuries may lead to structural instabilities, nerve or spinal cord damage, pain or other manifestations. Back pain (e.g., pain associated with the spinal column or mechanical back pain) may be caused by structural defects, by injuries or over the course of time from the aging process. For example, back pain is frequently caused by repetitive and/or high stress loads on or increased motion around certain boney or soft tissue structures. The natural course of aging leads to degeneration of the disc, loss of disc height, and instability of the spine among other structural manifestations at or around the spine. With disc degeneration, the posterior elements of the spine bear increased loads with disc height loss, and subsequently attempt to compensate with the formation of osteophytes and thickening of various stabilizing spinal ligaments. The facet joints may develop pain due to arthritic changes caused by increased loads. Furthermore, osteophytes in the neural foramina and thickening of spinal ligaments can lead to spinal stenosis, or impingement of nerve roots in the spinal canal or neural foramina. Scoliosis may also create disproportionate loading on various elements of the spine and may require correction, stabilization or fusion.
- Pain caused by abnormal motion of the spine has long been treated by fixation of the motion segment. Spinal fusion is one way of stabilizing the spine to reduce pain. In general, it is believed that anterior interbody or posterior fusion prevents movement between one or more joints where pain is occurring from irritating motion. Fusion typically involves removal of the native disc, packing bone graft material into the resulting intervertebral space, and anterior stabilization, e.g., with intervertebral fusion cages or posterior stabilization, e.g., supporting the spinal column with internal fixation devices such as rods and screws. Internal fixation is typically an adjunct to attain intervertebral fusion. Many types of spine implants are available for performing spinal fixation, including the Harrington hook and rod, pedicle screws and rods, interbody fusion cages, and sublaminar wires.
- Spinal stenosis pain or from impingement of nerve roots in the neural foramina has been treated by laminectomy and foraminotomy, and sometimes reinforced with rod and screw fixation of the posterior spine. More recently, surgeons have attempted to relieve spinal stenosis by distracting adjacent spinous processes with a wedge implant. Pain due to instability of the spine has also been treated with dynamic stabilization of the posterior spine, using elastic bands that connect pedicles of adjacent vertebrae.
- The typical techniques for fusion, distraction, decompression, and dynamic stabilization require open surgical procedures with removal of stabilizing muscles from the spinal column, leading to pain, blood loss, and prolonged recovery periods after surgery due in part to the disruption of associated body structures or tissue during the procedures.
- To reduce the invasiveness of fusion procedures, some methods of fusion have been proposed that do not require the extensive stripping of muscles away from the spinal column of earlier approaches. These involve posteriorly or laterally accessing the spine and creating spaces adjacent the spine for posterior stabilization. Some of these procedures include fusion via small working channels, created with dilator type devices or an external guide to create a trajectory channel between two ipsilateral neighboring pedicle screws. Also, placing support structures between adjacent pedicle screws and across a joint requires accessing and working in an area from a difficult angle (the support structure is typically oriented somewhat perpendicular to an angle of access and through muscle and connective tissue). Furthermore, these stabilization devices typically involve the use of 4 pedicle screws (each having a risk associated with it when placed in the spine), two on each side of a motion segment, and are not ideally suited for percutaneous stabilization required across more than one or two segments. Accordingly, it would be desirable to provide a less invasive or less disruptive segmental spine stabilization procedure and implant that has a reduced risk of damage or injury to associated tissue. It would also be desirable to provide an implanted posterior spine system that may be used to stabilize more than two motion segments in a less disruptive or less invasive manner.
- One method of fusing a vertebra has been proposed using bilateral screws through the lamina using a posterior approach. However, geometric placement of the device is difficult and the procedure is considered dangerous because the laminar screws could enter through anteriorly into the spinal canal and cause nerve damage.
- Accordingly, it would be desirable to provide a device that reduces the difficulties risks of the current procedures. It would also be desirable to provide a device that can be placed in a less disruptive or less invasive manner than commonly used procedures.
- Unintended consequences of fixation include stress shielding of bone, as well as transfer of load to adjacent, still dynamic motion segments, and eventual degeneration of adjacent motion segments. Flexible stabilization of motion segments with plastic, rubber, super-elastic metals, fabric, and other elastic materials has been proposed to provide a degree of dynamic stabilization of some joints. Many of these constructs are not load bearing. Dynamic stabilization from pedicle screw to pedicle screw along the length of the spine has been proposed. However, this device has the disadvantage of requiring placement of 4 pedicle screws and associated tissue disruption.
- Due to the risks, inconvenience, and recovery time required for surgical implantation of spinal devices, some patients may continue to prefer rigid fixation of a painful or degenerative motion segment over dynamic stabilization of the joint. In addition, doctors may be reluctant to recommend dynamic stabilization for patients with back pain, because it may not alleviate pain to a patient's satisfaction.
- Furthermore, even in patients who experience good relief of pain with dynamic stabilizers, it is anticipated that while the onset of arthritic changes may be deferred, many patients will still eventually proceed to develop degeneration, and require fixation of the motion segment to obtain pain relief. Repeat spine procedures to remove one implant and replace it with another are associated with complications related to bleeding, surgical adhesions, destruction of bone, and other generic risks associated with surgical procedures. Accordingly, improved devices that address these issues would be desirable.
- A number of spinal deformities exist where the spine is abnormally twisted and or curved. Scoliosis is typically considered an abnormal lateral curvature of the vertebral column.
- Correction of scoliosis has been attempted a number of ways. Typically correction is followed by fusion. A Harrington rod has been used where a compressing or distracting rod is attached above and below a curved arch of the deformity. The spine is stretched longitudinally to straighten the spine as the rod is lengthened. The spine is then fused. The correction force in this device and in similar devices is a distraction force that may have several drawbacks including possible spinal cord damage, as well as the high loading on the upper and lower attachment sites. Nowadays, segmental hook and screw fixation exists for distraction and derotation corrective forces.
- A Luque device has been used where the spine is wired to a rod at multiple fixation points along the rod and pulls the spine to the rod. The spine is pulled to the rod with a wire and the spine is then fused. This does not provide significant adjustment over time and requires fusion. Once completed this does not provide an opportunity for delayed adjustment over time. Anterior procedures also exist in the form of fusion and newer technology involving staples across the disc space that obviate the need for fusion but still correct the deformity. The corrective force is derotation with or without compression.
- Accordingly it would be desirable to provide an improved corrective device for treating scoliosis or other deformities. It would also be desirable to provide a device that may be used without fusion.
- Spine surgeons commonly use metallic or polymeric implants to effect or augment the biomechanics of the spine. The implants frequently are attached or anchored to bone of the spine. Sites typically considered appropriate for boney attachment have high density or surface area, such as, for example, the pedicle bone, the vertebral body or the cortical bone of the lamina. The spinous process contains thin walls of cortical bone, and thus, has been considered as not ideal for anchoring spinal implants as they may not support the implants under physiologic loads, or the intermittent high loads seen in traumatic situations. Fixation has been attempted from spinous process to spinous process with poor results.
- A translaminar facet screw as used by some surgeons goes through the base of spinous process to access the cancellous bone of the lamina. A disadvantage of this device is that it is not suitable for attaching to a pedicle screw and the depth and angle during deployment can be very difficult to track or visualize, thus increasing the possibility that the screw would extend into the spinal canal. A facet screw is screwed between opposing facets of a zygapophyseal joint.
- One aspect of the present invention is directed to providing a device and method for alleviating discomfort and or deformity associated with the spinal column. Another aspect of the present invention is directed to providing a minimally invasive implant and method for alleviating discomfort associated with the spinal column. Another aspect of the present invention provides an anchoring device and method that requires less surrounding tissue damage or disruption. Another aspect of the present invention provides reinforcement of the spinous process for use in various spinal systems. Another aspect of the invention provides a minimally invasive, non-invasive, or remote adjustment or lengthening of an orthopedic device. Another aspect of the invention provides a minimally invasive, non-invasive, or remote adjustment, lengthening or shortening of a stabilization device. Another aspect of the present invention also provides an implant system and device suitable for minimally invasive, minimally disruptive and/or percutaneous posterior deployment across a plurality of motion segments and more than two motion segments. Different aspects of the invention may provide distraction forces to relieve pressure on certain structures, compression forces to fix or stabilize motion across structures, shock absorbing qualities to help relieve load from certain structures, and therapeutic activity to reduce inflammation and pain. Other aspects of the invention may supplement or bear load for degenerated, painful, or surgically removed joints, e.g., the facet joint. Another aspect of the invention may provide a method and system for treating deformities such as scoliosis. Other aspects of the invention may include sensors associated with implants or implanted at or near the bones, soft tissue, or joints of the spine and may provide feedback regarding the joint on an ongoing basis. The sensors may also be part of a feedback system that alters a property of an implant in response to sensing information. Another aspect of the invention may provide a device or method for delivering therapeutic substances at or near the spine.
- In accordance with one aspect of the invention, a reinforcement structure is provided for supporting the spinous process and if desired, in addition, the lamina of a spine. The invention further provides a method and system for forming or implanting such structure in the spinous process or a region of cancellous bone in the lamina of a spine. The reinforcement system may include one or more systems of reinforcement and may be used before, during and/or after a spinal device (e.g. a stabilization, distraction or prosthetic device, etc.) is coupled to the spinous process.
- Various aspects of the invention are set forth in the description and/or claims herein.
-
FIG. 1A is a lateral posterior view of a vertebra with a reinforcement structure in accordance with the invention. -
FIG. 1B is a side view of the vertebra and reinforcement structure ofFIG. 1A . -
FIG. 2A is a lateral posterior view of a vertebra with a reinforcement structure in accordance with the invention. -
FIG. 2B is a side view of the vertebra and reinforcement structure ofFIG. 2B . -
FIG. 3A is a lateral posterior view of a vertebra with a reinforcement structure in accordance with the invention. -
FIG. 3B is a side view of the vertebra and reinforcement structure ofFIG. 3A . -
FIG. 4A is a lateral posterior view of vertebrae with a reinforcement structure and implant in accordance with the invention. -
FIG. 4B is a side view of the reinforcement structure and implant ofFIG. 4A . -
FIG. 4C is a top view of a reinforcement structure and implant in accordance with the invention. -
FIG. 4D is a posterior view of the reinforcement structure and implant ofFIG. 4C . -
FIG. 5 is a posterior view of a reinforcement structure and implant in accordance with the invention. -
FIG. 6 is a posterior view of a reinforcement structure and implant in accordance with the inventionFIG. 7A is a top view of an implant implanted adjacent a motion segment in accordance with the invention. -
FIG. 7B is a posterior view of the implant as shown inFIG. 7A . -
FIG. 8A is a top view of an implant implanted through the lamina and the zygapophyseal joint in accordance with the invention. -
FIG. 8B is a posterior view of the implant as shown inFIG. 8A . -
FIG. 9A is a top view of a dynamic implant in accordance with the invention. -
FIG. 9B is a posterior view of the implant as shown inFIG. 9A . -
FIG. 10 is a schematic posterior portal cross sectional view of a reinforcement device and implant in accordance with the invention. -
FIG. 11 is schematic posterior partial cross sectional view of a reinforcement device and implant in accordance with the invention. -
FIG. 12A is an exploded perspective view of a reinforcement device and implant in accordance with the invention. -
FIG. 12B is a top view of the reinforcement device and implant ofFIG. 12A . -
FIG. 13A is a schematic partial cross sectional view of an implant in accordance with the invention in a first position. -
FIG. 13B is a schematic partial cross sectional view of the implant ofFIG. 13A in a second, and implanted position. -
FIG. 14A is a schematic partial cross sectional view of an implant in accordance with the invention in a first position. -
FIG. 14B is a schematic partial cross sectional view of the implant ofFIG. 14A in a second position. -
FIG. 4B is a posterior lateral perspective view of a distraction system implanted in a spine in accordance with the invention. -
FIG. 15 is a schematic side view of a connector of an implant in accordance with the invention. -
FIG. 16 is a schematic side view of a connector of an implant in accordance with the invention. -
FIG. 17 is a schematic perspective view of a connector in accordance with the invention. -
FIG. 18 is a schematic side perspective view of a dynamic element in accordance with the invention. -
FIG. 19 is a schematic side perspective view of an adjustable implant element in accordance with the invention. -
FIG. 20 is a schematic side perspective view of an adjustable implant element in accordance with the invention. -
FIG. 21 is a schematic side perspective view of an adjustable implant element in accordance with the invention. -
FIG. 22A is a schematic view of a spine deformity correction device in accordance with the invention. -
FIG. 22B is a cross section ofFIG. 22A along the lines 22B-22B. -
FIG. 22C is a schematic view of an adjustable pedicle attachment device in a first position in accordance with the invention. -
FIG. 22D is a schematic view of the adjustable pedicle attachment device ofFIG. 22C in accordance with the invention. -
FIG. 22E is a schematic side partial cross sectional view of an alternative connector of the spine deformity device ofFIG. 22A . -
FIG. 22F is a schematic side partial cross-sectional view of an alternative connector of the spine deformity device ofFIG. 22A . -
FIG. 22G is a schematic side partial cross sectional view of an alternative connector of the spine deformity device ofFIG. 22A . -
FIG. 22H is a schematic side partial cross sectional view of an alternative connector of the spine deformity device ofFIG. 22A . -
FIG. 23A is a schematic side view of a spine deformity correction device in accordance with the invention. -
FIG. 23B is a posterior view. -
FIG. 24 is a schematic top view of an implant in accordance with the invention. -
FIG. 25 is a schematic posterior lateral perspective view of a therapeutic substance delivery device in accordance with the invention. -
FIG. 26 is a schematic posterior lateral perspective view of a therapeutic substance delivery device in accordance with the invention. -
FIGS. 1A and 1B illustrate a reinforcedposterior arch 100 of afirst vertebra 91 of aspine 90, including aspinous process 101 andlamina 103. Thefirst vertebra 100 of thespine 90 as illustrated includes a firstspinous process 101 with asuperior portion 102 having aposterior ridge 104 into which ahole 105 is drilled. Thehole 105 may be drilled with a drill, a trocar, a large bore IV needle or similar sharp object through the external and relatively hard cortical bone, to reach the internal cancellous bone within thespinous process 101 and adjacent thelamina 103. - Once the cancellous bone is accessed, optionally, a tool such as a balloon tamp, or other expandable member or small crushing or drilling member is used to create a
cavity 107 or cavities within the cancellous bone by compressing, crushing or drilling out the bone material. X-rays may be used to determine how far to drill into the bone. Thecavity 107 may be in the spinous process, through to the base of the spinous process, or through the spinous process and into the lamina. In one embodiment the cavity is cone shaped or widens as it moves anteriorly towards the lamina. - A reinforcing material is then delivered into the cancellous bone or
cavity 107 of thespinous process 101 and/or within thelamina 103. The material is selected to provide reinforcing properties to thespinous process 101 and/orlamina 103 sufficient to support (whether alone or in combination with other support elements) a spine support structure, a prosthesis, or other device attached to the spinous process and or supported lamina. The material may be a bone cement or polymer with strength and hardness properties selected to provide sufficient reinforcement to the region so that the spinous process may be used at least in part, to support an implant structure for attaching to and manipulating the biomechanics of the spine. Examples include but are not limited to polymers such as acrylic cement developed for use in vertebroplasty procedures. The material may be a flowable polymer material that cures within the cavity. Suitable materials may be readily selected by one of ordinary skill in the art. - Reinforcement structures may be placed within the cavity prior to, during or after injection of flowable material for further strength properties. As illustrated, an
additional support structure 106 is provided within the cavity. Thesupport structure 106 may be inserted through a cannula and released to expand as a spring-like or self-expanding member, into the cavity. Thesupport structure 106 provides further support of the spinous process and/or lamina. Alternatively, or additionally, one or more posts or struts may be provided within the cavity or extending out of the spinous process or lamina from the area of cancellous bone, to supplement the support of the spinous process or lamina in combination with the polymer or other curable material. The reinforcement structures may be formed of a number of different materials such as, e.g., a metal or biocompatible polymer. Such reinforcement structures may also be used in other bony areas of the spine including the vertebra, the pedicles, facets, the transverse process, etc. - As shown in
FIGS. 2A and 2B , aninferior portion 109 of aspinous process 108 may also be reinforced. Similarly ahole 110 is drilled in the inferior portion of thespinous process 108 and acavity 111 is formed. Thecavity 111 is similarly filled with a curable polymer and is reinforced by reinforcingelements 112 positioned within the cavity. - The reinforcement structure may be used in a number of applications including increasing the strength of healthy bone to support the load and fixation of orthopedic implants, as well as increasing the strength of bone weakened by osteoporosis, chronic steroid use, avascular necrosis, weakened by injury and cancer involving the bone. According to one aspect, the reinforcement structure comprises a material that provides sufficient strength including but not limited to suitable polymers, e.g. PEAK, titanium, steel and carbon fiber.
- The stabilizing and/or distracting devices described herein may be formed of a material that provides sufficient column strength including but not limited to suitable polymers, e.g. PEAK, titanium, steel, and carbon fiber.
- Referring to
FIGS. 3A and 3B , analternative support structure 120 is illustrated. Thesupport structure 120 allows the anchoring of implants under physiologic loads on thespinous process 101 while shielding underlying bone from loads that would normally cause the bone to fracture. (The implants may alternatively or in addition be anchored or attached to thelamina 103, e.g., with addition of small screws, barbs or adhesive that engage with the lamina while avoiding injuring the spinal cord surrounded by the lamina.) Thesupport structure 120 comprises a hood like element positioned over theposterior arch 100, i.e., thespinous process 101 andlamina 103 of aspine 90. Thesupport structure 120 may be made of a moldable or malleable material (e.g. putty, formable ceramic, clay-like material, or a moldable polymer or malleable alloy or metal) that cures into or forms a solid, strong structure. Heat, light, catalysts, precursors, or local pressure and force, for example, may be used to make the hood moldable or firm. The support structure of filling material to support the spinous process may be constructed or formed of moldable composites that can cure into hard material such as, e.g., ground glass powder or glass fiber fillers mixed into an acrylic matrix and activated with light or other biophysical modalities. Other cements or other curable materials may be suitable as well. Thesupport structure 120 further comprisesopenings 121 to guide drill bits and/or for the placement of screws, reinforcement posts, or other instruments or supplemental support structures. The guide may insure accurate positioning of the implant. Thesupport structure 120 may be anchored on the posterior arch by mold bending or forming the structure about the anatomy. Thesupport structure 120 may be anchored into the lamina or spinous process by anchoring elements, such as, e.g., screws or barbs. Thesupport structure 120 may also be anchored via screws or posts. Alternatively, thesupport structure 120 could be a preformed implant with contours that fit the anatomy of theposterior arch 100 or that are malleable or moldable to the anatomy. Also, the support structure 20 may be anchored into thepedicles 122 with screws, into the underlying bone with barbs, screws, bone anchors, or adhesives, over the edges of structures with hooks, or may be constructed of a plurality of pieces that may be assembled into one piece around the bone.Wings 120 a of support structure may be placed over the lamina to spread the force of any device attached to thesupport structure 120 - As illustrated in
FIGS. 3A and 3B , asensor 120 b is positioned on thesupport structure 120. Thesensor 120 b may be embedded in the material. The sensor may sense stress on thesupport structure 120 from implants secured to it, or may sense other information that may be desirable to monitor. The sensor may include a communication element configured to communicate sensed information to an external device, e.g., when interrogated. - Referring to
FIGS. 4A-4D , asupport structure 130 is illustrated positioned over aposterior portion 132 of aspinous process 131 withwings 130 a over thelamina 103 includingsmall screws 130 b intolamina 103.Wings 130 a may help spread the force from any devices attached or coupled to thesupport structure 130. Pedicle screws 135 are anchored intopedicles 136 and are further anchored into thespinous process 131 throughscrews 134 positioned throughholes 133 in thesupport structure 130. As shown inFIG. 4C , thescrew 134 includes asensor 134 a that may be used to sense loads on the device. Use of such sensors is described further herein. Thepedicle screw 135 includes ascrew capture device 135 a for receiving a screw or rod of a spinous process screw or other rod. Thecapture device 135 a may be a polyaxial head of a pedicle screw it may include a hole, a threaded screw hole with a washer or cap.Cross bar 135 b is positioned across the spine between heads ofpedicle screws 135 to prevent pedical screws from creeping laterally. A wedge shapednut 134 d between thehead 134 c of thescrew 134 and the support structure. Anothernut 134 b may be positioned betweensupport structure 120 and pedicle screw, and secure against thesupport structure 120. These features may be used in a similar manner in the embodiments described herein. -
FIG. 5 illustrates the spinous process screws 134 coupled to aspinous process 101 of afirst vertebra 91 through a hood orsupport structure 130 in a manner similar to that described above with respect toFIGS. 4A-4D . Thescrews 134 extend bilaterally across the posterior of asecond vertebra 92 and are anchored to captureelements 135 a ofpedicle screws 135 anchored intopedicles 93 a of athird vertebra 93. -
FIG. 6 illustrates a device for stabilizing or distracting the spine withpedicle screws 135 andcross bar 135 b positioned as inFIG. 4D .Hood structure 132 includes openings for receivingscrews 132 b coupled to thehood 132 on one end and to theheads 135 a ofpedicle screws 135 and on the other end. Thescrews 132 b do not penetrate the spinous process. Obliquely threaded nuts secure thescrews 132 b against thehood 132. - The reinforcement or supporting devices described herein may be used in conjunction with a number of different spine devices, including, for example, the various distraction, fusing or dynamic stabilizing devices described herein. The hoods or reinforcement devices herein may also be customized, for example by using stereolithography. The hoods or reinforcement devices may be used for example with a brace. The pedicle screw may be telescoping as described with respect to
FIGS. 22C and 22D . - The devices described herein may be coupled to the spinous process using minimally invasive techniques. These techniques may include percutaneously accessing the spinous process and/or using dilators to access the spinous process at an oblique angle with respect to median plane m and/or horizontal plane h through the spine of the patient.
-
FIG. 7A is a side view of a joint of the spine with a fixation device percutaneously implanted to fuse adjacent vertebrae by fixation of the facet joints.Pedicle screw 146 in thepedicle 143 of the adjacentvertebral members FIG. 7B , thepedicle screw 146 has apolyaxial screw head 147 for receiving aspinous process screw 148 having a tapered tip. Thespinous process screw 148 is screwed from the contralateral side of the spinous process, through thespinous process 140 ofvertebral member 141, adjacent the facet joint 149 between thevertebral member 141 andvertebral member 142, and then captured or placed into thehead 147 of thepedicle screw 146. - When implanted, the pedicle screws are positioned in the pedicles in a generally known manner. The facet joint or facet joints between the spinal members that are to be fused, are debrided and grafted. A flank stab wound is made to expose the base of the spinous process. The spinous process screw is then inserted and navigated through the wound to the spinous process and/or soft tissue. Tissue dilators or retractors may be used to facilitate insertion of the spinous process screw through soft tissue. The
spinous process screw 148 is then placed through thespinous process 140, and into and captured by thehead 147 of thepedicle screw 146. Compression across and the facet joint 149 may be provided using a nut placet in the polyaxial head of the pedicle screw. Alternatively, external compression may be used prior to placement of the oblique rod of the spinous process screw. A similar screw may also be placed from thespinous process 140 to the contralateral pedicle. Thespinous process 140 may be reinforced prior to or after placing thescrew 148. - Referring to
FIG. 8A , a similar fusion system as illustrated with respect toFIGS. 7A and 7B .Pedicle screw 156 is positioned in thepedicle 153 of the adjacentvertebral members pedicle screw 156 has apolyaxial screw head 157 for receiving aspinous process screw 158 having a tapered tip. Thespinous process screw 158 is screwed from the contralateral side of thespinous process 150, through thespinous process 150 ofvertebral member 151, through the facet joint 159 between thevertebral member 151 andvertebral member 152 and then into thehead 157 of thepedicle screw 156. - An oblique skin stab wound is made to navigate to the base of the
spinous process 150, which may be exposed under direct vision. The spinous process screw 158 (or other device) is then placed through thespinous process 150, across (adjacent or through) the facet joint 159, and into thehead 157 of the pedicle screw 156 (or otherwise attached to a pedicle attachment device for attaching devices to the pedicle), immobilizing the facet joint 159. A similar screw may also be placed from thespinous process 150 to the contralateral pedicle. The spinous process may be reinforced prior to or after placing the screw or other device. The other devices attached or coupled to the spinous process as described herein may be similarly deployed. - The devices described herein may be coupled to the spinous process using minimally invasive techniques. These techniques may include percutaneously accessing the spinous process and/or using dilators to access the spinous process at an oblique angle with respect to median plane and/or horizontal plane through the spine of the patient.
- Referring to
FIGS. 9A and 9B , a spine is illustrated with a spinal fusion system in place. Aspinous process screw 168 is placed from the contralateral side of thespinous process 160, through thespinous process 160 of afirst vertebra 161 and across the facet joint 169 between thefirst vertebra 161 and an adjacentsecond vertebra 162, and into thepedicle 164 of thesecond vertebra 162. - Another feature of the spinous process screw of
FIGS. 9A-9B is that it may be configured to exert flexible, stabilizing, nonfusion forces to the motion segment. For example, this may be used in the event that patient suffers from pain due to laxity or other dysfunction of the spinal structures (e.g. degenerative spondylolisthesis). In other words, the looseness or other dysfunction of the joint and surrounding tissue may cause pain. The present invention provides a device and method for dynamically stabilizing (or reducing) such a joint while allowing some flexibility and movement. The device and method provide such stabilization on an oblique angle with respect to the rotational axis of the spine, i.e. at an oblique angle with respect to the median and horizontal planes of the spine. The spinous process and a pedicle could also be used to anchor a device exerting a stabilizing or compression or contractile force between the two anchors on an oblique angle. Devices that may be used to exert such a contractile force may include, for example, polymeric materials, super elastic metals, and fabrics. Thespinous process screw 168 includes asensor 165 a that may be used to sense motion of the distraction device. The forces or stresses on the device may be monitored and used to determine if it is necessary to convert the device to a fusion type device or to otherwise reduce or alter motion. The sensor may also be used as a diagnostic device to measure the amount of joint motion upon insertion of the implant or over time. - The system illustrated in
FIGS. 9A and 9B may also be used for the treatment of spondylolysis, to attain stability across the pars interarticularis. - The spinous processes 140, 150, 160 may be reinforced in a manner as described herein. The various rods or screws through the
spinous processes -
FIG. 10 illustrates a spinous process rod or screw 60 in accordance with the invention. The spinous process rod or screw 60 comprises anelongate portion 61 configured to extend through the reinforcement hood 51 (for example, as described in further detail herein with reference toFIGS. 3A-4D positioned aroundspinous process 50 and into an adjacent element such as, e.g. a pedicle screw. The spinous process rod or screw 60 may include threaded portions. Thedistal end 62 of the rod may be threaded or otherwise configured to engage an adjacent element. The spinous process screw orrod 60 further comprises a proximal securingelement 65 located on theproximal portion 64 of the spinous process screw orrod 60. Theproximal securing element 65 is configured to engage afirst wall 52 portion of thespinous process 60 orreinforcement hood 51. (“Engage” as used herein means to either directly or indirectly engage.) As illustrated, thedistal securing element 63 comprises an obliquely threaded nut that is configured to receivescrew 61 which is coupled to thehood 51 at an oblique angle with respect to thewall 53. The oblique threaded nut may be used in other applications where a screw is oblique with respect to the abject to which is engaged, coupled or attached. The obliquely threaded nut may have a predetermined angle at which it directs the screw with respect to the hood to guide the desired angle or directions of the screw placement. This may be predetermined base on imaging of a particular patient's anatomy. Adistal securing element 63 is provided more distal of the proximal securingelement 65. The distal securing element is configured to engage asecond wall portion 53 generally opposite thefirst wall portion 52 so that the spinous process element is secured or fixed to the hood and spinous process. (The term “fix” as used herein means either directly or indirectly fix to and may include dynamic elements.) -
FIG. 11 illustrates a spinous process rod or screw 80 in accordance with the invention. The spinous process rod or screw 80 comprises anelongate portion 81 configured to extend through the reinforcement hood 71 (for example, as described in further detail herein with reference toFIGS. 3A-4D ) positioned aroundspinous process 70 and into an adjacent element such as, e.g. a pedicle screw. The spinous process rod or screw 80 may include threaded portions. Thedistal end 82 of the rod may be threaded or otherwise configured to engage an adjacent element, e.g. with a connecting member, including but not limited to connecting members described herein. The spinous process screw orrod 80 further comprises a proximal securingelement 85 located on theproximal portion 84 of the spinous process screw orrod 80. Theproximal securing element 85 is configured to engage afirst wall 72 portion of thespinous process 70 orreinforcement hood 71. (“Engage” as is used herein to mean either directly or indirectly engage.) A hollow space orchamber 74 is formed in thereinforcement hood 71 so that the hollow chamber may engageably receive one or more securing elements, e.g. first and second securingelements elements spinous process 70 through which the screw orrod 80 is positioned. As illustrated inFIG. 11 , securingelement 86 is positioned on theproximal portion 84 of thescrew 80 while securingportion 87 is positioned on thedistal portion 82 of thescrew 80. Securingelements nut 80 b inFIG. 3E . Securing elements may be attached a variety of ways, for example as illustrated inFIGS. 12A-12B and 13A-13B.FIGS. 12A-12B illustrate manual insertion of securing elements in accordance with the invention. Spinous process screw 80 a is placed through both wings of thehood 71 while passing throughholes 1000 as shown. Securingelements holes 1001 within thehood 71 and receivingholes 1002 within the spinous process screw 80 a. Securingelements FIGS. 13A-13B illustrate automatic deployment of securing elements in accordance with the invention. The securingelements recesses 1004 in thespinous process screw 80 b and spring loaded withsprings 1003 attached inside of therecesses 1004. Anexternal sheath 1005 is positioned around thespinous process screw 80 b. Thescrew 80 b is positioned through a spinous process and a hood. The securing elements are then deployed upon removal of anexternal sheath 1005. The securingelement hood 71. The securingelement second wall portion 73 generally opposite thefirst wall portion 72 so that the spinous process element is secured to the hood and spinous process. -
FIGS. 14A and 14B illustrate a spinous process rod or screw 54 in accordance with the invention. The spinous process rod or screw 54 comprises an elongateouter tube portion 55 and aninner rod portion 56. Theinner rod portion 56 is configured to move longitudinally within thetube portion 55 to lengthen or shorten the spinous process screw orrod 54. The inner wall of thetube portion 55 may include a threaded inner wall that mates with a threaded outer wall of therod 54 so that the rod may be screwed to advance therod 56 and thereby lengthen or shorten the spinous process screw orrod 54. Once theouter rod 55 and screw 56 are positioned within a spinous process orhood 51 the spinous process screw orrod 54 may then be lengthened as shown inFIG. 14B to extend through thereinforcement hood 51. The lengthened spinous process screw may be used to distract the spinal segment or segments as well. - The pedicle attachment devices herein may include a sensor that may be used to sensor one or more parameters e.g., strain, pressure, motion, position change, that provides information about possible screw failure. The sensor may communicate the information to an external device, e.g. telemetrically, and may be passively powered by an external device.
- According to another aspect of the invention a rod is provided that is anchored to with pedicle screws with screw heads made of or attached to swivel collars, polyaxial heads, or other movable fasteners to allow for near physiologic levels of motion of the spinal motion segment. Angular movement may be provided where a distracting element attaches on either side of a motion segment so that when distracting or lengthening the device, there is accommodation in the device for the change of angle that occurs.
-
FIG. 15 illustrates an enlarged portion of a spinal prosthesis. Theprosthesis 280 may provide support of the load on the spine where a facet has been removed or may provide other support or distraction. Theprosthesis 280 comprises adistraction bar 281 used to distract a motion segment of the spine in a number of manners including the distraction devices described herein. Apedicle screw 283 is screwed into a pedicle of the spine or other anatomical location. Thedistraction bar 281 includes and articulatingcup 282 having aninner surface 282 a. Thepedicle screw 283 has aball 284 received by and coupled to thecup 282 of thedistraction bar 281. In addition to shock absorbing capabilities described in various embodiments herein, thedistraction bar 281 also articulates with a portion of the spine to which thepedicle screw 283 is attached. -
FIG. 16 illustrates a variation of theprosthesis 280 described with respect toFIG. 15 . Theprosthesis 285 comprises adistraction bar 286 and an articulatingball 287 configured to engage and couple with anarticulation cup 289 of apedicle screw 288. Theprosthesis 285 operates in a similar manner asprosthesis 280. -
FIG. 17 illustrates a variation of theprostheses FIGS. 15 and 16 . Theprosthesis 290 comprises adistraction bar 291 having anend 292 with alumen 293 for slidably receiving theend 296 of apedicle screw 295. Theend 296 of thepedicle screw 295 comprises aball portion 297 attached to aneck 298. Theball 297 portion is configured to slide within thelumen 293 of thedistraction bar 291 which contains theball portion 297. Theneck 298 of thepedicle screw 295 extends out of thedistraction bar 291 through alongitudinal slit 294 that slidably receives thenarrower neck portion 298 of thepedicle screw 295. - One embodiment of the invention is a rod anchored at each end across a motion segment that can be “switched” between dynamic stabilization and rigid fixation in a minimally invasive, percutaneous, or non-invasive fashion. One way for this to occur is injection of a flowable material within the lumen of the device, which would cure, and immobilize the components which allow for motion. Electrical current, heat, mechanical energy, or other techniques could also be used to render movable components fixed. Another method is insertion of a rigid implant axially along the length of the dynamic implant. This method of rendering a flexible prosthesis rigid may be applied to the design of other combination motion/fixation prostheses, including disc, facet hip, knee, fingers shoulder, elbows, and ankle prostheses, etc.
-
FIGS. 18-21 illustrate convertible or adjustable dynamic stabilization devices for joints. The stiffness or flexibility of the device may be altered or titrated after implantation to adapt the stiffness to a particular patient, and/or to adjust the stiffness over time, for example when laxity of the joint increases with age. Referring toFIG. 18 illustrates adynamic stabilization prosthesis 350. The prosthesis comprises aflexible coil 352 contained in atube member 351 comprising telescoping tubes. Theprosthesis 350 may be used in a number of manners affixed across a joint motion segment to dynamically stabilize the joint. Thecoil 352 may be energy absorbing. Thecoil 352 may also be configured to exert a distracting force on the joint when implanted.FIG. 19 illustrates thedynamic stabilization prosthesis 350 ofFIG. 18 converted to a rigid or more rigid prosthesis. Theprosthesis 350 includes aslit 353 for receiving arigid wire member 354. InFIG. 19 therigid wire member 354 is inserted into theslit 353 to form the prosthesis from a dynamic prosthesis into a rigid prosthesis. As an alternative to a rigid wire member, a flexible coil of a selected stiffness may be inserted to change the stiffness of the dynamic prosthesis. The tube may alternatively comprise a ferromagnetic material contained therein and an electromagnetic field is applied that causes the prosthesis to become stiffer. The field may be varied to provide a variety of gradients in stiffness. The device may also include a sensor that operates as sensor 170 a described herein. Feedback may be provided and the stiffness of the prosthesis adjusted accordingly. The stiffness may be varied when implanted using patient feedback so that the implant is more or less flexible depending upon an individual patient's needs. In addition the stiffness may be changed at different times during the course of the implants lifetime. For example, the stiffness may be increased when an increased amount of stabilization is required. -
FIG. 20 illustrates analternative prosthesis 360 also comprising aflexible coil 362 contained in atube member 361. The tube member is configured to receive a fluid material such as acurable polymer 364 that cures in the tubular member to create a rigid prosthesis. As illustrated inFIG. 20 a rigid prosthesis is formed from a dynamic prosthesis by injecting thepolymer material 364 into thetubular member 361. The flexibility/stiffness properties of the prosthesis may be selected by selecting such properties of the polymer to be injected. - As illustrated in
FIG. 21 a flexible prosthesis 365 is illustrated. The flexibility of theprosthesis 365 is adjustable by injecting a polymer material into one or more of thecolumnar cavities - According to an embodiment of the invention, the dynamic stabilizer may comprise a shock absorber that has both energy absorbing and energy dissipating properties. The tension band effect of the posterior columns may also offload the pressures borne by anterior column of the spine. So in addition to helping to protect the facet joints, other aspects of the invention would help slow the progression of degenerative disc disease, annular degradation, disc herniation, and vertebral compression fractures.
- Another aspect of the invention is to supplement implants or repair procedures of the anterior column with a posterior shock absorber device (rod, screw, plate). Examples of these implants or procedures include total disc replacements, annular repair, artificial nucleus, and vertebroplasty/kyphoplasty.
- Another aspect of the invention is to supplement implants or repair procedures of the posterior column with a shock absorber rod. Examples of these implants or procedures include interspinous distraction wedges, facet joint replacements, and posterior arch replacements.
- Another aspect of the invention provides a posterior support implants with shock absorbing properties, to decrease or remove the load experienced by the facets. Implant components may include springs, coils, hydraulic or fluid filled piston chambers, or elastic materials. Each end of the device could be anchored in such a fashion so the rod bridges the facet joint, reducing the loads borne by the joint. This is believed to reduce wear of the facets and resulting pain and altered spinal biomechanics.
- An improved device is provided that utilizes the spinous process, the pedicle, adjacent ribs and/or a transverse process or a combination including one or more of these anatomical structures, to correct or stabilize a deformed spine. The device may be used to correct scoliosis using one or more of these anatomical structures and multiple points at a plurality of spine segments. The correction may be made incrementally over time and may or may not include a fusion process.
- In one embodiment, a percutaneously and obliquely placed rigid or dynamic stabilizer is provided. Stabilizer segments are anchored to base of spinous process at one end and a pedicle screw at the other end, as a unilateral temporary stabilizer. The dynamic stabilizers described herein may be adjusted over time to gradually bring the spine in alignment. The stabilizer may be used to derotate (untorque) and correct the spine. A stabilizer placed across a motion segment, i.e., not at the same vertebral level may be used to create overgrowth where desired, i.e. on the non-instrumented side of the motion segment. Such overgrowth may help stabilization or correction of the spine.
-
FIGS. 22A-24 illustrate an explantable, temporary scoliosis stabilization device. The system is configured to be manipulable once it is installed. The systems illustrated are configured to alter the orientation of a vertebral body and in particular to untorque the spine about the axis of the spinal column as well as applying a corrective straightening or translation force with respect to a vertical rod. According to one aspect of the invention, a device for correcting deformities of the spine is provided where the device may be adjusted over time to direct the corrective forces as needed over time. According to another aspect, a multipoint stabilizing device is coupled to the posterior portions of the spine. - The systems illustrated in
FIGS. 22A-24 comprise a multipoint anchoring mechanism that provides for multidimensional correction of the spinal or spinal segments by positioning the anchor at a plurality of locations on a spine. As illustrated for example inFIGS. 22A-22H , the multiple locations include the spinous process and pedicle of a particular vertebra. A bar is attached between the spinous process and pedicle. A force directing device couples the bar to a vertical rod. As illustrated inFIGS. 23A-23B , the multiple locations include the spinous process of one level and the pedicle of another level (e.g. an adjacent level). As illustrated inFIG. 24 , the multiple locations include the spinous process, through atransverse process 605 into a costal aspect of arib 606. The vertical rod in these figures is attached or coupled to the spine at neutral and balanced vertebra, typically only at the most upper and most lower positions. - The device comprises a telescoping rod (or plate) 536 to which various segments of the spinal column are to be fixed. The
rod 536 telescopes to adjust the height to accommodate particular segments or a height of the spine. As illustrated inFIG. 22A aportion 500 of the spine comprises a plurality ofadjacent segments portion 500 of the spine exhibits a concave curvature betweensegments segments Dynamic stabilizers 516, 517, 518, 519, 520 are attached to pediclescrews spinous processes segments Wires rod 536 viahooks rod 536. Thewires spine 500 to pull on the concavity. If the portion has a convexity, rods may be used in place of wires to push on the convexity to straighten the spine. -
FIG. 22B is a cross section ofFIG. 22A along the lines 22B-22B. Thepedicle screw 508 includes ascrew capture device 508 a for receiving a screw head or rod of a dynamic stabilizer, in this case, aspinous process screw 518. The capture device may be a hole, a threaded screw hole with a washer or cap. Thepedicle screw 508 may be configured to telescope outwards or inwards to be positioned to receive the screw head or rod of adynamic stabilizer 518 as shown inFIGS. 22C and 22D . Thespinous process screw 518 is shown in 22C where, given the trajectory of thespinous process screw 518, its end does not intercept thecapture device 508 a of thepedicle screw 508. As shown inFIG. 22D the pedicle screw'strunk 508 b is lengthened with a telescoping or other similar lengthening mechanism so that the end of thespinous process screw 518 may be positioned in thecapture device 508 a. - The
spinous process screw 518 is anchored through the reinforced spinous process 523 (having areinforcement hood 523 a or is otherwise reinforced as described herein. Note that the reinforcement hood may have a single lamina wing where a single screw is attached as opposed to bilateral screws.) with ahead portion 518 a engaging thepedicle screw 503 and arod portion 518 b extending through a reinforcedspinous process 523. Thedynamic stabilizer 518 includes aloop connector end 518 c for receiving ahook 518 d of a wire (or a telescoping rod) 528 that is attached to therod 536 with a ratchetedconnector 533. The wire may also be a rod, spring, elastic band or other force-directing device. Theloop connector end 518 c may also be a poly axial connector that allows translation in a variety of directions or places, i.e., so that an oblique angle rod can be captured. (for example, similar topedicle screw 503 and capture device 503 a) Thewire 528 may be adjusted or tightened at various times with the ratchetedconnector 533, e.g., during a period of time where the spine is being corrected. As the spine is straightened, excess wire may be trimmed off. This procedure may be done percutaneously, e.g. by accessing wire near the skin. Each dynamic stabilizer is similarly constructed. -
FIGS. 22E-22H illustrate various dynamic stabilizers that may be used to correct spinal deformity.Dynamic stabilizers telescoping rod 536. The coupling mechanisms 541 a-c may be positioned on or through the plate ortelescoping rod 536. Dynamic stabilizer 518 e includesrod 518 f that will extend through a reinforced spinous process and is coupled by acoupling mechanism 518 g torod 518 h in an end-to-end fashion.Rod 518 h slidably extends through opening incoupling mechanism 541 a attached to thetelescoping rod 536. Therod 518 h is adjustable within thecoupling mechanism 541 a to lengthen or shorten the distance of the dynamic stabilizer 518 e between the spinous process and thetelescoping rod 536. Thecoupling mechanism 541 a is configured to clamp down on therod 518 h to secure it in place once the distance has been adjusted. The coupling mechanisms 541 a-c may include a screw, cam or clamp mechanism to clamp or lockably engagerods 518 h, l, and p as described in use herein. - Similarly,
dynamic stabilizer 518 i includesrod 518 j that will extend through a reinforced spinous process and is coupled by acoupling mechanism 518 k to rod 518 l in an end to side fashion. Rod 518 l slidably extends through opening incoupling mechanism 541 b attached to thetelescoping rod 536. The rod 518 l is adjustable within thecoupling mechanism 541 b to lengthen or shorten the distance of thedynamic stabilizer 518 i between the spinous process and thetelescoping rod 536. Thecoupling mechanism 541 b is configured to clamp down on the rod 518 l to secure it in place once the distance has been adjusted. -
Dynamic stabilizer 518 m includes arod 518 n that will extend through a reinforced spinous process and is coupled by a threaded coupling 518 o torod 518 p. Therod 518 p is slidably and rotatably positioned within a cylindrical hole incoupling mechanism 541 c attached to thetelescoping rod 536. Therod 518 p may be rotated, i.e., screwed or unscrewed so that the stabilizer lengthens or shortens at the threaded coupling 518 o. The rotation or screwing may be actuated at or near the skin where therod 518 p is positioned in thecoupling mechanism 541 c. -
Dynamic stabilizer 518 q includes arod 518 r that will extend through a reinforced spinous process and is coupled by amultiaxial coupling 518 s similar to a multiaxial screw head type coupling, torod 518 t. Therod 518 t is a telescoping rod and is coupled bycoupling mechani8sm 541 d to thevertical rod 536. - Each of the dynamic stabilizers may include sensors located thereon to sense data corresponding to a parameter of the dynamic stabilization device or the spine.
FIG. 22E-22H illustrate sensors 542 a-542 d located on the dynamic stabilizer. The sensors may comprise, e.g., a strain, stress, pressure, position or motion sensor. Such sensors may include a variety of sensors that are generally know. For example, strain gauges, accelerometers or piezo electric sensors may be employed to sense parameters that correspond, e.g., to the position of the spine, a vertebra, a dynamic stabilizer, as well as the parameters relating to the forces or mechanical loads that are effecting the device. Each of the sensors may individually sense information or information relative to each of the other sensors may be sensed and compared. The information may be used to set tension on the device, to identify when repositioning is necessary or to otherwise provide information as to the status of the device or portions thereof, or status of the spine that is being treated. The sensors may include some level or circuitry including, e.g. a telemetry circuit that transmits information concerning the sensors to an external device. The sensors may be battery powered or may use passive circuits that are powered by an external device. The information may be used to identify when one of the stabilizers no longer has tension associated with the stabilizer thus identifying when the tension needs to be modified in the device. Accordingly, each segment may be moved separately, monitored separately and adjusted separately form the other segments. Each segment may be moved to a different degree and in different directions or at different angles with varying forces. -
FIG. 23A illustrates an alternative configuration of the correction device according to the invention. Aportion 550 of the spine comprises a plurality ofadjacent segments portion 550 of the spine exhibits a concave curvature betweensegments segments Dynamic stabilizers screws adjacent segments dynamic stabilizers telescoping rod 576 in one or more manners such as, for example, thedynamic stabilizers FIGS. 22A-22H , herein. Thedynamic stabilizers spine 500 to pull on the concavity, or if the portion has a convexity, to push , pull on, or translate the convexity to straighten the spine. Thus each of the dynamic stabilizers are attached a plurality of locations on the spine and operate to stabilize adjacent segments with respect to each other. -
FIG. 23B illustrates a pedicle screw and dynamic stabilizer in greater detail. Thepedicle screw 558 is screwed into pedicle 563 ofvertebra 553. Thepedicle screw 558 includes a screw hole 558 a for receiving a screw head or rod of adynamic stabilizer 568. A screw capture device 568 b such as a nut or a threaded portion of the pedicle screw is configured to capture and receive the dynamic stabilizer screw or rod portion 568 a. The capture device 568 b of the stabilizer engages thepedicle screw 558 and a rod portion 568 b extends through a reinforcedspinous process 574. Thedynamic stabilizer 568 includes a connector end 580 for receiving a wire 578 or a hook of a telescoping rod that is attached to thetelescoping rod 576. Thedynamic stabilizer 568 is anchored through the reinforcedspinous process 574 of an adjacent vertebra 554 (FIG. 17A ) thus immobilizing or stabilizing the motion segment between thevertebra -
FIG. 24 illustrates a device for treating a deformity such as scoliosis. The device includes adynamic stabilizer 600 comprising aspinous process screw 601 and apedicle screw 602 including a spinous processscrew capture device 603. The spinous process screw is configured to be positioned through a reinforcedspinous process 604 and through atransverse process 605 into a costal aspect of arib 606. Thedynamic stabilizer 600 includes aconnector portion 607 configured to be connected to a telescoping rod as described herein with reference to FIGS. 22A-H and 23A-23B. Similar to FIGS. 22A-H and 23A-23B, a plurality of segments may be secured to a telescoping rod with a plurality of dynamic stabilizers. The pedicle screw in this and all other embodiments described in this application may include a telescoping portion that can adjust the length of the screw head from the anchoring point where the pedicle screw is anchored into the bone. Thepedicle screw 602 also includes a sensor 608 located thereon (or incorporated therewith). The sensor may comprise, for example, a motion detector, a position detector, a pressure sensor, a strain gauge, and ultrasonic transducer/sensor. The sensor may sense a change in strain on the screw that may be due to loosening or repositioning of the screw. The sensor may also sense a change in position of the screw that indicates a change in alignment and corresponding loosening or repositioning of the screw. The sensor may also sense a change in pressure due to loosening or repositioning of the screw. The sensor may also include an ultrasonic transducer and transmitter that can determine change in positioning of the screw, e.g. loosening of the screw indicated by a change in interfaces of materials or characteristic property change indicating screw loosening or repositioning. The sensor may include some electronics such as a telemetry circuit that allows it to communicate with an external device. The sensor may also be powered by an external device e.g., in a manner generally known in the art. - The various embodiments of the invention described herein may include sensors integrated with or provided on a structural spinal implant. A number of factors may be detected as described herein. Additional factors may include, e.g., local inflammation, pressure, tension, edema, motion, water content, and electrolytes or other chemicals. The sensors allow a doctor to monitor patients for response to healing, or may be used by the doctor to guide serial adjustments to the patient's treatment. For example, measurements from the sensing means could lead the doctor to change the length or tension of a distraction rod or stabilization device. Patients could adjust therapy based on measurements from the sensing device, or could be alerted to notify their doctor should certain measurements be of concern. The sensor is configured to be adjustable to sensed stresses. The sensor may for example, be a strain gauge, a pressure sensor accelerometer, position sensor, imaging device, etc. The sensor may be used in the initial adjustment of the prosthesis or may be monitored over time. The sensor may sense shear/torsion tension/compression. Sensors may sense stresses at various motion segments. The sensor may be used to compare stresses at various motion segments or locations. Various sensors may be selected from sensors that are known to one of skill in the art or that are commercially available.
- Anchoring of Therapeutic Devices
- Some patients obtain back pain relief with injections of steroids and anesthetic agents at the site of pain; however the relief is temporary requiring that patients return for repeat injections when their pain recurs.
- One embodiment of the invention comprises an anchor device with a therapeutic substance or drug delivery device, e.g. a drug port and/or reservoir, or matrix attached to a vertebra. In one embodiment, the device is anchored adjacent a site near where pain is present. The port is configured to deliver steroids or anesthetic agents via a catheter to a desired location, for example, the facet joint, neural foramen, vertebral body, annulus, nucleus, back muscles, back ligaments, bone metastases, intrathecal space, epidural space, or other targets in, on, or around the spine. The catheter can direct the drug to the correct location by positioning the end of the catheter at a target location. The port is configured to be refilled periodically percutaneously, e.g. using an imaging device and a percutaneously placed needle that can inject the refill into the port, e.g. through a biocompatible polymer or rubber type port access mechanism. The device further comprises a patient actuation mechanism for patient control of drug delivery as needed for pain relief, manually or remotely using a telemetrically triggered delivery from an external telemetry control device. According one aspect of the invention such a device is attached to a boney structure of the spine. Other device that may be attached to the spine may include sensory or therapeutic devices, including nerve stimulators, bone growth stimulators and radioactive seeds.
- In addition, a structural implant could be anchored to bone, to which a sensory or therapeutic device could be attached. The sensory or therapeutic device could be placed external to the bone, on the surface of the bone, or internal to the bone.
-
FIGS. 25 and 26 illustratedrug delivery devices drug delivery device 370 includes areservoir 375 attached by ananchor 371 configured to anchor thereservoir 375 to the bone of the spine. In particular, in this embodiment, theanchor 371 comprises a pedicle screw that anchors the device to thepedicle 373 of avertebra 372. Thereservoir 375 includes acatheter 376 in communication with the contents of thereservoir 375 and having an end positioned adjacent or in a zygapophyseal joint 378 where the drug is directed to have a therapeutic effect on the joint 378. The device may include a telemetrically actuable pump mechanism for delivering the drug to the joint upon telemetric actuation by an external control device. Thedevice 370 further comprises aport 377 for receiving (e.g. via a percutaneously introduced needle) into thereservoir 375, refills of the therapeutic substance or drug.Device 380 comprises asimilar catheter 386, andreservoir 385 attached by ananchor 381 to thespinous process 383 or alternatively anadjacent lamina 384. Thespinous process 383 orlamina 384 may be reinforced prior to attachment of theanchor 381 or may be attached to a reinforcement device positioned at the posterior arch of the spine, as described herein with reference toFIGS. 1A-7B .
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/197,569 US20060036324A1 (en) | 2004-08-03 | 2005-08-03 | Adjustable spinal implant device and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59888204P | 2004-08-03 | 2004-08-03 | |
US11/197,569 US20060036324A1 (en) | 2004-08-03 | 2005-08-03 | Adjustable spinal implant device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060036324A1 true US20060036324A1 (en) | 2006-02-16 |
Family
ID=35801011
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/196,952 Active US7658753B2 (en) | 2004-08-03 | 2005-08-03 | Device and method for correcting a spinal deformity |
US11/197,041 Active 2025-10-28 US7708765B2 (en) | 2004-08-03 | 2005-08-03 | Spine stabilization device and method |
US11/197,569 Abandoned US20060036324A1 (en) | 2004-08-03 | 2005-08-03 | Adjustable spinal implant device and method |
US12/645,305 Expired - Fee Related US8043345B2 (en) | 2004-08-03 | 2009-12-22 | Device and method for correcting a spinal deformity |
US12/645,269 Active US8016860B2 (en) | 2004-08-03 | 2009-12-22 | Device and method for correcting a spinal deformity |
US12/726,292 Active US8002801B2 (en) | 2004-08-03 | 2010-03-17 | Adjustable spinal implant device and method |
US13/277,629 Abandoned US20120089186A1 (en) | 2004-08-03 | 2011-10-20 | Device and method for correcting a spinal deformity |
US14/664,519 Expired - Fee Related US9801666B2 (en) | 2004-08-03 | 2015-03-20 | Device and method for correcting a spinal deformity |
US15/723,458 Expired - Fee Related US10512490B2 (en) | 2004-08-03 | 2017-10-03 | Device and method for correcting a spinal deformity |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/196,952 Active US7658753B2 (en) | 2004-08-03 | 2005-08-03 | Device and method for correcting a spinal deformity |
US11/197,041 Active 2025-10-28 US7708765B2 (en) | 2004-08-03 | 2005-08-03 | Spine stabilization device and method |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/645,305 Expired - Fee Related US8043345B2 (en) | 2004-08-03 | 2009-12-22 | Device and method for correcting a spinal deformity |
US12/645,269 Active US8016860B2 (en) | 2004-08-03 | 2009-12-22 | Device and method for correcting a spinal deformity |
US12/726,292 Active US8002801B2 (en) | 2004-08-03 | 2010-03-17 | Adjustable spinal implant device and method |
US13/277,629 Abandoned US20120089186A1 (en) | 2004-08-03 | 2011-10-20 | Device and method for correcting a spinal deformity |
US14/664,519 Expired - Fee Related US9801666B2 (en) | 2004-08-03 | 2015-03-20 | Device and method for correcting a spinal deformity |
US15/723,458 Expired - Fee Related US10512490B2 (en) | 2004-08-03 | 2017-10-03 | Device and method for correcting a spinal deformity |
Country Status (1)
Country | Link |
---|---|
US (9) | US7658753B2 (en) |
Cited By (267)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050131411A1 (en) * | 2001-03-30 | 2005-06-16 | Culbert Brad S. | Method and apparatus for bone fixation with secondary compression |
US20050216017A1 (en) * | 2004-03-09 | 2005-09-29 | Louie Fielding | Spinal implant and method for restricting spinal flexion |
US20060009767A1 (en) * | 2004-07-02 | 2006-01-12 | Kiester P D | Expandable rod system to treat scoliosis and method of using the same |
US20060069436A1 (en) * | 2004-09-30 | 2006-03-30 | Depuy Spine, Inc. | Trial disk implant |
US20060085073A1 (en) * | 2004-10-18 | 2006-04-20 | Kamshad Raiszadeh | Medical device systems for the spine |
US20060111715A1 (en) * | 2004-02-27 | 2006-05-25 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US20060224088A1 (en) * | 2005-03-29 | 2006-10-05 | Roche Martin W | Body parameter detecting sensor and method for detecting body parameters |
US20070016191A1 (en) * | 2004-12-08 | 2007-01-18 | Culbert Brad S | Method and apparatus for spinal stabilization |
US20070118132A1 (en) * | 2002-07-19 | 2007-05-24 | Triage Medical, Inc. | Method and apparatus for spinal fixation |
US20070179614A1 (en) * | 2006-01-30 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc and method of installing same |
US20070179739A1 (en) * | 2006-02-01 | 2007-08-02 | Sdgi Holdings, Inc. | Implantable pedometer |
US20070233065A1 (en) * | 2006-02-17 | 2007-10-04 | Sdgi Holdings, Inc. | Dynamic treatment system and method of use |
US20070270825A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Expandable interspinous process implant and method of installing same |
US20070270828A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Interspinous process brace |
US20070270824A1 (en) * | 2006-04-28 | 2007-11-22 | Warsaw Orthopedic, Inc. | Interspinous process brace |
US20070270829A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Molding device for an expandable interspinous process implant |
US20070270823A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Multi-chamber expandable interspinous process brace |
US20070270827A1 (en) * | 2006-04-28 | 2007-11-22 | Warsaw Orthopedic, Inc | Adjustable interspinous process brace |
US20070276369A1 (en) * | 2006-05-26 | 2007-11-29 | Sdgi Holdings, Inc. | In vivo-customizable implant |
US20080009866A1 (en) * | 2004-03-09 | 2008-01-10 | Todd Alamin | Methods and systems for constraint of spinous processes with attachment |
US20080021457A1 (en) * | 2006-07-05 | 2008-01-24 | Warsaw Orthopedic Inc. | Zygapophysial joint repair system |
US20080058808A1 (en) * | 2006-06-14 | 2008-03-06 | Spartek Medical, Inc. | Implant system and method to treat degenerative disorders of the spine |
US20080091213A1 (en) * | 2004-02-27 | 2008-04-17 | Jackson Roger P | Tool system for dynamic spinal implants |
US20080108993A1 (en) * | 2006-10-19 | 2008-05-08 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US20080147122A1 (en) * | 2006-10-12 | 2008-06-19 | Jackson Roger P | Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer |
US20080167655A1 (en) * | 2007-01-05 | 2008-07-10 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US20080177264A1 (en) * | 2006-10-19 | 2008-07-24 | Simpirica Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US20080183211A1 (en) * | 2007-01-11 | 2008-07-31 | Lanx, Llc | Spinous process implants and associated methods |
US20080262549A1 (en) * | 2006-10-19 | 2008-10-23 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US20080281361A1 (en) * | 2007-05-10 | 2008-11-13 | Shannon Marlece Vittur | Posterior stabilization and spinous process systems and methods |
US20080281360A1 (en) * | 2007-05-10 | 2008-11-13 | Shannon Marlece Vittur | Spinous process implants and methods |
US20080294200A1 (en) * | 2007-05-25 | 2008-11-27 | Andrew Kohm | Spinous process implants and methods of using the same |
US20080300633A1 (en) * | 2007-05-31 | 2008-12-04 | Jackson Roger P | Dynamic stabilization connecting member with pre-tensioned solid core |
US20080306537A1 (en) * | 2007-06-08 | 2008-12-11 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20080306545A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US20080306556A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method |
US20080319488A1 (en) * | 2007-01-10 | 2008-12-25 | Facet Solutions, Inc. | System and method for facet joint replacement |
US20080319490A1 (en) * | 2005-09-30 | 2008-12-25 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US20090012565A1 (en) * | 2007-06-06 | 2009-01-08 | Vertech, Inc. | Medical device and method to correct deformity |
US20090024166A1 (en) * | 2004-08-03 | 2009-01-22 | Vertech Innovations, Llc. | Facet device and method |
US20090024169A1 (en) * | 2004-06-02 | 2009-01-22 | Facet Solutions, Inc. | System and method for multiple level facet joint arthroplasty and fusion |
US20090024167A1 (en) * | 2004-02-17 | 2009-01-22 | Facet Solutions, Inc. | Spinal facet implants with mating articulating bearing surface and methods of use |
US20090024134A1 (en) * | 2004-06-02 | 2009-01-22 | Facet Solutions, Inc. | Surgical measurement and resection framework |
US20090062918A1 (en) * | 2007-08-30 | 2009-03-05 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US20090069813A1 (en) * | 2001-03-30 | 2009-03-12 | Interventional Spine, Inc. | Method and apparatus for bone fixation with secondary compression |
US20090105764A1 (en) * | 2007-10-23 | 2009-04-23 | Jackson Roger P | Dynamic stabilization member with fin support and solid core extension |
US20090105820A1 (en) * | 2007-10-23 | 2009-04-23 | Jackson Roger P | Dynamic stabilization member with fin support and cable core extension |
US20090112207A1 (en) * | 2007-10-30 | 2009-04-30 | Blair Walker | Skeletal manipulation method |
US20090187120A1 (en) * | 2008-01-18 | 2009-07-23 | Warsaw Orthopedic, Inc. | Implantable sensor and associated methods |
US20090240280A1 (en) * | 2008-03-19 | 2009-09-24 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US20090264932A1 (en) * | 2006-10-19 | 2009-10-22 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
WO2009052315A3 (en) * | 2007-10-17 | 2009-11-05 | Robie Device Group, Llc | Methods, systems and apparatuses for torsional stabiliazation |
US20090281574A1 (en) * | 2007-02-12 | 2009-11-12 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
US20100010543A1 (en) * | 2007-05-01 | 2010-01-14 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US7648523B2 (en) | 2004-12-08 | 2010-01-19 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20100023060A1 (en) * | 2008-06-06 | 2010-01-28 | Simpirica Spine, Inc. | Methods and apparatus for locking a band |
US20100030279A1 (en) * | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine |
US20100030224A1 (en) * | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod |
US20100030274A1 (en) * | 2007-06-05 | 2010-02-04 | Spartek Medical, Inc. | Dynamic spinal rod and method for dynamic stabilization of the spine |
US20100030267A1 (en) * | 2007-06-05 | 2010-02-04 | Spartek Medical, Inc. | Surgical tool and method for implantation of a dynamic bone anchor |
US20100030271A1 (en) * | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine |
US20100036424A1 (en) * | 2007-06-22 | 2010-02-11 | Simpirica Spine, Inc. | Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment |
US20100036426A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Versatile offset polyaxial connector and method for dynamic stabilization of the spine |
US20100036436A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine |
US20100036435A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine |
US20100036437A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
US20100094305A1 (en) * | 2008-10-13 | 2010-04-15 | Arvin Chang | Spinal distraction system |
US20100094344A1 (en) * | 2008-10-14 | 2010-04-15 | Kyphon Sarl | Pedicle-Based Posterior Stabilization Members and Methods of Use |
US20100121323A1 (en) * | 2008-11-10 | 2010-05-13 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
WO2010059202A1 (en) * | 2008-11-18 | 2010-05-27 | Wasielewski Ray C | Method of designing orthopedic implants using in vivo data |
US20100168795A1 (en) * | 2008-02-26 | 2010-07-01 | Spartek Medical, Inc. | Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine |
US20100191071A1 (en) * | 2009-01-23 | 2010-07-29 | Warsaw Orthopedic, Inc. | Methods and Systems for Diagnosing, Treating, or Tracking Spinal Disorders |
US20100191297A1 (en) * | 2009-01-23 | 2010-07-29 | Spartek Medical, Inc. | Systems and methods for injecting bone filler into the spine |
US20100191088A1 (en) * | 2009-01-23 | 2010-07-29 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US20100191100A1 (en) * | 2009-01-23 | 2010-07-29 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US20100217271A1 (en) * | 2009-02-23 | 2010-08-26 | Ellipse Technologies, Inc. | Spinal distraction system |
US20100234894A1 (en) * | 2009-03-10 | 2010-09-16 | Simpirica Spine, Inc. | Surgical tether apparatus and methods of use |
US20100249837A1 (en) * | 2009-03-26 | 2010-09-30 | Kspine, Inc. | Semi-constrained anchoring system |
US20100268281A1 (en) * | 2005-12-19 | 2010-10-21 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
WO2010141293A2 (en) * | 2009-06-04 | 2010-12-09 | Linares Medical Devices, Llc | Tip support insert for application to left/right articular processes to minimize abrasion between vertebrae and to maintain proper angle/lift for reducing nerve compression |
US20100318129A1 (en) * | 2009-06-16 | 2010-12-16 | Kspine, Inc. | Deformity alignment system with reactive force balancing |
US20100324688A1 (en) * | 2009-06-18 | 2010-12-23 | Mekatronix | Intervertebral spinal disc prosthesis |
US20100331891A1 (en) * | 2009-06-24 | 2010-12-30 | Interventional Spine, Inc. | System and method for spinal fixation |
US20110054536A1 (en) * | 2008-11-11 | 2011-03-03 | Kspine, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US20110060336A1 (en) * | 2009-09-04 | 2011-03-10 | Ellipse Technologies, Inc. | Bone growth device and method |
US20110066188A1 (en) * | 2009-09-15 | 2011-03-17 | Kspine, Inc. | Growth modulation system |
US7927375B2 (en) | 2008-09-12 | 2011-04-19 | Doty Keith L | Dynamic six-degrees-of-freedom intervertebral spinal disc prosthesis |
US20110118783A1 (en) * | 2009-11-16 | 2011-05-19 | Spartek Medical, Inc. | Load-sharing bone anchor having a flexible post and method for dynamic stabilization of the spine |
WO2011057765A1 (en) * | 2009-11-13 | 2011-05-19 | Universite Pierre Et Marie Curie (Paris 6) | Device for measuring the activity of the spinal cord of a vertebra |
US20110125269A1 (en) * | 2009-11-25 | 2011-05-26 | Moskowitz Nathan C | Total artificial spino-laminar prosthetic replacement |
US20110125270A1 (en) * | 2009-11-23 | 2011-05-26 | David C Paul | Prosthetic Spinal Disc Replacement |
US7963978B2 (en) | 2007-06-05 | 2011-06-21 | Spartek Medical, Inc. | Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system |
US20110172708A1 (en) * | 2007-06-22 | 2011-07-14 | Simpirica Spine, Inc. | Methods and systems for increasing the bending stiffness of a spinal segment with elongation limit |
US7981025B2 (en) | 2006-10-20 | 2011-07-19 | Ellipse Technologies, Inc. | Adjustable implant and method of use |
US20110184245A1 (en) * | 2010-01-28 | 2011-07-28 | Warsaw Orthopedic, Inc., An Indiana Corporation | Tissue monitoring surgical retractor system |
US7993269B2 (en) | 2006-02-17 | 2011-08-09 | Medtronic, Inc. | Sensor and method for spinal monitoring |
US20110213221A1 (en) * | 2005-03-29 | 2011-09-01 | Roche Martin W | Method for Detecting Body Parameters |
US8021396B2 (en) | 2007-06-05 | 2011-09-20 | Spartek Medical, Inc. | Configurable dynamic spinal rod and method for dynamic stabilization of the spine |
US8057515B2 (en) | 2008-02-26 | 2011-11-15 | Spartek Medical, Inc. | Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine |
WO2011149845A2 (en) * | 2010-05-25 | 2011-12-01 | Pharmaco-Kinesis Corporation | A method and apparatus for an implantable inertial-based sensing system for real-time, in vivo detection of spinal pseudarthrosis and adjacent segment motion |
US8083772B2 (en) | 2007-06-05 | 2011-12-27 | Spartek Medical, Inc. | Dynamic spinal rod assembly and method for dynamic stabilization of the spine |
US8092502B2 (en) | 2003-04-09 | 2012-01-10 | Jackson Roger P | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
US8097024B2 (en) | 2008-02-26 | 2012-01-17 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for stabilization of the spine |
US8100915B2 (en) | 2004-02-27 | 2012-01-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US8105360B1 (en) | 2009-07-16 | 2012-01-31 | Orthonex LLC | Device for dynamic stabilization of the spine |
US8114134B2 (en) | 2007-06-05 | 2012-02-14 | Spartek Medical, Inc. | Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US8187307B2 (en) | 2006-10-19 | 2012-05-29 | Simpirica Spine, Inc. | Structures and methods for constraining spinal processes with single connector |
US8187305B2 (en) | 2008-06-06 | 2012-05-29 | Simpirica Spine, Inc. | Methods and apparatus for deploying spinous process constraints |
EP2460481A1 (en) * | 2010-12-01 | 2012-06-06 | FACET-LINK Inc. | Fusion implant for facet joints |
US20120191192A1 (en) * | 2009-09-30 | 2012-07-26 | Industry Foundation Of Chonnam National University | Image-based patient-specific medical spinal surgery method and spinal prosthesis |
US8257397B2 (en) | 2009-12-02 | 2012-09-04 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US8277505B1 (en) | 2011-06-10 | 2012-10-02 | Doty Keith L | Devices for providing up to six-degrees of motion having kinematically-linked components and methods of use |
US8282671B2 (en) | 2010-10-25 | 2012-10-09 | Orthonex | Smart device for non-invasive skeletal adjustment |
US8287598B1 (en) | 2011-12-05 | 2012-10-16 | TrueMotion Spine, Inc. | True spinal motion preserving, shock absorbing, intervertebral spinal disc prosthesis |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8337536B2 (en) | 2008-02-26 | 2012-12-25 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
US8348978B2 (en) | 2006-04-28 | 2013-01-08 | Warsaw Orthopedic, Inc. | Interosteotic implant |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US8403961B2 (en) | 2007-06-22 | 2013-03-26 | Simpirica Spine, Inc. | Methods and devices for controlled flexion restriction of spinal segments |
US8425611B2 (en) | 2010-10-26 | 2013-04-23 | Warsaw Orthopedic, Inc. | Expandable orthopedic implant system and method |
US8430916B1 (en) | 2012-02-07 | 2013-04-30 | Spartek Medical, Inc. | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US8518085B2 (en) | 2010-06-10 | 2013-08-27 | Spartek Medical, Inc. | Adaptive spinal rod and methods for stabilization of the spine |
US8556938B2 (en) | 2009-06-15 | 2013-10-15 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US8562653B2 (en) | 2009-03-10 | 2013-10-22 | Simpirica Spine, Inc. | Surgical tether apparatus and methods of use |
US8591515B2 (en) | 2004-11-23 | 2013-11-26 | Roger P. Jackson | Spinal fixation tool set and method |
US8641723B2 (en) | 2010-06-03 | 2014-02-04 | Orthonex LLC | Skeletal adjustment device |
US8668719B2 (en) | 2009-03-30 | 2014-03-11 | Simpirica Spine, Inc. | Methods and apparatus for improving shear loading capacity of a spinal segment |
US8715282B2 (en) | 2011-02-14 | 2014-05-06 | Ellipse Technologies, Inc. | System and method for altering rotational alignment of bone sections |
US8721566B2 (en) | 2010-11-12 | 2014-05-13 | Robert A. Connor | Spinal motion measurement device |
US8784490B2 (en) | 2008-11-18 | 2014-07-22 | Ray C. Wasielewski | Method of designing orthopedic implants using in vivo data |
US8814913B2 (en) | 2002-09-06 | 2014-08-26 | Roger P Jackson | Helical guide and advancement flange with break-off extensions |
CN104055607A (en) * | 2013-03-20 | 2014-09-24 | 江阴瑞康健生物医学科技有限公司 | Artificial lamina |
US8845649B2 (en) | 2004-09-24 | 2014-09-30 | Roger P. Jackson | Spinal fixation tool set and method for rod reduction and fastener insertion |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
US8870928B2 (en) | 2002-09-06 | 2014-10-28 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US8920472B2 (en) | 2011-11-16 | 2014-12-30 | Kspine, Inc. | Spinal correction and secondary stabilization |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
JPWO2012176812A1 (en) * | 2011-06-20 | 2015-02-23 | 国立大学法人秋田大学 | Spine brake |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
US8998960B2 (en) | 2004-11-10 | 2015-04-07 | Roger P. Jackson | Polyaxial bone screw with helically wound capture connection |
US8998968B1 (en) | 2012-11-28 | 2015-04-07 | Choice Spine, Lp | Facet screw system |
AU2012216813B2 (en) * | 2005-03-29 | 2015-05-07 | Martin Roche | Body parameter detecting sensor and method for detecting body parameters |
AU2012203891B2 (en) * | 2005-03-29 | 2015-05-07 | Martin Roche | Body parameter detecting sensor and method for detecting body parameters |
US9050139B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US9055981B2 (en) | 2004-10-25 | 2015-06-16 | Lanx, Inc. | Spinal implants and methods |
US9078711B2 (en) | 2012-06-06 | 2015-07-14 | Ellipse Technologies, Inc. | Devices and methods for detection of slippage of magnetic coupling in implantable medical devices |
US9107706B2 (en) | 2009-03-10 | 2015-08-18 | Simpirica Spine, Inc. | Surgical tether apparatus and methods of use |
US9144444B2 (en) | 2003-06-18 | 2015-09-29 | Roger P Jackson | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US20150313684A1 (en) * | 2010-12-17 | 2015-11-05 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US9248043B2 (en) | 2010-06-30 | 2016-02-02 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
US9247968B2 (en) | 2007-01-11 | 2016-02-02 | Lanx, Inc. | Spinous process implants and associated methods |
US9333009B2 (en) | 2011-06-03 | 2016-05-10 | K2M, Inc. | Spinal correction system actuators |
US9393045B2 (en) | 2013-03-15 | 2016-07-19 | Biomet Manufacturing, Llc. | Clamping assembly for external fixation system |
US9414863B2 (en) | 2005-02-22 | 2016-08-16 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
US9451989B2 (en) | 2007-01-18 | 2016-09-27 | Roger P Jackson | Dynamic stabilization members with elastic and inelastic sections |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US9468471B2 (en) | 2013-09-17 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US9468469B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US9468468B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse connector for spinal stabilization system |
US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
US9522021B2 (en) | 2004-11-23 | 2016-12-20 | Roger P. Jackson | Polyaxial bone anchor with retainer with notch for mono-axial motion |
US9522028B2 (en) | 2013-07-03 | 2016-12-20 | Interventional Spine, Inc. | Method and apparatus for sacroiliac joint fixation |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9717541B2 (en) | 2015-04-13 | 2017-08-01 | DePuy Synthes Products, Inc. | Lamina implants and methods for spinal decompression |
US9743960B2 (en) | 2007-01-11 | 2017-08-29 | Zimmer Biomet Spine, Inc. | Interspinous implants and methods |
US9743957B2 (en) | 2004-11-10 | 2017-08-29 | Roger P. Jackson | Polyaxial bone screw with shank articulation pressure insert and method |
US9839530B2 (en) | 2007-06-26 | 2017-12-12 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US9883951B2 (en) | 2012-08-30 | 2018-02-06 | Interventional Spine, Inc. | Artificial disc |
US9895236B2 (en) | 2010-06-24 | 2018-02-20 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US9907574B2 (en) | 2008-08-01 | 2018-03-06 | Roger P. Jackson | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
US9931223B2 (en) | 2008-04-05 | 2018-04-03 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US9993349B2 (en) | 2002-06-27 | 2018-06-12 | DePuy Synthes Products, Inc. | Intervertebral disc |
US10016220B2 (en) | 2011-11-01 | 2018-07-10 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
US10039578B2 (en) | 2003-12-16 | 2018-08-07 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US10058433B2 (en) | 2012-07-26 | 2018-08-28 | DePuy Synthes Products, Inc. | Expandable implant |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
US10238427B2 (en) | 2015-02-19 | 2019-03-26 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US10271885B2 (en) | 2014-12-26 | 2019-04-30 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US10299839B2 (en) | 2003-12-16 | 2019-05-28 | Medos International Sárl | Percutaneous access devices and bone anchor assemblies |
US10342581B2 (en) | 2011-11-16 | 2019-07-09 | K2M, Inc. | System and method for spinal correction |
US10349983B2 (en) | 2003-05-22 | 2019-07-16 | Alphatec Spine, Inc. | Pivotal bone anchor assembly with biased bushing for pre-lock friction fit |
US10363070B2 (en) | 2009-06-15 | 2019-07-30 | Roger P. Jackson | Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US10390963B2 (en) | 2006-12-07 | 2019-08-27 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
US10405891B2 (en) | 2010-08-09 | 2019-09-10 | Nuvasive Specialized Orthopedics, Inc. | Maintenance feature in magnetic implant |
US10433977B2 (en) | 2008-01-17 | 2019-10-08 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US10478232B2 (en) | 2009-04-29 | 2019-11-19 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
US10485588B2 (en) | 2004-02-27 | 2019-11-26 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US10500062B2 (en) | 2009-12-10 | 2019-12-10 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US20200008956A1 (en) * | 2008-12-02 | 2020-01-09 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery using active sensors |
US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
US10543107B2 (en) | 2009-12-07 | 2020-01-28 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10548741B2 (en) | 2010-06-29 | 2020-02-04 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US10548740B1 (en) | 2016-10-25 | 2020-02-04 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10575961B1 (en) | 2011-09-23 | 2020-03-03 | Samy Abdou | Spinal fixation devices and methods of use |
US10617453B2 (en) | 2015-10-16 | 2020-04-14 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US10695105B2 (en) | 2012-08-28 | 2020-06-30 | Samy Abdou | Spinal fixation devices and methods of use |
US10702311B2 (en) | 2011-11-16 | 2020-07-07 | K2M, Inc. | Spinal correction and secondary stabilization |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US10743794B2 (en) | 2011-10-04 | 2020-08-18 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
US10751094B2 (en) | 2013-10-10 | 2020-08-25 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
US10835290B2 (en) | 2015-12-10 | 2020-11-17 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US10918498B2 (en) | 2004-11-24 | 2021-02-16 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US10918425B2 (en) | 2016-01-28 | 2021-02-16 | Nuvasive Specialized Orthopedics, Inc. | System and methods for bone transport |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11006982B2 (en) | 2012-02-22 | 2021-05-18 | Samy Abdou | Spinous process fixation devices and methods of use |
US11173040B2 (en) | 2012-10-22 | 2021-11-16 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11191579B2 (en) | 2012-10-29 | 2021-12-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11202707B2 (en) | 2008-03-25 | 2021-12-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US11234745B2 (en) | 2005-07-14 | 2022-02-01 | Roger P. Jackson | Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
US11241257B2 (en) | 2008-10-13 | 2022-02-08 | Nuvasive Specialized Orthopedics, Inc. | Spinal distraction system |
US11246694B2 (en) | 2014-04-28 | 2022-02-15 | Nuvasive Specialized Orthopedics, Inc. | System for informational magnetic feedback in adjustable implants |
USRE49061E1 (en) | 2012-10-18 | 2022-05-10 | Nuvasive Specialized Orthopedics, Inc. | Intramedullary implants for replacing lost bone |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US11357547B2 (en) | 2014-10-23 | 2022-06-14 | Nuvasive Specialized Orthopedics Inc. | Remotely adjustable interactive bone reshaping implant |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US11457813B2 (en) | 2005-03-29 | 2022-10-04 | Martin W. Roche | Method for detecting body parameters |
US20220354511A1 (en) * | 2021-05-07 | 2022-11-10 | Mazor Robotics Ltd. | Three-dimensional (3d) bone-protecting drill guide device and systems and methods of manufacturing and using device |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US11577097B2 (en) | 2019-02-07 | 2023-02-14 | Nuvasive Specialized Orthopedics, Inc. | Ultrasonic communication in medical devices |
US11589901B2 (en) | 2019-02-08 | 2023-02-28 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device |
US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US11696836B2 (en) | 2013-08-09 | 2023-07-11 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US11737787B1 (en) | 2021-05-27 | 2023-08-29 | Nuvasive, Inc. | Bone elongating devices and methods of use |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US11766252B2 (en) | 2013-07-31 | 2023-09-26 | Nuvasive Specialized Orthopedics, Inc. | Noninvasively adjustable suture anchors |
US11801187B2 (en) | 2016-02-10 | 2023-10-31 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for controlling multiple surgical variables |
US11806054B2 (en) | 2021-02-23 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US11812923B2 (en) | 2011-10-07 | 2023-11-14 | Alan Villavicencio | Spinal fixation device |
US11839410B2 (en) | 2012-06-15 | 2023-12-12 | Nuvasive Inc. | Magnetic implants with improved anatomical compatibility |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11857226B2 (en) | 2013-03-08 | 2024-01-02 | Nuvasive Specialized Orthopedics | Systems and methods for ultrasonic detection of device distraction |
US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US12023073B2 (en) | 2021-08-03 | 2024-07-02 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
Families Citing this family (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8187303B2 (en) * | 2004-04-22 | 2012-05-29 | Gmedelaware 2 Llc | Anti-rotation fixation element for spinal prostheses |
US7691145B2 (en) * | 1999-10-22 | 2010-04-06 | Facet Solutions, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US7674293B2 (en) * | 2004-04-22 | 2010-03-09 | Facet Solutions, Inc. | Crossbar spinal prosthesis having a modular design and related implantation methods |
US7608104B2 (en) * | 2003-05-14 | 2009-10-27 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US7406775B2 (en) * | 2004-04-22 | 2008-08-05 | Archus Orthopedics, Inc. | Implantable orthopedic device component selection instrument and methods |
US20080082171A1 (en) * | 2004-04-22 | 2008-04-03 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies |
US7658753B2 (en) | 2004-08-03 | 2010-02-09 | K Spine, Inc. | Device and method for correcting a spinal deformity |
KR20070065329A (en) * | 2004-08-18 | 2007-06-22 | 아추스 오토페딕스, 인코포레이티드 | Adjacent level facet arthroplasty devices, spine stabilization systems, and methods |
US20060085075A1 (en) * | 2004-10-04 | 2006-04-20 | Archus Orthopedics, Inc. | Polymeric joint complex and methods of use |
EP1809214B1 (en) * | 2004-10-25 | 2017-07-12 | Gmedelaware 2 LLC | Spinal prothesis having a modular design |
US8597331B2 (en) * | 2004-12-10 | 2013-12-03 | Life Spine, Inc. | Prosthetic spinous process and method |
JP2008534063A (en) * | 2005-03-22 | 2008-08-28 | アーカス・オーソペディクス・インコーポレーテッド | Minimally invasive spinal recovery system, apparatus, method and kit |
US8496686B2 (en) * | 2005-03-22 | 2013-07-30 | Gmedelaware 2 Llc | Minimally invasive spine restoration systems, devices, methods and kits |
CN100563591C (en) * | 2005-05-02 | 2009-12-02 | 活动脊柱技术有限公司 | Spinal stabilisation implant |
US20080287959A1 (en) * | 2005-09-26 | 2008-11-20 | Archus Orthopedics, Inc. | Measurement and trialing system and methods for orthopedic device component selection |
US7699873B2 (en) * | 2005-11-23 | 2010-04-20 | Warsaw Orthopedic, Inc. | Spinous process anchoring systems and methods |
DE202005019487U1 (en) * | 2005-12-13 | 2007-04-26 | Deru Gmbh | Facet joint prosthesis |
EP1968466A2 (en) * | 2005-12-19 | 2008-09-17 | M. S. Abdou | Devices for inter-vertebral orthopedic device placement |
WO2007126428A2 (en) * | 2005-12-20 | 2007-11-08 | Archus Orthopedics, Inc. | Arthroplasty revision system and method |
US8262696B2 (en) * | 2006-02-24 | 2012-09-11 | Medical Design, LLC | Multilevel facet/laminar fixation system |
US20070233256A1 (en) * | 2006-03-15 | 2007-10-04 | Ohrt John A | Facet and disc arthroplasty system and method |
WO2007123920A2 (en) * | 2006-04-18 | 2007-11-01 | Joseph Nicholas Logan | Spinal rod system |
US7857815B2 (en) * | 2006-06-22 | 2010-12-28 | Kyphon Sarl | System and method for strengthening a spinous process |
WO2008019397A2 (en) * | 2006-08-11 | 2008-02-14 | Archus Orthopedics, Inc. | Angled washer polyaxial connection for dynamic spine prosthesis |
US20080119845A1 (en) * | 2006-09-25 | 2008-05-22 | Archus Orthopedics, Inc. | Facet replacement device removal and revision systems and methods |
US8696713B2 (en) * | 2006-12-22 | 2014-04-15 | Lers Surgical, Llc | Anchoring device for posteriorly attaching adjacent verterbrae |
US8097021B1 (en) * | 2006-12-22 | 2012-01-17 | Kornel Ezriel E | Percutaneous spinous process and inter-spinous process stapler and plate stabilizing systems |
US8568453B2 (en) | 2007-01-29 | 2013-10-29 | Samy Abdou | Spinal stabilization systems and methods of use |
US8252026B2 (en) * | 2007-02-21 | 2012-08-28 | Zimmer Spine, Inc. | Spinal implant for facet joint |
US7842074B2 (en) * | 2007-02-26 | 2010-11-30 | Abdou M Samy | Spinal stabilization systems and methods of use |
US20080255615A1 (en) * | 2007-03-27 | 2008-10-16 | Warsaw Orthopedic, Inc. | Treatments for Correcting Spinal Deformities |
US10603077B2 (en) * | 2007-04-12 | 2020-03-31 | Globus Medical, Inc. | Orthopedic fastener for stabilization and fixation |
US20080269805A1 (en) | 2007-04-25 | 2008-10-30 | Warsaw Orthopedic, Inc. | Methods for correcting spinal deformities |
US20090012614A1 (en) * | 2007-05-08 | 2009-01-08 | Dixon Robert A | Device and method for tethering a spinal implant |
EP3272299B1 (en) | 2007-05-18 | 2020-05-13 | Stryker European Holdings I, LLC | Apparatus for direct vertebral rotation |
US8070779B2 (en) * | 2007-06-04 | 2011-12-06 | K2M, Inc. | Percutaneous interspinous process device and method |
US8348976B2 (en) * | 2007-08-27 | 2013-01-08 | Kyphon Sarl | Spinous-process implants and methods of using the same |
US20090088803A1 (en) * | 2007-10-01 | 2009-04-02 | Warsaw Orthopedic, Inc. | Flexible members for correcting spinal deformities |
US20090093851A1 (en) * | 2007-10-09 | 2009-04-09 | Osman Said G | Transfacet-Pedicle Locking Screw Fixation of Lumbar Motion Segment |
US20090171392A1 (en) * | 2007-12-04 | 2009-07-02 | Javier Garcia-Bengochea | Guide wire mounting collar for spinal fixation using minimally invasive surgical techniques |
US9345517B2 (en) | 2008-02-02 | 2016-05-24 | Globus Medical, Inc. | Pedicle screw having a removable rod coupling |
US9408641B2 (en) * | 2008-02-02 | 2016-08-09 | Globus Medical, Inc. | Spinal rod link reducer |
US9579126B2 (en) | 2008-02-02 | 2017-02-28 | Globus Medical, Inc. | Spinal rod link reducer |
US9050141B2 (en) * | 2008-02-02 | 2015-06-09 | Texas Scottish Rite Hospital For Children | Pedicle screw |
US8343190B1 (en) | 2008-03-26 | 2013-01-01 | Nuvasive, Inc. | Systems and methods for spinous process fixation |
US20090248078A1 (en) * | 2008-04-01 | 2009-10-01 | Zimmer Spine, Inc. | Spinal stabilization device |
FR2930718B1 (en) * | 2008-05-02 | 2010-05-14 | Warsaw Orthopedic Inc | BONDING ELEMENT OF A VERTEBRAL OSTEOSYNTHESIS DEVICE, AND A VERTEBRAL OSTEOSYNTHESIS DEVICE COMPRISING SAME |
US8292930B2 (en) * | 2008-05-06 | 2012-10-23 | Warsaw Orthopedic, Inc. | Tethering devices and methods to treat a spinal deformity |
US8241329B2 (en) * | 2008-07-05 | 2012-08-14 | Abdou M Samy | Device and method for the prevention of multi-level vertebral extension |
US10327817B2 (en) * | 2008-08-01 | 2019-06-25 | Skeletal Dynamics Llc | Internal joint stabilizer device, system and method of use |
US20100069960A1 (en) * | 2008-09-17 | 2010-03-18 | Chaput Christopher D | Spinous Process Based Laminoplasty |
US9149319B2 (en) * | 2008-09-23 | 2015-10-06 | Lanx, Llc | Methods and compositions for stabilization of a vertebra |
US20100121239A1 (en) * | 2008-11-10 | 2010-05-13 | Linares Medical Devices, Llc | Support including stabilizing brace and inserts for use with any number of spinal vertebrae such as upper thoracic vertebrae |
US9084638B2 (en) | 2008-11-10 | 2015-07-21 | Linares Medical Devices, Llc | Implant for providing inter-vertebral support and for relieving pinching of the spinal nerves |
US8114135B2 (en) * | 2009-01-16 | 2012-02-14 | Kyphon Sarl | Adjustable surgical cables and methods for treating spinal stenosis |
WO2010088621A1 (en) * | 2009-02-02 | 2010-08-05 | Simpirica Spine, Inc. | Sacral tether anchor and methods of use |
US20110137345A1 (en) * | 2009-03-18 | 2011-06-09 | Caleb Stoll | Posterior lumbar fusion |
US20100249535A1 (en) * | 2009-03-26 | 2010-09-30 | Jay Pierce | System and method for an orthopedic dynamic data repository and registry for recall |
US20100249842A1 (en) * | 2009-03-31 | 2010-09-30 | Dr. Hamid R. Mir | Spinous process cross-link |
US9095380B2 (en) | 2009-03-31 | 2015-08-04 | Hamid R. Mir | Spinous process cross-link |
US20100268119A1 (en) * | 2009-04-15 | 2010-10-21 | Warsaw Orthopedic, Inc., An Indiana Corporation | Integrated feedback for in-situ surgical device |
US8720270B2 (en) | 2010-06-29 | 2014-05-13 | Ortho Sensor Inc. | Prosthetic component for monitoring joint health |
US8707782B2 (en) | 2009-06-30 | 2014-04-29 | Orthosensor Inc | Prosthetic component for monitoring synovial fluid and method |
US8826733B2 (en) | 2009-06-30 | 2014-09-09 | Orthosensor Inc | Sensored prosthetic component and method |
US8661893B2 (en) | 2010-06-29 | 2014-03-04 | Orthosensor Inc. | Prosthetic component having a compliant surface |
US8516884B2 (en) | 2010-06-29 | 2013-08-27 | Orthosensor Inc. | Shielded prosthetic component |
US8679186B2 (en) | 2010-06-29 | 2014-03-25 | Ortho Sensor Inc. | Hermetically sealed prosthetic component and method therefor |
US8746062B2 (en) | 2010-06-29 | 2014-06-10 | Orthosensor Inc. | Medical measurement system and method |
US9259179B2 (en) | 2012-02-27 | 2016-02-16 | Orthosensor Inc. | Prosthetic knee joint measurement system including energy harvesting and method therefor |
US8696756B2 (en) | 2010-06-29 | 2014-04-15 | Orthosensor Inc. | Muscular-skeletal force, pressure, and load measurement system and method |
US8701484B2 (en) | 2010-06-29 | 2014-04-22 | Orthosensor Inc. | Small form factor medical sensor structure and method therefor |
US9839390B2 (en) | 2009-06-30 | 2017-12-12 | Orthosensor Inc. | Prosthetic component having a compliant surface |
US8421479B2 (en) | 2009-06-30 | 2013-04-16 | Navisense | Pulsed echo propagation device and method for measuring a parameter |
US9462964B2 (en) | 2011-09-23 | 2016-10-11 | Orthosensor Inc | Small form factor muscular-skeletal parameter measurement system |
US8714009B2 (en) | 2010-06-29 | 2014-05-06 | Orthosensor Inc. | Shielded capacitor sensor system for medical applications and method |
BR112012012541B1 (en) * | 2009-11-25 | 2020-03-24 | Spine21 Ltd. | Spinal implant |
US20130079675A1 (en) | 2011-09-23 | 2013-03-28 | Orthosensor | Insert measuring system having an internal sensor assembly |
US9332943B2 (en) | 2011-09-23 | 2016-05-10 | Orthosensor Inc | Flexible surface parameter measurement system for the muscular-skeletal system |
US8870889B2 (en) * | 2010-06-29 | 2014-10-28 | George Frey | Patient matching surgical guide and method for using the same |
US8777999B2 (en) | 2010-07-08 | 2014-07-15 | Matthew N. Songer | Variable angle locking plate system |
WO2012009038A1 (en) * | 2010-07-14 | 2012-01-19 | Naraghi Fred F | Devices, systems, and methods for inter-transverse process dynamic stabilization |
US20120078373A1 (en) | 2010-09-23 | 2012-03-29 | Thomas Gamache | Stand alone intervertebral fusion device |
US20120078372A1 (en) | 2010-09-23 | 2012-03-29 | Thomas Gamache | Novel implant inserter having a laterally-extending dovetail engagement feature |
US11529241B2 (en) | 2010-09-23 | 2022-12-20 | DePuy Synthes Products, Inc. | Fusion cage with in-line single piece fixation |
US9358122B2 (en) | 2011-01-07 | 2016-06-07 | K2M, Inc. | Interbody spacer |
US9370382B2 (en) | 2011-02-06 | 2016-06-21 | Paradigm Spine, Llc | Translaminar interspinous stabilization system |
USD757943S1 (en) | 2011-07-14 | 2016-05-31 | Nuvasive, Inc. | Spinous process plate |
US8882805B1 (en) | 2011-08-02 | 2014-11-11 | Lawrence Maccree | Spinal fixation system |
EP2757948A4 (en) * | 2011-09-23 | 2015-03-18 | Orthosensor | System and method for vertebral load and location sensing |
US9414940B2 (en) | 2011-09-23 | 2016-08-16 | Orthosensor Inc. | Sensored head for a measurement tool for the muscular-skeletal system |
US8945133B2 (en) | 2011-09-23 | 2015-02-03 | Orthosensor Inc | Spinal distraction tool for load and position measurement |
US9839374B2 (en) | 2011-09-23 | 2017-12-12 | Orthosensor Inc. | System and method for vertebral load and location sensing |
US8777877B2 (en) | 2011-09-23 | 2014-07-15 | Orthosensor Inc. | Spine tool for measuring vertebral load and position of load |
US8911448B2 (en) | 2011-09-23 | 2014-12-16 | Orthosensor, Inc | Device and method for enabling an orthopedic tool for parameter measurement |
US8475497B2 (en) | 2011-10-19 | 2013-07-02 | Warsaw Orthopedic, Inc. | Spinous process plate and connector assembly and method |
US9844335B2 (en) | 2012-02-27 | 2017-12-19 | Orthosensor Inc | Measurement device for the muscular-skeletal system having load distribution plates |
US9622701B2 (en) | 2012-02-27 | 2017-04-18 | Orthosensor Inc | Muscular-skeletal joint stability detection and method therefor |
US9271675B2 (en) | 2012-02-27 | 2016-03-01 | Orthosensor Inc. | Muscular-skeletal joint stability detection and method therefor |
US9271836B2 (en) | 2012-03-06 | 2016-03-01 | DePuy Synthes Products, Inc. | Nubbed plate |
US20130261666A1 (en) * | 2012-03-28 | 2013-10-03 | Spinesmith Partners, L.P. | Interspinous fixation device |
US10448977B1 (en) | 2012-03-31 | 2019-10-22 | Ali H. MESIWALA | Interspinous device and related methods |
US10687860B2 (en) | 2012-04-24 | 2020-06-23 | Retrospine Pty Ltd | Segmental correction of lumbar lordosis |
US10098665B2 (en) | 2012-08-01 | 2018-10-16 | DePuy Synthes Products, Inc. | Spine derotation system |
WO2014043254A1 (en) | 2012-09-11 | 2014-03-20 | Mercy Medical Research Institute | Spinous process fixation device and systems |
US9277939B2 (en) * | 2012-09-28 | 2016-03-08 | Warsaw Orthopedic, Inc. | Spinal correction system and method |
US9237885B2 (en) | 2012-11-09 | 2016-01-19 | Orthosensor Inc. | Muscular-skeletal tracking system and method |
US9763702B2 (en) | 2012-11-16 | 2017-09-19 | DePuy Synthes Products, Inc. | Bone fixation assembly |
US9700435B2 (en) | 2013-03-14 | 2017-07-11 | Warsaw Orthopedic, Inc. | Surgical delivery system and method |
US9968377B2 (en) * | 2013-03-15 | 2018-05-15 | Spinal Balance, Inc. | Spinal rods formed from polymer and hybrid materials and growth rod distraction system including same |
CN110882094A (en) | 2013-03-15 | 2020-03-17 | 威廉·L·亨特 | Devices, systems, and methods for monitoring hip replacements |
US9265447B2 (en) | 2013-03-18 | 2016-02-23 | Orthosensor Inc. | System for surgical information and feedback display |
US11793424B2 (en) | 2013-03-18 | 2023-10-24 | Orthosensor, Inc. | Kinetic assessment and alignment of the muscular-skeletal system and method therefor |
US20160192878A1 (en) | 2013-06-23 | 2016-07-07 | William L. Hunter | Devices, systems and methods for monitoring knee replacements |
US11779380B2 (en) | 2013-09-20 | 2023-10-10 | Fred F Naraghi | Methods, systems, and devices for the treatment of stenosis |
US9808233B2 (en) | 2013-09-20 | 2017-11-07 | Fred F. Naraghi | Methods, systems, and devices for the treatment of stenosis |
US10022113B2 (en) | 2013-09-20 | 2018-07-17 | Fred F. Naraghi | Methods, systems, and devices for the treatment of stenosis |
CN105813586B (en) | 2013-10-31 | 2020-08-04 | 爱荷华大学研究基金会 | Percutaneous transconnector system |
US9788867B2 (en) | 2013-11-05 | 2017-10-17 | Warsaw Orthopedic, Inc. | Spinal correction system and method |
US10413334B2 (en) | 2014-05-27 | 2019-09-17 | DePuy Synthes Products, Inc. | Method and apparatus for spondylolysis repair |
WO2015200722A2 (en) | 2014-06-25 | 2015-12-30 | Parker, David, W. | Devices, systems and methods for using and monitoring orthopedic hardware |
CN112190236A (en) | 2014-09-17 | 2021-01-08 | 卡纳里医疗公司 | Devices, systems, and methods for using and monitoring medical devices |
CA2917676A1 (en) | 2015-01-13 | 2016-07-13 | Stryker European Holdings I, Llc | Growing rods and methods of use |
US9877846B2 (en) | 2015-01-20 | 2018-01-30 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
CN104771215A (en) * | 2015-04-15 | 2015-07-15 | 复旦大学附属金山医院 | Tractor for greater trochanter of femur |
WO2017123801A1 (en) * | 2016-01-13 | 2017-07-20 | Aro Medical Aps | Methods, systems and apparatuses for torsional stabillization |
WO2017165717A1 (en) | 2016-03-23 | 2017-09-28 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
WO2018009671A1 (en) | 2016-07-07 | 2018-01-11 | Stern Mark S | Spinous laminar clamp assembly |
US10966839B2 (en) | 2017-06-30 | 2021-04-06 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
AU2018332792B2 (en) | 2017-09-14 | 2024-07-25 | Howmedica Osteonics Corp. | Non-symmetrical insert sensing system and method therefor |
US11317949B2 (en) * | 2018-04-25 | 2022-05-03 | Loubert S. Suddaby | Segmented alignment rod assembly |
US10624683B2 (en) * | 2018-04-25 | 2020-04-21 | Loubert S. Suddaby | Segmented alignment rod assembly |
US11446064B2 (en) | 2018-04-26 | 2022-09-20 | Stryker European Operations Holdings Llc | Orthopedic growing devices |
US10966736B2 (en) | 2018-05-21 | 2021-04-06 | Warsaw Orthopedic, Inc. | Spinal implant system and methods of use |
US11484381B2 (en) * | 2018-06-21 | 2022-11-01 | Ruthless, LLC | Instrument alignment feedback system and method |
US11812978B2 (en) | 2019-10-15 | 2023-11-14 | Orthosensor Inc. | Knee balancing system using patient specific instruments |
CN111035491B (en) * | 2020-01-06 | 2022-05-17 | 林雪林 | Spinal column auxiliary treatment device for spinal surgery |
CN113100898B (en) * | 2021-04-20 | 2022-08-09 | 电子科技大学 | Intelligent growth rod for detecting growth of spine and control method |
CN117442394B (en) * | 2023-12-25 | 2024-03-08 | 北京爱康宜诚医疗器材有限公司 | Linkage type vertebral body prosthesis |
Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242922A (en) * | 1963-06-25 | 1966-03-29 | Charles B Thomas | Internal spinal fixation means |
US3648691A (en) * | 1970-02-24 | 1972-03-14 | Univ Colorado State Res Found | Method of applying vertebral appliance |
US4024588A (en) * | 1974-10-04 | 1977-05-24 | Allo Pro A.G. | Artificial joints with magnetic attraction or repulsion |
US4078559A (en) * | 1975-05-30 | 1978-03-14 | Erkki Einari Nissinen | Straightening and supporting device for the spinal column in the surgical treatment of scoliotic diseases |
US4269178A (en) * | 1979-06-04 | 1981-05-26 | Keene James S | Hook assembly for engaging a spinal column |
US4369769A (en) * | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
US4448191A (en) * | 1981-07-07 | 1984-05-15 | Rodnyansky Lazar I | Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature |
US4573454A (en) * | 1984-05-17 | 1986-03-04 | Hoffman Gregory A | Spinal fixation apparatus |
US4611582A (en) * | 1983-12-27 | 1986-09-16 | Wisconsin Alumni Research Foundation | Vertebral clamp |
US4773402A (en) * | 1985-09-13 | 1988-09-27 | Isola Implants, Inc. | Dorsal transacral surgical implant |
US4805602A (en) * | 1986-11-03 | 1989-02-21 | Danninger Medical Technology | Transpedicular screw and rod system |
US5000166A (en) * | 1988-04-27 | 1991-03-19 | Sulzer Brothers Limited | Implant kit for stabilizing regions of a spine |
US5011484A (en) * | 1987-11-16 | 1991-04-30 | Breard Francis H | Surgical implant for restricting the relative movement of vertebrae |
US5030220A (en) * | 1990-03-29 | 1991-07-09 | Advanced Spine Fixation Systems Incorporated | Spine fixation system |
US5084049A (en) * | 1989-02-08 | 1992-01-28 | Acromed Corporation | Transverse connector for spinal column corrective devices |
US5092867A (en) * | 1988-07-13 | 1992-03-03 | Harms Juergen | Correction and supporting apparatus, in particular for the spinal column |
US5133716A (en) * | 1990-11-07 | 1992-07-28 | Codespi Corporation | Device for correction of spinal deformities |
US5176679A (en) * | 1991-09-23 | 1993-01-05 | Lin Chih I | Vertebral locking and retrieving system |
US5219349A (en) * | 1991-02-15 | 1993-06-15 | Howmedica, Inc. | Spinal fixator reduction frame |
US5242443A (en) * | 1991-08-15 | 1993-09-07 | Smith & Nephew Dyonics, Inc. | Percutaneous fixation of vertebrae |
US5306275A (en) * | 1992-12-31 | 1994-04-26 | Bryan Donald W | Lumbar spine fixation apparatus and method |
US5330474A (en) * | 1991-09-23 | 1994-07-19 | Lin Chih I | Vertebral locking and retrieving system |
US5382248A (en) * | 1992-09-10 | 1995-01-17 | H. D. Medical, Inc. | System and method for stabilizing bone segments |
US5387212A (en) * | 1993-01-26 | 1995-02-07 | Yuan; Hansen A. | Vertebral locking and retrieving system with central locking rod |
US5387213A (en) * | 1991-02-05 | 1995-02-07 | Safir S.A.R.L. | Osseous surgical implant particularly for an intervertebral stabilizer |
US5397363A (en) * | 1992-08-11 | 1995-03-14 | Gelbard; Steven D. | Spinal stabilization implant system |
US5413576A (en) * | 1993-02-10 | 1995-05-09 | Rivard; Charles-Hilaire | Apparatus for treating spinal disorder |
US5437671A (en) * | 1992-03-10 | 1995-08-01 | Zimmer, Inc. | Perpendicular rod connector for spinal fixation device |
US5437669A (en) * | 1993-08-12 | 1995-08-01 | Amei Technologies Inc. | Spinal fixation systems with bifurcated connectors |
US5480440A (en) * | 1991-08-15 | 1996-01-02 | Smith & Nephew Richards, Inc. | Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient |
US5490851A (en) * | 1994-08-02 | 1996-02-13 | Nenov; Nikolay N. | Method and apparatus for treatment of idiopathic scoliosis |
US5496318A (en) * | 1993-01-08 | 1996-03-05 | Advanced Spine Fixation Systems, Inc. | Interspinous segmental spine fixation device |
US5498262A (en) * | 1992-12-31 | 1996-03-12 | Bryan; Donald W. | Spinal fixation apparatus and method |
US5540689A (en) * | 1990-05-22 | 1996-07-30 | Sanders; Albert E. | Apparatus for securing a rod adjacent to a bone |
US5549679A (en) * | 1994-05-20 | 1996-08-27 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
US5591165A (en) * | 1992-11-09 | 1997-01-07 | Sofamor, S.N.C. | Apparatus and method for spinal fixation and correction of spinal deformities |
US5649926A (en) * | 1994-07-14 | 1997-07-22 | Advanced Spine Fixation Systems, Inc. | Spinal segmental reduction derotational fixation system |
US5704936A (en) * | 1992-04-10 | 1998-01-06 | Eurosurgical | Spinal osteosynthesis device |
US5725582A (en) * | 1992-08-19 | 1998-03-10 | Surgicraft Limited | Surgical implants |
US5728097A (en) * | 1992-03-17 | 1998-03-17 | Sdgi Holding, Inc. | Method for subcutaneous suprafascial internal fixation |
US5733284A (en) * | 1993-08-27 | 1998-03-31 | Paulette Fairant | Device for anchoring spinal instrumentation on a vertebra |
US5782831A (en) * | 1996-11-06 | 1998-07-21 | Sdgi Holdings, Inc. | Method an device for spinal deformity reduction using a cable and a cable tensioning system |
US5814046A (en) * | 1992-11-13 | 1998-09-29 | Sofamor S.N.C. | Pedicular screw and posterior spinal instrumentation |
US5928232A (en) * | 1994-11-16 | 1999-07-27 | Advanced Spine Fixation Systems, Incorporated | Spinal fixation system |
US5938663A (en) * | 1995-03-06 | 1999-08-17 | Stryker France, S.A. | Spinal instruments, particularly for a rod |
US6015409A (en) * | 1994-05-25 | 2000-01-18 | Sdgi Holdings, Inc. | Apparatus and method for spinal fixation and correction of spinal deformities |
US6086590A (en) * | 1999-02-02 | 2000-07-11 | Pioneer Laboratories, Inc. | Cable connector for orthopaedic rod |
US6176861B1 (en) * | 1994-10-25 | 2001-01-23 | Sdgi Holdings, Inc. | Modular spinal system |
US6277120B1 (en) * | 2000-09-20 | 2001-08-21 | Kevin Jon Lawson | Cable-anchor system for spinal fixation |
US6293949B1 (en) * | 2000-03-01 | 2001-09-25 | Sdgi Holdings, Inc. | Superelastic spinal stabilization system and method |
US6358254B1 (en) * | 2000-09-11 | 2002-03-19 | D. Greg Anderson | Method and implant for expanding a spinal canal |
US6364883B1 (en) * | 2001-02-23 | 2002-04-02 | Albert N. Santilli | Spinous process clamp for spinal fusion and method of operation |
US20020055739A1 (en) * | 2000-11-08 | 2002-05-09 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
US6391030B1 (en) * | 1997-08-26 | 2002-05-21 | Spinal Concepts, Inc. | Surgical cable system and method |
US6423065B2 (en) * | 2000-02-25 | 2002-07-23 | Bret A. Ferree | Cross-coupled vertebral stabilizers including cam-operated cable connectors |
US6451019B1 (en) * | 1998-10-20 | 2002-09-17 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device and method |
US20020133155A1 (en) * | 2000-02-25 | 2002-09-19 | Ferree Bret A. | Cross-coupled vertebral stabilizers incorporating spinal motion restriction |
US6514255B1 (en) * | 2000-02-25 | 2003-02-04 | Bret Ferree | Sublaminar spinal fixation apparatus |
US20030040746A1 (en) * | 2001-07-20 | 2003-02-27 | Mitchell Margaret E. | Spinal stabilization system and method |
US6537276B2 (en) * | 1992-03-02 | 2003-03-25 | Stryker Trauma Gmbh | Apparatus for bracing vertebrae |
US6551320B2 (en) * | 2000-11-08 | 2003-04-22 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
US6554831B1 (en) * | 2000-09-01 | 2003-04-29 | Hopital Sainte-Justine | Mobile dynamic system for treating spinal disorder |
US6565605B2 (en) * | 2000-12-13 | 2003-05-20 | Medicinelodge, Inc. | Multiple facet joint replacement |
US20030109881A1 (en) * | 2001-08-01 | 2003-06-12 | Showa Ika Kohgyo Co., Ltd. | Implant for bone connector |
US6579319B2 (en) * | 2000-11-29 | 2003-06-17 | Medicinelodge, Inc. | Facet joint replacement |
US6589243B1 (en) * | 1998-09-18 | 2003-07-08 | Guy Viart | Posterior backbone osteosynthesis device |
US20030153915A1 (en) * | 2002-02-08 | 2003-08-14 | Showa Ika Kohgyo Co., Ltd. | Vertebral body distance retainer |
US6610091B1 (en) * | 1999-10-22 | 2003-08-26 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US6709435B2 (en) * | 2002-03-20 | 2004-03-23 | A-Spine Holding Group Corp. | Three-hooked device for fixing spinal column |
US20040097931A1 (en) * | 2002-10-29 | 2004-05-20 | Steve Mitchell | Interspinous process and sacrum implant and method |
US20040106921A1 (en) * | 2002-08-25 | 2004-06-03 | Cheung Kenneth Mc | Device for correcting spinal deformities |
US6773437B2 (en) * | 1999-04-23 | 2004-08-10 | Sdgi Holdings, Inc. | Shape memory alloy staple |
US20040167520A1 (en) * | 1997-01-02 | 2004-08-26 | St. Francis Medical Technologies, Inc. | Spinous process implant with tethers |
US20050033295A1 (en) * | 2003-08-08 | 2005-02-10 | Paul Wisnewski | Implants formed of shape memory polymeric material for spinal fixation |
US20050043797A1 (en) * | 2003-07-17 | 2005-02-24 | Lee Casey K. | Facet joint prosthesis |
US20050049705A1 (en) * | 2003-08-29 | 2005-03-03 | Hale Horace Winston | Facet implant |
US20050055096A1 (en) * | 2002-12-31 | 2005-03-10 | Depuy Spine, Inc. | Functional spinal unit prosthetic |
US20050080420A1 (en) * | 2003-08-20 | 2005-04-14 | Farris Robert A. | Multi-axial orthopedic device and system |
US20050149030A1 (en) * | 2003-12-19 | 2005-07-07 | Depuy Spine, Inc. | Facet joint fixation system |
US20050154390A1 (en) * | 2003-11-07 | 2005-07-14 | Lutz Biedermann | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20060009767A1 (en) * | 2004-07-02 | 2006-01-12 | Kiester P D | Expandable rod system to treat scoliosis and method of using the same |
US6986771B2 (en) * | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
US20060047282A1 (en) * | 2004-08-30 | 2006-03-02 | Vermillion Technologies, Llc | Implant for correction of spinal deformity |
US20060064091A1 (en) * | 2004-03-31 | 2006-03-23 | Depuy Spine, Inc. | Rod attachment for head to head cross connector |
US7018379B2 (en) * | 2001-10-30 | 2006-03-28 | Sdgi Holdings, Inc. | Flexible spinal stabilization system and method |
US7029475B2 (en) * | 2003-05-02 | 2006-04-18 | Yale University | Spinal stabilization method |
US7048736B2 (en) * | 2002-05-17 | 2006-05-23 | Sdgi Holdings, Inc. | Device for fixation of spinous processes |
US7087056B2 (en) * | 2001-10-03 | 2006-08-08 | Vaughan Medical Technologies, Inc. | Vertebral stabilization assembly and method |
US20070073293A1 (en) * | 2003-10-16 | 2007-03-29 | Martz Erik O | System and method for flexible correction of bony motion segment |
US7220262B1 (en) * | 2001-03-16 | 2007-05-22 | Sdgi Holdings, Inc. | Spinal fixation system and related methods |
US7335203B2 (en) * | 2003-02-12 | 2008-02-26 | Kyphon Inc. | System and method for immobilizing adjacent spinous processes |
US7338490B2 (en) * | 2002-05-21 | 2008-03-04 | Warsaw Orthopedic, Inc. | Reduction cable and bone anchor |
US7367978B2 (en) * | 1999-04-23 | 2008-05-06 | Warsaw Orthopedic, Inc. | Adjustable spinal tether |
US7481828B2 (en) * | 2002-07-23 | 2009-01-27 | Abbott Spine, Inc. | Vertebral fixing system |
US7524324B2 (en) * | 2004-04-28 | 2009-04-28 | Kyphon Sarl | System and method for an interspinous process implant as a supplement to a spine stabilization implant |
Family Cites Families (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US500166A (en) * | 1893-06-27 | Steam-generator | ||
US2774350A (en) | 1952-09-08 | 1956-12-18 | Jr Carl S Cleveland | Spinal clamp or splint |
GB780652A (en) | 1954-04-30 | 1957-08-07 | Zimmer Orthopaedic Ltd | Improvements in or relating to apparatus for use in spinal fixation |
US3693616A (en) | 1970-06-26 | 1972-09-26 | Robert Roaf | Device for correcting scoliotic curves |
NL7306853A (en) | 1973-05-16 | 1974-11-19 | ||
JPS5554936A (en) | 1978-10-18 | 1980-04-22 | Morita Mfg | Activity display device of masseter |
US4274401A (en) * | 1978-12-08 | 1981-06-23 | Miskew Don B W | Apparatus for correcting spinal deformities and method for using |
SU888968A1 (en) | 1979-01-11 | 1981-12-15 | Новосибирский научно-исследовательский институт травматологии и ортопедии | Apparatus for correcting vertebral column |
US4361141A (en) | 1979-07-27 | 1982-11-30 | Zimmer Usa, Inc. | Scoliosis transverse traction assembly |
US4411259A (en) | 1980-02-04 | 1983-10-25 | Drummond Denis S | Apparatus for engaging a hook assembly to a spinal column |
PL131829B1 (en) | 1982-01-18 | 1985-01-31 | Wyzsza Szkola Inzynierska Gagari | Surgical strut for treating spine anomalies |
US4505268A (en) | 1983-02-17 | 1985-03-19 | Vicente Sgandurra | Scoliosis frame |
FR2545350B1 (en) | 1983-05-04 | 1985-08-23 | Cotrel Yves | DEVICE FOR SHRINKAGE OF THE RACHIS |
US4554914A (en) | 1983-10-04 | 1985-11-26 | Kapp John P | Prosthetic vertebral body |
FR2553993B1 (en) | 1983-10-28 | 1986-02-07 | Peze William | METHOD AND APPARATUS FOR DYNAMIC CORRECTION OF SPINAL DEFORMATIONS |
US4505288A (en) * | 1984-03-06 | 1985-03-19 | Frank W. Murphy Manufacturer, Inc. | Pneumatically controlled dump valve system for gas scrubbers |
GB8620937D0 (en) | 1986-08-29 | 1986-10-08 | Shepperd J A N | Spinal implant |
US4738251A (en) | 1987-02-20 | 1988-04-19 | Codespi, Corporation | Correcting device for spine pathology |
FR2625097B1 (en) | 1987-12-23 | 1990-05-18 | Cote Sarl | INTER-SPINOUS PROSTHESIS COMPOSED OF SEMI-ELASTIC MATERIAL COMPRISING A TRANSFILING EYE AT ITS END AND INTER-SPINOUS PADS |
GB8825909D0 (en) | 1988-11-04 | 1988-12-07 | Showell A W Sugicraft Ltd | Pedicle engaging means |
FR2642645B1 (en) | 1989-02-03 | 1992-08-14 | Breard Francis | FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS |
WO1990009764A1 (en) | 1989-02-21 | 1990-09-07 | Vsesojuzny Kurgansky Nauchny Tsentr 'vosstanovitelnaya Travmatologia I Ortopedia' | Device for treatment of curvature of and damage to the spine |
US4936848A (en) | 1989-09-22 | 1990-06-26 | Bagby George W | Implant for vertebrae |
US5127912A (en) | 1990-10-05 | 1992-07-07 | R. Charles Ray | Sacral implant system |
FR2672203B1 (en) | 1991-02-01 | 1993-06-04 | Biostab | FRAME FOR RIGIDIFICATION OF A BONE OR SET OF BONES. |
US5117912A (en) * | 1991-05-24 | 1992-06-02 | Marathon Oil Company | Method of positioning tubing within a horizontal well |
US5257994A (en) | 1991-09-23 | 1993-11-02 | Lin Chih I | Vertebral locking and retrieving system |
NL9200612A (en) | 1992-04-01 | 1993-11-01 | Acromed Bv | Device for correcting the shape and / or fixing the vertebral column of man. |
AU5352994A (en) | 1992-10-05 | 1995-05-01 | Robert B. More | Nitinol instrumentation and method for treating scoliosis |
US5702395A (en) | 1992-11-10 | 1997-12-30 | Sofamor S.N.C. | Spine osteosynthesis instrumentation for an anterior approach |
FR2697744B1 (en) | 1992-11-10 | 1995-03-03 | Fabrication Mat Orthopedique S | Spinal osteosynthesis instrumentation by the anterior route. |
US5947965A (en) | 1992-12-31 | 1999-09-07 | Bryan; Donald W. | Spinal fixation apparatus and method |
US5527314A (en) | 1993-01-04 | 1996-06-18 | Danek Medical, Inc. | Spinal fixation system |
US5456722A (en) | 1993-01-06 | 1995-10-10 | Smith & Nephew Richards Inc. | Load bearing polymeric cable |
DE4303770C1 (en) | 1993-02-09 | 1994-05-26 | Plus Endoprothetik Ag Rotkreuz | Stiffening and correction system for spinal vertebrae - comprises screw-ended holders with connecting rod supporting clamped distance pieces. |
US5470333A (en) | 1993-03-11 | 1995-11-28 | Danek Medical, Inc. | System for stabilizing the cervical and the lumbar region of the spine |
FR2709246B1 (en) | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Dynamic implanted spinal orthosis. |
FR2722393B1 (en) * | 1993-08-27 | 1996-08-23 | Martin Jean Raymond | ANCILLARY MATERIAL FOR CORRECTING A VERTEBRAL DEFORMATION |
JP2605313Y2 (en) | 1993-12-28 | 2000-07-10 | 旭光学工業株式会社 | Fixation device for posterior spine correction member |
US5436542A (en) * | 1994-01-28 | 1995-07-25 | Surgix, Inc. | Telescopic camera mount with remotely controlled positioning |
US5611800A (en) | 1994-02-15 | 1997-03-18 | Alphatec Manufacturing, Inc. | Spinal fixation system |
FR2721501B1 (en) * | 1994-06-24 | 1996-08-23 | Fairant Paulette | Prostheses of the vertebral articular facets. |
FR2722980B1 (en) | 1994-07-26 | 1996-09-27 | Samani Jacques | INTERTEPINOUS VERTEBRAL IMPLANT |
FR2729556B1 (en) * | 1995-01-23 | 1998-10-16 | Sofamor | SPINAL OSTEOSYNTHESIS DEVICE WITH MEDIAN HOOK AND VERTEBRAL ANCHOR SUPPORT |
US5571191A (en) | 1995-03-16 | 1996-11-05 | Fitz; William R. | Artificial facet joint |
FR2736535B3 (en) | 1995-07-10 | 1997-08-14 | Martin Jean Jacques | SPINAL OSTEOSYNTHESIS DEVICE |
FR2743712B1 (en) | 1996-01-19 | 1998-04-30 | Louis Rene | POSTERIOR VERTEBRAL OSTEOSYNTHESIS ANCHORING DEVICE |
EP0959791B1 (en) | 1996-04-18 | 2003-08-27 | Tresona Instrument Ab | Device for correcting and stabilising a deviating curvature of a spinal column |
US6835207B2 (en) | 1996-07-22 | 2004-12-28 | Fred Zacouto | Skeletal implant |
US6287308B1 (en) | 1997-07-14 | 2001-09-11 | Sdgi Holdings, Inc. | Methods and apparatus for fusionless treatment of spinal deformities |
FR2781359B1 (en) | 1998-07-21 | 2001-01-26 | Pierre Boccara | SPINAL OSTEOSYNTHESIS MATERIAL |
US5989256A (en) | 1999-01-19 | 1999-11-23 | Spineology, Inc. | Bone fixation cable ferrule |
US6296643B1 (en) | 1999-04-23 | 2001-10-02 | Sdgi Holdings, Inc. | Device for the correction of spinal deformities through vertebral body tethering without fusion |
US6299613B1 (en) | 1999-04-23 | 2001-10-09 | Sdgi Holdings, Inc. | Method for the correction of spinal deformities through vertebral body tethering without fusion |
US7160312B2 (en) | 1999-06-25 | 2007-01-09 | Usgi Medical, Inc. | Implantable artificial partition and methods of use |
US6547789B1 (en) | 1999-07-02 | 2003-04-15 | Sulzer Orthopedics Ltd. | Holding apparatus for the spinal column |
US8187303B2 (en) * | 2004-04-22 | 2012-05-29 | Gmedelaware 2 Llc | Anti-rotation fixation element for spinal prostheses |
US6811567B2 (en) | 1999-10-22 | 2004-11-02 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US20050261770A1 (en) * | 2004-04-22 | 2005-11-24 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
FR2801492B1 (en) | 1999-11-30 | 2003-01-10 | Jean Jacques Martin | VERTEBRAL ARTHRODESIS DEVICE |
EP1260187B1 (en) | 2000-02-03 | 2007-04-18 | Fed. State Institution of Science Russian Ilizarov Scient. Ctr. Restorative Traumatology & Orthopaed. Federal Agency of Health & Social Development | Device for external transpedicular vertebral column fixation |
US6645207B2 (en) | 2000-05-08 | 2003-11-11 | Robert A. Dixon | Method and apparatus for dynamized spinal stabilization |
US6964667B2 (en) | 2000-06-23 | 2005-11-15 | Sdgi Holdings, Inc. | Formed in place fixation system with thermal acceleration |
US6458131B1 (en) | 2000-08-07 | 2002-10-01 | Salut, Ltd. | Apparatus and method for reducing spinal deformity |
JP2002095672A (en) | 2000-09-22 | 2002-04-02 | Showa Ika Kohgyo Co Ltd | Instrument for joining bone and its joining component |
US6419703B1 (en) | 2001-03-01 | 2002-07-16 | T. Wade Fallin | Prosthesis for the replacement of a posterior element of a vertebra |
FR2818530B1 (en) | 2000-12-22 | 2003-10-31 | Spine Next Sa | INTERVERTEBRAL IMPLANT WITH DEFORMABLE SHIM |
US6845207B2 (en) * | 2001-02-12 | 2005-01-18 | Fiber Optic Network Solutions Corp. | Optical fiber enclosure system |
US6802844B2 (en) | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
US7344539B2 (en) | 2001-03-30 | 2008-03-18 | Depuy Acromed, Inc. | Intervertebral connection system |
US6582433B2 (en) * | 2001-04-09 | 2003-06-24 | St. Francis Medical Technologies, Inc. | Spine fixation device and method |
EP1281361A1 (en) | 2001-08-02 | 2003-02-05 | Lafitt, S.A. | Device to prevent intervertebral disk degeneration |
EP2221030A1 (en) * | 2001-10-24 | 2010-08-25 | Med-El Elektromedizinische Geräte GmbH | Implantable electrode |
US6626909B2 (en) | 2002-02-27 | 2003-09-30 | Kingsley Richard Chin | Apparatus and method for spine fixation |
US6669729B2 (en) | 2002-03-08 | 2003-12-30 | Kingsley Richard Chin | Apparatus and method for the replacement of posterior vertebral elements |
US20030199831A1 (en) * | 2002-04-23 | 2003-10-23 | Morris Mary M. | Catheter anchor system and method |
GB2389791B (en) * | 2002-04-30 | 2006-12-13 | Steven Gill | Implantable drug delivery pump |
US20030220643A1 (en) | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
US6840127B2 (en) | 2003-02-05 | 2005-01-11 | Michael Julius Moran | Tendon link mechanism with six degrees of freedom |
US20040230304A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US20040230201A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US6865105B1 (en) * | 2003-09-22 | 2005-03-08 | Hewlett-Packard Development Company, L.P. | Thermal-assisted switching array configuration for MRAM |
AU2003285751A1 (en) | 2003-10-20 | 2005-05-05 | Impliant Ltd. | Facet prosthesis |
US7481839B2 (en) | 2003-12-02 | 2009-01-27 | Kyphon Sarl | Bioresorbable interspinous process implant for use with intervertebral disk remediation or replacement implants and procedures |
US7846183B2 (en) | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US20050203511A1 (en) | 2004-03-02 | 2005-09-15 | Wilson-Macdonald James | Orthopaedics device and system |
US20050203509A1 (en) | 2004-03-10 | 2005-09-15 | Anboo Chinnaian | Device and method for fixing bone segments |
EP1734879B1 (en) | 2004-03-23 | 2016-09-28 | Warsaw Orthopedic, Inc. | Device for dynamic spinal fixation for correction of spinal deformities |
US7645294B2 (en) | 2004-03-31 | 2010-01-12 | Depuy Spine, Inc. | Head-to-head connector spinal fixation system |
US20050228377A1 (en) | 2004-04-07 | 2005-10-13 | Depuy Spine, Inc. | Spinal cross-connectors |
US20050267470A1 (en) * | 2004-05-13 | 2005-12-01 | Mcbride Duncan Q | Spinal stabilization system to flexibly connect vertebrae |
FR2872020B1 (en) | 2004-06-29 | 2006-12-15 | Frederic Fortin | SCOLIOTIC AUTOCORRECTION DEVICE REQUIRING MORE INTERVENTIONS AFTER IMPLANTATION |
US7658753B2 (en) | 2004-08-03 | 2010-02-09 | K Spine, Inc. | Device and method for correcting a spinal deformity |
US20060084976A1 (en) * | 2004-09-30 | 2006-04-20 | Depuy Spine, Inc. | Posterior stabilization systems and methods |
US7294129B2 (en) | 2005-02-18 | 2007-11-13 | Ebi, L.P. | Spinal fixation device and associated method |
US7604654B2 (en) | 2005-02-22 | 2009-10-20 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
JP2008534063A (en) * | 2005-03-22 | 2008-08-28 | アーカス・オーソペディクス・インコーポレーテッド | Minimally invasive spinal recovery system, apparatus, method and kit |
ES2318917B1 (en) | 2005-03-30 | 2010-02-04 | Sdgi Holdings Inc. | SYSTEM FOR THE THREE-DIMENSIONAL CORRECTION OF THE CURVATURE OF THE VERTEBRAL COLUMN IN PROBLEMS OF SCHOLIOSIS BY COPLANAR ALIGNMENT OF THE PEDICULAR SCREWS. |
US20070055373A1 (en) * | 2005-09-08 | 2007-03-08 | Zimmer Spine, Inc. | Facet replacement/spacing and flexible spinal stabilization |
FR2892617B1 (en) | 2005-11-02 | 2008-09-26 | Frederic Fortin | DAMPING DISPLACEMENT DEVICE AND CORRECTION ADJUSTABLE TO THE GROWTH OF THE RACHIS |
US8262696B2 (en) | 2006-02-24 | 2012-09-11 | Medical Design, LLC | Multilevel facet/laminar fixation system |
US7856272B2 (en) * | 2006-04-28 | 2010-12-21 | Flint Hills Scientific, L.L.C. | Implantable interface for a medical device system |
US20080177326A1 (en) | 2007-01-19 | 2008-07-24 | Matthew Thompson | Orthosis to correct spinal deformities |
US20080195153A1 (en) | 2007-02-08 | 2008-08-14 | Matthew Thompson | Dynamic spinal deformity correction |
US8348976B2 (en) * | 2007-08-27 | 2013-01-08 | Kyphon Sarl | Spinous-process implants and methods of using the same |
US8357183B2 (en) * | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Semi-constrained anchoring system |
-
2005
- 2005-08-03 US US11/196,952 patent/US7658753B2/en active Active
- 2005-08-03 US US11/197,041 patent/US7708765B2/en active Active
- 2005-08-03 US US11/197,569 patent/US20060036324A1/en not_active Abandoned
-
2009
- 2009-12-22 US US12/645,305 patent/US8043345B2/en not_active Expired - Fee Related
- 2009-12-22 US US12/645,269 patent/US8016860B2/en active Active
-
2010
- 2010-03-17 US US12/726,292 patent/US8002801B2/en active Active
-
2011
- 2011-10-20 US US13/277,629 patent/US20120089186A1/en not_active Abandoned
-
2015
- 2015-03-20 US US14/664,519 patent/US9801666B2/en not_active Expired - Fee Related
-
2017
- 2017-10-03 US US15/723,458 patent/US10512490B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242922A (en) * | 1963-06-25 | 1966-03-29 | Charles B Thomas | Internal spinal fixation means |
US3648691A (en) * | 1970-02-24 | 1972-03-14 | Univ Colorado State Res Found | Method of applying vertebral appliance |
US4024588A (en) * | 1974-10-04 | 1977-05-24 | Allo Pro A.G. | Artificial joints with magnetic attraction or repulsion |
US4078559A (en) * | 1975-05-30 | 1978-03-14 | Erkki Einari Nissinen | Straightening and supporting device for the spinal column in the surgical treatment of scoliotic diseases |
US4269178A (en) * | 1979-06-04 | 1981-05-26 | Keene James S | Hook assembly for engaging a spinal column |
US4369769A (en) * | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
US4448191A (en) * | 1981-07-07 | 1984-05-15 | Rodnyansky Lazar I | Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature |
US4611582A (en) * | 1983-12-27 | 1986-09-16 | Wisconsin Alumni Research Foundation | Vertebral clamp |
US4573454A (en) * | 1984-05-17 | 1986-03-04 | Hoffman Gregory A | Spinal fixation apparatus |
US4773402A (en) * | 1985-09-13 | 1988-09-27 | Isola Implants, Inc. | Dorsal transacral surgical implant |
US4805602A (en) * | 1986-11-03 | 1989-02-21 | Danninger Medical Technology | Transpedicular screw and rod system |
US5011484A (en) * | 1987-11-16 | 1991-04-30 | Breard Francis H | Surgical implant for restricting the relative movement of vertebrae |
US5000166A (en) * | 1988-04-27 | 1991-03-19 | Sulzer Brothers Limited | Implant kit for stabilizing regions of a spine |
US5092867A (en) * | 1988-07-13 | 1992-03-03 | Harms Juergen | Correction and supporting apparatus, in particular for the spinal column |
US5084049A (en) * | 1989-02-08 | 1992-01-28 | Acromed Corporation | Transverse connector for spinal column corrective devices |
US5030220A (en) * | 1990-03-29 | 1991-07-09 | Advanced Spine Fixation Systems Incorporated | Spine fixation system |
US5540689A (en) * | 1990-05-22 | 1996-07-30 | Sanders; Albert E. | Apparatus for securing a rod adjacent to a bone |
US5133716A (en) * | 1990-11-07 | 1992-07-28 | Codespi Corporation | Device for correction of spinal deformities |
US5387213A (en) * | 1991-02-05 | 1995-02-07 | Safir S.A.R.L. | Osseous surgical implant particularly for an intervertebral stabilizer |
US5219349A (en) * | 1991-02-15 | 1993-06-15 | Howmedica, Inc. | Spinal fixator reduction frame |
US5480440A (en) * | 1991-08-15 | 1996-01-02 | Smith & Nephew Richards, Inc. | Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient |
US5242443A (en) * | 1991-08-15 | 1993-09-07 | Smith & Nephew Dyonics, Inc. | Percutaneous fixation of vertebrae |
US5196014A (en) * | 1991-09-23 | 1993-03-23 | Lin Chih I | Vertebral locking and retrieving system |
US5330474A (en) * | 1991-09-23 | 1994-07-19 | Lin Chih I | Vertebral locking and retrieving system |
US5176679A (en) * | 1991-09-23 | 1993-01-05 | Lin Chih I | Vertebral locking and retrieving system |
US20060084996A1 (en) * | 1992-03-02 | 2006-04-20 | Stryker Trauma Gmbh | Apparatus for bracing vertebrae |
US6537276B2 (en) * | 1992-03-02 | 2003-03-25 | Stryker Trauma Gmbh | Apparatus for bracing vertebrae |
US5437671A (en) * | 1992-03-10 | 1995-08-01 | Zimmer, Inc. | Perpendicular rod connector for spinal fixation device |
US5728097A (en) * | 1992-03-17 | 1998-03-17 | Sdgi Holding, Inc. | Method for subcutaneous suprafascial internal fixation |
US5704936A (en) * | 1992-04-10 | 1998-01-06 | Eurosurgical | Spinal osteosynthesis device |
US5397363A (en) * | 1992-08-11 | 1995-03-14 | Gelbard; Steven D. | Spinal stabilization implant system |
US5725582A (en) * | 1992-08-19 | 1998-03-10 | Surgicraft Limited | Surgical implants |
US5382248A (en) * | 1992-09-10 | 1995-01-17 | H. D. Medical, Inc. | System and method for stabilizing bone segments |
US5591165A (en) * | 1992-11-09 | 1997-01-07 | Sofamor, S.N.C. | Apparatus and method for spinal fixation and correction of spinal deformities |
US5814046A (en) * | 1992-11-13 | 1998-09-29 | Sofamor S.N.C. | Pedicular screw and posterior spinal instrumentation |
US5306275A (en) * | 1992-12-31 | 1994-04-26 | Bryan Donald W | Lumbar spine fixation apparatus and method |
US5498262A (en) * | 1992-12-31 | 1996-03-12 | Bryan; Donald W. | Spinal fixation apparatus and method |
US5496318A (en) * | 1993-01-08 | 1996-03-05 | Advanced Spine Fixation Systems, Inc. | Interspinous segmental spine fixation device |
US5387212A (en) * | 1993-01-26 | 1995-02-07 | Yuan; Hansen A. | Vertebral locking and retrieving system with central locking rod |
US5413576A (en) * | 1993-02-10 | 1995-05-09 | Rivard; Charles-Hilaire | Apparatus for treating spinal disorder |
US5437669A (en) * | 1993-08-12 | 1995-08-01 | Amei Technologies Inc. | Spinal fixation systems with bifurcated connectors |
US5733284A (en) * | 1993-08-27 | 1998-03-31 | Paulette Fairant | Device for anchoring spinal instrumentation on a vertebra |
US5549679A (en) * | 1994-05-20 | 1996-08-27 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
US6015409A (en) * | 1994-05-25 | 2000-01-18 | Sdgi Holdings, Inc. | Apparatus and method for spinal fixation and correction of spinal deformities |
US5649926A (en) * | 1994-07-14 | 1997-07-22 | Advanced Spine Fixation Systems, Inc. | Spinal segmental reduction derotational fixation system |
US5490851A (en) * | 1994-08-02 | 1996-02-13 | Nenov; Nikolay N. | Method and apparatus for treatment of idiopathic scoliosis |
US6176861B1 (en) * | 1994-10-25 | 2001-01-23 | Sdgi Holdings, Inc. | Modular spinal system |
US5928232A (en) * | 1994-11-16 | 1999-07-27 | Advanced Spine Fixation Systems, Incorporated | Spinal fixation system |
US5938663A (en) * | 1995-03-06 | 1999-08-17 | Stryker France, S.A. | Spinal instruments, particularly for a rod |
US5782831A (en) * | 1996-11-06 | 1998-07-21 | Sdgi Holdings, Inc. | Method an device for spinal deformity reduction using a cable and a cable tensioning system |
US20040167520A1 (en) * | 1997-01-02 | 2004-08-26 | St. Francis Medical Technologies, Inc. | Spinous process implant with tethers |
US6682533B1 (en) * | 1997-08-26 | 2004-01-27 | Spinal Concepts, Inc. | Surgical cable system and method |
US6391030B1 (en) * | 1997-08-26 | 2002-05-21 | Spinal Concepts, Inc. | Surgical cable system and method |
US6589243B1 (en) * | 1998-09-18 | 2003-07-08 | Guy Viart | Posterior backbone osteosynthesis device |
US6451019B1 (en) * | 1998-10-20 | 2002-09-17 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device and method |
US6086590A (en) * | 1999-02-02 | 2000-07-11 | Pioneer Laboratories, Inc. | Cable connector for orthopaedic rod |
US6773437B2 (en) * | 1999-04-23 | 2004-08-10 | Sdgi Holdings, Inc. | Shape memory alloy staple |
US7367978B2 (en) * | 1999-04-23 | 2008-05-06 | Warsaw Orthopedic, Inc. | Adjustable spinal tether |
US6610091B1 (en) * | 1999-10-22 | 2003-08-26 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
US6423065B2 (en) * | 2000-02-25 | 2002-07-23 | Bret A. Ferree | Cross-coupled vertebral stabilizers including cam-operated cable connectors |
US20020133155A1 (en) * | 2000-02-25 | 2002-09-19 | Ferree Bret A. | Cross-coupled vertebral stabilizers incorporating spinal motion restriction |
US6514255B1 (en) * | 2000-02-25 | 2003-02-04 | Bret Ferree | Sublaminar spinal fixation apparatus |
US6293949B1 (en) * | 2000-03-01 | 2001-09-25 | Sdgi Holdings, Inc. | Superelastic spinal stabilization system and method |
US6554831B1 (en) * | 2000-09-01 | 2003-04-29 | Hopital Sainte-Justine | Mobile dynamic system for treating spinal disorder |
US6358254B1 (en) * | 2000-09-11 | 2002-03-19 | D. Greg Anderson | Method and implant for expanding a spinal canal |
US6277120B1 (en) * | 2000-09-20 | 2001-08-21 | Kevin Jon Lawson | Cable-anchor system for spinal fixation |
US6551320B2 (en) * | 2000-11-08 | 2003-04-22 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
US20020055739A1 (en) * | 2000-11-08 | 2002-05-09 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
US6579319B2 (en) * | 2000-11-29 | 2003-06-17 | Medicinelodge, Inc. | Facet joint replacement |
US6565605B2 (en) * | 2000-12-13 | 2003-05-20 | Medicinelodge, Inc. | Multiple facet joint replacement |
US7074237B2 (en) * | 2000-12-13 | 2006-07-11 | Facet Solutions, Inc. | Multiple facet joint replacement |
US6364883B1 (en) * | 2001-02-23 | 2002-04-02 | Albert N. Santilli | Spinous process clamp for spinal fusion and method of operation |
US7220262B1 (en) * | 2001-03-16 | 2007-05-22 | Sdgi Holdings, Inc. | Spinal fixation system and related methods |
US20030040746A1 (en) * | 2001-07-20 | 2003-02-27 | Mitchell Margaret E. | Spinal stabilization system and method |
US20030109881A1 (en) * | 2001-08-01 | 2003-06-12 | Showa Ika Kohgyo Co., Ltd. | Implant for bone connector |
US7087056B2 (en) * | 2001-10-03 | 2006-08-08 | Vaughan Medical Technologies, Inc. | Vertebral stabilization assembly and method |
US7018379B2 (en) * | 2001-10-30 | 2006-03-28 | Sdgi Holdings, Inc. | Flexible spinal stabilization system and method |
US20030153915A1 (en) * | 2002-02-08 | 2003-08-14 | Showa Ika Kohgyo Co., Ltd. | Vertebral body distance retainer |
US6709435B2 (en) * | 2002-03-20 | 2004-03-23 | A-Spine Holding Group Corp. | Three-hooked device for fixing spinal column |
US7048736B2 (en) * | 2002-05-17 | 2006-05-23 | Sdgi Holdings, Inc. | Device for fixation of spinous processes |
US7338490B2 (en) * | 2002-05-21 | 2008-03-04 | Warsaw Orthopedic, Inc. | Reduction cable and bone anchor |
US7481828B2 (en) * | 2002-07-23 | 2009-01-27 | Abbott Spine, Inc. | Vertebral fixing system |
US20040106921A1 (en) * | 2002-08-25 | 2004-06-03 | Cheung Kenneth Mc | Device for correcting spinal deformities |
US20040097931A1 (en) * | 2002-10-29 | 2004-05-20 | Steve Mitchell | Interspinous process and sacrum implant and method |
US20050055096A1 (en) * | 2002-12-31 | 2005-03-10 | Depuy Spine, Inc. | Functional spinal unit prosthetic |
US7335203B2 (en) * | 2003-02-12 | 2008-02-26 | Kyphon Inc. | System and method for immobilizing adjacent spinous processes |
US7029475B2 (en) * | 2003-05-02 | 2006-04-18 | Yale University | Spinal stabilization method |
US6986771B2 (en) * | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
US20050043797A1 (en) * | 2003-07-17 | 2005-02-24 | Lee Casey K. | Facet joint prosthesis |
US20050033295A1 (en) * | 2003-08-08 | 2005-02-10 | Paul Wisnewski | Implants formed of shape memory polymeric material for spinal fixation |
US20050080420A1 (en) * | 2003-08-20 | 2005-04-14 | Farris Robert A. | Multi-axial orthopedic device and system |
US20050049705A1 (en) * | 2003-08-29 | 2005-03-03 | Hale Horace Winston | Facet implant |
US20070073293A1 (en) * | 2003-10-16 | 2007-03-29 | Martz Erik O | System and method for flexible correction of bony motion segment |
US20050154390A1 (en) * | 2003-11-07 | 2005-07-14 | Lutz Biedermann | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20050149030A1 (en) * | 2003-12-19 | 2005-07-07 | Depuy Spine, Inc. | Facet joint fixation system |
US20060064091A1 (en) * | 2004-03-31 | 2006-03-23 | Depuy Spine, Inc. | Rod attachment for head to head cross connector |
US7524324B2 (en) * | 2004-04-28 | 2009-04-28 | Kyphon Sarl | System and method for an interspinous process implant as a supplement to a spine stabilization implant |
US20060009767A1 (en) * | 2004-07-02 | 2006-01-12 | Kiester P D | Expandable rod system to treat scoliosis and method of using the same |
US20060047282A1 (en) * | 2004-08-30 | 2006-03-02 | Vermillion Technologies, Llc | Implant for correction of spinal deformity |
Cited By (649)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10349991B2 (en) | 2001-03-30 | 2019-07-16 | DePuy Synthes Products, Inc. | Method and apparatus for bone fixation with secondary compression |
US20050131411A1 (en) * | 2001-03-30 | 2005-06-16 | Culbert Brad S. | Method and apparatus for bone fixation with secondary compression |
US9408648B2 (en) | 2001-03-30 | 2016-08-09 | Interventional Spine, Inc. | Method and apparatus for bone fixation with secondary compression |
US8715284B2 (en) | 2001-03-30 | 2014-05-06 | Interventional Spine, Inc. | Method and apparatus for bone fixation with secondary compression |
US10111695B2 (en) | 2001-03-30 | 2018-10-30 | DePuy Synthes Products, Inc. | Distal bone anchors for bone fixation with secondary compression |
US20090069813A1 (en) * | 2001-03-30 | 2009-03-12 | Interventional Spine, Inc. | Method and apparatus for bone fixation with secondary compression |
US9993349B2 (en) | 2002-06-27 | 2018-06-12 | DePuy Synthes Products, Inc. | Intervertebral disc |
US8109977B2 (en) | 2002-07-19 | 2012-02-07 | Interventional Spine, Inc. | Method and apparatus for spinal fixation |
US20070118132A1 (en) * | 2002-07-19 | 2007-05-24 | Triage Medical, Inc. | Method and apparatus for spinal fixation |
US20070123868A1 (en) * | 2002-07-19 | 2007-05-31 | Culbert Brad S | Method and apparatus for spinal fixation |
US7993377B2 (en) | 2002-07-19 | 2011-08-09 | Interventional Spine, Inc. | Method and apparatus for spinal fixation |
US8945190B2 (en) | 2002-07-19 | 2015-02-03 | Interventional Spine, Inc. | Method and apparatus for spinal fixation |
US7824429B2 (en) | 2002-07-19 | 2010-11-02 | Interventional Spine, Inc. | Method and apparatus for spinal fixation |
US9713486B2 (en) | 2002-07-19 | 2017-07-25 | DePuy Synthes Products, Inc. | Method and apparatus for spinal fixation |
US8870928B2 (en) | 2002-09-06 | 2014-10-28 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US8814913B2 (en) | 2002-09-06 | 2014-08-26 | Roger P Jackson | Helical guide and advancement flange with break-off extensions |
US8540753B2 (en) | 2003-04-09 | 2013-09-24 | Roger P. Jackson | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
US8092502B2 (en) | 2003-04-09 | 2012-01-10 | Jackson Roger P | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
US10952777B2 (en) | 2003-04-09 | 2021-03-23 | Roger P. Jackson | Pivotal bone screw assembly with receiver having threaded open channel and lower opening |
US10349983B2 (en) | 2003-05-22 | 2019-07-16 | Alphatec Spine, Inc. | Pivotal bone anchor assembly with biased bushing for pre-lock friction fit |
USRE46431E1 (en) | 2003-06-18 | 2017-06-13 | Roger P Jackson | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US8936623B2 (en) | 2003-06-18 | 2015-01-20 | Roger P. Jackson | Polyaxial bone screw assembly |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
US9144444B2 (en) | 2003-06-18 | 2015-09-29 | Roger P Jackson | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US10299839B2 (en) | 2003-12-16 | 2019-05-28 | Medos International Sárl | Percutaneous access devices and bone anchor assemblies |
US10039578B2 (en) | 2003-12-16 | 2018-08-07 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US11426216B2 (en) | 2003-12-16 | 2022-08-30 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US8906063B2 (en) | 2004-02-17 | 2014-12-09 | Gmedelaware 2 Llc | Spinal facet joint implant |
US7998178B2 (en) | 2004-02-17 | 2011-08-16 | Gmedelaware 2 Llc | Linked bilateral spinal facet implants and methods of use |
US7998177B2 (en) | 2004-02-17 | 2011-08-16 | Gmedelaware 2 Llc | Linked bilateral spinal facet implants and methods of use |
US20090030461A1 (en) * | 2004-02-17 | 2009-01-29 | Facet Solutions, Inc. | Spinal Facet Joint Implant |
US20090030459A1 (en) * | 2004-02-17 | 2009-01-29 | Facet Solutions, Inc. | Spinal facet implant with spherical implant apposition surface and bone bed and methods of use |
US20090024168A1 (en) * | 2004-02-17 | 2009-01-22 | Facet Solutions, Inc. | Linked bilateral spinal facet implants and methods of use |
US20090024167A1 (en) * | 2004-02-17 | 2009-01-22 | Facet Solutions, Inc. | Spinal facet implants with mating articulating bearing surface and methods of use |
US7914560B2 (en) | 2004-02-17 | 2011-03-29 | Gmedelaware 2 Llc | Spinal facet implant with spherical implant apposition surface and bone bed and methods of use |
US9662143B2 (en) | 2004-02-27 | 2017-05-30 | Roger P Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US9918751B2 (en) | 2004-02-27 | 2018-03-20 | Roger P. Jackson | Tool system for dynamic spinal implants |
US9636151B2 (en) | 2004-02-27 | 2017-05-02 | Roger P Jackson | Orthopedic implant rod reduction tool set and method |
US8100915B2 (en) | 2004-02-27 | 2012-01-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8377067B2 (en) | 2004-02-27 | 2013-02-19 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US8394133B2 (en) | 2004-02-27 | 2013-03-12 | Roger P. Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US20110077692A1 (en) * | 2004-02-27 | 2011-03-31 | Jackson Roger P | Dynamic spinal stabilization assemblies, tool set and method |
US8900272B2 (en) | 2004-02-27 | 2014-12-02 | Roger P Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US9662151B2 (en) | 2004-02-27 | 2017-05-30 | Roger P Jackson | Orthopedic implant rod reduction tool set and method |
US9055978B2 (en) | 2004-02-27 | 2015-06-16 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US10485588B2 (en) | 2004-02-27 | 2019-11-26 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US20060111715A1 (en) * | 2004-02-27 | 2006-05-25 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US8894657B2 (en) | 2004-02-27 | 2014-11-25 | Roger P. Jackson | Tool system for dynamic spinal implants |
US11648039B2 (en) | 2004-02-27 | 2023-05-16 | Roger P. Jackson | Spinal fixation tool attachment structure |
US11147597B2 (en) | 2004-02-27 | 2021-10-19 | Roger P Jackson | Dynamic spinal stabilization assemblies, tool set and method |
US20080091213A1 (en) * | 2004-02-27 | 2008-04-17 | Jackson Roger P | Tool system for dynamic spinal implants |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US8292892B2 (en) | 2004-02-27 | 2012-10-23 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US9532815B2 (en) | 2004-02-27 | 2017-01-03 | Roger P. Jackson | Spinal fixation tool set and method |
US9216039B2 (en) | 2004-02-27 | 2015-12-22 | Roger P. Jackson | Dynamic spinal stabilization assemblies, tool set and method |
US8066739B2 (en) | 2004-02-27 | 2011-11-29 | Jackson Roger P | Tool system for dynamic spinal implants |
US11291480B2 (en) | 2004-02-27 | 2022-04-05 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US8162948B2 (en) | 2004-02-27 | 2012-04-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US9050139B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US20080009866A1 (en) * | 2004-03-09 | 2008-01-10 | Todd Alamin | Methods and systems for constraint of spinous processes with attachment |
US10080589B2 (en) | 2004-03-09 | 2018-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for constraint of spinous processes with attachment |
US8486110B2 (en) | 2004-03-09 | 2013-07-16 | The Board Of Trustees Of The Leland Stanford Junior University | Spinal implant and method for restricting spinal flexion |
US20090198282A1 (en) * | 2004-03-09 | 2009-08-06 | Louis Fielding | Spinal implant and method for restricting spinal flexion |
US8216275B2 (en) | 2004-03-09 | 2012-07-10 | The Board Of Trustees Of The Leland Stanford Junior University | Spinal implant and method for restricting spinal flexion |
US7458981B2 (en) | 2004-03-09 | 2008-12-02 | The Board Of Trustees Of The Leland Stanford Junior University | Spinal implant and method for restricting spinal flexion |
US8523904B2 (en) | 2004-03-09 | 2013-09-03 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for constraint of spinous processes with attachment |
US9149304B2 (en) | 2004-03-09 | 2015-10-06 | The Board Of Trustees Of The Leland Sanford Junior University | Methods and systems for constraint of spinous processes with attachment |
US8105363B2 (en) | 2004-03-09 | 2012-01-31 | The Board Of Trustees Of The Leland Stanford Junior University | Spinal implant and method for restricting spinal flexion |
US20050216017A1 (en) * | 2004-03-09 | 2005-09-29 | Louie Fielding | Spinal implant and method for restricting spinal flexion |
US20090024169A1 (en) * | 2004-06-02 | 2009-01-22 | Facet Solutions, Inc. | System and method for multiple level facet joint arthroplasty and fusion |
US8777994B2 (en) | 2004-06-02 | 2014-07-15 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
US20090024134A1 (en) * | 2004-06-02 | 2009-01-22 | Facet Solutions, Inc. | Surgical measurement and resection framework |
US20090024135A1 (en) * | 2004-06-02 | 2009-01-22 | Facet Solutions, Inc. | Surgical measurement systems and methods |
US7815648B2 (en) | 2004-06-02 | 2010-10-19 | Facet Solutions, Inc | Surgical measurement systems and methods |
US11712268B2 (en) | 2004-07-02 | 2023-08-01 | Nuvasive Specialized Orthopedics, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US7955357B2 (en) | 2004-07-02 | 2011-06-07 | Ellipse Technologies, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US9011499B1 (en) | 2004-07-02 | 2015-04-21 | Ellipse Technologies, Inc | Expandable rod system to treat scoliosis and method of using the same |
US8343192B2 (en) | 2004-07-02 | 2013-01-01 | Ellipse Technologies, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US10016221B2 (en) | 2004-07-02 | 2018-07-10 | Nuvasive Specialized Orthopedics, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US20060009767A1 (en) * | 2004-07-02 | 2006-01-12 | Kiester P D | Expandable rod system to treat scoliosis and method of using the same |
US8852236B2 (en) | 2004-07-02 | 2014-10-07 | Ellipse Technologies, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US20090204154A1 (en) * | 2004-07-02 | 2009-08-13 | Ellipse Technologies, Inc. | expandable rod system to treat scoliosis and method of using the same |
US11357549B2 (en) | 2004-07-02 | 2022-06-14 | Nuvasive Specialized Orthopedics, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US9398925B2 (en) | 2004-07-02 | 2016-07-26 | Nuvasive Specialized Orthopedics, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US8114158B2 (en) | 2004-08-03 | 2012-02-14 | Kspine, Inc. | Facet device and method |
US9011491B2 (en) | 2004-08-03 | 2015-04-21 | K Spine, Inc. | Facet device and method |
US20090024166A1 (en) * | 2004-08-03 | 2009-01-22 | Vertech Innovations, Llc. | Facet device and method |
US9451997B2 (en) | 2004-08-03 | 2016-09-27 | K2M, Inc. | Facet device and method |
US8845649B2 (en) | 2004-09-24 | 2014-09-30 | Roger P. Jackson | Spinal fixation tool set and method for rod reduction and fastener insertion |
US20060069436A1 (en) * | 2004-09-30 | 2006-03-30 | Depuy Spine, Inc. | Trial disk implant |
US20060085074A1 (en) * | 2004-10-18 | 2006-04-20 | Kamshad Raiszadeh | Medical device systems for the spine |
US20060085073A1 (en) * | 2004-10-18 | 2006-04-20 | Kamshad Raiszadeh | Medical device systems for the spine |
US9055981B2 (en) | 2004-10-25 | 2015-06-16 | Lanx, Inc. | Spinal implants and methods |
US9743957B2 (en) | 2004-11-10 | 2017-08-29 | Roger P. Jackson | Polyaxial bone screw with shank articulation pressure insert and method |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
US11147591B2 (en) | 2004-11-10 | 2021-10-19 | Roger P Jackson | Pivotal bone anchor receiver assembly with threaded closure |
US8998960B2 (en) | 2004-11-10 | 2015-04-07 | Roger P. Jackson | Polyaxial bone screw with helically wound capture connection |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US8273089B2 (en) | 2004-11-23 | 2012-09-25 | Jackson Roger P | Spinal fixation tool set and method |
US9629669B2 (en) | 2004-11-23 | 2017-04-25 | Roger P. Jackson | Spinal fixation tool set and method |
US11389214B2 (en) | 2004-11-23 | 2022-07-19 | Roger P. Jackson | Spinal fixation tool set and method |
US9211150B2 (en) | 2004-11-23 | 2015-12-15 | Roger P. Jackson | Spinal fixation tool set and method |
US10039577B2 (en) | 2004-11-23 | 2018-08-07 | Roger P Jackson | Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces |
US8591515B2 (en) | 2004-11-23 | 2013-11-26 | Roger P. Jackson | Spinal fixation tool set and method |
US9522021B2 (en) | 2004-11-23 | 2016-12-20 | Roger P. Jackson | Polyaxial bone anchor with retainer with notch for mono-axial motion |
US11992423B2 (en) | 2004-11-24 | 2024-05-28 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US10918498B2 (en) | 2004-11-24 | 2021-02-16 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US11096799B2 (en) | 2004-11-24 | 2021-08-24 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US9962189B2 (en) | 2004-12-08 | 2018-05-08 | Decima Spine, Inc. | Method and apparatus for spinal stabilization |
US20070016191A1 (en) * | 2004-12-08 | 2007-01-18 | Culbert Brad S | Method and apparatus for spinal stabilization |
US10667844B2 (en) | 2004-12-08 | 2020-06-02 | Decima Spine, Inc. | Method and apparatus for spinal stabilization |
US7857832B2 (en) | 2004-12-08 | 2010-12-28 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US10639074B2 (en) | 2004-12-08 | 2020-05-05 | Decima Spine, Inc. | Method and apparatus for spinal stabilization |
US7648523B2 (en) | 2004-12-08 | 2010-01-19 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20110152933A1 (en) * | 2004-12-08 | 2011-06-23 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20100174314A1 (en) * | 2004-12-08 | 2010-07-08 | Srdjan Mirkovic | Method and apparatus for spinal stabilization |
US7901438B2 (en) | 2004-12-08 | 2011-03-08 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US9226758B2 (en) | 2004-12-08 | 2016-01-05 | Decima Spine, Inc. | Method and apparatus for spinal stabilization |
US9445826B2 (en) | 2004-12-08 | 2016-09-20 | Decima Spine, Inc. | Method and apparatus for spinal stabilization |
US10070893B2 (en) | 2004-12-08 | 2018-09-11 | Decima Spine, Inc. | Method and apparatus for spinal stabilization |
US9414863B2 (en) | 2005-02-22 | 2016-08-16 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
USRE47551E1 (en) | 2005-02-22 | 2019-08-06 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
US8372153B2 (en) * | 2005-03-29 | 2013-02-12 | Martin W. Roche | Method for detecting body parameters |
KR101301862B1 (en) * | 2005-03-29 | 2013-08-29 | 마틴 로슈 | Biometric sensor system for detecting biometric parameters |
AU2012216813B2 (en) * | 2005-03-29 | 2015-05-07 | Martin Roche | Body parameter detecting sensor and method for detecting body parameters |
US20110213221A1 (en) * | 2005-03-29 | 2011-09-01 | Roche Martin W | Method for Detecting Body Parameters |
US7918887B2 (en) * | 2005-03-29 | 2011-04-05 | Roche Martin W | Body parameter detecting sensor and method for detecting body parameters |
US8444654B2 (en) | 2005-03-29 | 2013-05-21 | Martin W. Roche | Method for detecting body parameters |
US20110118566A1 (en) * | 2005-03-29 | 2011-05-19 | Roche Martin W | Method for Detecting Body Parameters |
US20110118565A1 (en) * | 2005-03-29 | 2011-05-19 | Roche Martin W | Method for Detecting Body Parameters |
US20110118567A1 (en) * | 2005-03-29 | 2011-05-19 | Roche Martin W | Method for Detecting Body Parameters |
EP2510873A3 (en) * | 2005-03-29 | 2012-11-28 | Martin Roche | Biometric sensor |
US8372147B2 (en) * | 2005-03-29 | 2013-02-12 | Martin W. Roche | Method for detecting body parameters |
US8449556B2 (en) | 2005-03-29 | 2013-05-28 | Martin W. Roche | Method for detecting body parameters |
US20110124981A1 (en) * | 2005-03-29 | 2011-05-26 | Roche Martin W | Method for Detecting Body Parameters |
US9451919B2 (en) | 2005-03-29 | 2016-09-27 | Orthosensor Inc. | Method for detecting body parameters |
AU2012203891B2 (en) * | 2005-03-29 | 2015-05-07 | Martin Roche | Body parameter detecting sensor and method for detecting body parameters |
US11457813B2 (en) | 2005-03-29 | 2022-10-04 | Martin W. Roche | Method for detecting body parameters |
US20060224088A1 (en) * | 2005-03-29 | 2006-10-05 | Roche Martin W | Body parameter detecting sensor and method for detecting body parameters |
US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
US11234745B2 (en) | 2005-07-14 | 2022-02-01 | Roger P. Jackson | Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8696711B2 (en) | 2005-09-30 | 2014-04-15 | Roger P. Jackson | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US20080319490A1 (en) * | 2005-09-30 | 2008-12-25 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US8591560B2 (en) | 2005-09-30 | 2013-11-26 | Roger P. Jackson | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8613760B2 (en) | 2005-09-30 | 2013-12-24 | Roger P. Jackson | Dynamic stabilization connecting member with slitted core and outer sleeve |
US9770271B2 (en) | 2005-10-25 | 2017-09-26 | Zimmer Biomet Spine, Inc. | Spinal implants and methods |
US8545538B2 (en) | 2005-12-19 | 2013-10-01 | M. Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US20100268281A1 (en) * | 2005-12-19 | 2010-10-21 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US20070179614A1 (en) * | 2006-01-30 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc and method of installing same |
US20070179739A1 (en) * | 2006-02-01 | 2007-08-02 | Sdgi Holdings, Inc. | Implantable pedometer |
US20070233065A1 (en) * | 2006-02-17 | 2007-10-04 | Sdgi Holdings, Inc. | Dynamic treatment system and method of use |
US7993269B2 (en) | 2006-02-17 | 2011-08-09 | Medtronic, Inc. | Sensor and method for spinal monitoring |
WO2007098385A3 (en) * | 2006-02-17 | 2008-05-08 | Warsaw Orthopedic Inc | Dynamic treatment system and method of use |
US8016859B2 (en) | 2006-02-17 | 2011-09-13 | Medtronic, Inc. | Dynamic treatment system and method of use |
US20070270825A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Expandable interspinous process implant and method of installing same |
US8105357B2 (en) | 2006-04-28 | 2012-01-31 | Warsaw Orthopedic, Inc. | Interspinous process brace |
US8348978B2 (en) | 2006-04-28 | 2013-01-08 | Warsaw Orthopedic, Inc. | Interosteotic implant |
US20070270827A1 (en) * | 2006-04-28 | 2007-11-22 | Warsaw Orthopedic, Inc | Adjustable interspinous process brace |
US7846185B2 (en) | 2006-04-28 | 2010-12-07 | Warsaw Orthopedic, Inc. | Expandable interspinous process implant and method of installing same |
US20070270823A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Multi-chamber expandable interspinous process brace |
US8252031B2 (en) | 2006-04-28 | 2012-08-28 | Warsaw Orthopedic, Inc. | Molding device for an expandable interspinous process implant |
US20070270829A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Molding device for an expandable interspinous process implant |
US8048118B2 (en) | 2006-04-28 | 2011-11-01 | Warsaw Orthopedic, Inc. | Adjustable interspinous process brace |
US20070270824A1 (en) * | 2006-04-28 | 2007-11-22 | Warsaw Orthopedic, Inc. | Interspinous process brace |
US20070270828A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Interspinous process brace |
US20070276369A1 (en) * | 2006-05-26 | 2007-11-29 | Sdgi Holdings, Inc. | In vivo-customizable implant |
US8172882B2 (en) | 2006-06-14 | 2012-05-08 | Spartek Medical, Inc. | Implant system and method to treat degenerative disorders of the spine |
US8043337B2 (en) | 2006-06-14 | 2011-10-25 | Spartek Medical, Inc. | Implant system and method to treat degenerative disorders of the spine |
US20080058808A1 (en) * | 2006-06-14 | 2008-03-06 | Spartek Medical, Inc. | Implant system and method to treat degenerative disorders of the spine |
US20080021457A1 (en) * | 2006-07-05 | 2008-01-24 | Warsaw Orthopedic Inc. | Zygapophysial joint repair system |
US20080147122A1 (en) * | 2006-10-12 | 2008-06-19 | Jackson Roger P | Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer |
US20080262549A1 (en) * | 2006-10-19 | 2008-10-23 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US8029541B2 (en) | 2006-10-19 | 2011-10-04 | Simpirica Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US8187307B2 (en) | 2006-10-19 | 2012-05-29 | Simpirica Spine, Inc. | Structures and methods for constraining spinal processes with single connector |
US8162982B2 (en) | 2006-10-19 | 2012-04-24 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
US9295499B2 (en) | 2006-10-19 | 2016-03-29 | Empirical Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US8790372B2 (en) | 2006-10-19 | 2014-07-29 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
US20080108993A1 (en) * | 2006-10-19 | 2008-05-08 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US20090264932A1 (en) * | 2006-10-19 | 2009-10-22 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
US8454660B2 (en) | 2006-10-19 | 2013-06-04 | Simpirica Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US20080177264A1 (en) * | 2006-10-19 | 2008-07-24 | Simpirica Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US7981025B2 (en) | 2006-10-20 | 2011-07-19 | Ellipse Technologies, Inc. | Adjustable implant and method of use |
US8715159B2 (en) | 2006-10-20 | 2014-05-06 | Ellipse Technologies, Inc. | Adjustable implant and method of use |
US10039661B2 (en) | 2006-10-20 | 2018-08-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant and method of use |
US11234849B2 (en) | 2006-10-20 | 2022-02-01 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant and method of use |
US9271857B2 (en) | 2006-10-20 | 2016-03-01 | Ellipse Technologies, Inc. | Adjustable implant and method of use |
US8808163B2 (en) | 2006-10-20 | 2014-08-19 | Ellipse Technologies, Inc. | Adjustable implant and method of use |
US11672684B2 (en) | 2006-10-20 | 2023-06-13 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant and method of use |
US9526650B2 (en) | 2006-10-20 | 2016-12-27 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant and method of use |
US11497618B2 (en) | 2006-12-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11712345B2 (en) | 2006-12-07 | 2023-08-01 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10390963B2 (en) | 2006-12-07 | 2019-08-27 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10398566B2 (en) | 2006-12-07 | 2019-09-03 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10583015B2 (en) | 2006-12-07 | 2020-03-10 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11432942B2 (en) | 2006-12-07 | 2022-09-06 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11642229B2 (en) | 2006-12-07 | 2023-05-09 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11660206B2 (en) | 2006-12-07 | 2023-05-30 | DePuy Synthes Products, Inc. | Intervertebral implant |
US20080167655A1 (en) * | 2007-01-05 | 2008-07-10 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US8206418B2 (en) | 2007-01-10 | 2012-06-26 | Gmedelaware 2 Llc | System and method for facet joint replacement with detachable coupler |
US8252027B2 (en) | 2007-01-10 | 2012-08-28 | Gmedelaware 2 Llc | System and method for facet joint replacement |
US20080319488A1 (en) * | 2007-01-10 | 2008-12-25 | Facet Solutions, Inc. | System and method for facet joint replacement |
US8211147B2 (en) | 2007-01-10 | 2012-07-03 | Gmedelaware 2 Llc | System and method for facet joint replacement |
US20080183211A1 (en) * | 2007-01-11 | 2008-07-31 | Lanx, Llc | Spinous process implants and associated methods |
US9743960B2 (en) | 2007-01-11 | 2017-08-29 | Zimmer Biomet Spine, Inc. | Interspinous implants and methods |
US9861400B2 (en) | 2007-01-11 | 2018-01-09 | Zimmer Biomet Spine, Inc. | Spinous process implants and associated methods |
US9247968B2 (en) | 2007-01-11 | 2016-02-02 | Lanx, Inc. | Spinous process implants and associated methods |
US9724136B2 (en) | 2007-01-11 | 2017-08-08 | Zimmer Biomet Spine, Inc. | Spinous process implants and associated methods |
US8241330B2 (en) | 2007-01-11 | 2012-08-14 | Lanx, Inc. | Spinous process implants and associated methods |
US9451989B2 (en) | 2007-01-18 | 2016-09-27 | Roger P Jackson | Dynamic stabilization members with elastic and inelastic sections |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US10470801B2 (en) | 2007-01-18 | 2019-11-12 | Roger P. Jackson | Dynamic spinal stabilization with rod-cord longitudinal connecting members |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US9101404B2 (en) | 2007-01-26 | 2015-08-11 | Roger P. Jackson | Dynamic stabilization connecting member with molded connection |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US9439683B2 (en) | 2007-01-26 | 2016-09-13 | Roger P Jackson | Dynamic stabilization member with molded connection |
US8506599B2 (en) | 2007-02-12 | 2013-08-13 | Roger P. Jackson | Dynamic stabilization assembly with frusto-conical connection |
US20090281574A1 (en) * | 2007-02-12 | 2009-11-12 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
US8702759B2 (en) | 2007-04-17 | 2014-04-22 | Gmedelaware 2 Llc | System and method for bone anchorage |
US9050144B2 (en) | 2007-04-17 | 2015-06-09 | Gmedelaware 2 Llc | System and method for implant anchorage with anti-rotation features |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US20100010543A1 (en) * | 2007-05-01 | 2010-01-14 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US20080281361A1 (en) * | 2007-05-10 | 2008-11-13 | Shannon Marlece Vittur | Posterior stabilization and spinous process systems and methods |
US8840646B2 (en) | 2007-05-10 | 2014-09-23 | Warsaw Orthopedic, Inc. | Spinous process implants and methods |
US20080281360A1 (en) * | 2007-05-10 | 2008-11-13 | Shannon Marlece Vittur | Spinous process implants and methods |
US20080294200A1 (en) * | 2007-05-25 | 2008-11-27 | Andrew Kohm | Spinous process implants and methods of using the same |
US20080294199A1 (en) * | 2007-05-25 | 2008-11-27 | Andrew Kohm | Spinous process implants and methods of using the same |
US20080300633A1 (en) * | 2007-05-31 | 2008-12-04 | Jackson Roger P | Dynamic stabilization connecting member with pre-tensioned solid core |
US7951170B2 (en) | 2007-05-31 | 2011-05-31 | Jackson Roger P | Dynamic stabilization connecting member with pre-tensioned solid core |
US8211150B2 (en) | 2007-06-05 | 2012-07-03 | Spartek Medical, Inc. | Dynamic stabilization and motion preservation spinal implantation system and method |
US20100057139A1 (en) * | 2007-06-05 | 2010-03-04 | Spartek Medical, Inc. | Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method |
US8048115B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Surgical tool and method for implantation of a dynamic bone anchor |
US8048121B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Spine implant with a defelction rod system anchored to a bone anchor and method |
US8021396B2 (en) | 2007-06-05 | 2011-09-20 | Spartek Medical, Inc. | Configurable dynamic spinal rod and method for dynamic stabilization of the spine |
US8012175B2 (en) | 2007-06-05 | 2011-09-06 | Spartek Medical, Inc. | Multi-directional deflection profile for a dynamic stabilization and motion preservation spinal implantation system and method |
US8105356B2 (en) | 2007-06-05 | 2012-01-31 | Spartek Medical, Inc. | Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method |
US8109970B2 (en) | 2007-06-05 | 2012-02-07 | Spartek Medical, Inc. | Deflection rod system with a deflection contouring shield for a spine implant and method |
US8298267B2 (en) | 2007-06-05 | 2012-10-30 | Spartek Medical, Inc. | Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method |
US8002803B2 (en) | 2007-06-05 | 2011-08-23 | Spartek Medical, Inc. | Deflection rod system for a spine implant including an inner rod and an outer shell and method |
US8317836B2 (en) | 2007-06-05 | 2012-11-27 | Spartek Medical, Inc. | Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method |
US8002800B2 (en) | 2007-06-05 | 2011-08-23 | Spartek Medical, Inc. | Horizontal rod with a mounting platform for a dynamic stabilization and motion preservation spinal implantation system and method |
US8092501B2 (en) | 2007-06-05 | 2012-01-10 | Spartek Medical, Inc. | Dynamic spinal rod and method for dynamic stabilization of the spine |
US7993372B2 (en) | 2007-06-05 | 2011-08-09 | Spartek Medical, Inc. | Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method |
US7985243B2 (en) | 2007-06-05 | 2011-07-26 | Spartek Medical, Inc. | Deflection rod system with mount for a dynamic stabilization and motion preservation spinal implantation system and method |
US8114130B2 (en) | 2007-06-05 | 2012-02-14 | Spartek Medical, Inc. | Deflection rod system for spine implant with end connectors and method |
US7963978B2 (en) | 2007-06-05 | 2011-06-21 | Spartek Medical, Inc. | Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system |
US8048122B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Spine implant with a dual deflection rod system including a deflection limiting sheild associated with a bone screw and method |
US8048113B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Deflection rod system with a non-linear deflection to load characteristic for a dynamic stabilization and motion preservation spinal implantation system and method |
US8048128B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Revision system and method for a dynamic stabilization and motion preservation spinal implantation system and method |
US8052721B2 (en) | 2007-06-05 | 2011-11-08 | Spartek Medical, Inc. | Multi-dimensional horizontal rod for a dynamic stabilization and motion preservation spinal implantation system and method |
US8105359B2 (en) | 2007-06-05 | 2012-01-31 | Spartek Medical, Inc. | Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US8052722B2 (en) | 2007-06-05 | 2011-11-08 | Spartek Medical, Inc. | Dual deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US8114134B2 (en) | 2007-06-05 | 2012-02-14 | Spartek Medical, Inc. | Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine |
US7942900B2 (en) | 2007-06-05 | 2011-05-17 | Spartek Medical, Inc. | Shaped horizontal rod for dynamic stabilization and motion preservation spinal implantation system and method |
US8118842B2 (en) | 2007-06-05 | 2012-02-21 | Spartek Medical, Inc. | Multi-level dynamic stabilization and motion preservation spinal implantation system and method |
US8083772B2 (en) | 2007-06-05 | 2011-12-27 | Spartek Medical, Inc. | Dynamic spinal rod assembly and method for dynamic stabilization of the spine |
US8080039B2 (en) | 2007-06-05 | 2011-12-20 | Spartek Medical, Inc. | Anchor system for a spine implantation system that can move about three axes |
US20080306545A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US20080306544A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Deflection rod system for a spine implant including an inner rod and an outer shell and method |
US20080306528A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Deflection rod system for spine implant with end connectors and method |
US20080306556A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method |
US20080306516A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Multi-dimensional horizontal rod for a dynamic stabilization and motion preservation spinal implantation system and method |
US8142480B2 (en) | 2007-06-05 | 2012-03-27 | Spartek Medical, Inc. | Dynamic stabilization and motion preservation spinal implantation system with horizontal deflection rod and articulating vertical rods |
US20080306548A1 (en) * | 2007-06-05 | 2008-12-11 | Spartek Medical, Inc. | Dynamic stabilization and motion preservation spinal implantation system and method |
US8147520B2 (en) | 2007-06-05 | 2012-04-03 | Spartek Medical, Inc. | Horizontally loaded dynamic stabilization and motion preservation spinal implantation system and method |
US8070776B2 (en) | 2007-06-05 | 2011-12-06 | Spartek Medical, Inc. | Deflection rod system for use with a vertebral fusion implant for dynamic stabilization and motion preservation spinal implantation system and method |
US8070780B2 (en) | 2007-06-05 | 2011-12-06 | Spartek Medical, Inc. | Bone anchor with a yoke-shaped anchor head for a dynamic stabilization and motion preservation spinal implantation system and method |
US8070774B2 (en) | 2007-06-05 | 2011-12-06 | Spartek Medical, Inc. | Reinforced bone anchor for a dynamic stabilization and motion preservation spinal implantation system and method |
US8192469B2 (en) | 2007-06-05 | 2012-06-05 | Spartek Medical, Inc. | Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod |
US8057514B2 (en) | 2007-06-05 | 2011-11-15 | Spartek Medical, Inc. | Deflection rod system dimensioned for deflection to a load characteristic for dynamic stabilization and motion preservation spinal implantation system and method |
US8066747B2 (en) | 2007-06-05 | 2011-11-29 | Spartek Medical, Inc. | Implantation method for a dynamic stabilization and motion preservation spinal implantation system and method |
US8182516B2 (en) | 2007-06-05 | 2012-05-22 | Spartek Medical, Inc. | Rod capture mechanism for dynamic stabilization and motion preservation spinal implantation system and method |
US8182515B2 (en) | 2007-06-05 | 2012-05-22 | Spartek Medical, Inc. | Dynamic stabilization and motion preservation spinal implantation system and method |
US20100057140A1 (en) * | 2007-06-05 | 2010-03-04 | Spartek Medical, Inc. | Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method |
US8048123B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Spine implant with a deflection rod system and connecting linkages and method |
US8162987B2 (en) | 2007-06-05 | 2012-04-24 | Spartek Medical, Inc. | Modular spine treatment kit for dynamic stabilization and motion preservation of the spine |
US8177815B2 (en) | 2007-06-05 | 2012-05-15 | Spartek Medical, Inc. | Super-elastic deflection rod for a dynamic stabilization and motion preservation spinal implantation system and method |
US8172881B2 (en) | 2007-06-05 | 2012-05-08 | Spartek Medical, Inc. | Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod mounted in close proximity to a mounting rod |
US8070775B2 (en) | 2007-06-05 | 2011-12-06 | Spartek Medical, Inc. | Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US20100030274A1 (en) * | 2007-06-05 | 2010-02-04 | Spartek Medical, Inc. | Dynamic spinal rod and method for dynamic stabilization of the spine |
US20100030267A1 (en) * | 2007-06-05 | 2010-02-04 | Spartek Medical, Inc. | Surgical tool and method for implantation of a dynamic bone anchor |
US8568451B2 (en) | 2007-06-05 | 2013-10-29 | Spartek Medical, Inc. | Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method |
US10426523B2 (en) | 2007-06-06 | 2019-10-01 | K2M, Inc. | Medical device and method to correct deformity |
US8162979B2 (en) | 2007-06-06 | 2012-04-24 | K Spine, Inc. | Medical device and method to correct deformity |
US20090012565A1 (en) * | 2007-06-06 | 2009-01-08 | Vertech, Inc. | Medical device and method to correct deformity |
US9848917B2 (en) | 2007-06-06 | 2017-12-26 | K2M, Inc. | Medical device and method to correct deformity |
US11246628B2 (en) | 2007-06-06 | 2022-02-15 | K2M, Inc. | Medical device and method to correct deformity |
US7998176B2 (en) | 2007-06-08 | 2011-08-16 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20080306537A1 (en) * | 2007-06-08 | 2008-12-11 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20100036424A1 (en) * | 2007-06-22 | 2010-02-11 | Simpirica Spine, Inc. | Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment |
US8403961B2 (en) | 2007-06-22 | 2013-03-26 | Simpirica Spine, Inc. | Methods and devices for controlled flexion restriction of spinal segments |
US20110172708A1 (en) * | 2007-06-22 | 2011-07-14 | Simpirica Spine, Inc. | Methods and systems for increasing the bending stiffness of a spinal segment with elongation limit |
US8403964B2 (en) | 2007-06-22 | 2013-03-26 | Simpirica Spine, Inc. | Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment |
US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US9839530B2 (en) | 2007-06-26 | 2017-12-12 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US11622868B2 (en) | 2007-06-26 | 2023-04-11 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US20090062918A1 (en) * | 2007-08-30 | 2009-03-05 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US8974496B2 (en) | 2007-08-30 | 2015-03-10 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US9095384B2 (en) | 2007-10-17 | 2015-08-04 | Aro Medical Aps U/Stiftelse | Methods, systems and apparatuses for torsional stabilization |
US10524842B2 (en) | 2007-10-17 | 2020-01-07 | Aro Medical Aps U/Stiftelse | Methods, systems and apparatuses for torsional stabilization |
US9814495B2 (en) | 2007-10-17 | 2017-11-14 | Aro Medical Aps U/Stiftelse | Methods, systems and apparatuses for torsional stabilization |
WO2009052315A3 (en) * | 2007-10-17 | 2009-11-05 | Robie Device Group, Llc | Methods, systems and apparatuses for torsional stabiliazation |
US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
US20090105764A1 (en) * | 2007-10-23 | 2009-04-23 | Jackson Roger P | Dynamic stabilization member with fin support and solid core extension |
US20090105820A1 (en) * | 2007-10-23 | 2009-04-23 | Jackson Roger P | Dynamic stabilization member with fin support and cable core extension |
US8057472B2 (en) | 2007-10-30 | 2011-11-15 | Ellipse Technologies, Inc. | Skeletal manipulation method |
US11172972B2 (en) | 2007-10-30 | 2021-11-16 | Nuvasive Specialized Orthopedics, Inc. | Skeletal manipulation method |
US9271781B2 (en) | 2007-10-30 | 2016-03-01 | Ellipse Technologies, Inc. | Skeletal manipulation method |
US9179960B2 (en) | 2007-10-30 | 2015-11-10 | Ellipse Technologies, Inc. | Skeletal manipulation method |
US9693813B2 (en) | 2007-10-30 | 2017-07-04 | Nuvasive Specialized Orthopedics, Inc. | Skeletal manipulation method |
US10349995B2 (en) | 2007-10-30 | 2019-07-16 | Nuvasive Specialized Orthopedics, Inc. | Skeletal manipulation method |
US20090112207A1 (en) * | 2007-10-30 | 2009-04-30 | Blair Walker | Skeletal manipulation method |
US20090112262A1 (en) * | 2007-10-30 | 2009-04-30 | Scott Pool | Skeletal manipulation system |
US20090112263A1 (en) * | 2007-10-30 | 2009-04-30 | Scott Pool | Skeletal manipulation system |
US11871974B2 (en) | 2007-10-30 | 2024-01-16 | Nuvasive Specialized Orthopedics, Inc. | Skeletal manipulation method |
US8419734B2 (en) | 2007-10-30 | 2013-04-16 | Ellipse Technologies, Inc. | Skeletal manipulation method |
US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US10433977B2 (en) | 2008-01-17 | 2019-10-08 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US10449058B2 (en) | 2008-01-17 | 2019-10-22 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US8915866B2 (en) | 2008-01-18 | 2014-12-23 | Warsaw Orthopedic, Inc. | Implantable sensor and associated methods |
US20090187120A1 (en) * | 2008-01-18 | 2009-07-23 | Warsaw Orthopedic, Inc. | Implantable sensor and associated methods |
US8211155B2 (en) | 2008-02-26 | 2012-07-03 | Spartek Medical, Inc. | Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine |
US8016861B2 (en) | 2008-02-26 | 2011-09-13 | Spartek Medical, Inc. | Versatile polyaxial connector assembly and method for dynamic stabilization of the spine |
US8333792B2 (en) | 2008-02-26 | 2012-12-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine |
US8057517B2 (en) | 2008-02-26 | 2011-11-15 | Spartek Medical, Inc. | Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine |
US8057515B2 (en) | 2008-02-26 | 2011-11-15 | Spartek Medical, Inc. | Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine |
US8048125B2 (en) | 2008-02-26 | 2011-11-01 | Spartek Medical, Inc. | Versatile offset polyaxial connector and method for dynamic stabilization of the spine |
US8337536B2 (en) | 2008-02-26 | 2012-12-25 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
US8097024B2 (en) | 2008-02-26 | 2012-01-17 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for stabilization of the spine |
US8267979B2 (en) | 2008-02-26 | 2012-09-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine |
US20100036437A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
US20100036435A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine |
US20100036426A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Versatile offset polyaxial connector and method for dynamic stabilization of the spine |
US8012181B2 (en) | 2008-02-26 | 2011-09-06 | Spartek Medical, Inc. | Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine |
US8007518B2 (en) | 2008-02-26 | 2011-08-30 | Spartek Medical, Inc. | Load-sharing component having a deflectable post and method for dynamic stabilization of the spine |
US20100030271A1 (en) * | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine |
US20100036436A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine |
US20100030224A1 (en) * | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod |
US20100030279A1 (en) * | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine |
US20100168795A1 (en) * | 2008-02-26 | 2010-07-01 | Spartek Medical, Inc. | Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine |
US8083775B2 (en) | 2008-02-26 | 2011-12-27 | Spartek Medical, Inc. | Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine |
US20100036421A1 (en) * | 2008-02-26 | 2010-02-11 | Spartek Medical, Inc. | Load-sharing component having a deflectable post and method for dynamic stabilization of the spine |
US8721688B1 (en) | 2008-03-19 | 2014-05-13 | Collabcom II, LLC | Interspinous implant, tools and methods of implanting |
US20090240280A1 (en) * | 2008-03-19 | 2009-09-24 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US8202299B2 (en) | 2008-03-19 | 2012-06-19 | Collabcom II, LLC | Interspinous implant, tools and methods of implanting |
US11202707B2 (en) | 2008-03-25 | 2021-12-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
US12076241B2 (en) | 2008-03-25 | 2024-09-03 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
US11707359B2 (en) | 2008-04-05 | 2023-07-25 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11617655B2 (en) | 2008-04-05 | 2023-04-04 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12023255B2 (en) | 2008-04-05 | 2024-07-02 | DePuy Synthes Products, Inc. | Expandable inter vertebral implant |
US10449056B2 (en) | 2008-04-05 | 2019-10-22 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9993350B2 (en) | 2008-04-05 | 2018-06-12 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11701234B2 (en) | 2008-04-05 | 2023-07-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11712342B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9931223B2 (en) | 2008-04-05 | 2018-04-03 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11712341B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12011361B2 (en) | 2008-04-05 | 2024-06-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US10596008B2 (en) | 2008-04-21 | 2020-03-24 | Ray C. Wasielewski | Method of designing orthopedic implants using in vivo |
US9364331B2 (en) | 2008-04-21 | 2016-06-14 | Ray Wasielewski | Method of designing orthopedic implants using in vivo data |
US8377073B2 (en) | 2008-04-21 | 2013-02-19 | Ray Wasielewski | Method of designing orthopedic implants using in vivo data |
US8308771B2 (en) | 2008-06-06 | 2012-11-13 | Simpirica Spine, Inc. | Methods and apparatus for locking a band |
US8187305B2 (en) | 2008-06-06 | 2012-05-29 | Simpirica Spine, Inc. | Methods and apparatus for deploying spinous process constraints |
US20100023060A1 (en) * | 2008-06-06 | 2010-01-28 | Simpirica Spine, Inc. | Methods and apparatus for locking a band |
US9907574B2 (en) | 2008-08-01 | 2018-03-06 | Roger P. Jackson | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
US8202322B2 (en) | 2008-09-12 | 2012-06-19 | Doty Keith L | Dynamic six-degrees-of-freedom intervertebral spinal disc prosthesis |
US7927375B2 (en) | 2008-09-12 | 2011-04-19 | Doty Keith L | Dynamic six-degrees-of-freedom intervertebral spinal disc prosthesis |
US20100094303A1 (en) * | 2008-10-13 | 2010-04-15 | Arvin Chang | Spinal distraction system |
US11241257B2 (en) | 2008-10-13 | 2022-02-08 | Nuvasive Specialized Orthopedics, Inc. | Spinal distraction system |
US20100094306A1 (en) * | 2008-10-13 | 2010-04-15 | Arvin Chang | Spinal distraction system |
US20100094305A1 (en) * | 2008-10-13 | 2010-04-15 | Arvin Chang | Spinal distraction system |
US11925389B2 (en) | 2008-10-13 | 2024-03-12 | Nuvasive Specialized Orthopedics, Inc. | Spinal distraction system |
US20100094302A1 (en) * | 2008-10-13 | 2010-04-15 | Scott Pool | Spinal distraction system |
US20100094304A1 (en) * | 2008-10-13 | 2010-04-15 | Scott Pool | Spinal distraction system |
US20100094344A1 (en) * | 2008-10-14 | 2010-04-15 | Kyphon Sarl | Pedicle-Based Posterior Stabilization Members and Methods of Use |
US10729470B2 (en) | 2008-11-10 | 2020-08-04 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US20100121323A1 (en) * | 2008-11-10 | 2010-05-13 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
US11974782B2 (en) | 2008-11-10 | 2024-05-07 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US8382756B2 (en) | 2008-11-10 | 2013-02-26 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
US20110054536A1 (en) * | 2008-11-11 | 2011-03-03 | Kspine, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US10842536B2 (en) | 2008-11-11 | 2020-11-24 | K2M, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US8828058B2 (en) | 2008-11-11 | 2014-09-09 | Kspine, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US9510865B2 (en) | 2008-11-11 | 2016-12-06 | K2M, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
US8784490B2 (en) | 2008-11-18 | 2014-07-22 | Ray C. Wasielewski | Method of designing orthopedic implants using in vivo data |
US9573322B2 (en) | 2008-11-18 | 2017-02-21 | Ray C. Wasielewski | Method of designing orthopedic implants using in vivo data |
WO2010059202A1 (en) * | 2008-11-18 | 2010-05-27 | Wasielewski Ray C | Method of designing orthopedic implants using in vivo data |
US11246663B2 (en) | 2008-11-18 | 2022-02-15 | Ray C. Wasielewski | Method of designing orthopedic implants using in vivo data |
US20200008956A1 (en) * | 2008-12-02 | 2020-01-09 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery using active sensors |
US10682242B2 (en) * | 2008-12-02 | 2020-06-16 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery using active sensors |
US8216281B2 (en) | 2008-12-03 | 2012-07-10 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US20100191071A1 (en) * | 2009-01-23 | 2010-07-29 | Warsaw Orthopedic, Inc. | Methods and Systems for Diagnosing, Treating, or Tracking Spinal Disorders |
US20100191088A1 (en) * | 2009-01-23 | 2010-07-29 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US8123752B2 (en) | 2009-01-23 | 2012-02-28 | Spartek Medical. Inc. | Systems and methods for injecting bone filler into the spine |
US8126736B2 (en) | 2009-01-23 | 2012-02-28 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US20100191297A1 (en) * | 2009-01-23 | 2010-07-29 | Spartek Medical, Inc. | Systems and methods for injecting bone filler into the spine |
US20100191100A1 (en) * | 2009-01-23 | 2010-07-29 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US8685093B2 (en) | 2009-01-23 | 2014-04-01 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US8974463B2 (en) | 2009-02-23 | 2015-03-10 | Ellipse Technologies, Inc. | Non-invasive adjustable distraction system |
US11304729B2 (en) | 2009-02-23 | 2022-04-19 | Nuvasive Specialized Orthhopedics, Inc. | Non-invasive adjustable distraction system |
US20100217271A1 (en) * | 2009-02-23 | 2010-08-26 | Ellipse Technologies, Inc. | Spinal distraction system |
US10517643B2 (en) | 2009-02-23 | 2019-12-31 | Nuvasive Specialized Orthopedics, Inc. | Non-invasive adjustable distraction system |
US11918254B2 (en) | 2009-02-23 | 2024-03-05 | Nuvasive Specialized Orthopedics Inc. | Adjustable implant system |
US9848914B2 (en) | 2009-02-23 | 2017-12-26 | Nuvasive Specialized Orthopedics, Inc. | Non-invasive adjustable distraction system |
US8197490B2 (en) | 2009-02-23 | 2012-06-12 | Ellipse Technologies, Inc. | Non-invasive adjustable distraction system |
US8529606B2 (en) | 2009-03-10 | 2013-09-10 | Simpirica Spine, Inc. | Surgical tether apparatus and methods of use |
US10314623B2 (en) | 2009-03-10 | 2019-06-11 | Empirical Spine, Inc. | Surgical tether apparatus and methods of use |
US9107706B2 (en) | 2009-03-10 | 2015-08-18 | Simpirica Spine, Inc. | Surgical tether apparatus and methods of use |
US8562653B2 (en) | 2009-03-10 | 2013-10-22 | Simpirica Spine, Inc. | Surgical tether apparatus and methods of use |
US20100234894A1 (en) * | 2009-03-10 | 2010-09-16 | Simpirica Spine, Inc. | Surgical tether apparatus and methods of use |
US20100249837A1 (en) * | 2009-03-26 | 2010-09-30 | Kspine, Inc. | Semi-constrained anchoring system |
US8518086B2 (en) | 2009-03-26 | 2013-08-27 | K Spine, Inc. | Semi-constrained anchoring system |
US8357182B2 (en) | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Alignment system with longitudinal support features |
US9358044B2 (en) | 2009-03-26 | 2016-06-07 | K2M, Inc. | Semi-constrained anchoring system |
US8357183B2 (en) | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Semi-constrained anchoring system |
US9173681B2 (en) | 2009-03-26 | 2015-11-03 | K2M, Inc. | Alignment system with longitudinal support features |
US11154329B2 (en) | 2009-03-26 | 2021-10-26 | K2M, Inc. | Semi-constrained anchoring system |
US8668719B2 (en) | 2009-03-30 | 2014-03-11 | Simpirica Spine, Inc. | Methods and apparatus for improving shear loading capacity of a spinal segment |
US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US12097124B2 (en) | 2009-03-30 | 2024-09-24 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US11602380B2 (en) | 2009-04-29 | 2023-03-14 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
US10478232B2 (en) | 2009-04-29 | 2019-11-19 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
WO2010141293A2 (en) * | 2009-06-04 | 2010-12-09 | Linares Medical Devices, Llc | Tip support insert for application to left/right articular processes to minimize abrasion between vertebrae and to maintain proper angle/lift for reducing nerve compression |
US20100312343A1 (en) * | 2009-06-04 | 2010-12-09 | Linares Medical Devices, Llc | Tip support insert for application to left/right articular processes to minimize abrasion between vertebrae and to maintain proper angle/lift for reducing nerve compression |
WO2010141293A3 (en) * | 2009-06-04 | 2011-03-31 | Linares Medical Devices, Llc | Tip support insert for application to left/right articular processes to minimize abrasion between vertebrae and to maintain proper angle/lift for reducing nerve compression |
US9393047B2 (en) | 2009-06-15 | 2016-07-19 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US10363070B2 (en) | 2009-06-15 | 2019-07-30 | Roger P. Jackson | Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers |
US9717534B2 (en) | 2009-06-15 | 2017-08-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
US9918745B2 (en) | 2009-06-15 | 2018-03-20 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US9504496B2 (en) | 2009-06-15 | 2016-11-29 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US8556938B2 (en) | 2009-06-15 | 2013-10-15 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US20100318129A1 (en) * | 2009-06-16 | 2010-12-16 | Kspine, Inc. | Deformity alignment system with reactive force balancing |
WO2010147744A1 (en) * | 2009-06-16 | 2010-12-23 | Kspine, Inc. | Deformity alignment system with reactive force balancing |
US8226724B2 (en) | 2009-06-18 | 2012-07-24 | Doty Keith L | Intervertebral spinal disc prosthesis |
US20100324688A1 (en) * | 2009-06-18 | 2010-12-23 | Mekatronix | Intervertebral spinal disc prosthesis |
US20100331891A1 (en) * | 2009-06-24 | 2010-12-30 | Interventional Spine, Inc. | System and method for spinal fixation |
US8105360B1 (en) | 2009-07-16 | 2012-01-31 | Orthonex LLC | Device for dynamic stabilization of the spine |
US8449543B2 (en) | 2009-09-04 | 2013-05-28 | Ellipse Technologies, Inc. | Bone growth device and method |
US11207110B2 (en) | 2009-09-04 | 2021-12-28 | Nuvasive Specialized Orthopedics, Inc. | Bone growth device and method |
US20110060336A1 (en) * | 2009-09-04 | 2011-03-10 | Ellipse Technologies, Inc. | Bone growth device and method |
US11944358B2 (en) | 2009-09-04 | 2024-04-02 | Nuvasive Specialized Orthopedics, Inc. | Bone growth device and method |
CN102573678A (en) * | 2009-09-15 | 2012-07-11 | 科斯班公司 | Spinal growth modulation system |
US20110066188A1 (en) * | 2009-09-15 | 2011-03-17 | Kspine, Inc. | Growth modulation system |
WO2011034714A1 (en) * | 2009-09-15 | 2011-03-24 | Kspine, Inc. | Spinal growth modulation system |
US9827022B2 (en) | 2009-09-15 | 2017-11-28 | K2M, Llc | Growth modulation system |
US9168071B2 (en) | 2009-09-15 | 2015-10-27 | K2M, Inc. | Growth modulation system |
US10736669B2 (en) | 2009-09-15 | 2020-08-11 | K2M, Inc. | Growth modulation system |
US20120191192A1 (en) * | 2009-09-30 | 2012-07-26 | Industry Foundation Of Chonnam National University | Image-based patient-specific medical spinal surgery method and spinal prosthesis |
US9039772B2 (en) * | 2009-09-30 | 2015-05-26 | Industry Foundation Of Chonnam National University | Image-based patient-specific medical spinal surgery method and spinal prosthesis |
US9107580B2 (en) | 2009-11-13 | 2015-08-18 | Universite Pierre Et Marie Curie (Paris 6) | Device for measuring the activity of the spinal cord of a vertebra |
CN102740771A (en) * | 2009-11-13 | 2012-10-17 | 皮埃尔和玛利居里大学(巴黎第六大学) | Device for measuring the activity of the spinal cord of a vertebra |
WO2011057765A1 (en) * | 2009-11-13 | 2011-05-19 | Universite Pierre Et Marie Curie (Paris 6) | Device for measuring the activity of the spinal cord of a vertebra |
FR2952518A1 (en) * | 2009-11-13 | 2011-05-20 | Univ Paris 6 Pierre Et Marie Curie | DEVICE FOR MEASURING THE ACTIVITY OF THE SPINAL CORD OF A VERTEBRA |
US20110118783A1 (en) * | 2009-11-16 | 2011-05-19 | Spartek Medical, Inc. | Load-sharing bone anchor having a flexible post and method for dynamic stabilization of the spine |
US20110125270A1 (en) * | 2009-11-23 | 2011-05-26 | David C Paul | Prosthetic Spinal Disc Replacement |
US20110125269A1 (en) * | 2009-11-25 | 2011-05-26 | Moskowitz Nathan C | Total artificial spino-laminar prosthetic replacement |
US10022238B1 (en) | 2009-11-25 | 2018-07-17 | Moskowitz Family Llc | Total artificial spino-laminar prosthetic replacement |
US11116642B2 (en) | 2009-11-25 | 2021-09-14 | Moskowitz Family Llc | Total artificial spino-laminar prosthetic replacement |
US9901455B2 (en) * | 2009-11-25 | 2018-02-27 | Nathan C. Moskowitz | Total artificial spino-laminar prosthetic replacement |
US8257397B2 (en) | 2009-12-02 | 2012-09-04 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US8394127B2 (en) | 2009-12-02 | 2013-03-12 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US8372122B2 (en) | 2009-12-02 | 2013-02-12 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US10610380B2 (en) | 2009-12-07 | 2020-04-07 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10543107B2 (en) | 2009-12-07 | 2020-01-28 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10857004B2 (en) | 2009-12-07 | 2020-12-08 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US11918486B2 (en) | 2009-12-07 | 2024-03-05 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US10945861B2 (en) | 2009-12-07 | 2021-03-16 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US10500062B2 (en) | 2009-12-10 | 2019-12-10 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US20110184245A1 (en) * | 2010-01-28 | 2011-07-28 | Warsaw Orthopedic, Inc., An Indiana Corporation | Tissue monitoring surgical retractor system |
US8376937B2 (en) | 2010-01-28 | 2013-02-19 | Warsaw Orhtopedic, Inc. | Tissue monitoring surgical retractor system |
CN103140168A (en) * | 2010-05-25 | 2013-06-05 | 药物代谢动力公司 | A method and apparatus for an implantable inertial-based sensing system for real-time, in vivo detection of spinal pseudarthrosis and adjacent segment motion |
WO2011149845A2 (en) * | 2010-05-25 | 2011-12-01 | Pharmaco-Kinesis Corporation | A method and apparatus for an implantable inertial-based sensing system for real-time, in vivo detection of spinal pseudarthrosis and adjacent segment motion |
WO2011149845A3 (en) * | 2010-05-25 | 2012-01-19 | Pharmaco-Kinesis Corporation | A method and apparatus for an implantable inertial-based sensing system for real-time, in vivo detection of spinal pseudarthrosis and adjacent segment motion |
US8641723B2 (en) | 2010-06-03 | 2014-02-04 | Orthonex LLC | Skeletal adjustment device |
US8518085B2 (en) | 2010-06-10 | 2013-08-27 | Spartek Medical, Inc. | Adaptive spinal rod and methods for stabilization of the spine |
US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US9895236B2 (en) | 2010-06-24 | 2018-02-20 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US11872139B2 (en) | 2010-06-24 | 2024-01-16 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US10548741B2 (en) | 2010-06-29 | 2020-02-04 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US10660675B2 (en) | 2010-06-30 | 2020-05-26 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US11497530B2 (en) | 2010-06-30 | 2022-11-15 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US9248043B2 (en) | 2010-06-30 | 2016-02-02 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
US10405891B2 (en) | 2010-08-09 | 2019-09-10 | Nuvasive Specialized Orthopedics, Inc. | Maintenance feature in magnetic implant |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US8282671B2 (en) | 2010-10-25 | 2012-10-09 | Orthonex | Smart device for non-invasive skeletal adjustment |
US8425611B2 (en) | 2010-10-26 | 2013-04-23 | Warsaw Orthopedic, Inc. | Expandable orthopedic implant system and method |
US8721566B2 (en) | 2010-11-12 | 2014-05-13 | Robert A. Connor | Spinal motion measurement device |
CN103501715A (en) * | 2010-12-01 | 2014-01-08 | 费瑟特-链接公司 | Fusion implant for facet joints |
WO2012072733A1 (en) * | 2010-12-01 | 2012-06-07 | Facet-Link Inc. | Fusion implant for facet joints |
EP2460481A1 (en) * | 2010-12-01 | 2012-06-06 | FACET-LINK Inc. | Fusion implant for facet joints |
US9358048B2 (en) | 2010-12-01 | 2016-06-07 | Facet-Link Inc. | Fusion implant for facet joints |
US11865008B2 (en) * | 2010-12-17 | 2024-01-09 | Intellijoint Surgical Inc. | Method and system for determining a relative position of a tool |
US20230200997A1 (en) * | 2010-12-17 | 2023-06-29 | Intellijoint Surgical Inc. | Method and system for determining a relative position of a tool |
US20150313684A1 (en) * | 2010-12-17 | 2015-11-05 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery |
US10117748B2 (en) * | 2010-12-17 | 2018-11-06 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery |
US12076247B2 (en) * | 2010-12-17 | 2024-09-03 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery |
US20220175537A1 (en) * | 2010-12-17 | 2022-06-09 | Intellijoint Surgical Inc. | Method and system for aligning a prosthesis during surgery |
US9393117B2 (en) | 2011-02-14 | 2016-07-19 | Nuvasive Specialized Orthopedics, Inc. | System and method for altering rotational alignment of bone sections |
US8852187B2 (en) | 2011-02-14 | 2014-10-07 | Ellipse Technologies, Inc. | Variable length device and method |
US11406432B2 (en) | 2011-02-14 | 2022-08-09 | Nuvasive Specialized Orthopedics, Inc. | System and method for altering rotational alignment of bone sections |
US10105167B2 (en) | 2011-02-14 | 2018-10-23 | Nuvasive Specialized Orthopedics, Inc. | System and method for altering rotational alignment of bone sections |
US9393119B2 (en) | 2011-02-14 | 2016-07-19 | Nuvasive Specialized Orthopedics, Inc. | Variable length device and method |
US10646262B2 (en) | 2011-02-14 | 2020-05-12 | Nuvasive Specialized Orthopedics, Inc. | System and method for altering rotational alignment of bone sections |
US8715282B2 (en) | 2011-02-14 | 2014-05-06 | Ellipse Technologies, Inc. | System and method for altering rotational alignment of bone sections |
US9408638B2 (en) | 2011-06-03 | 2016-08-09 | K2M, Inc. | Spinal correction system actuators |
US9333009B2 (en) | 2011-06-03 | 2016-05-10 | K2M, Inc. | Spinal correction system actuators |
US10675062B2 (en) | 2011-06-03 | 2020-06-09 | K2M, Inc. | Spinal correction system actuators |
US9895168B2 (en) | 2011-06-03 | 2018-02-20 | K2M, Inc. | Spinal correction system actuators |
US8277505B1 (en) | 2011-06-10 | 2012-10-02 | Doty Keith L | Devices for providing up to six-degrees of motion having kinematically-linked components and methods of use |
EP2722013A4 (en) * | 2011-06-20 | 2015-08-19 | Univ Akita | Spine immobilization tool |
JPWO2012176812A1 (en) * | 2011-06-20 | 2015-02-23 | 国立大学法人秋田大学 | Spine brake |
US11517449B2 (en) | 2011-09-23 | 2022-12-06 | Samy Abdou | Spinal fixation devices and methods of use |
US11324608B2 (en) | 2011-09-23 | 2022-05-10 | Samy Abdou | Spinal fixation devices and methods of use |
US10575961B1 (en) | 2011-09-23 | 2020-03-03 | Samy Abdou | Spinal fixation devices and methods of use |
US11445939B2 (en) | 2011-10-04 | 2022-09-20 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
US10743794B2 (en) | 2011-10-04 | 2020-08-18 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
US11812923B2 (en) | 2011-10-07 | 2023-11-14 | Alan Villavicencio | Spinal fixation device |
US11123107B2 (en) | 2011-11-01 | 2021-09-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
US11918255B2 (en) | 2011-11-01 | 2024-03-05 | Nuvasive Specialized Orthopedics Inc. | Adjustable magnetic devices and methods of using same |
US10016220B2 (en) | 2011-11-01 | 2018-07-10 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
US10349982B2 (en) | 2011-11-01 | 2019-07-16 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
US11013538B2 (en) | 2011-11-16 | 2021-05-25 | K2M, Inc. | System and method for spinal correction |
US10702311B2 (en) | 2011-11-16 | 2020-07-07 | K2M, Inc. | Spinal correction and secondary stabilization |
US8920472B2 (en) | 2011-11-16 | 2014-12-30 | Kspine, Inc. | Spinal correction and secondary stabilization |
US9827017B2 (en) | 2011-11-16 | 2017-11-28 | K2M, Inc. | Spinal correction and secondary stabilization |
US10342581B2 (en) | 2011-11-16 | 2019-07-09 | K2M, Inc. | System and method for spinal correction |
US9113959B2 (en) | 2011-11-16 | 2015-08-25 | K2M, Inc. | Spinal correction and secondary stabilization |
US9468468B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse connector for spinal stabilization system |
US9468469B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US8287598B1 (en) | 2011-12-05 | 2012-10-16 | TrueMotion Spine, Inc. | True spinal motion preserving, shock absorbing, intervertebral spinal disc prosthesis |
US8430916B1 (en) | 2012-02-07 | 2013-04-30 | Spartek Medical, Inc. | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
US11006982B2 (en) | 2012-02-22 | 2021-05-18 | Samy Abdou | Spinous process fixation devices and methods of use |
US11839413B2 (en) | 2012-02-22 | 2023-12-12 | Samy Abdou | Spinous process fixation devices and methods of use |
US9078711B2 (en) | 2012-06-06 | 2015-07-14 | Ellipse Technologies, Inc. | Devices and methods for detection of slippage of magnetic coupling in implantable medical devices |
US9730612B2 (en) | 2012-06-06 | 2017-08-15 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for detection of slippage of magnetic coupling in implantable medical devices |
US11839410B2 (en) | 2012-06-15 | 2023-12-12 | Nuvasive Inc. | Magnetic implants with improved anatomical compatibility |
US10058433B2 (en) | 2012-07-26 | 2018-08-28 | DePuy Synthes Products, Inc. | Expandable implant |
US11559336B2 (en) | 2012-08-28 | 2023-01-24 | Samy Abdou | Spinal fixation devices and methods of use |
US10695105B2 (en) | 2012-08-28 | 2020-06-30 | Samy Abdou | Spinal fixation devices and methods of use |
US9883951B2 (en) | 2012-08-30 | 2018-02-06 | Interventional Spine, Inc. | Artificial disc |
USRE49061E1 (en) | 2012-10-18 | 2022-05-10 | Nuvasive Specialized Orthopedics, Inc. | Intramedullary implants for replacing lost bone |
USRE49720E1 (en) | 2012-10-18 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Intramedullary implants for replacing lost bone |
US11918483B2 (en) | 2012-10-22 | 2024-03-05 | Cogent Spine Llc | Devices and methods for spinal stabilization and instrumentation |
US11173040B2 (en) | 2012-10-22 | 2021-11-16 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
US11871971B2 (en) | 2012-10-29 | 2024-01-16 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11191579B2 (en) | 2012-10-29 | 2021-12-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11213330B2 (en) | 2012-10-29 | 2022-01-04 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US9770265B2 (en) | 2012-11-21 | 2017-09-26 | Roger P. Jackson | Splay control closure for open bone anchor |
US8998968B1 (en) | 2012-11-28 | 2015-04-07 | Choice Spine, Lp | Facet screw system |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US10413422B2 (en) | 2013-03-07 | 2019-09-17 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11850164B2 (en) | 2013-03-07 | 2023-12-26 | DePuy Synthes Products, Inc. | Intervertebral implant |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11857226B2 (en) | 2013-03-08 | 2024-01-02 | Nuvasive Specialized Orthopedics | Systems and methods for ultrasonic detection of device distraction |
US9827011B2 (en) | 2013-03-15 | 2017-11-28 | Biomet Manufacturing, Llc | Polyaxial pivot housing for external fixation system |
US9393045B2 (en) | 2013-03-15 | 2016-07-19 | Biomet Manufacturing, Llc. | Clamping assembly for external fixation system |
US10299830B2 (en) | 2013-03-15 | 2019-05-28 | Biomet Manufacturing, Llc | Clamping assembly for external fixation system |
US9463045B2 (en) | 2013-03-15 | 2016-10-11 | Biomet Manufacturing, Llc | Polyaxial pivot housing for external fixation system |
CN104055607A (en) * | 2013-03-20 | 2014-09-24 | 江阴瑞康健生物医学科技有限公司 | Artificial lamina |
US9522028B2 (en) | 2013-07-03 | 2016-12-20 | Interventional Spine, Inc. | Method and apparatus for sacroiliac joint fixation |
US11006991B2 (en) | 2013-07-03 | 2021-05-18 | DePuy Synthes Products, Inc. | Method and apparatus for sacroiliac joint fixation |
US10166056B2 (en) | 2013-07-03 | 2019-01-01 | DePuy Synthes Products, Inc. | Method and apparatus for sacroiliac joint fixation |
US11766252B2 (en) | 2013-07-31 | 2023-09-26 | Nuvasive Specialized Orthopedics, Inc. | Noninvasively adjustable suture anchors |
US11696836B2 (en) | 2013-08-09 | 2023-07-11 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US9468471B2 (en) | 2013-09-17 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
US11576702B2 (en) | 2013-10-10 | 2023-02-14 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
US10751094B2 (en) | 2013-10-10 | 2020-08-25 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US11246694B2 (en) | 2014-04-28 | 2022-02-15 | Nuvasive Specialized Orthopedics, Inc. | System for informational magnetic feedback in adjustable implants |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
US11357547B2 (en) | 2014-10-23 | 2022-06-14 | Nuvasive Specialized Orthopedics Inc. | Remotely adjustable interactive bone reshaping implant |
US10271885B2 (en) | 2014-12-26 | 2019-04-30 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US11963705B2 (en) | 2014-12-26 | 2024-04-23 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US11890043B2 (en) | 2014-12-26 | 2024-02-06 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US11439449B2 (en) | 2014-12-26 | 2022-09-13 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US11612416B2 (en) | 2015-02-19 | 2023-03-28 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
US10238427B2 (en) | 2015-02-19 | 2019-03-26 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
US12076051B2 (en) | 2015-02-19 | 2024-09-03 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US10342584B2 (en) | 2015-04-13 | 2019-07-09 | DePuy Synthes Products, Inc. | Lamina implants and methods for spinal decompression |
US11116551B2 (en) | 2015-04-13 | 2021-09-14 | DePuy Synthes Products, Inc. | Lamina implants and methods for spinal decompression |
US9717541B2 (en) | 2015-04-13 | 2017-08-01 | DePuy Synthes Products, Inc. | Lamina implants and methods for spinal decompression |
US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US11246718B2 (en) | 2015-10-14 | 2022-02-15 | Samy Abdou | Devices and methods for vertebral stabilization |
US11596456B2 (en) | 2015-10-16 | 2023-03-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US10617453B2 (en) | 2015-10-16 | 2020-04-14 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11504162B2 (en) | 2015-12-10 | 2022-11-22 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10835290B2 (en) | 2015-12-10 | 2020-11-17 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10918425B2 (en) | 2016-01-28 | 2021-02-16 | Nuvasive Specialized Orthopedics, Inc. | System and methods for bone transport |
US11801187B2 (en) | 2016-02-10 | 2023-10-31 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for controlling multiple surgical variables |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11058548B1 (en) | 2016-10-25 | 2021-07-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11752008B1 (en) | 2016-10-25 | 2023-09-12 | Samy Abdou | Devices and methods for vertebral bone realignment |
US11259935B1 (en) | 2016-10-25 | 2022-03-01 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10548740B1 (en) | 2016-10-25 | 2020-02-04 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11577097B2 (en) | 2019-02-07 | 2023-02-14 | Nuvasive Specialized Orthopedics, Inc. | Ultrasonic communication in medical devices |
US11589901B2 (en) | 2019-02-08 | 2023-02-28 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11806245B2 (en) | 2020-03-06 | 2023-11-07 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11944359B2 (en) | 2021-02-23 | 2024-04-02 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US12004784B2 (en) | 2021-02-23 | 2024-06-11 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US11806054B2 (en) | 2021-02-23 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US12023258B2 (en) | 2021-04-06 | 2024-07-02 | Medos International Sarl | Expandable intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US20220354511A1 (en) * | 2021-05-07 | 2022-11-10 | Mazor Robotics Ltd. | Three-dimensional (3d) bone-protecting drill guide device and systems and methods of manufacturing and using device |
US11737787B1 (en) | 2021-05-27 | 2023-08-29 | Nuvasive, Inc. | Bone elongating devices and methods of use |
US12023073B2 (en) | 2021-08-03 | 2024-07-02 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US20100100133A1 (en) | 2010-04-22 |
US10512490B2 (en) | 2019-12-24 |
US8043345B2 (en) | 2011-10-25 |
US20060036246A1 (en) | 2006-02-16 |
US20120089186A1 (en) | 2012-04-12 |
US7708765B2 (en) | 2010-05-04 |
US7658753B2 (en) | 2010-02-09 |
US20060036256A1 (en) | 2006-02-16 |
US20180042648A1 (en) | 2018-02-15 |
US9801666B2 (en) | 2017-10-31 |
US8016860B2 (en) | 2011-09-13 |
US8002801B2 (en) | 2011-08-23 |
US20160066964A1 (en) | 2016-03-10 |
US20100100130A1 (en) | 2010-04-22 |
US20100191288A1 (en) | 2010-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10512490B2 (en) | Device and method for correcting a spinal deformity | |
US7611526B2 (en) | Spinous process reinforcement device and method | |
US20060036259A1 (en) | Spine treatment devices and methods | |
US20060036323A1 (en) | Facet device and method | |
US8951295B2 (en) | Posterior spinal fastener | |
US7799057B2 (en) | Translaminar facet augmentation and flexible spinal stabilization | |
US8663294B2 (en) | Apparatus and methods for vertebral augmentation using linked expandable bodies | |
CN102525623B (en) | Posterior functionally dynamic stabilization system | |
US9216023B2 (en) | Expandable bone implant | |
US20150134064A1 (en) | Spinal implant with expandable fixation | |
US20060149228A1 (en) | Device for dynamically stabilizing bones or bone fragments, especially thoracic vertebral bodies | |
US8172852B2 (en) | Systems and methods for injecting bone filler into the spine | |
US20100087923A1 (en) | Implants for facet joint repair and methods use | |
CA2733783A1 (en) | Dynamic pedicle screw | |
EP1778110A1 (en) | Apparatus for the correction of skeletal deformities | |
US10070902B2 (en) | Spinal implant system and method | |
CN101573081B (en) | Posterior functionally dynamic stabilization system | |
US20080114457A1 (en) | Methods and devices for connecting implants and devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VERTECH INNOVATIONS, L.L.C., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROSENBERG, MEIR;REEL/FRAME:020485/0163 Effective date: 20050808 |
|
AS | Assignment |
Owner name: VERTECH, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VERTECH INNOVATIONS, LLC;REEL/FRAME:020535/0818 Effective date: 20080211 Owner name: VERTECH, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SACHS, DAN;REEL/FRAME:020535/0849 Effective date: 20080207 Owner name: VERTECH, INC.,MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SACHS, DAN;REEL/FRAME:020535/0849 Effective date: 20080207 |
|
AS | Assignment |
Owner name: K SPINE, INC., MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:VERTECH, INC.;REEL/FRAME:022279/0235 Effective date: 20080923 Owner name: K SPINE, INC.,MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:VERTECH, INC.;REEL/FRAME:022279/0235 Effective date: 20080923 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: K2M, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:035891/0052 Effective date: 20150521 Owner name: K2M, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:K SPINE, INC.;REEL/FRAME:035889/0140 Effective date: 20150521 |
|
AS | Assignment |
Owner name: K2M, INC., VIRGINIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE ADDRESS PREVIOUSLY RECORDED AT REEL: 035889 FRAME: 0140. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:K SPINE, INC.;REEL/FRAME:036139/0317 Effective date: 20150521 |