US20070112268A1 - Sheath for use with an ultrasound element - Google Patents
Sheath for use with an ultrasound element Download PDFInfo
- Publication number
- US20070112268A1 US20070112268A1 US11/418,491 US41849106A US2007112268A1 US 20070112268 A1 US20070112268 A1 US 20070112268A1 US 41849106 A US41849106 A US 41849106A US 2007112268 A1 US2007112268 A1 US 2007112268A1
- Authority
- US
- United States
- Prior art keywords
- lumen
- drug delivery
- sheath
- ultrasound
- elongate body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00131—Accessories for endoscopes
- A61B1/00135—Oversleeves mounted on the endoscope prior to insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B17/2202—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0092—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
- A61B2017/22084—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance stone- or thrombus-dissolving
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320072—Working tips with special features, e.g. extending parts
- A61B2017/320073—Working tips with special features, e.g. extending parts probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320084—Irrigation sleeves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M2025/0057—Catheters delivering medicament other than through a conventional lumen, e.g. porous walls or hydrogel coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/105—Balloon catheters with special features or adapted for special applications having a balloon suitable for drug delivery, e.g. by using holes for delivery, drug coating or membranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0068—Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
- A61M25/007—Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
Definitions
- the present invention relates to an ultrasound enhanced drug delivery apparatus, and more particularly, to an ultrasound element which can be movably positioned within a drug delivery sheath.
- Thrombus formation is a protective and healing mechanism, however, formation of thrombi can be detrimental. For instance, if a blood vessel becomes blocked, distal tissue may be deprived of oxygen with resulting damage or necrosis. In the case of cerebral circulation, an arterial thrombus blockage is one cause of cerebral strokes. In the case of coronary thrombosis, blockage and subsequent distal tissue necrosis of cardiac muscle tissue will impair cardiac pump output, may cause electrical abnormalities, and potentially catastrophic heart failure and death. The thrombus can form at the site of artery narrowing due to arterial wall damage or disease, or the thrombus may have broken free from some proximal site only to become wedged in a distal stenosis. Thrombus can also form subsequent to attempts to remove a stenosis using balloon angioplasty or rotary atherectomy.
- Ultrasound sheaths have been described specifically for removal or dissolution of thrombus (U.S. Patents: Tachibana U.S. Pat. No. 5,197,946; Bernstein U.S. Pat. No. 5,163,421; Weng U.S. Pat. No. 5,269,297).
- the sheaths of Bernstein and Weng place an ultrasound generator external to the body and transmit acoustic energy through a metal wire wave-guide to the distal sheath.
- the sheath of Tachibana includes a small ultrasound element positioned at the distal end of the sheath that is energized by electrical wires.
- ultrasound energy is delivered to and radiated from the distal tip of the sheath in the vicinity of a blocking thrombus.
- the application of ultrasound can directly emulsify nearby thrombus through the motion of the sheath tip, associated cavitation, and bioeffects.
- the application of ultrasound can also enhance delivery of drug into a vessel wall.
- the vessel wall is diseased or has been injured during balloon angioplasty or rotary atherectomy. Narrowing of the vessel can occur in response to these injuries.
- Certain drugs, such as heparin, may inhibit this narrowing of the blood vessel if the drug can be delivered into the blood vessel wall.
- a sheath can be used to deliver drugs into any portion of the body or target organ. Ultrasound energy in the presence of these drugs can enhance the delivery through and across bodily fluids and tissue.
- an ultrasound drug delivery sheath placed in a blood vessel will assist delivery across the blood vessel wall, whether it be an artery or a vein, into the surrounding muscle or tissue.
- the intensity of the ultrasound delivered from a cylindrical ultrasound element decreases exponentially with radial distance from the sheath tip.
- treatment of thrombi is limited to the circumferential area surrounding of the sheath tip of a sheath with an ultrasound element. This limited treatment area may be effective for small length clots, however, larger clots must be treated one section at a time.
- thrombi can be large.
- a deep vein thrombus in a patient's lower leg can have a length from several centimeters to as much as 30-50 cm long.
- Early treatment protocols for these long thrombi used a drug infusion sheath to drip lytic drug at one end of a thrombus. As the thrombus was dissolved, the sheath would be advanced. This process was repeated until the entire clot was dissolved.
- More current therapy for a deep vein thrombosis is to use an infusion sheath with drug infusion ports distributed along the lateral dimension of the sheath. The sheath can be pushed through the entire length of the clot. The thrombolytic drug is then infused throughout the lesion for a period of hours.
- an ultrasound sheath that is useful for treating a deep vein thrombus to enhance and accelerate the action of the thrombolytic drug.
- an ultrasound sheath that is useful for treating vessel lesions, particularly those that have extensive lengths.
- a system for delivering ultrasound energy to a treatment section in a vessel includes a sheath with a utility lumen and an energy delivery section at least partially constructed from a material which transmits ultrasound energy.
- the system also includes a drug delivery member having a plurality of drug delivery ports which are positioned adjacent the energy delivery section.
- the system further includes an elongated body including at least one ultrasound element and configured to be movably positioned within the utility lumen to transmit the ultrasound energy from the ultrasound element through the energy delivery section.
- the system in another embodiment includes a sheath having a utility lumen configured to movably receive an elongated body with an ultrasound element and an energy delivery section at least partially constructed from a material which transmits ultrasound energy from the ultrasound element.
- the system also includes a drug delivery member having a plurality of drug delivery ports which are configured to be positioned adjacent the energy delivery section.
- a sheath for delivering ultrasound energy to a treatment section in a vessel is also disclosed.
- the sheath includes a utility lumen configured to movably receive an elongated body with an ultrasound element.
- the sheath also includes an energy delivery section at least partially constructed from a material which transmits ultrasound energy from the ultrasound element.
- a plurality of drug delivery ports are positioned adjacent the energy delivery section.
- the sheath in another embodiment, includes a utility lumen configured to movably receive an elongated body with an ultrasound element.
- the sheath also includes an energy delivery section at least partially constructed from a material which transmits ultrasound energy from the ultrasound element. At least one temperature sensor is positioned adjacent the energy delivery section.
- a system for delivering ultrasound energy to a treatment section in a vessel includes a sheath having a utility lumen and an energy delivery section which is at least partially constructed from a material which transmits ultrasound energy.
- An expandable balloon positioned at least partially adjacent the energy delivery section.
- the system also includes an elongated body with at least one ultrasound element. The elongated body is configured to be movably positioned within the utility lumen to transmit the ultrasound energy from the ultrasound element through the energy delivery section.
- FIG. 1A is a sideview of a sheath and elongated body according to the present invention.
- FIG. 1B is a sideview of a sheath and elongated body according to the present invention.
- FIG. 2A is a cross section of a sheath with an elongated body positioned within a utility lumen.
- FIG. 2B is a cross section of a sheath proximal end.
- FIG. 2C is a cross section of an elongated body including a body lumen.
- FIG. 2D is a cross section of an elongated body including a body lumen positioned within a sheath including a closed occlusion device.
- FIG. 2E is a cross section of an elongated body including a body lumen positioned within a sheath including a closed occlusion device.
- FIG. 3A is a sideview of a sheath distal end.
- FIG. 3B is a cross sectional view of a sheath distal end.
- FIG. 3C is a sideview of a sheath distal end.
- FIG. 3D is a cross sectional view of a sheath distal end.
- FIG. 3E illustrates a drug delivery member with slit shaped drug delivery ports.
- FIG. 3F illustrates a drug delivery member with arc shaped slits as drug delivery ports.
- FIG. 4A is a sideview of a sheath distal end with drug delivery ports of increasing size.
- FIG. 4B is a is a cross sectional view of a sheath distal end.
- FIG. 5 is a cross section of a sheath distal end with an integral occlusion device.
- FIG. 6A is a sideview of a sheath including a balloon.
- FIG. 6B is a cross section a balloon positioned at a distal end of a sheath which includes drug delivery ports configured to produce an even flow along the length of the energy delivery section.
- FIG. 6C is a cross section of a balloon positioned at a distal end of a sheath which includes an expansion lumen for expanding the balloon and delivering a drug solution.
- FIG. 6D is a cross section of a balloon positioned at a distal end of a sheath which includes an expansion lumen for expanding the balloon and drug delivery ports configured to produce an even flow along the length of the energy delivery section.
- FIG. 7A illustrates ultrasound elements connected in parallel.
- FIG. 7B illustrates ultrasound elements connected in series.
- FIG. 7C illustrates ultrasound elements connected with a common wire.
- FIG. 8 illustrates temperature sensors connected with a common wire.
- FIG. 9 is a block diagram of a feedback control system.
- FIG. 10A is a cross section of a treatment site.
- FIG. 10B is a sideview of a sheath distal end positioned at a treatment site.
- FIG. 10C is a sideview of a sheath distal end positioned at a treatment site.
- FIG. 10D is a sideview of a sheath proximal end.
- FIG. 10E is a cross section of a sheath distal end positioned at a treatment site.
- FIG. 10F illustrates an ultrasound element positioned within a utility lumen.
- FIG. 10G is a sideview of a sheath distal end positioned at a treatment site.
- FIG. 11A illustrates a balloon positioned adjacent a clot.
- FIG. 11B illustrates a balloon expanded into contact with the clot of FIG. 11A .
- the invention relates to a system for delivering ultrasound energy to a treatment section in a vessel.
- the system includes a sheath with an energy delivery section at least partially constructed from a material which transmits ultrasound energy.
- the sheath is designed to be positioned within a vessel such that at least a portion of the energy delivery section is positioned adjacent a treatment site within the vessel.
- the system also includes an elongated body with an ultrasound element positioned at its distal end. The elongated body can be received in a utility lumen included in the sheath such that the ultrasound element is positioned within the energy delivery section. Ultrasound energy can be delivered from the ultrasound element through the energy delivery section to the treatment site.
- the elongated body can be moved within the utility lumen so the ultrasound element can be moved relative to the energy delivery section.
- the ultrasound element can be moved within the treatment site to deliver ultrasound energy to different sections of the treatment site.
- the motion of the ultrasound element relative to the treatment site can help emulsify a clot, thrombus or other blockage at the treatment site. Since, the ultrasound element is being moved relative to the treatment site within the sheath, the movement of the ultrasound element relative to the treatment site does not damage the vessel including the treatment site.
- the elongated body can include a cooling fluid lumen which passes adjacent the ultrasound element.
- a cooling fluid lumen can be formed between the elongated body and the sheath.
- a cooling fluid can be passed through the cooling fluid lumen to cool the ultrasound element.
- the heating of the ultrasound element can limit the amount of power which can be provided to the ultrasound element. Cooling the ultrasound element during its operation allows the power provided to the ultrasound element to be increased. As a result, cooling the ultrasound element can increase the efficiency of the treatment Movement of the ultrasound element can be accomplished manually or through use of an automated method.
- the system can also include a drug delivery member which includes a plurality of drug delivery ports which are positioned adjacent to the energy delivery section.
- the drug delivery ports permit delivery of a drug solution to the treatment site.
- Ultrasound energy can also be delivered to the treatment site to enhance the effect of the drug within the treatment site.
- the drug delivery member can be external to the energy delivery section. As a result, a drug solution does not need to be delivered through the energy delivery section allowing the energy delivery section to be constructed o-f acoustically transparent materials which cannot be easily extruded.
- the energy delivery section can also be very thin since a drug delivery lumen need not pass through materials comprising the energy delivery section. Thinner materials increase the acoustic transparency of the energy delivery section. Suitable materials for the energy delivery section include, but are not limited to, polyimides.
- the portion of the sheath which is not included in the energy delivery section can be constructed from materials such as polyurethanes, copolyesters, or thermoplastic elastomers which provides the sheath with kink resistance, rigidity and structural support necessary to transport the energy delivery section to the treatment site.
- the sheath can also include at least one temperature sensor positioned adjacent the energy delivery section.
- the temperature sensors can be coupled with a feedback control system.
- the feedback control system can be used to adjust the level of power delivered to the ultrasound element in response to the signal from at least one temperature sensor. As a result, the temperature at the treatment site can be maintained within a desired range during the treatment.
- FIG. 1A illustrates a drug delivery system 10 according to the present invention.
- the system 10 includes a sheath 12 with a sheath proximal end 14 and a sheath distal end 16 .
- the sheath distal end 16 includes, a support section 17 , an energy delivery section 18 , temperature sensors 20 and an occlusion device 22 .
- the sheath proximal end 14 includes temperature sensor leads 24 and a cooling fluid fitting 26 .
- a utility lumen 28 extends through the sheath 12 along the length of the sheath 12 .
- a drug delivery member 30 is positioned adjacent the energy delivery section.
- the drug delivery member 30 includes a drug inlet port 32 which can be coupled with a drug source via a connector such as a Luer type fitting.
- the drug delivery member 30 can be incorporated into the support section 17 as illustrated in FIG. 1A or can external to the support section as illustrated in FIG. 1B .
- the system 10 also includes an elongated body 34 with a body proximal end 36 and a body distal end 38 .
- An ultrasound element 40 is positioned at the body distal end 38 .
- the elongated body 34 has an outer diameter which permits the elongated body. 34 to be inserted into the utility lumen 28 .
- FIG. 2A illustrates the elongated body 34 threaded through the utility lumen 28 until the ultrasound element 40 is positioned within the energy delivery section 18 .
- Suitable outer diameters of the elongated body 34 include, but are not limited to, 0.010′′-0.100′′.
- Suitable diameters of the utility lumen 28 include, but are not limited to 0.015′′-0.110′′.
- the utility lumen 28 extends through the occlusion device 22 .
- the portion of the utility lumen 28 extending through the occlusion device 22 has a diameter which can accommodate a guidewire (not shown) but which prevents the ultrasound element 40 from passing through the occlusion device 22 .
- Suitable inner diameters for the occlusion device 22 include, but are not limited to 0.005′′-0.050′′.
- the ultrasound element 40 can be rotated or moved within the energy delivery section 18 as illustrated by the arrows 52 illustrated in FIG. 2A .
- the movement of the ultrasound element 40 within the energy delivery section 18 can be caused by manipulating the body proximal section while holding the sheath proximal section stationary.
- the elongated body 34 can be at least partially constructed from a material which provides enough structural support to permit movement of the elongated body 34 within the sheath 12 without kinking of the elongated body 34 .
- Suitable materials for the elongated body 34 include, but are not limited to polyesters, polyurethanes, thermoplastic, elastomers.
- the outer diameter of the elongated body 34 can be smaller than the diameter of the utility lumen 28 to create a cooling fluid lumen 44 between the elongated body 34 and the utility lumen 28 .
- a cooling fluid can be flowed through the cooling fluid lumen 44 , past the ultrasound element 40 and through the occlusion device 22 .
- the flowrate of the cooling fluid and/or the power to the ultrasound element 40 can be adjusted to maintain the temperature of the ultrasound element 40 within a desired range.
- the sheath proximal end 14 can include a cap 46 as illustrated in FIG. 2B .
- a cooling fluid can be flowed from the cooling fluid fitting 26 through the cooling fluid lumen 44 as illustrated by the arrows 48 .
- the cap 46 includes a hemostasis valve 50 with an inner diameter which substantially matches the diameter of the elongated body 34 . The matched diameters reduces leaking of the cooling fluid between the cap 46 and the elongated body 34 .
- the ultrasound element 40 can be a hollow cylinder and the elongated body can include a body lumen 51 which extends through the ultrasound element 40 .
- the cooling fluid can be flowed through the body lumen past the ultrasound element 40 to provide cooling to the ultrasound element 40 .
- the occlusion device 22 can be integral with the sheath 12 and can have a closed end.
- the body lumen 51 can serve as a return lumen for the cooling fluid.
- the inside and the outside of the ultrasound element 40 are exposed to the cooling fluid to accelerate the cooling of the ultrasound element 40 .
- the flow of the cooling fluid can be reversed so the cooling lumen serves as the return cooling fluid lumen.
- the above cooling schemes permit the power provided to the ultrasound element to be increased in proportion to the cooling flow rate. Further, certain schemes can prevent exposure of the body to cooling fluids.
- the drug delivery member 30 includes a drug delivery portion which is positioned adjacent the energy delivery section 18 as illustrated in FIG. 3A . As illustrated in FIG. 3B , the drug delivery member 30 includes a drug delivery lumen 56 extending through the length of the drug delivery member. 30 . The drug delivery member 30 also includes a series of drug delivery ports 58 coupled with the drug delivery lumen 56 . A drug source coupled with the drug inlet port 32 can provide a pressure which drives a drug solution through the drug delivery lumen 56 and out the drug delivery ports 58 .
- a suitable material for the drug delivery member 30 includes, but is not limited to, polyimide, polyolefin, polyester.
- the sheath 12 can include a plurality of drug delivery members 30 .
- the drug delivery members 30 can be wound around the energy delivery section 18 or they can be positioned along the length of the energy delivery section 18 as illustrated in FIG. 3C .
- Each drug delivery member 30 can be coupled with the same drug inlet port 32 .
- each drug delivery member 30 is coupled with independent drug inlet ports 32 so different drug solutions can be delivered to different drug delivery ports 58 .
- the drug delivery ports 58 are positioned close enough to achieve a substantially even flow of drug solution around the circumference of the energy delivery section 18 and along the length of the energy delivery sections 18 .
- the proximity of adjacent drug delivery ports 58 can be changed by changing the density of drug delivery ports 58 along the drug delivery member, by changing the number of windings of the drug delivery member around the energy delivery section 18 or by changing the number of drug delivery members 30 included adjacent the energy delivery section 18 .
- a suitable displacements between adjacent drug delivery ports- 58 include, but are not limited to, from 0.1′′ to 1.0′′, preferable 0.2′′ to 0.6′′.
- the size of the drug delivery ports 58 can be the same or change along the length of the drug delivery member.
- the size of the drug delivery ports 58 distally positioned on the drug delivery section can be larger than the size of the drug delivery ports 58 which are proximally positioned on the drug delivery section.
- the increase in sizes of the drug delivery ports 58 can be designed to produce similar flowrates of drug solution through each drug delivery port 58 . This similar flowrate increases the uniformity of drug solution flowrate along the length of the sheath 12 .
- a suitable size for a drug delivery port 58 includes, but is not limited to 0.0005′′ to 0.0050′′.
- suitable sizes for proximally positioned drug delivery ports 58 includes, but is not limited to from 0.0001′′ to 0.005′′ and suitable sizes for distally positioned drug delivery ports 58 includes, but is not limited to 0.0005′′ to 0.0020′′.
- the increase in size between adjacent drug delivery ports can be substantially uniform between or along the drug delivery member.
- the dimensional increase of the drug delivery ports is dependent upon material and diameter of the drug delivery member.
- the drug delivery ports 58 can be burnt into the drug delivery member 30 with a laser.
- Uniformity of the drug solution flow along the length of the sheath 12 can also be increased by increasing the density of the drug delivery ports 58 toward the distal end of the drug delivery member.
- the drug delivery ports 58 can be slits with a straight shape as illustrated in FIG. 3E or an arcuate shape as illustrated in FIG. 3F .
- the drug delivery member 30 can be constructed from materials such as polyimide, nylon, pebax, polyurethane or silicon.
- the slits close and prevent delivery of additional drug solution.
- the stiffer the material used to construct the drug deliver member the higher the threshold pressure required to open the slit shaped drug delivery ports.
- the slit shape can also prevent the drug delivery ports 58 from opening when exposed to low pressures from outside the sheath 12 . As a result, slit shaped drug delivery ports can maximize control of drug delivery.
- the sheath 12 and energy delivery section 18 can be constructed from a single material as illustrated in FIG. 4A Suitable materials include, but are not limited to polyimide, polyolefin, polyester. The entire sheath or only the sheath proximal end may be reinforced by braiding, mesh or other constructions to increase flexibility, kink resistance, and pushability. As. illustrated in FIG. 4A , the drug delivery ports 58 can be included in the sheath 12 . The drug delivery ports 58 can be coupled with independent drug delivery lumens 28 as illustrated in FIG. 4B .
- the sheath can include a support section 17 which is constructed from a different material than the energy delivery section as illustrated in FIG. 5 .
- FIG. 5 also illustrates the occlusion device 22 as being integral with the energy delivery section 18 .
- the energy delivery section 18 can be constructed from a material which readily transmits ultrasound energy.
- the support section can be constructed from a material which provides structural strength and kink resistance. Further, the support section or the proximal end of the support section may be reinforced by braiding, mesh or other constructions to increase flexibility, kink resistance, and pushability.
- Suitable materials for the support section include, but are not limited to, polyimides, polyolefin, polyester.
- a suitable outer diameter for the support section includes, but is not limited to 0.020′′ to 0.200′′.
- Suitable materials for the energy delivery section 18 include, but are not limited to, polyolefins, polyimides, polyester and other low ultrasound impedance materials. Low ultrasound impedance materials are materials which readily transmit ultrasound energy with minimal absorption
- the sheath distal end 16 can include a balloon 59 as illustrated in FIG. 6A .
- the balloon 59 can be constructed from permeable membrane or a selectively permeable membrane which allows certain media to flow through the membrane while preventing other media from flowing through the membrane. Suitable materials for the balloon 59 include, but are not limited to cellulose, cellulose acetate, polyvinylchloride, polyolefin, polyurethane and polysulfone.
- the membrane pore sizes are preferably 5 A-2 ⁇ m, more preferably 50 A-900 A and most preferably 100 A-300 A in diameter.
- the balloon 59 can be positioned adjacent drug delivery ports 58 .
- the drug delivery ports 58 can be designed so a uniform flow occurs along the length of the energy delivery section 18 . This design can serve to prevent a pressure gradient from developing along the length of the balloon. Delivering a drug solution through the drug delivery ports 58 can serve to expand the balloon 59 .
- the balloon 59 is constructed from a membrane or a selectively permeable membrane, the drug solution can be delivered with enough pressure to drive the drug across the membrane.
- Various phoretic processes and apparatuses can also be used to drive the drug solution across the membrane.
- the pressure and/or phoresis may drive only certain components of the drug solution across the membrane while preventing other components from crossing the membrane.
- the balloon 59 can also be positioned adjacent one or more expansion ports 60 A coupled with an expansion lumen 60 B as illustrated in FIG. 6C .
- the drug solution can be delivered to the balloon 59 via the expansion lumen 60 B. Delivering a drug solution through the expansion lumen 60 B can serve to expand the balloon 59 .
- the balloon 59 is constructed from a membrane or a selectively permeable membrane, the drug can be delivered with enough pressure to drive the drug solution or certain components of the drug solution across the membrane.
- phoretic means can also be used to drive the drug solution or certain components of the drug solution across the membrane.
- the balloon 59 can, also be positioned adjacent expansion ports 60 A coupled with an expansion lumen 60 B and drug delivery ports 58 as illustrated in FIG. 6D .
- Different drug solutions can be delivered through the expansion ports 60 B and the drug delivery ports 58 .
- a media suitable for expanding the balloon 59 can be delivered through the expansion lumen 60 B and the expansion ports 60 A while the drug solution can be delivered through the drug delivery ports 58 .
- the balloon 59 is constructed from a membrane or a selectively permeable membrane, a medium which wets the membrane and enhances the permeability of the membrane can be delivered through the expansion ports 60 A.
- a drug solution can be delivered through the drug delivery ports 58 concurrently with or after the wetting medium has been delivered.
- the ultrasound energy can be generated at an ultrasound energy source which is remote from the ultrasound elements 40 and transmitted via wire to the ultrasound elements 40 .
- Ultrasound can also be internally generated from electrical power delivered to the ultrasound elements 40 from an electrical energy source.
- a suitable example of an ultrasound element 40 for internal generation of ultrasound energy includes, but is not limited to, piezoelectric ceramic oscillators.
- the ultrasound elements 40 can be shaped as a cylinder, a hollow cylinder and a disk which are concentric with the elongated body 34 .
- the ultrasound elements 40 can also be an array of smaller ultrasound elements 40 or a thin plate positioned within the elongated body 34 .
- a single ultrasound element 40 can be composed of several smaller ultrasound elements 40 . Suitable frequencies for the ultrasound element include, but are not limited to from 20 KHz to 2 MHz.
- Each ultrasound element 40 can each be individually powered.
- the elongated body 34 includes N ultrasound elements 40
- the elongated body 34 must include 2N wires to individually power N ultrasound elements 40 .
- the individual ultrasound elements 40 can also be electrically coupled in serial or in parallel as illustrated in FIGS. 7A and 7B . These arrangements permit maximum flexibility as they require only 2N wires.
- Each of the ultrasound elements 40 receive power simultaneously whether the ultrasound elements 40 . are in series or in parallel. When the ultrasound elements 40 are in series, less current is required to produce the same power from each ultrasound element 40 than when the ultrasound elements 40 are connected in parallel. The reduced current allows smaller wires to be used to provide power to the ultrasound elements 40 and accordingly increases the flexibility of the elongated body 34 . When the ultrasound elements 40 are connected in parallel, an ultrasound element 40 can break down and the remaining ultrasound elements 40 will continue to operate.
- a common wire 61 can provide power to each of ultrasound element 40 while each ultrasound element 40 has its own return wire 62 .
- a particular ultrasound element 40 can be individually activated by closing a switch 64 to complete a circuit between the common wire 61 and the particular ultrasound element's return wire 62 . Once a switch 64 corresponding to a particular ultrasound element 40 has been closed, the amount of power supplied to the ultrasound element 40 can be adjusted with the corresponding potentiometer 66 . Accordingly, an elongated body 34 with N ultrasound elements 40 requires only N+1 wires and still permits independent control of the ultrasound elements 40 . This reduced number of wires increases the flexibility of the elongated body 34 .
- the individual return wires 62 can have diameters which are smaller than the common wire 61 diameter.
- the diameter of the individual return wires 62 can be the square root of N times smaller than the diameter of the common wire 61 .
- the system 10 can include at least one temperature sensor 20 .
- Suitable temperature sensors 20 include, but are not limited to, thermistors, thermocouples, resistance temperature detectors (RTD)s, and fiber optic temperature sensors which use thermalchromic liquid crystals.
- Suitable temperature sensor 20 geometries include, but are not limited to, a point, patch, stripe and a band around the sheath 12 .
- the temperature sensors 20 can be positioned on the sheath 12 or on the elongated. body 34 near the ultrasound elements 40 .
- the temperature sensors 20 should be positioned so they are exposed to the portion of a treatment section which is receiving drug solution and/or ultrasound energy.
- the temperature sensors 20 can be electrically connected as illustrated in FIG. 8 .
- Each temperature sensor 20 can be coupled with a common wire 61 and then include its own return wire 62 . Accordingly, N+1 wires can be used to independently sense the temperature at the temperature sensors 20 when N temperature sensors 20 are employed.
- a suitable common wire 61 can be constructed from Constantan and suitable return wires 62 can be constructed from copper.
- the temperature at a particular temperature sensor 20 can be determined by closing a switch 64 to complete a circuit between the thermocouple's return wire 62 and the common wire 61 . When the temperature sensors 20 are thermocouples, the temperature can be calculated from the voltage in the circuit.
- the individual return wires 62 can have diameters which are smaller than the common wire 61 diameter.
- Each temperature sensor 20 can also be independently wired. Employing N independently wired temperature sensors 20 requires 2N wires to pass the length of the sheath 12 .
- the sheath 12 or elongated body 34 flexibility can also be improved by using fiber optic based temperature sensors 20 .
- the flexibility can be improved because only N fiber optics need to be employed sense the temperature at N temperature sensors 20 .
- the system 10 can be include a feedback control system 68 as illustrated in FIG. 9 .
- the temperature at each temperature sensor 20 is monitored and the output power of energy source adjusted accordingly.
- the physician can, if desired, override the closed or open loop system.
- the feedback control system 68 includes an energy source 70 , power circuits 72 and a power calculation device 74 coupled with the ultrasound elements 40 .
- a temperature measurement device 76 is coupled with the temperature sensors 20 on the sheath 12 .
- a processing unit 78 is coupled with the power calculation device 74 , the power circuits 72 and a user interface and display 80 .
- the temperature at each temperature sensor 20 is determined at the temperature measurement device 76 .
- the processing unit 78 receives each determined temperature from the temperature measurement device 76 .
- the determined temperature can then be displayed to the user at the user interface and display 80 .
- the processing unit 78 includes logic for generating a temperature control signal.
- the temperature control signal is proportional to the difference between the measured temperature and a desired temperature.
- the desired temperature can be determined by the user.
- the user can set the predetermined temperature at the user interface and display 80 .
- the temperature control signal is received by the power circuits 72 .
- the power circuits 72 adjust the power level of the energy supplied to the ultrasound elements 40 from the energy source 70 . For instance, when the temperature control signal is above a particular level, the power supplied to a particular ultrasound element 40 is reduced in proportion to the magnitude of the temperature control signal. Similarly, when the temperature control signal is below a particular level, the power supplied to a particular ultrasound element 40 is increased in proportion to the magnitude of the temperature control signal.
- the processing unit 78 monitors the temperature sensors 20 and produces another temperature control signal which is received by the power circuits 72 .
- the processing unit 78 can also include safety control logic.
- the safety control logic detects when the temperature at a temperature sensor 20 has exceeded a safety threshold.
- the processing unit 78 can then provide a temperature control signal which causes the power circuits 72 to stop the delivery of energy from the energy source 70 to the ultrasound elements 40 .
- the ultrasound elements 40 may be mobile relative to the temperature sensors 20 , it can be unclear which ultrasound transducer should have a power level adjustment. As a result, the power level may be identically adjusted at each ultrasound element 40 . Further, the power supplied to each of the ultrasound elements 40 may be adjusted in response to the temperature sensor 20 which indicates the highest temperature. Making power adjustments in response to the temperature of the temperature sensor 20 indicating the highest temperature can prevent overheating of the treatment site.
- the processing unit 78 also receives a power signal from a power calculation device 74 .
- the power signal can be used to determine the power being received by each ultrasound element 40 .
- the determined power can then be displayed to the user on the user interface and display 80 .
- the feedback control system 68 can maintain the tissue adjacent to the ultrasound elements 40 at a desired temperature for a selected period of time.
- the ultrasound elements 40 can be electrically connected so each ultrasound element 40 can generate an independent output. The output maintains a selected energy at each ultrasound element 40 for a selected length of time.
- the processing unit 78 can be a digital or analog controller, or a computer with software. When the processing unit 78 is a computer it can include a CPU coupled through a system bus.
- the user interface and display 80 can be a mouse, keyboard, a disk drive, or other non-volatile memory systems, a display monitor, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory.
- a profile of the power delivered to each ultrasound element 40 can be incorporated in the processing unit 78 and a preset amount of energy to be delivered may also be profiled.
- the power delivered to each ultrasound element 40 can the be adjusted according to the profiles.
- FIGS. 10A-10G illustrate a method for using the system 10 .
- a guidewire 84 similar to a to a guidewire used in typical angioplasty procedures is directed through vessels 86 toward a treatment site 88 which includes a clot 90 .
- the guidewire 84 is directed through the clot 90 .
- Suitable vessels include, but are not limited to, cardiovascular vessels, the pancreas, sinuses, esophagus, rectum, gastrointestinal vessels and urological vessels.
- the utility lumen 28 of the sheath 12 is slid over the guidewire 84 and the sheath 12 is advanced along the guidewire 84 using traditional over-the-guidewire techniques.
- the sheath 12 is advanced until the energy delivery section 18 of the sheath 12 is positioned at the clot 90 .
- Radio opaque markers may be positioned at the energy delivery section 18 of the sheath 12 to aid in the positioning of the sheath 12 within the treatment site 88 .
- the guidewire 84 is withdrawn from the utility lumen 28 by pulling the guidewire 84 proximally while holding the sheath 12 stationary.
- a temperature monitor 92 is coupled with the temperature sensor leads 24
- a cooling fluid source 94 is coupled with the cooling fluid inlet
- a drug solution source 96 is coupled with the drug inlet port 32 .
- the drug solution source 96 can be a syringe with a Luer fitting which is complementary with the drug inlet port 32 . Pressure can be applied to a plunger 98 on the drug solution source 96 to drive the drug solution through the drug delivery lumen 56 .
- Suitable drug solutions include, but are not limited to, an aqueous solution containing Heparin, Uronkinase, Streptokinase, or tissue Plasminogen Activator (TPA).
- the elongated body 34 is inserted into the utility lumen 28 until the ultrasound element 40 is positioned within the energy delivery section 18 .
- radiopaque markers may be positioned on the elongated body 34 adjacent to each of the ultrasound elements 40 .
- the ultrasound elements 40 themselves can be radiopaque.
- the movement of the ultrasound element 40 within the energy delivery section 18 can be caused by manipulating the body proximal section while holding the sheath proximal section stationary.
- a cooling fluid is flowed through the cooling fluid lumen 44 and out the occlusion device 22 .
- the cooling fluid can be delivered before, after, during or intermittently with the delivery of the ultrasound energy.
- the drug solution can be delivered before, after, during or intermittently to the delivery of ultrasound energy.
- FIGS. 10A-10F can be performed in different orders than are described above.
- the drug solution and energy are applied until the clot 90 is partially or entirely dissolved as illustrated in FIG. 10G . Once the clot 90 has been dissolved to the desired degree, the sheath 12 and elongated body 34 are withdrawn from the treatment site 88 .
- FIGS. 11A-11B illustrate a method for using the system 10 when the sheath distal end 16 includes a balloon 59 .
- the sheath 12 is advanced through a vessel 86 , as described above, until the balloon 59 is positioned adjacent a clot 90 as illustrated in FIG. 11A .
- the balloon 59 is expanded until the balloon 59 contacts the clot 90 as illustrated in FIG. 11B .
- the balloon 59 can be expanded by delivering a drug solution through an expansion port 60 A or a drug delivery port 58 or by delivering an expansion media through an expansion port 60 A.
- the drug solution or components of the drug solution are driven across the membrane so the drug solution or the components of the drug solution contact the clot 90 .
- the elongated body 34 can be inserted into the sheath 12 before, after or concurrently with the expansion of the balloon 59 and/or the delivery of the drug solution.
- the ultrasound element 40 can be operated before, after, intermittently or concurrently with the expansion of the balloon 59 and/or the delivery of the drug solution.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biophysics (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Dermatology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
- Dentistry (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to an ultrasound enhanced drug delivery apparatus, and more particularly, to an ultrasound element which can be movably positioned within a drug delivery sheath.
- 2. Description of Related Art
- Thrombus formation is a protective and healing mechanism, however, formation of thrombi can be detrimental. For instance, if a blood vessel becomes blocked, distal tissue may be deprived of oxygen with resulting damage or necrosis. In the case of cerebral circulation, an arterial thrombus blockage is one cause of cerebral strokes. In the case of coronary thrombosis, blockage and subsequent distal tissue necrosis of cardiac muscle tissue will impair cardiac pump output, may cause electrical abnormalities, and potentially catastrophic heart failure and death. The thrombus can form at the site of artery narrowing due to arterial wall damage or disease, or the thrombus may have broken free from some proximal site only to become wedged in a distal stenosis. Thrombus can also form subsequent to attempts to remove a stenosis using balloon angioplasty or rotary atherectomy.
- Ultrasound sheaths have been described specifically for removal or dissolution of thrombus (U.S. Patents: Tachibana U.S. Pat. No. 5,197,946; Bernstein U.S. Pat. No. 5,163,421; Weng U.S. Pat. No. 5,269,297). The sheaths of Bernstein and Weng place an ultrasound generator external to the body and transmit acoustic energy through a metal wire wave-guide to the distal sheath. The sheath of Tachibana includes a small ultrasound element positioned at the distal end of the sheath that is energized by electrical wires. In either case, ultrasound energy is delivered to and radiated from the distal tip of the sheath in the vicinity of a blocking thrombus. The application of ultrasound can directly emulsify nearby thrombus through the motion of the sheath tip, associated cavitation, and bioeffects.
- The application of ultrasound can also enhance delivery of drug into a vessel wall. There are instances where the vessel wall is diseased or has been injured during balloon angioplasty or rotary atherectomy. Narrowing of the vessel can occur in response to these injuries. Certain drugs, such as heparin, may inhibit this narrowing of the blood vessel if the drug can be delivered into the blood vessel wall. A sheath can be used to deliver drugs into any portion of the body or target organ. Ultrasound energy in the presence of these drugs can enhance the delivery through and across bodily fluids and tissue. Hence, an ultrasound drug delivery sheath placed in a blood vessel will assist delivery across the blood vessel wall, whether it be an artery or a vein, into the surrounding muscle or tissue.
- The intensity of the ultrasound delivered from a cylindrical ultrasound element decreases exponentially with radial distance from the sheath tip. Hence, treatment of thrombi is limited to the circumferential area surrounding of the sheath tip of a sheath with an ultrasound element. This limited treatment area may be effective for small length clots, however, larger clots must be treated one section at a time.
- Some thrombi can be large. For instance, a deep vein thrombus in a patient's lower leg and can have a length from several centimeters to as much as 30-50 cm long. Early treatment protocols for these long thrombi used a drug infusion sheath to drip lytic drug at one end of a thrombus. As the thrombus was dissolved, the sheath would be advanced. This process was repeated until the entire clot was dissolved. More current therapy for a deep vein thrombosis is to use an infusion sheath with drug infusion ports distributed along the lateral dimension of the sheath. The sheath can be pushed through the entire length of the clot. The thrombolytic drug is then infused throughout the lesion for a period of hours.
- There is a need for an ultrasound sheath that is useful for treating a deep vein thrombus to enhance and accelerate the action of the thrombolytic drug. There is a further need for an ultrasound sheath that is useful for treating vessel lesions, particularly those that have extensive lengths.
- A system for delivering ultrasound energy to a treatment section in a vessel is disclosed. The system includes a sheath with a utility lumen and an energy delivery section at least partially constructed from a material which transmits ultrasound energy. The system also includes a drug delivery member having a plurality of drug delivery ports which are positioned adjacent the energy delivery section. The system further includes an elongated body including at least one ultrasound element and configured to be movably positioned within the utility lumen to transmit the ultrasound energy from the ultrasound element through the energy delivery section.
- In another embodiment the system includes a sheath having a utility lumen configured to movably receive an elongated body with an ultrasound element and an energy delivery section at least partially constructed from a material which transmits ultrasound energy from the ultrasound element. The system also includes a drug delivery member having a plurality of drug delivery ports which are configured to be positioned adjacent the energy delivery section.
- A sheath for delivering ultrasound energy to a treatment section in a vessel is also disclosed. The sheath includes a utility lumen configured to movably receive an elongated body with an ultrasound element. The sheath also includes an energy delivery section at least partially constructed from a material which transmits ultrasound energy from the ultrasound element. A plurality of drug delivery ports are positioned adjacent the energy delivery section.
- In another embodiment, the sheath includes a utility lumen configured to movably receive an elongated body with an ultrasound element. The sheath also includes an energy delivery section at least partially constructed from a material which transmits ultrasound energy from the ultrasound element. At least one temperature sensor is positioned adjacent the energy delivery section.
- A system for delivering ultrasound energy to a treatment section in a vessel is disclosed. The system includes a sheath having a utility lumen and an energy delivery section which is at least partially constructed from a material which transmits ultrasound energy. An expandable balloon positioned at least partially adjacent the energy delivery section. The system also includes an elongated body with at least one ultrasound element. The elongated body is configured to be movably positioned within the utility lumen to transmit the ultrasound energy from the ultrasound element through the energy delivery section..
-
FIG. 1A is a sideview of a sheath and elongated body according to the present invention. -
FIG. 1B is a sideview of a sheath and elongated body according to the present invention. -
FIG. 2A is a cross section of a sheath with an elongated body positioned within a utility lumen. -
FIG. 2B is a cross section of a sheath proximal end. -
FIG. 2C is a cross section of an elongated body including a body lumen. -
FIG. 2D is a cross section of an elongated body including a body lumen positioned within a sheath including a closed occlusion device. -
FIG. 2E is a cross section of an elongated body including a body lumen positioned within a sheath including a closed occlusion device. -
FIG. 3A is a sideview of a sheath distal end. -
FIG. 3B is a cross sectional view of a sheath distal end. -
FIG. 3C is a sideview of a sheath distal end. -
FIG. 3D is a cross sectional view of a sheath distal end. -
FIG. 3E illustrates a drug delivery member with slit shaped drug delivery ports. -
FIG. 3F illustrates a drug delivery member with arc shaped slits as drug delivery ports. -
FIG. 4A is a sideview of a sheath distal end with drug delivery ports of increasing size. -
FIG. 4B is a is a cross sectional view of a sheath distal end. -
FIG. 5 is a cross section of a sheath distal end with an integral occlusion device. -
FIG. 6A is a sideview of a sheath including a balloon. -
FIG. 6B is a cross section a balloon positioned at a distal end of a sheath which includes drug delivery ports configured to produce an even flow along the length of the energy delivery section. -
FIG. 6C is a cross section of a balloon positioned at a distal end of a sheath which includes an expansion lumen for expanding the balloon and delivering a drug solution. -
FIG. 6D is a cross section of a balloon positioned at a distal end of a sheath which includes an expansion lumen for expanding the balloon and drug delivery ports configured to produce an even flow along the length of the energy delivery section. -
FIG. 7A illustrates ultrasound elements connected in parallel. -
FIG. 7B illustrates ultrasound elements connected in series. -
FIG. 7C illustrates ultrasound elements connected with a common wire. -
FIG. 8 illustrates temperature sensors connected with a common wire. -
FIG. 9 is a block diagram of a feedback control system. -
FIG. 10A is a cross section of a treatment site. -
FIG. 10B is a sideview of a sheath distal end positioned at a treatment site. -
FIG. 10C is a sideview of a sheath distal end positioned at a treatment site. -
FIG. 10D is a sideview of a sheath proximal end. -
FIG. 10E is a cross section of a sheath distal end positioned at a treatment site. -
FIG. 10F illustrates an ultrasound element positioned within a utility lumen. -
FIG. 10G is a sideview of a sheath distal end positioned at a treatment site. -
FIG. 11A illustrates a balloon positioned adjacent a clot. -
FIG. 11B illustrates a balloon expanded into contact with the clot ofFIG. 11A . - The invention relates to a system for delivering ultrasound energy to a treatment section in a vessel. The system includes a sheath with an energy delivery section at least partially constructed from a material which transmits ultrasound energy. The sheath is designed to be positioned within a vessel such that at least a portion of the energy delivery section is positioned adjacent a treatment site within the vessel. The system also includes an elongated body with an ultrasound element positioned at its distal end. The elongated body can be received in a utility lumen included in the sheath such that the ultrasound element is positioned within the energy delivery section. Ultrasound energy can be delivered from the ultrasound element through the energy delivery section to the treatment site.
- The elongated body can be moved within the utility lumen so the ultrasound element can be moved relative to the energy delivery section. As a result, the ultrasound element can be moved within the treatment site to deliver ultrasound energy to different sections of the treatment site. The motion of the ultrasound element relative to the treatment site can help emulsify a clot, thrombus or other blockage at the treatment site. Since, the ultrasound element is being moved relative to the treatment site within the sheath, the movement of the ultrasound element relative to the treatment site does not damage the vessel including the treatment site.
- The elongated body can include a cooling fluid lumen which passes adjacent the ultrasound element. Similarly, a cooling fluid lumen can be formed between the elongated body and the sheath. A cooling fluid can be passed through the cooling fluid lumen to cool the ultrasound element. The heating of the ultrasound element can limit the amount of power which can be provided to the ultrasound element. Cooling the ultrasound element during its operation allows the power provided to the ultrasound element to be increased. As a result, cooling the ultrasound element can increase the efficiency of the treatment Movement of the ultrasound element can be accomplished manually or through use of an automated method.
- The system can also include a drug delivery member which includes a plurality of drug delivery ports which are positioned adjacent to the energy delivery section. The drug delivery ports permit delivery of a drug solution to the treatment site. Ultrasound energy can also be delivered to the treatment site to enhance the effect of the drug within the treatment site.
- The drug delivery member can be external to the energy delivery section. As a result, a drug solution does not need to be delivered through the energy delivery section allowing the energy delivery section to be constructed o-f acoustically transparent materials which cannot be easily extruded. The energy delivery section can also be very thin since a drug delivery lumen need not pass through materials comprising the energy delivery section. Thinner materials increase the acoustic transparency of the energy delivery section. Suitable materials for the energy delivery section include, but are not limited to, polyimides. The portion of the sheath which is not included in the energy delivery section can be constructed from materials such as polyurethanes, copolyesters, or thermoplastic elastomers which provides the sheath with kink resistance, rigidity and structural support necessary to transport the energy delivery section to the treatment site.
- The sheath can also include at least one temperature sensor positioned adjacent the energy delivery section. The temperature sensors can be coupled with a feedback control system. The feedback control system can be used to adjust the level of power delivered to the ultrasound element in response to the signal from at least one temperature sensor. As a result, the temperature at the treatment site can be maintained within a desired range during the treatment.
-
FIG. 1A illustrates adrug delivery system 10 according to the present invention. Thesystem 10 includes asheath 12 with a sheathproximal end 14 and a sheathdistal end 16. The sheathdistal end 16 includes, asupport section 17, anenergy delivery section 18,temperature sensors 20 and anocclusion device 22. The sheathproximal end 14 includes temperature sensor leads 24 and a coolingfluid fitting 26. Autility lumen 28 extends through thesheath 12 along the length of thesheath 12. Adrug delivery member 30 is positioned adjacent the energy delivery section. Thedrug delivery member 30 includes adrug inlet port 32 which can be coupled with a drug source via a connector such as a Luer type fitting. Thedrug delivery member 30 can be incorporated into thesupport section 17 as illustrated inFIG. 1A or can external to the support section as illustrated inFIG. 1B . Thesystem 10 also includes anelongated body 34 with a bodyproximal end 36 and a bodydistal end 38. Anultrasound element 40 is positioned at the bodydistal end 38. - The
elongated body 34 has an outer diameter which permits the elongated body.34 to be inserted into theutility lumen 28.FIG. 2A illustrates theelongated body 34 threaded through theutility lumen 28 until theultrasound element 40 is positioned within theenergy delivery section 18. Suitable outer diameters of theelongated body 34 include, but are not limited to, 0.010″-0.100″. Suitable diameters of theutility lumen 28 include, but are not limited to 0.015″-0.110″. Theutility lumen 28 extends through theocclusion device 22. The portion of theutility lumen 28 extending through theocclusion device 22 has a diameter which can accommodate a guidewire (not shown) but which prevents theultrasound element 40 from passing through theocclusion device 22. Suitable inner diameters for theocclusion device 22 include, but are not limited to 0.005″-0.050″. - The
ultrasound element 40 can be rotated or moved within theenergy delivery section 18 as illustrated by thearrows 52 illustrated inFIG. 2A . The movement of theultrasound element 40 within theenergy delivery section 18 can be caused by manipulating the body proximal section while holding the sheath proximal section stationary. Theelongated body 34 can be at least partially constructed from a material which provides enough structural support to permit movement of theelongated body 34 within thesheath 12 without kinking of theelongated body 34. Suitable materials for theelongated body 34 include, but are not limited to polyesters, polyurethanes, thermoplastic, elastomers. - As illustrated in
FIG. 2A , the outer diameter of theelongated body 34 can be smaller than the diameter of theutility lumen 28 to create a coolingfluid lumen 44 between theelongated body 34 and theutility lumen 28. A cooling fluid can be flowed through the coolingfluid lumen 44, past theultrasound element 40 and through theocclusion device 22. The flowrate of the cooling fluid and/or the power to theultrasound element 40 can be adjusted to maintain the temperature of theultrasound element 40 within a desired range. - The sheath
proximal end 14 can include acap 46 as illustrated inFIG. 2B . A cooling fluid can be flowed from the coolingfluid fitting 26 through the coolingfluid lumen 44 as illustrated by thearrows 48. Thecap 46 includes ahemostasis valve 50 with an inner diameter which substantially matches the diameter of theelongated body 34. The matched diameters reduces leaking of the cooling fluid between thecap 46 and theelongated body 34. - As illustrated in
FIG. 2C , theultrasound element 40 can be a hollow cylinder and the elongated body can include abody lumen 51 which extends through theultrasound element 40. The cooling fluid can be flowed through the body lumen past theultrasound element 40 to provide cooling to theultrasound element 40. - As illustrated in
FIG. 2D , theocclusion device 22 can be integral with thesheath 12 and can have a closed end. The body lumen 51 can serve as a return lumen for the cooling fluid. As a result, the inside and the outside of theultrasound element 40 are exposed to the cooling fluid to accelerate the cooling of theultrasound element 40. As illustrated inFIG. 2D , the flow of the cooling fluid can be reversed so the cooling lumen serves as the return cooling fluid lumen. The above cooling schemes permit the power provided to the ultrasound element to be increased in proportion to the cooling flow rate. Further, certain schemes can prevent exposure of the body to cooling fluids. - The
drug delivery member 30 includes a drug delivery portion which is positioned adjacent theenergy delivery section 18 as illustrated inFIG. 3A . As illustrated inFIG. 3B , thedrug delivery member 30 includes adrug delivery lumen 56 extending through the length of the drug delivery member. 30. Thedrug delivery member 30 also includes a series ofdrug delivery ports 58 coupled with thedrug delivery lumen 56. A drug source coupled with thedrug inlet port 32 can provide a pressure which drives a drug solution through thedrug delivery lumen 56 and out thedrug delivery ports 58. A suitable material for thedrug delivery member 30 includes, but is not limited to, polyimide, polyolefin, polyester. - The
sheath 12 can include a plurality ofdrug delivery members 30. Thedrug delivery members 30 can be wound around theenergy delivery section 18 or they can be positioned along the length of theenergy delivery section 18 as illustrated inFIG. 3C . Eachdrug delivery member 30 can be coupled with the samedrug inlet port 32. In another embodiment, eachdrug delivery member 30 is coupled with independentdrug inlet ports 32 so different drug solutions can be delivered to differentdrug delivery ports 58. - The
drug delivery ports 58 are positioned close enough to achieve a substantially even flow of drug solution around the circumference of theenergy delivery section 18 and along the length of theenergy delivery sections 18. The proximity of adjacentdrug delivery ports 58 can be changed by changing the density ofdrug delivery ports 58 along the drug delivery member, by changing the number of windings of the drug delivery member around theenergy delivery section 18 or by changing the number ofdrug delivery members 30 included adjacent theenergy delivery section 18. A suitable displacements between adjacent drug delivery ports-58 include, but are not limited to, from 0.1″ to 1.0″, preferable 0.2″ to 0.6″. - The size of the
drug delivery ports 58 can be the same or change along the length of the drug delivery member. For instance, the size of thedrug delivery ports 58 distally positioned on the drug delivery section can be larger than the size of thedrug delivery ports 58 which are proximally positioned on the drug delivery section. The increase in sizes of thedrug delivery ports 58 can be designed to produce similar flowrates of drug solution through eachdrug delivery port 58. This similar flowrate increases the uniformity of drug solution flowrate along the length of thesheath 12. When thedrug delivery ports 58 have similar sizes along the length of the drug delivery member, a suitable size for adrug delivery port 58 includes, but is not limited to 0.0005″ to 0.0050″. When the size of thedrug delivery ports 58 changes along the length of the drug delivery member, suitable sizes for proximally positioneddrug delivery ports 58 includes, but is not limited to from 0.0001″ to 0.005″ and suitable sizes for distally positioneddrug delivery ports 58 includes, but is not limited to 0.0005″ to 0.0020″. The increase in size between adjacent drug delivery ports can be substantially uniform between or along the drug delivery member. The dimensional increase of the drug delivery ports is dependent upon material and diameter of the drug delivery member. Thedrug delivery ports 58 can be burnt into thedrug delivery member 30 with a laser. - Uniformity of the drug solution flow along the length of the
sheath 12 can also be increased by increasing the density of thedrug delivery ports 58 toward the distal end of the drug delivery member. - The
drug delivery ports 58 can be slits with a straight shape as illustrated inFIG. 3E or an arcuate shape as illustrated inFIG. 3F . Thedrug delivery member 30 can be constructed from materials such as polyimide, nylon, pebax, polyurethane or silicon. When the dugdelivery lumen 56 is filled with drug solution, the slits remain closed until the pressure within the drug delivery lumen exceeds a threshold pressure. As the pressure within the drug delivery lumen builds, the pressure on each of the slits will be approximately uniform. Once, the threshold pressure is reached, the uniform pressure will result in the slits opening almost simultaneously and cause a nearly uniform flow of drug solution out of all the slits. When the pressure within thedrug delivery lumen 56 falls below the threshold pressure, the slits close and prevent delivery of additional drug solution. The stiffer the material used to construct the drug deliver member, the higher the threshold pressure required to open the slit shaped drug delivery ports. The slit shape can also prevent thedrug delivery ports 58 from opening when exposed to low pressures from outside thesheath 12. As a result, slit shaped drug delivery ports can maximize control of drug delivery. - The
sheath 12 andenergy delivery section 18 can be constructed from a single material as illustrated inFIG. 4A Suitable materials include, but are not limited to polyimide, polyolefin, polyester. The entire sheath or only the sheath proximal end may be reinforced by braiding, mesh or other constructions to increase flexibility, kink resistance, and pushability. As. illustrated inFIG. 4A , thedrug delivery ports 58 can be included in thesheath 12. Thedrug delivery ports 58 can be coupled with independentdrug delivery lumens 28 as illustrated inFIG. 4B . - The sheath can include a
support section 17 which is constructed from a different material than the energy delivery section as illustrated inFIG. 5 .FIG. 5 also illustrates theocclusion device 22 as being integral with theenergy delivery section 18. Theenergy delivery section 18 can be constructed from a material which readily transmits ultrasound energy. The support section can be constructed from a material which provides structural strength and kink resistance. Further, the support section or the proximal end of the support section may be reinforced by braiding, mesh or other constructions to increase flexibility, kink resistance, and pushability. Suitable materials for the support section include, but are not limited to, polyimides, polyolefin, polyester. A suitable outer diameter for the support section includes, but is not limited to 0.020″ to 0.200″. Suitable materials for theenergy delivery section 18 include, but are not limited to, polyolefins, polyimides, polyester and other low ultrasound impedance materials. Low ultrasound impedance materials are materials which readily transmit ultrasound energy with minimal absorption of the ultrasound energy. - The sheath
distal end 16 can include aballoon 59 as illustrated inFIG. 6A . Theballoon 59 can be constructed from permeable membrane or a selectively permeable membrane which allows certain media to flow through the membrane while preventing other media from flowing through the membrane. Suitable materials for theballoon 59 include, but are not limited to cellulose, cellulose acetate, polyvinylchloride, polyolefin, polyurethane and polysulfone. When the balloon is constructed from a permeable membrane or a selectively permeable membrane, the membrane pore sizes are preferably 5 A-2 μm, more preferably 50 A-900 A and most preferably 100 A-300 A in diameter. - As illustrated in
FIGS. 6B , theballoon 59 can be positioned adjacentdrug delivery ports 58. Thedrug delivery ports 58 can be designed so a uniform flow occurs along the length of theenergy delivery section 18. This design can serve to prevent a pressure gradient from developing along the length of the balloon. Delivering a drug solution through thedrug delivery ports 58 can serve to expand theballoon 59. When theballoon 59 is constructed from a membrane or a selectively permeable membrane, the drug solution can be delivered with enough pressure to drive the drug across the membrane. Various phoretic processes and apparatuses can also be used to drive the drug solution across the membrane. When theballoon 59 is constructed from a selectively permeable membrane, the pressure and/or phoresis may drive only certain components of the drug solution across the membrane while preventing other components from crossing the membrane. - The
balloon 59 can also be positioned adjacent one ormore expansion ports 60A coupled with anexpansion lumen 60B as illustrated inFIG. 6C . The drug solution can be delivered to theballoon 59 via theexpansion lumen 60B. Delivering a drug solution through theexpansion lumen 60B can serve to expand theballoon 59. When theballoon 59 is constructed from a membrane or a selectively permeable membrane, the drug can be delivered with enough pressure to drive the drug solution or certain components of the drug solution across the membrane. Similarly, phoretic means can also be used to drive the drug solution or certain components of the drug solution across the membrane. - The
balloon 59 can, also be positionedadjacent expansion ports 60A coupled with anexpansion lumen 60B anddrug delivery ports 58 as illustrated inFIG. 6D . Different drug solutions can be delivered through theexpansion ports 60B and thedrug delivery ports 58. Further, a media suitable for expanding theballoon 59 can be delivered through theexpansion lumen 60B and theexpansion ports 60A while the drug solution can be delivered through thedrug delivery ports 58. When theballoon 59 is constructed from a membrane or a selectively permeable membrane, a medium which wets the membrane and enhances the permeability of the membrane can be delivered through theexpansion ports 60A. A drug solution can be delivered through thedrug delivery ports 58 concurrently with or after the wetting medium has been delivered. - The ultrasound energy can be generated at an ultrasound energy source which is remote from the
ultrasound elements 40 and transmitted via wire to theultrasound elements 40. Ultrasound can also be internally generated from electrical power delivered to theultrasound elements 40 from an electrical energy source. A suitable example of anultrasound element 40 for internal generation of ultrasound energy includes, but is not limited to, piezoelectric ceramic oscillators. Theultrasound elements 40 can be shaped as a cylinder, a hollow cylinder and a disk which are concentric with theelongated body 34. Theultrasound elements 40 can also be an array ofsmaller ultrasound elements 40 or a thin plate positioned within theelongated body 34. Similarly, asingle ultrasound element 40 can be composed of severalsmaller ultrasound elements 40. Suitable frequencies for the ultrasound element include, but are not limited to from 20 KHz to 2 MHz. - Each
ultrasound element 40 can each be individually powered. When theelongated body 34 includesN ultrasound elements 40, theelongated body 34 must include 2N wires to individually powerN ultrasound elements 40. Theindividual ultrasound elements 40 can also be electrically coupled in serial or in parallel as illustrated inFIGS. 7A and 7B . These arrangements permit maximum flexibility as they require only 2N wires. Each of theultrasound elements 40 receive power simultaneously whether theultrasound elements 40. are in series or in parallel. When theultrasound elements 40 are in series, less current is required to produce the same power from eachultrasound element 40 than when theultrasound elements 40 are connected in parallel. The reduced current allows smaller wires to be used to provide power to theultrasound elements 40 and accordingly increases the flexibility of theelongated body 34. When theultrasound elements 40 are connected in parallel, anultrasound element 40 can break down and the remainingultrasound elements 40 will continue to operate. - As illustrated in
FIG. 7C , acommon wire 61 can provide power to each ofultrasound element 40 while eachultrasound element 40 has itsown return wire 62. Aparticular ultrasound element 40 can be individually activated by closing aswitch 64 to complete a circuit between thecommon wire 61 and the particular ultrasound element'sreturn wire 62. Once aswitch 64 corresponding to aparticular ultrasound element 40 has been closed, the amount of power supplied to theultrasound element 40 can be adjusted with the correspondingpotentiometer 66. Accordingly, anelongated body 34 withN ultrasound elements 40 requires only N+1 wires and still permits independent control of theultrasound elements 40. This reduced number of wires increases the flexibility of theelongated body 34. To improve the flexibility of theelongated body 34, theindividual return wires 62 can have diameters which are smaller than thecommon wire 61 diameter. For instance, in an embodiment whereN ultrasound elements 40 will be powered simultaneously, the diameter of theindividual return wires 62 can be the square root of N times smaller than the diameter of thecommon wire 61. - As illustrated in
FIG. 1 , thesystem 10 can include at least onetemperature sensor 20.Suitable temperature sensors 20 include, but are not limited to, thermistors, thermocouples, resistance temperature detectors (RTD)s, and fiber optic temperature sensors which use thermalchromic liquid crystals.Suitable temperature sensor 20 geometries include, but are not limited to, a point, patch, stripe and a band around thesheath 12. Thetemperature sensors 20 can be positioned on thesheath 12 or on the elongated.body 34 near theultrasound elements 40. Thetemperature sensors 20 should be positioned so they are exposed to the portion of a treatment section which is receiving drug solution and/or ultrasound energy. - The
temperature sensors 20 can be electrically connected as illustrated inFIG. 8 . Eachtemperature sensor 20 can be coupled with acommon wire 61 and then include itsown return wire 62. Accordingly, N+1 wires can be used to independently sense the temperature at thetemperature sensors 20 whenN temperature sensors 20 are employed. A suitablecommon wire 61 can be constructed from Constantan andsuitable return wires 62 can be constructed from copper. The temperature at aparticular temperature sensor 20 can be determined by closing aswitch 64 to complete a circuit between the thermocouple'sreturn wire 62 and thecommon wire 61. When thetemperature sensors 20 are thermocouples, the temperature can be calculated from the voltage in the circuit. To improve the flexibility of thesheath 12, theindividual return wires 62 can have diameters which are smaller than thecommon wire 61 diameter. - Each
temperature sensor 20 can also be independently wired. Employing N independently wiredtemperature sensors 20 requires 2N wires to pass the length of thesheath 12. - The
sheath 12 orelongated body 34 flexibility can also be improved by using fiber optic basedtemperature sensors 20. The flexibility can be improved because only N fiber optics need to be employed sense the temperature atN temperature sensors 20. - The
system 10 can be include a feedback control system 68 as illustrated inFIG. 9 . The temperature at eachtemperature sensor 20 is monitored and the output power of energy source adjusted accordingly. The physician can, if desired, override the closed or open loop system. - The feedback control system 68 includes an
energy source 70,power circuits 72 and apower calculation device 74 coupled with theultrasound elements 40. Atemperature measurement device 76 is coupled with thetemperature sensors 20 on thesheath 12. Aprocessing unit 78 is coupled with thepower calculation device 74, thepower circuits 72 and a user interface anddisplay 80. - In operation, the temperature at each
temperature sensor 20 is determined at thetemperature measurement device 76. Theprocessing unit 78 receives each determined temperature from thetemperature measurement device 76. The determined temperature can then be displayed to the user at the user interface anddisplay 80. - The
processing unit 78 includes logic for generating a temperature control signal. The temperature control signal is proportional to the difference between the measured temperature and a desired temperature. The desired temperature can be determined by the user. The user can set the predetermined temperature at the user interface anddisplay 80. - The temperature control signal is received by the
power circuits 72. Thepower circuits 72 adjust the power level of the energy supplied to theultrasound elements 40 from theenergy source 70. For instance, when the temperature control signal is above a particular level, the power supplied to aparticular ultrasound element 40 is reduced in proportion to the magnitude of the temperature control signal. Similarly, when the temperature control signal is below a particular level, the power supplied to aparticular ultrasound element 40 is increased in proportion to the magnitude of the temperature control signal. After each power adjustment, theprocessing unit 78 monitors thetemperature sensors 20 and produces another temperature control signal which is received by thepower circuits 72. - The
processing unit 78 can also include safety control logic. The safety control logic detects when the temperature at atemperature sensor 20 has exceeded a safety threshold. Theprocessing unit 78 can then provide a temperature control signal which causes thepower circuits 72 to stop the delivery of energy from theenergy source 70 to theultrasound elements 40. - Since, the
ultrasound elements 40 may be mobile relative to thetemperature sensors 20, it can be unclear which ultrasound transducer should have a power level adjustment. As a result, the power level may be identically adjusted at eachultrasound element 40. Further, the power supplied to each of theultrasound elements 40 may be adjusted in response to thetemperature sensor 20 which indicates the highest temperature. Making power adjustments in response to the temperature of thetemperature sensor 20 indicating the highest temperature can prevent overheating of the treatment site. - The
processing unit 78 also receives a power signal from apower calculation device 74. The power signal can be used to determine the power being received by eachultrasound element 40. The determined power can then be displayed to the user on the user interface anddisplay 80. - The feedback control system 68 can maintain the tissue adjacent to the
ultrasound elements 40 at a desired temperature for a selected period of time. As described above, theultrasound elements 40 can be electrically connected so eachultrasound element 40 can generate an independent output. The output maintains a selected energy at eachultrasound element 40 for a selected length of time. - The
processing unit 78 can be a digital or analog controller, or a computer with software. When theprocessing unit 78 is a computer it can include a CPU coupled through a system bus. The user interface anddisplay 80 can be a mouse, keyboard, a disk drive, or other non-volatile memory systems, a display monitor, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory. - In lieu of the series of power adjustments described above, a profile of the power delivered to each
ultrasound element 40 can be incorporated in theprocessing unit 78 and a preset amount of energy to be delivered may also be profiled. The power delivered to eachultrasound element 40 can the be adjusted according to the profiles. -
FIGS. 10A-10G illustrate a method for using thesystem 10. InFIG. 10A , aguidewire 84 similar to a to a guidewire used in typical angioplasty procedures is directed throughvessels 86 toward atreatment site 88 which includes aclot 90. Theguidewire 84 is directed through theclot 90. Suitable vessels include, but are not limited to, cardiovascular vessels, the pancreas, sinuses, esophagus, rectum, gastrointestinal vessels and urological vessels. - In
FIG. 10B , theutility lumen 28 of thesheath 12 is slid over theguidewire 84 and thesheath 12 is advanced along theguidewire 84 using traditional over-the-guidewire techniques. Thesheath 12 is advanced until theenergy delivery section 18 of thesheath 12 is positioned at theclot 90. Radio opaque markers may be positioned at theenergy delivery section 18 of thesheath 12 to aid in the positioning of thesheath 12 within thetreatment site 88. - In
FIG. 10C , theguidewire 84 is withdrawn from theutility lumen 28 by pulling theguidewire 84 proximally while holding thesheath 12 stationary. InFIG. 10D , atemperature monitor 92 is coupled with the temperature sensor leads 24, a coolingfluid source 94 is coupled with the cooling fluid inlet and adrug solution source 96 is coupled with thedrug inlet port 32. Thedrug solution source 96 can be a syringe with a Luer fitting which is complementary with thedrug inlet port 32. Pressure can be applied to aplunger 98 on thedrug solution source 96 to drive the drug solution through thedrug delivery lumen 56. The drug solution is delivered from thedrug delivery lumen 56 through thedrug delivery ports 58 as illustrated by thearrows 100 inFIG. 10E . Suitable drug solutions include, but are not limited to, an aqueous solution containing Heparin, Uronkinase, Streptokinase, or tissue Plasminogen Activator (TPA). - In
FIG. 10F , theelongated body 34 is inserted into theutility lumen 28 until theultrasound element 40 is positioned within theenergy delivery section 18. To aid in placement of theultrasound element 40 within theenergy delivery section 18, radiopaque markers may be positioned on theelongated body 34 adjacent to each of theultrasound elements 40. Theultrasound elements 40 themselves can be radiopaque. Once theelongated body 34 is properly positioned, theultrasound element 40 is activated to deliver ultrasound energy through theenergy delivery section 18 to theclot 90. Suitable ultrasound energy is delivered with a frequency from 20 KHz to 2 MHz. While the ultrasound energy s being delivered, theultrasound element 40 can be moved within theenergy delivery section 18 as illustrated by thearrows 52. The movement of theultrasound element 40 within theenergy delivery section 18 can be caused by manipulating the body proximal section while holding the sheath proximal section stationary. A cooling fluid is flowed through the coolingfluid lumen 44 and out theocclusion device 22. - The cooling fluid can be delivered before, after, during or intermittently with the delivery of the ultrasound energy. Similarly, the drug solution can be delivered before, after, during or intermittently to the delivery of ultrasound energy. As a result, the acts illustrated in
FIGS. 10A-10F can be performed in different orders than are described above. The drug solution and energy are applied until theclot 90 is partially or entirely dissolved as illustrated inFIG. 10G . Once theclot 90 has been dissolved to the desired degree, thesheath 12 andelongated body 34 are withdrawn from thetreatment site 88. -
FIGS. 11A-11B illustrate a method for using thesystem 10 when the sheathdistal end 16 includes aballoon 59. Thesheath 12 is advanced through avessel 86, as described above, until theballoon 59 is positioned adjacent aclot 90 as illustrated inFIG. 11A . Theballoon 59 is expanded until theballoon 59 contacts theclot 90 as illustrated inFIG. 11B . As described above, theballoon 59 can be expanded by delivering a drug solution through anexpansion port 60A or adrug delivery port 58 or by delivering an expansion media through anexpansion port 60A. Once theballoon 59 contacts theclot 90, the drug solution or components of the drug solution are driven across the membrane so the drug solution or the components of the drug solution contact theclot 90. Theelongated body 34 can be inserted into thesheath 12 before, after or concurrently with the expansion of theballoon 59 and/or the delivery of the drug solution. Similarly, theultrasound element 40 can be operated before, after, intermittently or concurrently with the expansion of theballoon 59 and/or the delivery of the drug solution. - The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications, combinations and variations will be apparent to practitioners skilled in this art.
Claims (30)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/418,491 US20070112268A1 (en) | 1998-06-29 | 2006-05-03 | Sheath for use with an ultrasound element |
US13/332,226 US8764700B2 (en) | 1998-06-29 | 2011-12-20 | Sheath for use with an ultrasound element |
US14/289,528 US20140343483A1 (en) | 1998-06-29 | 2014-05-28 | Sheath for use with an ultrasound element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/107,078 US6723063B1 (en) | 1998-06-29 | 1998-06-29 | Sheath for use with an ultrasound element |
US10/369,270 US7413556B2 (en) | 1998-06-29 | 2003-02-18 | Sheath for use with an ultrasound element |
US11/418,491 US20070112268A1 (en) | 1998-06-29 | 2006-05-03 | Sheath for use with an ultrasound element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/369,270 Continuation US7413556B2 (en) | 1998-06-29 | 2003-02-18 | Sheath for use with an ultrasound element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/332,226 Continuation US8764700B2 (en) | 1998-06-29 | 2011-12-20 | Sheath for use with an ultrasound element |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070112268A1 true US20070112268A1 (en) | 2007-05-17 |
Family
ID=22314719
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/107,078 Expired - Lifetime US6723063B1 (en) | 1997-05-01 | 1998-06-29 | Sheath for use with an ultrasound element |
US10/369,270 Expired - Fee Related US7413556B2 (en) | 1998-06-29 | 2003-02-18 | Sheath for use with an ultrasound element |
US10/369,271 Abandoned US20040015122A1 (en) | 1998-06-29 | 2003-02-18 | Sheath for use with an ultrasound element |
US11/418,491 Abandoned US20070112268A1 (en) | 1998-06-29 | 2006-05-03 | Sheath for use with an ultrasound element |
US13/332,226 Expired - Fee Related US8764700B2 (en) | 1998-06-29 | 2011-12-20 | Sheath for use with an ultrasound element |
US14/289,528 Abandoned US20140343483A1 (en) | 1998-06-29 | 2014-05-28 | Sheath for use with an ultrasound element |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/107,078 Expired - Lifetime US6723063B1 (en) | 1997-05-01 | 1998-06-29 | Sheath for use with an ultrasound element |
US10/369,270 Expired - Fee Related US7413556B2 (en) | 1998-06-29 | 2003-02-18 | Sheath for use with an ultrasound element |
US10/369,271 Abandoned US20040015122A1 (en) | 1998-06-29 | 2003-02-18 | Sheath for use with an ultrasound element |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/332,226 Expired - Fee Related US8764700B2 (en) | 1998-06-29 | 2011-12-20 | Sheath for use with an ultrasound element |
US14/289,528 Abandoned US20140343483A1 (en) | 1998-06-29 | 2014-05-28 | Sheath for use with an ultrasound element |
Country Status (5)
Country | Link |
---|---|
US (6) | US6723063B1 (en) |
EP (1) | EP1091699B1 (en) |
JP (1) | JP4890674B2 (en) |
DE (1) | DE69925122T2 (en) |
WO (1) | WO2000000095A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9415242B2 (en) | 2001-12-03 | 2016-08-16 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US10092742B2 (en) | 2014-09-22 | 2018-10-09 | Ekos Corporation | Catheter system |
US10656025B2 (en) | 2015-06-10 | 2020-05-19 | Ekos Corporation | Ultrasound catheter |
US11458290B2 (en) | 2011-05-11 | 2022-10-04 | Ekos Corporation | Ultrasound system |
USD974558S1 (en) | 2020-12-18 | 2023-01-03 | Stryker European Operations Limited | Ultrasonic knife |
US11672553B2 (en) | 2007-06-22 | 2023-06-13 | Ekos Corporation | Method and apparatus for treatment of intracranial hemorrhages |
US11925367B2 (en) | 2007-01-08 | 2024-03-12 | Ekos Corporation | Power parameters for ultrasonic catheter |
Families Citing this family (192)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2063529A1 (en) * | 1991-03-22 | 1992-09-23 | Katsuro Tachibana | Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same |
US6210356B1 (en) * | 1998-08-05 | 2001-04-03 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6176842B1 (en) * | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US6302875B1 (en) | 1996-10-11 | 2001-10-16 | Transvascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
US6582392B1 (en) | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6723063B1 (en) | 1998-06-29 | 2004-04-20 | Ekos Corporation | Sheath for use with an ultrasound element |
US6676626B1 (en) | 1998-05-01 | 2004-01-13 | Ekos Corporation | Ultrasound assembly with increased efficacy |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
US6398772B1 (en) * | 1999-03-26 | 2002-06-04 | Coraje, Inc. | Method and apparatus for emergency treatment of patients experiencing a thrombotic vascular occlusion |
WO2001013357A1 (en) | 1999-08-16 | 2001-02-22 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US6638246B1 (en) | 2000-11-28 | 2003-10-28 | Scimed Life Systems, Inc. | Medical device for delivery of a biologically active material to a lumen |
US6623444B2 (en) * | 2001-03-21 | 2003-09-23 | Advanced Medical Applications, Inc. | Ultrasonic catheter drug delivery method and device |
US8123789B2 (en) * | 2002-04-29 | 2012-02-28 | Rohit Khanna | Central nervous system cooling catheter |
US20040019318A1 (en) * | 2001-11-07 | 2004-01-29 | Wilson Richard R. | Ultrasound assembly for use with a catheter |
US7018354B2 (en) * | 2001-11-08 | 2006-03-28 | El Hassane Tazi | Liposuction devices and methods and surrounding aspiration systems and methods |
AU2002353016A1 (en) * | 2001-12-03 | 2003-06-17 | Ekos Corporation | Small vessel ultrasound catheter |
AU2002357316A1 (en) * | 2001-12-14 | 2003-06-30 | Ekos Corporation | Blood flow reestablishment determination |
US6958040B2 (en) | 2001-12-28 | 2005-10-25 | Ekos Corporation | Multi-resonant ultrasonic catheter |
AU2003212481A1 (en) * | 2002-02-28 | 2003-09-09 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US8226629B1 (en) | 2002-04-01 | 2012-07-24 | Ekos Corporation | Ultrasonic catheter power control |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
US20070135875A1 (en) | 2002-04-08 | 2007-06-14 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7756583B2 (en) | 2002-04-08 | 2010-07-13 | Ardian, Inc. | Methods and apparatus for intravascularly-induced neuromodulation |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US20070129761A1 (en) | 2002-04-08 | 2007-06-07 | Ardian, Inc. | Methods for treating heart arrhythmia |
US20080213331A1 (en) | 2002-04-08 | 2008-09-04 | Ardian, Inc. | Methods and devices for renal nerve blocking |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US9636174B2 (en) | 2002-04-08 | 2017-05-02 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation |
US9955994B2 (en) | 2002-08-02 | 2018-05-01 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US7613503B2 (en) | 2002-08-09 | 2009-11-03 | Boston Scientific Scimed, Inc. | Device with infusion holes for imaging inside a blood vessel |
US6942677B2 (en) | 2003-02-26 | 2005-09-13 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US7335180B2 (en) | 2003-11-24 | 2008-02-26 | Flowcardia, Inc. | Steerable ultrasound catheter |
US6921371B2 (en) * | 2002-10-14 | 2005-07-26 | Ekos Corporation | Ultrasound radiating members for catheter |
US7771372B2 (en) * | 2003-01-03 | 2010-08-10 | Ekos Corporation | Ultrasonic catheter with axial energy field |
WO2004093656A2 (en) * | 2003-04-22 | 2004-11-04 | Ekos Corporation | Ultrasound enhanced central venous catheter |
CA2938411C (en) | 2003-09-12 | 2019-03-05 | Minnow Medical, Llc | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US7758510B2 (en) | 2003-09-19 | 2010-07-20 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US20060058708A1 (en) * | 2003-12-24 | 2006-03-16 | Gill Heart | Method and apparatus for ultrasonically increasing the transportation of therapeutic substances through tissue |
US7201737B2 (en) * | 2004-01-29 | 2007-04-10 | Ekos Corporation | Treatment of vascular occlusions using elevated temperatures |
JP2007520281A (en) * | 2004-01-29 | 2007-07-26 | イコス コーポレイション | Small vessel ultrasound catheter |
US20050209578A1 (en) * | 2004-01-29 | 2005-09-22 | Christian Evans Edward A | Ultrasonic catheter with segmented fluid delivery |
US9107590B2 (en) * | 2004-01-29 | 2015-08-18 | Ekos Corporation | Method and apparatus for detecting vascular conditions with a catheter |
US7341569B2 (en) * | 2004-01-30 | 2008-03-11 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
US7686825B2 (en) * | 2004-03-25 | 2010-03-30 | Hauser David L | Vascular filter device |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US20060184070A1 (en) * | 2004-11-12 | 2006-08-17 | Hansmann Douglas R | External ultrasonic therapy |
US7803168B2 (en) | 2004-12-09 | 2010-09-28 | The Foundry, Llc | Aortic valve repair |
US20060173387A1 (en) * | 2004-12-10 | 2006-08-03 | Douglas Hansmann | Externally enhanced ultrasonic therapy |
US20060264809A1 (en) * | 2005-04-12 | 2006-11-23 | Hansmann Douglas R | Ultrasound catheter with cavitation promoting surface |
US7918870B2 (en) * | 2005-09-12 | 2011-04-05 | Bridgepoint Medical, Inc. | Endovascular devices and methods |
WO2007081750A2 (en) * | 2006-01-06 | 2007-07-19 | The Curators Of The University Of Missouri | Ultrasound-mediated transcleral drug delivery |
US20070265560A1 (en) * | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
AU2007310986B2 (en) | 2006-10-18 | 2013-07-04 | Boston Scientific Scimed, Inc. | Inducing desirable temperature effects on body tissue |
EP2076193A4 (en) | 2006-10-18 | 2010-02-03 | Minnow Medical Inc | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
EP2455034B1 (en) | 2006-10-18 | 2017-07-19 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US8192363B2 (en) * | 2006-10-27 | 2012-06-05 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US8246643B2 (en) | 2006-11-07 | 2012-08-21 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
ES2538110T3 (en) * | 2007-01-08 | 2015-06-17 | Ekos Corporation | Power parameters for ultrasonic catheter |
DK2883545T3 (en) * | 2007-06-07 | 2018-11-05 | Bayer Animal Health Gmbh | Control of ectoparasites |
US8906700B2 (en) | 2007-11-06 | 2014-12-09 | Ambergen, Inc. | Methods and compositions for phototransfer |
EP2231024A4 (en) * | 2007-12-14 | 2015-03-18 | Ekos Corp | Ultrasound pulse shaping |
US8403911B2 (en) * | 2008-04-22 | 2013-03-26 | Becton, Dickinson And Company | Systems and methods for improving catheter hole array efficiency |
US9399112B2 (en) | 2008-04-22 | 2016-07-26 | Becton, Dickinson And Company | Catheter hole having an inclined trailing edge |
US9364634B2 (en) | 2008-04-22 | 2016-06-14 | Becton, Dickinson And Company | Systems and methods for improving catheter hole array efficiency |
US8496629B2 (en) | 2008-04-22 | 2013-07-30 | Becton, Dickinson And Company | Catheter hole having a flow breaking feature |
US20110251458A1 (en) * | 2008-10-20 | 2011-10-13 | Gad Terliuc | Assemblies for use with endoscopes and applications thereof |
CN102271603A (en) | 2008-11-17 | 2011-12-07 | 明诺医学股份有限公司 | Selective accumulation of energy with or without knowledge of tissue topography |
US9254123B2 (en) | 2009-04-29 | 2016-02-09 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
ES2503140T3 (en) | 2009-07-03 | 2014-10-06 | Ekos Corporation | Power parameters for ultrasonic catheter |
CN102481156B (en) | 2009-09-11 | 2015-02-04 | 奥林巴斯医疗株式会社 | Treatment apparatus and operation system |
CN102497831B (en) * | 2009-09-18 | 2015-02-04 | 奥林巴斯医疗株式会社 | Treatment apparatus and operation system |
US11039845B2 (en) | 2009-10-06 | 2021-06-22 | Cardioprolific Inc. | Methods and devices for endovascular therapy |
US9375223B2 (en) | 2009-10-06 | 2016-06-28 | Cardioprolific Inc. | Methods and devices for endovascular therapy |
US20110082534A1 (en) * | 2009-10-06 | 2011-04-07 | Wallace Michael P | Ultrasound-enhanced stenosis therapy |
US20110105960A1 (en) * | 2009-10-06 | 2011-05-05 | Wallace Michael P | Ultrasound-enhanced Stenosis therapy |
US20110082396A1 (en) * | 2009-10-06 | 2011-04-07 | Wallace Michael P | Ultrasound-enhanced stenosis therapy |
US8740835B2 (en) | 2010-02-17 | 2014-06-03 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
KR20130108067A (en) | 2010-04-09 | 2013-10-02 | 베식스 바스큘라 인코포레이티드 | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
JP6291253B2 (en) * | 2010-08-27 | 2018-03-14 | イーコス・コーポレイシヨン | Ultrasound catheter |
US9180274B2 (en) | 2010-09-09 | 2015-11-10 | W. L. G ore & Associates, Inc | Indwelling luminal devices |
US20120191107A1 (en) | 2010-09-17 | 2012-07-26 | Tanner Neal A | Systems and methods for positioning an elongate member inside a body |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
JP5604409B2 (en) * | 2011-01-19 | 2014-10-08 | 富士フイルム株式会社 | Endoscope |
WO2012100095A1 (en) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
CN103517731B (en) | 2011-04-08 | 2016-08-31 | 柯惠有限合伙公司 | For removing iontophoresis formula drug delivery system and the method for renal sympathetic nerve and iontophoresis formula drug delivery |
CN103930061B (en) | 2011-04-25 | 2016-09-14 | 美敦力阿迪安卢森堡有限责任公司 | Relevant low temperature sacculus for restricted conduit wall cryogenic ablation limits the device and method disposed |
WO2013013156A2 (en) | 2011-07-20 | 2013-01-24 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
JP6106669B2 (en) | 2011-07-22 | 2017-04-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | A neuromodulation system having a neuromodulation element that can be placed in a helical guide |
US9138166B2 (en) | 2011-07-29 | 2015-09-22 | Hansen Medical, Inc. | Apparatus and methods for fiber integration and registration |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
WO2013055815A1 (en) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Off -wall electrode device for nerve modulation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
WO2013058962A1 (en) | 2011-10-18 | 2013-04-25 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
CN108095821B (en) | 2011-11-08 | 2021-05-25 | 波士顿科学西美德公司 | Orifice renal nerve ablation |
EP2779929A1 (en) | 2011-11-15 | 2014-09-24 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
CA2859989C (en) | 2011-12-23 | 2020-03-24 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
CN104135958B (en) | 2011-12-28 | 2017-05-03 | 波士顿科学西美德公司 | By the apparatus and method that have the new ablation catheter modulation nerve of polymer ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
CA2857320C (en) | 2012-01-18 | 2020-08-11 | Bard Peripheral Vascular, Inc. | Vascular re-entry device |
JP2015128457A (en) * | 2012-04-27 | 2015-07-16 | テルモ株式会社 | embolus discharge catheter |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
JP2014000311A (en) * | 2012-06-20 | 2014-01-09 | Olympus Corp | Ultrasonic treatment instrument |
EP2879596A2 (en) | 2012-08-02 | 2015-06-10 | Flowcardia, Inc. | Ultrasound catheter system |
WO2014032016A1 (en) | 2012-08-24 | 2014-02-27 | Boston Scientific Scimed, Inc. | Intravascular catheter with a balloon comprising separate microporous regions |
CN104780859B (en) | 2012-09-17 | 2017-07-25 | 波士顿科学西美德公司 | Self-positioning electrode system and method for renal regulation |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
JP6074051B2 (en) | 2012-10-10 | 2017-02-01 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Intravascular neuromodulation system and medical device |
US10080576B2 (en) | 2013-03-08 | 2018-09-25 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US10149720B2 (en) | 2013-03-08 | 2018-12-11 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
SG10201702432YA (en) | 2013-03-14 | 2017-05-30 | Ekos Corp | Method and apparatus for drug delivery to a target site |
EP2967734B1 (en) | 2013-03-15 | 2019-05-15 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US10376672B2 (en) | 2013-03-15 | 2019-08-13 | Auris Health, Inc. | Catheter insertion system and method of fabrication |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
CN105473091B (en) | 2013-06-21 | 2020-01-21 | 波士顿科学国际有限公司 | Renal denervation balloon catheter with co-movable electrode supports |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
WO2015006480A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
WO2015006573A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
EP3024405A1 (en) | 2013-07-22 | 2016-06-01 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
JP2016527959A (en) | 2013-07-22 | 2016-09-15 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Renal nerve ablation medical device |
WO2015027096A1 (en) | 2013-08-22 | 2015-02-26 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
EP3043733A1 (en) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
EP3057488B1 (en) | 2013-10-14 | 2018-05-16 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
AU2014334574B2 (en) | 2013-10-15 | 2017-07-06 | Boston Scientific Scimed, Inc. | Medical device balloon |
CN105636538B (en) | 2013-10-18 | 2019-01-15 | 波士顿科学国际有限公司 | Foley's tube with flexible wire and its correlation technique for using and manufacturing |
CN105939647B (en) | 2013-10-24 | 2020-01-21 | 奥瑞斯健康公司 | Robotically-assisted endoluminal surgical systems and related methods |
JP2016534842A (en) | 2013-10-25 | 2016-11-10 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Embedded thermocouples in denervation flex circuits |
JP6382989B2 (en) | 2014-01-06 | 2018-08-29 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device with tear resistant flexible circuit assembly |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
US10226595B2 (en) * | 2014-06-16 | 2019-03-12 | Edwards Lifesciences Corporation | Spring cannulae |
US9561083B2 (en) | 2014-07-01 | 2017-02-07 | Auris Surgical Robotics, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US9744335B2 (en) | 2014-07-01 | 2017-08-29 | Auris Surgical Robotics, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
JP2015042272A (en) * | 2014-10-03 | 2015-03-05 | マイクロベンション インコーポレイテッド | Embolectomy catheter and handling method |
US11819636B2 (en) | 2015-03-30 | 2023-11-21 | Auris Health, Inc. | Endoscope pull wire electrical circuit |
WO2016164821A1 (en) * | 2015-04-08 | 2016-10-13 | Schoellhammer Carl Magnus | Systems, apparatus, and assembling method thereof for administering a substance |
US10470790B2 (en) * | 2015-12-16 | 2019-11-12 | Ethicon Llc | Surgical instrument with selector |
US10463439B2 (en) | 2016-08-26 | 2019-11-05 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
EP3518769B1 (en) * | 2016-09-28 | 2019-12-11 | Koninklijke Philips N.V. | Blood flow determination apparatus |
US10610668B2 (en) | 2016-10-05 | 2020-04-07 | Becton, Dickinson And Company | Catheter with an asymmetric tip |
US20180140321A1 (en) | 2016-11-23 | 2018-05-24 | C. R. Bard, Inc. | Catheter With Retractable Sheath And Methods Thereof |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
US10758256B2 (en) | 2016-12-22 | 2020-09-01 | C. R. Bard, Inc. | Ultrasonic endovascular catheter |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
CN110769736B (en) | 2017-05-17 | 2023-01-13 | 奥瑞斯健康公司 | Replaceable working channel |
US11116561B2 (en) | 2018-01-24 | 2021-09-14 | Medtronic Ardian Luxembourg S.A.R.L. | Devices, agents, and associated methods for selective modulation of renal nerves |
EP3773135B1 (en) | 2018-03-28 | 2024-02-14 | Auris Health, Inc. | Medical instruments with variable bending stiffness profiles |
US10898276B2 (en) | 2018-08-07 | 2021-01-26 | Auris Health, Inc. | Combining strain-based shape sensing with catheter control |
JP2021534846A (en) * | 2018-08-08 | 2021-12-16 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Intervention device with ultrasonic transducer |
WO2020068853A2 (en) | 2018-09-26 | 2020-04-02 | Auris Health, Inc. | Articulating medical instruments |
US11986257B2 (en) | 2018-12-28 | 2024-05-21 | Auris Health, Inc. | Medical instrument with articulable segment |
US11617627B2 (en) | 2019-03-29 | 2023-04-04 | Auris Health, Inc. | Systems and methods for optical strain sensing in medical instruments |
US11793392B2 (en) * | 2019-04-17 | 2023-10-24 | Neptune Medical Inc. | External working channels |
US11717147B2 (en) | 2019-08-15 | 2023-08-08 | Auris Health, Inc. | Medical device having multiple bending sections |
EP4084717A4 (en) | 2019-12-31 | 2024-02-14 | Auris Health, Inc. | Dynamic pulley system |
US20230346205A1 (en) | 2022-04-27 | 2023-11-02 | Neptune Medical Inc. | Multi-lumen port adapter manifold devices and methods of use |
Citations (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US4040414A (en) * | 1976-05-12 | 1977-08-09 | Xygiene, Inc. | Ultrasonic personal care instrument and method |
US4319580A (en) * | 1979-08-28 | 1982-03-16 | The Board Of Regents Of The University Of Washington | Method for detecting air emboli in the blood in an intracorporeal blood vessel |
US4354502A (en) * | 1979-08-28 | 1982-10-19 | The Board Of Regents Of The University Of Washington | Intravascular catheter including untrasonic transducer for use in detection and aspiration of air emboli |
US4531943A (en) * | 1983-08-08 | 1985-07-30 | Angiomedics Corporation | Catheter with soft deformable tip |
US4750902A (en) * | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4808153A (en) * | 1986-11-17 | 1989-02-28 | Ultramed Corporation | Device for removing plaque from arteries |
US4870953A (en) * | 1987-11-13 | 1989-10-03 | Donmicheal T Anthony | Intravascular ultrasonic catheter/probe and method for treating intravascular blockage |
US4920954A (en) * | 1988-08-05 | 1990-05-01 | Sonic Needle Corporation | Ultrasonic device for applying cavitation forces |
US4924863A (en) * | 1988-05-04 | 1990-05-15 | Mmtc, Inc. | Angioplastic method for removing plaque from a vas |
US4936281A (en) * | 1989-04-13 | 1990-06-26 | Everest Medical Corporation | Ultrasonically enhanced RF ablation catheter |
US5021044A (en) * | 1989-01-30 | 1991-06-04 | Advanced Cardiovascular Systems, Inc. | Catheter for even distribution of therapeutic fluids |
US5069664A (en) * | 1990-01-25 | 1991-12-03 | Inter Therapy, Inc. | Intravascular ultrasonic angioplasty probe |
US5163421A (en) * | 1988-01-22 | 1992-11-17 | Angiosonics, Inc. | In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging |
US5197946A (en) * | 1990-06-27 | 1993-03-30 | Shunro Tachibana | Injection instrument with ultrasonic oscillating element |
US5250034A (en) * | 1990-09-17 | 1993-10-05 | E-Z-Em, Inc. | Pressure responsive valve catheter |
US5267985A (en) * | 1993-02-11 | 1993-12-07 | Trancell, Inc. | Drug delivery by multiple frequency phonophoresis |
US5267954A (en) * | 1991-01-11 | 1993-12-07 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5269291A (en) * | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
US5286254A (en) * | 1990-06-15 | 1994-02-15 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5295484A (en) * | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5304115A (en) * | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5313949A (en) * | 1986-02-28 | 1994-05-24 | Cardiovascular Imaging Systems Incorporated | Method and apparatus for intravascular two-dimensional ultrasonography |
US5318014A (en) * | 1992-09-14 | 1994-06-07 | Coraje, Inc. | Ultrasonic ablation/dissolution transducer |
US5323769A (en) * | 1990-02-23 | 1994-06-28 | Cygnus Therapeutic Systems | Ultrasound-enhanced delivery of materials into and through the skin |
US5327891A (en) * | 1992-07-30 | 1994-07-12 | Rammler David H | Catheter track and catheter for diagnosis and treatment |
US5344435A (en) * | 1988-07-28 | 1994-09-06 | Bsd Medical Corporation | Urethral inserted applicator prostate hyperthermia |
US5345940A (en) * | 1991-11-08 | 1994-09-13 | Mayo Foundation For Medical Education And Research | Transvascular ultrasound hemodynamic and interventional catheter and method |
US5354279A (en) * | 1992-10-21 | 1994-10-11 | Bavaria Medizin Technologie Gmbh | Plural needle injection catheter |
US5353798A (en) * | 1991-03-13 | 1994-10-11 | Scimed Life Systems, Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5362309A (en) * | 1992-09-14 | 1994-11-08 | Coraje, Inc. | Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis |
US5363853A (en) * | 1991-11-08 | 1994-11-15 | Baxter International Inc. | Ultrasound probe for use with transport catheter and method of making same |
US5368036A (en) * | 1992-10-20 | 1994-11-29 | Fuji Photo Optical Co., Ltd. | Ultrasound probe |
US5368557A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5380273A (en) * | 1992-05-19 | 1995-01-10 | Dubrul; Will R. | Vibrating catheter |
US5390678A (en) * | 1993-10-12 | 1995-02-21 | Baxter International Inc. | Method and device for measuring ultrasonic activity in an ultrasound delivery system |
US5421338A (en) * | 1988-03-21 | 1995-06-06 | Boston Scientific Corporation | Acoustic imaging catheter and the like |
US5423797A (en) * | 1994-04-25 | 1995-06-13 | Medelex, Inc. | Acoustic catheter with rotary drive |
US5445155A (en) * | 1991-03-13 | 1995-08-29 | Scimed Life Systems Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5447509A (en) * | 1991-01-11 | 1995-09-05 | Baxter International Inc. | Ultrasound catheter system having modulated output with feedback control |
US5447510A (en) * | 1992-01-21 | 1995-09-05 | Baltic Technology Aps | Apparatus comprising an ultrasonic probe for removing biologic tissue |
US5458568A (en) * | 1991-05-24 | 1995-10-17 | Cortrak Medical, Inc. | Porous balloon for selective dilatation and drug delivery |
US5462523A (en) * | 1993-05-18 | 1995-10-31 | Target Therapeutics, Inc. | Drug delivery system |
US5465726A (en) * | 1992-01-30 | 1995-11-14 | Intravascular Research Limited | Ultrasound imaging and catheters for use therein |
US5474530A (en) * | 1991-01-11 | 1995-12-12 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasospasm |
US5498238A (en) * | 1990-06-15 | 1996-03-12 | Cortrak Medical, Inc. | Simultaneous angioplasty and phoretic drug delivery |
US5509896A (en) * | 1994-09-09 | 1996-04-23 | Coraje, Inc. | Enhancement of thrombolysis with external ultrasound |
US5514092A (en) * | 1994-08-08 | 1996-05-07 | Schneider (Usa) Inc. | Drug delivery and dilatation-drug delivery catheters in a rapid exchange configuration |
US5520189A (en) * | 1990-07-13 | 1996-05-28 | Coraje, Inc. | Intravascular ultrasound imaging guidewire |
US5533986A (en) * | 1994-02-18 | 1996-07-09 | Merit Medical Systems, Inc. | Catheter apparatus with means for subcutaneous delivery of anesthetic agent or other fluid medicament |
US5569197A (en) * | 1994-12-21 | 1996-10-29 | Schneider (Usa) Inc | Drug delivery guidewire |
US5603327A (en) * | 1993-02-01 | 1997-02-18 | Endosonics Corporation | Ultrasound catheter probe |
US5603694A (en) * | 1995-10-17 | 1997-02-18 | Brown; Joe E. | Infusion coil apparatus and method for delivering fluid-based agents intravascularly |
US5606974A (en) * | 1995-05-02 | 1997-03-04 | Heart Rhythm Technologies, Inc. | Catheter having ultrasonic device |
US5617851A (en) * | 1992-10-14 | 1997-04-08 | Endodermic Medical Technologies Company | Ultrasonic transdermal system for withdrawing fluid from an organism and determining the concentration of a substance in the fluid |
US5618275A (en) * | 1995-10-27 | 1997-04-08 | Sonex International Corporation | Ultrasonic method and apparatus for cosmetic and dermatological applications |
US5620479A (en) * | 1992-11-13 | 1997-04-15 | The Regents Of The University Of California | Method and apparatus for thermal therapy of tumors |
US5630837A (en) * | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
US5656016A (en) * | 1996-03-18 | 1997-08-12 | Abbott Laboratories | Sonophoretic drug delivery system |
US5725494A (en) * | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5772632A (en) * | 1994-04-13 | 1998-06-30 | Schneider (Usa) Inc. | Dilation-drug delivery catheter |
US5779673A (en) * | 1995-06-26 | 1998-07-14 | Focal, Inc. | Devices and methods for application of intraluminal photopolymerized gels |
US5807395A (en) * | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
US5876345A (en) * | 1997-02-27 | 1999-03-02 | Acuson Corporation | Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction |
US5914868A (en) * | 1996-09-30 | 1999-06-22 | Korea Telecom | Multiplier and neural network synapse using current mirror having low-power mosfets |
US5984882A (en) * | 1996-08-19 | 1999-11-16 | Angiosonics Inc. | Methods for prevention and treatment of cancer and other proliferative diseases with ultrasonic energy |
US5997497A (en) * | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
US6024718A (en) * | 1996-09-04 | 2000-02-15 | The Regents Of The University Of California | Intraluminal directed ultrasound delivery device |
US6059731A (en) * | 1998-08-19 | 2000-05-09 | Mayo Foundation For Medical Education And Research | Simultaneous side-and-end viewing underfluid catheter |
US6063069A (en) * | 1997-05-19 | 2000-05-16 | Micro Therapeutics Inc. | Method and apparatus for power lysis of a thrombus |
US6120454A (en) * | 1998-02-03 | 2000-09-19 | Boston Scientific Corporation | Annular array ultrasound catheter |
US6149599A (en) * | 1997-01-31 | 2000-11-21 | Acuson Corporation | Method for manufacturing an end portion surrounding a catheter-mounted phased-array ultrasound transducer |
US6206831B1 (en) * | 1999-01-06 | 2001-03-27 | Scimed Life Systems, Inc. | Ultrasound-guided ablation catheter and methods of use |
US6296619B1 (en) * | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US6379320B1 (en) * | 1997-06-11 | 2002-04-30 | Institut National De La Santa Et De La Recherche Medicale I.N.S.E.R.M. | Ultrasound applicator for heating an ultrasound absorbent medium |
US6461314B1 (en) * | 1999-02-02 | 2002-10-08 | Transurgical, Inc. | Intrabody hifu applicator |
US6508775B2 (en) * | 2000-03-20 | 2003-01-21 | Pharmasonics, Inc. | High output therapeutic ultrasound transducer |
US6537306B1 (en) * | 1992-11-13 | 2003-03-25 | The Regents Of The University Of California | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
US6561998B1 (en) * | 1998-04-07 | 2003-05-13 | Transvascular, Inc. | Transluminal devices, systems and methods for enlarging interstitial penetration tracts |
US6711953B2 (en) * | 2000-08-25 | 2004-03-30 | Furuno Electric Company, Ltd. | Method of and apparatus for controlling beams produced by a cylindrical transducer |
US6740040B1 (en) * | 2001-01-30 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Ultrasound energy driven intraventricular catheter to treat ischemia |
US6979293B2 (en) * | 2001-12-14 | 2005-12-27 | Ekos Corporation | Blood flow reestablishment determination |
US7089063B2 (en) * | 2000-05-16 | 2006-08-08 | Atrionix, Inc. | Deflectable tip catheter with guidewire tracking mechanism |
Family Cites Families (297)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3430625A (en) | 1965-10-23 | 1969-03-04 | Mennen Greatbatch Electronics | Ultrasonic flowmeter for measuring blood flow |
US3565062A (en) | 1968-06-13 | 1971-02-23 | Ultrasonic Systems | Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like |
FR2173115B1 (en) | 1972-02-22 | 1977-09-02 | Univ Erasmus | |
US3941122A (en) | 1974-04-08 | 1976-03-02 | Bolt Beranek And Newman, Inc. | High frequency ultrasonic process and apparatus for selectively dissolving and removing unwanted solid and semi-solid materials and the like |
US4309989A (en) | 1976-02-09 | 1982-01-12 | The Curators Of The University Of Missouri | Topical application of medication by ultrasound with coupling agent |
US4192294A (en) | 1977-10-11 | 1980-03-11 | Gekhman Boris S | Method of removing concretions from the ureter |
US4549533A (en) | 1984-01-30 | 1985-10-29 | University Of Illinois | Apparatus and method for generating and directing ultrasound |
US4587975A (en) | 1984-07-02 | 1986-05-13 | Cardiac Pacemakers, Inc. | Dimension sensitive angioplasty catheter |
US4709698A (en) | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
US4948587A (en) * | 1986-07-08 | 1990-08-14 | Massachusetts Institute Of Technology | Ultrasound enhancement of transbuccal drug delivery |
US4754752A (en) | 1986-07-28 | 1988-07-05 | Robert Ginsburg | Vascular catheter |
JPS63135179A (en) * | 1986-11-26 | 1988-06-07 | 立花 俊郎 | Subcataneous drug administration set |
GB2212267B (en) | 1987-11-11 | 1992-07-29 | Circulation Res Ltd | Methods and apparatus for the examination and treatment of internal organs |
JPH0629196B2 (en) | 1987-12-01 | 1994-04-20 | 甲子郎 梅村 | Physiological action enhancer for tumor treatment by ultrasound |
US4921478A (en) | 1988-02-23 | 1990-05-01 | C. R. Bard, Inc. | Cerebral balloon angioplasty system |
US4951677A (en) | 1988-03-21 | 1990-08-28 | Prutech Research And Development Partnership Ii | Acoustic imaging catheter and the like |
US5588432A (en) | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5178620A (en) | 1988-06-10 | 1993-01-12 | Advanced Angioplasty Products, Inc. | Thermal dilatation catheter and method |
US4960109A (en) | 1988-06-21 | 1990-10-02 | Massachusetts Institute Of Technology | Multi-purpose temperature sensing probe for hyperthermia therapy |
US5158071A (en) | 1988-07-01 | 1992-10-27 | Hitachi, Ltd. | Ultrasonic apparatus for therapeutical use |
US5328470A (en) | 1989-03-31 | 1994-07-12 | The Regents Of The University Of Michigan | Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor |
US5344395A (en) | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5088499A (en) | 1989-12-22 | 1992-02-18 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5542935A (en) | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5149319A (en) | 1990-09-11 | 1992-09-22 | Unger Evan C | Methods for providing localized therapeutic heat to biological tissues and fluids |
US6088613A (en) | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
DE4005743A1 (en) | 1990-02-23 | 1991-08-29 | Wolf Gmbh Richard | Lithotriptor to destroy gallstones intra-or trans-luminally - has shock-wave generator, lead contg. incompressible material, and opt balloon to press generator against gall bladder |
US5108369A (en) | 1990-03-15 | 1992-04-28 | Diagnostic Devices Group, Limited | Dual-diameter multifunction catheter |
JP3015481B2 (en) | 1990-03-28 | 2000-03-06 | 株式会社東芝 | Ultrasonic probe system |
US5399158A (en) | 1990-05-31 | 1995-03-21 | The United States Of America As Represented By The Secretary Of The Army | Method of lysing thrombi |
EP0536296A4 (en) | 1990-06-26 | 1993-08-04 | Cardiovascular Therapeutic Technologies, Inc. | Method and catheter for intravascular drug delivery |
US5279546A (en) | 1990-06-27 | 1994-01-18 | Lake Region Manufacturing Company, Inc. | Thrombolysis catheter system |
CA2022019C (en) | 1990-07-26 | 1992-12-29 | Michael Black | Catheter |
CA2048120A1 (en) | 1990-08-06 | 1992-02-07 | William J. Drasler | Thrombectomy method and device |
US5059851A (en) | 1990-09-06 | 1991-10-22 | Cardiometrics, Inc. | Miniature ultrasound high efficiency transducer assembly, guidewire using the same and method |
US5185071A (en) | 1990-10-30 | 1993-02-09 | Board Of Regents, The University Of Texas System | Programmable electrophoresis with integrated and multiplexed control |
US5368558A (en) | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having endoscopic component and method of using same |
US5542917A (en) | 1991-01-11 | 1996-08-06 | Baxter International, Inc. | Ultrasound delivery catheters incorporating improved distal tip construction |
US5957882A (en) | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5916192A (en) * | 1991-01-11 | 1999-06-29 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty-atherectomy catheter and method of use |
US6387052B1 (en) | 1991-01-29 | 2002-05-14 | Edwards Lifesciences Corporation | Thermodilution catheter having a safe, flexible heating element |
CA2063529A1 (en) | 1991-03-22 | 1992-09-23 | Katsuro Tachibana | Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same |
JP3181071B2 (en) | 1991-06-28 | 2001-07-03 | 俊郎 立花 | Blood processing equipment |
GB2258364A (en) | 1991-07-30 | 1993-02-03 | Intravascular Res Ltd | Ultrasonic tranducer |
DE4227800C2 (en) * | 1991-08-21 | 1996-12-19 | Toshiba Kawasaki Kk | Thrombus-releasing treatment device |
US5219358A (en) | 1991-08-29 | 1993-06-15 | Ethicon, Inc. | Shape memory effect surgical needles |
CA2122834C (en) | 1991-11-04 | 1999-10-05 | Henry Nita | Ultrasonic ablation device adapted for guidewire passage |
SE469778B (en) * | 1992-02-17 | 1993-09-13 | Bertil Olsson Enheten Foer Kar | Apparatus for arterial reperfusion by noninvasive ultrasound effect |
US5226421A (en) * | 1992-03-06 | 1993-07-13 | Cardiometrics, Inc. | Doppler elongate flexible member having an inflatable balloon mounted thereon |
DE4207463C2 (en) | 1992-03-10 | 1996-03-28 | Siemens Ag | Arrangement for the therapy of tissue with ultrasound |
US5713848A (en) | 1993-05-19 | 1998-02-03 | Dubrul; Will R. | Vibrating catheter |
US5271406A (en) | 1992-05-22 | 1993-12-21 | Diagnostic Devices Group, Limited | Low-profile ultrasonic transducer incorporating static beam steering |
US5244395A (en) * | 1992-07-29 | 1993-09-14 | Motorola, Inc. | Circuit interconnect system |
US5261291A (en) | 1992-08-17 | 1993-11-16 | Schoch Paul T | Ergonomic apparatus for controlling a vehicle |
JPH0670987A (en) | 1992-08-28 | 1994-03-15 | Katsuro Tachibana | Medicine dosing and body liquid taking-out unit and device therefor |
US5523058A (en) * | 1992-09-16 | 1996-06-04 | Hitachi, Ltd. | Ultrasonic irradiation apparatus and processing apparatus based thereon |
US5807306A (en) | 1992-11-09 | 1998-09-15 | Cortrak Medical, Inc. | Polymer matrix drug delivery apparatus |
US5733315A (en) | 1992-11-13 | 1998-03-31 | Burdette; Everette C. | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
US5397293A (en) * | 1992-11-25 | 1995-03-14 | Misonix, Inc. | Ultrasonic device with sheath and transverse motion damping |
US5817021A (en) | 1993-04-15 | 1998-10-06 | Siemens Aktiengesellschaft | Therapy apparatus for treating conditions of the heart and heart-proximate vessels |
US5840031A (en) | 1993-07-01 | 1998-11-24 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
EP0706345B1 (en) | 1993-07-01 | 2003-02-19 | Boston Scientific Limited | Imaging, electrical potential sensing, and ablation catheters |
JP3415203B2 (en) | 1993-07-12 | 2003-06-09 | 立花 克郎 | Ultrasound generator for therapy |
JP3294387B2 (en) | 1993-07-21 | 2002-06-24 | 立花 克郎 | Ultrasonic intensity distribution measurement method |
US5385148A (en) * | 1993-07-30 | 1995-01-31 | The Regents Of The University Of California | Cardiac imaging and ablation catheter |
US5405322A (en) | 1993-08-12 | 1995-04-11 | Boston Scientific Corporation | Method for treating aneurysms with a thermal source |
WO1995008289A2 (en) | 1993-09-16 | 1995-03-30 | Scimed Life Systems, Inc. | Percutaneous repair of cardiovascular anomalies and repair compositions |
US5660182A (en) * | 1993-09-20 | 1997-08-26 | Colin Corporation | Inflatable cuff used for blood pressure measurement and automatic blood pressure measuring apparatus including inflatable cuff |
US5348481A (en) | 1993-09-29 | 1994-09-20 | Cardiometrics, Inc. | Rotary connector for use with small diameter flexible elongate member having electrical capabilities |
DE4443947B4 (en) | 1994-01-14 | 2005-09-22 | Siemens Ag | endoscope |
GB2287375B (en) | 1994-03-11 | 1998-04-15 | Intravascular Res Ltd | Ultrasonic transducer array and method of manufacturing the same |
AU2238895A (en) | 1994-04-01 | 1995-10-23 | Localmed, Inc. | Method and apparatus for performing multiple procedures |
WO1995027443A1 (en) | 1994-04-07 | 1995-10-19 | Derio Medical Instruments Ltd. | Device for removal of intraluminal occlusions |
US5560362A (en) | 1994-06-13 | 1996-10-01 | Acuson Corporation | Active thermal control of ultrasound transducers |
JP3394327B2 (en) | 1994-07-11 | 2003-04-07 | テルモ株式会社 | Tube inner surface treatment method |
US6113570A (en) | 1994-09-09 | 2000-09-05 | Coraje, Inc. | Method of removing thrombosis in fistulae |
JP3415286B2 (en) | 1994-09-22 | 2003-06-09 | 克郎 立花 | Ultrasonic measurement sheet |
US6689086B1 (en) | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US5724976A (en) | 1994-12-28 | 1998-03-10 | Kabushiki Kaisha Toshiba | Ultrasound imaging preferable to ultrasound contrast echography |
US5647364A (en) | 1995-02-15 | 1997-07-15 | Ultra-Scan Corporation | Ultrasonic biometric imaging and identity verification system |
US6210356B1 (en) * | 1998-08-05 | 2001-04-03 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6176842B1 (en) * | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US5752930A (en) | 1995-04-28 | 1998-05-19 | Medtronic, Inc. | Implantable techniques for infusing equal volumes of agents to spaced sites |
US5735280A (en) | 1995-05-02 | 1998-04-07 | Heart Rhythm Technologies, Inc. | Ultrasound energy delivery system and method |
EP0744189A1 (en) | 1995-05-26 | 1996-11-27 | Katsuro Tachibana | Medicine applying tool |
US5628728A (en) * | 1995-05-31 | 1997-05-13 | Ekos Corporation | Medicine applying tool |
US5558092A (en) | 1995-06-06 | 1996-09-24 | Imarx Pharmaceutical Corp. | Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously |
US5620409A (en) | 1995-09-15 | 1997-04-15 | The Research Foundation Of State University Of New York | Method for inhibiting clot formation |
US5925016A (en) | 1995-09-27 | 1999-07-20 | Xrt Corp. | Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure |
US5648098A (en) | 1995-10-17 | 1997-07-15 | The Board Of Regents Of The University Of Nebraska | Thrombolytic agents and methods of treatment for thrombosis |
US6135971A (en) | 1995-11-09 | 2000-10-24 | Brigham And Women's Hospital | Apparatus for deposition of ultrasound energy in body tissue |
US5735811A (en) * | 1995-11-30 | 1998-04-07 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced fluid delivery |
US5728062A (en) | 1995-11-30 | 1998-03-17 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
JP2000502682A (en) | 1995-12-22 | 2000-03-07 | ローカルメッド インコーポレイテッド | Local intravascular delivery of growth factors that promote angiogenesis |
NL1002274C2 (en) | 1996-02-07 | 1997-08-08 | Cordis Europ | High-frequency thrombectomy catheter. |
US6033397A (en) | 1996-03-05 | 2000-03-07 | Vnus Medical Technologies, Inc. | Method and apparatus for treating esophageal varices |
US20020045890A1 (en) | 1996-04-24 | 2002-04-18 | The Regents Of The University O F California | Opto-acoustic thrombolysis |
US5938595A (en) | 1996-05-24 | 1999-08-17 | The Regents Of The University Of California | Fiber optic D dimer biosensor |
US5957851A (en) | 1996-06-10 | 1999-09-28 | Acuson Corporation | Extended bandwidth ultrasonic transducer |
US6830577B2 (en) | 1996-07-26 | 2004-12-14 | Kensey Nash Corporation | System and method of use for treating occluded vessels and diseased tissue |
US6905505B2 (en) | 1996-07-26 | 2005-06-14 | Kensey Nash Corporation | System and method of use for agent delivery and revascularizing of grafts and vessels |
US5971949A (en) | 1996-08-19 | 1999-10-26 | Angiosonics Inc. | Ultrasound transmission apparatus and method of using same |
US5836896A (en) | 1996-08-19 | 1998-11-17 | Angiosonics | Method of inhibiting restenosis by applying ultrasonic energy |
DE19635593C1 (en) | 1996-09-02 | 1998-04-23 | Siemens Ag | Ultrasound transducer for diagnostic and therapeutic use |
US5704105A (en) | 1996-09-04 | 1998-01-06 | General Electric Company | Method of manufacturing multilayer array ultrasonic transducers |
US5846218A (en) | 1996-09-05 | 1998-12-08 | Pharmasonics, Inc. | Balloon catheters having ultrasonically driven interface surfaces and methods for their use |
US5827313A (en) | 1996-09-27 | 1998-10-27 | Boston Scientific Corporation | Device for controlled longitudinal movement of an operative element within a catheter sheath and method |
US5957941A (en) | 1996-09-27 | 1999-09-28 | Boston Scientific Corporation | Catheter system and drive assembly thereof |
WO1998018391A1 (en) | 1996-10-30 | 1998-05-07 | Ekos Corporation | Intraluminal wall drug delivery device |
US6221038B1 (en) | 1996-11-27 | 2001-04-24 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US6110098A (en) | 1996-12-18 | 2000-08-29 | Medtronic, Inc. | System and method of mechanical treatment of cardiac fibrillation |
US5775338A (en) | 1997-01-10 | 1998-07-07 | Scimed Life Systems, Inc. | Heated perfusion balloon for reduction of restenosis |
US5827203A (en) | 1997-04-21 | 1998-10-27 | Nita; Henry | Ultrasound system and method for myocardial revascularization |
EP0873722A1 (en) * | 1997-04-24 | 1998-10-28 | Sulzer Osypka GmbH | Apparatus for an endocardiac treatment |
US6582392B1 (en) | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6723063B1 (en) | 1998-06-29 | 2004-04-20 | Ekos Corporation | Sheath for use with an ultrasound element |
US6676626B1 (en) | 1998-05-01 | 2004-01-13 | Ekos Corporation | Ultrasound assembly with increased efficacy |
US6001069A (en) | 1997-05-01 | 1999-12-14 | Ekos Corporation | Ultrasound catheter for providing a therapeutic effect to a vessel of a body |
US5976120A (en) | 1997-05-05 | 1999-11-02 | Micro Therapeutics, Inc. | Single segment microcatheter |
US6024703A (en) | 1997-05-07 | 2000-02-15 | Eclipse Surgical Technologies, Inc. | Ultrasound device for axial ranging |
US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
US5931805A (en) * | 1997-06-02 | 1999-08-03 | Pharmasonics, Inc. | Catheters comprising bending transducers and methods for their use |
US6228046B1 (en) * | 1997-06-02 | 2001-05-08 | Pharmasonics, Inc. | Catheters comprising a plurality of oscillators and methods for their use |
JP4441000B2 (en) * | 1997-06-23 | 2010-03-24 | 克郎 立花 | Biological tissue processing device |
US5842994A (en) * | 1997-07-02 | 1998-12-01 | Boston Scientific Technology, Inc. | Multifunction intraluminal ultrasound catheter having a removable core with maximized transducer aperture |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6108369A (en) * | 1997-07-11 | 2000-08-22 | Telefonaktiebolaget Lm Ericsson | Channelization code allocation for radio communication systems |
US6078830A (en) * | 1997-10-01 | 2000-06-20 | Ep Technologies, Inc. | Molded catheter distal end assembly and process for the manufacture thereof |
US6585763B1 (en) * | 1997-10-14 | 2003-07-01 | Vascusense, Inc. | Implantable therapeutic device and method |
US6231516B1 (en) | 1997-10-14 | 2001-05-15 | Vacusense, Inc. | Endoluminal implant with therapeutic and diagnostic capability |
US5935124A (en) | 1997-12-02 | 1999-08-10 | Cordis Webster, Inc. | Tip electrode with multiple temperature sensors |
US6562021B1 (en) | 1997-12-22 | 2003-05-13 | Micrus Corporation | Variable stiffness electrically conductive composite, resistive heating catheter shaft |
US6794369B2 (en) | 1997-12-31 | 2004-09-21 | Pharmasonics | Methods, systems, and kits for intravascular nucleic acid delivery |
JP2001526942A (en) | 1997-12-31 | 2001-12-25 | ファーマソニックス,インコーポレイテッド | Methods, systems, and kits for intravascular nucleic acid delivery |
US6464680B1 (en) | 1998-07-29 | 2002-10-15 | Pharmasonics, Inc. | Ultrasonic enhancement of drug injection |
US6575956B1 (en) | 1997-12-31 | 2003-06-10 | Pharmasonics, Inc. | Methods and apparatus for uniform transcutaneous therapeutic ultrasound |
JP2001526926A (en) | 1997-12-31 | 2001-12-25 | ファーマソニックス,インコーポレイテッド | Methods and systems for suppressing vascular hyperplasia |
US6295990B1 (en) | 1998-02-03 | 2001-10-02 | Salient Interventional Systems, Inc. | Methods and systems for treating ischemia |
DE69838526T2 (en) | 1998-02-05 | 2008-07-03 | Biosense Webster, Inc., Diamond Bar | Device for releasing a drug in the heart |
US6089573A (en) | 1998-03-09 | 2000-07-18 | Ishikawa Gasket Co., Ltd. | Metal gasket with corrugated bead |
US6508816B2 (en) | 1998-03-27 | 2003-01-21 | John H. Shadduck | Medical instrument working end creating very high pressure gradients |
US6066123A (en) | 1998-04-09 | 2000-05-23 | The Board Of Trustees Of The Leland Stanford Junior University | Enhancement of bioavailability by use of focused energy delivery to a target tissue |
US6974450B2 (en) | 1999-12-30 | 2005-12-13 | Pearl Technology Holdings, Llc | Face-lifting device |
US6113546A (en) | 1998-07-31 | 2000-09-05 | Scimed Life Systems, Inc. | Off-aperture electrical connection for ultrasonic transducer |
JP3973772B2 (en) | 1998-08-28 | 2007-09-12 | 株式会社東芝 | Coal gasification combined cycle power plant |
US6312402B1 (en) | 1998-09-24 | 2001-11-06 | Ekos Corporation | Ultrasound catheter for improving blood flow to the heart |
US6135976A (en) | 1998-09-25 | 2000-10-24 | Ekos Corporation | Method, device and kit for performing gene therapy |
US6277077B1 (en) * | 1998-11-16 | 2001-08-21 | Cardiac Pathways Corporation | Catheter including ultrasound transducer with emissions attenuation |
WO2000030554A1 (en) | 1998-11-20 | 2000-06-02 | Jones Joie P | Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound |
US6607502B1 (en) | 1998-11-25 | 2003-08-19 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US6165199A (en) | 1999-01-12 | 2000-12-26 | Coaxia, Inc. | Medical device for removing thromboembolic material from cerebral arteries and methods of use |
US20040024393A1 (en) * | 2002-08-02 | 2004-02-05 | Henry Nita | Therapeutic ultrasound system |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
US6231551B1 (en) | 1999-03-01 | 2001-05-15 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US6743196B2 (en) | 1999-03-01 | 2004-06-01 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US6726698B2 (en) | 1999-03-02 | 2004-04-27 | Sound Surgical Technologies Llc | Pulsed ultrasonic device and method |
US6027515A (en) | 1999-03-02 | 2000-02-22 | Sound Surgical Technologies Llc | Pulsed ultrasonic device and method |
US6398772B1 (en) | 1999-03-26 | 2002-06-04 | Coraje, Inc. | Method and apparatus for emergency treatment of patients experiencing a thrombotic vascular occlusion |
US6911026B1 (en) | 1999-07-12 | 2005-06-28 | Stereotaxis, Inc. | Magnetically guided atherectomy |
US6235024B1 (en) | 1999-06-21 | 2001-05-22 | Hosheng Tu | Catheters system having dual ablation capability |
US20010007940A1 (en) | 1999-06-21 | 2001-07-12 | Hosheng Tu | Medical device having ultrasound imaging and therapeutic means |
US6270460B1 (en) | 1999-06-24 | 2001-08-07 | Acuson Corporation | Apparatus and method to limit the life span of a diagnostic medical ultrasound probe |
US6361554B1 (en) | 1999-06-30 | 2002-03-26 | Pharmasonics, Inc. | Methods and apparatus for the subcutaneous delivery of acoustic vibrations |
IL131623A0 (en) | 1999-08-27 | 2001-01-28 | Dan Weiss | Apparatus to couple ultrasonic energy to catheters and other transdermal medical devices |
EP1214109A1 (en) | 1999-09-24 | 2002-06-19 | Omnisonics Medical Technologies, Inc. | Variable stiffness medical device |
US6579279B1 (en) * | 1999-09-24 | 2003-06-17 | Omnisonics Medical Technologies, Inc. | Steerable catheter device |
US6196973B1 (en) | 1999-09-30 | 2001-03-06 | Siemens Medical Systems, Inc. | Flow estimation using an ultrasonically modulated contrast agent |
US6733451B2 (en) | 1999-10-05 | 2004-05-11 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe used with a pharmacological agent |
US20030236539A1 (en) | 1999-10-05 | 2003-12-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method for using an ultrasonic probe to clear a vascular access device |
US20020077550A1 (en) | 1999-10-05 | 2002-06-20 | Rabiner Robert A. | Apparatus and method for treating gynecological diseases using an ultrasonic medical device operating in a transverse mode |
US6695781B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device for tissue remodeling |
US20050096669A1 (en) | 1999-10-05 | 2005-05-05 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat coronary thrombus bearing lesions |
US6524251B2 (en) | 1999-10-05 | 2003-02-25 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US6660013B2 (en) | 1999-10-05 | 2003-12-09 | Omnisonics Medical Technologies, Inc. | Apparatus for removing plaque from blood vessels using ultrasonic energy |
US20030036705A1 (en) | 1999-10-05 | 2003-02-20 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means |
EP1090658A1 (en) | 1999-10-05 | 2001-04-11 | OmniSonics Medical Technologies | Ultrasonic medical treatment apparatus |
US20040097996A1 (en) | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US6695782B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means |
US6551337B1 (en) | 1999-10-05 | 2003-04-22 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
US20050043629A1 (en) | 1999-10-05 | 2005-02-24 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device having a probe with a small proximal end |
US20050043753A1 (en) * | 1999-10-05 | 2005-02-24 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat peripheral artery disease |
US6652547B2 (en) | 1999-10-05 | 2003-11-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode |
US20030065263A1 (en) | 1999-10-05 | 2003-04-03 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means having a line contact collet |
US20050119679A1 (en) | 1999-10-05 | 2005-06-02 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat chronic total occlusions |
US6542767B1 (en) * | 1999-11-09 | 2003-04-01 | Biotex, Inc. | Method and system for controlling heat delivery to a target |
US6423026B1 (en) | 1999-12-09 | 2002-07-23 | Advanced Cardiovascular Systems, Inc. | Catheter stylet |
US7166098B1 (en) | 1999-12-30 | 2007-01-23 | Advanced Cardiovascular Systems, Inc. | Medical assembly with transducer for local delivery of a therapeutic substance and method of using same |
US6524300B2 (en) * | 2000-01-03 | 2003-02-25 | Angiodynamics, Inc. | Infusion catheter with non-uniform drug delivery density |
US6663613B1 (en) | 2000-01-25 | 2003-12-16 | Bacchus Vascular, Inc. | System and methods for clot dissolution |
US6929633B2 (en) | 2000-01-25 | 2005-08-16 | Bacchus Vascular, Inc. | Apparatus and methods for clot dissolution |
US6361500B1 (en) * | 2000-02-07 | 2002-03-26 | Scimed Life Systems, Inc. | Three transducer catheter |
US20030069525A1 (en) | 2000-03-08 | 2003-04-10 | Pharmasonics, Inc. | Methods, systems, and kits for plaque stabilization |
US20020032394A1 (en) * | 2000-03-08 | 2002-03-14 | Axel Brisken | Methods, systems, and kits for plaque stabilization |
US6913581B2 (en) | 2000-03-20 | 2005-07-05 | Paul D. Corl | High output therapeutic ultrasound transducer |
AU2001245971A1 (en) | 2000-03-24 | 2001-10-08 | Transurgical, Inc. | Apparatus and method for intrabody thermal treatment |
WO2001082812A1 (en) | 2000-04-27 | 2001-11-08 | Medtronic, Inc. | Vibration sensitive ablation apparatus and method |
US6506584B1 (en) | 2000-04-28 | 2003-01-14 | Battelle Memorial Institute | Apparatus and method for ultrasonic treatment of a liquid |
AU6321301A (en) * | 2000-05-16 | 2001-11-26 | Atrionix Inc | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US20020068869A1 (en) | 2000-06-27 | 2002-06-06 | Axel Brisken | Drug delivery catheter with internal ultrasound receiver |
US6503202B1 (en) | 2000-06-29 | 2003-01-07 | Acuson Corp. | Medical diagnostic ultrasound system and method for flow analysis |
US6511478B1 (en) | 2000-06-30 | 2003-01-28 | Scimed Life Systems, Inc. | Medical probe with reduced number of temperature sensor wires |
US6366719B1 (en) | 2000-08-17 | 2002-04-02 | Miravant Systems, Inc. | Photodynamic therapy light diffuser |
US20020049395A1 (en) | 2000-08-24 | 2002-04-25 | Timi 3 | Systems for applying ultrasound energy to the thoracic cavity |
US6575922B1 (en) | 2000-10-17 | 2003-06-10 | Walnut Technologies | Ultrasound signal and temperature monitoring during sono-thrombolysis therapy |
WO2002058578A1 (en) * | 2000-11-13 | 2002-08-01 | Wit Ip Corporation | Treatment catheters with thermally insulated regions |
RU2003124631A (en) | 2001-01-05 | 2005-02-27 | Бьёрн А. Дж. АНГЕЛЬСЕН (NO) АНГЕЛЬСЕН Бьёрн А. Дж. (NO) | BROADBAND CONVERTER |
US6589182B1 (en) * | 2001-02-12 | 2003-07-08 | Acuson Corporation | Medical diagnostic ultrasound catheter with first and second tip portions |
US6437487B1 (en) * | 2001-02-28 | 2002-08-20 | Acuson Corporation | Transducer array using multi-layered elements and a method of manufacture thereof |
WO2002070158A1 (en) | 2001-03-07 | 2002-09-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for manufacturing small diameter medical devices |
US20020133111A1 (en) | 2001-03-19 | 2002-09-19 | Shadduck John H. | Neuro-thrombectomy catheter and method of use |
US8123789B2 (en) | 2002-04-29 | 2012-02-28 | Rohit Khanna | Central nervous system cooling catheter |
US6537224B2 (en) | 2001-06-08 | 2003-03-25 | Vermon | Multi-purpose ultrasonic slotted array transducer |
US7144381B2 (en) | 2001-06-20 | 2006-12-05 | The Regents Of The University Of California | Hemodialysis system and method |
US20030050662A1 (en) | 2001-09-07 | 2003-03-13 | Don Michael T. Anthony | Devices for observing and treating body passages |
US20040019318A1 (en) * | 2001-11-07 | 2004-01-29 | Wilson Richard R. | Ultrasound assembly for use with a catheter |
WO2003047439A2 (en) * | 2001-12-03 | 2003-06-12 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
AU2002353016A1 (en) | 2001-12-03 | 2003-06-17 | Ekos Corporation | Small vessel ultrasound catheter |
US7141044B2 (en) | 2001-12-11 | 2006-11-28 | Ekos Corporation | Alternate site gene therapy |
US20030135262A1 (en) | 2002-01-15 | 2003-07-17 | Dretler Stephen P. | Apparatus for piezo-electric reduction of concretions |
US6985771B2 (en) | 2002-01-22 | 2006-01-10 | Angel Medical Systems, Inc. | Rapid response system for the detection and treatment of cardiac events |
US20030163147A1 (en) | 2002-02-22 | 2003-08-28 | Rabiner Robert A. | Apparatus and method for using a vascular introducer with an ultrasonic probe |
AU2003212481A1 (en) | 2002-02-28 | 2003-09-09 | Ekos Corporation | Ultrasound assembly for use with a catheter |
WO2003077766A1 (en) | 2002-03-15 | 2003-09-25 | Angelsen Bjoern A J | Multiple scan-plane ultrasound imaging of objects |
US20040243062A1 (en) | 2002-06-21 | 2004-12-02 | Henry Robert E. | Trocar assembly and method |
US20040001809A1 (en) | 2002-06-26 | 2004-01-01 | Pharmasonics, Inc. | Methods and apparatus for enhancing a response to nucleic acid vaccines |
US7309334B2 (en) | 2002-07-23 | 2007-12-18 | Von Hoffmann Gerard | Intracranial aspiration catheter |
US6560837B1 (en) | 2002-07-31 | 2003-05-13 | The Gates Corporation | Assembly device for shaft damper |
US6849062B2 (en) | 2002-08-23 | 2005-02-01 | Medtronic Vascular, Inc. | Catheter having a low-friction guidewire lumen and method of manufacture |
US7335180B2 (en) | 2003-11-24 | 2008-02-26 | Flowcardia, Inc. | Steerable ultrasound catheter |
US7137963B2 (en) | 2002-08-26 | 2006-11-21 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US7220233B2 (en) | 2003-04-08 | 2007-05-22 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US7604608B2 (en) | 2003-01-14 | 2009-10-20 | Flowcardia, Inc. | Ultrasound catheter and methods for making and using same |
US6942620B2 (en) | 2002-09-20 | 2005-09-13 | Flowcardia Inc | Connector for securing ultrasound catheter to transducer |
US6921371B2 (en) | 2002-10-14 | 2005-07-26 | Ekos Corporation | Ultrasound radiating members for catheter |
US7077820B1 (en) | 2002-10-21 | 2006-07-18 | Advanced Medical Optics, Inc. | Enhanced microburst ultrasonic power delivery system and method |
WO2004058074A1 (en) | 2002-12-23 | 2004-07-15 | Omnisonics Medical Technologies, Inc. | Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures |
US7771372B2 (en) | 2003-01-03 | 2010-08-10 | Ekos Corporation | Ultrasonic catheter with axial energy field |
WO2004093656A2 (en) | 2003-04-22 | 2004-11-04 | Ekos Corporation | Ultrasound enhanced central venous catheter |
US20040220514A1 (en) | 2003-05-01 | 2004-11-04 | Medtronic Ave. | Method and system for treating vulnerable plaque |
US20040255957A1 (en) | 2003-05-01 | 2004-12-23 | Robert Cafferata | Method and system for treating vulnerable plaque |
EP1638504A4 (en) | 2003-06-13 | 2011-07-20 | Cerevast Therapeutics Inc | Non-invasive intravascular thrombolyisis using modified ultrasound techniques |
US6963002B2 (en) * | 2003-07-04 | 2005-11-08 | Glenmark Pharmaceuticals Limited | Process for the preparation of 4,4-dimethyl-6-ethynylthiochroman |
EP1663394B1 (en) | 2003-09-08 | 2014-05-21 | The Board Of Trustees Of The University Of Arkansas | Ultrasound apparatus for augmented clot lysis |
US20050137520A1 (en) | 2003-10-29 | 2005-06-23 | Rule Peter R. | Catheter with ultrasound-controllable porous membrane |
US7789830B2 (en) | 2003-11-14 | 2010-09-07 | Hitachi Medical Corporation | Thrombus detecting apparatus, thrombus treating apparatus and methods therefor |
US20050124877A1 (en) | 2003-12-08 | 2005-06-09 | Henry Nita | Device and method for supporting placement of a therapeutic device in a blood vessel |
US9107590B2 (en) | 2004-01-29 | 2015-08-18 | Ekos Corporation | Method and apparatus for detecting vascular conditions with a catheter |
US20050209578A1 (en) | 2004-01-29 | 2005-09-22 | Christian Evans Edward A | Ultrasonic catheter with segmented fluid delivery |
JP2007520281A (en) | 2004-01-29 | 2007-07-26 | イコス コーポレイション | Small vessel ultrasound catheter |
US7341569B2 (en) | 2004-01-30 | 2008-03-11 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
US20050187514A1 (en) | 2004-02-09 | 2005-08-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device operating in a torsional mode |
US7794414B2 (en) | 2004-02-09 | 2010-09-14 | Emigrant Bank, N.A. | Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes |
US20050192558A1 (en) | 2004-02-27 | 2005-09-01 | Chf Solutions, Inc. | Peripheral access venous cannula with infusion side holes and embedded reinforcement |
WO2005094540A2 (en) | 2004-03-25 | 2005-10-13 | Hong Mun K | Total occlusion recanalization facilitating device |
US20050256410A1 (en) | 2004-05-14 | 2005-11-17 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe capable of bending with aid of a balloon |
US20080194954A1 (en) | 2004-06-10 | 2008-08-14 | Imarx Therapeutics, Inc. | Ultrasound Device and Method Using Same |
JP4492818B2 (en) | 2004-06-21 | 2010-06-30 | 博 古幡 | Ultrasound cerebral infarction treatment device |
US8241315B2 (en) | 2004-06-24 | 2012-08-14 | Boston Scientific Scimed, Inc. | Apparatus and method for treating occluded vasculature |
US7540852B2 (en) | 2004-08-26 | 2009-06-02 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
EP1804891A4 (en) | 2004-09-15 | 2008-12-17 | Imarx Therapeutics Inc | Cavitation enhanced treatment through local delivery |
US20060069303A1 (en) | 2004-09-30 | 2006-03-30 | Couvillon Lucien A Jr | Endoscopic apparatus with integrated hemostasis device |
JP2008519642A (en) | 2004-11-12 | 2008-06-12 | ケーピーイー リミテッド | Nanoparticle-mediated ultrasound therapy and diagnostic imaging |
US20060184070A1 (en) | 2004-11-12 | 2006-08-17 | Hansmann Douglas R | External ultrasonic therapy |
US20060116610A1 (en) | 2004-11-30 | 2006-06-01 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device with variable frequency drive |
US20060173387A1 (en) | 2004-12-10 | 2006-08-03 | Douglas Hansmann | Externally enhanced ultrasonic therapy |
US7567016B2 (en) | 2005-02-04 | 2009-07-28 | Siemens Medical Solutions Usa, Inc. | Multi-dimensional ultrasound transducer array |
US20110313328A1 (en) | 2005-06-24 | 2011-12-22 | Penumbra, Inc. | Methods and apparatus for dissolving blockages in intracranial catheters |
US7717853B2 (en) | 2005-06-24 | 2010-05-18 | Henry Nita | Methods and apparatus for intracranial ultrasound delivery |
US20120078140A1 (en) | 2005-06-24 | 2012-03-29 | Penumbra, Inc. | Method and Apparatus for Removing Blood Clots and Tissue from the Patient's Head |
US20110160621A1 (en) | 2005-06-24 | 2011-06-30 | Henry Nita | Methods and apparatus for dissolving intracranial blood clots |
US20110319927A1 (en) | 2005-06-24 | 2011-12-29 | Penumbra, Inc. | Methods and apparatus for removing blood clots from intracranial aneurysms |
US8632560B2 (en) | 2005-08-11 | 2014-01-21 | Cook Medical Technologies Llc | System for breaking up thrombi and plaque in the vasculature |
EP1933944A2 (en) | 2005-08-30 | 2008-06-25 | Koninklijke Philips Electronics N.V. | Method of using a combination imaging and therapy transducer to dissolve blood clots |
WO2007030422A2 (en) | 2005-09-06 | 2007-03-15 | Omnisonics Medical Technologies, Inc. | Ultrasound medical devices, systems and methods |
US20080262350A1 (en) | 2005-11-18 | 2008-10-23 | Imarx Therapeutics, Inc. | Ultrasound Apparatus and Method to Treat an Ischemic Stroke |
US9119651B2 (en) | 2006-02-13 | 2015-09-01 | Retro Vascular, Inc. | Recanalizing occluded vessels using controlled antegrade and retrograde tracking |
US9282984B2 (en) | 2006-04-05 | 2016-03-15 | Flowcardia, Inc. | Therapeutic ultrasound system |
US20080065014A1 (en) | 2006-04-21 | 2008-03-13 | Abbott Laboratories | Systems, Methods, and Devices to Facilitate Wire and Device Crossings of Obstructions in Body Lumens |
US20070265560A1 (en) | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
US20080154181A1 (en) | 2006-05-05 | 2008-06-26 | Khanna Rohit K | Central nervous system ultrasonic drain |
US10182833B2 (en) | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
ES2538110T3 (en) | 2007-01-08 | 2015-06-17 | Ekos Corporation | Power parameters for ultrasonic catheter |
US20080319355A1 (en) | 2007-06-20 | 2008-12-25 | Henry Nita | Ischemic stroke therapy |
EP2170181B1 (en) | 2007-06-22 | 2014-04-16 | Ekos Corporation | Method and apparatus for treatment of intracranial hemorrhages |
AU2008304599B2 (en) | 2007-09-26 | 2012-11-22 | Retrovascular, Inc. | Recanalizing occluded vessels using radiofrequency energy |
US9283034B2 (en) | 2007-09-26 | 2016-03-15 | Retrovascular, Inc. | Recanalization system using radiofrequency energy |
US8062316B2 (en) | 2008-04-23 | 2011-11-22 | Avinger, Inc. | Catheter system and method for boring through blocked vascular passages |
US20100010393A1 (en) | 2008-07-08 | 2010-01-14 | Medtronic Vascular, Inc. | Treatment of Occlusions by External High Intensity Focused Ultrasound |
US20100063413A1 (en) | 2008-08-25 | 2010-03-11 | Ekos Corporation | Lysis Indication |
US20100063414A1 (en) | 2008-08-25 | 2010-03-11 | Ekos Corporation | Lysis Indication |
US20100210940A1 (en) | 2008-11-14 | 2010-08-19 | Hoag Memorial Hospital Presbyterian | CT-Guided Focused Ultrasound for Stroke Treatment |
US20100204582A1 (en) | 2009-02-12 | 2010-08-12 | Xuan-Ming Lu | Multidimensional, multilayer ultrasound transducer probe for medical ultrasound imaging |
US20110288449A1 (en) | 2009-03-10 | 2011-11-24 | Jan-Peter Schenkengel | Method of lysing a thrombus |
US8740835B2 (en) | 2010-02-17 | 2014-06-03 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
WO2012017797A1 (en) | 2010-08-06 | 2012-02-09 | オリンパスメディカルシステムズ株式会社 | Ultrasonic diagnosis device |
JP6291253B2 (en) | 2010-08-27 | 2018-03-14 | イーコス・コーポレイシヨン | Ultrasound catheter |
US20120197277A1 (en) | 2011-02-01 | 2012-08-02 | Stinis Curtiss T | Vascular plaque removal systems, devices, and methods |
-
1998
- 1998-06-29 US US09/107,078 patent/US6723063B1/en not_active Expired - Lifetime
-
1999
- 1999-06-29 EP EP99932067A patent/EP1091699B1/en not_active Expired - Lifetime
- 1999-06-29 DE DE69925122T patent/DE69925122T2/en not_active Expired - Lifetime
- 1999-06-29 WO PCT/US1999/014757 patent/WO2000000095A1/en active IP Right Grant
- 1999-06-29 JP JP2000556683A patent/JP4890674B2/en not_active Expired - Lifetime
-
2003
- 2003-02-18 US US10/369,270 patent/US7413556B2/en not_active Expired - Fee Related
- 2003-02-18 US US10/369,271 patent/US20040015122A1/en not_active Abandoned
-
2006
- 2006-05-03 US US11/418,491 patent/US20070112268A1/en not_active Abandoned
-
2011
- 2011-12-20 US US13/332,226 patent/US8764700B2/en not_active Expired - Fee Related
-
2014
- 2014-05-28 US US14/289,528 patent/US20140343483A1/en not_active Abandoned
Patent Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US4040414A (en) * | 1976-05-12 | 1977-08-09 | Xygiene, Inc. | Ultrasonic personal care instrument and method |
US4319580A (en) * | 1979-08-28 | 1982-03-16 | The Board Of Regents Of The University Of Washington | Method for detecting air emboli in the blood in an intracorporeal blood vessel |
US4354502A (en) * | 1979-08-28 | 1982-10-19 | The Board Of Regents Of The University Of Washington | Intravascular catheter including untrasonic transducer for use in detection and aspiration of air emboli |
US4531943A (en) * | 1983-08-08 | 1985-07-30 | Angiomedics Corporation | Catheter with soft deformable tip |
US4750902A (en) * | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US5313949A (en) * | 1986-02-28 | 1994-05-24 | Cardiovascular Imaging Systems Incorporated | Method and apparatus for intravascular two-dimensional ultrasonography |
US4808153A (en) * | 1986-11-17 | 1989-02-28 | Ultramed Corporation | Device for removing plaque from arteries |
US4870953A (en) * | 1987-11-13 | 1989-10-03 | Donmicheal T Anthony | Intravascular ultrasonic catheter/probe and method for treating intravascular blockage |
US5163421A (en) * | 1988-01-22 | 1992-11-17 | Angiosonics, Inc. | In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging |
US5421338A (en) * | 1988-03-21 | 1995-06-06 | Boston Scientific Corporation | Acoustic imaging catheter and the like |
US4924863A (en) * | 1988-05-04 | 1990-05-15 | Mmtc, Inc. | Angioplastic method for removing plaque from a vas |
US5344435A (en) * | 1988-07-28 | 1994-09-06 | Bsd Medical Corporation | Urethral inserted applicator prostate hyperthermia |
US4920954A (en) * | 1988-08-05 | 1990-05-01 | Sonic Needle Corporation | Ultrasonic device for applying cavitation forces |
US5021044A (en) * | 1989-01-30 | 1991-06-04 | Advanced Cardiovascular Systems, Inc. | Catheter for even distribution of therapeutic fluids |
US4936281A (en) * | 1989-04-13 | 1990-06-26 | Everest Medical Corporation | Ultrasonically enhanced RF ablation catheter |
US5069664A (en) * | 1990-01-25 | 1991-12-03 | Inter Therapy, Inc. | Intravascular ultrasonic angioplasty probe |
US5323769A (en) * | 1990-02-23 | 1994-06-28 | Cygnus Therapeutic Systems | Ultrasound-enhanced delivery of materials into and through the skin |
US5498238A (en) * | 1990-06-15 | 1996-03-12 | Cortrak Medical, Inc. | Simultaneous angioplasty and phoretic drug delivery |
US5286254A (en) * | 1990-06-15 | 1994-02-15 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5628730A (en) * | 1990-06-15 | 1997-05-13 | Cortrak Medical, Inc. | Phoretic balloon catheter with hydrogel coating |
US5197946A (en) * | 1990-06-27 | 1993-03-30 | Shunro Tachibana | Injection instrument with ultrasonic oscillating element |
US5660180A (en) * | 1990-07-13 | 1997-08-26 | Coraje, Inc. | Intravascular ultrasound imaging guidewire |
US5520189A (en) * | 1990-07-13 | 1996-05-28 | Coraje, Inc. | Intravascular ultrasound imaging guidewire |
US5250034A (en) * | 1990-09-17 | 1993-10-05 | E-Z-Em, Inc. | Pressure responsive valve catheter |
US5269291A (en) * | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
US5431663A (en) * | 1990-12-10 | 1995-07-11 | Coraje, Inc. | Miniature ultrasonic transducer for removal of intravascular plaque and clots |
US5368557A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5997497A (en) * | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
US5304115A (en) * | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5474530A (en) * | 1991-01-11 | 1995-12-12 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasospasm |
US5447509A (en) * | 1991-01-11 | 1995-09-05 | Baxter International Inc. | Ultrasound catheter system having modulated output with feedback control |
US5267954A (en) * | 1991-01-11 | 1993-12-07 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5353798A (en) * | 1991-03-13 | 1994-10-11 | Scimed Life Systems, Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5445155A (en) * | 1991-03-13 | 1995-08-29 | Scimed Life Systems Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5458568A (en) * | 1991-05-24 | 1995-10-17 | Cortrak Medical, Inc. | Porous balloon for selective dilatation and drug delivery |
US5363853A (en) * | 1991-11-08 | 1994-11-15 | Baxter International Inc. | Ultrasound probe for use with transport catheter and method of making same |
US5345940A (en) * | 1991-11-08 | 1994-09-13 | Mayo Foundation For Medical Education And Research | Transvascular ultrasound hemodynamic and interventional catheter and method |
US5447510A (en) * | 1992-01-21 | 1995-09-05 | Baltic Technology Aps | Apparatus comprising an ultrasonic probe for removing biologic tissue |
US5465726A (en) * | 1992-01-30 | 1995-11-14 | Intravascular Research Limited | Ultrasound imaging and catheters for use therein |
US5295484A (en) * | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5380273A (en) * | 1992-05-19 | 1995-01-10 | Dubrul; Will R. | Vibrating catheter |
US5327891A (en) * | 1992-07-30 | 1994-07-12 | Rammler David H | Catheter track and catheter for diagnosis and treatment |
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5474531A (en) * | 1992-09-14 | 1995-12-12 | Coraje, Inc. | Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis |
US5362309A (en) * | 1992-09-14 | 1994-11-08 | Coraje, Inc. | Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis |
US5318014A (en) * | 1992-09-14 | 1994-06-07 | Coraje, Inc. | Ultrasonic ablation/dissolution transducer |
US5617851A (en) * | 1992-10-14 | 1997-04-08 | Endodermic Medical Technologies Company | Ultrasonic transdermal system for withdrawing fluid from an organism and determining the concentration of a substance in the fluid |
US5368036A (en) * | 1992-10-20 | 1994-11-29 | Fuji Photo Optical Co., Ltd. | Ultrasound probe |
US5354279A (en) * | 1992-10-21 | 1994-10-11 | Bavaria Medizin Technologie Gmbh | Plural needle injection catheter |
US6537306B1 (en) * | 1992-11-13 | 2003-03-25 | The Regents Of The University Of California | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
US5620479A (en) * | 1992-11-13 | 1997-04-15 | The Regents Of The University Of California | Method and apparatus for thermal therapy of tumors |
US20010041842A1 (en) * | 1993-02-01 | 2001-11-15 | Eberle Michael J. | Ultrasound transducer assembly |
US5603327A (en) * | 1993-02-01 | 1997-02-18 | Endosonics Corporation | Ultrasound catheter probe |
US6283920B1 (en) * | 1993-02-01 | 2001-09-04 | Endosonics Corporation | Ultrasound transducer assembly |
US5267985A (en) * | 1993-02-11 | 1993-12-07 | Trancell, Inc. | Drug delivery by multiple frequency phonophoresis |
US5462523A (en) * | 1993-05-18 | 1995-10-31 | Target Therapeutics, Inc. | Drug delivery system |
US5630837A (en) * | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
US5807395A (en) * | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
US5390678A (en) * | 1993-10-12 | 1995-02-21 | Baxter International Inc. | Method and device for measuring ultrasonic activity in an ultrasound delivery system |
US5533986A (en) * | 1994-02-18 | 1996-07-09 | Merit Medical Systems, Inc. | Catheter apparatus with means for subcutaneous delivery of anesthetic agent or other fluid medicament |
US5665076A (en) * | 1994-02-18 | 1997-09-09 | Merit Medical Systems, Inc. | Catheter apparatus with means for subcutaneous delivery of anesthetic agent or other fluid medicament |
US5772632A (en) * | 1994-04-13 | 1998-06-30 | Schneider (Usa) Inc. | Dilation-drug delivery catheter |
US5423797A (en) * | 1994-04-25 | 1995-06-13 | Medelex, Inc. | Acoustic catheter with rotary drive |
US5514092A (en) * | 1994-08-08 | 1996-05-07 | Schneider (Usa) Inc. | Drug delivery and dilatation-drug delivery catheters in a rapid exchange configuration |
US5695460A (en) * | 1994-09-09 | 1997-12-09 | Coraje, Inc. | Enhancement of ultrasound thrombolysis |
US5509896A (en) * | 1994-09-09 | 1996-04-23 | Coraje, Inc. | Enhancement of thrombolysis with external ultrasound |
US5569197A (en) * | 1994-12-21 | 1996-10-29 | Schneider (Usa) Inc | Drug delivery guidewire |
US5606974A (en) * | 1995-05-02 | 1997-03-04 | Heart Rhythm Technologies, Inc. | Catheter having ultrasonic device |
US5779673A (en) * | 1995-06-26 | 1998-07-14 | Focal, Inc. | Devices and methods for application of intraluminal photopolymerized gels |
US5603694A (en) * | 1995-10-17 | 1997-02-18 | Brown; Joe E. | Infusion coil apparatus and method for delivering fluid-based agents intravascularly |
US5618275A (en) * | 1995-10-27 | 1997-04-08 | Sonex International Corporation | Ultrasonic method and apparatus for cosmetic and dermatological applications |
US5725494A (en) * | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5656016A (en) * | 1996-03-18 | 1997-08-12 | Abbott Laboratories | Sonophoretic drug delivery system |
US5984882A (en) * | 1996-08-19 | 1999-11-16 | Angiosonics Inc. | Methods for prevention and treatment of cancer and other proliferative diseases with ultrasonic energy |
US6024718A (en) * | 1996-09-04 | 2000-02-15 | The Regents Of The University Of California | Intraluminal directed ultrasound delivery device |
US5914868A (en) * | 1996-09-30 | 1999-06-22 | Korea Telecom | Multiplier and neural network synapse using current mirror having low-power mosfets |
US6149599A (en) * | 1997-01-31 | 2000-11-21 | Acuson Corporation | Method for manufacturing an end portion surrounding a catheter-mounted phased-array ultrasound transducer |
US5876345A (en) * | 1997-02-27 | 1999-03-02 | Acuson Corporation | Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction |
US6063069A (en) * | 1997-05-19 | 2000-05-16 | Micro Therapeutics Inc. | Method and apparatus for power lysis of a thrombus |
US6379320B1 (en) * | 1997-06-11 | 2002-04-30 | Institut National De La Santa Et De La Recherche Medicale I.N.S.E.R.M. | Ultrasound applicator for heating an ultrasound absorbent medium |
US6120454A (en) * | 1998-02-03 | 2000-09-19 | Boston Scientific Corporation | Annular array ultrasound catheter |
US6561998B1 (en) * | 1998-04-07 | 2003-05-13 | Transvascular, Inc. | Transluminal devices, systems and methods for enlarging interstitial penetration tracts |
US6059731A (en) * | 1998-08-19 | 2000-05-09 | Mayo Foundation For Medical Education And Research | Simultaneous side-and-end viewing underfluid catheter |
US6296619B1 (en) * | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US20010041880A1 (en) * | 1998-12-30 | 2001-11-15 | Brisken Axel F. | Therapeutic ultrasound catheter for delivering a uniform energy dose |
US20010000791A1 (en) * | 1999-01-06 | 2001-05-03 | Suorsa Veijo T. | Ultrasound-guided ablation catheter and methods of use |
US6206831B1 (en) * | 1999-01-06 | 2001-03-27 | Scimed Life Systems, Inc. | Ultrasound-guided ablation catheter and methods of use |
US6824515B2 (en) * | 1999-01-06 | 2004-11-30 | Scimed Life Systems, Inc. | Ultrasound-guided ablation catheter and methods of use |
US6461314B1 (en) * | 1999-02-02 | 2002-10-08 | Transurgical, Inc. | Intrabody hifu applicator |
US6508775B2 (en) * | 2000-03-20 | 2003-01-21 | Pharmasonics, Inc. | High output therapeutic ultrasound transducer |
US7089063B2 (en) * | 2000-05-16 | 2006-08-08 | Atrionix, Inc. | Deflectable tip catheter with guidewire tracking mechanism |
US6711953B2 (en) * | 2000-08-25 | 2004-03-30 | Furuno Electric Company, Ltd. | Method of and apparatus for controlling beams produced by a cylindrical transducer |
US6740040B1 (en) * | 2001-01-30 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Ultrasound energy driven intraventricular catheter to treat ischemia |
US6979293B2 (en) * | 2001-12-14 | 2005-12-27 | Ekos Corporation | Blood flow reestablishment determination |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9415242B2 (en) | 2001-12-03 | 2016-08-16 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US10080878B2 (en) | 2001-12-03 | 2018-09-25 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US10926074B2 (en) | 2001-12-03 | 2021-02-23 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US11925367B2 (en) | 2007-01-08 | 2024-03-12 | Ekos Corporation | Power parameters for ultrasonic catheter |
US11672553B2 (en) | 2007-06-22 | 2023-06-13 | Ekos Corporation | Method and apparatus for treatment of intracranial hemorrhages |
US11458290B2 (en) | 2011-05-11 | 2022-10-04 | Ekos Corporation | Ultrasound system |
US10092742B2 (en) | 2014-09-22 | 2018-10-09 | Ekos Corporation | Catheter system |
US10507320B2 (en) | 2014-09-22 | 2019-12-17 | Ekos Corporation | Catheter system |
US10656025B2 (en) | 2015-06-10 | 2020-05-19 | Ekos Corporation | Ultrasound catheter |
US11740138B2 (en) | 2015-06-10 | 2023-08-29 | Ekos Corporation | Ultrasound catheter |
USD974558S1 (en) | 2020-12-18 | 2023-01-03 | Stryker European Operations Limited | Ultrasonic knife |
USD1045078S1 (en) | 2020-12-18 | 2024-10-01 | Stryker European Operations Limited | Ultrasonic knife |
Also Published As
Publication number | Publication date |
---|---|
WO2000000095A1 (en) | 2000-01-06 |
JP2002519095A (en) | 2002-07-02 |
DE69925122D1 (en) | 2005-06-09 |
US8764700B2 (en) | 2014-07-01 |
US6723063B1 (en) | 2004-04-20 |
US20140343483A1 (en) | 2014-11-20 |
US20120089082A1 (en) | 2012-04-12 |
US7413556B2 (en) | 2008-08-19 |
EP1091699B1 (en) | 2005-05-04 |
EP1091699A1 (en) | 2001-04-18 |
DE69925122T2 (en) | 2006-01-19 |
US20030216681A1 (en) | 2003-11-20 |
US20040015122A1 (en) | 2004-01-22 |
JP4890674B2 (en) | 2012-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8764700B2 (en) | Sheath for use with an ultrasound element | |
US11672553B2 (en) | Method and apparatus for treatment of intracranial hemorrhages | |
US20210178140A1 (en) | Catheter with multiple ultrasound radiating members | |
US6001069A (en) | Ultrasound catheter for providing a therapeutic effect to a vessel of a body | |
US8690818B2 (en) | Ultrasound catheter for providing a therapeutic effect to a vessel of a body | |
US7648478B2 (en) | Treatment of vascular occlusions using ultrasonic energy and microbubbles | |
US20050209578A1 (en) | Ultrasonic catheter with segmented fluid delivery | |
US9943675B1 (en) | Ultrasonic catheter power control | |
US7201737B2 (en) | Treatment of vascular occlusions using elevated temperatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HERCULES TECHNOLOGY II, L.P., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:EKOS CORPORATION;REEL/FRAME:019550/0881 Effective date: 20070524 Owner name: HERCULES TECHNOLOGY II, L.P.,CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:EKOS CORPORATION;REEL/FRAME:019550/0881 Effective date: 20070524 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: EKOS CORPORATION, WASHINGTON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERCULES TECHNOLOGY II, L.P.;REEL/FRAME:030421/0867 Effective date: 20101021 |