[go: nahoru, domu]

US20070078675A1 - Contributor reputation-based message boards and forums - Google Patents

Contributor reputation-based message boards and forums Download PDF

Info

Publication number
US20070078675A1
US20070078675A1 US11/541,436 US54143606A US2007078675A1 US 20070078675 A1 US20070078675 A1 US 20070078675A1 US 54143606 A US54143606 A US 54143606A US 2007078675 A1 US2007078675 A1 US 2007078675A1
Authority
US
United States
Prior art keywords
reputation
content
contributor
communication
objective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/541,436
Inventor
Craig Kaplan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PredictWallStreet LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/541,436 priority Critical patent/US20070078675A1/en
Priority to PCT/US2006/038365 priority patent/WO2007041459A2/en
Priority to JP2008533737A priority patent/JP5477735B2/en
Priority to EP06815984A priority patent/EP1934965A4/en
Priority to KR1020087008370A priority patent/KR101366887B1/en
Publication of US20070078675A1 publication Critical patent/US20070078675A1/en
Assigned to PREDICTWALLSTREET, LLC reassignment PREDICTWALLSTREET, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAPLAN, CRAIG
Priority to US12/898,619 priority patent/US7991728B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking

Definitions

  • This invention pertains generally to Internet, web, and network-based message boards and forums, chat rooms, email, and other forms of asynchronous and synchronous communication and more particularly to such message boards and forums, chat rooms, email and the like for which a contributor or poster reputation is automatically evaluated on some objective criteria and used to rank, rate, or filter contributions, postings, or other content contributed by or attributed to the contributor or poster.
  • the current state-of-the-art is a relatively crude filtering capability that is subjective at best, that can be applied only after a post or submission has been written, and that works (if at all) by shifting the burden of quality control to the users of a web site or other interactive or on-line forum.
  • No known on-line sites, message boards, plural user contributed or other forums or the like are known that use or have a capability of filtering posts or contributions, in advance, based on the reputation of the poster or contributor especially of sites, message boards, and/or forums where there are a plurality of posters or contributors other than for example a site, message board, or forum administrator or originator.
  • a major difficulty in constructing such a system to date has been the challenge of obtaining reliable and objective information on the quality of posters or contributors.
  • a site like SlashDot necessarily relies on the subjective judgment of their readers to assign scores.
  • Other sites that have quality rating systems e.g., the on-line auction site Ebay
  • Other sites that have quality rating systems also typically rely on subjective user ratings.
  • raters know that they too will be rated (as for example on Ebay) the “reputations” become even less reliable since people are reluctant to give poor ratings for fear they will receive negative ratings in retaliation.
  • many posters are one-time posters or infrequent posters, it is often impossible to reliably predict even the subjective quality of posts in advance. There simply aren't enough data points to create a reliable trend in most cases.
  • the invention provides a method for operating a reputation-based communication or content service including the steps of obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; and processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
  • a service is selected from the set of services consisting of an online bulletin board, an online message board, a chat room, a forum, a information provision service, a content delivery service, an email service, an information provision service, a search engine service, a content delivery service, a communication or content screening service, a communication or content screening service, and any combination of these.
  • the invention provides a system for providing a reputation processed based on-line communication or content, the system comprising: a contributor reputation metric collection component; a communication or content medium identification component; and a communication or content reputation processing component.
  • the invention provides a communication or content provided or generated by the inventive system or method.
  • the invention provides a business method and business model for operating a communications or content provision service.
  • the invention provides a computer program and computer program product stored either on a tangible media or in an electronically accessible and readable form.
  • FIG. 1 is an illustration showing an exemplary embodiment of a system for providing and using the inventive reputation-based message board, web site, forum, chat room, other communications or content based or related site or service, or the like.
  • FIG. 2 is an illustration showing an embodiment of a simple input box for a message board or comment entry from a pre-release mock-up of a predictwallstreet.com web site.
  • FIG. 3 is an illustration showing an embodiment of a simple reputation-based bulletin board (RBB) as if might appear if posts were sorted by reputation for accuracy.
  • RTB reputation-based bulletin board
  • FIG. 4 is an illustration showing an Illustrative dropdown or pull-down filtering control.
  • FIG. 5 is an illustration showing a flow-chart diagram of an embodiment of the inventive method.
  • the current invention is provides system, device, method, computer program, and business method for filtering posts based on objective quality metrics (e.g., the objective performance track record or reputation) of the poster.
  • This performance track record or reputation may be based on historical past performance.
  • the invention is referred to as Reputation-Based Boards (RBB) at least in part because it is the reputation (e.g. objective performance track record) of the poster that drives filtering (typically) of posts on message boards.
  • the objective performance track record may for example be an objective performance accuracy track record or history.
  • RBB is not limited only to message boards, web sites, or forums and the inventive RBB system and methodology which refer to each of these and others can add significant value to any type of bulletin board, message board, or other form of online information exchange where the information source or component of the information source can be identified or “tagged” with a poster reputation.
  • a licensed medical surgeon posting on an online forum about a surgery may have an online reputation that reflects the number (and/or percentage) of successful surgeries completed or years of surgical practice or some other factual objective measure; and, a stock forecaster might have an online reputation that reflects the percentage of correct stock predictions or some other objective measure of the posters stock forecasting prediction performance.
  • the reputation associated with a particular poster or contributor may be very closely tied to the posting or contribution made, even within a particular field.
  • Joe an online stock forecaster, who may have correctly predicted the movement of IBM stock 80% of the time, but only correctly predicted the movement of Wal-Mart stock 50% of the time. This past objective performance seems to suggest that Joe has more insight or understanding into IBM stock (or perhaps the stock market segment in which IBM stock belongs) than to Wal-Mart (or perhaps it's market segment). Therefore, when Joe posts messages about IBM (on the IBM stock message board) he would have a strong reputation due to his relatively accurate track record of correct predictions. On the Wal-Mart stock message board, his reputation would be relatively poor.
  • reputations may be transformed or processed by any one or combination of a variety of different types of deterministic or statistically based algorithms and statistical formulas or computations, if such transformations or processing proves to yield more useful reputations or reputation based results.
  • Joe's posts or contributions in this case stock forecasts
  • the posts may be automatically filtered based on Joe's objective reputation—a reputation that can be specific to each message board, on-line forum, or other source. For example, another user Steve may go to the message board and request to see only posts by people who have had an 80% or better track record. On the IBM board, Steve will see Joe's posts since Joe's contribution meets or exceeds the performance criteria of 80%. On the Wal-Mart board, Joe's posts won't appear because his track record (50%) is below the threshold set by Steve.
  • Steve might just ask to see the posts ranked by the most accurate predictions first, or filtered in other ways. Criteria need not be numeric either and may be set into performance categories such as very reliable, usually reliable, questionable, erratic, or any other category that may be established to represent the objective past performance of the poster or contributor. The point is that Steve can make a much more informed decision about what to do with the information in Joe's post because Steve knows that Joe's reputation is based on objective performance criteria. Further, all readers are saved the chore of rating others. The system collects the reputation metrics automatically.
  • RBB Radio Network Detection
  • Two main sources of added value are: (1) that objective metrics are collected automatically, and (2) the ability to filter or automatically select posts to see based on these metrics.
  • RBB RedictWallStreet.com
  • a predictor who has done consistently well over many predictions will have a good reputation starting with his or her very first post.
  • a metric collection component (2) a communication medium component or system such as a message board component or system which in a non-limiting embodiment includes (a) means and method for entering information, and (b) means and method for displaying information; and (3) a filtering mechanism and method which allows the message board to sort or otherwise modify the display of information that has been entered, based on the metrics (such as poster reputation) that have been collected.
  • a communication medium component or system such as a message board component or system
  • a filtering mechanism and method which allows the message board to sort or otherwise modify the display of information that has been entered, based on the metrics (such as poster reputation) that have been collected.
  • Other embodiments of the invention may separately include the individual components with the others being optional.
  • embodiments of the invention may be implemented on virtually any computer system having a first node or machine for hosting the web site, message board, forum or other posting entity, and that the poster of contributor may be on any other (or even the same server or other host machine) computer machine or information appliance, the invention is applicable to almost an unlimited variety of machine types and/or architectures and the exemplary embodiment is merely illustrative and not limiting.
  • FIG. 1 shows an exemplary embodiment of a system 51 , incorporating a server 52 that may serve to interact with one or more users 54 over an interactive electronic medium such as computers 56 or other information appliances coupled to the server 52 over a network 60 such as the Internet.
  • Network, server, and computer and communications links that are conventional in nature and not shown in the figure to avoid obscuring aspects of the invention.
  • the server 52 may include one or more processors 72 and processor coupled or associated memory 73 for any processing tasks that may be required. Such processing tasks may include controlling communications over the network to and from users, accessing one or more integrated or separate storage devices 74 such as for example hard disk drive persistent mass storage devices that may store programs, data, and other system, contributor, reputations, and/or other data and/or information described herein. Processing may also include activities of activities in support of processing user contributed information or information relative to rankings, ratings, reputations of the like as described herein elsewhere.
  • a user may access the server from a client side computer or information appliance (machine) 77 over the network communication link or line 78 .
  • the user may be provided with a computer program code or applet to display and interface with the server.
  • Local storage may be provided on the local user computer or information appliance for storing data, tokens, cookies, or other identifiers or information.
  • server may be distributed over a plurality of servers either for the purpose of scalability, redundancy, performance or for other reasons.
  • a metric collection component (2) a site, message board, and/or forum component which advantageously may include means and method for enter information and optionally but advantageously means and method for displaying information; and, (3) a rating, ranking, and/or filtering component which advantageously provides a mechanism which allows the site, message board, forum or the like to sort or otherwise modify the display of information that has been entered, based on the metrics (one metric being reputation) that have been collected.
  • Embodiments of means for entering information or comments are later described relative to FIG. 2 and embodiments for displaying information or comments are later described relative to FIG. 3 . It may be appreciated that the means and method for collecting metrics, for entering information, and for displaying information may occur only on the user or client computer or information appliance, only on a server computer, or distributed between the two in some manner so that none of these three main components may be required on any one computing machine. It may also be appreciated that certain of the components may be optional to a server component, or to a client component.
  • metric collection system automated data collection where data is collected without requiring additional input from a user or contributor, is preferable to requiring users to input data.
  • the contributor or poster objective or factually based reputation is one such metric.
  • systems and methods that can collect lots of relevant data points quickly and with minimal user effort are advantageously utilized.
  • use of pre-existing data may sometimes be possible and may be implemented for some non-limiting embodiments of the invention.
  • this “analyze the pre-existing data” approach is not feasible.
  • collecting, updating, or otherwise having and using current metrics is advantageous, so that other embodiments may use this approach.
  • accuracy of predictions is a key performance metric.
  • Accuracy can be measured as directional accuracy (for example, how often did the stock go up when the contributing predictor predicted it would go up) or absolute accuracy (for example, how close was the contributing predictor's predicted price target to the actual price the stock achieved).
  • directional accuracy for example, how often did the stock go up when the contributing predictor predicted it would go up
  • absolute accuracy for example, how close was the contributing predictor's predicted price target to the actual price the stock achieved.
  • RBBs are particularly powerful and valuable to financial forecasting systems when many predictions can be gathered quickly and easily and the accuracy of these predictions calculated automatically.
  • RBBs Reputation-Based Boards
  • GFI Global System for Mobile Communications
  • thousands of predictions can be stored in a database with a minimal drain on a user's time. As time passes, the predictions are automatically checked against the current state of whatever is being predicted (e.g., stock price) and accuracy is automatically computed. Thus, based on minimal user effort, a detailed, objective track record can be automatically generated for each predictor. RBB then uses this track record to filter posts.
  • a RBB and a graphical interface (such as for example the referenced patent-pending GFI graphical forecasting interface or another graphical interface) may operate synergistically when provided together. Therefore it may be appreciated that one preferred implementation and embodiment for forecasting systems may include both a graphical forecasting interface component and a reputation based board component.
  • Table 1 By way of example, as a way that a user may post comments or other information.
  • Table 2 provides by way of example, computer code that may be used to display and view posted or contributed comments or other information.
  • Table 3 is exemplary computer program code for use within a web page to permit users to post and view comments and operates in conjunction with the code listed in Tables 1 and 2. This exemplary code provides a non-limiting illustration of how a simple message board from a financial forecasting system might work that uses past contributor accuracy as the objective reputation metric.
  • Chat rooms, email, and other forms of asynchronous and synchronous communication can also be used instead of, or in addition to, online bulletin or message boards, web sites, and forums.
  • These aspects and applications of the invention benefit substantially for the third component, that of ranking, rating, and filtering.
  • Various filtering mechanisms, means, and method are next described.
  • a chat room on a financial forecasting site might incorporates the ability to block communication (or some set of communication such as postings to a message board) from people who do not cross a minimum threshold for prediction accuracy.
  • a data feed consisting of forecasts that is streamed to a ticker (see the above referenced co-pending patent application), or to an RSS feed would, in a preferred embodiment of the present invention, be filtered according to user preferences with regard to accuracy and/or other criteria that might be important to the user (e.g., which stocks are in my portfolio or watch list).
  • the reputation based board presents a compilation of relevant content based on the objective reputation of the contributors.
  • the content may be any content such as a forecast or prediction, a recommendation, an opinion, a recommendation, a document, an image, a multimedia content, a comment or set of comments, an email or other communication, a message, a message board posting, a bulletin board posting, a forum posting, a personal profile, a dating profile, a connections posting, or any other item or content for which an objective reputation of a contributor, group of contributors, authors, reviewer(s), or the like may be useful for assessing the value of that content.
  • the RBB processes the reputations of a group of contributors of a plurality of postings and uses the result of the processing to determine which contributor comments are included in the compilation.
  • an average, weighted average, or other algorithmic or statistical transformation, of the individual reputations may be presented along with the compiled postings.
  • the objective reputation of any single contributor may be used alone or in combination with the objective reputation of any other single or plurality of contributors, and, that once the objective contributor reputation information is available it may be applied to any content without limitation.
  • the objective reputations may be used for many purposes beyond bulletin boards.
  • content of any type may be filtered, compiled into collections of, highlighted in different colors or fonts or in different lists or different ways based on reputation metrics, automatically emailing or streaming comments that cross an identified reputation threshold, generating an alert in some fashion when content or material appears or is identified that has a strong enough reputation associated with it to be of interest to one or more users or groups of users, automatically deleting information or archiving information with sufficiently low reputation metrics, automatically linking to information based on the reputation associated with the information being linked to and/or the reputation associated with the information where the link originates, or other processing, cataloging, notifying, or the like based on the reputation metric.
  • the ability to set accuracy thresholds for example, a threshold set to show only predictors with greater than some specified XX % accuracy
  • accuracy thresholds for example, a threshold set to show only predictors with greater than some specified XX % accuracy
  • set to sort by accuracy are features that should be included in a preferred implementation.
  • FIG. 3 illustrates very simple sample output of sorting based on accuracy.
  • the techniques for programming threshold, filtering, and sorting are well-known in the art, so we do not describe them in further detail.
  • FIG. 4 (adapted from Slashdot.org) illustrates a commonly used user interface for filtering controls that could be part of a preferred implementation of RBB if criteria included objective poster reputations rather than subjective scores for posts. It is noted that the Slashdot.org criteria does not include either objective poster reputations or many other aspects of the invention set forth herein.
  • the preferred implementation may also include, without limitation, the ability to sort/filter/threshold posts by date, by topic, by poster, and by other categories of interest including accuracy.
  • the invention provides a method for operating a reputation-based communication or content service, the method comprising: obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; and processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
  • the method may further including processing the communication or content along with other different communications or content from other different contributors based at least in part on the objective contributor reputation of one or of a plurality of contributors.
  • the method may further require that the service is selected from the set of services consisting of an online bulletin board, an online message board, a chat room, a forum, a information provision service, a content delivery service, an email service, an information provision service, a search engine service, a content delivery service, a communication or content screening service, a communication or content screening service, and any combination of these.
  • the service is selected from the set of services consisting of an online bulletin board, an online message board, a chat room, a forum, a information provision service, a content delivery service, an email service, an information provision service, a search engine service, a content delivery service, a communication or content screening service, a communication or content screening service, and any combination of these.
  • the method may further require that the obtaining at least one metric related to a first user contributor reputation comprises the step of collecting the at least one metric related to a first user contributor reputation.
  • the method may further require that the method (4) require that the collecting the at least one metric related to a first user contributor reputation is performed automatically by the method without a separate conscious input by the user contributor.
  • the method may further require that the obtaining at least one metric related to a first user contributor reputation comprises obtaining the at least one metric related to a first user contributor reputation from an external source.
  • the method may further require that the identifying of the communication or content comprises: at least one of: (i) receiving a first communication or content from the first user contributor; and (ii) identifying a contribution or content attributed at least in part to the first user contributor.
  • the method may further require that the identifying of a communication or content having an association with the first user contributor comprises
  • the method may further require sending a second communication to a user that includes the generated processed communication or content or portion thereof.
  • the method may further require: obtaining at least one metric related to a plurality of different user contributor reputations; identifying a communication or content having an association with each of the plurality of user contributors; and processing the plurality of communications or contents to generate a processed communication or content based on the obtained objective contributor reputation for the plurality of different user contributors.
  • the method may further require that the processing based on objective reputation comprises a processing selected from the set consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • the method (11) may further require that wherein the processing may be different for different contributors or for different groups of contributors.
  • the method may further require that the processing based on objective reputation includes a processing selected from the set consisting of: filtering to include some items and not others based on objective reputation of the contributor or group of contributors, filtering based on objective reputation of the contributor or group of contributors, filtering to exclude some items and not others based on objective reputation of the contributor or group of contributors, compiling a set of relevant content based on objective reputation of the contributor or group of contributors, ordering based on objective reputation of the contributor or group of contributors, ordering from low to high based on objective reputation of the contributor or group of contributors, ordering from high to low based on objective reputation of the contributor or group of contributors, selecting or not selecting based on objective reputation of the contributor or group of contributors, processing based on objective reputation of the contributor or group of contributors, generating derivative objective reputation data based on objective reputation of the contributor or group of contributors, and any combination of these.
  • the method may further require that the service is a communication forum selected from the set of forums consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
  • the service is a communication forum selected from the set of forums consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
  • the method may further require that the reputation metric comprises a factually based objective contributor reputation established in the same field of endeavor as the contribution being communicated.
  • the method may further require that the objective contributor reputation comprises a historical accuracy-based reputation.
  • the method may further require that the historical accuracy-based reputation is for a contribution in the same field as the reputation was established.
  • the method may further require that the step of collecting objective metrics, comprises collective objective metrics automatically without compelling a user take separate actions to provide objective metrics of information from which objective metrics are derived.
  • the method may further require matching these reputation metrics closely to the topic of the particular communication forum.
  • the method may further require filtering contributor postings with a predetermined objective accuracy and without a conscious human input contribution relative to a filtering metric.
  • the method may further require automatically tracking the accuracy of contributors who provide an online prediction or forecast of an element and generating a prediction accuracy result by comparing the prediction of the element with the actual value of the element at the predicted time and date, and automatically generating a prediction accuracy for the contributor based on that comparison.
  • the method may further require that the element is an online stock price prediction.
  • the method may further require that reputation metrics are be subjected to aging or other refinement so that recent objective history is given a greater objective weight or older performance may be discounted or not considered at all.
  • the method may further require that collected or otherwise directly or indirectly available reputation metrics are processed to make them more useful.
  • the method may further require that the processing to make them more useful comprises applying a statistical processing to a least one objective reputation metric.
  • the method may further require that the applied statistical processing is selected from the set of statistical processing comprising: computing a weighted average over time, normalizing the reputation or plurality of reputations so that one contributor's reputation can be compared with another contributor's reputation according to some defined comparison criteria.
  • the method may further require that the defined comparison criteria comprises an objective comparison criteria.
  • the method may further require that the objective reputations comprise raw reputations, processed reputations, or any combination of raw reputations and processed reputations.
  • the method may further require that the method further includes filtering or automatically selecting contributions to be seen or presented to a user based on an objective metric or combination of a plurality of metrics.
  • the invention provides a system for providing a reputation processed based on-line communication or content, the system comprising: a contributor reputation metric collection component; a communication or content medium identification component; and a communication or content reputation processing component.
  • the system may further require that the collection component comprises a automatic collection component for collecting the reputation metric related to a contributor reputation automatically without a separate conscious input by a user contributor.
  • system (30) may further require that the at least one reputation metric is obtained from an external source.
  • the system may further require that the contributor reputation metric identification component includes means for identifying of the communication or content selected from the set consisting of: (i) receiving a first communication or content from the first user contributor; and (ii) identifying a contribution or content attributed at least in part to the first user contributor.
  • the system (32) may further require that the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • system (33) may further require that the processing may be different for different contributors or for different groups of contributors.
  • the system (34) may further require that the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • the system may further require that the communication or content medium component is selected from the set consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
  • the communication or content medium component is selected from the set consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
  • the system may further require that the communication or content medium component further includes (a) means and for entering information, and (b) means for displaying information.
  • the system may further require that the communication or content filtering component provides means for sorting, limiting, compiling, or otherwise modifying ⁇ other wise modifying is good, otherwise it sounds like only limiting and filtering and we are missing other forms of processing like compiling ⁇ the display of information that has been entered based on metrics that have been collected.
  • the invention provides a communication or content processed according to the method and or by a system as described.
  • the invention provides a computer program product stored in an electronically accessible media for altering the operation of a computer system or computer network, the computer program product including executable computer program instructions for causing the computer to generate a processed reputation-based communication or content and comprising instructions for: obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; and processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
  • the computer program and computer program product may provide program components to implement any of the steps and/or features of the described inventive method, and be implemented on a computer or on a plurality of computers to achieve a technical effect by altering the otherwise conventional operation of the computer or plurality of computers.
  • the invention provides a business method for operating a reputation-based communication or content provision service, the business method comprising: obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation; providing the processed communication or content to a subscriber; and receiving a remuneration from the subscriber in exchange for the provided processed communication or content.
  • the business method may further require that the remuneration is a financial remuneration, a service remuneration, a commission remuneration, a referral remuneration, or any combination of these.
  • the term“embodiment” means an embodiment that serves to illustrate by way of example but not limitation.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

System and method for operating reputation-based communication or content service. Method includes obtaining metric related to first user contributor reputation; identifying communication or content having association with first user contributor; and processing communication or content to generate processed communication or content based on the obtained objective contributor reputation. Service is broadly defined and may be selected from bulletin board, message board, chat room, forum, information provision service, content delivery service, email service, information provision service, search engine service, content delivery service, communication or content screening service, communication or content screening service, or other. System for providing reputation processed based on-line communication or content. Communication or content provided or generated by the inventive system or method. Business method for operating a communications or content provision service. Computer program and computer program product stored either on a tangible media or in an electronically accessible and readable form to implement method.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/722,101 filed 30 Sep. 2005 and entitled Reputation-Based Boards, which application is hereby incorporated by reference.
  • This application also claims priority to U.S. application Ser. No. 11/______, filed 22 Sep. 2006 entitled Graphical Forecasting Interface, by Craig A. Kaplan and Calen Lopata, Attorney Docket No. 61117.8004. US01 and PCT/US06/______, filed on 22 Sep. 2006, entitled Graphical Forecasting Interface by Craig A. Kaplan and Calen Lopata, Attorney Docket No. 61117-8004 W001, which applications are hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • This invention pertains generally to Internet, web, and network-based message boards and forums, chat rooms, email, and other forms of asynchronous and synchronous communication and more particularly to such message boards and forums, chat rooms, email and the like for which a contributor or poster reputation is automatically evaluated on some objective criteria and used to rank, rate, or filter contributions, postings, or other content contributed by or attributed to the contributor or poster.
  • BACKGROUND
  • Currently, many message boards and forums exist online. For example, Raging Bull is a popular message board where investors can post their thoughts about the prospects of various stocks. SlashDot.org is a forum where members can post their thoughts about technology issues, and rate the posts of others. Particularly useful is SlashDot's capability of filtering, or ordering, posts based on how other readers subjectively scored or liked the posts. Unfortunately, the method of collaborative filtering employed by Slashdot, and by many other sites, relies on subjective judgment, after the fact. That is, readers spend time reading a post and then some of them offer subjective judgments as to quality or how much they liked or disliked the post.
  • Although somewhat useful, there are inherent inefficiencies and deficiencies in these conventional methods. First, many people will read a posting but not everyone rates the posting. This means that a few people with strong opinions (and possibly a single or a few people with multiple user identities or IDs) can bias the system by rating early and often. Second, many people still have to search and/or wade through poor quality information that has limited or no quality ratings while waiting for the information to be scored by others. Third, the “quality” of a post is very subjective. In general, what one person may think of as being useful, another person may classify or rate as useless or junk. Most sites do not have rigorous criteria for making objective quality ratings or even subjective quality ratings. Even if these rigorous criteria were added, such criteria would be time consuming to learn and apply and would likely reduce user participation. Any enforcement of the criteria would also be difficult or impossible to implement in practical terms. Thus, the current state-of-the-art is a relatively crude filtering capability that is subjective at best, that can be applied only after a post or submission has been written, and that works (if at all) by shifting the burden of quality control to the users of a web site or other interactive or on-line forum.
  • No known on-line sites, message boards, plural user contributed or other forums or the like are known that use or have a capability of filtering posts or contributions, in advance, based on the reputation of the poster or contributor especially of sites, message boards, and/or forums where there are a plurality of posters or contributors other than for example a site, message board, or forum administrator or originator.
  • A major difficulty in constructing such a system to date has been the challenge of obtaining reliable and objective information on the quality of posters or contributors. As mentioned above, a site like SlashDot necessarily relies on the subjective judgment of their readers to assign scores. Other sites that have quality rating systems (e.g., the on-line auction site Ebay) also typically rely on subjective user ratings. When raters know that they too will be rated (as for example on Ebay) the “reputations” become even less reliable since people are reluctant to give poor ratings for fear they will receive negative ratings in retaliation. Furthermore, since many posters are one-time posters or infrequent posters, it is often impossible to reliably predict even the subjective quality of posts in advance. There simply aren't enough data points to create a reliable trend in most cases.
  • Briefly then, conventional systems and methods in use today in the Internet and on-line posting domain is the filtering of posts based on subjective quality ratings of the posts, and no apparent attempt to filter posts based on an objective quality metric of the poster. In the user reputation domain, we see Ebay-like subjective commentaries or evaluations (not objective reputations) that are usually inflated and not very useful (and not reliable in any event) until many data points (e.g., many transactions) have been established.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention provides a method for operating a reputation-based communication or content service including the steps of obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; and processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
  • In another aspect the method is provided in a service is selected from the set of services consisting of an online bulletin board, an online message board, a chat room, a forum, a information provision service, a content delivery service, an email service, an information provision service, a search engine service, a content delivery service, a communication or content screening service, a communication or content screening service, and any combination of these.
  • In another aspect, the invention provides a system for providing a reputation processed based on-line communication or content, the system comprising: a contributor reputation metric collection component; a communication or content medium identification component; and a communication or content reputation processing component.
  • In one aspect, the invention provides a communication or content provided or generated by the inventive system or method.
  • In another aspect, the invention provides a business method and business model for operating a communications or content provision service.
  • In another aspect the invention provides a computer program and computer program product stored either on a tangible media or in an electronically accessible and readable form.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration showing an exemplary embodiment of a system for providing and using the inventive reputation-based message board, web site, forum, chat room, other communications or content based or related site or service, or the like.
  • FIG. 2 is an illustration showing an embodiment of a simple input box for a message board or comment entry from a pre-release mock-up of a predictwallstreet.com web site.
  • FIG. 3 is an illustration showing an embodiment of a simple reputation-based bulletin board (RBB) as if might appear if posts were sorted by reputation for accuracy.
  • FIG. 4 is an illustration showing an Illustrative dropdown or pull-down filtering control.
  • FIG. 5 is an illustration showing a flow-chart diagram of an embodiment of the inventive method.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • The current invention is provides system, device, method, computer program, and business method for filtering posts based on objective quality metrics (e.g., the objective performance track record or reputation) of the poster. This performance track record or reputation may be based on historical past performance. The invention is referred to as Reputation-Based Boards (RBB) at least in part because it is the reputation (e.g. objective performance track record) of the poster that drives filtering (typically) of posts on message boards. The objective performance track record may for example be an objective performance accuracy track record or history.
  • RBB is not limited only to message boards, web sites, or forums and the inventive RBB system and methodology which refer to each of these and others can add significant value to any type of bulletin board, message board, or other form of online information exchange where the information source or component of the information source can be identified or “tagged” with a poster reputation. The more objective and quantifiable the reputation can be, the better. By way of example but not of limitation, a licensed medical surgeon posting on an online forum about a surgery may have an online reputation that reflects the number (and/or percentage) of successful surgeries completed or years of surgical practice or some other factual objective measure; and, a stock forecaster might have an online reputation that reflects the percentage of correct stock predictions or some other objective measure of the posters stock forecasting prediction performance.
  • By collecting objective metrics automatically and matching these reputation metrics closely to the topic of the message board, it is possible to filter posts with much greater objective accuracy, and with much less human effort, than existing conventional collaborative filtering schemes (such as for example Slashdot) or reputation-rating schemes (such as for example Ebay). By way of example but not limitation, it may be understood that the www.PredictWallStreet.com website (developed and operated by the inventor of the present invention) automatically tracks the accuracy of individuals who predict stock prices online. Accuracy is tracked for every prediction allowing the site to assign very specific, 100% objective, reputations to predictors.
  • In one exemplary embodiment of determining, associating, or assigning reputations, the reputation associated with a particular poster or contributor may be very closely tied to the posting or contribution made, even within a particular field. Consider use Joe, an online stock forecaster, who may have correctly predicted the movement of IBM stock 80% of the time, but only correctly predicted the movement of Wal-Mart stock 50% of the time. This past objective performance seems to suggest that Joe has more insight or understanding into IBM stock (or perhaps the stock market segment in which IBM stock belongs) than to Wal-Mart (or perhaps it's market segment). Therefore, when Joe posts messages about IBM (on the IBM stock message board) he would have a strong reputation due to his relatively accurate track record of correct predictions. On the Wal-Mart stock message board, his reputation would be relatively poor. Reputations may be subjected to aging or other refinement so that recent objective history is given a greater objective weight, or stated differently, older performance may be discounted or not considered at all. In addition reputations may be transformed or processed by any one or combination of a variety of different types of deterministic or statistically based algorithms and statistical formulas or computations, if such transformations or processing proves to yield more useful reputations or reputation based results.
  • Note that nobody needs to read and score Joe's posts or contributions (in this case stock forecasts) in an attempt to subjectively determine their quality. Instead, the posts may be automatically filtered based on Joe's objective reputation—a reputation that can be specific to each message board, on-line forum, or other source. For example, another user Steve may go to the message board and request to see only posts by people who have had an 80% or better track record. On the IBM board, Steve will see Joe's posts since Joe's contribution meets or exceeds the performance criteria of 80%. On the Wal-Mart board, Joe's posts won't appear because his track record (50%) is below the threshold set by Steve. Of course, rather than setting a threshold, Steve might just ask to see the posts ranked by the most accurate predictions first, or filtered in other ways. Criteria need not be numeric either and may be set into performance categories such as very reliable, usually reliable, questionable, erratic, or any other category that may be established to represent the objective past performance of the poster or contributor. The point is that Steve can make a much more informed decision about what to do with the information in Joe's post because Steve knows that Joe's reputation is based on objective performance criteria. Further, all readers are saved the chore of rating others. The system collects the reputation metrics automatically.
  • Many variations of the RBB invention are possible and it can be applied to a wide range of domains. Two main sources of added value (among others) are: (1) that objective metrics are collected automatically, and (2) the ability to filter or automatically select posts to see based on these metrics.
  • One of the advantages of a RBB is that it establishes a reputation, even if the poster has made no previous posts. With PredictWallStreet.com, for example, a predictor who has done consistently well over many predictions will have a good reputation starting with his or her very first post. When RBB is combined with means of acquiring many objective performance metrics points easily and quickly (as explained in greater detail in the paragraphs to follow), it becomes especially powerful and valuable.
  • Attention is now directed to a particular exemplary embodiment of the invention that includes three primary components: (1) a metric collection component, (2) a communication medium component or system such as a message board component or system which in a non-limiting embodiment includes (a) means and method for entering information, and (b) means and method for displaying information; and (3) a filtering mechanism and method which allows the message board to sort or otherwise modify the display of information that has been entered, based on the metrics (such as poster reputation) that have been collected. Other embodiments of the invention may separately include the individual components with the others being optional.
  • We first describe a system on which embodiments of the invention may be practiced. It will be appreciated that as embodiments of the invention may be implemented on virtually any computer system having a first node or machine for hosting the web site, message board, forum or other posting entity, and that the poster of contributor may be on any other (or even the same server or other host machine) computer machine or information appliance, the invention is applicable to almost an unlimited variety of machine types and/or architectures and the exemplary embodiment is merely illustrative and not limiting.
  • FIG. 1 shows an exemplary embodiment of a system 51, incorporating a server 52 that may serve to interact with one or more users 54 over an interactive electronic medium such as computers 56 or other information appliances coupled to the server 52 over a network 60 such as the Internet. Network, server, and computer and communications links that are conventional in nature and not shown in the figure to avoid obscuring aspects of the invention.
  • The server 52 may include one or more processors 72 and processor coupled or associated memory 73 for any processing tasks that may be required. Such processing tasks may include controlling communications over the network to and from users, accessing one or more integrated or separate storage devices 74 such as for example hard disk drive persistent mass storage devices that may store programs, data, and other system, contributor, reputations, and/or other data and/or information described herein. Processing may also include activities of activities in support of processing user contributed information or information relative to rankings, ratings, reputations of the like as described herein elsewhere.
  • A user may access the server from a client side computer or information appliance (machine) 77 over the network communication link or line 78. The user may be provided with a computer program code or applet to display and interface with the server. Local storage may be provided on the local user computer or information appliance for storing data, tokens, cookies, or other identifiers or information.
  • Although a single server is illustrated, the functions and operations performed by the server may be distributed over a plurality of servers either for the purpose of scalability, redundancy, performance or for other reasons.
  • Attention is now directed to a description of one particular embodiment of the inventive system and method, which includes three main components: (1) a metric collection component; (2) a site, message board, and/or forum component which advantageously may include means and method for enter information and optionally but advantageously means and method for displaying information; and, (3) a rating, ranking, and/or filtering component which advantageously provides a mechanism which allows the site, message board, forum or the like to sort or otherwise modify the display of information that has been entered, based on the metrics (one metric being reputation) that have been collected.
  • Embodiments of means for entering information or comments are later described relative to FIG. 2 and embodiments for displaying information or comments are later described relative to FIG. 3. It may be appreciated that the means and method for collecting metrics, for entering information, and for displaying information may occur only on the user or client computer or information appliance, only on a server computer, or distributed between the two in some manner so that none of these three main components may be required on any one computing machine. It may also be appreciated that certain of the components may be optional to a server component, or to a client component.
  • Each of these main components are now described in greater detail including a description of several non-limiting embodiments, and with additional descriptions of variations, optional features and elements, and preferred implementations and/or embodiments.
  • First, with regard to the metric collection system, automated data collection where data is collected without requiring additional input from a user or contributor, is preferable to requiring users to input data. The contributor or poster objective or factually based reputation is one such metric. When it is desired to collecting data automatically, systems and methods that can collect lots of relevant data points quickly and with minimal user effort are advantageously utilized. In cases where it is not critical that the reputation metrics be recent, use of pre-existing data may sometimes be possible and may be implemented for some non-limiting embodiments of the invention. Generally, however, for systems with large numbers of users for whom metrics have not already been collected, this “analyze the pre-existing data” approach is not feasible. Usually collecting, updating, or otherwise having and using current metrics is advantageous, so that other embodiments may use this approach.
  • Specifically, in the case of financial forecasting systems, accuracy of predictions is a key performance metric. Accuracy can be measured as directional accuracy (for example, how often did the stock go up when the contributing predictor predicted it would go up) or absolute accuracy (for example, how close was the contributing predictor's predicted price target to the actual price the stock achieved). Although there is some data on predictions of some professional analysts, the data is often incomplete and generally not as fined-grained as one would desire. Therefore, use of pre-existing objective data may not be the preferred implementation for a financial forecasting RBB in many cases, though certain embodiments of the invention may use such pre-existing objective data either alone or in addition to other data. However, in specialized cases (for example serving users who only care about the posts of established analysts) it could represent the, or one of several, preferred implementations.
  • RBBs are particularly powerful and valuable to financial forecasting systems when many predictions can be gathered quickly and easily and the accuracy of these predictions calculated automatically. The Graphical Forecasting Interface (GFI) described in referenced related co-pending U.S. patent application Ser. No. 11/______, filed 22 Sep. 2006 (Attorney Docket No. 61117.8004.US01) entitled Graphical Forecasting Interface, by inventors Craig A. Kaplan and Calen Lopata, and PCT/US06/______, also filed on 22 Sep. 2006 entitled Graphical Forecasting Interface by inventors Craig A. Kaplan and Calen Lopata, Attorney Docket No. 61117-8004 W001, which applications are hereby incorporated by reference, is a method collecting many data points from users very quickly and easily that may optionally be utilized with aspects of the Reputation-Based Boards (RBBs) of the instant application.
  • With the aforereferenced GFI or other graphical interface, thousands of predictions can be stored in a database with a minimal drain on a user's time. As time passes, the predictions are automatically checked against the current state of whatever is being predicted (e.g., stock price) and accuracy is automatically computed. Thus, based on minimal user effort, a detailed, objective track record can be automatically generated for each predictor. RBB then uses this track record to filter posts. A RBB and a graphical interface (such as for example the referenced patent-pending GFI graphical forecasting interface or another graphical interface) may operate synergistically when provided together. Therefore it may be appreciated that one preferred implementation and embodiment for forecasting systems may include both a graphical forecasting interface component and a reputation based board component.
  • Second, with regard to entering posts, comments, recommendations, forecasts, predictions, and/or other information or data, many options are possible ranging from simple text input boxes (illustrated in FIG. 2) to sophisticated multi-threaded bulletin board systems which are available as stand-alone products. Exemplary computer code is presented in Table 1 by way of example, as a way that a user may post comments or other information. Table 2 provides by way of example, computer code that may be used to display and view posted or contributed comments or other information. The code in Table 3 is exemplary computer program code for use within a web page to permit users to post and view comments and operates in conjunction with the code listed in Tables 1 and 2. This exemplary code provides a non-limiting illustration of how a simple message board from a financial forecasting system might work that uses past contributor accuracy as the objective reputation metric.
  • Chat rooms, email, and other forms of asynchronous and synchronous communication can also be used instead of, or in addition to, online bulletin or message boards, web sites, and forums. These aspects and applications of the invention benefit substantially for the third component, that of ranking, rating, and filtering. Various filtering mechanisms, means, and method are next described.
  • Consider that a chat room on a financial forecasting site might incorporates the ability to block communication (or some set of communication such as postings to a message board) from people who do not cross a minimum threshold for prediction accuracy. Similarly, a data feed consisting of forecasts that is streamed to a ticker (see the above referenced co-pending patent application), or to an RSS feed, would, in a preferred embodiment of the present invention, be filtered according to user preferences with regard to accuracy and/or other criteria that might be important to the user (e.g., which stocks are in my portfolio or watch list). These and other optional features may be provided by embodiments of the present invention.
  • In one embodiment, the reputation based board presents a compilation of relevant content based on the objective reputation of the contributors. The content may be any content such as a forecast or prediction, a recommendation, an opinion, a recommendation, a document, an image, a multimedia content, a comment or set of comments, an email or other communication, a message, a message board posting, a bulletin board posting, a forum posting, a personal profile, a dating profile, a connections posting, or any other item or content for which an objective reputation of a contributor, group of contributors, authors, reviewer(s), or the like may be useful for assessing the value of that content.
  • In one embodiment, the RBB processes the reputations of a group of contributors of a plurality of postings and uses the result of the processing to determine which contributor comments are included in the compilation. In one embodiment, an average, weighted average, or other algorithmic or statistical transformation, of the individual reputations may be presented along with the compiled postings.
  • It will be apparent in light of the description provided here, that the objective reputation of any single contributor may be used alone or in combination with the objective reputation of any other single or plurality of contributors, and, that once the objective contributor reputation information is available it may be applied to any content without limitation. The objective reputations may be used for many purposes beyond bulletin boards.
  • For example, in addition to other message board or content filtering described herein, content of any type may be filtered, compiled into collections of, highlighted in different colors or fonts or in different lists or different ways based on reputation metrics, automatically emailing or streaming comments that cross an identified reputation threshold, generating an alert in some fashion when content or material appears or is identified that has a strong enough reputation associated with it to be of interest to one or more users or groups of users, automatically deleting information or archiving information with sufficiently low reputation metrics, automatically linking to information based on the reputation associated with the information being linked to and/or the reputation associated with the information where the link originates, or other processing, cataloging, notifying, or the like based on the reputation metric.
  • In the context of a financial forecasting system and/or method, the ability to set accuracy thresholds (for example, a threshold set to show only predictors with greater than some specified XX % accuracy) and/or set to sort by accuracy are features that should be included in a preferred implementation.
  • FIG. 3 illustrates very simple sample output of sorting based on accuracy. The techniques for programming threshold, filtering, and sorting are well-known in the art, so we do not describe them in further detail. FIG. 4 (adapted from Slashdot.org) illustrates a commonly used user interface for filtering controls that could be part of a preferred implementation of RBB if criteria included objective poster reputations rather than subjective scores for posts. It is noted that the Slashdot.org criteria does not include either objective poster reputations or many other aspects of the invention set forth herein. The preferred implementation may also include, without limitation, the ability to sort/filter/threshold posts by date, by topic, by poster, and by other categories of interest including accuracy.
  • Having now described numerous aspects and embodiment of the invention including many optional features, attention is directed to the description of certain selected embodiments that include particular combinations of features.
  • In one embodiment (1) the invention provides a method for operating a reputation-based communication or content service, the method comprising: obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; and processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
  • In another embodiment (2), the method may further including processing the communication or content along with other different communications or content from other different contributors based at least in part on the objective contributor reputation of one or of a plurality of contributors.
  • In another embodiment (3), the method may further require that the service is selected from the set of services consisting of an online bulletin board, an online message board, a chat room, a forum, a information provision service, a content delivery service, an email service, an information provision service, a search engine service, a content delivery service, a communication or content screening service, a communication or content screening service, and any combination of these.
  • In another embodiment (4), the method may further require that the obtaining at least one metric related to a first user contributor reputation comprises the step of collecting the at least one metric related to a first user contributor reputation.
  • In another embodiment (5), the method may further require that the method (4) require that the collecting the at least one metric related to a first user contributor reputation is performed automatically by the method without a separate conscious input by the user contributor.
  • In another embodiment (6), the method may further require that the obtaining at least one metric related to a first user contributor reputation comprises obtaining the at least one metric related to a first user contributor reputation from an external source.
  • In another embodiment (7), the method may further require that the identifying of the communication or content comprises: at least one of: (i) receiving a first communication or content from the first user contributor; and (ii) identifying a contribution or content attributed at least in part to the first user contributor.
  • In another embodiment (8), the method may further require that the identifying of a communication or content having an association with the first user contributor comprises
  • In another embodiment (9), the method may further require sending a second communication to a user that includes the generated processed communication or content or portion thereof.
  • In another embodiment (10), the method may further require: obtaining at least one metric related to a plurality of different user contributor reputations; identifying a communication or content having an association with each of the plurality of user contributors; and processing the plurality of communications or contents to generate a processed communication or content based on the obtained objective contributor reputation for the plurality of different user contributors.
  • In another embodiment (11), the method may further require that the processing based on objective reputation comprises a processing selected from the set consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • In another embodiment (12), the method (11) may further require that wherein the processing may be different for different contributors or for different groups of contributors.
  • In another embodiment (13), the method may further require that the processing based on objective reputation includes a processing selected from the set consisting of: filtering to include some items and not others based on objective reputation of the contributor or group of contributors, filtering based on objective reputation of the contributor or group of contributors, filtering to exclude some items and not others based on objective reputation of the contributor or group of contributors, compiling a set of relevant content based on objective reputation of the contributor or group of contributors, ordering based on objective reputation of the contributor or group of contributors, ordering from low to high based on objective reputation of the contributor or group of contributors, ordering from high to low based on objective reputation of the contributor or group of contributors, selecting or not selecting based on objective reputation of the contributor or group of contributors, processing based on objective reputation of the contributor or group of contributors, generating derivative objective reputation data based on objective reputation of the contributor or group of contributors, and any combination of these.
  • In another embodiment (14), the method may further require that the service is a communication forum selected from the set of forums consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
  • In another embodiment (15), the method may further require that the reputation metric comprises a factually based objective contributor reputation established in the same field of endeavor as the contribution being communicated.
  • In another embodiment (16), the method may further require that the objective contributor reputation comprises a historical accuracy-based reputation.
  • In another embodiment (17), the method may further require that the historical accuracy-based reputation is for a contribution in the same field as the reputation was established.
  • In another embodiment (18), the method may further require that the step of collecting objective metrics, comprises collective objective metrics automatically without compelling a user take separate actions to provide objective metrics of information from which objective metrics are derived.
  • In another embodiment (19), the method may further require matching these reputation metrics closely to the topic of the particular communication forum.
  • In another embodiment (20), the method may further require filtering contributor postings with a predetermined objective accuracy and without a conscious human input contribution relative to a filtering metric.
  • In another embodiment (21), the method may further require automatically tracking the accuracy of contributors who provide an online prediction or forecast of an element and generating a prediction accuracy result by comparing the prediction of the element with the actual value of the element at the predicted time and date, and automatically generating a prediction accuracy for the contributor based on that comparison.
  • In another embodiment (22), the method may further require that the element is an online stock price prediction.
  • In another embodiment (23), the method may further require that reputation metrics are be subjected to aging or other refinement so that recent objective history is given a greater objective weight or older performance may be discounted or not considered at all.
  • In another embodiment (24), the method may further require that collected or otherwise directly or indirectly available reputation metrics are processed to make them more useful.
  • In another embodiment (25), the method may further require that the processing to make them more useful comprises applying a statistical processing to a least one objective reputation metric.
  • In another embodiment (26), the method may further require that the applied statistical processing is selected from the set of statistical processing comprising: computing a weighted average over time, normalizing the reputation or plurality of reputations so that one contributor's reputation can be compared with another contributor's reputation according to some defined comparison criteria.
  • In another embodiment (27), the method may further require that the defined comparison criteria comprises an objective comparison criteria.
  • In another embodiment (27), the method may further require that the objective reputations comprise raw reputations, processed reputations, or any combination of raw reputations and processed reputations.
  • In another embodiment (28), the method may further require that the method further includes filtering or automatically selecting contributions to be seen or presented to a user based on an objective metric or combination of a plurality of metrics.
  • In another embodiment, the invention provides a system for providing a reputation processed based on-line communication or content, the system comprising: a contributor reputation metric collection component; a communication or content medium identification component; and a communication or content reputation processing component.
  • Various different embodiments of the system may incorporate components, functional blocks, computer program software, or other means for implementing the steps of the inventive method described herein.
  • In another embodiment (30), the system may further require that the collection component comprises a automatic collection component for collecting the reputation metric related to a contributor reputation automatically without a separate conscious input by a user contributor.
  • In another embodiment (31), the system (30) may further require that the at least one reputation metric is obtained from an external source.
  • In another embodiment (32), the system may further require that the contributor reputation metric identification component includes means for identifying of the communication or content selected from the set consisting of: (i) receiving a first communication or content from the first user contributor; and (ii) identifying a contribution or content attributed at least in part to the first user contributor.
  • In another embodiment (33), the system (32) may further require that the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • In another embodiment (34), the system (33) may further require that the processing may be different for different contributors or for different groups of contributors.
  • In another embodiment (35), the system (34) may further require that the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
  • In another embodiment (36), the system may further require that the communication or content medium component is selected from the set consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
  • In another embodiment (37), the system may further require that the communication or content medium component further includes (a) means and for entering information, and (b) means for displaying information.
  • In another embodiment (38), the system may further require that the communication or content filtering component provides means for sorting, limiting, compiling, or otherwise modifying {other wise modifying is good, otherwise it sounds like only limiting and filtering and we are missing other forms of processing like compiling} the display of information that has been entered based on metrics that have been collected.
  • In another aspect, the invention provides a communication or content processed according to the method and or by a system as described.
  • In another aspect, the invention provides a computer program product stored in an electronically accessible media for altering the operation of a computer system or computer network, the computer program product including executable computer program instructions for causing the computer to generate a processed reputation-based communication or content and comprising instructions for: obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; and processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
  • In another embodiment, the computer program and computer program product may provide program components to implement any of the steps and/or features of the described inventive method, and be implemented on a computer or on a plurality of computers to achieve a technical effect by altering the otherwise conventional operation of the computer or plurality of computers.
  • In another aspect, the invention provides a business method for operating a reputation-based communication or content provision service, the business method comprising: obtaining at least one metric related to a first user contributor reputation; identifying a communication or content having an association with the first user contributor; processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation; providing the processed communication or content to a subscriber; and receiving a remuneration from the subscriber in exchange for the provided processed communication or content.
  • In another embodiment, the business method may further require that the remuneration is a financial remuneration, a service remuneration, a commission remuneration, a referral remuneration, or any combination of these.
  • As used herein, the term“embodiment” means an embodiment that serves to illustrate by way of example but not limitation.
  • It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.
  • COPYRIGHT NOTICE
  • Contained herein is material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent disclosure by any person as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all rights to the copyright whatsoever
    TABLE 1
    Exemplary Code for User Comment
    (File Name: comment.asp)
    <%
    Option Explicit
    %>
    <!--#include virtual=“/asp/SystemFunctions.asp”-->
    <!--#include virtual=“/asp/FinWinFunctions.asp”-->
    <!--#include virtual=“/asp/DateTimeFunctions.asp”-->
    <%
    ’ Copyright 2005 iQ Company
    Dim Global_Database_Connection
    Set Global_Database_Connection = Server.CreateObject(“ADODB.connection”)
    Global_Database_Connection.Open Application(“DSN”)
    ’ This wasn't working ?!?!?
    ’SafeDate(Request(“ForecastDate”)),
    SaveForecastComment
    Global_Database_Connection,
    Session(“RegisteredUserID”),
    CData(Session(“Login”), “string”),
    Cdata(Request(“StarRating”), “string”),
    Cdata(Request(“Symbol”), “string”),
    NextForecastDate( ),
    Cdata(Request(“BaselinePrice”), “double”),
    Cdata(Request(“DirectionalForecastUp”), “string”),
    Cdata(Request(“Comment”), “string”)
    Global_Database_Connection.Close
    Set Global_Database_Connection = Nothing
    If Request(“action”) = “ajax” Then
    Response.Write “comment_area|Thank you, your comment has been saved.”
    Response.end
    End If
    StartHTML “Comment Saved”, “”, “”, “”
    %>
    <p>
    <br>
    <p align=center><font size=+1>Comment saved - thank you for contributing!
    <br><br><a href=“<%=Trim(Request(“ReturnPage”))%>”>Back</a></font></p>
    <%
    EndHTML
    Sub SaveForecastComment(objConn, UserID, UserName, StarRating, Symbol,
    MyForecastDate, BaselinePrice, DirectionalForecastUp, Comment)
    Dim ForecastDate, SQL
    ForecastDate = “‘” & Replace(MyForecastDate,“’”, “\‘’) & “’”
    SQL = “If Not Exists(Select Top 1 CommentID From tblDirectionalForecastComments
    Where UserID = “ &
    UserID & ” And ForecastDate = “ & ForecastDate & ” And Symbol = “ & Symbol &
    ”) Insert Into tblDirectionalForecastComments “ &
    ”(UserID, UserName, StarRating, Symbol, ForecastDate, “ &
    ” BaselinePrice, DirectionalForecastUp, CreateDate, Comment) Values (“ &
    UserID & ”, “ & UserName & ”, “ & StarRating & ”, “ & Symbol & ”, “ &
    ForecastDate & ”, “ &
    BaselinePrice & ”, “ & DirectionalForecastUp & ”, GETDATE( ), “ & Comment &
    ”) ELSE Update tblDirectionalForecastComments Set Comment = “ &
    Comment & ”, BaselinePrice = “ & BaselinePrice &
    ”, DirectionalForecastUp = “ & DirectionalForecastUp & ”, StarRating = “ &
    StarRating & ” WHERE UserID = “ &
    UserID & ” And ForecastDate = “ & ForecastDate & ” And Symbol = ” & Symbol
    objConn.Execute SQL
    End Sub
    %>
  • TABLE 2
    Exemplary Code for Viewing User Comments
    (File Name: Comment_view.asp)
    <%
    Option Explicit
    %>
    <!--#include virtual=“/asp/SystemFunctions.asp”-->
    <!--#include virtual=“/asp/DisplayFunctions.asp”-->
    <!--#include virtual=“/asp/FinWinFunctions.asp”-->
    <%
    ’ Copyright 2005 iQ Company
    Dim Symbol, ForecastDate
    Dim Global_Database_Connection
    Set Global_Database_Connection = Server.CreateObject(“ADODB.connection”)
    Global_Database_Connection.Open Application(“DSN”)
    Symbol = GetSymbolListFromInputList(Request(“Symbol”))
    ForecastDate = Request(“ForecastDate”)
    StartHTML “Comments on ” & Symbol, “”, “”, “”
    ’PrintHeader
    DisplayAllComments Global_Database_Connection, Symbol, ForecastDate
    ’PrintFooter
    EndHTML
    Function DisplayAllComments(objConn, Symbol, ForecastDate)
    Dim rst, ForecastWeekday, NumStars, AccuracyHTML
    ForecastWeekday = DisplayWeekday(ForecastDate)
    Set rst = objConn.Execute(“Select tblDirectionalForecastComments.*, “ &
    ” Case When DirectionalForecastUp Is NULL Then ‘No Opinion’ “ &
    ” When DirectionalForecastUp = 1 Then ‘UP’ “ &
    ” Else ‘DOWN’ End “ &
    ”as DirectionalForecastText From tblDirectionalForecastComments Where
    Symbol = ‘“ &
    Symbol & ”’ And ForecastDate = ‘“ & ForecastDate & ”’ Order By StarRating
    Desc”)
    If Not rst.EOF Then
    %>
    <p>
    <table border=0 cellpadding=0 cellspacing=5>
    <%
    If Session(“RegisteredUserID”) = “” Then
    %>
    <tr><td colspan=3><font size=−1>Everyone can view comments, but to
    post your own comments please <a href=“javascript:window.close( );”>close this window</a> and
    log in.<br></font></td></tr>
    <%
    End If
    %>
    <tr>
    <td><font size=−1><b>Comment</b></font></td>
    <td><font size=−1><b>Forecast for <%=ForecastWeekday%></b></font></td>
    <td><font size=−1><b>Past Accuracy</b></font></td>
    </tr>
    <%
    Do While Not rst.EOF
    NumStars = 1+rst(“StarRating”)
    If NumStars = 0 Then
    AccuracyHTML = “Unrated”
    Else
    AccuracyHTML = GetStarsHTML(5, 1+rst(“StarRating”),False, “”)
    End If
    %>
    <tr>
    <td><fontsize=−1><%=Left(rst(“UserName”), InStr(rst(“UserName”), “@”)−1)%> said,
    “<%=rst(“Comment”)%>”</font>
     <br><font size=−2>[<%=FormatDateTime(rst(“CreateDate”), vbLongDate) & “ ” &
    FormatDateTime(rst(“CreateDate”), vbLongTime)%> ET]</font></td>
    <td><font size=−1><%=rst(“DirectionalForecastText”)%> from
    <%=DisplayDouble(rst(“BaselinePrice”))%></font></td>
    <td><font size=−1><%=AccuracyHTML%></font></td>
    </tr>
    <%
    rst.MoveNext
    Loop
    %>
    </table></p>
    <%
    Else
    Response.Write “<font size=+2>No comments for ” & ForecastWeekday & “'s
    close of ” & Symbol & “.</font>”
    End If
    End Function
    %>
  • TABLE 3
    Exemplary Code for use within a web page to permit users to post and view comments
    (File Name: Comments Functionality.asp)
    <%
    ’ Copyright 2005 iQ Company
    ’ASP Code ========================================
    =================================================
    ’ For use within a page where you want users to be able to post and view comments.
    ’ Uses comment.asp and comment_view.asp
    ’ Generates javascript for inclusion within HTML <head> tags.
    Function GetCommentJavascript(Symbol, ForecastDate, BaselinePrice, DirectionalForecastUp,
    StarRating)
    Dim QueryString
    QueryString = “Symbol=” & Server.URLEncode(Symbol) &
    “&ForecastDate=” & Server.URLEncode(ForecastDate) &
    “&BaselinePrice=” & Server.URLEncode(BaselinePrice) &
    “&DirectionalForecastUp=” & Server.URLEncode(DirectionalForecastUp) &
    “&StarRating=” & Server.URLEncode(StarRating) &
    “&action=ajax”
    GetCommentJavascript = “<SCRIPT LANGUAGE=“”JavaScript“”> ” &
    vbCrLf & “<!-- ” &
    vbCrLf & “function URLencode(sStr) {” &
    vbCrLf & “ return escape(sStr).” &
    vbCrLf & “ replace(/\+/g, ‘%2B’).” &
    vbCrLf & “ replace(/\“”/g,‘%22’).” &
    vbCrLf & “ replace(/\'/g, ‘%27’).” &
    vbCrLf & “ replace(/\//g,‘%2F’);” &
    vbCrLf & ” }“ &
    vbCrLf & “function createRequestObject( ) {” &
    vbCrLf & “ var ro;” &
    vbCrLf & “ var browser = navigator.appName;” &
    vbCrLf & “ if(browser == “”Microsoft Internet Explorer“”){” &
    vbCrLf & “ ro = new ActiveXObject(“”Microsoft.XMLHTTP“”);” &
    vbCrLf & “ }else{” &
    vbCrLf & “ ro = new XMLHttpRequest( );” &
    vbCrLf & “ }” &
    vbCrLf & “ return ro;” &
    vbCrLf & “}” &
    vbCrLf & “”&
    vbCrLf & “var http = createRequestObject( );” &
    vbCrLf & “” &
    vbCrLf & “function sndReq(comment) {” &
    vbCrLf & “ http.open(‘get’, ‘comment.asp?” & QueryString &
    “&comment=’+URLencode(comment));” &
    vbCrLf & “ http. &
    vbCrLf & “ http.send(null);” &
    vbCrLf & “}” &
    vbCrLf & “” &
    vbCrLf & “function handleResponse( ) {” &
    vbCrLf & “ if(http.readyState == 4){” &
    vbCrLf & “ var response = http.responseText;” &
    vbCrLf & “ var update = new Array( );” &
    vbCrLf & “” &
    vbCrLf & “ if(response.indexOf(‘|’ != −1)) {” &
    vbCrLf & “ update = response.split(‘|’);” &
    vbCrLf & “ document.getElementById(update[0]).innerHTML = update[1];”
    &
    vbCrLf & “ }” &
    vbCrLf & “ }” &
    vbCrLf & “}” &
    vbCrLf & “//--> ” &
    vbCrLf & “</script>”
    End Function
    ’ Generates comment form
    Function GetCommentArea(objConn, RegisteredUserID, Symbol, ForecastDate, BaselinePrice,
    UserPrediction, StarRating)
    Dim MyHTML, rst, NumComments, CommentPlural
    Set rst = objConn.Execute(“Select Count(*) as TheTotal From
    tblDirectionalForecastComments where Symbol = ‘“ Symbol & ”’ And ForecastDate = ‘“ &
    ForecastDate & ”’”)
    NuMComments = rst(“TheTotal”)
    Set rst = Nothing
    If RegisteredUserID <> “” Then
    MyHTML = GetDynamicCommentForm( SimulateThisPageLink( ), Symbol,
    ForecastDate, BaselinePrice, UserForecast, ConvertDirectionalToBitForecast(UserPrediction),
    StarRating )
    End If
    If NuMComments > 0 Then
    CommentPlural = “”
    If NumComments <> 1 Then
    CommentPlural = “s”
    End If
    MyHTML = MyHTML & “<center><Font size=−1>” &
    PopupWindowLink(“View ” & NumComments & “ comment” &
    CommentPlural & “ on ” & Symbol,
    “/help/help.asp?text=” & Server.URLEncode(“Comments on ” &
    Symbol) & “&src=” & Server.URLEncode(“/comment_view.asp?Symbol=” &
    Server.URLEncode(Symbol) & “&ForecastDate=” & Server.URLEncode(ForecastDate)), 500,
    400) &
    “</font></center>”
    End If
    GetCommentArea = MyHTML
    End Function
    ’ Converts text forecast to bit forecast (for database storage)
    Function ConvertDirectionalToBitForecast(UserPrediction)
    If UserPrediction = “UP” Then
    ConvertDirectionalToBitForecast = 1
    ElseIF UserPrediction = “DOWN” Then
    ConvertDirectionalToBitForecast = 0
    Else
    ConvertDirectionalToBitForecast = “”
    End If
    End Function
    %>

Claims (43)

1. A method for operating a reputation-based communication or content service, the method comprising:
obtaining at least one metric related to a first user contributor reputation;
identifying a communication or content having an association with the first user contributor; and
processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
2. A method as in claim 1, further including processing the communication or content along with other different communications or content from other different contributors based at least in part on the objective contributor reputation of one or of a plurality of contributors.
3. A method as in claim 1, wherein the service is selected from the set of services consisting of an online bulletin board, an online message board, a chat room, a forum, a information provision service, a content delivery service, an email service, an information provision service, a search engine service, a content delivery service, a communication or content screening service, a communication or content screening service, and any combination of these.
4. A method as in claim 1, wherein the obtaining at least one metric related to a first user contributor reputation comprises the step of collecting the at least one metric related to a first user contributor reputation.
5. A method as in claim 4, wherein the collecting the at least one metric related to a first user contributor reputation is performed automatically by the method without a separate conscious input by the user contributor.
6. A method as in claim 1, wherein the obtaining at least one metric related to a first user contributor reputation comprises obtaining the at least one metric related to a first user contributor reputation from an external source.
7. A method as in claim 1, wherein the identifying of the communication or content comprises: at least one of: (i) receiving a first communication or content from the first user contributor; and (ii) identifying a contribution or content attributed at least in part to the first user contributor.
8. A method as in claim 1, wherein the identifying of a communication or content having an association with the first user contributor comprises
9. A method as in claim 1, further comprising sending a second communication to a user that includes the generated processed communication or content or portion thereof.
10. A method as in claim 1, further comprising: obtaining at least one metric related to a plurality of different user contributor reputations; identifying a communication or content having an association with each of the plurality of user contributors; and processing the plurality of communications or contents to generate a processed communication or content based on the obtained objective contributor reputation for the plurality of different user contributors.
11. A method as in claim 1, wherein the processing based on objective reputation comprises a processing selected from the set consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
12. A method as in claim 11, wherein the processing may be different for different contributors or for different groups of contributors.
13. A method as in claim 1, wherein the processing based on objective reputation includes a processing selected from the set consisting of: filtering to include some items and not others based on objective reputation of the contributor or group of contributors, filtering based on objective reputation of the contributor or group of contributors, filtering to exclude some items and not others based on objective reputation of the contributor or group of contributors, compiling a set of relevant content based on objective reputation of the contributor or group of contributors, ordering based on objective reputation of the contributor or group of contributors, ordering from low to high based on objective reputation of the contributor or group of contributors, ordering from high to low based on objective reputation of the contributor or group of contributors, selecting or not selecting based on objective reputation of the contributor or group of contributors, processing based on objective reputation of the contributor or group of contributors, generating derivative objective reputation data based on objective reputation of the contributor or group of contributors, and any combination of these.
14. A method as in claim 1, wherein the service is a communication forum selected from the set of forums consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
15. A method as in claim 1, wherein the reputation metric comprises a factually based objective contributor reputation established in the same field of endeavor as the contribution being communicated.
16. A method as in claim 1, wherein the objective contributor reputation comprises a historical accuracy-based reputation.
17. A method as in claim 16, wherein the historical accuracy-based reputation is for a contribution in the same field as the reputation was established.
18. A method as in claim 1, wherein the step of collecting objective metrics, comprises collective objective metrics automatically without compelling a user take separate actions to provide objective metrics of information from which objective metrics are derived.
19. A method as in claim 1, wherein the method further comprising matching these reputation metrics closely to the topic of the particular communication forum.
20. A method as in claim 1, further comprising filtering contributor postings with a predetermined objective accuracy and without a conscious human input contribution relative to a filtering metric.
21. A method as in claim 1, wherein the method further includes automatically tracking the accuracy of contributors who provide an online prediction or forecast of an element and generating a prediction accuracy result by comparing the prediction of the element with the actual value of the element at the predicted time and date, and automatically generating a prediction accuracy for the contributor based on that comparison.
22. A method as in claim 21, wherein the element is an online stock price prediction.
23. A method as in claim 1, wherein reputation metrics are be subjected to aging or other refinement so that recent objective history is given a greater objective weight or older performance may be discounted or not considered at all.
24. A method as in claim 1, wherein collected or otherwise directly or indirectly available reputation metrics are processed to make them more useful.
25. A method as in claim 1, wherein the processing to make them more useful comprises applying a statistical processing to a least one objective reputation metric.
26. A method as in claim 1, wherein the applied statistical processing is selected from the set of statistical processing comprising: computing a weighted average over time, normalizing the reputation or plurality of reputations so that one contributor's reputation can be compared with another contributor's reputation according to some defined comparison criteria.
27. A method as in claim 1, wherein the defined comparison criteria comprises an objective comparison criteria.
28. A method as in claim 1, wherein the objective reputations comprise raw reputations, processed reputations, or any combination of raw reputations and processed reputations.
29. A method as in claim 1, wherein the method further includes filtering or automatically selecting contributions to be seen or presented to a user based on an objective metric or combination of a plurality of metrics.
30. A system for providing a reputation processed based on-line communication or content, the system comprising:
a contributor reputation metric collection component;
a communication or content medium identification component; and
a communication or content reputation processing component.
31. A system as in claim 30, wherein the collection component comprises a automatic collection component for collecting the reputation metric related to a contributor reputation automatically without a separate conscious input by a user contributor.
32. A system as in claim 31, wherein the at least one reputation metric is obtained from an external source.
33. A system as in claim 30, wherein the contributor reputation metric identification component includes means for identifying of the communication or content selected from the set consisting of: (i) receiving a first communication or content from the first user contributor; and (ii) identifying a contribution or content attributed at least in part to the first user contributor.
34. A system as in claim 33, wherein the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
35. A system as in claim 34, wherein the processing may be different for different contributors or for different groups of contributors.
36. A system as in claim 35, wherein the communication or content reputation processing component comprises a processing unit adapted for processing selected from the set of processing schemes consisting of filtering, sorting, ordering, screening, compiling, grouping, deleting, flagging, hiding, highlighting, promoting, and any combination of these based on objective reputation of a contributor or a plurality of contributors.
37. A system as in claim 30, wherein the communication or content medium component is selected from the set consisting of a network site, an Intranet site, an Internet site, a world wide web site, an electronic mail or email, an interactive electronic bulletin board, an interactive electronic message board, an online information exchange, a set of email or comment threads, an online interactive stock prediction forum, an online forum, and any combination of these.
38. A system as in claim 30, wherein the communication or content medium component further includes (a) means and for entering information, and (b) means for displaying information.
39. A system as in claim 30, wherein the communication or content filtering component provides means for sorting, limiting, compiling, or otherwise modifying {other wise modifying is good, otherwise it sounds like only limiting and filtering and we are missing other forms of processing like compiling} the display of information that has been entered based on metrics that have been collected.
40. A communication or content processed according to the method of claim 1.
41. A computer program product stored in an electronically accessible media for altering the operation of a computer system or computer network, the computer program product including executable computer program instructions for causing the computer to generate a processed reputation-based communication or content and comprising instructions for:
obtaining at least one metric related to a first user contributor reputation;
identifying a communication or content having an association with the first user contributor; and
processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation.
42. A business method for operating a reputation-based communication or content provision service, the business method comprising:
obtaining at least one metric related to a first user contributor reputation;
identifying a communication or content having an association with the first user contributor;
processing the communication or content to generate a processed communication or content based on the obtained objective contributor reputation;
providing the processed communication or content to a subscriber; and
receiving a renumeration from the subscriber in exchange for the provided processed communication or content.
43. A business method as in claim 42, wherein the renumeration is a financial renumeration, a service renumeration, a commission renumeration, a referral renumeration, or any combination of these.
US11/541,436 2005-09-30 2006-09-29 Contributor reputation-based message boards and forums Abandoned US20070078675A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/541,436 US20070078675A1 (en) 2005-09-30 2006-09-29 Contributor reputation-based message boards and forums
PCT/US2006/038365 WO2007041459A2 (en) 2005-09-30 2006-10-02 Contributor reputation-based message boards and forums
JP2008533737A JP5477735B2 (en) 2005-09-30 2006-10-02 Message boards and forums based on contributors' reputation
EP06815984A EP1934965A4 (en) 2005-09-30 2006-10-02 Contributor reputation-based message boards and forums
KR1020087008370A KR101366887B1 (en) 2005-09-30 2006-10-02 Contributor reputation-based message boards and forums
US12/898,619 US7991728B2 (en) 2005-09-30 2010-10-05 Computer reputation-based message boards and forums

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72210105P 2005-09-30 2005-09-30
US11/541,436 US20070078675A1 (en) 2005-09-30 2006-09-29 Contributor reputation-based message boards and forums

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/898,619 Continuation US7991728B2 (en) 2005-09-30 2010-10-05 Computer reputation-based message boards and forums

Publications (1)

Publication Number Publication Date
US20070078675A1 true US20070078675A1 (en) 2007-04-05

Family

ID=41194439

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/541,436 Abandoned US20070078675A1 (en) 2005-09-30 2006-09-29 Contributor reputation-based message boards and forums
US12/898,619 Expired - Fee Related US7991728B2 (en) 2005-09-30 2010-10-05 Computer reputation-based message boards and forums

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/898,619 Expired - Fee Related US7991728B2 (en) 2005-09-30 2010-10-05 Computer reputation-based message boards and forums

Country Status (2)

Country Link
US (2) US20070078675A1 (en)
CN (1) CN101548274A (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251068A1 (en) * 2002-03-08 2006-11-09 Ciphertrust, Inc. Systems and Methods for Identifying Potentially Malicious Messages
US20060271949A1 (en) * 1998-06-05 2006-11-30 Decisionmark Corp. Method and apparatus for limiting access to video communications
US20070124430A1 (en) * 2005-11-29 2007-05-31 Microsoft Corporation Tags for management systems
US20070124285A1 (en) * 2005-11-29 2007-05-31 Microsoft Corporation Data feeds for management systems
US20070168511A1 (en) * 2006-01-17 2007-07-19 Brochu Jason M Method and apparatus for user moderation of online chat rooms
US20070192169A1 (en) * 2006-02-16 2007-08-16 Microsoft Corporation Reputation System
US20080077704A1 (en) * 2006-09-24 2008-03-27 Void Communications, Inc. Variable Electronic Communication Ping Time System and Method
US20080140477A1 (en) * 2006-05-24 2008-06-12 Avadis Tevanian Online Community-Based Vote Security Performance Predictor
US20080184366A1 (en) * 2004-11-05 2008-07-31 Secure Computing Corporation Reputation based message processing
US20080189634A1 (en) * 2007-02-01 2008-08-07 Avadis Tevanian Graphical Prediction Editor
US20080243877A1 (en) * 2007-04-02 2008-10-02 International Business Machines Corporation Promoting content from one content management system to another content management system
US20080270915A1 (en) * 2007-04-30 2008-10-30 Avadis Tevanian Community-Based Security Information Generator
US20080288277A1 (en) * 2006-01-10 2008-11-20 Mark Joseph Fasciano Methods for encouraging charitable social networking
US20090006211A1 (en) * 2007-07-01 2009-01-01 Decisionmark Corp. Network Content And Advertisement Distribution System and Method
US20090012965A1 (en) * 2007-07-01 2009-01-08 Decisionmark Corp. Network Content Objection Handling System and Method
US20090024402A1 (en) * 2007-07-20 2009-01-22 Ebay Inc. Search using multi-faceted reputation information
WO2009055712A1 (en) * 2007-10-26 2009-04-30 Accoona Corp Apparatuses, methods and systems for a forum ferreting system
US20090187988A1 (en) * 2008-01-18 2009-07-23 Microsoft Corporation Cross-network reputation for online services
US20090234663A1 (en) * 2008-03-14 2009-09-17 Microsoft Corporation Leveraging global reputation to increase personalization
US20100064016A1 (en) * 2005-07-28 2010-03-11 Vaporstream Incorporated Reduced Traceability Electronic Message System and Method
US20100100942A1 (en) * 2008-10-22 2010-04-22 Minyanville Publishing And Multimedia, Llc System and Method for Exchanging Information Regarding Financial Markets in a Moderated Environment
EP2184704A1 (en) * 2008-11-06 2010-05-12 Kabushiki Kaisha Square Enix (also trading as Square Enix Co., Ltd.) Message posting system
US20100257183A1 (en) * 2009-04-01 2010-10-07 Korea Institute Of Science And Technology Assessment of a user reputation and a content reliability
US20100269168A1 (en) * 2009-04-21 2010-10-21 Brightcloud Inc. System And Method For Developing A Risk Profile For An Internet Service
US20100306846A1 (en) * 2007-01-24 2010-12-02 Mcafee, Inc. Reputation based load balancing
US7860928B1 (en) * 2007-03-22 2010-12-28 Google Inc. Voting in chat system without topic-specific rooms
US7865553B1 (en) * 2007-03-22 2011-01-04 Google Inc. Chat system without topic-specific rooms
US7899869B1 (en) * 2007-03-22 2011-03-01 Google Inc. Broadcasting in chat system without topic-specific rooms
US7904500B1 (en) 2007-03-22 2011-03-08 Google Inc. Advertising in chat system without topic-specific rooms
US7913287B1 (en) 2001-06-15 2011-03-22 Decisionmark Corp. System and method for delivering data over an HDTV digital television spectrum
US8006191B1 (en) 2007-03-21 2011-08-23 Google Inc. Chat room with thin walls
US8010981B2 (en) 2001-02-08 2011-08-30 Decisionmark Corp. Method and system for creating television programming guide
US20120304072A1 (en) * 2011-05-23 2012-11-29 Microsoft Corporation Sentiment-based content aggregation and presentation
US8386576B2 (en) 2007-03-21 2013-02-26 Google Inc. Graphical user interface for messaging system
US20130097531A1 (en) * 2007-09-06 2013-04-18 Linkedin Corporation Detecting associates
US8549611B2 (en) 2002-03-08 2013-10-01 Mcafee, Inc. Systems and methods for classification of messaging entities
US8561167B2 (en) 2002-03-08 2013-10-15 Mcafee, Inc. Web reputation scoring
US8583266B2 (en) 2005-01-24 2013-11-12 Microsoft Corporation Seeding in a skill scoring framework
US8589503B2 (en) 2008-04-04 2013-11-19 Mcafee, Inc. Prioritizing network traffic
US20130311904A1 (en) * 2007-02-02 2013-11-21 Microsoft Corporation Real Time Collaboration Using Embedded Data Visualizations
US20130311556A1 (en) * 2012-05-18 2013-11-21 Yahoo! Inc. System and Method for Generating Theme Based Dynamic Groups
US20130346496A1 (en) * 2012-06-26 2013-12-26 Yoelle Maarek System and method of predicting community member responsiveness
US8621559B2 (en) 2007-11-06 2013-12-31 Mcafee, Inc. Adjusting filter or classification control settings
US8621638B2 (en) 2010-05-14 2013-12-31 Mcafee, Inc. Systems and methods for classification of messaging entities
US8683355B1 (en) * 2008-06-24 2014-03-25 Sprint Communications Company L.P. Chat space system and method
US8725830B2 (en) 2006-06-22 2014-05-13 Linkedin Corporation Accepting third party content contributions
US8763114B2 (en) 2007-01-24 2014-06-24 Mcafee, Inc. Detecting image spam
US8762537B2 (en) 2007-01-24 2014-06-24 Mcafee, Inc. Multi-dimensional reputation scoring
CN104050228A (en) * 2013-03-14 2014-09-17 优米有限公司 System and method for statistically determining bias in online survey results
US20140330909A1 (en) * 2011-11-29 2014-11-06 International Business Machines Corporation Augmenting a real-time collaboration with ranked electronic bulletin board posts
US8931043B2 (en) 2012-04-10 2015-01-06 Mcafee Inc. System and method for determining and using local reputations of users and hosts to protect information in a network environment
US20150154610A1 (en) * 2011-05-13 2015-06-04 Google Inc. Detecting potentially false business listings based on an anomaly detection threshold
US9106680B2 (en) 2011-06-27 2015-08-11 Mcafee, Inc. System and method for protocol fingerprinting and reputation correlation
US9122877B2 (en) * 2011-03-21 2015-09-01 Mcafee, Inc. System and method for malware and network reputation correlation
WO2015131280A1 (en) * 2014-03-04 2015-09-11 Two Hat Security Research Corp. System and method for managing online messages using visual feedback indicator
US9282081B2 (en) 2005-07-28 2016-03-08 Vaporstream Incorporated Reduced traceability electronic message system and method
US20160203724A1 (en) * 2015-01-13 2016-07-14 Apollo Education Group, Inc. Social Classroom Integration And Content Management
US20160232800A1 (en) * 2015-02-11 2016-08-11 Apollo Education Group, Inc. Integrated social classroom and performance scoring
US9436709B1 (en) * 2013-01-16 2016-09-06 Google Inc. Content discovery in a topical community
US9465505B1 (en) * 2013-05-14 2016-10-11 Google Inc. Reputation based collaboration session
US9535884B1 (en) 2010-09-30 2017-01-03 Amazon Technologies, Inc. Finding an end-of-body within content
US9578052B2 (en) 2013-10-24 2017-02-21 Mcafee, Inc. Agent assisted malicious application blocking in a network environment
US9754102B2 (en) 2006-08-07 2017-09-05 Webroot Inc. Malware management through kernel detection during a boot sequence
US9811830B2 (en) 2013-07-03 2017-11-07 Google Inc. Method, medium, and system for online fraud prevention based on user physical location data
US10049138B1 (en) * 2014-03-05 2018-08-14 Google Llc Reputation and engagement system for online community management
WO2018156773A1 (en) * 2017-02-22 2018-08-30 Margaret Pfeiffer Hospital staff communication and development system
US10223637B1 (en) * 2013-05-30 2019-03-05 Google Llc Predicting accuracy of submitted data
US10504048B2 (en) * 2013-06-27 2019-12-10 Folloze, Inc. Systems and methods for enterprise content curation
US10666695B2 (en) 2018-07-25 2020-05-26 Eduard Weinwurm Group chat application with reputation scoring
US11321286B1 (en) * 2018-01-26 2022-05-03 Wells Fargo Bank, N.A. Systems and methods for data quality certification
US11489857B2 (en) 2009-04-21 2022-11-01 Webroot Inc. System and method for developing a risk profile for an internet resource
WO2024102783A1 (en) * 2022-11-08 2024-05-16 Curators Of The University Of Missouri System and method for artificial intelligence and artificial intelligence-human hybrid moderation

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957510B2 (en) * 2007-01-23 2011-06-07 Microsoft Corporation Notifying network contacts of inquiries
US8539359B2 (en) 2009-02-11 2013-09-17 Jeffrey A. Rapaport Social network driven indexing system for instantly clustering people with concurrent focus on same topic into on-topic chat rooms and/or for generating on-topic search results tailored to user preferences regarding topic
JP4811481B2 (en) * 2009-03-13 2011-11-09 富士ゼロックス株式会社 Discussion support device and discussion support program
JP4853535B2 (en) * 2009-03-13 2012-01-11 富士ゼロックス株式会社 Discussion support device and discussion support program
US20120042263A1 (en) 2010-08-10 2012-02-16 Seymour Rapaport Social-topical adaptive networking (stan) system allowing for cooperative inter-coupling with external social networking systems and other content sources
US20120209920A1 (en) * 2011-02-10 2012-08-16 Microsoft Corporation Social influencers discovery
US9870424B2 (en) 2011-02-10 2018-01-16 Microsoft Technology Licensing, Llc Social network based contextual ranking
US8676937B2 (en) 2011-05-12 2014-03-18 Jeffrey Alan Rapaport Social-topical adaptive networking (STAN) system allowing for group based contextual transaction offers and acceptances and hot topic watchdogging
US8832062B1 (en) 2012-01-31 2014-09-09 Google Inc. Experience sharing system and method
US8812528B1 (en) 2012-01-31 2014-08-19 Google Inc. Experience sharing system and method
US8825083B1 (en) 2012-01-31 2014-09-02 Google Inc. Experience sharing system and method
US8903852B1 (en) 2012-01-31 2014-12-02 Google Inc. Experience sharing system and method
US8832191B1 (en) 2012-01-31 2014-09-09 Google Inc. Experience sharing system and method
US8832127B1 (en) 2012-01-31 2014-09-09 Google Inc. Experience sharing system and method
US9275403B2 (en) * 2012-01-31 2016-03-01 Google Inc. Experience sharing system and method
US8938713B2 (en) * 2012-02-09 2015-01-20 International Business Machines Corporation Developing a collective operation for execution in a parallel computer
US10242404B2 (en) 2012-04-30 2019-03-26 Paresh Ashok Khanapurkar System, method, and apparatus for providing a prediction-based marketplace
US9571443B2 (en) 2012-10-12 2017-02-14 International Business Machines Corporation Mobile device message enabled on-line community bulletin board
US9047327B2 (en) 2012-12-03 2015-06-02 Google Technology Holdings LLC Method and apparatus for developing a social hierarchy
US9521171B2 (en) * 2013-03-13 2016-12-13 Microsoft Technology Licensing, Llc Action processing in information exchange services

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010056391A1 (en) * 2000-01-14 2001-12-27 Schultz Frederick J. Method and apparatus for managing and optimizing stock options
US6473084B1 (en) * 1999-09-08 2002-10-29 C4Cast.Com, Inc. Prediction input
US20020174056A1 (en) * 2001-05-21 2002-11-21 Mark Sefein System and method for providing user-specific options trading data
US20020198866A1 (en) * 2001-03-13 2002-12-26 Reiner Kraft Credibility rating platform
US6556960B1 (en) * 1999-09-01 2003-04-29 Microsoft Corporation Variational inference engine for probabilistic graphical models
US20040111353A1 (en) * 2002-12-03 2004-06-10 Ellis Robert A. System and method for managing investment information
US6807566B1 (en) * 2000-08-16 2004-10-19 International Business Machines Corporation Method, article of manufacture and apparatus for processing an electronic message on an electronic message board
US20050080695A1 (en) * 2003-10-09 2005-04-14 Gatto Joseph G. System and method for facilitating the selection of security analyst research reports
US6907403B1 (en) * 2000-07-13 2005-06-14 C4Cast.Com, Inc. Identifying industry sectors using statistical clusterization
US7072863B1 (en) * 1999-09-08 2006-07-04 C4Cast.Com, Inc. Forecasting using interpolation modeling
US7155510B1 (en) * 2001-03-28 2006-12-26 Predictwallstreet, Inc. System and method for forecasting information using collective intelligence from diverse sources
US20070156574A1 (en) * 2000-07-18 2007-07-05 Edge Capture, Llc Automated trading system in an electronic trading exchange
US20080161524A1 (en) * 2006-11-28 2008-07-03 He Yan Photopolymer-based dielectric materials and methods of preparation and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090859A1 (en) * 2000-05-19 2001-11-29 Netscape Communications Corporation Adaptive multi-tier authentication system
CN1614605A (en) * 2003-11-08 2005-05-11 鸿富锦精密工业(深圳)有限公司 Income predicting system and method
US7451213B2 (en) * 2005-09-30 2008-11-11 Iq Company Online forecasting system and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556960B1 (en) * 1999-09-01 2003-04-29 Microsoft Corporation Variational inference engine for probabilistic graphical models
US6473084B1 (en) * 1999-09-08 2002-10-29 C4Cast.Com, Inc. Prediction input
US7072863B1 (en) * 1999-09-08 2006-07-04 C4Cast.Com, Inc. Forecasting using interpolation modeling
US20010056391A1 (en) * 2000-01-14 2001-12-27 Schultz Frederick J. Method and apparatus for managing and optimizing stock options
US6907403B1 (en) * 2000-07-13 2005-06-14 C4Cast.Com, Inc. Identifying industry sectors using statistical clusterization
US20070156574A1 (en) * 2000-07-18 2007-07-05 Edge Capture, Llc Automated trading system in an electronic trading exchange
US6807566B1 (en) * 2000-08-16 2004-10-19 International Business Machines Corporation Method, article of manufacture and apparatus for processing an electronic message on an electronic message board
US20020198866A1 (en) * 2001-03-13 2002-12-26 Reiner Kraft Credibility rating platform
US7155510B1 (en) * 2001-03-28 2006-12-26 Predictwallstreet, Inc. System and method for forecasting information using collective intelligence from diverse sources
US20020174056A1 (en) * 2001-05-21 2002-11-21 Mark Sefein System and method for providing user-specific options trading data
US20040111353A1 (en) * 2002-12-03 2004-06-10 Ellis Robert A. System and method for managing investment information
US20050080695A1 (en) * 2003-10-09 2005-04-14 Gatto Joseph G. System and method for facilitating the selection of security analyst research reports
US20080161524A1 (en) * 2006-11-28 2008-07-03 He Yan Photopolymer-based dielectric materials and methods of preparation and use thereof

Cited By (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060271949A1 (en) * 1998-06-05 2006-11-30 Decisionmark Corp. Method and apparatus for limiting access to video communications
US8010981B2 (en) 2001-02-08 2011-08-30 Decisionmark Corp. Method and system for creating television programming guide
US7913287B1 (en) 2001-06-15 2011-03-22 Decisionmark Corp. System and method for delivering data over an HDTV digital television spectrum
US8549611B2 (en) 2002-03-08 2013-10-01 Mcafee, Inc. Systems and methods for classification of messaging entities
US8561167B2 (en) 2002-03-08 2013-10-15 Mcafee, Inc. Web reputation scoring
US8578480B2 (en) 2002-03-08 2013-11-05 Mcafee, Inc. Systems and methods for identifying potentially malicious messages
US20060251068A1 (en) * 2002-03-08 2006-11-09 Ciphertrust, Inc. Systems and Methods for Identifying Potentially Malicious Messages
US20080184366A1 (en) * 2004-11-05 2008-07-31 Secure Computing Corporation Reputation based message processing
US8635690B2 (en) 2004-11-05 2014-01-21 Mcafee, Inc. Reputation based message processing
US8583266B2 (en) 2005-01-24 2013-11-12 Microsoft Corporation Seeding in a skill scoring framework
US9306886B2 (en) 2005-07-28 2016-04-05 Vaporstream, Inc. Electronic message recipient handling system and method with separated display of message content and header information
US9338111B2 (en) 2005-07-28 2016-05-10 Vaporstream, Inc. Electronic message recipient handling system and method with media component and header information separation
US9306885B2 (en) 2005-07-28 2016-04-05 Vaporstream, Inc. Electronic message send device handling system and method with media component and header information separation
US8291026B2 (en) 2005-07-28 2012-10-16 Vaporstream Incorporated Reduced traceability electronic message system and method for sending header information before message content
US9313156B2 (en) 2005-07-28 2016-04-12 Vaporstream, Inc. Electronic message send device handling system and method with separated display and transmission of message content and header information
US8935351B2 (en) 2005-07-28 2015-01-13 Vaporstream, Inc. Electronic message content and header restrictive recipient handling system and method
US9313155B2 (en) 2005-07-28 2016-04-12 Vaporstream, Inc. Electronic message send device handling system and method with separation of message content and header information
US8886739B2 (en) 2005-07-28 2014-11-11 Vaporstream, Inc. Electronic message content and header restrictive send device handling system and method
US12074841B2 (en) 2005-07-28 2024-08-27 Snap Inc. Sender-correlated reply ID generation in electronic messaging system
US9313157B2 (en) 2005-07-28 2016-04-12 Vaporstream, Inc. Electronic message recipient handling system and method with separation of message content and header information
US9413711B2 (en) 2005-07-28 2016-08-09 Vaporstream, Inc. Electronic message handling system and method between sending and recipient devices with separation of display of media component and header information
US9282081B2 (en) 2005-07-28 2016-03-08 Vaporstream Incorporated Reduced traceability electronic message system and method
US20100064016A1 (en) * 2005-07-28 2010-03-11 Vaporstream Incorporated Reduced Traceability Electronic Message System and Method
US11652775B2 (en) 2005-07-28 2023-05-16 Snap Inc. Reply ID generator for electronic messaging system
US10819672B2 (en) 2005-07-28 2020-10-27 Vaporstream, Inc. Electronic messaging system for mobile devices with reduced traceability of electronic messages
US10412039B2 (en) 2005-07-28 2019-09-10 Vaporstream, Inc. Electronic messaging system for mobile devices with reduced traceability of electronic messages
US7617190B2 (en) 2005-11-29 2009-11-10 Microsoft Corporation Data feeds for management systems
US20070124430A1 (en) * 2005-11-29 2007-05-31 Microsoft Corporation Tags for management systems
US20070124285A1 (en) * 2005-11-29 2007-05-31 Microsoft Corporation Data feeds for management systems
US7912933B2 (en) * 2005-11-29 2011-03-22 Microsoft Corporation Tags for management systems
US20080288277A1 (en) * 2006-01-10 2008-11-20 Mark Joseph Fasciano Methods for encouraging charitable social networking
US7620636B2 (en) 2006-01-10 2009-11-17 Stay Awake Inc. Method and apparatus for collecting and storing information about individuals in a charitable donations social network
US20070168511A1 (en) * 2006-01-17 2007-07-19 Brochu Jason M Method and apparatus for user moderation of online chat rooms
US7870209B2 (en) * 2006-01-17 2011-01-11 International Business Machines Corporation Method and apparatus for user moderation of online chat rooms
US20080263204A1 (en) * 2006-01-17 2008-10-23 Brochu Jason M Method and apparatus for user moderation of online chat rooms
US20070192169A1 (en) * 2006-02-16 2007-08-16 Microsoft Corporation Reputation System
US8374973B2 (en) * 2006-02-16 2013-02-12 Microsoft Corporation Reputation system
US20080140477A1 (en) * 2006-05-24 2008-06-12 Avadis Tevanian Online Community-Based Vote Security Performance Predictor
US8725830B2 (en) 2006-06-22 2014-05-13 Linkedin Corporation Accepting third party content contributions
US9202072B2 (en) 2006-06-22 2015-12-01 Linkedin Corporation Accepting third party content contributions
US9754102B2 (en) 2006-08-07 2017-09-05 Webroot Inc. Malware management through kernel detection during a boot sequence
US20080077704A1 (en) * 2006-09-24 2008-03-27 Void Communications, Inc. Variable Electronic Communication Ping Time System and Method
US10050917B2 (en) 2007-01-24 2018-08-14 Mcafee, Llc Multi-dimensional reputation scoring
US9009321B2 (en) 2007-01-24 2015-04-14 Mcafee, Inc. Multi-dimensional reputation scoring
US8762537B2 (en) 2007-01-24 2014-06-24 Mcafee, Inc. Multi-dimensional reputation scoring
US8763114B2 (en) 2007-01-24 2014-06-24 Mcafee, Inc. Detecting image spam
US20100306846A1 (en) * 2007-01-24 2010-12-02 Mcafee, Inc. Reputation based load balancing
US9544272B2 (en) 2007-01-24 2017-01-10 Intel Corporation Detecting image spam
US8578051B2 (en) * 2007-01-24 2013-11-05 Mcafee, Inc. Reputation based load balancing
US20080189634A1 (en) * 2007-02-01 2008-08-07 Avadis Tevanian Graphical Prediction Editor
US9392026B2 (en) * 2007-02-02 2016-07-12 Microsoft Technology Licensing, Llc Real time collaboration using embedded data visualizations
US20130311904A1 (en) * 2007-02-02 2013-11-21 Microsoft Corporation Real Time Collaboration Using Embedded Data Visualizations
US8386576B2 (en) 2007-03-21 2013-02-26 Google Inc. Graphical user interface for messaging system
US9021372B2 (en) 2007-03-21 2015-04-28 Google Inc. System and method for concurrent display of messages from multiple conversations
US8006191B1 (en) 2007-03-21 2011-08-23 Google Inc. Chat room with thin walls
US9619813B2 (en) 2007-03-22 2017-04-11 Google Inc. System and method for unsubscribing from tracked conversations
US8301698B2 (en) * 2007-03-22 2012-10-30 Google Inc. Voting in chat system without topic-specific rooms
US9876754B2 (en) 2007-03-22 2018-01-23 Google Llc Systems and methods for relaying messages in a communications system based on user interactions
US9787626B2 (en) 2007-03-22 2017-10-10 Google Inc. Systems and methods for relaying messages in a communication system
US20130254306A1 (en) * 2007-03-22 2013-09-26 Monica Anderson Voting in Chat System Without Topic-Specific Rooms
US10225229B2 (en) 2007-03-22 2019-03-05 Google Llc Systems and methods for presenting messages in a communications system
US20110082907A1 (en) * 2007-03-22 2011-04-07 Monica Anderson Chat System Without Topic-Specific Rooms
US20110087735A1 (en) * 2007-03-22 2011-04-14 Monica Anderson Voting in Chat System Without Topic-Specific Rooms
US7904500B1 (en) 2007-03-22 2011-03-08 Google Inc. Advertising in chat system without topic-specific rooms
US7899869B1 (en) * 2007-03-22 2011-03-01 Google Inc. Broadcasting in chat system without topic-specific rooms
US7865553B1 (en) * 2007-03-22 2011-01-04 Google Inc. Chat system without topic-specific rooms
US20130013719A1 (en) * 2007-03-22 2013-01-10 Monica Anderson Chat System Without Topic-Specific Rooms
US20120311061A1 (en) * 2007-03-22 2012-12-06 Monica Anderson Chat system without topic-specific rooms
US9577964B2 (en) 2007-03-22 2017-02-21 Google Inc. Broadcasting in chat system without topic-specific rooms
US8606870B2 (en) * 2007-03-22 2013-12-10 Google Inc. Chat system without topic-specific rooms
US9948596B2 (en) 2007-03-22 2018-04-17 Google Llc Systems and methods for relaying messages in a communications system
US7860928B1 (en) * 2007-03-22 2010-12-28 Google Inc. Voting in chat system without topic-specific rooms
US8312090B2 (en) * 2007-03-22 2012-11-13 Google Inc. Broadcasting in chat system without topic-specific rooms
US10154002B2 (en) 2007-03-22 2018-12-11 Google Llc Systems and methods for permission-based message dissemination in a communications system
US8886738B2 (en) * 2007-03-22 2014-11-11 Google Inc. Chat system without topic-specific rooms
US10320736B2 (en) 2007-03-22 2019-06-11 Google Llc Systems and methods for relaying messages in a communications system based on message content
US8301709B2 (en) * 2007-03-22 2012-10-30 Google Inc. Chat system without topic-specific rooms
US20110153761A1 (en) * 2007-03-22 2011-06-23 Monica Anderson Broadcasting In Chat System Without Topic-Specific Rooms
US8769029B2 (en) * 2007-03-22 2014-07-01 Google Inc. Voting in chat system without topic-specific rooms
US10616172B2 (en) 2007-03-22 2020-04-07 Google Llc Systems and methods for relaying messages in a communications system
US8868669B2 (en) 2007-03-22 2014-10-21 Google Inc. Broadcasting in chat system without topic-specific rooms
US11949644B2 (en) 2007-03-22 2024-04-02 Google Llc Systems and methods for relaying messages in a communications system
US20080243877A1 (en) * 2007-04-02 2008-10-02 International Business Machines Corporation Promoting content from one content management system to another content management system
US8095873B2 (en) * 2007-04-02 2012-01-10 International Business Machines Corporation Promoting content from one content management system to another content management system
US20080270915A1 (en) * 2007-04-30 2008-10-30 Avadis Tevanian Community-Based Security Information Generator
US20090012965A1 (en) * 2007-07-01 2009-01-08 Decisionmark Corp. Network Content Objection Handling System and Method
US20090006211A1 (en) * 2007-07-01 2009-01-01 Decisionmark Corp. Network Content And Advertisement Distribution System and Method
US20090024402A1 (en) * 2007-07-20 2009-01-22 Ebay Inc. Search using multi-faceted reputation information
US10133772B2 (en) * 2007-07-20 2018-11-20 Ebay Inc. Multi-dimensional query statement modification
US8868568B2 (en) * 2007-09-06 2014-10-21 Linkedin Corporation Detecting associates
US20130097531A1 (en) * 2007-09-06 2013-04-18 Linkedin Corporation Detecting associates
WO2009055712A1 (en) * 2007-10-26 2009-04-30 Accoona Corp Apparatuses, methods and systems for a forum ferreting system
US20100299326A1 (en) * 2007-10-26 2010-11-25 Scott Germaise Apparatuses, Methods and Systems For A Forum Ferreting System
US8621559B2 (en) 2007-11-06 2013-12-31 Mcafee, Inc. Adjusting filter or classification control settings
US20090187988A1 (en) * 2008-01-18 2009-07-23 Microsoft Corporation Cross-network reputation for online services
US8001582B2 (en) 2008-01-18 2011-08-16 Microsoft Corporation Cross-network reputation for online services
US8484700B2 (en) 2008-01-18 2013-07-09 Microsoft Corporation Cross-network reputation for online services
US7925516B2 (en) 2008-03-14 2011-04-12 Microsoft Corporation Leveraging global reputation to increase personalization
US20090234663A1 (en) * 2008-03-14 2009-09-17 Microsoft Corporation Leveraging global reputation to increase personalization
US8589503B2 (en) 2008-04-04 2013-11-19 Mcafee, Inc. Prioritizing network traffic
US8606910B2 (en) 2008-04-04 2013-12-10 Mcafee, Inc. Prioritizing network traffic
US8683355B1 (en) * 2008-06-24 2014-03-25 Sprint Communications Company L.P. Chat space system and method
US20100100942A1 (en) * 2008-10-22 2010-04-22 Minyanville Publishing And Multimedia, Llc System and Method for Exchanging Information Regarding Financial Markets in a Moderated Environment
US20100250652A1 (en) * 2008-11-06 2010-09-30 Kabushiki Kaisha Square Enix (Also Trading As Square Enix Co., Ltd.) Message posting system
US8230015B2 (en) 2008-11-06 2012-07-24 Kabushiki Kaisha Square Enix Message posting system
EP2184704A1 (en) * 2008-11-06 2010-05-12 Kabushiki Kaisha Square Enix (also trading as Square Enix Co., Ltd.) Message posting system
US20100257183A1 (en) * 2009-04-01 2010-10-07 Korea Institute Of Science And Technology Assessment of a user reputation and a content reliability
US8176057B2 (en) * 2009-04-01 2012-05-08 Korea Institute Of Science And Technology Assessment of a user reputation and a content reliability
US11489857B2 (en) 2009-04-21 2022-11-01 Webroot Inc. System and method for developing a risk profile for an internet resource
US8438386B2 (en) 2009-04-21 2013-05-07 Webroot Inc. System and method for developing a risk profile for an internet service
US20100269168A1 (en) * 2009-04-21 2010-10-21 Brightcloud Inc. System And Method For Developing A Risk Profile For An Internet Service
US8621638B2 (en) 2010-05-14 2013-12-31 Mcafee, Inc. Systems and methods for classification of messaging entities
US9535884B1 (en) 2010-09-30 2017-01-03 Amazon Technologies, Inc. Finding an end-of-body within content
US9661017B2 (en) 2011-03-21 2017-05-23 Mcafee, Inc. System and method for malware and network reputation correlation
US9122877B2 (en) * 2011-03-21 2015-09-01 Mcafee, Inc. System and method for malware and network reputation correlation
US20150154610A1 (en) * 2011-05-13 2015-06-04 Google Inc. Detecting potentially false business listings based on an anomaly detection threshold
US20120304072A1 (en) * 2011-05-23 2012-11-29 Microsoft Corporation Sentiment-based content aggregation and presentation
US9106680B2 (en) 2011-06-27 2015-08-11 Mcafee, Inc. System and method for protocol fingerprinting and reputation correlation
US9294420B2 (en) * 2011-11-29 2016-03-22 International Business Machines Corporation Augmenting a real-time collaboration with ranked electronic bulletin board posts
US20140330909A1 (en) * 2011-11-29 2014-11-06 International Business Machines Corporation Augmenting a real-time collaboration with ranked electronic bulletin board posts
US9516062B2 (en) 2012-04-10 2016-12-06 Mcafee, Inc. System and method for determining and using local reputations of users and hosts to protect information in a network environment
US8931043B2 (en) 2012-04-10 2015-01-06 Mcafee Inc. System and method for determining and using local reputations of users and hosts to protect information in a network environment
US20130311556A1 (en) * 2012-05-18 2013-11-21 Yahoo! Inc. System and Method for Generating Theme Based Dynamic Groups
US10535041B2 (en) * 2012-06-26 2020-01-14 Oath Inc. System and method of predicting community member responsiveness
US20130346496A1 (en) * 2012-06-26 2013-12-26 Yoelle Maarek System and method of predicting community member responsiveness
US9436709B1 (en) * 2013-01-16 2016-09-06 Google Inc. Content discovery in a topical community
CN104050228A (en) * 2013-03-14 2014-09-17 优米有限公司 System and method for statistically determining bias in online survey results
US9465505B1 (en) * 2013-05-14 2016-10-11 Google Inc. Reputation based collaboration session
US10531043B2 (en) 2013-05-14 2020-01-07 Google Llc Reputation based collaboration session
US10223637B1 (en) * 2013-05-30 2019-03-05 Google Llc Predicting accuracy of submitted data
US11526773B1 (en) * 2013-05-30 2022-12-13 Google Llc Predicting accuracy of submitted data
US10504048B2 (en) * 2013-06-27 2019-12-10 Folloze, Inc. Systems and methods for enterprise content curation
US9811830B2 (en) 2013-07-03 2017-11-07 Google Inc. Method, medium, and system for online fraud prevention based on user physical location data
US10134041B2 (en) 2013-07-03 2018-11-20 Google Llc Method, medium, and system for online fraud prevention
US11308496B2 (en) 2013-07-03 2022-04-19 Google Llc Method, medium, and system for fraud prevention based on user activity data
US9578052B2 (en) 2013-10-24 2017-02-21 Mcafee, Inc. Agent assisted malicious application blocking in a network environment
WO2015131280A1 (en) * 2014-03-04 2015-09-11 Two Hat Security Research Corp. System and method for managing online messages using visual feedback indicator
US10049138B1 (en) * 2014-03-05 2018-08-14 Google Llc Reputation and engagement system for online community management
US20160203724A1 (en) * 2015-01-13 2016-07-14 Apollo Education Group, Inc. Social Classroom Integration And Content Management
US20160232800A1 (en) * 2015-02-11 2016-08-11 Apollo Education Group, Inc. Integrated social classroom and performance scoring
WO2018156773A1 (en) * 2017-02-22 2018-08-30 Margaret Pfeiffer Hospital staff communication and development system
US11321286B1 (en) * 2018-01-26 2022-05-03 Wells Fargo Bank, N.A. Systems and methods for data quality certification
US11625372B1 (en) 2018-01-26 2023-04-11 Wells Fargo Bank, N.A. Systems and methods for data quality certification
US12050570B1 (en) * 2018-01-26 2024-07-30 Wells Fargo Bank, N.A. Systems and methods for data quality certification
US10666695B2 (en) 2018-07-25 2020-05-26 Eduard Weinwurm Group chat application with reputation scoring
US11381614B2 (en) 2018-07-25 2022-07-05 Eduard Weinwurm Group chat application with reputation scoring
WO2024102783A1 (en) * 2022-11-08 2024-05-16 Curators Of The University Of Missouri System and method for artificial intelligence and artificial intelligence-human hybrid moderation

Also Published As

Publication number Publication date
CN101548274A (en) 2009-09-30
US20110047119A1 (en) 2011-02-24
US7991728B2 (en) 2011-08-02

Similar Documents

Publication Publication Date Title
US7991728B2 (en) Computer reputation-based message boards and forums
US9721266B2 (en) System and method for capturing information for conversion into actionable sales leads
Hsu et al. What matters, matters differently: a conjoint analysis of the decision policies of angel and venture capital investors
Yang et al. A typology of operational approaches for stakeholder analysis and engagement
Kumar et al. Analyzing the diffusion of global customer relationship management: A cross-regional modeling framework
US7979544B2 (en) Computer program product and method for estimating internet traffic
US10475054B1 (en) System and method for capturing information for conversion into actionable sales leads
US20070174108A1 (en) Multi-region market research study processing
CN116911650A (en) Extrapolating trends in trust scores
US20080120411A1 (en) Methods and System for Social OnLine Association and Relationship Scoring
US20080109491A1 (en) Method and system for managing reputation profile on online communities
US20120130934A1 (en) Smart survey with progressive discovery
US8160970B2 (en) Method for using collaborative point-of-view management within an electronic forum
US10459602B2 (en) Method and system for electronic collaboration
WO2009105277A1 (en) System and method for measuring and managing distributed online conversations
US20060036603A1 (en) Apparatus, system, and methods for collaborative research
KR20080086454A (en) Data independent relevance evaluation utilizing cognitive concept relationship
US11483266B2 (en) Method and system for electronic collaboration
Appiah-Adu et al. Building capability for organizational success: An emerging market perspective
US10853428B2 (en) Computing a ranked feature list for content distribution in a first categorization stage and second ranking stage via machine learning
Qomariyah The influences of internal and external factors in auditor choice: a literature study
French et al. An empirical study evaluating social networking continuance and success
Huang et al. The media and CEO dominance
US20130339205A1 (en) Asset Valuation and Quantifying Personal Worth
WO2007041459A2 (en) Contributor reputation-based message boards and forums

Legal Events

Date Code Title Description
AS Assignment

Owner name: PREDICTWALLSTREET, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAPLAN, CRAIG;REEL/FRAME:022025/0272

Effective date: 20081219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION