US20060147332A1 - Laser-produced porous structure - Google Patents
Laser-produced porous structure Download PDFInfo
- Publication number
- US20060147332A1 US20060147332A1 US11/027,421 US2742104A US2006147332A1 US 20060147332 A1 US20060147332 A1 US 20060147332A1 US 2742104 A US2742104 A US 2742104A US 2006147332 A1 US2006147332 A1 US 2006147332A1
- Authority
- US
- United States
- Prior art keywords
- producing
- structure according
- layer
- dimensional porous
- porous tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2/2803—Bones for mandibular reconstruction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30907—Nets or sleeves applied to surface of prostheses or in cement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30965—Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3662—Femoral shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3859—Femoral components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/389—Tibial components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1109—Inhomogenous pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
- B23K26/402—Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
- C23C26/02—Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
- A61F2002/30011—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30113—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30138—Convex polygonal shapes
- A61F2002/30143—Convex polygonal shapes hexagonal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30138—Convex polygonal shapes
- A61F2002/30146—Convex polygonal shapes octagonal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30138—Convex polygonal shapes
- A61F2002/30153—Convex polygonal shapes rectangular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30138—Convex polygonal shapes
- A61F2002/30154—Convex polygonal shapes square
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30242—Three-dimensional shapes spherical
- A61F2002/30243—Three-dimensional shapes spherical the overall spherical surface being composed of a plurality of adjacent circular or polygonal segments, e.g. football-like shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/3028—Three-dimensional shapes polyhedral different from parallelepipedal and pyramidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/305—Snap connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30593—Special structural features of bone or joint prostheses not otherwise provided for hollow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30594—Special structural features of bone or joint prostheses not otherwise provided for slotted, e.g. radial or meridian slot ending in a polar aperture, non-polar slots, horizontal or arcuate slots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30721—Accessories
- A61F2/30734—Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
- A61F2002/30736—Augments or augmentation pieces, e.g. wedges or blocks for bridging a bone defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30772—Apertures or holes, e.g. of circular cross section
- A61F2002/30784—Plurality of holes
- A61F2002/30785—Plurality of holes parallel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30772—Apertures or holes, e.g. of circular cross section
- A61F2002/30784—Plurality of holes
- A61F2002/30789—Plurality of holes perpendicular with respect to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30879—Ribs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30891—Plurality of protrusions
- A61F2002/30892—Plurality of protrusions parallel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30904—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30907—Nets or sleeves applied to surface of prostheses or in cement
- A61F2002/30909—Nets
- A61F2002/30915—Nets made of a stack of bonded perforated sheets, grids or wire meshes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/3092—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30925—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth etched
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30942—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
- A61F2002/30952—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30942—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
- A61F2002/30962—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using stereolithography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30968—Sintering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/3097—Designing or manufacturing processes using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30971—Laminates, i.e. layered products
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/34—Acetabular cups
- A61F2002/3401—Acetabular cups with radial apertures, e.g. radial bores for receiving fixation screws
- A61F2002/3403—Polar aperture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/34—Acetabular cups
- A61F2002/3412—Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface
- A61F2002/3417—Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface the outer shell having protrusions on meridian lines, e.g. equidistant fins or wings around the equatorial zone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/34—Acetabular cups
- A61F2002/3412—Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface
- A61F2002/3425—Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface the outer shell having non-meridian protrusions, e.g. fins or wings, located in planes inclined or perpendicular with respect to the equatorial plane
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0017—Angular shapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0017—Angular shapes
- A61F2230/0019—Angular shapes rectangular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0017—Angular shapes
- A61F2230/0021—Angular shapes square
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0071—Three-dimensional shapes spherical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0023—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00017—Iron- or Fe-based alloys, e.g. stainless steel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00095—Niobium or Nb-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00131—Tantalum or Ta-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00401—Coating made of iron, of stainless steel or of other Fe-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00407—Coating made of titanium or of Ti-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00413—Coating made of cobalt or of Co-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00419—Other metals
- A61F2310/00491—Coating made of niobium or Nb-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00419—Other metals
- A61F2310/00544—Coating made of tantalum or Ta-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
- B22F12/43—Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/50—Means for feeding of material, e.g. heads
- B22F12/52—Hoppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/34—Coated articles, e.g. plated or painted; Surface treated articles
- B23K2101/35—Surface treated articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
- B23K2103/05—Stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/14—Titanium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/26—Alloys of Nickel and Cobalt and Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a porous surface or structure and a method for forming the same, which uses a directed energy beam to selectively remelt a powder to produce a part.
- the energy beam may include a laser beam, and an electron beam or the like.
- this invention relates to a computer-aided laser apparatus, which sequentially remelts a plurality of powder layers to form unit cells to build the designed part in a layer-by-layer fashion.
- the present application is particularly directed toward a method of forming a porous and partially porous metallic structure.
- the metal articles formed in these ways have been quite dense, for example, having densities of up to 70% to 80% of fully dense (prior to any infiltration).
- Prior applications of this technology have strived to increase the density of the metal structures formed by the melting or sintering processes.
- the field of rapid prototyping of parts has focused on providing high strength, high density, parts for use and design in production of many useful articles, including metal parts.
- the present invention is equally adapted for building porous structure having a high density or a low density.
- the present invention provides a method for building various structures and surfaces but specifically medical implants.
- the structures are built in a layer-by-layer fashion with individual layers including portions of predetermined unit cells.
- a layer of metal powder is deposited on a substrate.
- the substrate may be a work platform or a base, with the base or core being provided to possibly be an integral part of the finished product.
- a scanning process may be preformed to selectively melt the powder to form portions of a plurality of predetermined unit cells.
- the scanning process includes scanning a laser beam onto the metal powder.
- the structure includes a plurality of predetermined unit cells.
- the unit cells provide the structure with interconnecting pores as well as porosity. The size of the pores and porosity as well as other factors may all be predetermined.
- the size of the pores of the porosity of the built structure are specifically chosen to provide the structure with characteristics similar to medical implants.
- a method of producing a three-dimensional porous tissue in-growth structure preferably includes depositing a first layer of a powder made from a metal selected from the group consisting of titanium, titanium alloys, stainless steel, cobalt chrome alloys, tantalum and niobium onto a substrate.
- the layer of powder is than scanned using a laser beam.
- the laser beam has a power, and scans the powder layer for a period of time with a point distance.
- the power of the laser beam is preferably within the range of 5 to 1000 watts although the present invention may be adapted for different power ranges. Additionally, in a preferred embodiment, the exposure time is in a range between 100 ⁇ sec to 1000 ⁇ sec.
- the laser beam scans the powder layer to form a portion of a plurality of predetermined unit cells.
- the predetermined unit cells include struts having cross-sectional dimensions.
- the cross-section of the struts may be any regular of irregular shape. A few such examples include, circular, rectangular, cubic cross-sections or the like.
- the laser power is 90.5 W
- the exposure time is 1000 ⁇ sec
- the point distance is 90 ⁇ m.
- the method also preferably includes depositing at least one additional layer of the powder onto the first layer and repeating the step of scanning the additional layers with a laser beam for at least one of the deposited layers in order to continuing forming the predetermined unit cells.
- the predetermined unit cells make take the shape of most regular or irregular structure.
- the unit cells may be in the shape of a tetrahedron, dodecahedron or octahedron as well as other symmetrical structures. As mentioned, the unit cells may not have such uniformity and have an irregular shape.
- the unit cells may also be truncated, which includes eliminating some of the struts, which form a unit cell. Truncated unit cells located at the exterior surface of a built product provide a barbed effect to the product.
- the layers of metal powder have a thickness between 5 ⁇ m to 2000 ⁇ m.
- the present invention may also include predetermining a porosity range for at least one deposited powder layer and scanning the layer in a manner to provide the deposited layer with porosity within the predetermined porosity range.
- the substrate may include a base, core, work platform or the like.
- the metal selected to form the base or core may be selected from the group consisting of titanium, titanium alloys, stainless steel, cobalt chrome alloys, tantalum and niobium. Portions of the powder layers may be fused and or sintered to the base or core.
- the base or core may either be separated from the finished built product or may be an integral part of the finished product. If the base or core is an integral part of the finished product it may impart additional physical properties to the overall construct.
- the base or core may be constructed using the present invention.
- a solid or semi-pervious layer may be placed between the substrate and the first deposited powder layer.
- a plurality of satellites may be formed on portions of the predetermined unit cells.
- the satellites may remain attached to the predetermined unit cells so as to affect the porosity of the structure.
- the satellites may be removed.
- One way to remove the satellites is by an acid etching process. The acid etching process may be conducted not only to remove some of all of the satellites but also to alter the cross-sectional dimensions of various struts forming the predetermined unit cells.
- a plurality of struts may intersect at an intersection point. Either prior to completion of after completion of the finished structure, various intersection points may be sintered. In one reason for sintering the intersection points is to eliminate any unmelted metal powder spots.
- the laser beam may be adjusted to modify the length and/or cross-section of various struts. Additionally, at least some of the unit cells may be deformed so as to drape over the substrate. Laser beam compensation may also be employed. Some of the struts of the unit cells may overlap struts of other unit cells. This aspect also enables the adjusting of the porosity throughout the completed structure.
- At least some of the predetermined unit cells may be coated with unmelted metal particles.
- the metal powder layers are deposited and scanned in order to form a medical implant.
- the medical implant preferably having porosity within a predetermined range.
- the medical implant may include an acetabular cup, acetabular shell, a knee implant, femoral or hip imlant or the like.
- the constructed medical implant may have a porosity, which promotes bone in-growth and/or provides the medical implant with soft tissue characteristics.
- the medical implants may be provided with an attaching mechanism for anchoring or at least more firmly attaching the medical implant to another element.
- an attaching mechanism for anchoring or at least more firmly attaching the medical implant to another element.
- One such example is an acetabular shell being provided with a rim to snap-fit to an acetabular cup.
- the structure may be subjected to a hot isostatic pressing.
- the method of producing a three-dimensional construct includes loading a file of a component into an engineering design package.
- the component is scaled down in the file from its original size.
- a Boolean operation is next performed to subtract the scaled down component from the original component. This creates a jacket.
- the jacket can than be processed using a bespoke application that populates the jacket with a repeating open cellular structure.
- the open cellular structure is than sliced using the bespoke application to a predetermine thickness.
- the main body of the file component jacket is loaded into a user interface program and the jacket is sliced into layers having a predetermined thickness. Hatching is than applied to the file component jacket as required to build a construct and the jacket is merged with the open cellular lattice structure.
- FIG. 1A illustrates one embodiment of a unit cell of the present invention
- FIG. 1B illustrates an alternate embodiment of a unit cell of the present invention.
- FIG. 1C illustrates a lattice structure formed using a plurality of unit cells illustrated in FIG. 1B ;
- FIG. 2 illustrates lattice structures with and without laser beam compensation formed using the unit cells illustrated in FIG. 1B ;
- FIG. 3A illustrates an alternate embodiment of a unit cell of the present invention
- FIG. 3B illustrates a lattice structure formed using a plurality of unit cells illustrated in FIG. 3A ;
- FIG. 4 illustrates lattice structures formed with and without laser beam compensation
- FIG. 5A illustrates an alternate embodiment of a unit cell of the present invention
- FIG. 5B illustrates a lattice structure formed using a plurality of the unit cells illustrated in FIG. 5A ;
- FIGS. 6A and 6B illustrate actual lattice structures formed using a plurality of unit cells represented in FIG. 5A ;
- FIG. 7A illustrates an additional embodiment of a unit cell of the present invention
- FIG. 7B illustrates a lattice structure created using a plurality of unit cells illustrated in FIG. 7A ;
- FIG. 8A illustrates lattice structures created using unit cells illustrated in FIG. 7A with varying exposure time
- FIG. 8B illustrates lattice structures created using unit cells illustrated in FIG. 1A with varying exposure time
- FIG. 8C illustrates a side view of an embodiment of FIG. 8A ;
- FIG. 8D illustrates a side view of a lattice structure illustrated in FIG. 8B ;
- FIG. 9 is a representation of a lattice structure created using a plurality of the unit cells illustrated in FIG. 7A with random perturbation;
- FIG. 10 illustrates graduation of a solid to a lattice build
- FIG. 11 illustrates a graduation from one lattice density to another
- FIG. 12A illustrates a femoral hip component
- FIG. 12B illustrates an exploded view of FIG. 12A ;
- FIG. 13 illustrates the component of FIG. 12A with a reduced sized femoral attachment
- FIG. 14 illustrates a “jacket” created by the subtraction of the embodiment of FIG. 13 from the embodiment of FIG. 12A ;
- FIG. 15A illustrates one embodiment of a single unit cell for use in an open cellular lattice structure
- FIG. 15B illustrates an open cellular lattice structure
- FIG. 16 illustrates the embodiment illustrated in FIG. 15B merged with the embodiment illustrated in FIG. 13 ;
- FIGS. 17A and 17B illustrate one embodiment of a finished product
- FIGS. 18 A-C illustrate an alternate embodiment of a finished product
- FIGS. 19A and 19B illustrate an alternate embodiment of a finished product
- FIGS. 20 A-C illustrate an alternate embodiment of a finished product
- FIGS. 21A and 21B illustrate an alternate embodiment of a finished product
- FIG. 22 illustrates an alternate embodiment of a finished product
- FIG. 23 illustrates an alternate embodiment of a finished product
- FIGS. 24A and 24B illustrate an apparatus used in conjunction with the present invention
- FIG. 25 illustrates a zoomed-in view of the embodiment illustrated FIG. 24B ;
- FIG. 26 illustrates a zoomed-in view of the apparatus illustrated in FIG. 24B , further along in the process;
- FIG. 27 illustrates a zoomed-in view of the apparatus illustrated in FIG. 24B , further along in the process;
- FIGS. 28A and 28B illustrate porous surface coatings being applied to a substrate
- FIGS. 29A and 29B illustrate one embodiment of a representation of a finished product
- FIGS. 30A and 30B illustrate one embodiment of a finished product created using the present invention
- FIGS. 31A to 31 D illustrate one embodiment of a finished product created using the present invention
- FIG. 32 illustrates a titanium lattice structure with hierarchical surface coating of sintered titanium satellites
- FIGS. 33-40 illustrate the change occurring to the embodiment illustrated in FIG. 32 , while the lattice is exposed to a laser at increasing time periods.
- This invention relates to a method of forming porous and partially porous metallic structures which are particularly but not exclusively applicable for use in hard or soft tissue interlock structures for medical implants and prosthesis.
- the method makes use of laser technology by employing a variety of scanning strategies.
- Typical metal and metal alloys employed include stainless steel, cobalt chromium alloys, titanium and its alloys, tantalum and niobium, all of which have been used in medical device applications.
- This invention can be used for such medical device applications where bone and soft tissue interlock with the component is required, or where a controlled structure is required to more closely match the mechanical properties of the device with surrounding tissue.
- the intention of the present invention is to produce a three-dimensional structure using a laser remelting process, for example, for building structures utilizing unit cells with or without a solid base or core.
- the three-dimensional structure could be used to provide a porous outer layer to form a bone in-growth structure.
- the porous structure when applied to a core, could be used to form a prosthesis with a defined stiffness to both fulfill the requirement of a modulus match with surrounding tissue and provide interconnected porosity for tissue interlock.
- a further use could be to form an all-porous structure with grade pore size to interact with more than one type of tissue.
- the process can be used to build on a solid base or core with an outer porous surface, the porosity of which is constant or which varies.
- the base or core materials to which the process is applied may be either titanium and its alloys, stainless steel, cobalt chrome alloys, tantalum or niobium as well as any other suitable material.
- the preferred surface coatings are titanium, cobalt chrome and tantalum but both stainless steel and niobium can also be used as well as any other suitable material.
- Fully porous structures may be built from any of the materials tested, with the preferred material being titanium. The intention of the invention is to produce a method which can be exploited on a commercial basis for the production of, for example, bone interlock surfaces on a device although it has many other uses.
- a method of forming a three-dimensional structure includes building the shape by laser melting powdered Ti and alloys, stainless steel, cobalt chrome alloys, Ta or Nb using a continuous or pulsed laser beam. Individual layers of metal are scanned using a laser. Each layer or portion of a layer is scanned to create a portion of a plurality of predetermined unit cells, as will be described below. Successive layers are deposited onto previous layers and also may be scanned. The scanning and depositing of successive layers continues the building process of the predetermined unit cells. As disclosed herein, by continuing the building process refers not only to a continuation of a unit cell from a previous layer but also a beginning of a new unit cell as well as the completion of a unit cell.
- the method can be performed so that the structure is porous and if desired, the pores can be interconnecting to provide an interconnected porosity.
- the method can include using a base or core of cobalt chrome alloy, titanium or alloy, stainless steel, niobium and tantalum, on which to build a porous layer of any one of the aforementioned metals and alloys by laser melting using a continuous or pulsed laser beam.
- a base or core of cobalt chrome alloy, titanium or alloy, stainless steel, niobium and tantalum on which to build a porous layer of any one of the aforementioned metals and alloys by laser melting using a continuous or pulsed laser beam.
- a mixture of desired mixed materials can be employed.
- the method can be applied to an existing article made from cobalt chrome, titanium or alloy, stainless steel, tantalum or niobium, such as an orthopedic implant, to produce a porous outer layer from any of the aforementioned metals or alloys to provide a bone in-growth structure.
- the invention can, therefore, include a laser melting process which precludes the requirement for subsequent heat treatment of the structure, thereby preserving the initial mechanical properties of the core or base metal.
- the equipment used for the manufacture of such a device could be one of many currently available including the MCP Realiszer, the EOS M270, Trumpf Trumaform 250, the Arcam EBM S12 and the like.
- the laser may also be a custom produced laboratory device.
- the method can be applied to produce an all-porous structure using any of the aforementioned metal or metal alloys.
- Such structures can be used as final products, or further processed to form a useful device for bone or soft tissue in-growth, or as some other function such as that of a lattice to carry cells, for example.
- the pore density, pore size and pore size distribution can be controlled from one location on the structure to another. It is important to note that successive powder layers can differ in porosity by varying factors used for laser scanning powder layers. Additionally, the porosity of successive layers of powder can be varied by either creating a specific type of unit cell or manipulating various dimensions of a given unit cell.
- the nature of the material formed as a result of laser melting of powdered beads is principally dependent on the thermal profile involved (heating rate, soaking time, cooling rate); the condition of the raw material (size and size distribution of powder particles); and atmospheric conditions (reducing, inert or oxidizing chamber gas).
- optimum porosity is between approximately 20% and 40%, and aim to mid value with a mean volume percent of voids of about 70%.
- the preferred pore structure is interconnected, with a minimum pore size between about 80 ⁇ m and 100 ⁇ m and a maximum pore size between 80 ⁇ m and 800 ⁇ m.
- the structured thickness for in-growth is 1.4-1.6 mm, but can be larger or smaller depending on the application.
- porous structures are built in the form of a plurality of unit cells.
- Many designs of unit cells are possible to give the shape, type, degree, and size of porosity required.
- Such unit cell designs can be dodecahedral, octahedral, diamond, as well as many other various shapes.
- the unit cells of the present invention may be configured to have irregular shapes where various sides and dimensions have little if any repeating sequences.
- the unit cells can be configured to constructs that closely mimic the structure of trabecular bone for instance.
- Unit cells can be space filling, all the space within a three-dimensional object is filled with cells, or interconnected where there may be some space left between cells but the cells are connected together by their edges.
- the cells can be distributed within the construct a number of ways. Firstly, they may be made into a block within a computer automated design system where the dimensions correspond to the extent of the solid geometry. This block can then be intersected with the geometry representing the component to produce a porous cellular representation of the geometry. Secondly, the cells may be deformed so as to drape over an object thus allowing the cells to follow the surface of the geometry. Thirdly, the cells can be populated through the geometry following the contours of any selected surface.
- the unit cell can be open or complete at the surface of the construct to produce a desired effect.
- open cells with truncated lattice struts produce a surface with a porosity and impart the surface with some degree of barb.
- Modifying the lattice strut dimensions can control the mechanical strength of the unit cell. This modification can be in a number of key areas.
- the lattice strut can be adjusted by careful selection of build parameters or specifically by changing the design of the cross-section of each strut.
- the density of the lattice can similarly be adjusted by modification of the density of the unit cells as can the extent and shape of porosity or a combination thereof.
- the overall design of the unit cell will also have a significant effect of the structural performance of the lattice. For instance, dodecahedral unit cells have a different mechanical performance when compared to a tetrahedral (diamond) structure.
- each point 10 , 12 , 14 , and 16 is the same distance from the neighboring point.
- This structure is analogous to the arrangements of the carbon atoms in diamond.
- Each carbon atom in the diamond is surrounded by four nearest neighbors. They are connected together by bonds that separate them by a distance of 1.5445 angstroms. The angles between these bonds are 109.5 degrees. As a result, the central atom and its neighbors form a tetrahedron. This geometry as in the case discussed herein may then be scaled to appropriate value for the pore construct required.
- the two key parameters used to define the relations regarding height, surface area, space height, volume of tetrahedron, and the dihedral angle of a tetrahedron are the strand length of the tetrahedron and, i.e., the diameter or height and width, cross section area of the strand i.e., strut. These two parameters control the pore size and porosity of the structure.
- the parameter editor and relation editor within a typical CAD system can be used to control these parameters. Hence, by changing the parameters one can change the fundamental properties of the porous structure.
- the diamond structure may have a circular cross-section strands or square cross-section strands. Although only two strand cross-sections are illustrated, strands having various cross-sections are possible. Further, this is true with most of the designs for the unit cell.
- FIG. 2 illustrates a view of a diamond lattice structure with and without laser beam compensation.
- Laser beam compensation essentially allows the diameter of the beam to be taken into account. Without it the constructed geometry is one beam diameter too wide as the beam traces out the contour of the particular section being grown. When laser beam compensation is utilized, the contour is offset half a beam diameter all around the constructed geometry which is represented in the CAD file.
- the parameters employed to create the lattices of FIG. 2 include a laser power of 90.5 watts with an exposure time of 1,000 ⁇ sec from a point distance of 90 ⁇ m.
- Table 1 illustrates various other examples of parameters that may be used to create various unit cells. TABLE 1 edge laser point length diameter power exposure distance Part build on SLM ⁇ m ⁇ m Watts ⁇ sec ⁇ m Diamond Structure 2000 200 90.5 1000 90 Diamond Structure 2000 200 90.5 1000 90 with compensation Dodecahedron 1500 200 68.3 1000 90 Structure Dodecahedron 1500 200 68.3 1000 90 Structure with compensation Modified 1500 200 90.5 1000 90 Truncated Octahedron
- the porous structure can also be created using a unit cell in the shape of a dodecahedron.
- the regular dodecahedron is a platonic solid composed of 20 polyhydron vertices, 30 polyhydron edges, and 12 pentagonal faces.
- This polyhydron is one of an order of five regular polyhedra, that is, they each represent the regular division of 3-dimensional space, equilaterally and equiangularly.
- This basic unit cell for a decahedron mesh can be built up in a CAD package using the following calculations and procedure.
- the dodecahedron has twelve regular pentagonal faces, twenty vertices, and thirty edges. These faces meet at each vertex.
- the calculations for a side length of a dodecahedron are given by simple trigonometry calculations and are known by those in the art.
- a sweep feature is first used to model the dodecahedron structure by driving a profile along a trajectory curve.
- the trajectory curves are constructed from datum points corresponding to the vertices of the dodecahedron connected by datum curves.
- the type of profile remains constant along the sweep producing the model shown in FIG. 3A .
- the size and shape of the profile can be designed to suit the particular application and the required strut diameter.
- the cell can be instanced to produce a regular lattice as shown in FIG. 3B .
- meshes are produced by simple offsetting of the unit cell and allowing some of the struts to overlap. This method of overlapping may be used with the alternate shapes of the unit cell.
- FIG. 4 shows a view of a dodecahedron (with and without laser beam compensation, from left to right) structure using selective laser melting process parameters.
- the lattices of FIG. 4 were created using the following parameters; a laser power of 90.5 watts, exposure of the powder for 1,000 ⁇ sec and a point distance of 90 ⁇ m.
- the unit cell of the present invention may also be constructed in the shape of a truncated octahedron.
- a truncated octahedron has eight regular hexagonal faces, six regular square faces, twenty-four vertices, and thirty-six edges. A square and two hexagons meet at each vertex.
- the octahedron When the octahedron is truncated, it creates a square face replacing the vertex, and changes the triangular face to a hexagonal face.
- This solid contains six square faces and eight hexagonal faces. The square faces replace the vertices and thus this leads to the formation of the hexagonal faces.
- various dimensions such as the octahedron height, octahedron volume, octahedron surface area, octahedron dihydral angle, and truncated octahedron volume, truncated octahedron height, truncated octahedron area, truncated octahedron volume, truncated octahedron dihydral angle can be determined by simple trigonometry and are known by those skilled in the art.
- a CAD model of the truncated octahedron is constructed using the sweep feature and calculations and dimensions are incorporated using basic trigonometry.
- Two tessellate the unit cell the unit cell is first reoriented to enable easy tessellation and to reduce the number of horizontal struts in the model.
- the model can be modified to remove all of the horizontal struts as shown in FIG. 7A .
- the modified structure is reproduced in order to save file size in the Steriolithography (“STL”) format of the program.
- STL Steriolithography
- the parameter chosen includes a laser power of 90.5 watts, an exposure of 1000 ⁇ sec with a point distance of 90 ⁇ m.
- FIG. 7 b illustrates a lattice structure formed using a plurality of individual truncated octahedron. As discussed earlier, the removal of various struts can create a barb effect on the exterior surface of the lattice structure.
- FIGS. 8 A-D it is possible to reduce the size of the unit cell geometry. Also as shown, it is possible to manufacture open cell structures with unit cell sizes below 1 millimeter.
- FIG. 8A illustrates truncated octahedron structures manufactured using the laser melting process. All the structures were created using a laser power of 90.5 W, and a point distance of 90 ⁇ m; however, from left to right, the exposure time was varied from 500 ⁇ sec and 100 ⁇ sec.
- FIG. 8 b illustrates similar structures and parameters as used with FIG. 8A , however, the unit cell used to create the lattice is diamond.
- FIGS. 8C and 8D illustrate a side view of the truncated octahedron structure of FIG.
- Table 2 includes various manufacturing parameters used to construct various unit cell structure.
- TABLE 2 Length Width Strand of of Laser Point Part build length strand strand Power Exposure distance on SLM ⁇ m c/s ⁇ m c/s ⁇ m Watts ⁇ sec ⁇ m Truncated 3000 50 50 90.5 500 90 Octahedron Truncated 3000 50 50 90.5 300 90 Octahedron Truncated 3000 50 50 90.5 100 90 Octahedron Truncated 1000 50 50 90.5 500 90 Octahedron Truncated 1000 50 50 90.5 300 90 Octahedron Truncated 1000 50 90.5 100 90 Octahedron Diamond 700 50 50 90.5 500 90 Structure Diamond 700 50 50 90.5 300 90 Structure Diamond 700 50 90.5 100 90 Structure Diamond 700 50 50 90.5 100 90 Structure Diamond 700 50 50 90.5 300 90 Structure Diamond 700 50 90.5 100 90 Structure Diamond 700 50 50 90.5 100 90 Structure Diamond 700 50 50 90.5 300 90 Structure Diamond 700 50 90.5 100 90 Structure Diamond 700 50 50 90.5 100 90 Structure Diamond 700 50 50 90.5
- Random representative geometries may be made from the current regular unit cells by applying a random X, Y, Z perturbation to the vertices of the unit cells.
- a random X, Y, Z perturbation to the vertices of the unit cells.
- FIG. 9 One such example can be seen in FIG. 9 .
- various freestanding constructs can be generated. In a typical manufacturing procedure for the production of a construct, in this case a femoral hip component, the laser melting of appropriate metallic powders is employed. Table 3 listed below, includes various examples of equipment and material used in the construct, as well as typical software utilized.
- an STL file of hip component 50 is loaded into an engineering design package such as Magics, as shown in FIG. 12A .
- the femoral attachment 51 may then be segmented from the body 52 of the construct.
- the femoral attachment 51 may then be scaled down to 80% of its original size and reattached to the body 52 of the implant 50 as shown in FIG. 13 .
- the selection of the amount of scaling or indeed the design of the core allows for the production of the required structural properties of the stem.
- the core may either be scaled down even more or less to meet the required needs of the implant.
- a Boolean operation may next be performed in Magics to subtract the reduced femoral attachment from the original. This creates a “jacket” 56 i.e., mold to be used as the interconnecting porous construct as shown in FIG. 14 .
- Jacket 56 is processed via a bespoke application that populates STL shapes with repeating open cellular lattice structures (OCLS).
- the OCLS used in this instance is a repeating unit cell of size 1.25 millimeters and strand diameter 200 ⁇ m.
- FIG. 15A illustrates a representation of a single unit cell of the OCLS which will be used to populate jacket 56 .
- the OCLS “jacket” 56 as shown in FIG. 15 b will act as the porous surface coating of the femoral attachment 50 .
- the OCLS is sliced using a bespoke program written in the Python programming language with a layer thickness of 50 ⁇ m.
- the main body of the construct is then loaded into Fusco, a user interface for the MCP realizer.
- the file is then prepared for manufacture by slicing the file with a 50 ⁇ m layer thickness and applying the hatching necessary for building solid constructs.
- the component and OCLS femoral coating are then merged as shown in FIG. 16 .
- the component may then be built on the SLM system as shown in FIG. 17 with typical process parameters being shown in table 4 below.
- TABLE 4 Slice height Power Exposure P dist H dist Feature ( ⁇ m) (watts) ( ⁇ s) ( ⁇ m) (mm) Solid layer 100 90.5 800 80 0.125 Porous layer 100 90.5 3500 N/a N/a (spot)
- FIG. 17 Although the present invention has been described with regard to the femoral hip component as shown in FIG. 17 , the present invention may also be used to construct additional elements.
- other elements include an acetabular cup component illustrated in FIGS. 18A-18C , augments from knee and hip surgery, FIGS. 19A and 19B , spinal components FIGS. 20A-20C , maxillofacial reconstruction FIGS. 21A and 21B , part of a special nature, FIG. 22 , and other additional irregular shapes such as that shown in FIG. 23 .
- the list of illustrative components above is only an example of various constructs which may be composed using the method as disclosed herein and should be thought of as being inclusive as opposed to exclusive.
- an existing product may be coated with various metal layers and then scanned with a laser in order to produce a finished product.
- the present invention i.e., SLM requires the design of a special powder lay system.
- FIGS. 24-29 One such example was conducted and is shown in FIGS. 24-29 .
- a convex surface was created by using build apparatus 60 as shown in FIGS. 24-27 .
- Build apparatus 60 includes a rotating piston 62 and a cylinder onto which the convex surface 64 to be coated was mounted. As the component rotates on the cylinder, it was made to drop in the Z-direction using platform 66 within the SLM machine.
- Powder 71 was deposited onto the side of the component using a powder hopper 68 and a wiper device 70 that runs up against the surface of the component.
- a laser (not shown in the figures) in conjunction with a computer and various programming packages, including those already discussed, were used to apply a laser beam to the powder in a predetermined manner.
- the powder was deposited by hopper 68 and wiped to the correct height by wiper device 70 .
- a full layer of metal powder was deposited by rotation of the cylinder through a full 360 degrees.
- the synthesis of the laser melting process and the layer production process requires that only a fraction of the circumference is layered and melted at any one time.
- FIGS. 24 to 27 illustrate the sequence of operations with a final coated sample being shown in FIGS. 28A and 28B .
- the lattice structure was built 3 mm thick and disposed against a 70 mm diameter steel hemisphere.
- FIG. 28B the same hemisphere was used, but the lattice structure is 6 mm thick.
- FIG. 29 is a CAD illustration of the final assembly of a product component.
- the process can be parallelized by addition of many pistons and cylinder pairs around a central laser beam.
- Optimal laser alignment to the surface can be achieved by a number of methods, including inclining the piston and cylinder pairs so the powder surface and the part surface are correctly aligned normal to the laser beam.
- Typical operating parameters are shown in Table 5 below. TABLE 5 Slice height Power Exposure P dist H dist ( ⁇ m) (watts) ( ⁇ s) ( ⁇ m) (mm) 100 90.5 700 80 0.125
- the laser produced porous structure system may be used to manufacture a porous shell which then can be inserted over a substrate and sintered in order to fix permanently to the same.
- Some examples include the preparation of an acetabular cup component, a tibia knee insert component, and a femoral insert as well as many additional products.
- the cup is built to a thickness of 1.5 millimeters for example using a diamond configured construct to develop the interconnecting porosity.
- the metal powder used in one example is stainless steel.
- FIG. 31A illustrates a finished product manufactured by SLM.
- a rim 70 on the inner surface of the cap that interfaces with the groove 72 on the outer surface of the acetabular cup component 68 may be included.
- This mechanism acts a simple lock and gives both security and extra rigidity during the sintering process. Additional modifications may be utilized to improve closeness of the fit and stability. For instance, the introduction of “snap-fits” which are apparent in everyday plastic components may be employed to provide a more reliable attachment mechanism between the two elements.
- Typical pads or center pads for both the femoral and tibial knee components can be produced by the SLM process and dropped or snapped fit into place to the components and then sintered to attach firmly to the underlying substrate. As previously stated, this technique can apply to other components where a porous outer surface is required to interface with either soft or hard tissue.
- a further improvement in the mechanical and microstructural properties of the porous construct may be achieved by either conventional sintering under vacuum or inert atmosphere and/or hot isostatic pressing using temperature regimes known in the state of the art. As the constructs possess high density properties throughout their strands minimal degradation in the structure of the construct is apparent.
- the appearance of the porous construct can be changed by the alteration of the processing conditions or by the introduction of an acid etch process.
- the laser power or laser residence time may be reduced or a combination of both which creates struts of the porous construct having a coating with layers of unmelted metal particles firmly adhered to the strut surfaces.
- This has the effect of producing additional porous features that offer a new dimension to the overall porous structure of the construct.
- Such features are able to interact with cells in a different manner than the microstructure imparted by the lattice construct and provide extra benefits.
- a typical example of such construct with this satellite appearance as depicted in FIG. 32 together with the processing parameters is employed.
- the structure illustrated in FIG. 32 was created using a laser power of 44.2 W and exposure time of 400 ⁇ sec.
- the metal layer thickness was 50 ⁇ m.
- the acid may consist of a mixture of 10 milliliters of hydrogenfloride (HF), 5 milliliters of nitric acid (HNO 3 ) and 85 milliliters of H 2 0. the HF and HNO 3 were respectively 48% and 69% concentrated.
- FIGS. 33 and 40 show the effects of such an acid's etch with respect to time with the relevant conditions being noted. It can be seen clearly that the solids are moved to give a pure melted lattice construct. It is also clearly evident that the overall openness within the lattice is increased by the removal of the satellites.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Veterinary Medicine (AREA)
- Transplantation (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Physical Education & Sports Medicine (AREA)
- Inorganic Chemistry (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Dispersion Chemistry (AREA)
- Automation & Control Theory (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- The present invention relates to a porous surface or structure and a method for forming the same, which uses a directed energy beam to selectively remelt a powder to produce a part. The energy beam may include a laser beam, and an electron beam or the like. In particular, this invention relates to a computer-aided laser apparatus, which sequentially remelts a plurality of powder layers to form unit cells to build the designed part in a layer-by-layer fashion. The present application is particularly directed toward a method of forming a porous and partially porous metallic structure.
- The field of free-form fabrication has seen many important recent advances in the fabrication of articles directly from computer controlled databases. These advances, many of which are in the field of rapid prototyping of articles such as prototype parts and mold dies, have greatly reduced the time and expense required to fabricate articles, particularly in contrast to conventional machining processes in which a block of material, such as a metal, is machined according to engineering drawings.
- One example of a modern rapid prototyping technology is the selective laser sintering process practiced by systems available from 3D Systems Valencia Calif. According to this technology, articles are produced in layer-wise fashion from a laser-fusible powder that is dispensed one layer at a time. The powder is fused, remelted or sintered, by the application of laser energy that is directed in raster-scan fashion to portions of the powder layer corresponding to a cross section of the article. After the fusing of the powder on one particular layer, an additional layer of powder is dispensed, and the process repeated, with fusion taking place between the current layer and the previously laid layers until the article is complete. Detailed descriptions of the selective laser sintering technology may be found in U.S. Pat. No. 4,863,538, U.S. Pat. No. 5,017,753, U.S. Pat. No. 5,076,869 and U.S. Pat. No. 4,944,817. The selective laser remelting and sintering technologies have enabled the direct manufacture of solid or dense three-dimensional articles of high resolution and dimensional accuracy from a variety of materials including wax, metal powders with binders, polycarbonate, nylon, other plastics and composite materials, such as polymer-coated metals and ceramics.
- The field of the rapid prototyping of parts has, in recent years, made large improvements in broadening high strain, high density, parts for use in the design and pilot production of many useful articles, including metal parts. These advances have permitted the selective laser remelting and sintering processes to now also be used in fabricating prototype tooling for injection molding, with expected tool life in access of ten thousand mold cycles. The technologies have also been applied to the direct fabrication of articles, such as molds, from metal powders without a binder. Examples of metal powder reportedly used in such direct fabrication include two-phase metal powders of the copper-tins, copper-solder (the solder being 70% lead and 30% tin), and bronze-nickel systems. The metal articles formed in these ways have been quite dense, for example, having densities of up to 70% to 80% of fully dense (prior to any infiltration). Prior applications of this technology have strived to increase the density of the metal structures formed by the melting or sintering processes. The field of rapid prototyping of parts has focused on providing high strength, high density, parts for use and design in production of many useful articles, including metal parts.
- However, while the field of rapid prototyping has focused on increasing density of such three-dimensional structures, the field has not focused its attention on reducing the density of three-dimensional structures. Consequently, applications where porous and partially porous metallic structures, and more particularly metal porous structures with interconnected porosity, are advantageous for use have been largely ignored. One such reference which hasn't ignored metal porous structures with interconnected porosity and having a relatively low density is commonly assigned U.S. patent application Ser. No. 10/704,270 filed on Nov. 7, 2003, the disclosure of which is hereby incorporated herein by reference. Although this reference has provided various techniques in creating laser produced porous surfaces, still greater technologies are needed in this area.
- In either case, the present invention is equally adapted for building porous structure having a high density or a low density.
- The present invention provides a method for building various structures and surfaces but specifically medical implants. The structures are built in a layer-by-layer fashion with individual layers including portions of predetermined unit cells.
- In one embodiment of the present invention, a layer of metal powder is deposited on a substrate. The substrate may be a work platform or a base, with the base or core being provided to possibly be an integral part of the finished product. After an individual layer of powder is deposited a scanning process may be preformed to selectively melt the powder to form portions of a plurality of predetermined unit cells. The scanning process includes scanning a laser beam onto the metal powder.
- As successive layers are deposited and scanned a structure is built form one end to an opposite end. The structure includes a plurality of predetermined unit cells. The unit cells provide the structure with interconnecting pores as well as porosity. The size of the pores and porosity as well as other factors may all be predetermined.
- In one preferred embodiment the size of the pores of the porosity of the built structure are specifically chosen to provide the structure with characteristics similar to medical implants.
- In one aspect of the present invention disclosed is a method of producing a three-dimensional porous tissue in-growth structure. The method preferably includes depositing a first layer of a powder made from a metal selected from the group consisting of titanium, titanium alloys, stainless steel, cobalt chrome alloys, tantalum and niobium onto a substrate. The layer of powder is than scanned using a laser beam. The laser beam has a power, and scans the powder layer for a period of time with a point distance. The power of the laser beam is preferably within the range of 5 to 1000 watts although the present invention may be adapted for different power ranges. Additionally, in a preferred embodiment, the exposure time is in a range between 100 μsec to 1000 μsec. The laser beam scans the powder layer to form a portion of a plurality of predetermined unit cells. The predetermined unit cells include struts having cross-sectional dimensions. The cross-section of the struts may be any regular of irregular shape. A few such examples include, circular, rectangular, cubic cross-sections or the like.
- In one preferred embodiment of the present invention the laser power is 90.5 W, the exposure time is 1000 μsec and the point distance is 90 μm.
- The method also preferably includes depositing at least one additional layer of the powder onto the first layer and repeating the step of scanning the additional layers with a laser beam for at least one of the deposited layers in order to continuing forming the predetermined unit cells.
- The predetermined unit cells make take the shape of most regular or irregular structure. For example, the unit cells may be in the shape of a tetrahedron, dodecahedron or octahedron as well as other symmetrical structures. As mentioned, the unit cells may not have such uniformity and have an irregular shape. The unit cells may also be truncated, which includes eliminating some of the struts, which form a unit cell. Truncated unit cells located at the exterior surface of a built product provide a barbed effect to the product.
- In a preferred embodiment of the present invention, the layers of metal powder have a thickness between 5 μm to 2000 μm.
- The present invention may also include predetermining a porosity range for at least one deposited powder layer and scanning the layer in a manner to provide the deposited layer with porosity within the predetermined porosity range.
- In one aspect of the present invention, the substrate may include a base, core, work platform or the like. As with the layer of powder, the metal selected to form the base or core may be selected from the group consisting of titanium, titanium alloys, stainless steel, cobalt chrome alloys, tantalum and niobium. Portions of the powder layers may be fused and or sintered to the base or core. The base or core may either be separated from the finished built product or may be an integral part of the finished product. If the base or core is an integral part of the finished product it may impart additional physical properties to the overall construct. The base or core may be constructed using the present invention.
- In one aspect of the present invention a solid or semi-pervious layer may be placed between the substrate and the first deposited powder layer.
- In another aspect of the present invention during the at least one of the steps of the scanning process, a plurality of satellites may be formed on portions of the predetermined unit cells. The satellites may remain attached to the predetermined unit cells so as to affect the porosity of the structure. In an alternate embodiment, the satellites may be removed. One way to remove the satellites is by an acid etching process. The acid etching process may be conducted not only to remove some of all of the satellites but also to alter the cross-sectional dimensions of various struts forming the predetermined unit cells.
- In another aspect of the present invention, a plurality of struts may intersect at an intersection point. Either prior to completion of after completion of the finished structure, various intersection points may be sintered. In one reason for sintering the intersection points is to eliminate any unmelted metal powder spots.
- In a preferred aspect of the present invention, the laser beam may be adjusted to modify the length and/or cross-section of various struts. Additionally, at least some of the unit cells may be deformed so as to drape over the substrate. Laser beam compensation may also be employed. Some of the struts of the unit cells may overlap struts of other unit cells. This aspect also enables the adjusting of the porosity throughout the completed structure.
- At least some of the predetermined unit cells may be coated with unmelted metal particles.
- In one aspect of the present invention the metal powder layers are deposited and scanned in order to form a medical implant. The medical implant preferably having porosity within a predetermined range. The medical implant may include an acetabular cup, acetabular shell, a knee implant, femoral or hip imlant or the like. The constructed medical implant may have a porosity, which promotes bone in-growth and/or provides the medical implant with soft tissue characteristics.
- The medical implants, as well as other constructed structures, may be provided with an attaching mechanism for anchoring or at least more firmly attaching the medical implant to another element. One such example is an acetabular shell being provided with a rim to snap-fit to an acetabular cup.
- In another aspect of the invention, the structure may be subjected to a hot isostatic pressing.
- In one preferred embodiment of the present invention, the method of producing a three-dimensional construct includes loading a file of a component into an engineering design package. The component is scaled down in the file from its original size. A Boolean operation is next performed to subtract the scaled down component from the original component. This creates a jacket. The jacket can than be processed using a bespoke application that populates the jacket with a repeating open cellular structure.
- The open cellular structure is than sliced using the bespoke application to a predetermine thickness.
- The main body of the file component jacket is loaded into a user interface program and the jacket is sliced into layers having a predetermined thickness. Hatching is than applied to the file component jacket as required to build a construct and the jacket is merged with the open cellular lattice structure. Once a representation has been obtained the depositing and scanning steps of the present invention may be conducted to build the final product.
- Methods of forming the porous surface of the present invention can be performed in many ways and some embodiments will now be described by way of example and with reference to the accompanying drawings in which:
-
FIG. 1A illustrates one embodiment of a unit cell of the present invention; -
FIG. 1B illustrates an alternate embodiment of a unit cell of the present invention. -
FIG. 1C illustrates a lattice structure formed using a plurality of unit cells illustrated inFIG. 1B ; -
FIG. 2 illustrates lattice structures with and without laser beam compensation formed using the unit cells illustrated inFIG. 1B ; -
FIG. 3A illustrates an alternate embodiment of a unit cell of the present invention; -
FIG. 3B illustrates a lattice structure formed using a plurality of unit cells illustrated inFIG. 3A ; -
FIG. 4 illustrates lattice structures formed with and without laser beam compensation; -
FIG. 5A illustrates an alternate embodiment of a unit cell of the present invention; -
FIG. 5B illustrates a lattice structure formed using a plurality of the unit cells illustrated inFIG. 5A ; -
FIGS. 6A and 6B illustrate actual lattice structures formed using a plurality of unit cells represented inFIG. 5A ; -
FIG. 7A illustrates an additional embodiment of a unit cell of the present invention; -
FIG. 7B illustrates a lattice structure created using a plurality of unit cells illustrated inFIG. 7A ; -
FIG. 8A illustrates lattice structures created using unit cells illustrated inFIG. 7A with varying exposure time; -
FIG. 8B illustrates lattice structures created using unit cells illustrated inFIG. 1A with varying exposure time; -
FIG. 8C illustrates a side view of an embodiment ofFIG. 8A ; -
FIG. 8D illustrates a side view of a lattice structure illustrated inFIG. 8B ; -
FIG. 9 is a representation of a lattice structure created using a plurality of the unit cells illustrated inFIG. 7A with random perturbation; -
FIG. 10 illustrates graduation of a solid to a lattice build; -
FIG. 11 illustrates a graduation from one lattice density to another; -
FIG. 12A illustrates a femoral hip component; -
FIG. 12B illustrates an exploded view ofFIG. 12A ; -
FIG. 13 illustrates the component ofFIG. 12A with a reduced sized femoral attachment; -
FIG. 14 illustrates a “jacket” created by the subtraction of the embodiment ofFIG. 13 from the embodiment ofFIG. 12A ; -
FIG. 15A illustrates one embodiment of a single unit cell for use in an open cellular lattice structure; -
FIG. 15B illustrates an open cellular lattice structure; -
FIG. 16 illustrates the embodiment illustrated inFIG. 15B merged with the embodiment illustrated inFIG. 13 ; -
FIGS. 17A and 17B illustrate one embodiment of a finished product; - FIGS. 18A-C illustrate an alternate embodiment of a finished product;
-
FIGS. 19A and 19B illustrate an alternate embodiment of a finished product; - FIGS. 20A-C illustrate an alternate embodiment of a finished product;
-
FIGS. 21A and 21B illustrate an alternate embodiment of a finished product; -
FIG. 22 illustrates an alternate embodiment of a finished product; -
FIG. 23 illustrates an alternate embodiment of a finished product; -
FIGS. 24A and 24B illustrate an apparatus used in conjunction with the present invention; -
FIG. 25 illustrates a zoomed-in view of the embodiment illustratedFIG. 24B ; -
FIG. 26 illustrates a zoomed-in view of the apparatus illustrated inFIG. 24B , further along in the process; -
FIG. 27 illustrates a zoomed-in view of the apparatus illustrated inFIG. 24B , further along in the process; -
FIGS. 28A and 28B illustrate porous surface coatings being applied to a substrate; -
FIGS. 29A and 29B illustrate one embodiment of a representation of a finished product; -
FIGS. 30A and 30B illustrate one embodiment of a finished product created using the present invention; -
FIGS. 31A to 31D illustrate one embodiment of a finished product created using the present invention; -
FIG. 32 illustrates a titanium lattice structure with hierarchical surface coating of sintered titanium satellites; and -
FIGS. 33-40 illustrate the change occurring to the embodiment illustrated inFIG. 32 , while the lattice is exposed to a laser at increasing time periods. - This invention relates to a method of forming porous and partially porous metallic structures which are particularly but not exclusively applicable for use in hard or soft tissue interlock structures for medical implants and prosthesis. The method makes use of laser technology by employing a variety of scanning strategies. Typical metal and metal alloys employed include stainless steel, cobalt chromium alloys, titanium and its alloys, tantalum and niobium, all of which have been used in medical device applications. This invention can be used for such medical device applications where bone and soft tissue interlock with the component is required, or where a controlled structure is required to more closely match the mechanical properties of the device with surrounding tissue.
- The intention of the present invention is to produce a three-dimensional structure using a laser remelting process, for example, for building structures utilizing unit cells with or without a solid base or core. When applied to an orthopedic prosthesis, the three-dimensional structure could be used to provide a porous outer layer to form a bone in-growth structure. Alternatively, the porous structure, when applied to a core, could be used to form a prosthesis with a defined stiffness to both fulfill the requirement of a modulus match with surrounding tissue and provide interconnected porosity for tissue interlock. A further use could be to form an all-porous structure with grade pore size to interact with more than one type of tissue. Again, the process can be used to build on a solid base or core with an outer porous surface, the porosity of which is constant or which varies. The base or core materials to which the process is applied may be either titanium and its alloys, stainless steel, cobalt chrome alloys, tantalum or niobium as well as any other suitable material. The preferred surface coatings are titanium, cobalt chrome and tantalum but both stainless steel and niobium can also be used as well as any other suitable material. Fully porous structures may be built from any of the materials tested, with the preferred material being titanium. The intention of the invention is to produce a method which can be exploited on a commercial basis for the production of, for example, bone interlock surfaces on a device although it has many other uses.
- According to the present invention, a method of forming a three-dimensional structure includes building the shape by laser melting powdered Ti and alloys, stainless steel, cobalt chrome alloys, Ta or Nb using a continuous or pulsed laser beam. Individual layers of metal are scanned using a laser. Each layer or portion of a layer is scanned to create a portion of a plurality of predetermined unit cells, as will be described below. Successive layers are deposited onto previous layers and also may be scanned. The scanning and depositing of successive layers continues the building process of the predetermined unit cells. As disclosed herein, by continuing the building process refers not only to a continuation of a unit cell from a previous layer but also a beginning of a new unit cell as well as the completion of a unit cell.
- The method can be performed so that the structure is porous and if desired, the pores can be interconnecting to provide an interconnected porosity.
- If desired, the method can include using a base or core of cobalt chrome alloy, titanium or alloy, stainless steel, niobium and tantalum, on which to build a porous layer of any one of the aforementioned metals and alloys by laser melting using a continuous or pulsed laser beam. Thus, a mixture of desired mixed materials can be employed.
- The method can be applied to an existing article made from cobalt chrome, titanium or alloy, stainless steel, tantalum or niobium, such as an orthopedic implant, to produce a porous outer layer from any of the aforementioned metals or alloys to provide a bone in-growth structure.
- The invention can, therefore, include a laser melting process which precludes the requirement for subsequent heat treatment of the structure, thereby preserving the initial mechanical properties of the core or base metal. The equipment used for the manufacture of such a device could be one of many currently available including the MCP Realiszer, the EOS M270, Trumpf Trumaform 250, the Arcam EBM S12 and the like. The laser may also be a custom produced laboratory device.
- The method can be applied to produce an all-porous structure using any of the aforementioned metal or metal alloys. Such structures can be used as final products, or further processed to form a useful device for bone or soft tissue in-growth, or as some other function such as that of a lattice to carry cells, for example.
- The pore density, pore size and pore size distribution can be controlled from one location on the structure to another. It is important to note that successive powder layers can differ in porosity by varying factors used for laser scanning powder layers. Additionally, the porosity of successive layers of powder can be varied by either creating a specific type of unit cell or manipulating various dimensions of a given unit cell.
- To produce a porous surface structure, the nature of the material formed as a result of laser melting of powdered beads is principally dependent on the thermal profile involved (heating rate, soaking time, cooling rate); the condition of the raw material (size and size distribution of powder particles); and atmospheric conditions (reducing, inert or oxidizing chamber gas).
- There have been a number of studies to determine the optimum pore structure for maximization of bone in-growth on prostheses. The general findings suggest that optimum porosity is between approximately 20% and 40%, and aim to mid value with a mean volume percent of voids of about 70%. The preferred pore structure is interconnected, with a minimum pore size between about 80 μm and 100 μm and a maximum pore size between 80 μm and 800 μm. The structured thickness for in-growth is 1.4-1.6 mm, but can be larger or smaller depending on the application.
- In the present invention porous structures are built in the form of a plurality of unit cells. Many designs of unit cells are possible to give the shape, type, degree, and size of porosity required. Such unit cell designs can be dodecahedral, octahedral, diamond, as well as many other various shapes. Additionally, besides regular geometric shapes as discussed above the unit cells of the present invention may be configured to have irregular shapes where various sides and dimensions have little if any repeating sequences. The unit cells can be configured to constructs that closely mimic the structure of trabecular bone for instance. Unit cells can be space filling, all the space within a three-dimensional object is filled with cells, or interconnected where there may be some space left between cells but the cells are connected together by their edges.
- The cells can be distributed within the construct a number of ways. Firstly, they may be made into a block within a computer automated design system where the dimensions correspond to the extent of the solid geometry. This block can then be intersected with the geometry representing the component to produce a porous cellular representation of the geometry. Secondly, the cells may be deformed so as to drape over an object thus allowing the cells to follow the surface of the geometry. Thirdly, the cells can be populated through the geometry following the contours of any selected surface.
- The unit cell can be open or complete at the surface of the construct to produce a desired effect. For instance, open cells with truncated lattice struts produce a surface with a porosity and impart the surface with some degree of barb.
- Modifying the lattice strut dimensions can control the mechanical strength of the unit cell. This modification can be in a number of key areas. The lattice strut can be adjusted by careful selection of build parameters or specifically by changing the design of the cross-section of each strut. The density of the lattice can similarly be adjusted by modification of the density of the unit cells as can the extent and shape of porosity or a combination thereof. Clearly the overall design of the unit cell will also have a significant effect of the structural performance of the lattice. For instance, dodecahedral unit cells have a different mechanical performance when compared to a tetrahedral (diamond) structure.
- As shown in
FIGS. 1A and 1B , in atetrahedron 8, eachpoint - Each carbon atom in the diamond is surrounded by four nearest neighbors. They are connected together by bonds that separate them by a distance of 1.5445 angstroms. The angles between these bonds are 109.5 degrees. As a result, the central atom and its neighbors form a tetrahedron. This geometry as in the case discussed herein may then be scaled to appropriate value for the pore construct required.
- The two key parameters used to define the relations regarding height, surface area, space height, volume of tetrahedron, and the dihedral angle of a tetrahedron are the strand length of the tetrahedron and, i.e., the diameter or height and width, cross section area of the strand i.e., strut. These two parameters control the pore size and porosity of the structure. The parameter editor and relation editor within a typical CAD system can be used to control these parameters. Hence, by changing the parameters one can change the fundamental properties of the porous structure. As shown in
FIGS. 1A and 1B , the diamond structure may have a circular cross-section strands or square cross-section strands. Although only two strand cross-sections are illustrated, strands having various cross-sections are possible. Further, this is true with most of the designs for the unit cell. - To create the mesh as shown in
FIG. 1C , the unit cell can be instanced across the 3-D space to produce the required lattice.FIG. 2 illustrates a view of a diamond lattice structure with and without laser beam compensation. Laser beam compensation essentially allows the diameter of the beam to be taken into account. Without it the constructed geometry is one beam diameter too wide as the beam traces out the contour of the particular section being grown. When laser beam compensation is utilized, the contour is offset half a beam diameter all around the constructed geometry which is represented in the CAD file. Although various parameters may be used, the parameters employed to create the lattices ofFIG. 2 include a laser power of 90.5 watts with an exposure time of 1,000 μsec from a point distance of 90 μm. Table 1 illustrates various other examples of parameters that may be used to create various unit cells.TABLE 1 edge laser point length diameter power exposure distance Part build on SLM μm μm Watts μsec μm Diamond Structure 2000 200 90.5 1000 90 Diamond Structure 2000 200 90.5 1000 90 with compensation Dodecahedron 1500 200 68.3 1000 90 Structure Dodecahedron 1500 200 68.3 1000 90 Structure with compensation Modified 1500 200 90.5 1000 90 Truncated Octahedron - As shown in
FIGS. 3A and 3B , the porous structure can also be created using a unit cell in the shape of a dodecahedron. The regular dodecahedron is a platonic solid composed of 20 polyhydron vertices, 30 polyhydron edges, and 12 pentagonal faces. This polyhydron is one of an order of five regular polyhedra, that is, they each represent the regular division of 3-dimensional space, equilaterally and equiangularly. This basic unit cell for a decahedron mesh can be built up in a CAD package using the following calculations and procedure. The dodecahedron has twelve regular pentagonal faces, twenty vertices, and thirty edges. These faces meet at each vertex. The calculations for a side length of a dodecahedron are given by simple trigonometry calculations and are known by those in the art. - In a method of use, a sweep feature is first used to model the dodecahedron structure by driving a profile along a trajectory curve. The trajectory curves are constructed from datum points corresponding to the vertices of the dodecahedron connected by datum curves. The type of profile remains constant along the sweep producing the model shown in
FIG. 3A . The size and shape of the profile can be designed to suit the particular application and the required strut diameter. Once a particular unit cell has been designed, the cell can be instanced to produce a regular lattice as shown inFIG. 3B . As a dodecahedron is not spaced filling, meshes are produced by simple offsetting of the unit cell and allowing some of the struts to overlap. This method of overlapping may be used with the alternate shapes of the unit cell. -
FIG. 4 shows a view of a dodecahedron (with and without laser beam compensation, from left to right) structure using selective laser melting process parameters. Once again, although the parameters may be varied, the lattices ofFIG. 4 were created using the following parameters; a laser power of 90.5 watts, exposure of the powder for 1,000 μsec and a point distance of 90 μm. - As shown in
FIGS. 5A and 5B , the unit cell of the present invention may also be constructed in the shape of a truncated octahedron. A truncated octahedron has eight regular hexagonal faces, six regular square faces, twenty-four vertices, and thirty-six edges. A square and two hexagons meet at each vertex. When the octahedron is truncated, it creates a square face replacing the vertex, and changes the triangular face to a hexagonal face. This solid contains six square faces and eight hexagonal faces. The square faces replace the vertices and thus this leads to the formation of the hexagonal faces. It should be noted here that these truncations are not regular polydra, but rather square-based prisms. All edges of an archamedian solid have the same length, since the features are regular polygons and the edges of a regular polygon have the same length. The neighbors of a polygon must have the same edge length, therefore also the neighbors and so on. As with previous unit cells, various dimensions such as the octahedron height, octahedron volume, octahedron surface area, octahedron dihydral angle, and truncated octahedron volume, truncated octahedron height, truncated octahedron area, truncated octahedron volume, truncated octahedron dihydral angle can be determined by simple trigonometry and are known by those skilled in the art. - In a method of use, a CAD model of the truncated octahedron is constructed using the sweep feature and calculations and dimensions are incorporated using basic trigonometry. Two tessellate the unit cell, the unit cell is first reoriented to enable easy tessellation and to reduce the number of horizontal struts in the model. Further, the model can be modified to remove all of the horizontal struts as shown in
FIG. 7A . The modified structure is reproduced in order to save file size in the Steriolithography (“STL”) format of the program. Next, in order to create the unit cells, the method of using a laser melting process is performed. In one preferred embodiment, the parameter chosen includes a laser power of 90.5 watts, an exposure of 1000 μsec with a point distance of 90 μm.FIG. 7 b illustrates a lattice structure formed using a plurality of individual truncated octahedron. As discussed earlier, the removal of various struts can create a barb effect on the exterior surface of the lattice structure. - As shown in FIGS. 8A-D, it is possible to reduce the size of the unit cell geometry. Also as shown, it is possible to manufacture open cell structures with unit cell sizes below 1 millimeter.
FIG. 8A illustrates truncated octahedron structures manufactured using the laser melting process. All the structures were created using a laser power of 90.5 W, and a point distance of 90 μm; however, from left to right, the exposure time was varied from 500 μsec and 100 μsec.FIG. 8 b illustrates similar structures and parameters as used withFIG. 8A , however, the unit cell used to create the lattice is diamond.FIGS. 8C and 8D illustrate a side view of the truncated octahedron structure ofFIG. 8A and the diamond structure ofFIG. 8B , respectively. Table 2 includes various manufacturing parameters used to construct various unit cell structure.TABLE 2 Length Width Strand of of Laser Point Part build length strand strand Power Exposure distance on SLM μm c/s μm c/s μm Watts μsec μm Truncated 3000 50 50 90.5 500 90 Octahedron Truncated 3000 50 50 90.5 300 90 Octahedron Truncated 3000 50 50 90.5 100 90 Octahedron Truncated 1000 50 50 90.5 500 90 Octahedron Truncated 1000 50 50 90.5 300 90 Octahedron Truncated 1000 50 50 90.5 100 90 Octahedron Diamond 700 50 50 90.5 500 90 Structure Diamond 700 50 50 90.5 300 90 Structure Diamond 700 50 50 90.5 100 90 Structure - Random representative geometries may be made from the current regular unit cells by applying a random X, Y, Z perturbation to the vertices of the unit cells. One such example can be seen in
FIG. 9 . In another aspect of the present invention, various freestanding constructs can be generated. In a typical manufacturing procedure for the production of a construct, in this case a femoral hip component, the laser melting of appropriate metallic powders is employed. Table 3 listed below, includes various examples of equipment and material used in the construct, as well as typical software utilized.TABLE 3 Equipment/Software Description Magics V8.05 CAD software package used for manipulating (Materialise) STL files and preparing builds for Rapid Manufacture (RM) Python Programming language MCP Realizer SLM machine using 100 w fibre laser 316L gas atomized Metal powder with an mean particle size of metal powder Osprey approximately 40 μm Metal Powders Ltd - In one example of this procedure an STL file of
hip component 50 is loaded into an engineering design package such as Magics, as shown inFIG. 12A . The femoral attachment 51 may then be segmented from thebody 52 of the construct. The femoral attachment 51 may then be scaled down to 80% of its original size and reattached to thebody 52 of theimplant 50 as shown inFIG. 13 . This permits the implant to act as a structural core for the surface coating. The selection of the amount of scaling or indeed the design of the core allows for the production of the required structural properties of the stem. Thus, the core may either be scaled down even more or less to meet the required needs of the implant. A Boolean operation may next be performed in Magics to subtract the reduced femoral attachment from the original. This creates a “jacket” 56 i.e., mold to be used as the interconnecting porous construct as shown inFIG. 14 . -
Jacket 56 is processed via a bespoke application that populates STL shapes with repeating open cellular lattice structures (OCLS). The OCLS used in this instance is a repeating unit cell of size 1.25 millimeters and strand diameter 200 μm.FIG. 15A illustrates a representation of a single unit cell of the OCLS which will be used to populatejacket 56. The OCLS “jacket” 56 as shown inFIG. 15 b will act as the porous surface coating of thefemoral attachment 50. Once produced, the OCLS is sliced using a bespoke program written in the Python programming language with a layer thickness of 50 μm. The main body of the construct is then loaded into Fusco, a user interface for the MCP realizer. The file is then prepared for manufacture by slicing the file with a 50 μm layer thickness and applying the hatching necessary for building solid constructs. The component and OCLS femoral coating are then merged as shown inFIG. 16 . The component may then be built on the SLM system as shown inFIG. 17 with typical process parameters being shown in table 4 below.TABLE 4 Slice height Power Exposure Pdist Hdist Feature (μm) (watts) (μs) (μm) (mm) Solid layer 100 90.5 800 80 0.125 Porous layer 100 90.5 3500 N/a N/a (spot) - Although the present invention has been described with regard to the femoral hip component as shown in
FIG. 17 , the present invention may also be used to construct additional elements. For example, other elements include an acetabular cup component illustrated inFIGS. 18A-18C , augments from knee and hip surgery,FIGS. 19A and 19B , spinal componentsFIGS. 20A-20C , maxillofacial reconstructionFIGS. 21A and 21B , part of a special nature,FIG. 22 , and other additional irregular shapes such as that shown inFIG. 23 . The list of illustrative components above is only an example of various constructs which may be composed using the method as disclosed herein and should be thought of as being inclusive as opposed to exclusive. - In other aspect of the present invention an existing product may be coated with various metal layers and then scanned with a laser in order to produce a finished product. In order to apply coating to existing products having either concave and/or convex profiles the present invention i.e., SLM requires the design of a special powder lay system. One such example was conducted and is shown in
FIGS. 24-29 . Specifically, a convex surface was created by usingbuild apparatus 60 as shown inFIGS. 24-27 .Build apparatus 60 includes arotating piston 62 and a cylinder onto which theconvex surface 64 to be coated was mounted. As the component rotates on the cylinder, it was made to drop in the Z-direction using platform 66 within the SLM machine. Powder 71 was deposited onto the side of the component using apowder hopper 68 and awiper device 70 that runs up against the surface of the component. Once the correct amount of powder has been established a laser (not shown in the figures) in conjunction with a computer and various programming packages, including those already discussed, were used to apply a laser beam to the powder in a predetermined manner. The powder was deposited byhopper 68 and wiped to the correct height bywiper device 70. A full layer of metal powder was deposited by rotation of the cylinder through a full 360 degrees. However, the synthesis of the laser melting process and the layer production process requires that only a fraction of the circumference is layered and melted at any one time. For example, the method from production of a full layer would require that the service be built up from, possibly individual quarter revolutions and melting steps as depicted inFIG. 28 . Preferably the laser melting process is fast enough that the discreet stepping process tends to be a continuous one with melting and rotation as well as layering occurring at the same time so as to increase throughput. FIGS. 24 to 27 illustrate the sequence of operations with a final coated sample being shown inFIGS. 28A and 28B . InFIG. 28A , the lattice structure was built 3 mm thick and disposed against a 70 mm diameter steel hemisphere. InFIG. 28B , the same hemisphere was used, but the lattice structure is 6 mm thick.FIG. 29 is a CAD illustration of the final assembly of a product component. - In an alternate embodiment of the present invention, the process can be parallelized by addition of many pistons and cylinder pairs around a central laser beam. Optimal laser alignment to the surface can be achieved by a number of methods, including inclining the piston and cylinder pairs so the powder surface and the part surface are correctly aligned normal to the laser beam. Typical operating parameters are shown in Table 5 below.
TABLE 5 Slice height Power Exposure Pdist Hdist (μm) (watts) (μs) (μm) (mm) 100 90.5 700 80 0.125 - In another aspect of the present invention the laser produced porous structure system may be used to manufacture a porous shell which then can be inserted over a substrate and sintered in order to fix permanently to the same. Some examples include the preparation of an acetabular cup component, a tibia knee insert component, and a femoral insert as well as many additional products. In order to illustrate this aspect of the present invention, reference will be made to the outer profile of an acetabular component which serves as an inner profile of a “cap” to insure that an accurate fit is achieved when the cap is set on the substrate (acetabular shell). The cup is built to a thickness of 1.5 millimeters for example using a diamond configured construct to develop the interconnecting porosity. The metal powder used in one example is stainless steel. The processing parameters are shown in Table 6 listed below:
TABLE 6 Slice height Power Exposure Pdist Hdist (μm) (watts) (μs) (μm) (mm) 100 90.5 2000 N/a N/a
However, the process parameters are dependent on the metal used and if a different metal, say for example, titanium was used, the parameters would be different.FIG. 31A illustrates a finished product manufactured by SLM. - In order to achieve a better and tighter fit of the cap over the component, some adjustments to the geometry of the cap may be considered. For example, the inclusion of a
rim 70 on the inner surface of the cap that interfaces with thegroove 72 on the outer surface of theacetabular cup component 68 may be included. This mechanism acts a simple lock and gives both security and extra rigidity during the sintering process. Additional modifications may be utilized to improve closeness of the fit and stability. For instance, the introduction of “snap-fits” which are apparent in everyday plastic components may be employed to provide a more reliable attachment mechanism between the two elements. Typical pads or center pads for both the femoral and tibial knee components can be produced by the SLM process and dropped or snapped fit into place to the components and then sintered to attach firmly to the underlying substrate. As previously stated, this technique can apply to other components where a porous outer surface is required to interface with either soft or hard tissue. - A further improvement in the mechanical and microstructural properties of the porous construct may be achieved by either conventional sintering under vacuum or inert atmosphere and/or hot isostatic pressing using temperature regimes known in the state of the art. As the constructs possess high density properties throughout their strands minimal degradation in the structure of the construct is apparent.
- In another aspect of the present invention, the appearance of the porous construct can be changed by the alteration of the processing conditions or by the introduction of an acid etch process. For example, the laser power or laser residence time may be reduced or a combination of both which creates struts of the porous construct having a coating with layers of unmelted metal particles firmly adhered to the strut surfaces. This has the effect of producing additional porous features that offer a new dimension to the overall porous structure of the construct. Such features are able to interact with cells in a different manner than the microstructure imparted by the lattice construct and provide extra benefits. A typical example of such construct with this satellite appearance as depicted in
FIG. 32 together with the processing parameters is employed. The structure illustrated inFIG. 32 was created using a laser power of 44.2 W and exposure time of 400 μsec. The metal layer thickness was 50 μm. - It is also possible to remove these satellites by an acid etching process and a strong acid. The acid may consist of a mixture of 10 milliliters of hydrogenfloride (HF), 5 milliliters of nitric acid (HNO3) and 85 milliliters of H20. the HF and HNO3 were respectively 48% and 69% concentrated.
FIGS. 33 and 40 show the effects of such an acid's etch with respect to time with the relevant conditions being noted. It can be seen clearly that the solids are moved to give a pure melted lattice construct. It is also clearly evident that the overall openness within the lattice is increased by the removal of the satellites. Additionally, prolonged exposure to the acid etch mix does result in some reduction in strut thickness which may also increase the lattice size further. This enables the production of struts having a reduced thickness to be created by the STL method. Other acid types and combination may also be applied to obtain similar results. - Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Claims (61)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/027,421 US20060147332A1 (en) | 2004-12-30 | 2004-12-30 | Laser-produced porous structure |
CA2529884A CA2529884C (en) | 2004-12-30 | 2005-12-12 | Laser-produced porous structure |
CA2860188A CA2860188C (en) | 2004-12-30 | 2005-12-12 | Laser-produced porous structure |
EP05028133.6A EP1683593B1 (en) | 2004-12-30 | 2005-12-22 | Method of manufacturing a porous structure by laser |
AU2005247021A AU2005247021B2 (en) | 2004-12-30 | 2005-12-29 | Laser-produced porous structure |
US12/846,327 US9456901B2 (en) | 2004-12-30 | 2010-07-29 | Laser-produced porous structure |
US13/605,354 US8992703B2 (en) | 2002-11-08 | 2012-09-06 | Laser-produced porous surface |
US14/671,545 US10525688B2 (en) | 2002-11-08 | 2015-03-27 | Laser-produced porous surface |
US15/277,744 US11660195B2 (en) | 2004-12-30 | 2016-09-27 | Laser-produced porous structure |
US16/690,307 US11155073B2 (en) | 2002-11-08 | 2019-11-21 | Laser-produced porous surface |
US17/176,842 US11186077B2 (en) | 2002-11-08 | 2021-02-16 | Laser-produced porous surface |
US17/401,977 US11510783B2 (en) | 2002-11-08 | 2021-08-13 | Laser-produced porous surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/027,421 US20060147332A1 (en) | 2004-12-30 | 2004-12-30 | Laser-produced porous structure |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/846,327 Continuation US9456901B2 (en) | 2002-11-08 | 2010-07-29 | Laser-produced porous structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060147332A1 true US20060147332A1 (en) | 2006-07-06 |
Family
ID=36572230
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/027,421 Abandoned US20060147332A1 (en) | 2002-11-08 | 2004-12-30 | Laser-produced porous structure |
US12/846,327 Active 2027-02-25 US9456901B2 (en) | 2002-11-08 | 2010-07-29 | Laser-produced porous structure |
US15/277,744 Active 2027-07-13 US11660195B2 (en) | 2004-12-30 | 2016-09-27 | Laser-produced porous structure |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/846,327 Active 2027-02-25 US9456901B2 (en) | 2002-11-08 | 2010-07-29 | Laser-produced porous structure |
US15/277,744 Active 2027-07-13 US11660195B2 (en) | 2004-12-30 | 2016-09-27 | Laser-produced porous structure |
Country Status (4)
Country | Link |
---|---|
US (3) | US20060147332A1 (en) |
EP (1) | EP1683593B1 (en) |
AU (1) | AU2005247021B2 (en) |
CA (2) | CA2860188C (en) |
Cited By (273)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070162022A1 (en) * | 2005-12-23 | 2007-07-12 | Howmedica Osteonics Corp. | Porous tendon anchor |
EP1911468A2 (en) | 2006-08-15 | 2008-04-16 | Howmedica Osteonics Corp. | Antimicrobial implant |
US20080249607A1 (en) * | 2005-09-20 | 2008-10-09 | Thomas Jay Webster | Biocompatable Nanophase Materials |
US20090036908A1 (en) * | 2005-03-30 | 2009-02-05 | Ron Zokol | Biologic Barrier for Implants That Pass Through Mucosal or Cutaneous Tissue |
US20090081272A1 (en) * | 2007-09-24 | 2009-03-26 | John Clarke | Medical devices having a metal particulate composition for controlled diffusion |
WO2008146141A3 (en) * | 2007-05-29 | 2009-05-22 | Lima Lto Spa | Prosthetic element and relative method to make it |
US20100292743A1 (en) * | 2006-10-03 | 2010-11-18 | Biomet Uk Limited | Surgical instrument |
EP2253291A1 (en) | 2009-05-19 | 2010-11-24 | National University of Ireland, Galway | A bone implant with a surface anchoring structure |
WO2011060312A3 (en) * | 2009-11-12 | 2011-09-29 | Smith & Nephew, Inc. | Controlled randomized porous structures and methods for making same |
US8142886B2 (en) | 2007-07-24 | 2012-03-27 | Howmedica Osteonics Corp. | Porous laser sintered articles |
US20120148983A1 (en) * | 2009-06-17 | 2012-06-14 | The University Of Liverpool | Dental implant |
CN102548509A (en) * | 2009-08-19 | 2012-07-04 | 史密夫和内修有限公司 | Porous implant structures |
US20120202087A1 (en) * | 2011-02-04 | 2012-08-09 | Bampton Clifford C | Method for treating a porous article |
US8268099B2 (en) | 2002-11-08 | 2012-09-18 | Howmedica Osteonics Corp. | Laser-produced porous surface |
WO2012178031A1 (en) | 2011-06-23 | 2012-12-27 | Stryker Corporation | Prosthetic implant and method of implantation |
CN103240414A (en) * | 2013-05-27 | 2013-08-14 | 哈尔滨德昱健行科技有限公司 | Parameter selecting method for manufacturing metal parts by selective laser melting technology and substrate samples |
WO2013126407A1 (en) | 2012-02-20 | 2013-08-29 | Smith & Nephew, Inc. | Porous structures and methods of making same |
US8535386B2 (en) | 2010-10-21 | 2013-09-17 | Howmedica Osteonics Corp. | Stem with pressfit porous element |
US8556981B2 (en) | 2005-12-06 | 2013-10-15 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US8609127B2 (en) | 2009-04-03 | 2013-12-17 | Warsaw Orthopedic, Inc. | Medical implant with bioactive material and method of making the medical implant |
US20140058526A1 (en) * | 2012-08-22 | 2014-02-27 | Biomet Manufacturing Corporation | Directional porous coating |
US20140140647A1 (en) * | 2012-11-20 | 2014-05-22 | Federal-Mogul Corporation | High strength low friction engineered material for bearings and other applications |
CN103930072A (en) * | 2011-10-18 | 2014-07-16 | Lfc斯博拉卡公司 | Intervertebral spinal implant |
US8808377B2 (en) | 2010-01-13 | 2014-08-19 | Jcbd, Llc | Sacroiliac joint fixation system |
EP2774580A1 (en) | 2013-03-07 | 2014-09-10 | Howmedica Osteonics Corp. | Partially porous bone implant keel |
WO2014143740A1 (en) | 2013-03-15 | 2014-09-18 | Mako Surgical Corp. | Unicondylar tibial knee implant |
CN104066536A (en) * | 2011-12-28 | 2014-09-24 | 阿卡姆股份公司 | Method and apparatus for manufacturing porous three-dimensional articles |
US20150004042A1 (en) * | 2009-07-23 | 2015-01-01 | Didier NIMAL | Biomedical device, method for manufacturing the same and use thereof |
US20150045903A1 (en) * | 2013-08-09 | 2015-02-12 | David J. Neal | Orthopedic implants and methods of manufacturing orthopedic implants |
US8956364B2 (en) | 2011-04-29 | 2015-02-17 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
US8979936B2 (en) | 2006-06-09 | 2015-03-17 | Biomet Manufacturing, Llc | Patient-modified implant |
US9011444B2 (en) | 2011-12-09 | 2015-04-21 | Howmedica Osteonics Corp. | Surgical reaming instrument for shaping a bone cavity |
US9060788B2 (en) | 2012-12-11 | 2015-06-23 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US20150173764A1 (en) * | 2010-05-19 | 2015-06-25 | University Of Utah Research Foundation | Tissue fixation |
US9066734B2 (en) | 2011-08-31 | 2015-06-30 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9073265B2 (en) | 2011-01-28 | 2015-07-07 | Arcam Ab | Method for production of a three-dimensional body |
US9079248B2 (en) | 2011-12-28 | 2015-07-14 | Arcam Ab | Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles |
US9084618B2 (en) | 2011-06-13 | 2015-07-21 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US9113971B2 (en) | 2006-02-27 | 2015-08-25 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US9126167B2 (en) | 2012-05-11 | 2015-09-08 | Arcam Ab | Powder distribution in additive manufacturing |
EP2358309B1 (en) | 2008-12-18 | 2015-09-09 | 4-web Spine, Inc. | Truss implant |
US9135374B2 (en) | 2012-04-06 | 2015-09-15 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US9149282B2 (en) | 2011-12-30 | 2015-10-06 | Howmedica Osteonics Corp. | Systems and methods for preparing bone voids to receive a prosthesis |
US9173666B2 (en) | 2011-07-01 | 2015-11-03 | Biomet Manufacturing, Llc | Patient-specific-bone-cutting guidance instruments and methods |
US9173661B2 (en) | 2006-02-27 | 2015-11-03 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
WO2015164982A1 (en) | 2014-05-02 | 2015-11-05 | The Royal Institution For The Advancement Of Learning/Mcgill University | Structural porous biomaterial and implant formed of same |
US9180010B2 (en) | 2012-04-06 | 2015-11-10 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
CN105081325A (en) * | 2015-08-28 | 2015-11-25 | 许昌学院 | Surface quality control device for three-dimensional (3D) part formed through metal drop printing and control method of surface quality control device |
US9204977B2 (en) | 2012-12-11 | 2015-12-08 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9237950B2 (en) | 2012-02-02 | 2016-01-19 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
US9241745B2 (en) | 2011-03-07 | 2016-01-26 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9271744B2 (en) | 2010-09-29 | 2016-03-01 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
US9289253B2 (en) | 2006-02-27 | 2016-03-22 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US9295497B2 (en) | 2011-08-31 | 2016-03-29 | Biomet Manufacturing, Llc | Patient-specific sacroiliac and pedicle guides |
US9301812B2 (en) | 2011-10-27 | 2016-04-05 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US9310188B2 (en) | 2014-08-20 | 2016-04-12 | Arcam Ab | Energy beam deflection speed verification |
CN105492981A (en) * | 2013-06-26 | 2016-04-13 | 瑞尼斯豪公司 | Method and apparatus for generating geometric data for use in additive manufacturing |
US9333090B2 (en) | 2010-01-13 | 2016-05-10 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US9339278B2 (en) | 2006-02-27 | 2016-05-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US9345548B2 (en) | 2006-02-27 | 2016-05-24 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
EP3023067A1 (en) | 2014-11-24 | 2016-05-25 | Stryker European Holdings I, LLC | Strut plate and cabling system |
US9351743B2 (en) | 2011-10-27 | 2016-05-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US9364896B2 (en) | 2012-02-07 | 2016-06-14 | Medical Modeling Inc. | Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology |
US9370426B2 (en) | 2008-05-28 | 2016-06-21 | Renishaw Plc | Relating to joints and/or implants |
US9381045B2 (en) | 2010-01-13 | 2016-07-05 | Jcbd, Llc | Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint |
US9386993B2 (en) | 2011-09-29 | 2016-07-12 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US20160200045A1 (en) * | 2013-08-20 | 2016-07-14 | Adam Bayne HOPKINS | Density enhancement methods and compositions |
US9393028B2 (en) | 2009-08-13 | 2016-07-19 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
EP3045150A1 (en) | 2015-01-14 | 2016-07-20 | Stryker European Holdings I, LLC | Spinal implant with fluid delivery capabilities |
EP3045151A1 (en) | 2015-01-14 | 2016-07-20 | Stryker European Holdings I, LLC | Spinal implant with porous and solid surfaces |
CN105769389A (en) * | 2016-03-24 | 2016-07-20 | 广州市健齿生物科技有限公司 | Closely arranged artificial porous bone structure |
US9399321B2 (en) | 2009-07-15 | 2016-07-26 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
CN105798305A (en) * | 2016-03-24 | 2016-07-27 | 广州市健齿生物科技有限公司 | Method for preparing artificial porous bone structure |
US9406483B1 (en) | 2015-01-21 | 2016-08-02 | Arcam Ab | Method and device for characterizing an electron beam using an X-ray detector with a patterned aperture resolver and patterned aperture modulator |
US9408616B2 (en) | 2014-05-12 | 2016-08-09 | Biomet Manufacturing, Llc | Humeral cut guide |
US9415443B2 (en) | 2013-05-23 | 2016-08-16 | Arcam Ab | Method and apparatus for additive manufacturing |
US9421109B2 (en) | 2010-01-13 | 2016-08-23 | Jcbd, Llc | Systems and methods of fusing a sacroiliac joint |
US9427334B2 (en) | 2013-03-08 | 2016-08-30 | Stryker Corporation | Bone pads |
US9427320B2 (en) | 2011-08-04 | 2016-08-30 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
US9445907B2 (en) | 2011-03-07 | 2016-09-20 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
US9451973B2 (en) | 2011-10-27 | 2016-09-27 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9456833B2 (en) | 2010-02-26 | 2016-10-04 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
US9456901B2 (en) | 2004-12-30 | 2016-10-04 | Howmedica Osteonics Corp. | Laser-produced porous structure |
US9468973B2 (en) | 2013-06-28 | 2016-10-18 | Arcam Ab | Method and apparatus for additive manufacturing |
US9474539B2 (en) | 2011-04-29 | 2016-10-25 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
US9480490B2 (en) | 2006-02-27 | 2016-11-01 | Biomet Manufacturing, Llc | Patient-specific guides |
US9480580B2 (en) | 2006-02-27 | 2016-11-01 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US9498233B2 (en) | 2013-03-13 | 2016-11-22 | Biomet Manufacturing, Llc. | Universal acetabular guide and associated hardware |
US9505172B2 (en) | 2012-12-17 | 2016-11-29 | Arcam Ab | Method and apparatus for additive manufacturing |
US9505057B2 (en) | 2013-09-06 | 2016-11-29 | Arcam Ab | Powder distribution in additive manufacturing of three-dimensional articles |
US9510872B2 (en) | 2013-03-15 | 2016-12-06 | Jcbd, Llc | Spinal stabilization system |
US9517145B2 (en) | 2013-03-15 | 2016-12-13 | Biomet Manufacturing, Llc | Guide alignment system and method |
US9522010B2 (en) | 2006-02-27 | 2016-12-20 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9526513B2 (en) | 2013-03-13 | 2016-12-27 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US9539013B2 (en) | 2006-02-27 | 2017-01-10 | Biomet Manufacturing, Llc | Patient-specific elbow guides and associated methods |
US9549823B2 (en) | 2012-09-25 | 2017-01-24 | 4-Web, Inc. | Programmable implant having curved or arced struts |
US9550207B2 (en) | 2013-04-18 | 2017-01-24 | Arcam Ab | Method and apparatus for additive manufacturing |
CN106344221A (en) * | 2016-10-26 | 2017-01-25 | 四川大学 | Bonelike porous biomechanical bionic designed spinal fusion device and preparation method and use thereof |
US9554909B2 (en) | 2012-07-20 | 2017-01-31 | Jcbd, Llc | Orthopedic anchoring system and methods |
US9554910B2 (en) | 2011-10-27 | 2017-01-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guide and implants |
US9561542B2 (en) | 2012-11-06 | 2017-02-07 | Arcam Ab | Powder pre-processing for additive manufacturing |
US9561040B2 (en) | 2014-06-03 | 2017-02-07 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US20170042697A1 (en) * | 2015-04-29 | 2017-02-16 | Institute of Musculoskeletal Science & Education | Implant With Arched Bone Contacting Elements |
US9579107B2 (en) | 2013-03-12 | 2017-02-28 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US9629632B2 (en) | 2012-07-30 | 2017-04-25 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US9636226B2 (en) | 2013-03-15 | 2017-05-02 | 4Web, Inc. | Traumatic bone fracture repair systems and methods |
US9655625B2 (en) | 2012-07-30 | 2017-05-23 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US9662216B2 (en) | 2006-02-27 | 2017-05-30 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
US9662127B2 (en) | 2006-02-27 | 2017-05-30 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US9676033B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
US9676031B2 (en) | 2013-04-23 | 2017-06-13 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US9700356B2 (en) | 2013-07-30 | 2017-07-11 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US9717539B2 (en) | 2013-07-30 | 2017-08-01 | Jcbd, Llc | Implants, systems, and methods for fusing a sacroiliac joint |
US9717510B2 (en) | 2011-04-15 | 2017-08-01 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
US9718129B2 (en) | 2012-12-17 | 2017-08-01 | Arcam Ab | Additive manufacturing method and apparatus |
US20170224491A1 (en) * | 2014-08-13 | 2017-08-10 | Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences | Medical Implant Porous Scaffold Structure Having Low Modulus |
US9757238B2 (en) | 2011-06-06 | 2017-09-12 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US9782933B2 (en) | 2008-01-03 | 2017-10-10 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
EP3228282A1 (en) | 2016-04-07 | 2017-10-11 | Howmedica Osteonics Corp. | Expandable interbody implant |
US9789541B2 (en) | 2014-03-07 | 2017-10-17 | Arcam Ab | Method for additive manufacturing of three-dimensional articles |
US9789563B2 (en) | 2013-12-20 | 2017-10-17 | Arcam Ab | Method for additive manufacturing |
US9788961B2 (en) | 2010-01-13 | 2017-10-17 | Jcbd, Llc | Sacroiliac joint implant system |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US9802253B2 (en) | 2013-12-16 | 2017-10-31 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US9801546B2 (en) | 2014-05-27 | 2017-10-31 | Jcbd, Llc | Systems for and methods of diagnosing and treating a sacroiliac joint disorder |
US9820868B2 (en) | 2015-03-30 | 2017-11-21 | Biomet Manufacturing, Llc | Method and apparatus for a pin apparatus |
EP3245982A1 (en) | 2016-05-20 | 2017-11-22 | Howmedica Osteonics Corp. | Expandable interbody implant with lordosis correction |
US20170333990A1 (en) * | 2016-05-17 | 2017-11-23 | Rolls-Royce Plc | Additive layer manufacturing base plate |
US9826981B2 (en) | 2013-03-13 | 2017-11-28 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US9826994B2 (en) | 2014-09-29 | 2017-11-28 | Biomet Manufacturing, Llc | Adjustable glenoid pin insertion guide |
US9826986B2 (en) | 2013-07-30 | 2017-11-28 | Jcbd, Llc | Systems for and methods of preparing a sacroiliac joint for fusion |
US9833245B2 (en) | 2014-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Tibial tubercule osteotomy |
JP2017214660A (en) * | 2012-01-24 | 2017-12-07 | スミス アンド ネフュー インコーポレイテッド | Porous structure and methods of making the same |
US9839438B2 (en) | 2013-03-11 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US9839436B2 (en) | 2014-06-03 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US9861387B2 (en) | 2006-06-09 | 2018-01-09 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
EP3278769A1 (en) | 2016-08-02 | 2018-02-07 | Howmedica Osteonics Corporation | Patient-specific implant flanges with bone side porous ridges |
EP3287101A1 (en) | 2016-08-24 | 2018-02-28 | Howmedica Osteonics Corp. | Peek femoral component with segmented ti foam in-growth |
US9907659B2 (en) | 2007-04-17 | 2018-03-06 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US9918740B2 (en) | 2006-02-27 | 2018-03-20 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US9950367B2 (en) | 2014-04-02 | 2018-04-24 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
JP2018512984A (en) * | 2015-04-13 | 2018-05-24 | マルコ ランツェッタ | Prosthesis for the joint between the large rhomboid bone of the thumb and the metacarpal bone |
CN108188395A (en) * | 2018-01-22 | 2018-06-22 | 华南理工大学 | A kind of composite construction metal parts and preparation method thereof |
US20180193152A1 (en) * | 2015-07-09 | 2018-07-12 | Waldemar Link Gmbh & Co. Kg | Porous structure for bone implants |
US10022227B2 (en) | 2011-12-16 | 2018-07-17 | Herbert JENNISSEN | Substrate with a structured surface and methods for the production thereof, and methods for determining the wetting properties thereof |
US20180243099A1 (en) * | 2012-09-05 | 2018-08-30 | Christopher G. Sidebotham | Hip stem prosthesis with a porous collar to allow for bone ingrowth |
US20180253774A1 (en) * | 2009-05-19 | 2018-09-06 | Cobra Golf Incorporated | Method and system for making golf club components |
US10085804B2 (en) | 2009-02-24 | 2018-10-02 | Mako Surgical Corp. | Prosthetic device, method of planning bone removal for implantation of prosthetic device, and robotic system |
US10130993B2 (en) | 2013-12-18 | 2018-11-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10144063B2 (en) | 2011-12-28 | 2018-12-04 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
EP3415298A1 (en) | 2017-06-15 | 2018-12-19 | Howmedica Osteonics Corporation | Porous structures produced by additive layer manufacturing |
US10159498B2 (en) | 2008-04-16 | 2018-12-25 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US10213317B2 (en) | 2017-03-13 | 2019-02-26 | Institute for Musculoskeletal Science and Education | Implant with supported helical members |
US10219804B2 (en) | 2012-07-30 | 2019-03-05 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10226262B2 (en) | 2015-06-25 | 2019-03-12 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
EP3459502A1 (en) | 2017-09-20 | 2019-03-27 | Stryker European Holdings I, LLC | Spinal implants |
US10245087B2 (en) | 2013-03-15 | 2019-04-02 | Jcbd, Llc | Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance |
JP2019509393A (en) * | 2015-12-30 | 2019-04-04 | モット・コーポレーション | Porous equipment manufactured by laser additive manufacturing |
WO2019079768A1 (en) | 2017-10-20 | 2019-04-25 | Centinel Spine, Llc | Porous implantable interbody devices |
US10271959B2 (en) | 2009-02-11 | 2019-04-30 | Howmedica Osteonics Corp. | Intervertebral implant with integrated fixation |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US10282488B2 (en) | 2014-04-25 | 2019-05-07 | Biomet Manufacturing, Llc | HTO guide with optional guided ACL/PCL tunnels |
EP3479798A2 (en) | 2017-11-03 | 2019-05-08 | Howmedica Osteonics Corp. | Flexible construct for femoral reconstruction |
US10328181B2 (en) * | 2013-04-30 | 2019-06-25 | Ceramtec Gmbh | Ceramic bone substitute material and method for the production thereof |
US10357377B2 (en) | 2017-03-13 | 2019-07-23 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with bone contacting elements having helical and undulating planar geometries |
CN110063818A (en) * | 2019-05-27 | 2019-07-30 | 北京大学第三医院 | Porous metals prosthese |
US10368997B2 (en) | 2017-04-01 | 2019-08-06 | HD LifeSciences LLC | Three-dimensional lattice structures for implants |
US20190240029A1 (en) * | 2018-02-06 | 2019-08-08 | Georgia Tech Research Corporation | Method for adjusting mechanical properties of implant and patient specific surgical implants |
US10383671B2 (en) | 2008-09-09 | 2019-08-20 | Stryker European Holdings I, Llc | Resorptive intramedullary implant between two bones or two bone fragments |
US10390935B2 (en) | 2012-07-30 | 2019-08-27 | Conextions, Inc. | Soft tissue to bone repair devices, systems, and methods |
US10434572B2 (en) | 2013-12-19 | 2019-10-08 | Arcam Ab | Method for additive manufacturing |
US10433979B2 (en) | 2015-04-29 | 2019-10-08 | Institute Of Musculoskeletal Science And Education, Ltd. | Coiled implants and systems and methods of use thereof |
US10449051B2 (en) | 2015-04-29 | 2019-10-22 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with curved bone contacting elements |
US10470807B2 (en) | 2016-06-03 | 2019-11-12 | Stryker European Holdings I, Llc | Intramedullary implant and method of use |
US10478312B2 (en) | 2016-10-25 | 2019-11-19 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with protected fusion zones |
US10492798B2 (en) | 2011-07-01 | 2019-12-03 | Biomet Manufacturing, Llc | Backup kit for a patient-specific arthroplasty kit assembly |
US10512549B2 (en) | 2017-03-13 | 2019-12-24 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with structural members arranged around a ring |
US10517737B2 (en) | 2015-05-22 | 2019-12-31 | Stryker European Operations Limited | Joint or segmental bone implant for deformity correction |
US10525547B2 (en) | 2016-06-01 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10525531B2 (en) | 2015-11-17 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10529070B2 (en) | 2017-11-10 | 2020-01-07 | Arcam Ab | Method and apparatus for detecting electron beam source filament wear |
US10537666B2 (en) | 2015-05-18 | 2020-01-21 | Stryker European Holdings I, Llc | Partially resorbable implants and methods |
US10549348B2 (en) | 2016-05-24 | 2020-02-04 | Arcam Ab | Method for additive manufacturing |
EP3607914A1 (en) | 2018-08-09 | 2020-02-12 | Stryker European Holdings I, LLC | Interbody implants and optimization features thereof |
US10568647B2 (en) | 2015-06-25 | 2020-02-25 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10583483B2 (en) | 2015-10-15 | 2020-03-10 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
US10596660B2 (en) | 2015-12-15 | 2020-03-24 | Howmedica Osteonics Corp. | Porous structures produced by additive layer manufacturing |
US10603055B2 (en) | 2017-09-15 | 2020-03-31 | Jcbd, Llc | Systems for and methods of preparing and fusing a sacroiliac joint |
US10603179B2 (en) | 2006-02-27 | 2020-03-31 | Biomet Manufacturing, Llc | Patient-specific augments |
US10610930B2 (en) | 2015-11-18 | 2020-04-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10624746B2 (en) | 2017-04-01 | 2020-04-21 | HD LifeSciences LLC | Fluid interface system for implants |
US10646345B2 (en) | 2017-06-02 | 2020-05-12 | Howmedica Osteonics Corp. | Implant with hole having porous structure for soft tissue fixation |
US10667924B2 (en) | 2017-03-13 | 2020-06-02 | Institute for Musculoskeletal Science and Education, Ltd. | Corpectomy implant |
US10675158B2 (en) | 2015-12-16 | 2020-06-09 | Nuvasive, Inc. | Porous spinal fusion implant |
US10695192B2 (en) | 2018-01-31 | 2020-06-30 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with internal support members |
US10709570B2 (en) | 2015-04-29 | 2020-07-14 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with a diagonal insertion axis |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
EP3708096A1 (en) | 2019-03-04 | 2020-09-16 | K2M, Inc. | Intervertebral implant assembly and instruments therefor |
US10786865B2 (en) | 2014-12-15 | 2020-09-29 | Arcam Ab | Method for additive manufacturing |
US10792757B2 (en) | 2016-10-25 | 2020-10-06 | Arcam Ab | Method and apparatus for additive manufacturing |
US10800101B2 (en) | 2018-02-27 | 2020-10-13 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US10799363B2 (en) | 2011-12-23 | 2020-10-13 | The Royal Institution For The Advancement Of Learning/Mcgill University | Bone replacement implants with mechanically biocompatible cellular material |
US10807187B2 (en) | 2015-09-24 | 2020-10-20 | Arcam Ab | X-ray calibration standard object |
USD901013S1 (en) | 2019-08-12 | 2020-11-03 | Ortho Development Corporation | Porous implant |
USD901012S1 (en) | 2019-08-12 | 2020-11-03 | Ortho Development Corporation | Porous implant |
USD901014S1 (en) | 2019-08-12 | 2020-11-03 | Ortho Development Corporation | Porous implant |
US10821721B2 (en) | 2017-11-27 | 2020-11-03 | Arcam Ab | Method for analysing a build layer |
US10835241B2 (en) | 2012-07-30 | 2020-11-17 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
CN112004485A (en) * | 2018-02-21 | 2020-11-27 | 爱惜康有限责任公司 | Three-dimensional appendages |
EP3771509A1 (en) | 2019-08-01 | 2021-02-03 | Howmedica Osteonics Corp. | Multi-stage additive manufacturing process with inserts |
US10973509B2 (en) | 2017-12-20 | 2021-04-13 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10987752B2 (en) | 2016-12-21 | 2021-04-27 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11014161B2 (en) | 2015-04-21 | 2021-05-25 | Arcam Ab | Method for additive manufacturing |
CN112974847A (en) * | 2021-02-08 | 2021-06-18 | 华南理工大学 | Core-shell structure titanium-nickel medical implant based on elastic modulus regulation and control, 4D printing forming method and application |
CN113102772A (en) * | 2021-04-09 | 2021-07-13 | 广州柔岩科技有限公司 | Material-increase manufacturing orthopaedics tantalum metal, preparation method and application |
US11059123B2 (en) | 2017-04-28 | 2021-07-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11072117B2 (en) | 2017-11-27 | 2021-07-27 | Arcam Ab | Platform device |
EP3865096A1 (en) | 2020-02-05 | 2021-08-18 | K2M, Inc. | Flexible interbody implant |
RU2758696C1 (en) * | 2020-11-25 | 2021-11-01 | Алексей Владимирович Мишуков | Method for manufacturing bimetallic parts of a steel-bronze system |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
US11173034B2 (en) | 2015-01-12 | 2021-11-16 | Howmedica Osteonics Corp. | Bone void forming apparatus |
US11179165B2 (en) | 2013-10-21 | 2021-11-23 | Biomet Manufacturing, Llc | Ligament guide registration |
US11185926B2 (en) | 2017-09-29 | 2021-11-30 | Arcam Ab | Method and apparatus for additive manufacturing |
EP3915498A1 (en) | 2020-05-26 | 2021-12-01 | Howmedica Osteonics Corporation | Medial trochanteric plate fixation |
US11247274B2 (en) | 2016-03-11 | 2022-02-15 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US11253252B2 (en) | 2012-07-30 | 2022-02-22 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11253368B2 (en) | 2017-02-14 | 2022-02-22 | Nanohive Medical Llc | Methods of designing high x-ray lucency lattice structures |
US11267051B2 (en) | 2018-02-27 | 2022-03-08 | Arcam Ab | Build tank for an additive manufacturing apparatus |
US11278416B2 (en) | 2019-11-14 | 2022-03-22 | Howmedica Osteonics Corp. | Concentric keel TKA |
CN114247883A (en) * | 2020-09-25 | 2022-03-29 | 安泰科技股份有限公司 | Method for manufacturing refractory metal part with porous structure |
US11292062B2 (en) | 2017-05-30 | 2022-04-05 | Arcam Ab | Method and device for producing three-dimensional objects |
US11291558B2 (en) | 2018-07-26 | 2022-04-05 | Nanohive Medical Llc | Dynamic implant fixation plate |
US11298747B2 (en) | 2017-05-18 | 2022-04-12 | Howmedica Osteonics Corp. | High fatigue strength porous structure |
US11325191B2 (en) | 2016-05-24 | 2022-05-10 | Arcam Ab | Method for additive manufacturing |
US20220151789A1 (en) * | 2018-08-14 | 2022-05-19 | Georgia Tech Research Corporation | Method for adjusting mechanical properties of implant and patient specific surgical implants |
US11339922B2 (en) * | 2020-07-09 | 2022-05-24 | National Taiwan University Of Science And Technology | Ventilated three dimensional structure from additive manufacture for easy powder removal during post process |
US20220203449A1 (en) * | 2020-12-30 | 2022-06-30 | Shenzhenshi Yuzhan Precision Technology Co., Ltd. | Metal member, metal composite structure, and method of manufacturing metal member |
US20220212249A1 (en) * | 2021-01-06 | 2022-07-07 | Xerox Corporation | Fabrication of lattice structures with a three-dimensional printer |
US11400181B2 (en) | 2017-06-09 | 2022-08-02 | Howmedica Osteonics Corp. | Polymer interlock support structure and method of manufacture thereof |
US11400519B2 (en) | 2018-03-29 | 2022-08-02 | Arcam Ab | Method and device for distributing powder material |
US11406502B2 (en) | 2017-03-02 | 2022-08-09 | Optimotion Implants LLC | Orthopedic implants and methods |
US11419618B2 (en) | 2011-10-27 | 2022-08-23 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US11478285B2 (en) | 2005-04-14 | 2022-10-25 | Stryker European Operations Holdings Llc | Device for osteosyntheses or arthrodesis of two-bone parts, in particular of the hand and/or foot |
US11498124B1 (en) | 2019-11-25 | 2022-11-15 | Ortho Development Corporation | Method for sintering porous structures from powder using additive manufacturing |
US11497617B2 (en) | 2019-01-16 | 2022-11-15 | Nanohive Medical Llc | Variable depth implants |
US11517975B2 (en) | 2017-12-22 | 2022-12-06 | Arcam Ab | Enhanced electron beam generation |
US11547397B2 (en) | 2017-12-20 | 2023-01-10 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11565021B1 (en) | 2019-08-12 | 2023-01-31 | Ortho Development Corporation | Composite structure porous implant for replacing bone stock |
CN115673339A (en) * | 2023-01-03 | 2023-02-03 | 西安赛隆增材技术股份有限公司 | Three-dimensional manufacturing method of zirconium-niobium alloy orthopedic implant |
US11583384B2 (en) | 2014-03-12 | 2023-02-21 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11589967B2 (en) | 2016-07-15 | 2023-02-28 | Cudeti Sagl | Implant |
CN115958203A (en) * | 2022-10-19 | 2023-04-14 | 沈阳铸造研究所有限公司 | Variable density lattice metal with vibration damping characteristic and additive manufacturing method thereof |
WO2023123670A1 (en) * | 2021-12-30 | 2023-07-06 | 苏州大学 | Method for preparing closed-cell steel foam by means of laser additive manufacturing technique |
US11696822B2 (en) | 2016-09-28 | 2023-07-11 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11717265B2 (en) | 2018-11-30 | 2023-08-08 | General Electric Company | Methods and systems for an acoustic attenuating material |
US20230285155A1 (en) * | 2017-10-11 | 2023-09-14 | Waldemar Link Gmbh & Co. Kg | Implantable drug eluting device comprising a microporous structure |
EP4245242A1 (en) | 2022-03-18 | 2023-09-20 | Stryker Australia PTY LTD | Bone resection scoring and planning |
EP4142651B1 (en) | 2020-07-06 | 2023-10-11 | Limacorporate S.p.A. | Augment element for prosthesis, in particular for knee prosthesis |
US11793652B2 (en) | 2017-11-21 | 2023-10-24 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with improved bone contact |
US11931266B2 (en) | 2016-06-07 | 2024-03-19 | Nanohive Medical Llc | Implant with independent endplates |
US11944531B2 (en) | 2012-07-30 | 2024-04-02 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11951018B2 (en) | 2017-11-21 | 2024-04-09 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with improved flow characteristics |
US11957334B2 (en) | 2012-07-30 | 2024-04-16 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11957338B2 (en) | 2019-09-16 | 2024-04-16 | Cilag Gmbh International | Compressible stress and strain of non-fibrous adjuncts |
USD1028233S1 (en) | 2018-02-21 | 2024-05-21 | Cilag Gmbh International | Three dimensional adjunct |
USD1029255S1 (en) | 2020-09-01 | 2024-05-28 | Cilag Gmbh International | Stapling cartridge assembly with a compressible adjunct |
US12059354B2 (en) * | 2019-02-15 | 2024-08-13 | Howmedica Osteonics Corp. | Robotic acetabulum preparation for acceptance of acetabular cup with engagement features |
US12083027B2 (en) | 2017-03-02 | 2024-09-10 | Optimotion Implants LLC | Universal femoral trial system and methods |
US12102535B2 (en) | 2019-11-15 | 2024-10-01 | 4Web, Llc | Piezoelectric coated implants and methods of using piezoelectric coated implants to repair bone structures |
US12102317B2 (en) | 2017-12-20 | 2024-10-01 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US12115071B2 (en) | 2012-09-25 | 2024-10-15 | 4Web, Llc | Programmable intramedullary implants and methods of using programmable intramedullary implants to repair bone structures |
US12121243B2 (en) | 2021-10-14 | 2024-10-22 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
Families Citing this family (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8735773B2 (en) | 2007-02-14 | 2014-05-27 | Conformis, Inc. | Implant device and method for manufacture |
US8556983B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
US8617242B2 (en) | 2001-05-25 | 2013-12-31 | Conformis, Inc. | Implant device and method for manufacture |
JP2002532126A (en) | 1998-09-14 | 2002-10-02 | スタンフォード ユニバーシティ | Joint condition evaluation and damage prevention device |
US7184814B2 (en) | 1998-09-14 | 2007-02-27 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and assessing cartilage loss |
US7239908B1 (en) | 1998-09-14 | 2007-07-03 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
AU9088801A (en) | 2000-09-14 | 2002-03-26 | Univ Leland Stanford Junior | Assessing the condition of a joint and devising treatment |
US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
BRPI0407142A (en) | 2003-02-14 | 2006-01-10 | Depuy Spine Inc | In situ intervertebral fusion device |
US20040267367A1 (en) | 2003-06-30 | 2004-12-30 | Depuy Acromed, Inc | Intervertebral implant with conformable endplate |
US8636802B2 (en) | 2004-03-06 | 2014-01-28 | DePuy Synthes Products, LLC | Dynamized interspinal implant |
US20180228621A1 (en) | 2004-08-09 | 2018-08-16 | Mark A. Reiley | Apparatus, systems, and methods for the fixation or fusion of bone |
US20110190899A1 (en) * | 2006-02-27 | 2011-08-04 | Biomet Manufacturing Corp. | Patient-specific augments |
DE202006015415U1 (en) * | 2006-09-29 | 2006-11-30 | Aesculap Ag & Co. Kg | Element to be used as replacement for damaged bone tissue, made of several layers of grids and provided with large openings |
DE202006015416U1 (en) * | 2006-09-29 | 2006-11-30 | Aesculap Ag & Co. Kg | Element to be used as replacement for damaged bone tissue, made of wire structure and pre-shaped for insertion |
GB2442706A (en) * | 2006-10-09 | 2008-04-16 | Mohamed Khalid | An intramedullary rod for the fixation of bone fractures |
WO2008070863A2 (en) | 2006-12-07 | 2008-06-12 | Interventional Spine, Inc. | Intervertebral implant |
US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
US10758283B2 (en) | 2016-08-11 | 2020-09-01 | Mighty Oak Medical, Inc. | Fixation devices having fenestrations and methods for using the same |
WO2009022911A2 (en) * | 2007-08-16 | 2009-02-19 | Cam Implants B.V. | Prosthesis comprising an anti-micromotion bone-interfacing surface and method for the manufacture thereof |
EP2237748B1 (en) | 2008-01-17 | 2012-09-05 | Synthes GmbH | An expandable intervertebral implant |
DE102008013285A1 (en) * | 2008-03-07 | 2009-09-10 | Ab Skf | Roller bearing component, has cavity formed in sub-areas in bend or circular shape, where component is made of metal with grain structure and predominant set of grains is extendly formed in disk-shape according to presettable plane in area |
CA2720580A1 (en) | 2008-04-05 | 2009-10-08 | Synthes Usa, Llc | Expandable intervertebral implant |
DE102009014184A1 (en) * | 2008-11-07 | 2010-05-20 | Advanced Medical Technologies Ag | Implant for fusion of spinal segments |
US9220547B2 (en) | 2009-03-27 | 2015-12-29 | Spinal Elements, Inc. | Flanged interbody fusion device |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
JP5907458B2 (en) | 2009-07-06 | 2016-04-26 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Expandable fixation assembly |
FR2949667B1 (en) * | 2009-09-09 | 2011-08-19 | Obl | POROUS STRUCTURE WITH A CONTROLLED PATTERN, REPEAT IN SPACE, FOR THE PRODUCTION OF SURGICAL IMPLANTS |
US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
FR2955025B1 (en) * | 2010-01-11 | 2012-11-30 | Kasios | POROUS TITANIUM PIECE AND METHOD OF MANUFACTURING THE SAME |
GB2476969A (en) * | 2010-01-18 | 2011-07-20 | Dental Devices Ltd Ab | Dental implant comprising a plurality of channels |
IT1398443B1 (en) | 2010-02-26 | 2013-02-22 | Lima Lto S P A Ora Limacorporate Spa | INTEGRATED PROSTHETIC ELEMENT |
US9282979B2 (en) | 2010-06-24 | 2016-03-15 | DePuy Synthes Products, Inc. | Instruments and methods for non-parallel disc space preparation |
US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
JP5850930B2 (en) | 2010-06-29 | 2016-02-03 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Isolated intervertebral implant |
US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US9023112B2 (en) * | 2011-02-24 | 2015-05-05 | Depuy (Ireland) | Maintaining proper mechanics THA |
ITMO20110115A1 (en) * | 2011-05-16 | 2012-11-17 | Caselli Stefano | OSTEOINDUCTIVE SUPPORT |
EP2594224A1 (en) * | 2011-11-15 | 2013-05-22 | A.B. Dental Devices Ltd. | Dental platform |
US8485820B1 (en) * | 2011-12-22 | 2013-07-16 | Mohamed Ikbal Ali | Devices and methods for enhancing bone growth |
EP2606859B1 (en) * | 2011-12-23 | 2015-11-25 | Lortek S. Coop. | Osseointegrable implant for cervical corpectomy |
US11304811B2 (en) | 2012-01-17 | 2022-04-19 | KYOCERA Medical Technologies, Inc. | Surgical implant devices incorporating porous surfaces and associated method of manufacture |
US10765530B2 (en) * | 2012-06-21 | 2020-09-08 | Renovis Surgical Technologies, Inc. | Surgical implant devices incorporating porous surfaces |
US9408686B1 (en) | 2012-01-20 | 2016-08-09 | Conformis, Inc. | Devices, systems and methods for manufacturing orthopedic implants |
JP6091529B2 (en) | 2012-03-09 | 2017-03-08 | エスアイ−ボーン・インコーポレイテッドSi−Bone, Inc. | Integrated implant |
US10363140B2 (en) | 2012-03-09 | 2019-07-30 | Si-Bone Inc. | Systems, device, and methods for joint fusion |
BR112014027319A2 (en) | 2012-05-04 | 2017-06-27 | Si Bone Inc | fenestrated implant |
CN103445883A (en) * | 2012-06-04 | 2013-12-18 | 合硕生技股份有限公司 | Medical hollow-out rack implant |
US10154913B2 (en) * | 2012-06-21 | 2018-12-18 | Renovis Surgical Technologies, Inc. | Surgical implant devices incorporating porous surfaces and a locking plate |
EP2877127B1 (en) | 2012-07-26 | 2019-08-21 | Synthes GmbH | Expandable implant |
US9636229B2 (en) | 2012-09-20 | 2017-05-02 | Conformis, Inc. | Solid freeform fabrication of implant components |
CN104780872B (en) | 2012-09-21 | 2017-04-05 | 康复米斯公司 | The method and system of the design and manufacture of optimization implant component is manufactured using free entity |
ES2582610T3 (en) * | 2012-11-09 | 2016-09-14 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Bone implant of at least two different resorbable and biodegradable materials that can be combined as hybrid or composite material |
US9763791B2 (en) | 2013-02-06 | 2017-09-19 | Howmedica Osteonics Corp. | Femoral prosthesis head |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
WO2014145902A1 (en) | 2013-03-15 | 2014-09-18 | Si-Bone Inc. | Implants for spinal fixation or fusion |
DE202014003441U1 (en) * | 2013-08-14 | 2014-11-18 | Joimax Gmbh | Intervertebral Cup |
US11147688B2 (en) | 2013-10-15 | 2021-10-19 | Si-Bone Inc. | Implant placement |
CN104646669A (en) * | 2013-11-25 | 2015-05-27 | 广州中国科学院先进技术研究所 | Biomedical porous pure-titanium implant material and preparation method thereof |
US9920433B2 (en) | 2014-01-13 | 2018-03-20 | Incodema3D, LLC | Additive metal deposition process |
EP3137002A4 (en) * | 2014-03-11 | 2018-06-20 | The Ohio State Innovation Foundation | Methods, devices, and manufacture of the devices for musculoskeletal reconstructive surgery |
CN103908357B (en) * | 2014-04-09 | 2017-01-11 | 飞而康快速制造科技有限责任公司 | Artificial skeletal structure |
US10111753B2 (en) | 2014-05-23 | 2018-10-30 | Titan Spine, Inc. | Additive and subtractive manufacturing process for producing implants with homogeneous body substantially free of pores and inclusions |
US10687956B2 (en) | 2014-06-17 | 2020-06-23 | Titan Spine, Inc. | Corpectomy implants with roughened bioactive lateral surfaces |
CN104224407B (en) * | 2014-09-15 | 2017-02-15 | 上海交通大学 | Rod-system pore structure and orthopedic implant with same |
US10166033B2 (en) | 2014-09-18 | 2019-01-01 | Si-Bone Inc. | Implants for bone fixation or fusion |
US9662157B2 (en) * | 2014-09-18 | 2017-05-30 | Si-Bone Inc. | Matrix implant |
US10098746B1 (en) | 2015-02-13 | 2018-10-16 | Nextstep Arthropedix, LLC | Medical implants having desired surface features and methods of manufacturing |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
ITMI20150565A1 (en) * | 2015-04-20 | 2016-10-20 | Adler Ortho S R L | PERFECTED COTYLOID PROSTHESIS FOR HIP ARTHROPROTHESIS. |
CN104921848A (en) * | 2015-06-02 | 2015-09-23 | 北京纳通科技集团有限公司 | Interbody fusion cage |
CN105310799A (en) * | 2015-06-05 | 2016-02-10 | 创生医疗器械(中国)有限公司 | Interface fixing structure for metal bone trabeculae |
US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
US20170059529A1 (en) * | 2015-08-24 | 2017-03-02 | Siemens Energy, Inc. | Adaptive additive manufacturing process using in-situ laser ultrasonic testing |
WO2017055853A1 (en) * | 2015-09-30 | 2017-04-06 | Renishaw Plc | A device and method for generating scan data for an additive manufacturing process |
FR3042726B1 (en) * | 2015-10-23 | 2021-04-16 | Applications Additives Avancees 3A | LAY-BY-LAYER ADDITIVE MANUFACTURING PROCESS OF A THREE-DIMENSIONAL OBJECT |
WO2017087944A1 (en) * | 2015-11-20 | 2017-05-26 | Titan Spine, Llc | Processes for additively manufacturing orthopedic implants |
TWI726940B (en) * | 2015-11-20 | 2021-05-11 | 美商泰坦脊柱股份有限公司 | Processes for additively manufacturing orthopedic implants |
CN105559947A (en) * | 2015-12-15 | 2016-05-11 | 广州中国科学院先进技术研究所 | Preparation method of porous implant filled with O-intersecting lines units |
CN105496611A (en) * | 2015-12-15 | 2016-04-20 | 广州中国科学院先进技术研究所 | Porous implant filled with O-intersecting lines units |
EP3910094A1 (en) | 2016-02-15 | 2021-11-17 | REM Technologies, Inc. | Chemical processing internal cavities of am workpieces |
CN105877874B (en) * | 2016-04-06 | 2017-12-15 | 四川大学 | Porous bone ware of Bionic Design class bone and preparation method thereof |
WO2017210695A1 (en) * | 2016-06-03 | 2017-12-07 | Additive Orthopaedics, LLC | Bone fixation devices |
JP6995789B2 (en) | 2016-06-28 | 2022-01-17 | イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー | Expandable and angle adjustable intervertebral cage |
CN109688980B (en) | 2016-06-28 | 2022-06-10 | Eit 新兴移植技术股份有限公司 | Expandable and angularly adjustable intervertebral cage with articulation joint |
CN105935769B (en) * | 2016-07-07 | 2017-11-28 | 四川三阳激光增材制造技术有限公司 | A kind of laser melting coating for 3D printing drip molding etches preparation method |
DE102016213917A1 (en) * | 2016-07-28 | 2018-02-01 | General Electric Technology Gmbh | Method for producing a component and component produced by the method |
CN107661160A (en) * | 2016-07-29 | 2018-02-06 | 北京形梦信息技术有限公司 | A kind of bone repairing support and preparation method thereof |
AU2017305136A1 (en) | 2016-08-03 | 2019-02-07 | Titan Spine, Inc. | Titanium implant surfaces free from alpha case and with enhanced osteoinduction |
US12016573B2 (en) | 2016-08-11 | 2024-06-25 | Mighty Oak Medical, Inc. | Drill apparatus and surgical fixation devices and methods for using the same |
US10743890B2 (en) | 2016-08-11 | 2020-08-18 | Mighty Oak Medical, Inc. | Drill apparatus and surgical fixation devices and methods for using the same |
US11051967B2 (en) | 2016-10-07 | 2021-07-06 | Df2, Llc | Functional fracture brace for femur fractures |
US11033394B2 (en) | 2016-10-25 | 2021-06-15 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with multi-layer bone interfacing lattice |
US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
CN108079380B (en) * | 2016-11-22 | 2020-05-15 | 重庆润泽医药有限公司 | Porous niobium |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
CN106726017B (en) * | 2017-01-01 | 2019-02-01 | 常州华森医疗器械有限公司 | POROUS TITANIUM Invasive lumbar fusion device with pore structure and support construction |
CN106618809B (en) * | 2017-01-01 | 2019-01-25 | 常州华森医疗器械有限公司 | POROUS TITANIUM Invasive lumbar fusion device |
CN106667626B (en) * | 2017-01-01 | 2019-02-01 | 常州华森医疗器械有限公司 | POROUS TITANIUM Invasive lumbar fusion device and preparation method thereof |
US10905436B2 (en) | 2017-03-02 | 2021-02-02 | Optimotion Implants, Llc | Knee arthroplasty systems and methods |
US11039938B2 (en) | 2017-07-26 | 2021-06-22 | Optimotion Implants LLC | Modular knee prothesis |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
GB2562467B (en) * | 2017-05-08 | 2020-03-25 | Gkn Aerospace Services Ltd | Chemical Milling |
US10959855B2 (en) | 2017-05-25 | 2021-03-30 | Stryker European Holdings I, Llc | Fusion cage with integrated fixation and insertion features |
CN107243633A (en) * | 2017-05-26 | 2017-10-13 | 苏州菲镭泰克激光技术有限公司 | Laser increases and decreases material composite manufacturing device and method |
US10203169B2 (en) * | 2017-06-12 | 2019-02-12 | Microsoft Technology Licensing, Llc | Thermal management devices, systems and methods |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
WO2019007488A1 (en) * | 2017-07-04 | 2019-01-10 | Cleanpart Group Gmbh | Process chamber component and method of forming a surface texture |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US11006981B2 (en) | 2017-07-07 | 2021-05-18 | K2M, Inc. | Surgical implant and methods of additive manufacturing |
GB201713360D0 (en) * | 2017-08-21 | 2017-10-04 | Rolls Royce Plc | Porous structures |
NL2019482B1 (en) * | 2017-09-05 | 2019-03-14 | Am Solutions Holding B V | Dental implant, method of manufacturing a dental implant and method of placing a dental implant |
EP3456294B1 (en) | 2017-09-15 | 2024-06-05 | Stryker European Operations Holdings LLC | Intervertebral body fusion device expanded with hardening material |
US10828077B2 (en) | 2017-09-22 | 2020-11-10 | Howmedica Osteonics Corp. | Distal radius wedge screw |
WO2019067584A1 (en) | 2017-09-26 | 2019-04-04 | Si-Bone Inc. | Systems and methods for decorticating the sacroiliac joint |
US11737880B2 (en) | 2017-10-03 | 2023-08-29 | Howmedica Osteonics Corp. | Integrated spring for soft tissue attachment |
US11071630B2 (en) * | 2017-11-09 | 2021-07-27 | DePuy Synthes Products, Inc. | Orthopaedic prosthesis for an interphalangeal joint and associated method |
CN107952962B (en) * | 2017-11-20 | 2019-11-26 | 淮阴工学院 | A kind of functionally gradient biomimetic features titanium alloy artificial implant and its manufacturing process |
US20190167433A1 (en) * | 2017-12-04 | 2019-06-06 | Duke University | Orthopedic implant for sustained drug release |
US11000296B2 (en) | 2017-12-20 | 2021-05-11 | Encore Medical, L.P. | Joint instrumentation and associated methods of use |
US11103356B2 (en) * | 2018-01-22 | 2021-08-31 | DePuy Synthes Products, Inc. | Orthopaedic prosthesis having support structure |
EP3593745B1 (en) | 2018-02-02 | 2024-10-09 | Stryker European Operations Holdings LLC | Orthopedic screw and porous structures thereof |
US11147679B2 (en) | 2018-02-05 | 2021-10-19 | Paragon Advanced Technologies, Inc. | Bone fixation device |
RU2020134676A (en) | 2018-03-26 | 2022-04-26 | Депуи Синтез Продактс, Инк. | THREE-DIMENSIONAL POROUS STRUCTURES FOR BONE INGRINGING AND METHODS FOR THEIR MANUFACTURING |
US11890200B2 (en) | 2018-03-30 | 2024-02-06 | Depuy Ireland Unlimited Company | Surface textures for three-dimensional porous structures for bone ingrowth and methods for producing |
EP4112011B1 (en) | 2018-03-30 | 2024-09-11 | DePuy Synthes Products, Inc. | Hybrid fixation features for three-dimensional porous structures for bone ingrowth and methods for producing |
US11744695B2 (en) | 2018-04-06 | 2023-09-05 | Howmedica Osteonics Corp. | Soft tissue attachment device |
US10744003B2 (en) | 2018-05-08 | 2020-08-18 | Globus Medical, Inc. | Intervertebral spinal implant |
US10682238B2 (en) | 2018-05-08 | 2020-06-16 | Globus Medical, Inc. | Intervertebral spinal implant |
US10517739B2 (en) | 2018-05-08 | 2019-12-31 | Globus Medical, Inc. | Intervertebral spinal implant |
AU2019203591A1 (en) | 2018-05-25 | 2019-12-12 | Howmedica Osteonics Corp. | Variable thickness femoral augments |
CA3111008A1 (en) | 2018-09-20 | 2020-03-26 | Spinal Elements, Inc. | Spinal implant device |
AU2019355859A1 (en) | 2018-10-01 | 2021-05-13 | K2M, Inc. | Graft scaffold |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
AU2019280090A1 (en) | 2018-12-14 | 2020-07-02 | Howmedica Osteonics Corp. | Augmented, just-in-time, patient-specific implant manufacture |
WO2020139106A1 (en) * | 2018-12-27 | 2020-07-02 | Акционерное Общество "Наука И Инновации" | Implant for mandibular prosthetic reconstruction |
AU2020200077B2 (en) | 2019-01-07 | 2024-04-18 | Howmedica Osteonics Corp. | Support frame |
US11298244B2 (en) | 2019-01-31 | 2022-04-12 | K2M, Inc. | Interbody implants and instrumentation |
US11039931B2 (en) | 2019-02-01 | 2021-06-22 | Globus Medical, Inc. | Intervertebral spinal implant |
AU2020220812A1 (en) * | 2019-02-13 | 2021-10-07 | Flex Memory Ventures Pty Ltd | Implantable objects fabricated by additive manufacturing and methods of fabricating the same |
WO2020168269A1 (en) | 2019-02-14 | 2020-08-20 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
US11369419B2 (en) | 2019-02-14 | 2022-06-28 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
CN110014153A (en) * | 2019-04-24 | 2019-07-16 | 同济大学 | A method of utilizing 3D printing manufacturing cycle aluminium alloy lattice structure |
US11851772B2 (en) | 2019-05-14 | 2023-12-26 | Tech Met, Inc. | Composition and method for creating nanoscale surface geometry on an implantable device |
KR20220060540A (en) * | 2019-09-05 | 2022-05-11 | 발데마르 링크 게엠베하 운트 코.카게 | Bone Implants with Coated Porous Structures |
US11534307B2 (en) | 2019-09-16 | 2022-12-27 | K2M, Inc. | 3D printed cervical standalone implant |
CN114585330A (en) * | 2019-09-25 | 2022-06-03 | 德普伊爱尔兰无限公司 | Three-dimensional porous structure for bone ingrowth and method of making same |
US11576787B2 (en) | 2019-09-30 | 2023-02-14 | DePuy Synthes Products, Inc. | Patient specific femoral prosthesis |
US11351034B2 (en) | 2019-09-30 | 2022-06-07 | DePuy Synthes Products, Inc. | Patient specific femoral prosthesis |
WO2021084484A2 (en) | 2019-10-29 | 2021-05-06 | Stryker European Operations Limited | Surgical navigation tracker, system, and method |
WO2021108590A1 (en) | 2019-11-27 | 2021-06-03 | Si-Bone, Inc. | Bone stabilizing implants and methods of placement across si joints |
WO2021119126A1 (en) | 2019-12-09 | 2021-06-17 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
AU2021200320A1 (en) | 2020-01-22 | 2021-08-05 | Howmedica Osteonics Corp. | Femoral implant |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
EP4126420A1 (en) | 2020-03-25 | 2023-02-08 | Encore Medical, L.P. dba DJO Surgical | Joint implants having porous structures formed utilizing additive manufacturing and related systems and methods |
GB2594049A (en) * | 2020-04-06 | 2021-10-20 | Imp College Innovations Ltd | A method of defining a lattice structure for use in an additive manufacturing process and a lattice structure |
AU2021202801A1 (en) | 2020-05-07 | 2021-11-25 | Howmedica Osteonics Corp. | Stemless metaphyseal humeral implant |
EP3932369A1 (en) | 2020-06-03 | 2022-01-05 | Howmedica Osteonics Corporation | Intercalary endoprosthesis |
CA3192299A1 (en) | 2020-09-11 | 2022-03-17 | Happe Spine Llc | Method for forming an implantable medical device with varied composition and porosity |
CN112022445B (en) * | 2020-09-29 | 2021-10-26 | 北京市春立正达医疗器械股份有限公司 | Bone trabecula structure and application thereof |
WO2022109524A1 (en) | 2020-11-19 | 2022-05-27 | Spinal Elements, Inc. | Curved expandable interbody devices and deployment tools |
EP4259015A4 (en) | 2020-12-09 | 2024-09-11 | Si Bone Inc | Sacro-iliac joint stabilizing implants and methods of implantation |
EP4011333A1 (en) * | 2020-12-10 | 2022-06-15 | ARTIQO GmbH | Acetabular cup for a hip joint endoprosthesis |
GB2602821A (en) * | 2021-01-15 | 2022-07-20 | Osstec Ltd | Orthopaedic implant |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
FR3129859A1 (en) * | 2021-12-08 | 2023-06-09 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Part comprising a porous structure and its method of manufacture |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
US20240299178A1 (en) | 2023-03-06 | 2024-09-12 | Howmedica Osteonics Corp. | Universal Insert-Baseplate Interface And Insert For Tibiofemoral Articular Congruency |
US20240342800A1 (en) | 2023-04-12 | 2024-10-17 | Howmedica Osteonics Corp. | Implant Support Structure And Method Of Fabrication Of Implant Using The Same |
Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US14403A (en) * | 1856-03-11 | Improved spirit blow-pipe | ||
US3806961A (en) * | 1972-02-16 | 1974-04-30 | Sulzer Ag | Phosthetic patella implant |
US3816855A (en) * | 1971-06-01 | 1974-06-18 | Nat Res Dev | Knee joint prosthesis |
US4085466A (en) * | 1974-11-18 | 1978-04-25 | National Research Development Corporation | Prosthetic joint device |
US4164794A (en) * | 1977-04-14 | 1979-08-21 | Union Carbide Corporation | Prosthetic devices having coatings of selected porous bioengineering thermoplastics |
US4202055A (en) * | 1976-05-12 | 1980-05-13 | Battelle-Institut E.V. | Anchorage for highly stressed endoprostheses |
US4218494A (en) * | 1978-07-04 | 1980-08-19 | Centro Richerche Fiat S.P.A. | Process for coating a metallic surface with a wear-resistant material |
US4344193A (en) * | 1980-11-28 | 1982-08-17 | Kenny Charles H | Meniscus prosthesis |
US4385404A (en) * | 1980-02-21 | 1983-05-31 | J. & P. Coats, Limited | Device and method for use in the treatment of damaged articular surfaces of human joints |
US4502161A (en) * | 1981-09-21 | 1985-03-05 | Wall W H | Prosthetic meniscus for the repair of joints |
US4636219A (en) * | 1985-12-05 | 1987-01-13 | Techmedica, Inc. | Prosthesis device fabrication |
US4644942A (en) * | 1981-07-27 | 1987-02-24 | Battelle Development Corporation | Production of porous coating on a prosthesis |
US4673408A (en) * | 1983-08-24 | 1987-06-16 | Arthroplasty Research & Development (Pty) Ltd. | Knee prosthesis |
US4719908A (en) * | 1986-08-15 | 1988-01-19 | Osteonics Corp. | Method and apparatus for implanting a prosthetic device |
US4944817A (en) * | 1986-10-17 | 1990-07-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US4990163A (en) * | 1989-02-06 | 1991-02-05 | Trustees Of The University Of Pennsylvania | Method of depositing calcium phosphate cermamics for bone tissue calcification enhancement |
US5004476A (en) * | 1989-10-31 | 1991-04-02 | Tulane University | Porous coated total hip replacement system |
US5017753A (en) * | 1986-10-17 | 1991-05-21 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US5031120A (en) * | 1987-12-23 | 1991-07-09 | Itzchak Pomerantz | Three dimensional modelling apparatus |
US5034186A (en) * | 1985-11-20 | 1991-07-23 | Permelec Electrode Ltd. | Process for providing titanium composite having a porous surface |
US5176510A (en) * | 1990-02-16 | 1993-01-05 | Sterisol Ab | Device for dispensing fluid that includes a valve which communicates with a pump |
US5192328A (en) * | 1989-09-29 | 1993-03-09 | Winters Thomas F | Knee joint replacement apparatus |
US5219362A (en) * | 1991-02-07 | 1993-06-15 | Finsbury (Instruments) Limited | Knee prosthesis |
US5282870A (en) * | 1992-01-14 | 1994-02-01 | Sulzer Medizinaltechnik Ag | Artificial knee joint |
US5287435A (en) * | 1987-06-02 | 1994-02-15 | Cubital Ltd. | Three dimensional modeling |
US5314478A (en) * | 1991-03-29 | 1994-05-24 | Kyocera Corporation | Artificial bone connection prosthesis |
US5386500A (en) * | 1987-06-02 | 1995-01-31 | Cubital Ltd. | Three dimensional modeling apparatus |
US5398193A (en) * | 1993-08-20 | 1995-03-14 | Deangelis; Alfredo O. | Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor |
US5490962A (en) * | 1993-10-18 | 1996-02-13 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
US5496372A (en) * | 1992-04-17 | 1996-03-05 | Kyocera Corporation | Hard tissue prosthesis including porous thin metal sheets |
US5514183A (en) * | 1994-12-20 | 1996-05-07 | Epstein; Norman | Reduced friction prosthetic knee joint utilizing replaceable roller bearings |
US5609646A (en) * | 1992-01-23 | 1997-03-11 | Howmedica International | Acetabular cup for a total hip prosthesis |
US5616294A (en) * | 1986-10-17 | 1997-04-01 | Board Of Regents, The University Of Texas System | Method for producing parts by infiltration of porous intermediate parts |
US5640667A (en) * | 1995-11-27 | 1997-06-17 | Board Of Regents, The University Of Texas System | Laser-directed fabrication of full-density metal articles using hot isostatic processing |
US5728162A (en) * | 1993-01-28 | 1998-03-17 | Board Of Regents Of University Of Colorado | Asymmetric condylar and trochlear femoral knee component |
US5735903A (en) * | 1987-07-20 | 1998-04-07 | Li; Shu-Tung | Meniscal augmentation device |
US5776201A (en) * | 1995-10-02 | 1998-07-07 | Johnson & Johnson Professional, Inc. | Modular femoral trial system |
US5782908A (en) * | 1995-08-22 | 1998-07-21 | Medtronic, Inc. | Biocompatible medical article and method |
US5879387A (en) * | 1994-08-25 | 1999-03-09 | Howmedica International Inc. | Prosthetic bearing element and method of manufacture |
US5928285A (en) * | 1997-05-30 | 1999-07-27 | Bristol-Myers Squibb Co. | Orthopaedic implant having an articulating surface with a conforming and translational surface |
US6046426A (en) * | 1996-07-08 | 2000-04-04 | Sandia Corporation | Method and system for producing complex-shape objects |
US6087553A (en) * | 1996-02-26 | 2000-07-11 | Implex Corporation | Implantable metallic open-celled lattice/polyethylene composite material and devices |
US6190407B1 (en) * | 1997-11-20 | 2001-02-20 | St. Jude Medical, Inc. | Medical article with adhered antimicrobial metal |
US6206927B1 (en) * | 1999-04-02 | 2001-03-27 | Barry M. Fell | Surgically implantable knee prothesis |
US6206924B1 (en) * | 1999-10-20 | 2001-03-27 | Interpore Cross Internat | Three-dimensional geometric bio-compatible porous engineered structure for use as a bone mass replacement or fusion augmentation device |
US6215093B1 (en) * | 1996-12-02 | 2001-04-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Selective laser sintering at melting temperature |
US6248131B1 (en) * | 1994-05-06 | 2001-06-19 | Advanced Bio Surfaces, Inc. | Articulating joint repair |
US6251143B1 (en) * | 1999-06-04 | 2001-06-26 | Depuy Orthopaedics, Inc. | Cartilage repair unit |
US20020010512A1 (en) * | 2000-07-19 | 2002-01-24 | Tsunenori Takei | Artificial knee joint |
US20020016635A1 (en) * | 1998-05-14 | 2002-02-07 | Hayes Medical, Inc. | Implant with composite coating |
US20020015654A1 (en) * | 2000-06-01 | 2002-02-07 | Suman Das | Direct selective laser sintering of metals |
US6355086B2 (en) * | 1997-08-12 | 2002-03-12 | Rolls-Royce Corporation | Method and apparatus for making components by direct laser processing |
US6371958B1 (en) * | 2000-03-02 | 2002-04-16 | Ethicon, Inc. | Scaffold fixation device for use in articular cartilage repair |
US6395327B1 (en) * | 1999-03-12 | 2002-05-28 | Zimmer, Inc. | Enhanced fatigue strength orthopaedic implant with porous coating and method of making same |
EP1247537A1 (en) * | 2001-04-04 | 2002-10-09 | Isotis B.V. | Coating for medical devices |
US20030033018A1 (en) * | 2001-08-07 | 2003-02-13 | Merchant Alan C. | Patello-femoral joint arthroplasty |
US6520996B1 (en) * | 1999-06-04 | 2003-02-18 | Depuy Acromed, Incorporated | Orthopedic implant |
US20030045941A1 (en) * | 2001-08-27 | 2003-03-06 | Lewallen David G. | Coated prosthetic implant |
US6530951B1 (en) * | 1996-10-24 | 2003-03-11 | Cook Incorporated | Silver implantable medical device |
US20030055500A1 (en) * | 1999-05-10 | 2003-03-20 | Fell Barry M. | Surgically implantable knee prosthesis having two-piece keyed components |
US20030055501A1 (en) * | 1999-05-10 | 2003-03-20 | Fell Barry M. | Surgically implantable knee prosthesis having different tibial and femoral surface profiles |
US20030060885A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having enlarged femoral surface |
US20030060883A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having attachment apertures |
US20030060884A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having keels |
US20030060882A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having medially shifted tibial surface |
US20030060888A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Proportioned surgically implantable knee prosthesis |
US20030069718A1 (en) * | 2001-06-22 | 2003-04-10 | Hollister Scott J. | Design methodology for tissue engineering scaffolds and biomaterial implants |
US6558421B1 (en) * | 2000-09-19 | 2003-05-06 | Barry M. Fell | Surgically implantable knee prosthesis |
US6599301B2 (en) * | 1996-08-30 | 2003-07-29 | Verrgen Transplantation Service International (Vtsi) | Method, instruments, and kit for autologous transplantation |
US20040006393A1 (en) * | 2002-07-03 | 2004-01-08 | Brian Burkinshaw | Implantable prosthetic knee for lateral compartment |
US6686437B2 (en) * | 2001-10-23 | 2004-02-03 | M.M.A. Tech Ltd. | Medical implants made of wear-resistant, high-performance polyimides, process of making same and medical use of same |
US6699252B2 (en) * | 2001-04-17 | 2004-03-02 | Regeneration Technologies, Inc. | Methods and instruments for improved meniscus transplantation |
US20040044414A1 (en) * | 2000-11-21 | 2004-03-04 | Andrej Nowakowski | Knee joint endoprosthesis system |
US20040054416A1 (en) * | 2002-09-12 | 2004-03-18 | Joe Wyss | Posterior stabilized knee with varus-valgus constraint |
US6709462B2 (en) * | 2002-01-11 | 2004-03-23 | Mayo Foundation For Medical Education And Research | Acetabular shell with screw access channels |
US20040059356A1 (en) * | 2002-07-17 | 2004-03-25 | Peter Gingras | Soft tissue implants and methods for making same |
US6712856B1 (en) * | 2000-03-17 | 2004-03-30 | Kinamed, Inc. | Custom replacement device for resurfacing a femur and method of making the same |
US6712822B2 (en) * | 2001-10-01 | 2004-03-30 | Scandius Biomedical, Inc. | Apparatus and method for the repair of articular cartilage defects |
US6716957B2 (en) * | 1999-03-05 | 2004-04-06 | Stryker Technologies Corporation | Bioabsorbable materials and medical devices made therefrom |
US20040098132A1 (en) * | 2002-11-19 | 2004-05-20 | Thomas Andriacchi | Femoral prosthesis |
US20040143339A1 (en) * | 2003-01-21 | 2004-07-22 | Axelson Stuart L. | Emulating natural knee kinematics in a knee prosthesis |
US6846329B2 (en) * | 2002-02-26 | 2005-01-25 | Mcminn Derek James Wallace | Knee prosthesis |
US6850125B2 (en) * | 2001-08-15 | 2005-02-01 | Gallitzin Allegheny Llc | Systems and methods for self-calibration |
US20050033424A1 (en) * | 1999-05-10 | 2005-02-10 | Fell Barry M. | Surgically implantable knee prosthesis |
US20050043816A1 (en) * | 2003-05-15 | 2005-02-24 | Arindam Datta | Reticulated elastomeric matrices, their manufacture and use in implantable devices |
US6863689B2 (en) * | 2001-07-16 | 2005-03-08 | Spinecore, Inc. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US20050085918A1 (en) * | 2000-04-07 | 2005-04-21 | Tecres S.P.A. | Disposable articulated spacing device for surgical treatment of joints of the human body |
US20050100578A1 (en) * | 2003-11-06 | 2005-05-12 | Schmid Steven R. | Bone and tissue scaffolding and method for producing same |
US6916341B2 (en) * | 2003-02-20 | 2005-07-12 | Lindsey R. Rolston | Device and method for bicompartmental arthroplasty |
US20050154471A1 (en) * | 2004-01-12 | 2005-07-14 | Luke Aram | Systems and methods for compartmental replacement in a knee |
US6921264B2 (en) * | 2002-08-23 | 2005-07-26 | Woodwelding Ag | Implant to be implanted in bone tissue or in bone tissue supplemented with bone substitute material |
US20070142914A1 (en) * | 2005-12-06 | 2007-06-21 | Eric Jones | Laser-produced porous surface |
US20070156249A1 (en) * | 2006-01-05 | 2007-07-05 | Howmedica Osteonics Corp. | High velocity spray technique for medical implant components |
US20080004709A1 (en) * | 2005-12-30 | 2008-01-03 | Howmedica Osteonics Corp. | Laser-produced implants |
US20080050412A1 (en) * | 2006-08-15 | 2008-02-28 | Howmedica Osteonics Corp. | Antimicrobial implant |
Family Cites Families (278)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US222687A (en) | 1879-12-16 | Improvement in combined pencil and line-measurer | ||
US2373769A (en) | 1942-08-17 | 1945-04-17 | Claude W Macy | Tire repairing device |
US3520099A (en) | 1968-09-16 | 1970-07-14 | Mastic Corp | Interlocking building siding unit |
US3556918A (en) | 1968-12-03 | 1971-01-19 | Jerome H Lemelson | Composite reinforced plastic foam sheet |
US3605123A (en) | 1969-04-29 | 1971-09-20 | Melpar Inc | Bone implant |
US3826054A (en) | 1972-05-15 | 1974-07-30 | B Culpepper | Building insulation and sheathing |
US3906550A (en) | 1973-12-27 | 1975-09-23 | William Rostoker | Prosthetic device having a porous fiber metal structure |
US4117302A (en) | 1974-03-04 | 1978-09-26 | Caterpillar Tractor Co. | Method for fusibly bonding a coating material to a metal article |
US4073999A (en) | 1975-05-09 | 1978-02-14 | Minnesota Mining And Manufacturing Company | Porous ceramic or metallic coatings and articles |
US4047349A (en) | 1976-05-14 | 1977-09-13 | Johns-Manville Corporation | Sheet material attaching device and wall arrangement using this device |
US4259072A (en) | 1977-04-04 | 1981-03-31 | Kyoto Ceramic Co., Ltd. | Ceramic endosseous implant |
JPS5930493B2 (en) | 1978-02-24 | 1984-07-27 | 友和産業株式会社 | Bending manufacturing equipment for metal plate box-shaped bodies |
US4154040A (en) | 1978-02-24 | 1979-05-15 | Pace Thomas G | Building siding and beveled backer panel assembly and method |
US4247508B1 (en) | 1979-12-03 | 1996-10-01 | Dtm Corp | Molding process |
JPS58132068A (en) | 1982-01-30 | 1983-08-06 | Nitto Electric Ind Co Ltd | Reinforcing adhesive sheet |
CA1227002A (en) | 1982-02-18 | 1987-09-22 | Robert V. Kenna | Bone prosthesis with porous coating |
US4474861A (en) | 1983-03-09 | 1984-10-02 | Smith International, Inc. | Composite bearing structure of alternating hard and soft metal, and process for making the same |
US4543158A (en) | 1984-04-02 | 1985-09-24 | Gaf Corporation | Sheet type felt |
US4513045A (en) | 1984-04-02 | 1985-04-23 | Gaf Corporation | Sheet type felt |
US4673409A (en) | 1984-04-25 | 1987-06-16 | Minnesota Mining And Manufacturing Company | Implant with attachment surface |
CA1264674A (en) | 1984-10-17 | 1990-01-23 | Paul Ducheyne | Porous flexible metal fiber material for surgical implantation |
CH665349A5 (en) | 1985-01-08 | 1988-05-13 | Sulzer Ag | METALLIC BONE IMPLANT. |
US4969302A (en) | 1985-01-15 | 1990-11-13 | Abitibi-Price Corporation | Siding panels |
US4714473A (en) | 1985-07-25 | 1987-12-22 | Harrington Arthritis Research Center | Knee prosthesis |
US4714474A (en) | 1986-05-12 | 1987-12-22 | Dow Corning Wright Corporation | Tibial knee joint prosthesis with removable articulating surface insert |
ES2063737T3 (en) | 1986-06-03 | 1995-01-16 | Cubital Ltd | APPARATUS AND METHOD FOR THREE-DIMENSIONAL MODELING. |
US5002572A (en) | 1986-09-11 | 1991-03-26 | Picha George J | Biological implant with textured surface |
US5076869A (en) | 1986-10-17 | 1991-12-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5155324A (en) | 1986-10-17 | 1992-10-13 | Deckard Carl R | Method for selective laser sintering with layerwise cross-scanning |
US4863538A (en) | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US4766029A (en) | 1987-01-23 | 1988-08-23 | Kimberly-Clark Corporation | Semi-permeable nonwoven laminate |
US20020102674A1 (en) | 1987-05-20 | 2002-08-01 | David M Anderson | Stabilized microporous materials |
US4837067A (en) | 1987-06-08 | 1989-06-06 | Minnesota Mining And Manufacturing Company | Nonwoven thermal insulating batts |
US5306311A (en) | 1987-07-20 | 1994-04-26 | Regen Corporation | Prosthetic articular cartilage |
US5158574A (en) | 1987-07-20 | 1992-10-27 | Regen Corporation | Prosthetic meniscus |
CH672985A5 (en) | 1987-11-11 | 1990-01-31 | Sulzer Ag | |
US4944756A (en) | 1988-02-03 | 1990-07-31 | Pfizer Hospital Products Group | Prosthetic knee joint with improved patellar component tracking |
JP2829318B2 (en) | 1988-06-10 | 1998-11-25 | 春幸 川原 | Frameless, coreless porous endosseous implant |
US5080674A (en) | 1988-09-08 | 1992-01-14 | Zimmer, Inc. | Attachment mechanism for securing an additional portion to an implant |
US5486599A (en) | 1989-03-29 | 1996-01-23 | The Board Of Trustees Of The Leland Stanford Junior University | Construction and use of synthetic constructs encoding syndecan |
JPH0813519B2 (en) | 1989-03-29 | 1996-02-14 | 東レ株式会社 | Glass fiber mat Insulation lining Metal origami shingles |
US5053090A (en) | 1989-09-05 | 1991-10-01 | Board Of Regents, The University Of Texas System | Selective laser sintering with assisted powder handling |
US5024670A (en) | 1989-10-02 | 1991-06-18 | Depuy, Division Of Boehringer Mannheim Corporation | Polymeric bearing component |
EP0425714A1 (en) | 1989-10-28 | 1991-05-08 | Metalpraecis Berchem + Schaberg Gesellschaft Für Metallformgebung Mbh | Process for manufacturing an implantable joint prosthesis |
US5067964A (en) | 1989-12-13 | 1991-11-26 | Stryker Corporation | Articular surface repair |
FR2657007B1 (en) | 1990-01-12 | 1998-01-02 | Innovations Technolog Ste Civi | FEMALE PART FOR KNEE PROSTHESIS AND METHOD FOR PRODUCING A BANDAGE SPECIFIC TO ITS EQUIPMENT. |
US5122116A (en) | 1990-04-24 | 1992-06-16 | Science Incorporated | Closed drug delivery system |
JPH0441794A (en) | 1990-06-01 | 1992-02-12 | Mitsubishi Paper Mills Ltd | Fiber sheet and its complex sheet |
US5108432A (en) | 1990-06-24 | 1992-04-28 | Pfizer Hospital Products Group, Inc. | Porous fixation surface |
US5108441A (en) | 1990-07-17 | 1992-04-28 | Mcdowell Charles L | Method of regenerating joint articular cartilage |
US5702448A (en) | 1990-09-17 | 1997-12-30 | Buechel; Frederick F. | Prosthesis with biologically inert wear resistant surface |
US5090174A (en) | 1990-09-26 | 1992-02-25 | Fragale Anthony J | Siding system including siding trim pieces and method of siding a structure using same |
US5274565A (en) | 1990-10-03 | 1993-12-28 | Board Of Regents, The University Of Texas System | Process for making custom joint replacements |
US5147402A (en) | 1990-12-05 | 1992-09-15 | Sulzer Brothers Limited | Implant for ingrowth of osseous tissue |
US5198308A (en) | 1990-12-21 | 1993-03-30 | Zimmer, Inc. | Titanium porous surface bonded to a cobalt-based alloy substrate in an orthopaedic implant device |
US5176710A (en) | 1991-01-23 | 1993-01-05 | Orthopaedic Research Institute | Prosthesis with low stiffness factor |
US5258098A (en) | 1991-06-17 | 1993-11-02 | Cycam, Inc. | Method of production of a surface adapted to promote adhesion |
US5356433A (en) | 1991-08-13 | 1994-10-18 | Cordis Corporation | Biocompatible metal surfaces |
DE4133877C1 (en) | 1991-10-12 | 1993-05-19 | S + G Implants Gmbh, 2400 Luebeck, De | |
DE4205969C2 (en) | 1992-02-27 | 1994-07-07 | Merck Patent Gmbh | Process for the production of moldings with a predetermined pore structure |
US5282861A (en) | 1992-03-11 | 1994-02-01 | Ultramet | Open cell tantalum structures for cancellous bone implants and cell and tissue receptors |
US5824102A (en) | 1992-06-19 | 1998-10-20 | Buscayret; Christian | Total knee prosthesis |
CA2075553A1 (en) | 1992-08-07 | 1994-02-08 | George Zafir | Insulated panel |
US5370692A (en) | 1992-08-14 | 1994-12-06 | Guild Associates, Inc. | Rapid, customized bone prosthesis |
US5510066A (en) | 1992-08-14 | 1996-04-23 | Guild Associates, Inc. | Method for free-formation of a free-standing, three-dimensional body |
US5648450A (en) | 1992-11-23 | 1997-07-15 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therein |
US5527877A (en) | 1992-11-23 | 1996-06-18 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
US5336518A (en) | 1992-12-11 | 1994-08-09 | Cordis Corporation | Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents |
US5352405A (en) | 1992-12-18 | 1994-10-04 | Dtm Corporation | Thermal control of selective laser sintering via control of the laser scan |
US5368602A (en) | 1993-02-11 | 1994-11-29 | De La Torre; Roger A. | Surgical mesh with semi-rigid border members |
US5358529A (en) | 1993-03-05 | 1994-10-25 | Smith & Nephew Richards Inc. | Plastic knee femoral implants |
US5443510A (en) | 1993-04-06 | 1995-08-22 | Zimmer, Inc. | Porous coated implant and method of making same |
US5443518A (en) | 1993-07-20 | 1995-08-22 | Zimmer, Inc. | Knee position indicator |
US5549700A (en) | 1993-09-07 | 1996-08-27 | Ortho Development Corporation | Segmented prosthetic articulation |
US5741215A (en) | 1993-09-10 | 1998-04-21 | The University Of Queensland | Stereolithographic anatomical modelling process |
US5518680A (en) | 1993-10-18 | 1996-05-21 | Massachusetts Institute Of Technology | Tissue regeneration matrices by solid free form fabrication techniques |
DE4341367C1 (en) | 1993-12-04 | 1995-06-14 | Harald Dr Med Dr Med Eufinger | Process for the production of endoprostheses |
US5461839A (en) | 1993-12-22 | 1995-10-31 | Certainteed Corporation | Reinforced exterior siding |
US6415574B2 (en) | 1993-12-22 | 2002-07-09 | Certainteed Corp. | Reinforced exterior siding |
US5665118A (en) | 1994-02-18 | 1997-09-09 | Johnson & Johnson Professional, Inc. | Bone prostheses with direct cast macrotextured surface regions and method for manufacturing the same |
US5973222A (en) | 1994-04-18 | 1999-10-26 | Bristol-Myers Squibb Co. | Orthopedic implant having a porous metal pad |
US5773789A (en) | 1994-04-18 | 1998-06-30 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US5504300A (en) | 1994-04-18 | 1996-04-02 | Zimmer, Inc. | Orthopaedic implant and method of making same |
US6049054A (en) | 1994-04-18 | 2000-04-11 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
IL109344A (en) | 1994-04-19 | 1998-02-22 | Mendes David | Prosthetic patella implant of the knee joint |
BE1008372A3 (en) | 1994-04-19 | 1996-04-02 | Materialise Nv | METHOD FOR MANUFACTURING A perfected MEDICAL MODEL BASED ON DIGITAL IMAGE INFORMATION OF A BODY. |
US5556429A (en) | 1994-05-06 | 1996-09-17 | Advanced Bio Surfaces, Inc. | Joint resurfacing system |
US5729946A (en) | 1994-05-13 | 1998-03-24 | Certainteed Corporation | Apparatus and method of applying building panels to surfaces |
US5857303A (en) | 1994-05-13 | 1999-01-12 | Certainteed Corporation | Apparatus and method of applying building panels to surfaces |
US5639402A (en) | 1994-08-08 | 1997-06-17 | Barlow; Joel W. | Method for fabricating artificial bone implant green parts |
US5769899A (en) | 1994-08-12 | 1998-06-23 | Matrix Biotechnologies, Inc. | Cartilage repair unit |
US7494507B2 (en) | 2000-01-30 | 2009-02-24 | Diamicron, Inc. | Articulating diamond-surfaced spinal implants |
US5632745A (en) | 1995-02-07 | 1997-05-27 | R&D Biologicals, Inc. | Surgical implantation of cartilage repair unit |
DE19502733A1 (en) | 1994-09-20 | 1996-03-21 | Gefinex Jackon Gmbh | Tiling panel for interiors |
GB9420071D0 (en) | 1994-10-05 | 1994-11-16 | Howmedica | Metal backing for inclusion in the manufacture of a prosthetic component |
US5824098A (en) | 1994-10-24 | 1998-10-20 | Stein; Daniel | Patello-femoral joint replacement device and method |
US5571196A (en) | 1994-10-24 | 1996-11-05 | Stein; Daniel | Patello-femoral joint replacement device and method |
US5716358A (en) | 1994-12-02 | 1998-02-10 | Johnson & Johnson Professional, Inc. | Directional bone fixation device |
US5489306A (en) | 1995-01-03 | 1996-02-06 | Gorski; Jerrold M. | Graduated porosity implant for fibro-osseous integration |
US6051751A (en) | 1995-01-20 | 2000-04-18 | Spire Corporation | Arthroplasty process for securely anchoring prostheses to bone, and arthroplasty products therefor |
US5749874A (en) | 1995-02-07 | 1998-05-12 | Matrix Biotechnologies, Inc. | Cartilage repair unit and method of assembling same |
US5879398A (en) | 1995-02-14 | 1999-03-09 | Zimmer, Inc. | Acetabular cup |
DE19511772C2 (en) | 1995-03-30 | 1997-09-04 | Eos Electro Optical Syst | Device and method for producing a three-dimensional object |
US6209621B1 (en) | 1995-07-07 | 2001-04-03 | Depuy Orthopaedics, Inc. | Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same |
EP0761242A1 (en) | 1995-08-21 | 1997-03-12 | Bristol-Myers Squibb Company | Orthopaedic implant with bearing surface |
US6149689A (en) | 1995-11-22 | 2000-11-21 | Eska Implants Gmbh & Co. | Implant as bone replacement |
US5681354A (en) | 1996-02-20 | 1997-10-28 | Board Of Regents, University Of Colorado | Asymmetrical femoral component for knee prosthesis |
US5769092A (en) | 1996-02-22 | 1998-06-23 | Integrated Surgical Systems, Inc. | Computer-aided system for revision total hip replacement surgery |
US6143948A (en) | 1996-05-10 | 2000-11-07 | Isotis B.V. | Device for incorporation and release of biologically active agents |
CA2252860C (en) | 1996-05-28 | 2011-03-22 | 1218122 Ontario Inc. | Resorbable implant biomaterial made of condensed calcium phosphate particles |
US5811151A (en) | 1996-05-31 | 1998-09-22 | Medtronic, Inc. | Method of modifying the surface of a medical device |
US6476343B2 (en) | 1996-07-08 | 2002-11-05 | Sandia Corporation | Energy-beam-driven rapid fabrication system |
US6013855A (en) | 1996-08-06 | 2000-01-11 | United States Surgical | Grafting of biocompatible hydrophilic polymers onto inorganic and metal surfaces |
US7332537B2 (en) | 1996-09-04 | 2008-02-19 | Z Corporation | Three dimensional printing material system and method |
GB2318058B (en) | 1996-09-25 | 2001-03-21 | Ninian Spenceley Peckitt | Improvements relating to prosthetic implants |
US6128866A (en) | 1996-11-08 | 2000-10-10 | Wearne; John R. | Identifying prefabricated exterior siding and related trim items |
WO1998038949A1 (en) | 1997-03-04 | 1998-09-11 | Implico B.V. | An artefact suitable for use as a bone implant |
AU6868598A (en) | 1997-03-20 | 1998-10-12 | Therics, Inc. | Fabrication of tissue products using a mold formed by solid free-form methods |
US6045581A (en) | 1997-12-12 | 2000-04-04 | Sulzer Orthopedics Inc. | Implantable prosthesis having textured bearing surfaces |
US6208959B1 (en) | 1997-12-15 | 2001-03-27 | Telefonaktibolaget Lm Ericsson (Publ) | Mapping of digital data symbols onto one or more formant frequencies for transmission over a coded voice channel |
WO1999033641A1 (en) | 1997-12-24 | 1999-07-08 | Molecular Geodesics, Inc. | Foam scaffold materials |
US6171340B1 (en) | 1998-02-27 | 2001-01-09 | Mcdowell Charles L. | Method and device for regenerating cartilage in articulating joints |
US6139585A (en) | 1998-03-11 | 2000-10-31 | Depuy Orthopaedics, Inc. | Bioactive ceramic coating and method |
JPH11287020A (en) | 1998-04-03 | 1999-10-19 | Ig Tech Res Inc | Soundproof exterior finish material |
US20010008674A1 (en) | 1998-05-23 | 2001-07-19 | Ralph Smith | Underlayment mat employed with a single ply roofing system |
JPH11348045A (en) | 1998-06-10 | 1999-12-21 | Matsushita Electric Ind Co Ltd | Metal mold |
US6774071B2 (en) | 1998-09-08 | 2004-08-10 | Building Materials Investment Corporation | Foamed facer and insulation boards made therefrom |
US6132468A (en) | 1998-09-10 | 2000-10-17 | Mansmann; Kevin A. | Arthroscopic replacement of cartilage using flexible inflatable envelopes |
US6350284B1 (en) | 1998-09-14 | 2002-02-26 | Bionx Implants, Oy | Bioabsorbable, layered composite material for guided bone tissue regeneration |
EP1121072A1 (en) | 1998-10-12 | 2001-08-08 | Therics, Inc. | Composites for tissue regeneration and methods of manufacture thereof |
US6283997B1 (en) | 1998-11-13 | 2001-09-04 | The Trustees Of Princeton University | Controlled architecture ceramic composites by stereolithography |
US7418993B2 (en) | 1998-11-20 | 2008-09-02 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
US6096043A (en) | 1998-12-18 | 2000-08-01 | Depuy Orthopaedics, Inc. | Epicondylar axis alignment-femoral positioning drill guide |
DE19901643A1 (en) | 1999-01-19 | 2000-07-20 | Herbst Bremer Goldschlaegerei | Process for the production of dentures and dental auxiliary parts |
US20020187458A1 (en) | 1999-01-19 | 2002-12-12 | Bego Bremer Goldschlagerei Wilh. Herbst Gmbh & Co. | Method for producing tooth replacements and auxiliary dental parts |
RU2218242C2 (en) | 1999-02-11 | 2003-12-10 | Физический институт им. П.Н. Лебедева РАН | Method for making medical implants from biologically compatible materials |
US6370382B1 (en) | 1999-04-27 | 2002-04-09 | Qualcomm Incorporated | System and method for reducing wireless telecommunications network resources required to successfully route calls to a wireline network |
US6582715B1 (en) | 1999-04-27 | 2003-06-24 | Agion Technologies, Inc. | Antimicrobial orthopedic implants |
US7491235B2 (en) | 1999-05-10 | 2009-02-17 | Fell Barry M | Surgically implantable knee prosthesis |
US7338524B2 (en) | 1999-05-10 | 2008-03-04 | Fell Barry M | Surgically implantable knee prosthesis |
US7297161B2 (en) | 1999-05-10 | 2007-11-20 | Fell Barry M | Surgically implantable knee prosthesis |
US6811744B2 (en) | 1999-07-07 | 2004-11-02 | Optomec Design Company | Forming structures from CAD solid models |
US6702848B1 (en) | 1999-07-20 | 2004-03-09 | Peter Paul Zilla | Foam-type vascular prosthesis with well-defined anclio-permissive open porosity |
US6299645B1 (en) | 1999-07-23 | 2001-10-09 | William S. Ogden | Dove tail total knee replacement unicompartmental |
US6368354B2 (en) | 1999-10-07 | 2002-04-09 | Exactech, Inc. | Acetabular bearing assembly for total hip joints |
WO2001029189A2 (en) | 1999-10-15 | 2001-04-26 | Mount Sinai Hospital | Synthetic substrate for tissue formation |
CA2391933A1 (en) | 1999-11-16 | 2001-06-28 | Triton Systems, Inc. | Laser fabrication of discontinuously reinforced metal matrix composites |
FR2801193B1 (en) | 1999-11-19 | 2002-02-15 | Proconcept | DOUBLE MOBILITY EXPANDABLE COTYLOIDAL PROSTHESIS |
US20040009228A1 (en) | 1999-11-30 | 2004-01-15 | Pertti Tormala | Bioabsorbable drug delivery system for local treatment and prevention of infections |
US7115143B1 (en) | 1999-12-08 | 2006-10-03 | Sdgi Holdings, Inc. | Orthopedic implant surface configuration |
US20050203630A1 (en) | 2000-01-30 | 2005-09-15 | Pope Bill J. | Prosthetic knee joint having at least one diamond articulation surface |
KR100358192B1 (en) | 2000-02-16 | 2002-10-25 | 한국과학기술원 | Jacket for cementless artificial joint and the artificial joint with it |
US6551608B2 (en) | 2000-03-06 | 2003-04-22 | Porex Technologies Corporation | Porous plastic media with antiviral or antimicrobial properties and processes for making the same |
US6626945B2 (en) | 2000-03-14 | 2003-09-30 | Chondrosite, Llc | Cartilage repair plug |
US6632246B1 (en) | 2000-03-14 | 2003-10-14 | Chondrosite, Llc | Cartilage repair plug |
US20020007294A1 (en) | 2000-04-05 | 2002-01-17 | Bradbury Thomas J. | System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system |
US6772026B2 (en) | 2000-04-05 | 2004-08-03 | Therics, Inc. | System and method for rapidly customizing design, manufacture and/or selection of biomedical devices |
TW462510U (en) | 2000-04-24 | 2001-11-01 | Delta Electronics Inc | Hanged-type eccentric fan |
JP4465802B2 (en) | 2000-04-25 | 2010-05-26 | 日東紡績株式会社 | Siding panel and outer wall panel using the same |
US6679917B2 (en) | 2000-05-01 | 2004-01-20 | Arthrosurface, Incorporated | System and method for joint resurface repair |
WO2001082677A2 (en) | 2000-05-01 | 2001-11-08 | Std Manufacturing, Inc. | System and method for joint resurface repair |
US7163541B2 (en) | 2002-12-03 | 2007-01-16 | Arthrosurface Incorporated | Tibial resurfacing system |
US20040230315A1 (en) | 2000-05-01 | 2004-11-18 | Ek Steven W. | Articular surface implant |
US7618462B2 (en) | 2000-05-01 | 2009-11-17 | Arthrosurface Incorporated | System and method for joint resurface repair |
US6610067B2 (en) | 2000-05-01 | 2003-08-26 | Arthrosurface, Incorporated | System and method for joint resurface repair |
AU2001265141A1 (en) | 2000-05-26 | 2001-12-11 | University Of Virginia Patent Foundation | Multifunctional periodic cellular solids and the method of making thereof |
AU2001275253A1 (en) | 2000-06-05 | 2001-12-17 | Laser Fire | Orthopedic implant and method of making metal articles |
JP2004521666A (en) | 2000-08-28 | 2004-07-22 | アドバンスト バイオ サーフェイシズ,インコーポレイティド | Methods and systems for enhancing mammalian joints |
US20020062154A1 (en) | 2000-09-22 | 2002-05-23 | Ayers Reed A. | Non-uniform porosity tissue implant |
US6494914B2 (en) | 2000-12-05 | 2002-12-17 | Biomet, Inc. | Unicondylar femoral prosthesis and instruments |
US6599322B1 (en) | 2001-01-25 | 2003-07-29 | Tecomet, Inc. | Method for producing undercut micro recesses in a surface, a surgical implant made thereby, and method for fixing an implant to bone |
ATE387161T1 (en) | 2001-01-25 | 2008-03-15 | Smith & Nephew Inc | RETAINING DEVICE FOR HOLDING A PROSTHETIC COMPONENT |
US9050192B2 (en) | 2001-02-05 | 2015-06-09 | Formae, Inc. | Cartilage repair implant with soft bearing surface and flexible anchoring device |
WO2002066693A1 (en) | 2001-02-19 | 2002-08-29 | Isotis N.V. | Porous metals and metal coatings for implants |
US7597715B2 (en) | 2005-04-21 | 2009-10-06 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US6743232B2 (en) | 2001-02-26 | 2004-06-01 | David W. Overaker | Tissue scaffold anchor for cartilage repair |
WO2002083194A1 (en) | 2001-04-12 | 2002-10-24 | Therics, Inc. | Method and apparatus for engineered regenerative biostructures |
US6849223B2 (en) | 2001-04-19 | 2005-02-01 | Case Western Reserve University | Fabrication of a polymeric prosthetic implant |
US6589283B1 (en) | 2001-05-15 | 2003-07-08 | Biomet, Inc. | Elongated femoral component |
US6482209B1 (en) | 2001-06-14 | 2002-11-19 | Gerard A. Engh | Apparatus and method for sculpting the surface of a joint |
JP3646162B2 (en) | 2001-07-04 | 2005-05-11 | 独立行政法人産業技術総合研究所 | Transplant for cartilage tissue regeneration |
GB0119652D0 (en) | 2001-08-11 | 2001-10-03 | Stanmore Implants Worldwide | Surgical implant |
US6682567B1 (en) | 2001-09-19 | 2004-01-27 | Biomet, Inc. | Method and apparatus for providing a shell component incorporating a porous ingrowth material and liner |
US20030060113A1 (en) | 2001-09-20 | 2003-03-27 | Christie Peter A. | Thermo formable acoustical panel |
FR2831426B1 (en) | 2001-10-30 | 2004-07-16 | Tornier Sa | JOINT IMPLANT AND KNEE PROSTHESIS INCORPORATING SUCH AN IMPLANT |
US7458991B2 (en) | 2002-02-08 | 2008-12-02 | Howmedica Osteonics Corp. | Porous metallic scaffold for tissue ingrowth |
JP3781186B2 (en) | 2002-02-13 | 2006-05-31 | 徹 勝呂 | Knee prosthesis |
US6740186B2 (en) | 2002-02-20 | 2004-05-25 | Zimmer Technology, Inc. | Method of making an orthopeadic implant having a porous metal surface |
CA2646389A1 (en) | 2002-02-20 | 2003-08-28 | Donald M. Smucker | Knee arthroplasty prosthesis and method |
US20030220696A1 (en) | 2002-05-23 | 2003-11-27 | Levine David Jerome | Implantable porous metal |
US20050103765A1 (en) | 2002-07-31 | 2005-05-19 | Akira Kawasaki | Method and device for forming a body having a three-dimensional structure |
US7618907B2 (en) | 2002-08-02 | 2009-11-17 | Owens Corning Intellectual Capital, Llc | Low porosity facings for acoustic applications |
EP1545390A4 (en) | 2002-08-23 | 2007-05-09 | Proxy Biomedical Ltd | Three dimensional implant |
GB2393625C (en) | 2002-09-26 | 2004-08-18 | Meridian Tech Ltd | Orthopaedic surgery planning |
US7637942B2 (en) | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
US20060147332A1 (en) | 2004-12-30 | 2006-07-06 | Howmedica Osteonics Corp. | Laser-produced porous structure |
AU2003261497B2 (en) * | 2002-11-08 | 2009-02-26 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US20050070989A1 (en) | 2002-11-13 | 2005-03-31 | Whye-Kei Lye | Medical devices having porous layers and methods for making the same |
JP3927487B2 (en) | 2002-12-02 | 2007-06-06 | 株式会社大野興業 | Manufacturing method of artificial bone model |
US6878427B2 (en) | 2002-12-20 | 2005-04-12 | Kimberly Clark Worldwide, Inc. | Encased insulation article |
US6994730B2 (en) | 2003-01-31 | 2006-02-07 | Howmedica Osteonics Corp. | Meniscal and tibial implants |
US20040167632A1 (en) | 2003-02-24 | 2004-08-26 | Depuy Products, Inc. | Metallic implants having roughened surfaces and methods for producing the same |
JP4239652B2 (en) | 2003-03-31 | 2009-03-18 | パナソニック電工株式会社 | Surface finishing method for metal powder sintered parts |
US7364590B2 (en) | 2003-04-08 | 2008-04-29 | Thomas Siebel | Anatomical knee prosthesis |
US6993406B1 (en) | 2003-04-24 | 2006-01-31 | Sandia Corporation | Method for making a bio-compatible scaffold |
JP2007504920A (en) | 2003-05-16 | 2007-03-08 | ブルー メンブレーンス ゲーエムベーハー | Biocompatible coated medical implant |
WO2004110309A2 (en) | 2003-06-11 | 2004-12-23 | Case Western Reserve University | Computer-aided-design of skeletal implants |
US20040262809A1 (en) | 2003-06-30 | 2004-12-30 | Smith Todd S. | Crosslinked polymeric composite for orthopaedic implants |
JP2006528515A (en) | 2003-07-24 | 2006-12-21 | テコメット・インコーポレーテッド | Spongy structure |
US20050085922A1 (en) | 2003-10-17 | 2005-04-21 | Shappley Ben R. | Shaped filler for implantation into a bone void and methods of manufacture and use thereof |
GB0325647D0 (en) | 2003-11-03 | 2003-12-10 | Finsbury Dev Ltd | Prosthetic implant |
EP1687133B1 (en) | 2003-11-04 | 2010-12-29 | Porex Corporation | Composite porous materials and methods of making and using the same |
US7001672B2 (en) | 2003-12-03 | 2006-02-21 | Medicine Lodge, Inc. | Laser based metal deposition of implant structures |
US20050171604A1 (en) | 2004-01-20 | 2005-08-04 | Alexander Michalow | Unicondylar knee implant |
US7189263B2 (en) | 2004-02-03 | 2007-03-13 | Vita Special Purpose Corporation | Biocompatible bone graft material |
US7442196B2 (en) | 2004-02-06 | 2008-10-28 | Synvasive Technology, Inc. | Dynamic knee balancer |
US7168283B2 (en) | 2004-02-09 | 2007-01-30 | Ast Acquisitions, Llc | Cobalt chrome forging of femoral knee implants and other components |
DE102004009126A1 (en) | 2004-02-25 | 2005-09-22 | Bego Medical Ag | Method and device for generating control data sets for the production of products by free-form sintering or melting and device for this production |
US20060036331A1 (en) | 2004-03-05 | 2006-02-16 | Lu Helen H | Polymer-ceramic-hydrogel composite scaffold for osteochondral repair |
GB0405680D0 (en) | 2004-03-13 | 2004-04-21 | Accentus Plc | Metal implants |
CN1965020B (en) | 2004-06-07 | 2011-05-04 | 提克纳有限责任公司 | Polyethylene molding powder and porous articles made therefrom |
WO2006007861A1 (en) | 2004-07-16 | 2006-01-26 | Universität Duisburg-Essen | Implant |
CA2573545A1 (en) | 2004-07-19 | 2006-02-23 | Smith & Nephew, Inc. | Pulsed current sintering for surfaces of medical implants |
US7351423B2 (en) | 2004-09-01 | 2008-04-01 | Depuy Spine, Inc. | Musculo-skeletal implant having a bioactive gradient |
GB0419961D0 (en) | 2004-09-08 | 2004-10-13 | Sudmann Einar | Prosthetic element |
GB0422666D0 (en) | 2004-10-12 | 2004-11-10 | Benoist Girard Sas | Prosthetic acetabular cups |
US8796015B2 (en) | 2004-11-09 | 2014-08-05 | Proxy Biomedical Limited | Tissue scaffold |
US20060254200A1 (en) | 2004-11-19 | 2006-11-16 | The Trustees Of Columbia University In The City Of New York | Systems and methods for construction of space-truss structures |
SG123615A1 (en) | 2004-12-10 | 2006-07-26 | Nanyang Polytechnic | Method for designing 3-dimensional porous tissue engineering scaffold |
US7718109B2 (en) | 2005-02-14 | 2010-05-18 | Mayo Foundation For Medical Education And Research | Tissue support structure |
US8066778B2 (en) | 2005-04-21 | 2011-11-29 | Biomet Manufacturing Corp. | Porous metal cup with cobalt bearing surface |
US8292967B2 (en) | 2005-04-21 | 2012-10-23 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US8029575B2 (en) | 2005-10-25 | 2011-10-04 | Globus Medical, Inc. | Porous and nonporous materials for tissue grafting and repair |
EP1779812A1 (en) | 2005-10-26 | 2007-05-02 | Etervind AB | An osseointegration implant |
EP1973498B1 (en) | 2005-11-09 | 2014-04-23 | Zimmer GmbH | Implant |
US8057731B2 (en) | 2005-11-15 | 2011-11-15 | Panasonic Electric Works Co., Ltd. | Process of fabricating three-dimensional object |
US7578851B2 (en) | 2005-12-23 | 2009-08-25 | Howmedica Osteonics Corp. | Gradient porous implant |
US20080161927A1 (en) | 2006-10-18 | 2008-07-03 | Warsaw Orthopedic, Inc. | Intervertebral Implant with Porous Portions |
EP1961433A1 (en) | 2007-02-20 | 2008-08-27 | National University of Ireland Galway | Porous substrates for implantation |
US20080206862A1 (en) | 2007-02-28 | 2008-08-28 | Cinvention Ag | High surface cultivation system bag |
CN101772357A (en) | 2007-06-07 | 2010-07-07 | 史密夫和内修有限公司 | Reticulated particle porous coating for medical implant use |
US8142886B2 (en) | 2007-07-24 | 2012-03-27 | Howmedica Osteonics Corp. | Porous laser sintered articles |
US20110076316A1 (en) | 2007-10-08 | 2011-03-31 | Sureshan Sivananthan | Scalable matrix for the in vivo cultivation of bone and cartilage |
EP2214736B1 (en) | 2007-10-29 | 2014-03-05 | Zimmer, Inc. | Medical implants and methods for delivering biologically active agents |
US8979938B2 (en) | 2007-11-08 | 2015-03-17 | Linares Medical Devices, Llc | Artificial knee implant including liquid ballast supporting / rotating surfaces and incorporating flexible multi-material and natural lubricant retaining matrix applied to a joint surface |
EP2237748B1 (en) | 2008-01-17 | 2012-09-05 | Synthes GmbH | An expandable intervertebral implant |
WO2009116950A1 (en) | 2008-03-17 | 2009-09-24 | Nanyang Polytechnic | Mould for casting tissue engineering scaffolds and process for generating the same |
GB0809721D0 (en) | 2008-05-28 | 2008-07-02 | Univ Bath | Improvements in or relating to joints and/or implants |
CN100588379C (en) | 2008-06-26 | 2010-02-10 | 上海交通大学 | Preparation of artificial joint prosthesis with partially controllable porous structure |
US8696754B2 (en) | 2008-09-03 | 2014-04-15 | Biomet Manufacturing, Llc | Revision patella prosthesis |
BRPI0919972A2 (en) | 2008-10-29 | 2015-12-08 | Smith & Nephew Inc | porous surface layers with increased surface roughness and implants incorporating the same |
WO2010080511A1 (en) | 2008-12-18 | 2010-07-15 | 4-Web Spine, Inc. | Truss implant |
US20110004447A1 (en) | 2009-07-01 | 2011-01-06 | Schlumberger Technology Corporation | Method to build 3D digital models of porous media using transmitted laser scanning confocal mircoscopy and multi-point statistics |
PL2253291T3 (en) | 2009-05-19 | 2016-09-30 | A bone implant with a surface anchoring structure | |
CN102548509B (en) | 2009-08-19 | 2016-09-21 | 史密夫和内修有限公司 | Porous implant structures |
US20110200478A1 (en) | 2010-02-14 | 2011-08-18 | Romain Louis Billiet | Inorganic structures with controlled open cell porosity and articles made therefrom |
WO2011156504A2 (en) | 2010-06-08 | 2011-12-15 | Smith & Nephew, Inc. | Implant components and methods |
US20110313532A1 (en) | 2010-06-18 | 2011-12-22 | Jessee Hunt | Bone implant interface system and method |
US9801974B2 (en) | 2010-08-13 | 2017-10-31 | Smith & Nephew, Inc. | Patellar implants |
US8727203B2 (en) | 2010-09-16 | 2014-05-20 | Howmedica Osteonics Corp. | Methods for manufacturing porous orthopaedic implants |
CN102087676B (en) | 2010-12-13 | 2012-07-04 | 上海大学 | Pore network model (PNM)-based bionic bone scaffold designing method |
WO2013006778A2 (en) | 2011-07-07 | 2013-01-10 | 4-Web, Inc. | Foot and ankle implant system and method |
JP6177788B2 (en) | 2011-11-03 | 2017-08-09 | フォー−ウェブ・インコーポレイテッド | How to preserve length during bone repair |
EP2811942B1 (en) | 2012-02-08 | 2018-11-07 | 4-web, Inc. | Prosthetic implant for ball and socket joints |
US9180010B2 (en) | 2012-04-06 | 2015-11-10 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US8843229B2 (en) | 2012-07-20 | 2014-09-23 | Biomet Manufacturing, Llc | Metallic structures having porous regions from imaged bone at pre-defined anatomic locations |
US9415137B2 (en) | 2012-08-22 | 2016-08-16 | Biomet Manufacturing, Llc. | Directional porous coating |
US9271845B2 (en) | 2012-09-25 | 2016-03-01 | 4Web | Programmable implants and methods of using programmable implants to repair bone structures |
CA2829914C (en) | 2012-12-07 | 2016-07-05 | The Boeing Company | Forest sensor deployment and monitoring system |
US9744044B2 (en) | 2013-03-15 | 2017-08-29 | Mako Surgical Corp. | Unicondylar tibial knee implant |
WO2014145529A2 (en) | 2013-03-15 | 2014-09-18 | 4-Web, Inc. | Traumatic bone fracture repair systems and methods |
US20140288650A1 (en) | 2013-03-15 | 2014-09-25 | 4Web, Inc. | Motion preservation implant and methods |
US8983646B1 (en) | 2013-10-10 | 2015-03-17 | Barbara Hanna | Interactive digital drawing and physical realization |
DK3137125T3 (en) | 2014-05-02 | 2020-04-27 | The Royal Institution For The Advancement Of Learning / Mcgill Univ | IMPLANT CREATED BY STRUCTURAL POROSTIC BIOMATERIAL AND PROCEDURE FOR PRODUCING SAME |
US20150374882A1 (en) | 2014-06-20 | 2015-12-31 | Robert Anthony McDemus | Porous material |
US10695184B2 (en) | 2017-04-01 | 2020-06-30 | HD LifeSciences LLC | Methods of designing three-dimensional lattice structures for implants |
US11628517B2 (en) | 2017-06-15 | 2023-04-18 | Howmedica Osteonics Corp. | Porous structures produced by additive layer manufacturing |
US11071630B2 (en) | 2017-11-09 | 2021-07-27 | DePuy Synthes Products, Inc. | Orthopaedic prosthesis for an interphalangeal joint and associated method |
-
2004
- 2004-12-30 US US11/027,421 patent/US20060147332A1/en not_active Abandoned
-
2005
- 2005-12-12 CA CA2860188A patent/CA2860188C/en active Active
- 2005-12-12 CA CA2529884A patent/CA2529884C/en active Active
- 2005-12-22 EP EP05028133.6A patent/EP1683593B1/en active Active
- 2005-12-29 AU AU2005247021A patent/AU2005247021B2/en active Active
-
2010
- 2010-07-29 US US12/846,327 patent/US9456901B2/en active Active
-
2016
- 2016-09-27 US US15/277,744 patent/US11660195B2/en active Active
Patent Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US14403A (en) * | 1856-03-11 | Improved spirit blow-pipe | ||
US3816855A (en) * | 1971-06-01 | 1974-06-18 | Nat Res Dev | Knee joint prosthesis |
US3806961A (en) * | 1972-02-16 | 1974-04-30 | Sulzer Ag | Phosthetic patella implant |
US4085466A (en) * | 1974-11-18 | 1978-04-25 | National Research Development Corporation | Prosthetic joint device |
US4202055A (en) * | 1976-05-12 | 1980-05-13 | Battelle-Institut E.V. | Anchorage for highly stressed endoprostheses |
US4164794A (en) * | 1977-04-14 | 1979-08-21 | Union Carbide Corporation | Prosthetic devices having coatings of selected porous bioengineering thermoplastics |
US4218494A (en) * | 1978-07-04 | 1980-08-19 | Centro Richerche Fiat S.P.A. | Process for coating a metallic surface with a wear-resistant material |
US4385404A (en) * | 1980-02-21 | 1983-05-31 | J. & P. Coats, Limited | Device and method for use in the treatment of damaged articular surfaces of human joints |
US4344193A (en) * | 1980-11-28 | 1982-08-17 | Kenny Charles H | Meniscus prosthesis |
US4644942A (en) * | 1981-07-27 | 1987-02-24 | Battelle Development Corporation | Production of porous coating on a prosthesis |
US4502161B1 (en) * | 1981-09-21 | 1989-07-25 | ||
US4502161A (en) * | 1981-09-21 | 1985-03-05 | Wall W H | Prosthetic meniscus for the repair of joints |
US4673408A (en) * | 1983-08-24 | 1987-06-16 | Arthroplasty Research & Development (Pty) Ltd. | Knee prosthesis |
US5034186A (en) * | 1985-11-20 | 1991-07-23 | Permelec Electrode Ltd. | Process for providing titanium composite having a porous surface |
US4636219A (en) * | 1985-12-05 | 1987-01-13 | Techmedica, Inc. | Prosthesis device fabrication |
US4719908A (en) * | 1986-08-15 | 1988-01-19 | Osteonics Corp. | Method and apparatus for implanting a prosthetic device |
US5616294A (en) * | 1986-10-17 | 1997-04-01 | Board Of Regents, The University Of Texas System | Method for producing parts by infiltration of porous intermediate parts |
US4944817A (en) * | 1986-10-17 | 1990-07-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5017753A (en) * | 1986-10-17 | 1991-05-21 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US5287435A (en) * | 1987-06-02 | 1994-02-15 | Cubital Ltd. | Three dimensional modeling |
US5386500A (en) * | 1987-06-02 | 1995-01-31 | Cubital Ltd. | Three dimensional modeling apparatus |
US5735903A (en) * | 1987-07-20 | 1998-04-07 | Li; Shu-Tung | Meniscal augmentation device |
US5031120A (en) * | 1987-12-23 | 1991-07-09 | Itzchak Pomerantz | Three dimensional modelling apparatus |
US4990163A (en) * | 1989-02-06 | 1991-02-05 | Trustees Of The University Of Pennsylvania | Method of depositing calcium phosphate cermamics for bone tissue calcification enhancement |
US5192328A (en) * | 1989-09-29 | 1993-03-09 | Winters Thomas F | Knee joint replacement apparatus |
US5004476A (en) * | 1989-10-31 | 1991-04-02 | Tulane University | Porous coated total hip replacement system |
US5176510A (en) * | 1990-02-16 | 1993-01-05 | Sterisol Ab | Device for dispensing fluid that includes a valve which communicates with a pump |
US5219362A (en) * | 1991-02-07 | 1993-06-15 | Finsbury (Instruments) Limited | Knee prosthesis |
US5314478A (en) * | 1991-03-29 | 1994-05-24 | Kyocera Corporation | Artificial bone connection prosthesis |
US5282870A (en) * | 1992-01-14 | 1994-02-01 | Sulzer Medizinaltechnik Ag | Artificial knee joint |
US5609646A (en) * | 1992-01-23 | 1997-03-11 | Howmedica International | Acetabular cup for a total hip prosthesis |
US5496372A (en) * | 1992-04-17 | 1996-03-05 | Kyocera Corporation | Hard tissue prosthesis including porous thin metal sheets |
US5728162A (en) * | 1993-01-28 | 1998-03-17 | Board Of Regents Of University Of Colorado | Asymmetric condylar and trochlear femoral knee component |
US5398193A (en) * | 1993-08-20 | 1995-03-14 | Deangelis; Alfredo O. | Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor |
US5398193B1 (en) * | 1993-08-20 | 1997-09-16 | Alfredo O Deangelis | Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor |
US5490962A (en) * | 1993-10-18 | 1996-02-13 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
US6248131B1 (en) * | 1994-05-06 | 2001-06-19 | Advanced Bio Surfaces, Inc. | Articulating joint repair |
US5879387A (en) * | 1994-08-25 | 1999-03-09 | Howmedica International Inc. | Prosthetic bearing element and method of manufacture |
US5514183A (en) * | 1994-12-20 | 1996-05-07 | Epstein; Norman | Reduced friction prosthetic knee joint utilizing replaceable roller bearings |
US5782908A (en) * | 1995-08-22 | 1998-07-21 | Medtronic, Inc. | Biocompatible medical article and method |
US5776201A (en) * | 1995-10-02 | 1998-07-07 | Johnson & Johnson Professional, Inc. | Modular femoral trial system |
US5640667A (en) * | 1995-11-27 | 1997-06-17 | Board Of Regents, The University Of Texas System | Laser-directed fabrication of full-density metal articles using hot isostatic processing |
US6087553A (en) * | 1996-02-26 | 2000-07-11 | Implex Corporation | Implantable metallic open-celled lattice/polyethylene composite material and devices |
US6046426A (en) * | 1996-07-08 | 2000-04-04 | Sandia Corporation | Method and system for producing complex-shape objects |
US6599301B2 (en) * | 1996-08-30 | 2003-07-29 | Verrgen Transplantation Service International (Vtsi) | Method, instruments, and kit for autologous transplantation |
US6530951B1 (en) * | 1996-10-24 | 2003-03-11 | Cook Incorporated | Silver implantable medical device |
US6215093B1 (en) * | 1996-12-02 | 2001-04-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Selective laser sintering at melting temperature |
US5928285A (en) * | 1997-05-30 | 1999-07-27 | Bristol-Myers Squibb Co. | Orthopaedic implant having an articulating surface with a conforming and translational surface |
US6355086B2 (en) * | 1997-08-12 | 2002-03-12 | Rolls-Royce Corporation | Method and apparatus for making components by direct laser processing |
US6190407B1 (en) * | 1997-11-20 | 2001-02-20 | St. Jude Medical, Inc. | Medical article with adhered antimicrobial metal |
US20020016635A1 (en) * | 1998-05-14 | 2002-02-07 | Hayes Medical, Inc. | Implant with composite coating |
US6716957B2 (en) * | 1999-03-05 | 2004-04-06 | Stryker Technologies Corporation | Bioabsorbable materials and medical devices made therefrom |
US6395327B1 (en) * | 1999-03-12 | 2002-05-28 | Zimmer, Inc. | Enhanced fatigue strength orthopaedic implant with porous coating and method of making same |
US6206927B1 (en) * | 1999-04-02 | 2001-03-27 | Barry M. Fell | Surgically implantable knee prothesis |
US20030060888A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Proportioned surgically implantable knee prosthesis |
US6911044B2 (en) * | 1999-05-10 | 2005-06-28 | Barry M. Fell | Surgically implantable knee prosthesis having medially shifted tibial surface |
US20050033424A1 (en) * | 1999-05-10 | 2005-02-10 | Fell Barry M. | Surgically implantable knee prosthesis |
US6893463B2 (en) * | 1999-05-10 | 2005-05-17 | Barry M. Fell | Surgically implantable knee prosthesis having two-piece keyed components |
US6855165B2 (en) * | 1999-05-10 | 2005-02-15 | Barry M. Fell | Surgically implantable knee prosthesis having enlarged femoral surface |
US6866684B2 (en) * | 1999-05-10 | 2005-03-15 | Barry M. Fell | Surgically implantable knee prosthesis having different tibial and femoral surface profiles |
US20030060882A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having medially shifted tibial surface |
US20030060884A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having keels |
US20030055500A1 (en) * | 1999-05-10 | 2003-03-20 | Fell Barry M. | Surgically implantable knee prosthesis having two-piece keyed components |
US20030055501A1 (en) * | 1999-05-10 | 2003-03-20 | Fell Barry M. | Surgically implantable knee prosthesis having different tibial and femoral surface profiles |
US20030060885A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having enlarged femoral surface |
US20030060883A1 (en) * | 1999-05-10 | 2003-03-27 | Fell Barry M. | Surgically implantable knee prosthesis having attachment apertures |
US6251143B1 (en) * | 1999-06-04 | 2001-06-26 | Depuy Orthopaedics, Inc. | Cartilage repair unit |
US6520996B1 (en) * | 1999-06-04 | 2003-02-18 | Depuy Acromed, Incorporated | Orthopedic implant |
US6206924B1 (en) * | 1999-10-20 | 2001-03-27 | Interpore Cross Internat | Three-dimensional geometric bio-compatible porous engineered structure for use as a bone mass replacement or fusion augmentation device |
US6371958B1 (en) * | 2000-03-02 | 2002-04-16 | Ethicon, Inc. | Scaffold fixation device for use in articular cartilage repair |
US6712856B1 (en) * | 2000-03-17 | 2004-03-30 | Kinamed, Inc. | Custom replacement device for resurfacing a femur and method of making the same |
US20050085918A1 (en) * | 2000-04-07 | 2005-04-21 | Tecres S.P.A. | Disposable articulated spacing device for surgical treatment of joints of the human body |
US20020015654A1 (en) * | 2000-06-01 | 2002-02-07 | Suman Das | Direct selective laser sintering of metals |
US20020010512A1 (en) * | 2000-07-19 | 2002-01-24 | Tsunenori Takei | Artificial knee joint |
US6406497B2 (en) * | 2000-07-19 | 2002-06-18 | Tsunenori Takei | Artificial knee joint |
US6558421B1 (en) * | 2000-09-19 | 2003-05-06 | Barry M. Fell | Surgically implantable knee prosthesis |
US20040044414A1 (en) * | 2000-11-21 | 2004-03-04 | Andrej Nowakowski | Knee joint endoprosthesis system |
EP1247537A1 (en) * | 2001-04-04 | 2002-10-09 | Isotis B.V. | Coating for medical devices |
US6699252B2 (en) * | 2001-04-17 | 2004-03-02 | Regeneration Technologies, Inc. | Methods and instruments for improved meniscus transplantation |
US20030069718A1 (en) * | 2001-06-22 | 2003-04-10 | Hollister Scott J. | Design methodology for tissue engineering scaffolds and biomaterial implants |
US6863689B2 (en) * | 2001-07-16 | 2005-03-08 | Spinecore, Inc. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US20030033018A1 (en) * | 2001-08-07 | 2003-02-13 | Merchant Alan C. | Patello-femoral joint arthroplasty |
US6850125B2 (en) * | 2001-08-15 | 2005-02-01 | Gallitzin Allegheny Llc | Systems and methods for self-calibration |
US20030045941A1 (en) * | 2001-08-27 | 2003-03-06 | Lewallen David G. | Coated prosthetic implant |
US6712822B2 (en) * | 2001-10-01 | 2004-03-30 | Scandius Biomedical, Inc. | Apparatus and method for the repair of articular cartilage defects |
US6686437B2 (en) * | 2001-10-23 | 2004-02-03 | M.M.A. Tech Ltd. | Medical implants made of wear-resistant, high-performance polyimides, process of making same and medical use of same |
US6709462B2 (en) * | 2002-01-11 | 2004-03-23 | Mayo Foundation For Medical Education And Research | Acetabular shell with screw access channels |
US6846329B2 (en) * | 2002-02-26 | 2005-01-25 | Mcminn Derek James Wallace | Knee prosthesis |
US20040006393A1 (en) * | 2002-07-03 | 2004-01-08 | Brian Burkinshaw | Implantable prosthetic knee for lateral compartment |
US20040059356A1 (en) * | 2002-07-17 | 2004-03-25 | Peter Gingras | Soft tissue implants and methods for making same |
US6921264B2 (en) * | 2002-08-23 | 2005-07-26 | Woodwelding Ag | Implant to be implanted in bone tissue or in bone tissue supplemented with bone substitute material |
US20040054416A1 (en) * | 2002-09-12 | 2004-03-18 | Joe Wyss | Posterior stabilized knee with varus-valgus constraint |
US20040098132A1 (en) * | 2002-11-19 | 2004-05-20 | Thomas Andriacchi | Femoral prosthesis |
US20040143339A1 (en) * | 2003-01-21 | 2004-07-22 | Axelson Stuart L. | Emulating natural knee kinematics in a knee prosthesis |
US6916341B2 (en) * | 2003-02-20 | 2005-07-12 | Lindsey R. Rolston | Device and method for bicompartmental arthroplasty |
US20050043816A1 (en) * | 2003-05-15 | 2005-02-24 | Arindam Datta | Reticulated elastomeric matrices, their manufacture and use in implantable devices |
US20050100578A1 (en) * | 2003-11-06 | 2005-05-12 | Schmid Steven R. | Bone and tissue scaffolding and method for producing same |
US20050154471A1 (en) * | 2004-01-12 | 2005-07-14 | Luke Aram | Systems and methods for compartmental replacement in a knee |
US20070142914A1 (en) * | 2005-12-06 | 2007-06-21 | Eric Jones | Laser-produced porous surface |
US20080004709A1 (en) * | 2005-12-30 | 2008-01-03 | Howmedica Osteonics Corp. | Laser-produced implants |
US20070156249A1 (en) * | 2006-01-05 | 2007-07-05 | Howmedica Osteonics Corp. | High velocity spray technique for medical implant components |
US20080050412A1 (en) * | 2006-08-15 | 2008-02-28 | Howmedica Osteonics Corp. | Antimicrobial implant |
Non-Patent Citations (1)
Title |
---|
Chua et al., Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Parts 1 and 2, Int J Adv Manuf Technol (2003) 21:291-312 * |
Cited By (529)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10525688B2 (en) | 2002-11-08 | 2020-01-07 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US8992703B2 (en) | 2002-11-08 | 2015-03-31 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US11186077B2 (en) | 2002-11-08 | 2021-11-30 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US11155073B2 (en) | 2002-11-08 | 2021-10-26 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US11510783B2 (en) | 2002-11-08 | 2022-11-29 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US8268100B2 (en) | 2002-11-08 | 2012-09-18 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US8268099B2 (en) | 2002-11-08 | 2012-09-18 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US11660195B2 (en) | 2004-12-30 | 2023-05-30 | Howmedica Osteonics Corp. | Laser-produced porous structure |
US9456901B2 (en) | 2004-12-30 | 2016-10-04 | Howmedica Osteonics Corp. | Laser-produced porous structure |
US20090036908A1 (en) * | 2005-03-30 | 2009-02-05 | Ron Zokol | Biologic Barrier for Implants That Pass Through Mucosal or Cutaneous Tissue |
US11478285B2 (en) | 2005-04-14 | 2022-10-25 | Stryker European Operations Holdings Llc | Device for osteosyntheses or arthrodesis of two-bone parts, in particular of the hand and/or foot |
US20080249607A1 (en) * | 2005-09-20 | 2008-10-09 | Thomas Jay Webster | Biocompatable Nanophase Materials |
US8556981B2 (en) | 2005-12-06 | 2013-10-15 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US10716673B2 (en) | 2005-12-06 | 2020-07-21 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US12011355B2 (en) * | 2005-12-06 | 2024-06-18 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US10398559B2 (en) | 2005-12-06 | 2019-09-03 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US11918474B2 (en) * | 2005-12-06 | 2024-03-05 | The University Of Liverpool | Laser-produced porous surface |
US8728387B2 (en) | 2005-12-06 | 2014-05-20 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US20200306048A1 (en) * | 2005-12-06 | 2020-10-01 | Howmedica Osteonics Corp. | Laser-Produced Porous Surface |
US20070162022A1 (en) * | 2005-12-23 | 2007-07-12 | Howmedica Osteonics Corp. | Porous tendon anchor |
US7648524B2 (en) | 2005-12-23 | 2010-01-19 | Howmedica Osteonics Corp. | Porous tendon anchor |
US9480580B2 (en) | 2006-02-27 | 2016-11-01 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US9345548B2 (en) | 2006-02-27 | 2016-05-24 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US10743937B2 (en) | 2006-02-27 | 2020-08-18 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US9522010B2 (en) | 2006-02-27 | 2016-12-20 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9918740B2 (en) | 2006-02-27 | 2018-03-20 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US9173661B2 (en) | 2006-02-27 | 2015-11-03 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US9113971B2 (en) | 2006-02-27 | 2015-08-25 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US9913734B2 (en) | 2006-02-27 | 2018-03-13 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US10507029B2 (en) | 2006-02-27 | 2019-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US9662216B2 (en) | 2006-02-27 | 2017-05-30 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
US11534313B2 (en) | 2006-02-27 | 2022-12-27 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US9700329B2 (en) | 2006-02-27 | 2017-07-11 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US10390845B2 (en) | 2006-02-27 | 2019-08-27 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US9480490B2 (en) | 2006-02-27 | 2016-11-01 | Biomet Manufacturing, Llc | Patient-specific guides |
US10603179B2 (en) | 2006-02-27 | 2020-03-31 | Biomet Manufacturing, Llc | Patient-specific augments |
US9289253B2 (en) | 2006-02-27 | 2016-03-22 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US10206695B2 (en) | 2006-02-27 | 2019-02-19 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US9662127B2 (en) | 2006-02-27 | 2017-05-30 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US10426492B2 (en) | 2006-02-27 | 2019-10-01 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US9339278B2 (en) | 2006-02-27 | 2016-05-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US9539013B2 (en) | 2006-02-27 | 2017-01-10 | Biomet Manufacturing, Llc | Patient-specific elbow guides and associated methods |
US10206697B2 (en) | 2006-06-09 | 2019-02-19 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US8979936B2 (en) | 2006-06-09 | 2015-03-17 | Biomet Manufacturing, Llc | Patient-modified implant |
US11576689B2 (en) | 2006-06-09 | 2023-02-14 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US10893879B2 (en) | 2006-06-09 | 2021-01-19 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US9993344B2 (en) | 2006-06-09 | 2018-06-12 | Biomet Manufacturing, Llc | Patient-modified implant |
US9861387B2 (en) | 2006-06-09 | 2018-01-09 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
EP1911468A2 (en) | 2006-08-15 | 2008-04-16 | Howmedica Osteonics Corp. | Antimicrobial implant |
US8147861B2 (en) | 2006-08-15 | 2012-04-03 | Howmedica Osteonics Corp. | Antimicrobial implant |
US9572590B2 (en) | 2006-10-03 | 2017-02-21 | Biomet Uk Limited | Surgical instrument |
US20100292743A1 (en) * | 2006-10-03 | 2010-11-18 | Biomet Uk Limited | Surgical instrument |
US11554019B2 (en) | 2007-04-17 | 2023-01-17 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US9907659B2 (en) | 2007-04-17 | 2018-03-06 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US8454705B2 (en) | 2007-05-29 | 2013-06-04 | Limacorporate Spa | Prosthetic element and relative method to make it |
EP2164428A2 (en) | 2007-05-29 | 2010-03-24 | LIMA - LTO SpA | Prosthetic element and relative method to make it |
EP3495003A1 (en) * | 2007-05-29 | 2019-06-12 | Limacorporate SPA | Prosthetic element and relative method to make it |
EP2164428B1 (en) | 2007-05-29 | 2017-08-09 | Limacorporate SPA | Prosthetic element and relative method to make it |
WO2008146141A3 (en) * | 2007-05-29 | 2009-05-22 | Lima Lto Spa | Prosthetic element and relative method to make it |
JP2010527725A (en) * | 2007-05-29 | 2010-08-19 | リマ−エレティオー・ソシエタ・ペル・アチオニ | Prosthetic element and manufacturing method therefor |
EP3263143A1 (en) * | 2007-05-29 | 2018-01-03 | Limacorporate SPA | Prosthetic element and relative method to make it |
US20100191345A1 (en) * | 2007-05-29 | 2010-07-29 | Lima-Lto Spa | Prosthetic element and relative method to make it |
EP3263143B1 (en) | 2007-05-29 | 2019-03-20 | Limacorporate SPA | Prosthetic element and relative method to make it |
US8142886B2 (en) | 2007-07-24 | 2012-03-27 | Howmedica Osteonics Corp. | Porous laser sintered articles |
US20090081272A1 (en) * | 2007-09-24 | 2009-03-26 | John Clarke | Medical devices having a metal particulate composition for controlled diffusion |
US9782933B2 (en) | 2008-01-03 | 2017-10-10 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US10159498B2 (en) | 2008-04-16 | 2018-12-25 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US9370426B2 (en) | 2008-05-28 | 2016-06-21 | Renishaw Plc | Relating to joints and/or implants |
US12059186B2 (en) | 2008-09-09 | 2024-08-13 | Stryker European Operations Holdings Llc | Resorptive intramedullary implant between two bones or two bone fragments |
US10383671B2 (en) | 2008-09-09 | 2019-08-20 | Stryker European Holdings I, Llc | Resorptive intramedullary implant between two bones or two bone fragments |
US9999516B2 (en) | 2008-12-18 | 2018-06-19 | 4Web, Inc. | Implant device having a non-planar surface |
US11510787B2 (en) | 2008-12-18 | 2022-11-29 | 4-Web Spine, Inc. | Implant having a shaft coated with a web structure |
US9545317B2 (en) | 2008-12-18 | 2017-01-17 | 4Web, Inc. | Implant interface system and device |
US11278421B2 (en) | 2008-12-18 | 2022-03-22 | 4Web, Inc. | Implant device having curved or arced struts |
EP2358309B1 (en) | 2008-12-18 | 2015-09-09 | 4-web Spine, Inc. | Truss implant |
US10271959B2 (en) | 2009-02-11 | 2019-04-30 | Howmedica Osteonics Corp. | Intervertebral implant with integrated fixation |
US11065067B2 (en) | 2009-02-24 | 2021-07-20 | Mako Surgical Corp. | System and method for preparing bone |
US11877812B2 (en) | 2009-02-24 | 2024-01-23 | Mako Surgical Corp. | System and method for preparing bone |
US10085804B2 (en) | 2009-02-24 | 2018-10-02 | Mako Surgical Corp. | Prosthetic device, method of planning bone removal for implantation of prosthetic device, and robotic system |
US8609127B2 (en) | 2009-04-03 | 2013-12-17 | Warsaw Orthopedic, Inc. | Medical implant with bioactive material and method of making the medical implant |
US20180253774A1 (en) * | 2009-05-19 | 2018-09-06 | Cobra Golf Incorporated | Method and system for making golf club components |
EP2253291A1 (en) | 2009-05-19 | 2010-11-24 | National University of Ireland, Galway | A bone implant with a surface anchoring structure |
US20120148983A1 (en) * | 2009-06-17 | 2012-06-14 | The University Of Liverpool | Dental implant |
US9254183B2 (en) * | 2009-06-17 | 2016-02-09 | The University Of Liverpool | Dental implant |
US10369662B2 (en) | 2009-07-15 | 2019-08-06 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US9399321B2 (en) | 2009-07-15 | 2016-07-26 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US9889012B2 (en) * | 2009-07-23 | 2018-02-13 | Didier NIMAL | Biomedical device, method for manufacturing the same and use thereof |
US20150004042A1 (en) * | 2009-07-23 | 2015-01-01 | Didier NIMAL | Biomedical device, method for manufacturing the same and use thereof |
US9839433B2 (en) | 2009-08-13 | 2017-12-12 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
US9393028B2 (en) | 2009-08-13 | 2016-07-19 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
US10052110B2 (en) | 2009-08-13 | 2018-08-21 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
US20120215310A1 (en) * | 2009-08-19 | 2012-08-23 | Smith & Nephew, Inc. | Porous implant structures |
CN102548509A (en) * | 2009-08-19 | 2012-07-04 | 史密夫和内修有限公司 | Porous implant structures |
US9668863B2 (en) | 2009-08-19 | 2017-06-06 | Smith & Nephew, Inc. | Porous implant structures |
KR101782919B1 (en) * | 2009-08-19 | 2017-09-28 | 스미스 앤드 네퓨, 인크. | Porous implant structures |
EP3498228A1 (en) | 2009-08-19 | 2019-06-19 | Smith & Nephew, Inc | Porous implant structures |
US10588749B2 (en) | 2009-08-19 | 2020-03-17 | Smith & Nephew, Inc. | Porous implant structures |
US11529235B2 (en) | 2009-08-19 | 2022-12-20 | Smith & Nephew, Inc. | Porous implant structures |
JP2013502285A (en) * | 2009-08-19 | 2013-01-24 | スミス アンド ネフュー インコーポレーテッド | Porous implant structure |
US10945847B2 (en) | 2009-08-19 | 2021-03-16 | Smith & Nephew, Inc. | Porous implant structures |
EP4353479A2 (en) | 2009-08-19 | 2024-04-17 | Smith & Nephew, Inc. | Porous implant structures |
CN106730036A (en) * | 2009-08-19 | 2017-05-31 | 史密夫和内修有限公司 | Porous implant structures |
US11793645B2 (en) | 2009-08-19 | 2023-10-24 | Smith & Nephew, Inc. | Porous implant structures |
US12102536B2 (en) | 2009-08-19 | 2024-10-01 | Smith & Nephew, Inc. | Porous implant structures |
US11324522B2 (en) | 2009-10-01 | 2022-05-10 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
RU2627454C2 (en) * | 2009-11-12 | 2017-08-08 | Смит Энд Нефью, Инк. | Porous structures with controllable randomization and methods for their production |
AU2010319306B2 (en) * | 2009-11-12 | 2015-08-27 | Smith & Nephew, Inc. | Controlled randomized porous structures and methods for making same |
WO2011060312A3 (en) * | 2009-11-12 | 2011-09-29 | Smith & Nephew, Inc. | Controlled randomized porous structures and methods for making same |
US10166316B2 (en) | 2009-11-12 | 2019-01-01 | Smith & Nephew, Inc. | Controlled randomized porous structures and methods for making same |
US9017407B2 (en) | 2010-01-13 | 2015-04-28 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US9421109B2 (en) | 2010-01-13 | 2016-08-23 | Jcbd, Llc | Systems and methods of fusing a sacroiliac joint |
US9333090B2 (en) | 2010-01-13 | 2016-05-10 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US10034676B2 (en) | 2010-01-13 | 2018-07-31 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US8979928B2 (en) | 2010-01-13 | 2015-03-17 | Jcbd, Llc | Sacroiliac joint fixation fusion system |
US8808377B2 (en) | 2010-01-13 | 2014-08-19 | Jcbd, Llc | Sacroiliac joint fixation system |
US9381045B2 (en) | 2010-01-13 | 2016-07-05 | Jcbd, Llc | Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint |
US9788961B2 (en) | 2010-01-13 | 2017-10-17 | Jcbd, Llc | Sacroiliac joint implant system |
US9456833B2 (en) | 2010-02-26 | 2016-10-04 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
US10893876B2 (en) | 2010-03-05 | 2021-01-19 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US20150173764A1 (en) * | 2010-05-19 | 2015-06-25 | University Of Utah Research Foundation | Tissue fixation |
US10098648B2 (en) | 2010-09-29 | 2018-10-16 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
US9271744B2 (en) | 2010-09-29 | 2016-03-01 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
US8926708B2 (en) | 2010-10-21 | 2015-01-06 | Howmedica Osteonics Corp. | Stem with pressfit porous element |
US8535386B2 (en) | 2010-10-21 | 2013-09-17 | Howmedica Osteonics Corp. | Stem with pressfit porous element |
US11234719B2 (en) | 2010-11-03 | 2022-02-01 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9073265B2 (en) | 2011-01-28 | 2015-07-07 | Arcam Ab | Method for production of a three-dimensional body |
US8858869B2 (en) * | 2011-02-04 | 2014-10-14 | Aerojet Rocketdyne Of De, Inc. | Method for treating a porous article |
US20120202087A1 (en) * | 2011-02-04 | 2012-08-09 | Bampton Clifford C | Method for treating a porous article |
US9743935B2 (en) | 2011-03-07 | 2017-08-29 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9241745B2 (en) | 2011-03-07 | 2016-01-26 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9445907B2 (en) | 2011-03-07 | 2016-09-20 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
US9717510B2 (en) | 2011-04-15 | 2017-08-01 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
US9743940B2 (en) | 2011-04-29 | 2017-08-29 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
US8956364B2 (en) | 2011-04-29 | 2015-02-17 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
US9474539B2 (en) | 2011-04-29 | 2016-10-25 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
US9757238B2 (en) | 2011-06-06 | 2017-09-12 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US9084618B2 (en) | 2011-06-13 | 2015-07-21 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US9687261B2 (en) | 2011-06-13 | 2017-06-27 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US9381085B2 (en) | 2011-06-23 | 2016-07-05 | Stryker Corporation | Prosthetic implant and method of implantation |
EP2901968A1 (en) | 2011-06-23 | 2015-08-05 | Stryker Corporation | Prosthetic implant |
WO2012178031A1 (en) | 2011-06-23 | 2012-12-27 | Stryker Corporation | Prosthetic implant and method of implantation |
US9937058B2 (en) | 2011-06-23 | 2018-04-10 | Stryker Corporation | Prosthetic implant and method of implantation |
US10492798B2 (en) | 2011-07-01 | 2019-12-03 | Biomet Manufacturing, Llc | Backup kit for a patient-specific arthroplasty kit assembly |
US11253269B2 (en) | 2011-07-01 | 2022-02-22 | Biomet Manufacturing, Llc | Backup kit for a patient-specific arthroplasty kit assembly |
US9668747B2 (en) | 2011-07-01 | 2017-06-06 | Biomet Manufacturing, Llc | Patient-specific-bone-cutting guidance instruments and methods |
US9173666B2 (en) | 2011-07-01 | 2015-11-03 | Biomet Manufacturing, Llc | Patient-specific-bone-cutting guidance instruments and methods |
US9427320B2 (en) | 2011-08-04 | 2016-08-30 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
US9295497B2 (en) | 2011-08-31 | 2016-03-29 | Biomet Manufacturing, Llc | Patient-specific sacroiliac and pedicle guides |
US9066734B2 (en) | 2011-08-31 | 2015-06-30 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9603613B2 (en) | 2011-08-31 | 2017-03-28 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9439659B2 (en) | 2011-08-31 | 2016-09-13 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9386993B2 (en) | 2011-09-29 | 2016-07-12 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US10456205B2 (en) | 2011-09-29 | 2019-10-29 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US11406398B2 (en) | 2011-09-29 | 2022-08-09 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
CN103930072A (en) * | 2011-10-18 | 2014-07-16 | Lfc斯博拉卡公司 | Intervertebral spinal implant |
US9451973B2 (en) | 2011-10-27 | 2016-09-27 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US12089898B2 (en) | 2011-10-27 | 2024-09-17 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US11419618B2 (en) | 2011-10-27 | 2022-08-23 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US11602360B2 (en) | 2011-10-27 | 2023-03-14 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9936962B2 (en) | 2011-10-27 | 2018-04-10 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US10842510B2 (en) | 2011-10-27 | 2020-11-24 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9301812B2 (en) | 2011-10-27 | 2016-04-05 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US10426493B2 (en) | 2011-10-27 | 2019-10-01 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US9351743B2 (en) | 2011-10-27 | 2016-05-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US9554910B2 (en) | 2011-10-27 | 2017-01-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guide and implants |
US10426549B2 (en) | 2011-10-27 | 2019-10-01 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US11298188B2 (en) | 2011-10-27 | 2022-04-12 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US9011444B2 (en) | 2011-12-09 | 2015-04-21 | Howmedica Osteonics Corp. | Surgical reaming instrument for shaping a bone cavity |
USRE48163E1 (en) | 2011-12-09 | 2020-08-18 | Howmedica Osteonics Corp. | Surgical reaming instrument for shaping a bone cavity |
USRE47149E1 (en) | 2011-12-09 | 2018-12-04 | Howmedica Osteonics Corp. | Surgical reaming instrument for shaping a bone cavity |
US10022227B2 (en) | 2011-12-16 | 2018-07-17 | Herbert JENNISSEN | Substrate with a structured surface and methods for the production thereof, and methods for determining the wetting properties thereof |
US12109117B2 (en) | 2011-12-23 | 2024-10-08 | The Royal Institution For The Advancement Of Learning/Mcgill University | Bone replacement implants with mechanically biocompatible cellular material |
US10799363B2 (en) | 2011-12-23 | 2020-10-13 | The Royal Institution For The Advancement Of Learning/Mcgill University | Bone replacement implants with mechanically biocompatible cellular material |
US9079248B2 (en) | 2011-12-28 | 2015-07-14 | Arcam Ab | Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles |
US11161177B2 (en) | 2011-12-28 | 2021-11-02 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
US11141790B2 (en) | 2011-12-28 | 2021-10-12 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
US10144063B2 (en) | 2011-12-28 | 2018-12-04 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
US20140301884A1 (en) * | 2011-12-28 | 2014-10-09 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
US10189086B2 (en) * | 2011-12-28 | 2019-01-29 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
CN104066536A (en) * | 2011-12-28 | 2014-09-24 | 阿卡姆股份公司 | Method and apparatus for manufacturing porous three-dimensional articles |
US11172940B2 (en) | 2011-12-30 | 2021-11-16 | Howmedica Osteonics Corp. | Systems and methods for preparing bone voids to receive a prosthesis |
US9149282B2 (en) | 2011-12-30 | 2015-10-06 | Howmedica Osteonics Corp. | Systems and methods for preparing bone voids to receive a prosthesis |
US11877757B2 (en) | 2011-12-30 | 2024-01-23 | Howmedica Osteonics Corp. | Systems and methods for preparing bone voids to receive a prosthesis |
US10213215B2 (en) | 2011-12-30 | 2019-02-26 | Howmedica Osteonics Corp. | Systems and methods for preparing bone voids to receive a prosthesis |
US10265083B2 (en) | 2011-12-30 | 2019-04-23 | Howmedica Osteonics Corp. | Systems and methods for preparing bone voids to receive a prosthesis |
US11065819B2 (en) * | 2012-01-24 | 2021-07-20 | Smith & Nephew, Inc. | Porous structure and methods of making same |
JP2017214660A (en) * | 2012-01-24 | 2017-12-07 | スミス アンド ネフュー インコーポレイテッド | Porous structure and methods of making the same |
US10434718B2 (en) | 2012-01-24 | 2019-10-08 | Smith & Nephew, Inc. | Porous structure and methods of making same |
US11752698B2 (en) | 2012-01-24 | 2023-09-12 | Smith & Nephew, Inc. | Porous structure and methods of making same |
US9827106B2 (en) | 2012-02-02 | 2017-11-28 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
US9237950B2 (en) | 2012-02-02 | 2016-01-19 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
US9364896B2 (en) | 2012-02-07 | 2016-06-14 | Medical Modeling Inc. | Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology |
EP4098288A1 (en) | 2012-02-20 | 2022-12-07 | Smith & Nephew, Inc. | Methods of making porous structures |
WO2013126407A1 (en) | 2012-02-20 | 2013-08-29 | Smith & Nephew, Inc. | Porous structures and methods of making same |
US10399147B2 (en) | 2012-02-20 | 2019-09-03 | Smith & Nephew, Inc. | Porous structures and methods of making same |
US12102538B2 (en) | 2012-04-06 | 2024-10-01 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US11759323B2 (en) | 2012-04-06 | 2023-09-19 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US9135374B2 (en) | 2012-04-06 | 2015-09-15 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US10614176B2 (en) | 2012-04-06 | 2020-04-07 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US9180010B2 (en) | 2012-04-06 | 2015-11-10 | Howmedica Osteonics Corp. | Surface modified unit cell lattice structures for optimized secure freeform fabrication |
US9126167B2 (en) | 2012-05-11 | 2015-09-08 | Arcam Ab | Powder distribution in additive manufacturing |
US9554909B2 (en) | 2012-07-20 | 2017-01-31 | Jcbd, Llc | Orthopedic anchoring system and methods |
US10660642B2 (en) | 2012-07-30 | 2020-05-26 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US11944531B2 (en) | 2012-07-30 | 2024-04-02 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11980360B2 (en) | 2012-07-30 | 2024-05-14 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10835241B2 (en) | 2012-07-30 | 2020-11-17 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US9629632B2 (en) | 2012-07-30 | 2017-04-25 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US11253252B2 (en) | 2012-07-30 | 2022-02-22 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US9655625B2 (en) | 2012-07-30 | 2017-05-23 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US11957334B2 (en) | 2012-07-30 | 2024-04-16 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11701218B2 (en) | 2012-07-30 | 2023-07-18 | Conextions, Inc. | Soft tissue to bone repair devices, systems, and methods |
US10660643B2 (en) | 2012-07-30 | 2020-05-26 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US11446024B2 (en) | 2012-07-30 | 2022-09-20 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10390935B2 (en) | 2012-07-30 | 2019-08-27 | Conextions, Inc. | Soft tissue to bone repair devices, systems, and methods |
US10219804B2 (en) | 2012-07-30 | 2019-03-05 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US20140058526A1 (en) * | 2012-08-22 | 2014-02-27 | Biomet Manufacturing Corporation | Directional porous coating |
US11672886B2 (en) | 2012-08-22 | 2023-06-13 | Biomet Manufacturing, Llc | Directional porous coating |
US9415137B2 (en) * | 2012-08-22 | 2016-08-16 | Biomet Manufacturing, Llc. | Directional porous coating |
US20160346088A1 (en) * | 2012-08-22 | 2016-12-01 | Biomet Manufacturing, Llc | Directional porous coating |
US10492913B2 (en) | 2012-08-22 | 2019-12-03 | Biomet Manufacturing, Llc | Directional porous coating |
US20180243099A1 (en) * | 2012-09-05 | 2018-08-30 | Christopher G. Sidebotham | Hip stem prosthesis with a porous collar to allow for bone ingrowth |
US11583406B2 (en) * | 2012-09-05 | 2023-02-21 | Biomedtrix, Llc | Hip stem prosthesis with a porous collar to allow for bone ingrowth |
US9572669B2 (en) | 2012-09-25 | 2017-02-21 | 4-Web, Inc. | Programmable implant having an angled exterior surface |
US10849756B2 (en) | 2012-09-25 | 2020-12-01 | 4Web Medical | Programmable implant |
US9549823B2 (en) | 2012-09-25 | 2017-01-24 | 4-Web, Inc. | Programmable implant having curved or arced struts |
US9757235B2 (en) | 2012-09-25 | 2017-09-12 | 4Web, Inc. | Spinal programmable implant |
US12115071B2 (en) | 2012-09-25 | 2024-10-15 | 4Web, Llc | Programmable intramedullary implants and methods of using programmable intramedullary implants to repair bone structures |
US9987137B2 (en) | 2012-09-25 | 2018-06-05 | 4Web, Inc. | Programmable implant having curved or arced struts |
US9561542B2 (en) | 2012-11-06 | 2017-02-07 | Arcam Ab | Powder pre-processing for additive manufacturing |
US20140140647A1 (en) * | 2012-11-20 | 2014-05-22 | Federal-Mogul Corporation | High strength low friction engineered material for bearings and other applications |
US9366290B2 (en) * | 2012-11-20 | 2016-06-14 | Federal-Mogul Corporation | High strength low friction engineered material for bearings and other applications |
US9204977B2 (en) | 2012-12-11 | 2015-12-08 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9597201B2 (en) | 2012-12-11 | 2017-03-21 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9060788B2 (en) | 2012-12-11 | 2015-06-23 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9505172B2 (en) | 2012-12-17 | 2016-11-29 | Arcam Ab | Method and apparatus for additive manufacturing |
US10406599B2 (en) | 2012-12-17 | 2019-09-10 | Arcam Ab | Additive manufacturing method and apparatus |
US9718129B2 (en) | 2012-12-17 | 2017-08-01 | Arcam Ab | Additive manufacturing method and apparatus |
US11564801B2 (en) | 2013-03-07 | 2023-01-31 | Howmedica Osteonics Corp. | Partially porous tibial component |
US9949837B2 (en) | 2013-03-07 | 2018-04-24 | Howmedica Osteonics Corp. | Partially porous bone implant keel |
USD967960S1 (en) | 2013-03-07 | 2022-10-25 | Howmedica Osteonics Corp. | Porous tibial implant |
EP2774580A1 (en) | 2013-03-07 | 2014-09-10 | Howmedica Osteonics Corp. | Partially porous bone implant keel |
US20180200066A1 (en) * | 2013-03-07 | 2018-07-19 | Howmedica Osteonics Corp. | Partially porous bone implant keel |
US9937059B2 (en) | 2013-03-08 | 2018-04-10 | Stryker Corporation | Bone pads |
US11318027B2 (en) | 2013-03-08 | 2022-05-03 | Stryker Corporation | Bone pads |
US10537441B2 (en) | 2013-03-08 | 2020-01-21 | Stryker Corporation | Bone pads |
US9579216B2 (en) | 2013-03-08 | 2017-02-28 | Stryker Corporation | Bone pads |
US9427334B2 (en) | 2013-03-08 | 2016-08-30 | Stryker Corporation | Bone pads |
US9839438B2 (en) | 2013-03-11 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US11617591B2 (en) | 2013-03-11 | 2023-04-04 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US10441298B2 (en) | 2013-03-11 | 2019-10-15 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US9579107B2 (en) | 2013-03-12 | 2017-02-28 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US9700325B2 (en) | 2013-03-12 | 2017-07-11 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US10376270B2 (en) | 2013-03-13 | 2019-08-13 | Biomet Manufacturing, Llc | Universal acetabular guide and associated hardware |
US9498233B2 (en) | 2013-03-13 | 2016-11-22 | Biomet Manufacturing, Llc. | Universal acetabular guide and associated hardware |
US9526513B2 (en) | 2013-03-13 | 2016-12-27 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US11191549B2 (en) | 2013-03-13 | 2021-12-07 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US9826981B2 (en) | 2013-03-13 | 2017-11-28 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US10335171B2 (en) | 2013-03-13 | 2019-07-02 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US11172941B2 (en) | 2013-03-13 | 2021-11-16 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US11857205B2 (en) | 2013-03-13 | 2024-01-02 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US10524806B2 (en) | 2013-03-13 | 2020-01-07 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US9668758B2 (en) | 2013-03-13 | 2017-06-06 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US10426491B2 (en) | 2013-03-13 | 2019-10-01 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US11357518B2 (en) | 2013-03-13 | 2022-06-14 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US9517145B2 (en) | 2013-03-15 | 2016-12-13 | Biomet Manufacturing, Llc | Guide alignment system and method |
WO2014143740A1 (en) | 2013-03-15 | 2014-09-18 | Mako Surgical Corp. | Unicondylar tibial knee implant |
US9907658B2 (en) | 2013-03-15 | 2018-03-06 | Mako Surgical Corp. | Unicondylar tibial knee implant |
US9510872B2 (en) | 2013-03-15 | 2016-12-06 | Jcbd, Llc | Spinal stabilization system |
US9744044B2 (en) | 2013-03-15 | 2017-08-29 | Mako Surgical Corp. | Unicondylar tibial knee implant |
US9636226B2 (en) | 2013-03-15 | 2017-05-02 | 4Web, Inc. | Traumatic bone fracture repair systems and methods |
US9445909B2 (en) | 2013-03-15 | 2016-09-20 | Mako Surgical Corp. | Unicondylar tibial knee implant |
US10245087B2 (en) | 2013-03-15 | 2019-04-02 | Jcbd, Llc | Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance |
US9550207B2 (en) | 2013-04-18 | 2017-01-24 | Arcam Ab | Method and apparatus for additive manufacturing |
US9713844B2 (en) | 2013-04-18 | 2017-07-25 | Arcam Ab | Method and apparatus for additive manufacturing |
US9950366B2 (en) | 2013-04-18 | 2018-04-24 | Arcam Ab | Apparatus for additive manufacturing |
US9676031B2 (en) | 2013-04-23 | 2017-06-13 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US10328181B2 (en) * | 2013-04-30 | 2019-06-25 | Ceramtec Gmbh | Ceramic bone substitute material and method for the production thereof |
US9415443B2 (en) | 2013-05-23 | 2016-08-16 | Arcam Ab | Method and apparatus for additive manufacturing |
CN103240414A (en) * | 2013-05-27 | 2013-08-14 | 哈尔滨德昱健行科技有限公司 | Parameter selecting method for manufacturing metal parts by selective laser melting technology and substrate samples |
US10890893B2 (en) | 2013-06-26 | 2021-01-12 | Renishaw Plc | Method and apparatus for generating geometric data for use in additive manufacturing |
CN105492981A (en) * | 2013-06-26 | 2016-04-13 | 瑞尼斯豪公司 | Method and apparatus for generating geometric data for use in additive manufacturing |
US10191476B2 (en) | 2013-06-26 | 2019-01-29 | Renishaw Plc | Method and apparatus for generating geometric data for use in additive manufacturing |
US9468973B2 (en) | 2013-06-28 | 2016-10-18 | Arcam Ab | Method and apparatus for additive manufacturing |
US9717539B2 (en) | 2013-07-30 | 2017-08-01 | Jcbd, Llc | Implants, systems, and methods for fusing a sacroiliac joint |
US9700356B2 (en) | 2013-07-30 | 2017-07-11 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US9826986B2 (en) | 2013-07-30 | 2017-11-28 | Jcbd, Llc | Systems for and methods of preparing a sacroiliac joint for fusion |
US10016811B2 (en) * | 2013-08-09 | 2018-07-10 | David J. Neal | Orthopedic implants and methods of manufacturing orthopedic implants |
US20150045903A1 (en) * | 2013-08-09 | 2015-02-12 | David J. Neal | Orthopedic implants and methods of manufacturing orthopedic implants |
US10207327B2 (en) * | 2013-08-20 | 2019-02-19 | The Trustees Of Princeton University | Density enhancement methods and compositions |
US20160200045A1 (en) * | 2013-08-20 | 2016-07-14 | Adam Bayne HOPKINS | Density enhancement methods and compositions |
US11396044B2 (en) | 2013-08-20 | 2022-07-26 | The Trustees Of Princeton University | Density enhancement methods and compositions |
US10864577B2 (en) | 2013-08-20 | 2020-12-15 | Uniformity Labs Inc. | Density enhancement methods and compositions |
US9505057B2 (en) | 2013-09-06 | 2016-11-29 | Arcam Ab | Powder distribution in additive manufacturing of three-dimensional articles |
US9676033B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
US10814393B2 (en) | 2013-09-20 | 2020-10-27 | Arcam Ab | Apparatus for additive manufacturing |
US10814392B2 (en) | 2013-09-20 | 2020-10-27 | Arcam Ab | Apparatus for additive manufacturing |
US9676032B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
US11179165B2 (en) | 2013-10-21 | 2021-11-23 | Biomet Manufacturing, Llc | Ligament guide registration |
US9919361B2 (en) | 2013-12-16 | 2018-03-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10099289B2 (en) | 2013-12-16 | 2018-10-16 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US9802253B2 (en) | 2013-12-16 | 2017-10-31 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10974448B2 (en) | 2013-12-18 | 2021-04-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10130993B2 (en) | 2013-12-18 | 2018-11-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11517964B2 (en) | 2013-12-19 | 2022-12-06 | Arcam Ab | Method for additive manufacturing |
US10434572B2 (en) | 2013-12-19 | 2019-10-08 | Arcam Ab | Method for additive manufacturing |
US9789563B2 (en) | 2013-12-20 | 2017-10-17 | Arcam Ab | Method for additive manufacturing |
US9789541B2 (en) | 2014-03-07 | 2017-10-17 | Arcam Ab | Method for additive manufacturing of three-dimensional articles |
US10071424B2 (en) | 2014-03-07 | 2018-09-11 | Arcam Ab | Computer program products configured for additive manufacturing of three-dimensional articles |
US11583384B2 (en) | 2014-03-12 | 2023-02-21 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11084098B2 (en) | 2014-04-02 | 2021-08-10 | Arcam Ab | Apparatus for fusing a workpiece |
US10071423B2 (en) | 2014-04-02 | 2018-09-11 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US9950367B2 (en) | 2014-04-02 | 2018-04-24 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US10058921B2 (en) | 2014-04-02 | 2018-08-28 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US10821517B2 (en) | 2014-04-02 | 2020-11-03 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US10282488B2 (en) | 2014-04-25 | 2019-05-07 | Biomet Manufacturing, Llc | HTO guide with optional guided ACL/PCL tunnels |
US20170095337A1 (en) * | 2014-05-02 | 2017-04-06 | The Royal Institution For The Advancement Of Learning/Mcgill University | Structural porous biomaterial and implant formed of same |
US12036125B2 (en) | 2014-05-02 | 2024-07-16 | The Royal Institution For The Advancement Of Learning/Mcgill University | Structural porous biomaterial and implant formed of same |
US10842634B2 (en) * | 2014-05-02 | 2020-11-24 | The Royal Institution For The Advancement Of Learning/Mcgill University | Structural porous biomaterial and implant formed of same |
EP3137125A4 (en) * | 2014-05-02 | 2018-01-03 | The Royal Institution for the Advancement of Learning / McGill University | Structural porous biomaterial and implant formed of same |
EP3685866A1 (en) * | 2014-05-02 | 2020-07-29 | The Royal Institution for the Advancement of Learning / McGill University | Structural porous biomaterial and implant formed of same |
WO2015164982A1 (en) | 2014-05-02 | 2015-11-05 | The Royal Institution For The Advancement Of Learning/Mcgill University | Structural porous biomaterial and implant formed of same |
US9408616B2 (en) | 2014-05-12 | 2016-08-09 | Biomet Manufacturing, Llc | Humeral cut guide |
US9801546B2 (en) | 2014-05-27 | 2017-10-31 | Jcbd, Llc | Systems for and methods of diagnosing and treating a sacroiliac joint disorder |
US9839436B2 (en) | 2014-06-03 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US9561040B2 (en) | 2014-06-03 | 2017-02-07 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US20170224491A1 (en) * | 2014-08-13 | 2017-08-10 | Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences | Medical Implant Porous Scaffold Structure Having Low Modulus |
US9341467B2 (en) | 2014-08-20 | 2016-05-17 | Arcam Ab | Energy beam position verification |
US9310188B2 (en) | 2014-08-20 | 2016-04-12 | Arcam Ab | Energy beam deflection speed verification |
US9897513B2 (en) | 2014-08-20 | 2018-02-20 | Arcam Ab | Energy beam size verification |
US9915583B2 (en) | 2014-08-20 | 2018-03-13 | Arcam Ab | Energy beam position verification |
US9347770B2 (en) | 2014-08-20 | 2016-05-24 | Arcam Ab | Energy beam size verification |
US9664504B2 (en) | 2014-08-20 | 2017-05-30 | Arcam Ab | Energy beam size verification |
US9664505B2 (en) | 2014-08-20 | 2017-05-30 | Arcam Ab | Energy beam position verification |
US10335162B2 (en) | 2014-09-29 | 2019-07-02 | Biomet Sports Medicine, Llc | Tibial tubercle osteotomy |
US9826994B2 (en) | 2014-09-29 | 2017-11-28 | Biomet Manufacturing, Llc | Adjustable glenoid pin insertion guide |
US9833245B2 (en) | 2014-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Tibial tubercule osteotomy |
US11026699B2 (en) | 2014-09-29 | 2021-06-08 | Biomet Manufacturing, Llc | Tibial tubercule osteotomy |
US11457954B2 (en) | 2014-11-24 | 2022-10-04 | Stryker European Operations Holdings Llc | Strut plate and cabling system |
EP3023067A1 (en) | 2014-11-24 | 2016-05-25 | Stryker European Holdings I, LLC | Strut plate and cabling system |
US12036730B2 (en) | 2014-12-15 | 2024-07-16 | Arcam Ab | Method for additive manufacturing |
US10786865B2 (en) | 2014-12-15 | 2020-09-29 | Arcam Ab | Method for additive manufacturing |
US11173034B2 (en) | 2015-01-12 | 2021-11-16 | Howmedica Osteonics Corp. | Bone void forming apparatus |
EP3636224A1 (en) | 2015-01-14 | 2020-04-15 | Stryker European Holdings I, LLC | Spinal implant with porous and solid surfaces |
US11266510B2 (en) | 2015-01-14 | 2022-03-08 | Stryker European Operations Holdings Llc | Spinal implant with fluid delivery capabilities |
US10182923B2 (en) | 2015-01-14 | 2019-01-22 | Stryker European Holdings I, Llc | Spinal implant with porous and solid surfaces |
EP3045151A1 (en) | 2015-01-14 | 2016-07-20 | Stryker European Holdings I, LLC | Spinal implant with porous and solid surfaces |
EP3045150A1 (en) | 2015-01-14 | 2016-07-20 | Stryker European Holdings I, LLC | Spinal implant with fluid delivery capabilities |
US11000386B2 (en) | 2015-01-14 | 2021-05-11 | Stryker European Holdings I, Llc | Spinal implant with porous and solid surfaces |
EP3903739A1 (en) | 2015-01-14 | 2021-11-03 | Stryker European Operations Holdings LLC | Spinal implant with fluid delivery capabilities |
US10586683B2 (en) | 2015-01-21 | 2020-03-10 | Arcam Ab | Method and device for characterizing an electron beam |
US9543116B2 (en) | 2015-01-21 | 2017-01-10 | Arcam Ab | Method for verifying characteristics of an electron beam |
US9406483B1 (en) | 2015-01-21 | 2016-08-02 | Arcam Ab | Method and device for characterizing an electron beam using an X-ray detector with a patterned aperture resolver and patterned aperture modulator |
US9721755B2 (en) | 2015-01-21 | 2017-08-01 | Arcam Ab | Method and device for characterizing an electron beam |
US9820868B2 (en) | 2015-03-30 | 2017-11-21 | Biomet Manufacturing, Llc | Method and apparatus for a pin apparatus |
JP2018512984A (en) * | 2015-04-13 | 2018-05-24 | マルコ ランツェッタ | Prosthesis for the joint between the large rhomboid bone of the thumb and the metacarpal bone |
US11014161B2 (en) | 2015-04-21 | 2021-05-25 | Arcam Ab | Method for additive manufacturing |
US12036731B2 (en) | 2015-04-21 | 2024-07-16 | Arcam Ab | Method for additive manufacturing |
US10492921B2 (en) * | 2015-04-29 | 2019-12-03 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with arched bone contacting elements |
US10449051B2 (en) | 2015-04-29 | 2019-10-22 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with curved bone contacting elements |
US11819419B2 (en) | 2015-04-29 | 2023-11-21 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with curved bone contacting elements |
US11826261B2 (en) | 2015-04-29 | 2023-11-28 | Institute for Musculoskeletal Science and Education, Ltd. | Coiled implants and systems and methods of use thereof |
US20170042697A1 (en) * | 2015-04-29 | 2017-02-16 | Institute of Musculoskeletal Science & Education | Implant With Arched Bone Contacting Elements |
US12097123B2 (en) | 2015-04-29 | 2024-09-24 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with arched bone contacting elements |
US10433979B2 (en) | 2015-04-29 | 2019-10-08 | Institute Of Musculoskeletal Science And Education, Ltd. | Coiled implants and systems and methods of use thereof |
US10709570B2 (en) | 2015-04-29 | 2020-07-14 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with a diagonal insertion axis |
US10537666B2 (en) | 2015-05-18 | 2020-01-21 | Stryker European Holdings I, Llc | Partially resorbable implants and methods |
US11623027B2 (en) | 2015-05-18 | 2023-04-11 | Stryker European Operations Holdings Llc | Partially resorbable implants and methods |
US11759332B2 (en) | 2015-05-22 | 2023-09-19 | Stryker European Operations Limited | Joint or segmental bone implant for deformity correction |
US10517737B2 (en) | 2015-05-22 | 2019-12-31 | Stryker European Operations Limited | Joint or segmental bone implant for deformity correction |
US11395747B2 (en) | 2015-05-22 | 2022-07-26 | Stryker European Operations Limited | Joint or segmental bone implant for deformity correction |
US10568647B2 (en) | 2015-06-25 | 2020-02-25 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10226262B2 (en) | 2015-06-25 | 2019-03-12 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US11801064B2 (en) | 2015-06-25 | 2023-10-31 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10925622B2 (en) | 2015-06-25 | 2021-02-23 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US11166820B2 (en) * | 2015-07-09 | 2021-11-09 | Waldemar Link Gmbh & Co. Kg | Porous structure for bone implants |
US20180193152A1 (en) * | 2015-07-09 | 2018-07-12 | Waldemar Link Gmbh & Co. Kg | Porous structure for bone implants |
AU2016290334B2 (en) * | 2015-07-09 | 2021-02-25 | Waldemar Link Gmbh & Co. Kg | Porous structure for bone implants |
CN105081325A (en) * | 2015-08-28 | 2015-11-25 | 许昌学院 | Surface quality control device for three-dimensional (3D) part formed through metal drop printing and control method of surface quality control device |
US11806800B2 (en) | 2015-09-24 | 2023-11-07 | Arcam Ab | X-ray calibration standard object |
US10807187B2 (en) | 2015-09-24 | 2020-10-20 | Arcam Ab | X-ray calibration standard object |
US11571748B2 (en) | 2015-10-15 | 2023-02-07 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
US10583483B2 (en) | 2015-10-15 | 2020-03-10 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
US10525531B2 (en) | 2015-11-17 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11623282B2 (en) | 2015-11-18 | 2023-04-11 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10610930B2 (en) | 2015-11-18 | 2020-04-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10596660B2 (en) | 2015-12-15 | 2020-03-24 | Howmedica Osteonics Corp. | Porous structures produced by additive layer manufacturing |
US12097657B2 (en) | 2015-12-15 | 2024-09-24 | Howmedica Osteonics Corp. | Porous structures produced by additive layer manufacturing |
US11660203B2 (en) | 2015-12-16 | 2023-05-30 | Nuvasive, Inc. | Porous spinal fusion implant |
US10675158B2 (en) | 2015-12-16 | 2020-06-09 | Nuvasive, Inc. | Porous spinal fusion implant |
JP2019509393A (en) * | 2015-12-30 | 2019-04-04 | モット・コーポレーション | Porous equipment manufactured by laser additive manufacturing |
US11247274B2 (en) | 2016-03-11 | 2022-02-15 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
CN105769389A (en) * | 2016-03-24 | 2016-07-20 | 广州市健齿生物科技有限公司 | Closely arranged artificial porous bone structure |
CN105798305A (en) * | 2016-03-24 | 2016-07-27 | 广州市健齿生物科技有限公司 | Method for preparing artificial porous bone structure |
US11583407B2 (en) | 2016-04-07 | 2023-02-21 | Howmedica Osteonics Corp. | Expandable interbody implant |
EP3228282A1 (en) | 2016-04-07 | 2017-10-11 | Howmedica Osteonics Corp. | Expandable interbody implant |
US20170333990A1 (en) * | 2016-05-17 | 2017-11-23 | Rolls-Royce Plc | Additive layer manufacturing base plate |
US10940018B2 (en) | 2016-05-20 | 2021-03-09 | Howmedica Osteonics Corp. | Expandable interbody implant with lordosis correction |
US11806249B2 (en) | 2016-05-20 | 2023-11-07 | Howmedica Osteonics Corp. | Expandable interbody implant with lordosis correction |
EP3245982A1 (en) | 2016-05-20 | 2017-11-22 | Howmedica Osteonics Corp. | Expandable interbody implant with lordosis correction |
US10549348B2 (en) | 2016-05-24 | 2020-02-04 | Arcam Ab | Method for additive manufacturing |
US11325191B2 (en) | 2016-05-24 | 2022-05-10 | Arcam Ab | Method for additive manufacturing |
US10525547B2 (en) | 2016-06-01 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11992248B2 (en) | 2016-06-03 | 2024-05-28 | Stryker European Operations Holdings Llc | Intramedullary implant and method of use |
US11272966B2 (en) | 2016-06-03 | 2022-03-15 | Stryker European Operations Holdings Llc | Intramedullary implant and method of use |
US10470807B2 (en) | 2016-06-03 | 2019-11-12 | Stryker European Holdings I, Llc | Intramedullary implant and method of use |
US11931266B2 (en) | 2016-06-07 | 2024-03-19 | Nanohive Medical Llc | Implant with independent endplates |
US11589967B2 (en) | 2016-07-15 | 2023-02-28 | Cudeti Sagl | Implant |
EP3278769A1 (en) | 2016-08-02 | 2018-02-07 | Howmedica Osteonics Corporation | Patient-specific implant flanges with bone side porous ridges |
US10456262B2 (en) | 2016-08-02 | 2019-10-29 | Howmedica Osteonics Corp. | Patient-specific implant flanges with bone side porous ridges |
EP3287101A1 (en) | 2016-08-24 | 2018-02-28 | Howmedica Osteonics Corp. | Peek femoral component with segmented ti foam in-growth |
US10639160B2 (en) | 2016-08-24 | 2020-05-05 | Howmedica Osteonics Corp. | Peek femoral component with segmented TI foam in-growth |
US11642222B2 (en) * | 2016-08-24 | 2023-05-09 | Howmedica Osteonics Corp. | Peek femoral component with segmented Ti foam in-growth |
US11696822B2 (en) | 2016-09-28 | 2023-07-11 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US12042399B2 (en) | 2016-10-25 | 2024-07-23 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with protected fusion zones |
US11452611B2 (en) | 2016-10-25 | 2022-09-27 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with protected fusion zones |
US10792757B2 (en) | 2016-10-25 | 2020-10-06 | Arcam Ab | Method and apparatus for additive manufacturing |
US10478312B2 (en) | 2016-10-25 | 2019-11-19 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with protected fusion zones |
CN106344221A (en) * | 2016-10-26 | 2017-01-25 | 四川大学 | Bonelike porous biomechanical bionic designed spinal fusion device and preparation method and use thereof |
US10987752B2 (en) | 2016-12-21 | 2021-04-27 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11253368B2 (en) | 2017-02-14 | 2022-02-22 | Nanohive Medical Llc | Methods of designing high x-ray lucency lattice structures |
US11992408B2 (en) | 2017-02-14 | 2024-05-28 | Nanohive Medical Llc | Methods of designing high x-ray lucency lattice structures |
US11406502B2 (en) | 2017-03-02 | 2022-08-09 | Optimotion Implants LLC | Orthopedic implants and methods |
US12083027B2 (en) | 2017-03-02 | 2024-09-10 | Optimotion Implants LLC | Universal femoral trial system and methods |
US10856999B2 (en) | 2017-03-13 | 2020-12-08 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with supported helical members |
US10213317B2 (en) | 2017-03-13 | 2019-02-26 | Institute for Musculoskeletal Science and Education | Implant with supported helical members |
US11160668B2 (en) | 2017-03-13 | 2021-11-02 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with bone contacting elements having helical and undulating planar geometries |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
US11213405B2 (en) | 2017-03-13 | 2022-01-04 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with structural members arranged around a ring |
US10357377B2 (en) | 2017-03-13 | 2019-07-23 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with bone contacting elements having helical and undulating planar geometries |
US11938039B2 (en) | 2017-03-13 | 2024-03-26 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with structural members arranged around a ring |
US10667924B2 (en) | 2017-03-13 | 2020-06-02 | Institute for Musculoskeletal Science and Education, Ltd. | Corpectomy implant |
US10512549B2 (en) | 2017-03-13 | 2019-12-24 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with structural members arranged around a ring |
US10368997B2 (en) | 2017-04-01 | 2019-08-06 | HD LifeSciences LLC | Three-dimensional lattice structures for implants |
US10695184B2 (en) | 2017-04-01 | 2020-06-30 | HD LifeSciences LLC | Methods of designing three-dimensional lattice structures for implants |
US11648124B2 (en) | 2017-04-01 | 2023-05-16 | Nanohive Medical Llc | Methods of designing three-dimensional lattice structures for implants |
JP7195005B2 (en) | 2017-04-01 | 2022-12-23 | ナノハイブ メディカル エルエルシー | Fluid interface system for implants |
US10888429B2 (en) | 2017-04-01 | 2021-01-12 | HD LifeSciences LLC | Three-dimensional lattice structures for implants |
US11806240B2 (en) | 2017-04-01 | 2023-11-07 | Nanohive Medical Llc | Three-dimensional lattice structures for implants |
US10624746B2 (en) | 2017-04-01 | 2020-04-21 | HD LifeSciences LLC | Fluid interface system for implants |
US12102539B2 (en) | 2017-04-01 | 2024-10-01 | Nanohive Medical Llc | Methods of designing three-dimensional lattice structures for implants |
JP2020515350A (en) * | 2017-04-01 | 2020-05-28 | エイチディー ライフサイエンシズ エルエルシーHd Lifesciences Llc | Fluid interface system for implants |
US12036126B2 (en) | 2017-04-01 | 2024-07-16 | Nanohive Medical Llc | Three-dimensional lattice structures for implants |
US10881518B2 (en) | 2017-04-01 | 2021-01-05 | HD LifeSciences LLC | Anisotropic biocompatible lattice structure |
US11059123B2 (en) | 2017-04-28 | 2021-07-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11298747B2 (en) | 2017-05-18 | 2022-04-12 | Howmedica Osteonics Corp. | High fatigue strength porous structure |
US11684478B2 (en) | 2017-05-18 | 2023-06-27 | Howmedica Osteonics Corp. | High fatigue strength porous structure |
US11292062B2 (en) | 2017-05-30 | 2022-04-05 | Arcam Ab | Method and device for producing three-dimensional objects |
US11865004B2 (en) | 2017-06-02 | 2024-01-09 | Howmedica Osteonics Corp. | Implant with hole having porous structure for soft tissue fixation |
US10646345B2 (en) | 2017-06-02 | 2020-05-12 | Howmedica Osteonics Corp. | Implant with hole having porous structure for soft tissue fixation |
US11446147B2 (en) | 2017-06-02 | 2022-09-20 | Howmedica Osteonics Corp. | Implant with hole having porous structure for soft tissue fixation |
US11400181B2 (en) | 2017-06-09 | 2022-08-02 | Howmedica Osteonics Corp. | Polymer interlock support structure and method of manufacture thereof |
EP3415298A1 (en) | 2017-06-15 | 2018-12-19 | Howmedica Osteonics Corporation | Porous structures produced by additive layer manufacturing |
US11628517B2 (en) | 2017-06-15 | 2023-04-18 | Howmedica Osteonics Corp. | Porous structures produced by additive layer manufacturing |
US10603055B2 (en) | 2017-09-15 | 2020-03-31 | Jcbd, Llc | Systems for and methods of preparing and fusing a sacroiliac joint |
US11622867B2 (en) | 2017-09-20 | 2023-04-11 | Stryker European Operations Holdings Llc | Spinal implants |
US10835388B2 (en) | 2017-09-20 | 2020-11-17 | Stryker European Operations Holdings Llc | Spinal implants |
EP3459502A1 (en) | 2017-09-20 | 2019-03-27 | Stryker European Holdings I, LLC | Spinal implants |
US11993008B2 (en) | 2017-09-29 | 2024-05-28 | Arcam Ab | Method and apparatus for additive manufacturing |
US11185926B2 (en) | 2017-09-29 | 2021-11-30 | Arcam Ab | Method and apparatus for additive manufacturing |
US12121444B2 (en) * | 2017-10-11 | 2024-10-22 | Waldemar Link Gmbh & Co. Kg | Implantable drug eluting device comprising a microporous structure |
US20230285155A1 (en) * | 2017-10-11 | 2023-09-14 | Waldemar Link Gmbh & Co. Kg | Implantable drug eluting device comprising a microporous structure |
EP3697329A4 (en) * | 2017-10-20 | 2021-07-28 | Centinel Spine, LLC | Porous implantable interbody devices |
WO2019079768A1 (en) | 2017-10-20 | 2019-04-25 | Centinel Spine, Llc | Porous implantable interbody devices |
US12083023B2 (en) | 2017-10-20 | 2024-09-10 | Silony Spine Corp. | Porous implantable interbody devices |
EP3479798A2 (en) | 2017-11-03 | 2019-05-08 | Howmedica Osteonics Corp. | Flexible construct for femoral reconstruction |
US11890041B2 (en) | 2017-11-03 | 2024-02-06 | Howmedica Osteonics Corp. | Flexible construct for femoral reconstruction |
US10888362B2 (en) | 2017-11-03 | 2021-01-12 | Howmedica Osteonics Corp. | Flexible construct for femoral reconstruction |
US10529070B2 (en) | 2017-11-10 | 2020-01-07 | Arcam Ab | Method and apparatus for detecting electron beam source filament wear |
US11793652B2 (en) | 2017-11-21 | 2023-10-24 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with improved bone contact |
US11951018B2 (en) | 2017-11-21 | 2024-04-09 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with improved flow characteristics |
US10821721B2 (en) | 2017-11-27 | 2020-11-03 | Arcam Ab | Method for analysing a build layer |
US11072117B2 (en) | 2017-11-27 | 2021-07-27 | Arcam Ab | Platform device |
US12102317B2 (en) | 2017-12-20 | 2024-10-01 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11547397B2 (en) | 2017-12-20 | 2023-01-10 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10973509B2 (en) | 2017-12-20 | 2021-04-13 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11517975B2 (en) | 2017-12-22 | 2022-12-06 | Arcam Ab | Enhanced electron beam generation |
CN108188395A (en) * | 2018-01-22 | 2018-06-22 | 华南理工大学 | A kind of composite construction metal parts and preparation method thereof |
US10695192B2 (en) | 2018-01-31 | 2020-06-30 | Institute for Musculoskeletal Science and Education, Ltd. | Implant with internal support members |
US20190240029A1 (en) * | 2018-02-06 | 2019-08-08 | Georgia Tech Research Corporation | Method for adjusting mechanical properties of implant and patient specific surgical implants |
USD1028233S1 (en) | 2018-02-21 | 2024-05-21 | Cilag Gmbh International | Three dimensional adjunct |
CN112004485A (en) * | 2018-02-21 | 2020-11-27 | 爱惜康有限责任公司 | Three-dimensional appendages |
US11458682B2 (en) | 2018-02-27 | 2022-10-04 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US10800101B2 (en) | 2018-02-27 | 2020-10-13 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US11267051B2 (en) | 2018-02-27 | 2022-03-08 | Arcam Ab | Build tank for an additive manufacturing apparatus |
US11400519B2 (en) | 2018-03-29 | 2022-08-02 | Arcam Ab | Method and device for distributing powder material |
US11724316B2 (en) | 2018-03-29 | 2023-08-15 | Arcam Ab | Method and device for distributing powder material |
US11291558B2 (en) | 2018-07-26 | 2022-04-05 | Nanohive Medical Llc | Dynamic implant fixation plate |
EP3607914A1 (en) | 2018-08-09 | 2020-02-12 | Stryker European Holdings I, LLC | Interbody implants and optimization features thereof |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
US20220151789A1 (en) * | 2018-08-14 | 2022-05-19 | Georgia Tech Research Corporation | Method for adjusting mechanical properties of implant and patient specific surgical implants |
US11717265B2 (en) | 2018-11-30 | 2023-08-08 | General Electric Company | Methods and systems for an acoustic attenuating material |
US11497617B2 (en) | 2019-01-16 | 2022-11-15 | Nanohive Medical Llc | Variable depth implants |
US12059354B2 (en) * | 2019-02-15 | 2024-08-13 | Howmedica Osteonics Corp. | Robotic acetabulum preparation for acceptance of acetabular cup with engagement features |
EP3708096A1 (en) | 2019-03-04 | 2020-09-16 | K2M, Inc. | Intervertebral implant assembly and instruments therefor |
CN110063818A (en) * | 2019-05-27 | 2019-07-30 | 北京大学第三医院 | Porous metals prosthese |
EP3771509A1 (en) | 2019-08-01 | 2021-02-03 | Howmedica Osteonics Corp. | Multi-stage additive manufacturing process with inserts |
US12090056B2 (en) | 2019-08-01 | 2024-09-17 | Howmedica Osteonics Corp. | Multi-stage additive manufacturing process with inserts |
USD901014S1 (en) | 2019-08-12 | 2020-11-03 | Ortho Development Corporation | Porous implant |
US11565021B1 (en) | 2019-08-12 | 2023-01-31 | Ortho Development Corporation | Composite structure porous implant for replacing bone stock |
USD901013S1 (en) | 2019-08-12 | 2020-11-03 | Ortho Development Corporation | Porous implant |
USD901012S1 (en) | 2019-08-12 | 2020-11-03 | Ortho Development Corporation | Porous implant |
US11957338B2 (en) | 2019-09-16 | 2024-04-16 | Cilag Gmbh International | Compressible stress and strain of non-fibrous adjuncts |
US11278416B2 (en) | 2019-11-14 | 2022-03-22 | Howmedica Osteonics Corp. | Concentric keel TKA |
US12102535B2 (en) | 2019-11-15 | 2024-10-01 | 4Web, Llc | Piezoelectric coated implants and methods of using piezoelectric coated implants to repair bone structures |
US11498124B1 (en) | 2019-11-25 | 2022-11-15 | Ortho Development Corporation | Method for sintering porous structures from powder using additive manufacturing |
EP3865096A1 (en) | 2020-02-05 | 2021-08-18 | K2M, Inc. | Flexible interbody implant |
US11707361B2 (en) | 2020-02-05 | 2023-07-25 | K2M, Inc. | Flexible interbody implant |
EP3915498A1 (en) | 2020-05-26 | 2021-12-01 | Howmedica Osteonics Corporation | Medial trochanteric plate fixation |
EP4142651B1 (en) | 2020-07-06 | 2023-10-11 | Limacorporate S.p.A. | Augment element for prosthesis, in particular for knee prosthesis |
US11339922B2 (en) * | 2020-07-09 | 2022-05-24 | National Taiwan University Of Science And Technology | Ventilated three dimensional structure from additive manufacture for easy powder removal during post process |
USD1029255S1 (en) | 2020-09-01 | 2024-05-28 | Cilag Gmbh International | Stapling cartridge assembly with a compressible adjunct |
CN114247883A (en) * | 2020-09-25 | 2022-03-29 | 安泰科技股份有限公司 | Method for manufacturing refractory metal part with porous structure |
RU2758696C1 (en) * | 2020-11-25 | 2021-11-01 | Алексей Владимирович Мишуков | Method for manufacturing bimetallic parts of a steel-bronze system |
US20220203449A1 (en) * | 2020-12-30 | 2022-06-30 | Shenzhenshi Yuzhan Precision Technology Co., Ltd. | Metal member, metal composite structure, and method of manufacturing metal member |
US20230249247A1 (en) * | 2021-01-06 | 2023-08-10 | Xerox Corporation | Fabrication of lattice structures with a three-dimensional printer |
US20220212249A1 (en) * | 2021-01-06 | 2022-07-07 | Xerox Corporation | Fabrication of lattice structures with a three-dimensional printer |
CN112974847A (en) * | 2021-02-08 | 2021-06-18 | 华南理工大学 | Core-shell structure titanium-nickel medical implant based on elastic modulus regulation and control, 4D printing forming method and application |
CN113102772A (en) * | 2021-04-09 | 2021-07-13 | 广州柔岩科技有限公司 | Material-increase manufacturing orthopaedics tantalum metal, preparation method and application |
US12121243B2 (en) | 2021-10-14 | 2024-10-22 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
US12121441B2 (en) | 2021-10-14 | 2024-10-22 | Howmedica Osteonics Corp. | Bone void forming apparatus |
US12122120B2 (en) | 2021-11-08 | 2024-10-22 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
WO2023123670A1 (en) * | 2021-12-30 | 2023-07-06 | 苏州大学 | Method for preparing closed-cell steel foam by means of laser additive manufacturing technique |
EP4245242A1 (en) | 2022-03-18 | 2023-09-20 | Stryker Australia PTY LTD | Bone resection scoring and planning |
CN115958203A (en) * | 2022-10-19 | 2023-04-14 | 沈阳铸造研究所有限公司 | Variable density lattice metal with vibration damping characteristic and additive manufacturing method thereof |
CN115673339A (en) * | 2023-01-03 | 2023-02-03 | 西安赛隆增材技术股份有限公司 | Three-dimensional manufacturing method of zirconium-niobium alloy orthopedic implant |
Also Published As
Publication number | Publication date |
---|---|
CA2860188C (en) | 2017-06-06 |
EP1683593A3 (en) | 2010-06-09 |
EP1683593B1 (en) | 2021-10-13 |
AU2005247021A1 (en) | 2006-07-20 |
CA2529884C (en) | 2014-08-26 |
CA2860188A1 (en) | 2006-06-30 |
CA2529884A1 (en) | 2006-06-30 |
EP1683593A2 (en) | 2006-07-26 |
AU2005247021B2 (en) | 2011-02-10 |
US9456901B2 (en) | 2016-10-04 |
US20170014235A1 (en) | 2017-01-19 |
US20110014081A1 (en) | 2011-01-20 |
US11660195B2 (en) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11660195B2 (en) | Laser-produced porous structure | |
US11510783B2 (en) | Laser-produced porous surface | |
US12011355B2 (en) | Laser-produced porous surface | |
US20220117742A1 (en) | Three-dimensional porous structures for bone ingrowth and methods for producing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HOWMEDICA OSTEONICS CORP., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JONES, ERIC;SUTCLIFFE, CHRISTOPHER J.;STAMP, ROBIN;REEL/FRAME:016518/0293;SIGNING DATES FROM 20050309 TO 20050324 |
|
AS | Assignment |
Owner name: LIVERPOOL, UNIVERSITY OF THE, UNITED KINGDOM Free format text: CONFIRMATORY ASSIGNMENT OF 50% INTEREST FOR HOWMEDICA OSTEONICS CORP. AND 50% INTEREST FOR THE UNIVERSITY OF LIVERPOOL;ASSIGNOR:HOWMEDICA OSTEONICS CORP.;REEL/FRAME:031662/0726 Effective date: 20060103 Owner name: THE UNIVERSITY OF LIVERPOOL, UNITED KINGDOM Free format text: CONFIRMATORY ASSIGNMENT OF 50% INTEREST FOR HOWMEDICA OSTEONICS CORP. AND 50% INTEREST FOR THE UNIVERSITY OF LIVERPOOL;ASSIGNOR:HOWMEDICA OSTEONICS CORP.;REEL/FRAME:031662/0726 Effective date: 20060103 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |