[go: nahoru, domu]

US20070240181A1 - Subscriber Characterization System with Filters - Google Patents

Subscriber Characterization System with Filters Download PDF

Info

Publication number
US20070240181A1
US20070240181A1 US11/762,538 US76253807A US2007240181A1 US 20070240181 A1 US20070240181 A1 US 20070240181A1 US 76253807 A US76253807 A US 76253807A US 2007240181 A1 US2007240181 A1 US 2007240181A1
Authority
US
United States
Prior art keywords
viewer
heuristic rules
channel
interaction data
subscriber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/762,538
Inventor
Charles Eldering
Sylla Lamine
John Blasko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Research Alliance E Inc
Original Assignee
Prime Research Alliance E Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/204,888 external-priority patent/US7150030B1/en
Application filed by Prime Research Alliance E Inc filed Critical Prime Research Alliance E Inc
Priority to US11/762,538 priority Critical patent/US20070240181A1/en
Assigned to PRIME RESEARCH ALLIANCE E., INC. reassignment PRIME RESEARCH ALLIANCE E., INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EXPANSE NETWORKS, INC.
Publication of US20070240181A1 publication Critical patent/US20070240181A1/en
Priority to US12/871,526 priority patent/US20100333125A1/en
Priority to US14/971,686 priority patent/US20160105721A1/en
Assigned to PRIME RESEARCH ALLIANCE E, LLC reassignment PRIME RESEARCH ALLIANCE E, LLC RE-DOMESTICATION AND ENTITY CONVERSION Assignors: PRIME RESEARCH ALLIANCE E, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44213Monitoring of end-user related data
    • H04N21/44222Analytics of user selections, e.g. selection of programs or purchase activity
    • H04N21/44224Monitoring of user activity on external systems, e.g. Internet browsing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/466Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • H04N21/4662Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms
    • H04N21/4663Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms involving probabilistic networks, e.g. Bayesian networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/235Processing of additional data, e.g. scrambling of additional data or processing content descriptors
    • H04N21/2353Processing of additional data, e.g. scrambling of additional data or processing content descriptors specifically adapted to content descriptors, e.g. coding, compressing or processing of metadata
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/251Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • H04N21/252Processing of multiple end-users' preferences to derive collaborative data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/44008Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving operations for analysing video streams, e.g. detecting features or characteristics in the video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/441Acquiring end-user identification, e.g. using personal code sent by the remote control or by inserting a card
    • H04N21/4415Acquiring end-user identification, e.g. using personal code sent by the remote control or by inserting a card using biometric characteristics of the user, e.g. by voice recognition or fingerprint scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44204Monitoring of content usage, e.g. the number of times a movie has been viewed, copied or the amount which has been watched
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44209Monitoring of downstream path of the transmission network originating from a server, e.g. bandwidth variations of a wireless network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44213Monitoring of end-user related data
    • H04N21/44218Detecting physical presence or behaviour of the user, e.g. using sensors to detect if the user is leaving the room or changes his face expression during a TV program
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/4508Management of client data or end-user data
    • H04N21/4532Management of client data or end-user data involving end-user characteristics, e.g. viewer profile, preferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/466Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/466Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • H04N21/4662Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms
    • H04N21/4665Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms involving classification methods, e.g. Decision trees
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/466Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • H04N21/4667Processing of monitored end-user data, e.g. trend analysis based on the log file of viewer selections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/466Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • H04N21/4668Learning process for intelligent management, e.g. learning user preferences for recommending movies for recommending content, e.g. movies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/482End-user interface for program selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/84Generation or processing of descriptive data, e.g. content descriptors

Definitions

  • ISPs Internet Service Providers
  • Such channels may be offered as part of a video programming service or within a data service and can be presented within an Internet browser.
  • a subscriber characterization system which may generate and store subscriber characteristics that reflect the probable demographics and preferences of the subscriber and household.
  • the present invention includes a system for characterizing subscribers watching video or multimedia programming based on monitoring their detailed selection choices including the time duration of their viewing, the number of channel changes, the volume at which the programming is listened, the program selection, and collecting text information about that programming to determine what type of programming the subscriber is most interested in.
  • the system is equipped with one or more filters that assist in determining selection data associated with irrelevant activities by the subscriber which should be excluded from the actual viewing selection data, e.g., selection data associated with channel surfing and/or channel jumping (up and down) activities by the subscriber.
  • the channel surfing activity refers to one or more rapid channel changes initiated by the subscriber for the purpose of selecting a channel/program for actual viewing.
  • the subscriber selects a channel, and views the contents of the program at the selected channel for few seconds (about 3-4 seconds), and then changes the channel to view the contents of the next channel.
  • Such rapid changes generally occur a few times in a row before the subscriber selects a channel/programming for actual viewing.
  • the filters of the present invention are configured to detect channel surfing activities by the subscriber by monitoring and evaluating associated viewing times, thereby the channel surfing activities are not considered in the determination of actual viewing selections.
  • the channel jumping refers to an activity wherein the subscriber changes channels very rapidly in order to move from an existing channel to a desired channel.
  • the subscriber is not channel surfing, instead the subscriber already knows the intended channel/program for actual viewing and is jumping channels to reach the desired channels, e.g., the subscriber is at channel number 6 , and wants to go to channel number 12 , the subscriber may jump the channel by changing the channel six times.
  • the channel changes occur very rapidly and the viewing time at the each channel is very brief, e.g., less than one second.
  • the filters of the present invention are configured to detect channel jumping, thereby the channel jumping activities are not considered in the determination of actual viewing selections.
  • the filters of the present invention are also capable of monitoring extended spans of inactivity, e.g., a lack of any channel changes, volume changes, or any other selection changes activity for more than 3 hours.
  • Such spans of inactivity are considered “dead periods” implying that subscriber is not actively watching the video and/or other multimedia programming. The reasons for such dead periods may be caused by the fact that the subscriber has left the room, or the subscriber is not active (e.g., the subscriber has gone to sleep or has dozed off), or the fact that the subscriber is actively engaging in another activity within the room and is not attending to the programming.
  • the system of the present invention analyzes the actual viewing selections made by the subscriber or the subscriber household, and generates a demographic description of the subscriber or household. This demographic description describes the probable age, income, gender and other demographics. The resulting characterization includes probabilistic determinations of what other programming or products the subscriber/household will be interested in.
  • the present invention also encompasses the use of heuristic rules in logical form or expressed as conditional probabilities to aid in forming a subscriber profile.
  • the heuristic rules in logical form allow the system to apply generalizations that have been learned from external studies to obtain a characterization of the subscriber.
  • conditional probabilities determinations of the probable content of a program can be applied in a mathematical step to a matrix of conditional probabilities to obtain probabilistic subscriber profiles indicating program and product likes and dislikes as well for determining probabilistic demographic data.
  • the resulting probabilistic information can be stored locally and controlled by the subscriber, or can be transferred to a third party that can provide access to the subscriber characterization.
  • the information can also be encrypted to prevent unauthorized access in which case only the subscriber or someone authorized by the subscriber can access the data.
  • FIG. 1A illustrates a context diagram for a subscriber characterization system having filters
  • FIG. 1B illustrates a functional diagram of the processing utilized by filters
  • FIG. 2 illustrates a block diagram for a realization of a subscriber monitoring system for receiving video signals
  • FIG. 3 illustrates a block diagram of a channel processor
  • FIG. 4 illustrates a block diagram of a computer for a realization of the subscriber monitoring system
  • FIG. 5 illustrates a channel sequence and volume over a twenty-four (24) hour period
  • FIG. 6A illustrates a time of day detailed record
  • FIG. 6B illustrates the processing utilized by filters of FIG. 1A to determine channel surfing activities
  • FIG. 6C illustrates the processing utilized by filters of FIG. 6C to determine channel jumping activities
  • FIG. 7 illustrates a household viewing habits statistical table
  • FIG. 8A illustrates an entity-relationship diagram for the generation of program characteristics vectors
  • FIG. 8B illustrates a flowchart for program characterization
  • FIGS. 9A illustrates a deterministic program category vector
  • FIG. 9B illustrates a deterministic program sub-category vector
  • FIG. 9C illustrates a deterministic program rating vector
  • FIG. 9D illustrates a probabilistic program category vector
  • FIG. 9E illustrates a probabilistic program sub-category vector
  • FIG. 9F illustrates a probabilistic program content vector
  • FIG. 10A illustrates a set of logical heuristic rules
  • FIG. 10B illustrates a set of heuristic rules expressed in terms of conditional probabilities
  • FIG. 11 illustrates an entity-relationship diagram for the generation of program demographic vectors
  • FIG. 12 illustrates a program demographic vector
  • FIG. 13 illustrates an entity-relationship diagram for the generation of household session demographic data and household session interest profiles
  • FIG. 14 illustrates an entity-relationship diagram for the generation of average and session household demographic characteristics
  • FIG. 15 illustrates average and session household demographic data
  • FIG. 16 illustrates an entity-relationship diagram for generation of a household interest profile
  • FIG. 17 illustrates a household interest profile including programming and product profiles.
  • FIGS. 1 through 17 in particular, the apparatus of the present invention is disclosed.
  • the present invention is directed at an apparatus for generating a subscriber profile that contains useful information regarding the subscriber likes and dislikes.
  • a profile is useful for systems which provide targeted programming or advertisements to the subscriber, and allow material (programs or advertisements) to be directed at subscribers who will have a high probability of liking the program or a high degree of interest in purchasing the product.
  • the subscriber characterization may not be a characterization of an individual subscriber but may instead be a household average.
  • subscriber refers both to an individual subscriber as well as the average characteristics of a household of multiple subscribers.
  • the programming viewed by the subscriber, both entertainment and advertisement can be studied and processed by the subscriber characterization system.
  • system filters are configured to eliminate selection data associated with irrelevant activities from the actual selection data.
  • the actual selection data is then used to determine the program characteristics.
  • This determination of the program characteristics is referred to as a program characteristics vector.
  • This vector may be a truly one-dimensional vector, but can also be represented as an n dimensional matrix which can be decomposed into vectors.
  • the subscriber profile vector represents a profile of the subscriber (or the household of subscribers) and can be in the form of a demographic profile (average or session) or a program or product preference vector.
  • the program and product preference vectors are considered to be part of a household interest profile which can be thought of as an n dimensional matrix representing probabilistic measurements of subscriber interests.
  • the subscriber profile vector is a demographic profile
  • the subscriber profile vector indicates a probabilistic measure of the age of the subscriber or average age of the viewers in the household, sex of the subscriber, income range of the subscriber or household, and other such demographic data.
  • Such information comprises household demographic characteristics and is composed of both average and session values. Extracting a single set of values from the household demographic characteristics can correspond to a subscriber profile vector.
  • the household interest profile can contain both programming and product profiles, with programming profiles corresponding to probabilistic determinations of what programming the subscriber (household) is likely to be interested in, and product profiles corresponding to what products the subscriber (household) is likely to be interested in.
  • These profiles contain both an average value and a session value, the average value being a time average of data, where the averaging period may be several days, weeks, months, or the time between resets of unit.
  • the session values may, in some circumstances, correspond most closely to the subscriber values, while the average values may, in some circumstances, correspond most closely to the household values.
  • FIG. 1A depicts the context diagram of a preferred embodiment of a Subscriber Characterization System with Filters (SCSF) 100 .
  • SCSF Subscriber Characterization System with Filters
  • a context diagram, in combination with entity-relationship diagrams, provide a basis from which one skilled in the art can realize the present invention.
  • the present invention can be realized in a number of programming languages including C, C++, Perl, and Java, although the scope of the invention is not limited by the choice of a particular programming language or tool.
  • Object oriented languages have several advantages in terms of construction of the software used to realize the present invention, although the present invention can be realized in procedural or other types of programming languages known to those skilled in the art.
  • Filters of SCSF 100 may be a computer means or a software module configured with some predetermined rules. These predetermined rules assist in recognizing irrelevant activities and the elimination of the selection data from the raw subscriber selection data. Filters and their related processing are described in detail later.
  • the SCSF 100 receives from a user 120 commands in the form of a volume control signal 124 or program selection data 122 which can be in the form of a channel change but may also be an address request which requests the delivery of programming from a network address.
  • a record signal 126 indicates that the programming or the address of the programming is being recorded by the user.
  • the record signal 126 can also be a printing command, a tape recording command, a bookmark command or any other command intended to store the program being viewed, or program address, for later use.
  • the material being viewed by the user 120 is referred to as source material 130 .
  • the source material 130 is the content that a subscriber selects and may consist of analog video, Motion Picture Expert Group (MPEG) digital video source material, other digital or analog material, Hypertext Markup Language (HTML) or other type of multimedia source material.
  • MPEG Motion Picture Expert Group
  • HTML Hypertext Markup Language
  • the subscriber characterization system 100 can access the source material 130 received by the user 120 using a start signal 132 and a stop signal 134 , which control the transfer of source related text 136 which can be analyzed as described herein.
  • the source related text 136 can be extracted from the source material 130 and stored in memory.
  • the source related text 136 includes source related textual information including descriptive fields which are related to the source material 130 , or text which is part of the source material 130 itself.
  • the source related text 136 can be derived from a number of sources including but not limited to closed-captioning information, Electronic Program Guide (EPG) material, and text information in the source itself (e.g. text in HTML files).
  • EPG Electronic Program Guide
  • EPG 140 contains information related to the source material 130 which is useful to the user 120 .
  • the EPG 140 is typically a navigational tool which contains source related information including but not limited to the programming category, program description, rating, actors, and duration.
  • the structure and content of EPG data is described in detail in U.S. Pat. No. 5,596,373 assigned to Sony Corporation and Sony Electronics which is herein incorporated by reference.
  • the EPG 140 can be accessed by the SCSF 100 by a request EPG data signal 142 which results in the return of a category 144 , a sub-category 146 , and a program description 148 .
  • EPG data is accessed and program information such as the category 144 , the sub-category 146 , and the program description 148 are stored in memory.
  • the source related text 136 is the closed-captioning text embedded in the analog or digital video signal.
  • Such closed-captioning text can be stored in memory for processing to extract the program characteristic vectors 150 .
  • the raw subscriber selection data 110 is accumulated from the monitored activities of the user.
  • the raw subscriber selection data 110 includes time 11 2 A, which corresponds to the time of an event, channel ID 114 A, program ID 116 A, program title 117 A, volume level 118 A, and channel change record 119 A.
  • time 11 2 A corresponds to the time of an event
  • channel ID 114 A corresponds to the time of an event
  • program ID 116 A program title 117 A
  • volume level 118 A volume level
  • channel change record 119 A A detailed record of selection data is illustrated in FIG. 6A .
  • the raw subscriber selection data 110 contains the raw data accumulated over a predetermined period of time and relates to viewing selections made by the subscriber over the predetermined period of time.
  • the filters of SCSF 100 evaluate the raw subscriber selection data 110 , eliminate any selection data associated with irrelevant activities, and in turn generate actual subscriber selection data 199 that corresponds only to the actual viewing selections made by the subscriber.
  • the actual subscriber selection data 199 comprises time 112 B, which corresponds to the time of an actual viewing event exclusive of channel surfing, channel jumping or dead periods, channel ID 114 B, program ID 116 B, program title 117 B, volume level 118 B, and channel change record 119 B.
  • the raw subscriber selection data 110 may be processed in accordance with some pre-determined heuristic rules to generate actual subscriber selection data 199 .
  • the selection data associated with channel surfing, channel jumping and dead periods is eliminated from the raw subscriber selection data to generate actual subscriber selection data 199 .
  • SCSF 100 Based on the actual subscriber selection data 199 , SCSF 100 generates one or more program characteristics vectors 150 which are comprised of program characteristics data 152 , as illustrated in FIG. 1 .
  • the program characteristics data 152 which can be used to create the program characteristics vectors 150 both in vector and table form, are examples of source related information which represent characteristics of the source material.
  • the program characteristics vectors 150 are lists of values which characterize the programming (source) material in accordance to the category 144 , the sub-category 146 , and the program description 148 .
  • the present invention may also be applied to advertisements, in which case program characteristics vectors contain, as an example, a product category, a product sub-category, and a brand name.
  • the SCSF 100 uses heuristic rules 160 .
  • the heuristic rules 160 are composed of both logical heuristic rules as well as heuristic rules expressed in terms of conditional probabilities.
  • the heuristic rules 160 can be accessed by the SCSF 100 via a request rules signal 162 which results in the transfer of a copy of rules 164 to the SCSF 100 .
  • the SCSF 100 forms program demographic vectors 170 from program demographics 172 , as illustrated in FIG. 1A .
  • the program demographic vectors 170 also represent characteristics of source related information in the form of the intended or expected demographics of the audience for which the source material is intended.
  • household viewing data 197 is computed from the actual subscriber selection data 199 .
  • the household viewing data 197 is derived from the actual subscriber selection data 199 by looking at viewing habits at a particular time of day over an extended period of time, usually several days or weeks, and making some generalizations regarding the viewing habits during that time period.
  • the SCSF 100 also transforms household viewing data 197 to form household viewing habits 195 , i.e. statistical representation of subscriber/household viewing data illustrating patterns in viewing.
  • the program characteristics vector 150 is derived from the source related text 136 and/or from the EPG 140 by applying information retrieval techniques. The details of this process are discussed in accordance with FIG. 8 .
  • the program characteristics vector 150 is used in combination with a set of the heuristic rules 160 to define a set of the program demographic vectors 170 illustrated in FIG. 1A describing the audience the program is intended for.
  • One output of the SCSF 100 is a household profile including household demographic characteristics 190 and a household interest profile 180 .
  • the household demographic characteristics 190 resulting from the transfer of household demographic data 192
  • the household interest profile 180 resulting from the transfer of household interests data 182 .
  • Both the household demographics characteristics 190 and the household interest profile 180 have a session value and an average value, as will be discussed herein.
  • filters 150 evaluate the subscriber selection data 110 to determine any data associated with irrelevant selection activities and then generate actual subscriber selection data 199 which does not include irrelevant selection data.
  • the irrelevant selection data generally corresponds to channel surfing, channel jumping, or dead periods activities. These activities are generally recognized by reviewing corresponding viewing times. In the case of channel surfing or channel jumping, the associated viewing times are very brief, a few milliseconds or a few seconds. In the case of dead periods, the viewing time is relatively long having no actions, e.g., a few hours.
  • the monitoring system depicted in FIG. 2 is responsible for monitoring the subscriber activities, and can be used to realize the SCSF 100 .
  • the monitoring system of FIG. 2 is located in a television set-top device or in the television itself.
  • the monitoring system is part of a computer which receives programming from a network.
  • an input connector 220 accepts the video signal coming either from an antenna, cable television input, or other network.
  • the video signal can be analog or Digital MPEG.
  • the video source may be a video stream or other multimedia stream from a communications network including the Internet.
  • a system control unit 200 receives commands from the user 120 , decodes the command and forwards the command to the destined module.
  • the commands are entered via a remote control to a remote receiver 205 or a set of selection buttons 207 available at the front panel of the system control unit 200 .
  • the commands are entered by the user 120 via a keyboard.
  • the system control unit 200 also contains a Central Processing Unit (CPU) 203 for processing and supervising all of the operations of the system control unit 200 , a Read Only Memory (ROM) 202 containing the software and fixed data, a Random Access Memory (RAM) 204 for storing data.
  • CPU 203 , RAM 204 , ROM 202 , and I/O controller 201 are attached to a master bus 206 .
  • a power supply in a form of battery can also be included in the system control unit 200 for backup in case of power outage.
  • An input/output (I/O) controller 201 interfaces the system control unit 200 with external devices.
  • the I/O controller 201 interfaces to the remote receiver 205 and a selection button such as the channel change button on a remote control. In an alternate embodiment, it can accept input from a keyboard or a mouse.
  • the program selection data 122 is forwarded to a channel processor 210 .
  • the channel processor 210 tunes to a selected channel and the media stream is decomposed into its basic components: the video stream, the audio stream, and the data stream.
  • the video stream is directed to a video processor module 230 where it is decoded and further processed for display to the TV screen.
  • the audio stream is directed to an audio processor 240 for decoding and output to the speakers.
  • the data stream can be EPG data, closed-captioning text, Extended Data Service (EDS) information, a combination of these, or an alternate type of data.
  • EDS Extended Data Service
  • the data stream is stored in a reserved location of the RAM 204 .
  • a magnetic disk is used for data storage.
  • the system control unit 200 writes also in a dedicated memory, which in a preferred embodiment is the RAM 204 , the selected channel, the time 112 A of selection, the volume level 118 A and the program ID 116 A and the program title 117 A.
  • the new selected channel is directed to the channel processor 210 and the system control unit 200 writes to the dedicated memory the channel selection end time and the program title 117 A at the time 112 A of channel change.
  • the system control unit 200 keeps track of the number of channel changes occurring during the viewing time via the channel change record 119 A. This data forms part of the raw subscriber selection data 110 .
  • the volume control signal 124 A is sent to the audio processor 240 .
  • the volume level 118 A selected by the user 120 corresponds to the listening volume.
  • the volume level 118 A selected by the user 120 represents a volume level to another piece of equipment such as an audio system (home theatre system) or to the television itself. In such a case, the volume can be measured directly by a microphone or other audio sensing device which can monitor the volume at which the selected source material is being listened.
  • a program change occurring while watching a selected channel is also logged by the system control unit 200 .
  • Monitoring the content of the program at the time of the program change can be done by reading the content of the EDS.
  • the EDS contains information such as the program title, which is transmitted via the VBI.
  • a change on the program title field is detected by the monitoring system and logged as an event.
  • an EPG is present and program information can be extracted from the EPG.
  • the programming data received from the EDS or EPG permits distinguishing between entertainment programming and advertisements.
  • FIG. 3 shows the block diagram of the channel processor 210 .
  • the input connector 220 connects to a tuner 300 which tunes to the selected channel.
  • a local oscillator can be used to heterodyne the signal to the IF signal.
  • a demodulator 302 demodulates the received signal and the output is fed to an FEC decoder 304 .
  • the data stream received from the FEC decoder 304 is, in a preferred embodiment, in an MPEG format.
  • system demultiplexer 306 separates out video and audio information for subsequent decompression and processing, as well as ancillary data which can contain program related information.
  • the data stream presented to the system demultiplexer 306 consists of packets of data including video, audio and ancillary data.
  • the system demultiplexer 306 identifies each packet from the stream ID and directs the stream to the corresponding processor.
  • the video data is directed to the video processor module 230 and the audio data is directed to the audio processor 240 .
  • the ancillary data can contain closed-captioning text, emergency messages, program guide, or other useful information.
  • Closed-captioning text is considered to be ancillary data and is thus contained in the video stream.
  • the system demultiplexer 306 accesses the user data field of the video stream to extract the closed-captioning text.
  • the program guide if present, is carried on data stream identified by a specific transport program identifier.
  • analog video can be used.
  • ancillary data such as closed-captioning text or EDS data are carried in a vertical blanking interval.
  • FIG. 4 shows the block diagram of a computer system for a realization of the subscriber monitoring system based on the reception of multimedia signals from a bi-directional network.
  • a system bus 422 transports data amongst the CPU 203 , the RAM 204 , Read Only Memory—Basic Input Output System (ROM-BIOS) 406 and other components.
  • the CPU 203 accesses a hard drive 400 through a disk controller 402 .
  • the standard input/output devices are connected to the system bus 422 through the I/O controller 201 .
  • a keyboard is attached to the I/O controller 201 through a keyboard port 416 and the monitor is connected through a monitor port 418 .
  • the serial port device uses a serial port 420 to communicate with the I/O controller 201 .
  • Industry Standard Architecture (ISA) expansion slots 408 and Peripheral Component Interconnect (PCI) expansion slots 410 allow additional cards to be placed into the computer.
  • a network card is available to interface a local area, wide area, or
  • FIG. 5 illustrates a channel sequence and volume over a twenty-four(24) hour period.
  • the Y-axis represents the status of the receiver in terms of on/off status and volume level.
  • the X-axis represents the time of day.
  • the channels viewed are represented by the windows 501 - 506 , with a first channel 502 being watched followed by the viewing of a second channel 504 , and a third channel 506 in the morning. In the evening a fourth channel 501 is watched, a fifth channel 503 , and a sixth channel 505 .
  • a channel change is illustrated by a momentary transition to the “off” status and a volume change is represented by a change of level on the Y-axis.
  • a detailed record of the raw subscriber selection data 110 is illustrated in FIG. 6A in a table format.
  • a time column 602 contains the starting time of every event occurring during the viewing time.
  • a Channel ID column 604 lists the channels viewed or visited during that period.
  • a program title column 603 contains the titles of all programs viewed.
  • a volume column 601 contains the volume level 118 at the time 112 of viewing a selected channel.
  • the raw subscriber selection data 110 is unprocessed data and comprises the data associated with irrelevant or inconsequential activities, e.g., channel surfing, channel jumping, or dead activities.
  • irrelevant or inconsequential activities e.g., channel surfing, channel jumping, or dead activities.
  • the raw subscriber selection data 110 is filtered to eliminate the data associated with irrelevant (inconsequential) activities such as channel surfing, channel jumping, or dead period activities.
  • the channel surfing relates to an activity wherein the subscriber rapidly changes channels before arriving at a channel which may be of interest to him.
  • the viewing time of each intermediate channel is very brief, e.g., less than one minute. In this viewing time, the subscriber briefly glances at the channel programming, and then moves on to the next channel.
  • One or more filters 115 of the present invention are configured to filter out the surfing activity and only the actual viewing activity is considered in the actual make-up of household viewing habits.
  • the viewing record illustrates that the viewing time of each of the channels 2 , 3 , 4 , 5 is less than a minute, however, the viewing time of channel 6 is about an hour.
  • Filter 115 of the present invention evaluates this record, and then removes the corresponding viewing times of channel 2 , 3 , 4 , 5 from the viewing records.
  • the viewing time of channel number 6 is kept as it is not indicative of the channel surfing, but of an actual viewing.
  • the viewing record also indicates that the corresponding viewing times of each of channel numbers 7 , 8 , 9 , 58 , 57 , 56 , 55 , 54 , 53 are about minute or less, however, the viewing time of channel 25 is about 10 minutes. This implies that after the subscriber had completed the viewing of channel number 6 , the subscriber once again surfed the channels to find a programming of interest at channel 25 .
  • Filters 115 of the present invention are configured to evaluate the associated viewing times and to remove the data associated with the most of the channel surfing activities. For example, the viewing times of the channel numbers 7 , 8 , 9 , 58 , 57 , 56 , 55 , 54 , and 53 are removed, but, the viewing time associated with channel number 25 is kept. Similarly, the viewing times associated with channels 24 , 23 , 99 , 98 , 97 , and 2 are eliminated (indicate channel surfing) and the viewing time of channel number 3 is kept.
  • FIG. 6C illustrates processing involved in the elimination of viewing times associated with the channel jumping activities.
  • the channel jumping activity is different than a channel surfing activity in a sense that the subscriber already knows the intended programming (and corresponding channel number) he wants to watch, and utilizes the channel up or channel down button to arrive at the intended channel.
  • the viewing time of all the intermediate channels during channel jumping activity are generally very brief (less than a second).
  • the channel up or channel down button is utilized to reach the desired channels, generally, there exists an upwards or a downwards stream of channel changes, i.e., subscriber may jump through channels 2 , 3 , 4 and 5 to reach channel number 6 (an intended channel).
  • subscriber jumps may through channel 7 , 8 , 9 , 1 , 11 , 12 , 13 , 14 , 15 , and 16 to reach channel 17 .
  • Filters 115 of the present invention are configured to eliminate the channel jumping data from the actual viewing data. Filters generally evaluate the associated viewing times, and all the viewing times which correspond to channel jumping, e.g., are less than one second, are removed from the viewing records. In the exemplary case of FIG. 6C , the viewing times of channel 15 , and 14 are removed, but the viewing time of channel 13 is kept. Similarly, the viewing times of channel 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 are removed and the viewing time of channel 22 is kept.
  • Filters 115 are also configured to eliminate data associated with dead activities, e.g., extended spans of inactivity. These extended spans of inactivity indicate that the subscriber is not actively watching the programming, e.g., the subscriber has left the room, has gone to sleep, or is otherwise engaged in some other activity. These spans of inactivity may be determined by evaluating channel change commands, volume change commands, or other program selection commands issued by the subscriber. For example, if the evaluation of the viewing record indicates that the subscriber has not issued either of the channel change, volume change, on/off, or any other program selection command in last three hours, it is assumed that subscriber is in an inactive condition, and the remaining viewing time of that viewing session is not considered in the make-up of the household viewing habits 195 .
  • the spans of inactivity may be caused by many reasons, e.g., the subscriber has gone to sleep or has dozed off, or the subscriber is actively engaging in another activity and is not attending to the programming. Also,it is generally known that subscribers often do not turn their televisions and other multimedia sources off before attending to some other activities, e.g. cooking in the kitchen, make a run to the nearby grocery store, or going to basement for a work-out, etc.
  • the filters 115 of the present invention are constantly filtering out the irrelevant information associated with the channel surfing activities, channel jumping activities, or with the periods of inactivity, so that the data used for generating household viewing habits is more illustrative of the actual viewing habits. The actual subscriber selection data is then used to create household viewing habits.
  • a representative statistical record corresponding to the household viewing habits 195 is illustrated in FIG. 7 .
  • a time of day column 700 is organized in period of time including morning, mid-day, afternoon, night, and late night. In an alternate embodiment, smaller time periods are used.
  • Column 702 lists the number of minutes watched in each period. The average number of channel changes during that period are included in column 704 . The average volume is also included in column 706 .
  • the last row of the statistical record contains the totals for the items listed in the minutes watched column 702 , the channel changes column 704 and the average volume 706 .
  • FIG. 8A illustrates an entity-relationship diagram for the generation of the program characteristics vector 150 .
  • the context vector generation and retrieval technique described in U.S. Pat. No. 5,619,709, which is incorporated herein by reference, can be applied for the generation of the program characteristics vectors 150 .
  • Other techniques are well known by those skilled in the art.
  • the source material 130 or the EPG 140 are passed through a program characterization process 800 to generate the program characteristics vectors 150 .
  • the program characterization process 800 is described in accordance with FIG. 8B .
  • Program content descriptors including a first program content descriptor 802 , a second program content descriptor 804 and an nth program content descriptor 806 , each classified in terms of the category 144 , the sub-category 146 , and other divisions as identified in the industry accepted program classification system, are presented to a context vector generator 820 .
  • the program content descriptor can be text representative of the expected content of material found in the particular program category 144 .
  • the program content descriptors 802 , 804 and 806 would contain text representative of what would be found in programs in the news, fiction, and advertising categories respectively.
  • the context vector generator 820 generates context vectors for that set of sample texts resulting in a first summary context vector 808 , a second summary context vector 810 , and an nth summary context vector 812 .
  • the summary context vectors 808 , 810 , and 812 correspond to the categories of news, fiction and advertising respectively.
  • the summary vectors are stored in a local data storage system.
  • a sample of the source related text 136 which is associated with the new program to be classified is passed to the context vector generator 820 which generates a program context vector 840 for that program.
  • the source related text 136 can be either the source material 130 , the EPG 140 , or other text associated with the source material.
  • a comparison is made between the actual program context vectors and the stored program content context vectors by computing, in a dot product computation process 830 , the dot product of the first summary context vector 808 with the program context vector 840 to produce a first dot product 814 . Similar operations are performed to produce second dot product 816 and nth dot product 818 .
  • the values contained in the dot products 814 , 816 and 818 can be expressed in probabilistic terms using a simple transformation in which the result represents a confidence level of assigning the corresponding content to that program.
  • the transformed values add up to one.
  • the dot products can be used to classify a program, or form a weighted sum of classifications which results in the program characteristics vectors 150 .
  • the source related text 136 was from an advertisement
  • the nth dot product 818 would have a high value, indicating that the advertising category was the most appropriate category, and assigning a high probability value to that category. If the dot products corresponding to the other categories were significantly higher than zero, those categories would be assigned a value, with the result being the program characteristics vectors 150 as shown in FIG. 9D .
  • FIGS. 9A through 9F The program characteristics vectors 150 in general are represented in FIGS. 9A through 9F .
  • FIGS. 9A, 9B and 9 C are an example of deterministic program vectors. This set of vectors is generated when the program characteristics are well defined, as can occur when the source related text 136 or the EPG 140 contains specific fields identifying the category 144 and the sub-category 146 . A program rating can also provided by the EPG 140 .
  • FIG. 9D shows the probability that a program being watched is from the given category 144 .
  • the categories are listed in the X-axis.
  • the sub-category 146 is also expressed in terms of probability. This is shown in FIG. 9E .
  • the content component of this set of vectors is a third possible level of the program classification, and is illustrated in FIG. 9F .
  • FIG. 10A illustrates sets of logical heuristics rules which form part of the heuristic rules 160 .
  • logical heuristic rules are obtained from sociological or psychological studies. Two types of rules are illustrated in FIG. 10A . The first type links an individual's viewing characteristics to demographic characteristics such as gender, age, and income level.
  • a channel changing rate rule 1030 attempts to determine gender based on channel change rate.
  • An income related channel change rate rule 1010 attempts to link channel change rates to income brackets.
  • a second type of rules links particular programs to particular audience, as illustrated by a gender determining rule 1050 which links the program category 144 /sub-category 146 with a gender.
  • 10A are probabilistic determinations of factors including gender, age, and income level. Although a specific set of logical heuristic rules has been used as an example, a wide number of types of logical heuristic rules can be used to realize the present invention. In addition, these rules can be changed based on learning within the system or based on external studies which provide more accurate rules.
  • FIG. 11 illustrates an entity-relationship diagram for the generation of the program demographic vectors 170 .
  • the heuristic rules 160 are applied along with the program characteristic vectors 150 in a program target analysis process 1100 to form the program demographic vectors 170 .
  • the program characteristic vectors 150 indicate a particular aspect of a program, such as its violence level.
  • the heuristic rules 160 indicate that a particular demographic group has a preference for that program. As an example, it may be the case that young males have a higher preference for violent programs than other sectors of the population.
  • the program target analysis process 1100 can be realized using software programmed in a variety of languages which processes mathematically the heuristic rules 160 to derive the program demographic vectors 170 .
  • the table representation of the heuristic rules 160 illustrated in FIG. 10B expresses the probability that the individual or household is from a specific demographic group based on a program with a particular category 144 . This can be expressed, using probability terms as follow “the probability that the individuals are in a given demographic group conditional to the program being in a given category”. Referring to FIG. 12 , the probability that the group has certain demographic characteristics based on the program being in a specific category is illustrated.
  • the probability that a program is destined to a specific demographic group can be determined by applying Bayes rule. This probability is the sum of the conditional probabilities that the demographic group likes the program, conditional to the category 144 weighted by the probability that the program is from that category 144 .
  • the program target analysis can calculate the program demographic vectors by application of logical heuristic rules, as illustrated in FIG. 10A , and by application of heuristic rules expressed as conditional probabilities as shown in FIG. 10B .
  • Logical heuristic rules can be applied using logical programming and fuzzy logic using techniques well understood by those skilled in the art, and are discussed in the text by S. V. Kartalopoulos entitled “Understanding Neural Networks and Fuzzy Logic” which is incorporated herein by reference.
  • Conditional probabilities can be applied by simple mathematical operations multiplying program context vectors by matrices of conditional probabilities. By performing this process over all the demographic groups, the program target analysis process 1100 can measure how likely a program is to be of interest to each demographic group. Those probabilities values form the program demographic vector 170 represented in FIG. 12 .
  • the heuristic rules expressed as conditional probabilities shown in FIG. 10B are used as part of a matrix multiplication in which the program characteristics vector 150 of dimension N, such as those shown in FIGS. 9A-9F is multiplied by an N ⁇ M matrix of heuristic rules expressed as conditional probabilities, such as that shown in FIG. 10B .
  • the resulting vector of dimension M is a weighted average of the conditional probabilities for each category and represents the household demographic characteristics 190 . Similar processing can be performed at the sub-category and content levels.
  • FIG. 12 illustrates an example of the program demographic vector 170 , and shows the extent to which a particular program is destined to a particular audience. This is measured in terms of probability as depicted in FIG. 12 .
  • the Y-axis is the probability of appealing to the demographic group identified on the X-axis.
  • FIG. 13 illustrates an entity-relationship diagram for the generation of household session demographic data 1310 and household session interest profile 1320 .
  • the actual subscriber selection data 199 is used along with the program characteristics vectors 150 in a session characterization process 1300 to generate the household session interest profile 1320 .
  • the subscriber selection data 110 indicates what the subscriber is watching, for how long and at what volume they are watching the program.
  • the session characterization process 1300 forms a weighted average of the program characteristics vectors 150 in which the time duration the program is watched is normalized to the session time (typically defined as the time from which the unit was turned on to the present).
  • the program characteristics vectors 150 are multiplied by the normalized time duration (which is less than one unless only one program has been viewed) and summed with the previous value.
  • Time duration data, along with other subscriber viewing information, is available from the subscriber selection data 110 .
  • the resulting weighted average of program characteristics vectors forms the household session interest profile 1320 , with each program contributing to the household session interest profile 1320 according to how long it was watched.
  • the household session interest profile 1320 is normalized to produce probabilistic values of the household programming interests during that session.
  • the heuristic rules 160 are applied to both the actual subscriber selection data 199 and the program characteristics vectors 150 to generate the household session demographic data 1310 and the household session interest profile 1320 .
  • weighted averages of the program characteristics vectors 150 are formed based on the actual subscriber selection data 199 , and the heuristic rules 160 are applied.
  • logical heuristic rules as shown in FIG. 10A
  • logical programming can be applied to make determinations regarding the household session demographic data 1310 and the household session interest profile 1320 .
  • a dot product of the time averaged values of the program characteristics vectors can be taken with the appropriate matrix of heuristic rules to generate both the household session demographic data 1310 and the household session interest profile 1320 .
  • Volume control measurements which form part of the actual subscriber selection data 199 can also be applied in the session characterization process 1300 to form a household session interest profile 1320 . This can be accomplished by using normalized volume measurements in a weighted average manner similar to how time duration is used. Thus, muting a show results in a zero value for volume, and the program characteristics vector 150 for this show will not be averaged into the household session interest profile 1320 .
  • FIG. 14 illustrates an entity-relationship diagram for the generation of average household demographic characteristics and session household demographic characteristics 190 .
  • a household demographic characterization process 1400 generates the household demographic characteristics 190 represented in table format in FIG. 15 .
  • the household demographic characterization process 1400 uses the household viewing habits 195 in combination with the heuristic rules 160 to determine demographic data. For example, a household with a number of minutes watched of zero during the day may indicate a household with two working adults. Both logical heuristic rules as well as rules based on conditional probabilities can be applied to the household viewing habits 195 to obtain the household demographics characteristics 190 .
  • the household viewing habits 195 is also used by the system to detect out-of-habits events. For example, if a household with a zero value for the minutes watched column 702 at late night presents a session value at that time via the household session demographic data 1310 , this session will be characterized as an out-of-habits event and the system can exclude such data from the average if it is highly probable that the demographics for that session are greatly different than the average demographics for the household. Nevertheless, the results of the application of the household demographic characterization process 1400 to the household session demographic data 1310 can result in valuable session demographic data, even if such data is not added to the average demographic characterization of the household.
  • FIG. 15 illustrates the average and session household demographic characteristics.
  • a household demographic parameters column 1501 is followed by an average value column 1505 , a session value column 1503 , and an update column 1507 .
  • the average value column 1505 and the session value column 1503 are derived from the household demographic characterization process 1400 .
  • the deterministic parameters such as address and telephone numbers can be obtained from an outside source or can be loaded into the system by the subscriber or a network operator at the time of installation. Updating of deterministic values is prevented by indicating that these values should not be updated in the update column 1507 .
  • FIG. 16 illustrates an entity-relationship diagram for the generation of the household interest profile 180 in a household interest profile generation process 1600 .
  • the household interest profile generation process comprises averaging the household session interest profile 1320 over multiple sessions and applying the household viewing habits 195 in combination with the heuristic rules 160 to form the household interest profile 180 which takes into account both the viewing preferences of the household as well as assumptions about households/subscribers with those viewing habits and program preferences.
  • FIG. 17 illustrates the household interest profile 180 which is composed of a programming types row 1709 , a products types row 1707 , and a household interests column 1701 , an average value column 1703 , and a session value column 1705 .
  • the product types row 1707 gives an indication as to what type of advertisement the household would be interested in watching, thus indicating what types of products could potentially be advertised with a high probability of the advertisement being watched in its entirety.
  • the programming types row 1709 suggests what kind of programming the household is likely to be interested in watching.
  • the household interests column 1701 specifies the types of programming and products which are statistically characterized for that household.
  • a household will perform its normal viewing routine without being requested to answer specific questions regarding likes and dislikes.
  • Children may watch television in the morning in the household, and may change channels during commercials, or not at all.
  • the television may remain off during the working day, while the children are at school and day care, and be turned on again in the evening, at which time the parents may “surf” channels, mute the television during commercials, and ultimately watch one or two hours of broadcast programming.
  • the present invention provides the ability to characterize the household based on actual viewing selections, e.g., channel surfing, channel jumping or dead periods are not considered.
  • the determinations are made that there are children and adults in the household, and program and product interests indicated in the household interest profile 180 corresponds to a family of that composition. For example, a household with two retired adults will have a completely different characterization which will be indicated in the household interest profile 180 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Library & Information Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computing Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

A subscriber characterization system with filters in which the subscriber's selections are monitored, including monitoring of the time duration programming is watched, the volume at which the programming is listened to, and any available information regarding the type of programming, including category and sub-category of the programming. The raw subscriber selection data is then processed to eliminate data associated with irrelevant activities such as channel surfing, channel jumping, or extended periods of inactivity. The actual subscriber selection data is used to form program characteristics vectors. The programming characteristics vectors can be used in combination with the actual subscriber selection data to form a subscriber profile. Heuristic rules indicating the relationships between programming choices and demographics can be applied to generate additional probabilistic subscriber profiles regarding demographics and programming and product interests.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 09/516,983, filed Mar. 1, 2000, and entitled Subscriber Characterization System with Filters, which is a continuation-in-part of U.S. patent application Ser. No. 09/204,888, filed Dec. 3, 1998, now U.S. Pat. No. 7,150,030, the entire disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Subscribers face an increasingly large number of choices for entertainment programming, which is delivered over networks such as cable TV systems, over-the-air broadcast systems, and switched digital access systems which use telephone company twisted wire pairs for the delivery of signals.
  • Cable television service providers have typically provided one-way broadcast services but now offer high-speed data services and can combine traditional analog broadcasts with digital broadcasts and access to Internet web sites. Telephone companies can offer digital data and video programming on a switched basis over digital subscriber line technology. Although the subscriber may only be presented with one channel at a time, channel change requests are instantaneously transmitted to centralized switching equipment and the subscriber can access the programming in a broadcast-like manner. Internet Service Providers (ISPs) offer Internet access and can offer access to text, audio, and video programming which can also be delivered in a broadcast-like manner in which the subscriber selects “channels” containing programming of interest. Such channels may be offered as part of a video programming service or within a data service and can be presented within an Internet browser.
  • Along with the multitude of programming choices which the subscriber faces, subscribers are subject to advertisements, which in many cases subsidize or pay for the entire cost of the programming. While advertisements are sometimes beneficial to subscribers and deliver desired information regarding specific products or services, consumers generally view advertising as a “necessary evil” for broadcast-type entertainment.
  • In order to deliver more targeted programming and advertising to subscribers, it is necessary to understand their likes and dislikes to a greater extent than is presently done today. Systems which identify subscriber preferences based on their purchases and responses to questionnaires allow for the targeted marketing of literature in the mail, but do not in any sense allow for the rapid and precise delivery of programming and advertising which is known to have a high probability of acceptance to the subscriber. In order to determine which programming or advertising is appropriate for the subscriber, knowledge of that subscriber and the subscriber product and programming preferences is required.
  • Specific information regarding a subscriber's viewing habits or the Internet web sites they have accessed can be stored for analysis, but such records are considered private and subscribers are not generally willing to have such information leave their control. Although there are regulatory models which permit the collection of such data on a “notice and consent” basis, there is a general tendency towards legal rules which prohibit such raw data to be collected.
  • SUMMARY OF THE INVENTION
  • For the foregoing reasons, there is a need for a subscriber characterization system which may generate and store subscriber characteristics that reflect the probable demographics and preferences of the subscriber and household.
  • The present invention includes a system for characterizing subscribers watching video or multimedia programming based on monitoring their detailed selection choices including the time duration of their viewing, the number of channel changes, the volume at which the programming is listened, the program selection, and collecting text information about that programming to determine what type of programming the subscriber is most interested in.
  • Furthermore, the system is equipped with one or more filters that assist in determining selection data associated with irrelevant activities by the subscriber which should be excluded from the actual viewing selection data, e.g., selection data associated with channel surfing and/or channel jumping (up and down) activities by the subscriber.
  • The channel surfing activity refers to one or more rapid channel changes initiated by the subscriber for the purpose of selecting a channel/program for actual viewing. Generally, the subscriber selects a channel, and views the contents of the program at the selected channel for few seconds (about 3-4 seconds), and then changes the channel to view the contents of the next channel. Such rapid changes generally occur a few times in a row before the subscriber selects a channel/programming for actual viewing. The filters of the present invention are configured to detect channel surfing activities by the subscriber by monitoring and evaluating associated viewing times, thereby the channel surfing activities are not considered in the determination of actual viewing selections.
  • The channel jumping refers to an activity wherein the subscriber changes channels very rapidly in order to move from an existing channel to a desired channel. Therein, the subscriber is not channel surfing, instead the subscriber already knows the intended channel/program for actual viewing and is jumping channels to reach the desired channels, e.g., the subscriber is at channel number 6, and wants to go to channel number 12, the subscriber may jump the channel by changing the channel six times. Generally, in channel jumping, the channel changes occur very rapidly and the viewing time at the each channel is very brief, e.g., less than one second. The filters of the present invention are configured to detect channel jumping, thereby the channel jumping activities are not considered in the determination of actual viewing selections.
  • The filters of the present invention are also capable of monitoring extended spans of inactivity, e.g., a lack of any channel changes, volume changes, or any other selection changes activity for more than 3 hours. Such spans of inactivity are considered “dead periods” implying that subscriber is not actively watching the video and/or other multimedia programming. The reasons for such dead periods may be caused by the fact that the subscriber has left the room, or the subscriber is not active (e.g., the subscriber has gone to sleep or has dozed off), or the fact that the subscriber is actively engaging in another activity within the room and is not attending to the programming.
  • The system of the present invention analyzes the actual viewing selections made by the subscriber or the subscriber household, and generates a demographic description of the subscriber or household. This demographic description describes the probable age, income, gender and other demographics. The resulting characterization includes probabilistic determinations of what other programming or products the subscriber/household will be interested in.
  • The present invention also encompasses the use of heuristic rules in logical form or expressed as conditional probabilities to aid in forming a subscriber profile. The heuristic rules in logical form allow the system to apply generalizations that have been learned from external studies to obtain a characterization of the subscriber. In the case of conditional probabilities, determinations of the probable content of a program can be applied in a mathematical step to a matrix of conditional probabilities to obtain probabilistic subscriber profiles indicating program and product likes and dislikes as well for determining probabilistic demographic data.
  • In accordance with the principles of the present invention, the resulting probabilistic information can be stored locally and controlled by the subscriber, or can be transferred to a third party that can provide access to the subscriber characterization. The information can also be encrypted to prevent unauthorized access in which case only the subscriber or someone authorized by the subscriber can access the data.
  • These and other features and objects of the invention will be more fully understood from the following detailed description of the preferred embodiments which should be read in light of the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description serve to explain the principles of the invention.
  • In the drawings:
  • FIG. 1A illustrates a context diagram for a subscriber characterization system having filters;
  • FIG. 1B illustrates a functional diagram of the processing utilized by filters;
  • FIG. 2 illustrates a block diagram for a realization of a subscriber monitoring system for receiving video signals;
  • FIG. 3 illustrates a block diagram of a channel processor;
  • FIG. 4 illustrates a block diagram of a computer for a realization of the subscriber monitoring system;
  • FIG. 5 illustrates a channel sequence and volume over a twenty-four (24) hour period;
  • FIG. 6A illustrates a time of day detailed record;
  • FIG. 6B illustrates the processing utilized by filters of FIG. 1A to determine channel surfing activities;
  • FIG. 6C illustrates the processing utilized by filters of FIG. 6C to determine channel jumping activities;
  • FIG. 7 illustrates a household viewing habits statistical table;
  • FIG. 8A illustrates an entity-relationship diagram for the generation of program characteristics vectors;
  • FIG. 8B illustrates a flowchart for program characterization;
  • FIGS. 9A illustrates a deterministic program category vector;
  • FIG. 9B illustrates a deterministic program sub-category vector;
  • FIG. 9C illustrates a deterministic program rating vector;
  • FIG. 9D illustrates a probabilistic program category vector;
  • FIG. 9E illustrates a probabilistic program sub-category vector;
  • FIG. 9F illustrates a probabilistic program content vector;
  • FIG. 10A illustrates a set of logical heuristic rules;
  • FIG. 10B illustrates a set of heuristic rules expressed in terms of conditional probabilities;
  • FIG. 11 illustrates an entity-relationship diagram for the generation of program demographic vectors;
  • FIG. 12 illustrates a program demographic vector;
  • FIG. 13 illustrates an entity-relationship diagram for the generation of household session demographic data and household session interest profiles;
  • FIG. 14 illustrates an entity-relationship diagram for the generation of average and session household demographic characteristics;
  • FIG. 15 illustrates average and session household demographic data;
  • FIG. 16 illustrates an entity-relationship diagram for generation of a household interest profile; and
  • FIG. 17 illustrates a household interest profile including programming and product profiles.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In describing a preferred embodiment of the invention illustrated in the drawings, specific terminology will be used for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
  • With reference to the drawings, in general, and FIGS. 1 through 17 in particular, the apparatus of the present invention is disclosed.
  • The present invention is directed at an apparatus for generating a subscriber profile that contains useful information regarding the subscriber likes and dislikes. Such a profile is useful for systems which provide targeted programming or advertisements to the subscriber, and allow material (programs or advertisements) to be directed at subscribers who will have a high probability of liking the program or a high degree of interest in purchasing the product.
  • Since there are typically multiple individuals in a household, the subscriber characterization may not be a characterization of an individual subscriber but may instead be a household average. When used herein, the term subscriber refers both to an individual subscriber as well as the average characteristics of a household of multiple subscribers.
  • In the present system the programming viewed by the subscriber, both entertainment and advertisement, can be studied and processed by the subscriber characterization system. In this study, system filters are configured to eliminate selection data associated with irrelevant activities from the actual selection data. The actual selection data is then used to determine the program characteristics. This determination of the program characteristics is referred to as a program characteristics vector. This vector may be a truly one-dimensional vector, but can also be represented as an n dimensional matrix which can be decomposed into vectors.
  • The subscriber profile vector represents a profile of the subscriber (or the household of subscribers) and can be in the form of a demographic profile (average or session) or a program or product preference vector. The program and product preference vectors are considered to be part of a household interest profile which can be thought of as an n dimensional matrix representing probabilistic measurements of subscriber interests.
  • In the case that the subscriber profile vector is a demographic profile, the subscriber profile vector indicates a probabilistic measure of the age of the subscriber or average age of the viewers in the household, sex of the subscriber, income range of the subscriber or household, and other such demographic data. Such information comprises household demographic characteristics and is composed of both average and session values. Extracting a single set of values from the household demographic characteristics can correspond to a subscriber profile vector.
  • The household interest profile can contain both programming and product profiles, with programming profiles corresponding to probabilistic determinations of what programming the subscriber (household) is likely to be interested in, and product profiles corresponding to what products the subscriber (household) is likely to be interested in. These profiles contain both an average value and a session value, the average value being a time average of data, where the averaging period may be several days, weeks, months, or the time between resets of unit.
  • Since a viewing session is likely to be dominated by a particular viewer, the session values may, in some circumstances, correspond most closely to the subscriber values, while the average values may, in some circumstances, correspond most closely to the household values.
  • FIG. 1A depicts the context diagram of a preferred embodiment of a Subscriber Characterization System with Filters (SCSF) 100. A context diagram, in combination with entity-relationship diagrams, provide a basis from which one skilled in the art can realize the present invention. The present invention can be realized in a number of programming languages including C, C++, Perl, and Java, although the scope of the invention is not limited by the choice of a particular programming language or tool. Object oriented languages have several advantages in terms of construction of the software used to realize the present invention, although the present invention can be realized in procedural or other types of programming languages known to those skilled in the art.
  • Filters of SCSF 100 may be a computer means or a software module configured with some predetermined rules. These predetermined rules assist in recognizing irrelevant activities and the elimination of the selection data from the raw subscriber selection data. Filters and their related processing are described in detail later.
  • In the process of collecting raw subscriber selection data, the SCSF 100 receives from a user 120 commands in the form of a volume control signal 124 or program selection data 122 which can be in the form of a channel change but may also be an address request which requests the delivery of programming from a network address. A record signal 126 indicates that the programming or the address of the programming is being recorded by the user. The record signal 126 can also be a printing command, a tape recording command, a bookmark command or any other command intended to store the program being viewed, or program address, for later use.
  • The material being viewed by the user 120 is referred to as source material 130. The source material 130, as defined herein, is the content that a subscriber selects and may consist of analog video, Motion Picture Expert Group (MPEG) digital video source material, other digital or analog material, Hypertext Markup Language (HTML) or other type of multimedia source material. The subscriber characterization system 100 can access the source material 130 received by the user 120 using a start signal 132 and a stop signal 134, which control the transfer of source related text 136 which can be analyzed as described herein.
  • In a preferred embodiment, the source related text 136 can be extracted from the source material 130 and stored in memory. The source related text 136, as defined herein, includes source related textual information including descriptive fields which are related to the source material 130, or text which is part of the source material 130 itself. The source related text 136 can be derived from a number of sources including but not limited to closed-captioning information, Electronic Program Guide (EPG) material, and text information in the source itself (e.g. text in HTML files).
  • Electronic Program Guide (EPG) 140 contains information related to the source material 130 which is useful to the user 120. The EPG 140 is typically a navigational tool which contains source related information including but not limited to the programming category, program description, rating, actors, and duration. The structure and content of EPG data is described in detail in U.S. Pat. No. 5,596,373 assigned to Sony Corporation and Sony Electronics which is herein incorporated by reference. As shown in FIG. 1, the EPG 140 can be accessed by the SCSF 100 by a request EPG data signal 142 which results in the return of a category 144, a sub-category 146, and a program description 148.
  • In one embodiment of the present invention, EPG data is accessed and program information such as the category 144, the sub-category 146, and the program description 148 are stored in memory.
  • In another embodiment of the present invention, the source related text 136 is the closed-captioning text embedded in the analog or digital video signal. Such closed-captioning text can be stored in memory for processing to extract the program characteristic vectors 150.
  • The raw subscriber selection data 110 is accumulated from the monitored activities of the user. The raw subscriber selection data 110 includes time 11 2A, which corresponds to the time of an event, channel ID 114A, program ID 116A, program title 117A, volume level 118A, and channel change record 119A. A detailed record of selection data is illustrated in FIG. 6A.
  • Generally, the raw subscriber selection data 110 contains the raw data accumulated over a predetermined period of time and relates to viewing selections made by the subscriber over the predetermined period of time. The filters of SCSF 100 evaluate the raw subscriber selection data 110, eliminate any selection data associated with irrelevant activities, and in turn generate actual subscriber selection data 199 that corresponds only to the actual viewing selections made by the subscriber. The actual subscriber selection data 199 comprises time 112B, which corresponds to the time of an actual viewing event exclusive of channel surfing, channel jumping or dead periods, channel ID 114B, program ID 116B, program title 117B, volume level 118B, and channel change record 119B.
  • The raw subscriber selection data 110 may be processed in accordance with some pre-determined heuristic rules to generate actual subscriber selection data 199. In one embodiment, the selection data associated with channel surfing, channel jumping and dead periods is eliminated from the raw subscriber selection data to generate actual subscriber selection data 199.
  • Based on the actual subscriber selection data 199, SCSF 100 generates one or more program characteristics vectors 150 which are comprised of program characteristics data 152, as illustrated in FIG. 1. The program characteristics data 152, which can be used to create the program characteristics vectors 150 both in vector and table form, are examples of source related information which represent characteristics of the source material. In a preferred embodiment, the program characteristics vectors 150 are lists of values which characterize the programming (source) material in accordance to the category 144, the sub-category 146, and the program description 148. The present invention may also be applied to advertisements, in which case program characteristics vectors contain, as an example, a product category, a product sub-category, and a brand name.
  • As illustrated in FIG. 1A, the SCSF 100 uses heuristic rules 160. The heuristic rules 160, as described herein, are composed of both logical heuristic rules as well as heuristic rules expressed in terms of conditional probabilities. The heuristic rules 160 can be accessed by the SCSF 100 via a request rules signal 162 which results in the transfer of a copy of rules 164 to the SCSF 100.
  • The SCSF 100 forms program demographic vectors 170 from program demographics 172, as illustrated in FIG. 1A. The program demographic vectors 170 also represent characteristics of source related information in the form of the intended or expected demographics of the audience for which the source material is intended.
  • In a preferred embodiment, household viewing data 197, as illustrated in FIG. 1A, is computed from the actual subscriber selection data 199. The household viewing data 197 is derived from the actual subscriber selection data 199 by looking at viewing habits at a particular time of day over an extended period of time, usually several days or weeks, and making some generalizations regarding the viewing habits during that time period. The SCSF 100 also transforms household viewing data 197 to form household viewing habits 195, i.e. statistical representation of subscriber/household viewing data illustrating patterns in viewing.
  • The program characteristics vector 150 is derived from the source related text 136 and/or from the EPG 140 by applying information retrieval techniques. The details of this process are discussed in accordance with FIG. 8.
  • The program characteristics vector 150 is used in combination with a set of the heuristic rules 160 to define a set of the program demographic vectors 170 illustrated in FIG. 1A describing the audience the program is intended for.
  • One output of the SCSF 100 is a household profile including household demographic characteristics 190 and a household interest profile 180. The household demographic characteristics 190 resulting from the transfer of household demographic data 192, and the household interest profile 180, resulting from the transfer of household interests data 182. Both the household demographics characteristics 190 and the household interest profile 180 have a session value and an average value, as will be discussed herein.
  • Referring now to FIG. 1B, exemplary processing of Filters is shown. As mentioned before, filters 150 evaluate the subscriber selection data 110 to determine any data associated with irrelevant selection activities and then generate actual subscriber selection data 199 which does not include irrelevant selection data. The irrelevant selection data generally corresponds to channel surfing, channel jumping, or dead periods activities. These activities are generally recognized by reviewing corresponding viewing times. In the case of channel surfing or channel jumping, the associated viewing times are very brief, a few milliseconds or a few seconds. In the case of dead periods, the viewing time is relatively long having no actions, e.g., a few hours.
  • The monitoring system depicted in FIG. 2 is responsible for monitoring the subscriber activities, and can be used to realize the SCSF 100. In a preferred embodiment, the monitoring system of FIG. 2 is located in a television set-top device or in the television itself. In an alternate embodiment, the monitoring system is part of a computer which receives programming from a network.
  • In an application of the system for television services, an input connector 220 accepts the video signal coming either from an antenna, cable television input, or other network. The video signal can be analog or Digital MPEG. Alternatively, the video source may be a video stream or other multimedia stream from a communications network including the Internet.
  • As illustrated in FIG. 2, a system control unit 200 receives commands from the user 120, decodes the command and forwards the command to the destined module. In a preferred embodiment, the commands are entered via a remote control to a remote receiver 205 or a set of selection buttons 207 available at the front panel of the system control unit 200. In an alternate embodiment, the commands are entered by the user 120 via a keyboard.
  • The system control unit 200 also contains a Central Processing Unit (CPU) 203 for processing and supervising all of the operations of the system control unit 200, a Read Only Memory (ROM) 202 containing the software and fixed data, a Random Access Memory (RAM) 204 for storing data. CPU 203, RAM 204, ROM 202, and I/O controller 201 are attached to a master bus 206. A power supply in a form of battery can also be included in the system control unit 200 for backup in case of power outage.
  • An input/output (I/O) controller 201 interfaces the system control unit 200 with external devices. In a preferred embodiment, the I/O controller 201 interfaces to the remote receiver 205 and a selection button such as the channel change button on a remote control. In an alternate embodiment, it can accept input from a keyboard or a mouse.
  • The program selection data 122 is forwarded to a channel processor 210. The channel processor 210 tunes to a selected channel and the media stream is decomposed into its basic components: the video stream, the audio stream, and the data stream. The video stream is directed to a video processor module 230 where it is decoded and further processed for display to the TV screen. The audio stream is directed to an audio processor 240 for decoding and output to the speakers.
  • The data stream can be EPG data, closed-captioning text, Extended Data Service (EDS) information, a combination of these, or an alternate type of data. In the case of EDS the call sign, program name and other useful data are provided. In a preferred embodiment, the data stream is stored in a reserved location of the RAM 204. In an alternate embodiment, a magnetic disk is used for data storage. The system control unit 200 writes also in a dedicated memory, which in a preferred embodiment is the RAM 204, the selected channel, the time 112A of selection, the volume level 118A and the program ID 116A and the program title 117A. Upon receiving the program selection data 122, the new selected channel is directed to the channel processor 210 and the system control unit 200 writes to the dedicated memory the channel selection end time and the program title 117A at the time 112A of channel change. The system control unit 200 keeps track of the number of channel changes occurring during the viewing time via the channel change record 119A. This data forms part of the raw subscriber selection data 110.
  • The volume control signal 124A is sent to the audio processor 240. In a preferred embodiment, the volume level 118A selected by the user 120 corresponds to the listening volume. In an alternate embodiment, the volume level 118A selected by the user 120 represents a volume level to another piece of equipment such as an audio system (home theatre system) or to the television itself. In such a case, the volume can be measured directly by a microphone or other audio sensing device which can monitor the volume at which the selected source material is being listened.
  • A program change occurring while watching a selected channel is also logged by the system control unit 200. Monitoring the content of the program at the time of the program change can be done by reading the content of the EDS. The EDS contains information such as the program title, which is transmitted via the VBI. A change on the program title field is detected by the monitoring system and logged as an event. In an alternate embodiment, an EPG is present and program information can be extracted from the EPG. In a preferred embodiment, the programming data received from the EDS or EPG permits distinguishing between entertainment programming and advertisements.
  • FIG. 3 shows the block diagram of the channel processor 210. In a preferred embodiment, the input connector 220 connects to a tuner 300 which tunes to the selected channel. A local oscillator can be used to heterodyne the signal to the IF signal. A demodulator 302 demodulates the received signal and the output is fed to an FEC decoder 304. The data stream received from the FEC decoder 304 is, in a preferred embodiment, in an MPEG format. In a preferred embodiment, system demultiplexer 306 separates out video and audio information for subsequent decompression and processing, as well as ancillary data which can contain program related information.
  • The data stream presented to the system demultiplexer 306 consists of packets of data including video, audio and ancillary data. The system demultiplexer 306 identifies each packet from the stream ID and directs the stream to the corresponding processor. The video data is directed to the video processor module 230 and the audio data is directed to the audio processor 240. The ancillary data can contain closed-captioning text, emergency messages, program guide, or other useful information.
  • Closed-captioning text is considered to be ancillary data and is thus contained in the video stream. The system demultiplexer 306 accesses the user data field of the video stream to extract the closed-captioning text. The program guide, if present, is carried on data stream identified by a specific transport program identifier.
  • In an alternate embodiment, analog video can be used. For analog programming, ancillary data such as closed-captioning text or EDS data are carried in a vertical blanking interval.
  • FIG. 4 shows the block diagram of a computer system for a realization of the subscriber monitoring system based on the reception of multimedia signals from a bi-directional network. A system bus 422 transports data amongst the CPU 203, the RAM 204, Read Only Memory—Basic Input Output System (ROM-BIOS) 406 and other components. The CPU 203 accesses a hard drive 400 through a disk controller 402. The standard input/output devices are connected to the system bus 422 through the I/O controller 201. A keyboard is attached to the I/O controller 201 through a keyboard port 416 and the monitor is connected through a monitor port 418. The serial port device uses a serial port 420 to communicate with the I/O controller 201. Industry Standard Architecture (ISA) expansion slots 408 and Peripheral Component Interconnect (PCI) expansion slots 410 allow additional cards to be placed into the computer. In a preferred embodiment, a network card is available to interface a local area, wide area, or other network.
  • FIG. 5 illustrates a channel sequence and volume over a twenty-four(24) hour period. The Y-axis represents the status of the receiver in terms of on/off status and volume level. The X-axis represents the time of day. The channels viewed are represented by the windows 501-506, with a first channel 502 being watched followed by the viewing of a second channel 504, and a third channel 506 in the morning. In the evening a fourth channel 501 is watched, a fifth channel 503, and a sixth channel 505. A channel change is illustrated by a momentary transition to the “off” status and a volume change is represented by a change of level on the Y-axis.
  • A detailed record of the raw subscriber selection data 110 is illustrated in FIG. 6A in a table format. A time column 602 contains the starting time of every event occurring during the viewing time. A Channel ID column 604 lists the channels viewed or visited during that period. A program title column 603 contains the titles of all programs viewed. A volume column 601 contains the volume level 118 at the time 112 of viewing a selected channel.
  • Generally, the raw subscriber selection data 110 is unprocessed data and comprises the data associated with irrelevant or inconsequential activities, e.g., channel surfing, channel jumping, or dead activities. Thus, before subscriber/household viewing habits 195 are determined, the raw subscriber selection data 110 is filtered to eliminate the data associated with irrelevant (inconsequential) activities such as channel surfing, channel jumping, or dead period activities.
  • As illustrated in FIG. 6B, the channel surfing relates to an activity wherein the subscriber rapidly changes channels before arriving at a channel which may be of interest to him. During the channel surfing period, the viewing time of each intermediate channel is very brief, e.g., less than one minute. In this viewing time, the subscriber briefly glances at the channel programming, and then moves on to the next channel.
  • One or more filters 115 of the present invention are configured to filter out the surfing activity and only the actual viewing activity is considered in the actual make-up of household viewing habits. For example, in FIG. 6B, the viewing record illustrates that the viewing time of each of the channels 2, 3, 4, 5 is less than a minute, however, the viewing time of channel 6 is about an hour. Filter 115 of the present invention evaluates this record, and then removes the corresponding viewing times of channel 2, 3, 4, 5 from the viewing records. The viewing time of channel number 6 is kept as it is not indicative of the channel surfing, but of an actual viewing.
  • Similarly, the viewing record also indicates that the corresponding viewing times of each of channel numbers 7, 8, 9, 58, 57, 56, 55, 54, 53 are about minute or less, however, the viewing time of channel 25 is about 10 minutes. This implies that after the subscriber had completed the viewing of channel number 6, the subscriber once again surfed the channels to find a programming of interest at channel 25.
  • Filters 115 of the present invention are configured to evaluate the associated viewing times and to remove the data associated with the most of the channel surfing activities. For example, the viewing times of the channel numbers 7, 8, 9, 58, 57, 56, 55, 54, and 53 are removed, but, the viewing time associated with channel number 25 is kept. Similarly, the viewing times associated with channels 24, 23, 99, 98, 97, and 2 are eliminated (indicate channel surfing) and the viewing time of channel number 3 is kept.
  • FIG. 6C illustrates processing involved in the elimination of viewing times associated with the channel jumping activities. The channel jumping activity is different than a channel surfing activity in a sense that the subscriber already knows the intended programming (and corresponding channel number) he wants to watch, and utilizes the channel up or channel down button to arrive at the intended channel.
  • The viewing time of all the intermediate channels during channel jumping activity are generally very brief (less than a second). Also, as the channel up or channel down button is utilized to reach the desired channels, generally, there exists an upwards or a downwards stream of channel changes, i.e., subscriber may jump through channels 2, 3, 4 and 5 to reach channel number 6 (an intended channel). Similarly, subscriber jumps may through channel 7, 8, 9, 1, 11, 12, 13, 14, 15, and 16 to reach channel 17.
  • Filters 115 of the present invention are configured to eliminate the channel jumping data from the actual viewing data. Filters generally evaluate the associated viewing times, and all the viewing times which correspond to channel jumping, e.g., are less than one second, are removed from the viewing records. In the exemplary case of FIG. 6C, the viewing times of channel 15, and 14 are removed, but the viewing time of channel 13 is kept. Similarly, the viewing times of channel 14, 15, 16, 17, 18, 19, 20, 21 are removed and the viewing time of channel 22 is kept.
  • Filters 115 are also configured to eliminate data associated with dead activities, e.g., extended spans of inactivity. These extended spans of inactivity indicate that the subscriber is not actively watching the programming, e.g., the subscriber has left the room, has gone to sleep, or is otherwise engaged in some other activity. These spans of inactivity may be determined by evaluating channel change commands, volume change commands, or other program selection commands issued by the subscriber. For example, if the evaluation of the viewing record indicates that the subscriber has not issued either of the channel change, volume change, on/off, or any other program selection command in last three hours, it is assumed that subscriber is in an inactive condition, and the remaining viewing time of that viewing session is not considered in the make-up of the household viewing habits 195. The spans of inactivity may be caused by many reasons, e.g., the subscriber has gone to sleep or has dozed off, or the subscriber is actively engaging in another activity and is not attending to the programming. Also,it is generally known that subscribers often do not turn their televisions and other multimedia sources off before attending to some other activities, e.g. cooking in the kitchen, make a run to the nearby grocery store, or going to basement for a work-out, etc.
  • The filters 115 of the present invention are constantly filtering out the irrelevant information associated with the channel surfing activities, channel jumping activities, or with the periods of inactivity, so that the data used for generating household viewing habits is more illustrative of the actual viewing habits. The actual subscriber selection data is then used to create household viewing habits.
  • A representative statistical record corresponding to the household viewing habits 195 is illustrated in FIG. 7. In a preferred embodiment, a time of day column 700 is organized in period of time including morning, mid-day, afternoon, night, and late night. In an alternate embodiment, smaller time periods are used. Column 702 lists the number of minutes watched in each period. The average number of channel changes during that period are included in column 704. The average volume is also included in column 706. The last row of the statistical record contains the totals for the items listed in the minutes watched column 702, the channel changes column 704 and the average volume 706.
  • FIG. 8A illustrates an entity-relationship diagram for the generation of the program characteristics vector 150. The context vector generation and retrieval technique described in U.S. Pat. No. 5,619,709, which is incorporated herein by reference, can be applied for the generation of the program characteristics vectors 150. Other techniques are well known by those skilled in the art.
  • Referring to FIG. 8A, the source material 130 or the EPG 140 are passed through a program characterization process 800 to generate the program characteristics vectors 150. The program characterization process 800 is described in accordance with FIG. 8B. Program content descriptors including a first program content descriptor 802, a second program content descriptor 804 and an nth program content descriptor 806, each classified in terms of the category 144, the sub-category 146, and other divisions as identified in the industry accepted program classification system, are presented to a context vector generator 820. As an example, the program content descriptor can be text representative of the expected content of material found in the particular program category 144. In this example, the program content descriptors 802, 804 and 806 would contain text representative of what would be found in programs in the news, fiction, and advertising categories respectively. The context vector generator 820 generates context vectors for that set of sample texts resulting in a first summary context vector 808, a second summary context vector 810, and an nth summary context vector 812. In the example given, the summary context vectors 808, 810, and 812 correspond to the categories of news, fiction and advertising respectively. The summary vectors are stored in a local data storage system.
  • Referring to FIG. 8B, a sample of the source related text 136 which is associated with the new program to be classified is passed to the context vector generator 820 which generates a program context vector 840 for that program. The source related text 136 can be either the source material 130, the EPG 140, or other text associated with the source material. A comparison is made between the actual program context vectors and the stored program content context vectors by computing, in a dot product computation process 830, the dot product of the first summary context vector 808 with the program context vector 840 to produce a first dot product 814. Similar operations are performed to produce second dot product 816 and nth dot product 818.
  • The values contained in the dot products 814, 816 and 818, while not probabilistic in nature, can be expressed in probabilistic terms using a simple transformation in which the result represents a confidence level of assigning the corresponding content to that program. The transformed values add up to one. The dot products can be used to classify a program, or form a weighted sum of classifications which results in the program characteristics vectors 150. In the example given, if the source related text 136 was from an advertisement, the nth dot product 818 would have a high value, indicating that the advertising category was the most appropriate category, and assigning a high probability value to that category. If the dot products corresponding to the other categories were significantly higher than zero, those categories would be assigned a value, with the result being the program characteristics vectors 150 as shown in FIG. 9D.
  • For the sub-categories, probabilities obtained from the content pertaining to the same sub-category 146 are summed to form the probability for the new program being in that sub-category 146. At the sub-category level, the same method is applied to compute the probability of a program being from the given category 144. The three levels of the program classification system; the category 144, the sub-category 146 and the content, are used by the program characterization process 800 to form the program characteristics vectors 150 which are depicted in FIGS. 9D-9F.
  • The program characteristics vectors 150 in general are represented in FIGS. 9A through 9F. FIGS. 9A, 9B and 9C are an example of deterministic program vectors. This set of vectors is generated when the program characteristics are well defined, as can occur when the source related text 136 or the EPG 140 contains specific fields identifying the category 144 and the sub-category 146. A program rating can also provided by the EPG 140.
  • In the case that these characteristics are not specified, a statistical set of vectors is generated from the process described in accordance with FIG. 8. FIG. 9D shows the probability that a program being watched is from the given category 144. The categories are listed in the X-axis. The sub-category 146 is also expressed in terms of probability. This is shown in FIG. 9E. The content component of this set of vectors is a third possible level of the program classification, and is illustrated in FIG. 9F.
  • FIG. 10A illustrates sets of logical heuristics rules which form part of the heuristic rules 160. In a preferred embodiment, logical heuristic rules are obtained from sociological or psychological studies. Two types of rules are illustrated in FIG. 10A. The first type links an individual's viewing characteristics to demographic characteristics such as gender, age, and income level. A channel changing rate rule 1030 attempts to determine gender based on channel change rate. An income related channel change rate rule 1010 attempts to link channel change rates to income brackets. A second type of rules links particular programs to particular audience, as illustrated by a gender determining rule 1050 which links the program category 144/sub-category 146 with a gender. The result of the application of the logical heuristic rules illustrated in FIG. 10A are probabilistic determinations of factors including gender, age, and income level. Although a specific set of logical heuristic rules has been used as an example, a wide number of types of logical heuristic rules can be used to realize the present invention. In addition, these rules can be changed based on learning within the system or based on external studies which provide more accurate rules.
  • FIG. 10B illustrates a set of the heuristic rules 160 expressed in terms of conditional probabilities. In the example shown in FIG. 10B, the category 144 has associated with it conditional probabilities for demographic factors such as age, income, family size and gender composition. The category 144 has associated with it conditional probabilities that represent probability that the viewing group is within a certain age group dependent on the probability that they are viewing a program in that category 144.
  • FIG. 11 illustrates an entity-relationship diagram for the generation of the program demographic vectors 170. In a preferred embodiment, the heuristic rules 160 are applied along with the program characteristic vectors 150 in a program target analysis process 1100 to form the program demographic vectors 170. The program characteristic vectors 150 indicate a particular aspect of a program, such as its violence level. The heuristic rules 160 indicate that a particular demographic group has a preference for that program. As an example, it may be the case that young males have a higher preference for violent programs than other sectors of the population. Thus, a program which has the program characteristic vectors 150 indicating a high probability of having violent content, when combined with the heuristic rules 160 indicating that “young males like violent programs,” will result, through the program target analysis process 1100, in the program demographic vectors 170 which indicate that there is a high probability that the program is being watched by a young male.
  • The program target analysis process 1100 can be realized using software programmed in a variety of languages which processes mathematically the heuristic rules 160 to derive the program demographic vectors 170. The table representation of the heuristic rules 160 illustrated in FIG. 10B expresses the probability that the individual or household is from a specific demographic group based on a program with a particular category 144. This can be expressed, using probability terms as follow “the probability that the individuals are in a given demographic group conditional to the program being in a given category”. Referring to FIG. 12, the probability that the group has certain demographic characteristics based on the program being in a specific category is illustrated.
  • Expressing the probability that a program is destined to a specific demographic group can be determined by applying Bayes rule. This probability is the sum of the conditional probabilities that the demographic group likes the program, conditional to the category 144 weighted by the probability that the program is from that category 144. In a preferred embodiment, the program target analysis can calculate the program demographic vectors by application of logical heuristic rules, as illustrated in FIG. 10A, and by application of heuristic rules expressed as conditional probabilities as shown in FIG. 10B. Logical heuristic rules can be applied using logical programming and fuzzy logic using techniques well understood by those skilled in the art, and are discussed in the text by S. V. Kartalopoulos entitled “Understanding Neural Networks and Fuzzy Logic” which is incorporated herein by reference.
  • Conditional probabilities can be applied by simple mathematical operations multiplying program context vectors by matrices of conditional probabilities. By performing this process over all the demographic groups, the program target analysis process 1100 can measure how likely a program is to be of interest to each demographic group. Those probabilities values form the program demographic vector 170 represented in FIG. 12.
  • As an example, the heuristic rules expressed as conditional probabilities shown in FIG. 10B are used as part of a matrix multiplication in which the program characteristics vector 150 of dimension N, such as those shown in FIGS. 9A-9F is multiplied by an N×M matrix of heuristic rules expressed as conditional probabilities, such as that shown in FIG. 10B. The resulting vector of dimension M is a weighted average of the conditional probabilities for each category and represents the household demographic characteristics 190. Similar processing can be performed at the sub-category and content levels.
  • FIG. 12 illustrates an example of the program demographic vector 170, and shows the extent to which a particular program is destined to a particular audience. This is measured in terms of probability as depicted in FIG. 12. The Y-axis is the probability of appealing to the demographic group identified on the X-axis.
  • FIG. 13 illustrates an entity-relationship diagram for the generation of household session demographic data 1310 and household session interest profile 1320. In a preferred embodiment, the actual subscriber selection data 199 is used along with the program characteristics vectors 150 in a session characterization process 1300 to generate the household session interest profile 1320. The subscriber selection data 110 indicates what the subscriber is watching, for how long and at what volume they are watching the program.
  • In a preferred embodiment, the session characterization process 1300 forms a weighted average of the program characteristics vectors 150 in which the time duration the program is watched is normalized to the session time (typically defined as the time from which the unit was turned on to the present). The program characteristics vectors 150 are multiplied by the normalized time duration (which is less than one unless only one program has been viewed) and summed with the previous value. Time duration data, along with other subscriber viewing information, is available from the subscriber selection data 110. The resulting weighted average of program characteristics vectors forms the household session interest profile 1320, with each program contributing to the household session interest profile 1320 according to how long it was watched. The household session interest profile 1320 is normalized to produce probabilistic values of the household programming interests during that session.
  • In an alternate embodiment, the heuristic rules 160 are applied to both the actual subscriber selection data 199 and the program characteristics vectors 150 to generate the household session demographic data 1310 and the household session interest profile 1320. In this embodiment, weighted averages of the program characteristics vectors 150 are formed based on the actual subscriber selection data 199, and the heuristic rules 160 are applied. In the case of logical heuristic rules as shown in FIG. 10A, logical programming can be applied to make determinations regarding the household session demographic data 1310 and the household session interest profile 1320. In the case of heuristic rules in the form of conditional probabilities such as those illustrated in FIG. 10B, a dot product of the time averaged values of the program characteristics vectors can be taken with the appropriate matrix of heuristic rules to generate both the household session demographic data 1310 and the household session interest profile 1320.
  • Volume control measurements which form part of the actual subscriber selection data 199 can also be applied in the session characterization process 1300 to form a household session interest profile 1320. This can be accomplished by using normalized volume measurements in a weighted average manner similar to how time duration is used. Thus, muting a show results in a zero value for volume, and the program characteristics vector 150 for this show will not be averaged into the household session interest profile 1320.
  • FIG. 14 illustrates an entity-relationship diagram for the generation of average household demographic characteristics and session household demographic characteristics 190. A household demographic characterization process 1400 generates the household demographic characteristics 190 represented in table format in FIG. 15. The household demographic characterization process 1400 uses the household viewing habits 195 in combination with the heuristic rules 160 to determine demographic data. For example, a household with a number of minutes watched of zero during the day may indicate a household with two working adults. Both logical heuristic rules as well as rules based on conditional probabilities can be applied to the household viewing habits 195 to obtain the household demographics characteristics 190.
  • The household viewing habits 195 is also used by the system to detect out-of-habits events. For example, if a household with a zero value for the minutes watched column 702 at late night presents a session value at that time via the household session demographic data 1310, this session will be characterized as an out-of-habits event and the system can exclude such data from the average if it is highly probable that the demographics for that session are greatly different than the average demographics for the household. Nevertheless, the results of the application of the household demographic characterization process 1400 to the household session demographic data 1310 can result in valuable session demographic data, even if such data is not added to the average demographic characterization of the household.
  • FIG. 15 illustrates the average and session household demographic characteristics. A household demographic parameters column 1501 is followed by an average value column 1505, a session value column 1503, and an update column 1507. The average value column 1505 and the session value column 1503 are derived from the household demographic characterization process 1400. The deterministic parameters such as address and telephone numbers can be obtained from an outside source or can be loaded into the system by the subscriber or a network operator at the time of installation. Updating of deterministic values is prevented by indicating that these values should not be updated in the update column 1507.
  • FIG. 16 illustrates an entity-relationship diagram for the generation of the household interest profile 180 in a household interest profile generation process 1600. In a preferred embodiment, the household interest profile generation process comprises averaging the household session interest profile 1320 over multiple sessions and applying the household viewing habits 195 in combination with the heuristic rules 160 to form the household interest profile 180 which takes into account both the viewing preferences of the household as well as assumptions about households/subscribers with those viewing habits and program preferences.
  • FIG. 17 illustrates the household interest profile 180 which is composed of a programming types row 1709, a products types row 1707, and a household interests column 1701, an average value column 1703, and a session value column 1705.
  • The product types row 1707 gives an indication as to what type of advertisement the household would be interested in watching, thus indicating what types of products could potentially be advertised with a high probability of the advertisement being watched in its entirety. The programming types row 1709 suggests what kind of programming the household is likely to be interested in watching. The household interests column 1701 specifies the types of programming and products which are statistically characterized for that household.
  • As an example of the industrial applicability of the invention, a household will perform its normal viewing routine without being requested to answer specific questions regarding likes and dislikes. Children may watch television in the morning in the household, and may change channels during commercials, or not at all. The television may remain off during the working day, while the children are at school and day care, and be turned on again in the evening, at which time the parents may “surf” channels, mute the television during commercials, and ultimately watch one or two hours of broadcast programming. The present invention provides the ability to characterize the household based on actual viewing selections, e.g., channel surfing, channel jumping or dead periods are not considered. Based on the actual subscriber selection data, the determinations are made that there are children and adults in the household, and program and product interests indicated in the household interest profile 180 corresponds to a family of that composition. For example, a household with two retired adults will have a completely different characterization which will be indicated in the household interest profile 180.
  • Although this invention has been illustrated by reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made which clearly fall within the scope of the invention. The invention is intended to be protected broadly within the spirit and scope of the appended claims.

Claims (26)

1. A computer-implemented method of determining at least one characteristic of a video or audio presentation being presented to a viewer, the method comprising:
(a) monitoring viewer interactions with a multimedia device;
(b) processing the viewer interactions to obtain viewer interaction data corresponding to the viewer interactions;
(c) retrieving one or more previously developed heuristic rules, wherein the previously developed heuristic rules relate at least one aspect of the viewer interaction data to the at least one characteristic of the video or audio presentation, and wherein the previously developed heuristic rules have been previously developed through the application of at least one heuristic process;
(d) applying one or more of the previously developed heuristic rules to at least a subset of the viewer interaction data; and
(e) inferring the at least one characteristic of the video or audio presentation being presented to the viewer based on the application of the previously developed heuristic rules.
2. The method of claim 1, wherein the heuristic rules are probabilistic in nature.
3. The method of claim 1, wherein the at least one inferred characteristic is expressed as a probability assigned by the heuristic rules based on the viewer interaction data.
4. The method of claim 1, wherein the viewer interaction data includes at least some subset of:
(a) viewing time per channel, category, or network;
(b) channel changes per time;
(c) average volume per time period, channel, category, or network; and
(d) dwell time per channel, category, or network.
5. The method of claim 1, wherein the at least one heuristic process incorporates at least two types of analysis selected from the group consisting of exploratory problem-solving, self-learning, discovery, experiments, trial and error, inferences, educated guesses, market studies, human knowledge and experience.
6. The method of claim 1, further comprising:
(f) reporting the at least one inferred characteristic, wherein the report includes predictive values of the at least one inferred characteristic and at least one other characteristic, and wherein the predictive values are assigned by the heuristic rules based on the viewer interaction data.
7. A computer-implemented method of determining at least one demographic attribute of a video or audio presentation being presented to a viewer, the method comprising:
(a) monitoring viewer interactions with a multimedia device;
(b) processing the viewer interactions to obtain viewer interaction data corresponding to the viewer interactions;
(c) retrieving one or more previously developed heuristic rules, wherein the previously developed heuristic rules relate at least one aspect of the viewer interaction data to the at least one demographic attribute of the video or audio presentation, and wherein the previously developed heuristic rules have been previously developed through the application of at least one heuristic process;
(d) applying one or more of the previously developed heuristic rules to at least a subset of the viewer interaction data; and
(e) inferring the at least one demographic attribute of the video or audio presentation being watched by a viewer based on the application of the previously developed heuristic rules.
8. The method of claim 7, wherein the heuristic rules are probabilistic in nature.
9. The method of claim 7, wherein the at least one demographic attribute is expressed as a probability assigned by the heuristic rules based on the viewer interaction data.
10. The method of claim 7, wherein the viewer interaction data includes at least some subset of:
(a) viewing time per channel, category, or network;
(b) channel changes per time;
(c) average volume per time period, channel, category, or network; and
(d) dwell time per channel, category, or network.
11. The method of claim 7, wherein the at least one heuristic process incorporates at least two types of analysis selected from the group consisting of exploratory problem-solving, self-learning, discovery, experiments, trial and error, inferences, educated guesses, market studies, human knowledge and experience.
12. The method of claim 7, further comprising:
(f) reporting the at least one demographic attribute, wherein the report includes predictive values of the at least one demographic attribute and at least one other demographic attribute, and wherein the predictive values are assigned by the heuristic rules based on the viewer interaction data.
13. A computer-implemented method of determining which viewer or viewers of an audience of a video or audio presentation are viewing the video or audio presentation, the method comprising:
(a) monitoring viewer interactions with a multimedia device;
(b) processing the viewer interactions to obtain viewer interaction data corresponding to the viewer interactions of at least one viewer;
(c) retrieving one or more previously developed heuristic rules, wherein the previously developed heuristic rules relate at least one aspect of the viewer interaction data to at least one characteristic of a viewer, wherein the previously developed heuristic rules have been previously developed through the application of at least one heuristic process;
(d) applying one or more of the previously developed heuristic rules to at least a subset of the viewer interaction data; and
(e) inferring which viewer or viewers of a plurality of viewers of the audience are viewing the video or audio presentation based on the application of the previously developed heuristic rules.
14. The method of claim 13, wherein the heuristic rules of step (d) are applied at least to a subset of previously stored viewer interaction data.
15. The method of claim 14, wherein the inferring of step (e) utilizes the application of the heuristic rules to the previously stored viewer interaction data.
16. The method of claim 13, wherein the heuristic rules are probabilistic in nature.
17. The method of claim 13, wherein the at least on inferred characteristic is expressed as a probability assigned by the heuristic rules based on the viewer interaction data.
18. The method of claim 13, wherein the viewer interaction data includes at least some subset of:
(a) viewing time per channel, category, or network;
(b) channel changes per time;
(c) average volume per time period, channel, category, or network; and
(d) dwell time per channel, category, or network.
19. The method of claim 13, wherein the at least one heuristic process incorporates at least two types of analysis selected from the group consisting of exploratory problem-solving, self-learning, discovery, experiments, trial and error, inferences, educated guesses, market studies, human knowledge and experience.
20. A computer-implemented method of determining which viewer or viewers in a household are viewing a video or audio presentation, the method comprising:
(a) monitoring viewer interactions with a multimedia device;
(b) processing the viewer interactions to obtain viewer interaction data corresponding to the viewer interactions of the household;
(c) retrieving on or more previously developed heuristic rules, wherein the previously developed heuristic rules relate viewer interaction data to at least one characteristic of a viewer, wherein the previously developed heuristic rules have been previously developed through the application of at least one heuristic process;
(d) applying one or more of the previously developed heuristic rules to at least a subset of the viewer interaction data; and
(e) inferring which viewer or viewers in the household are viewing the video or audio presentation based on the application of heuristic rules.
21. The method of claim 20, wherein the heuristic rules of step (d) are applied at least to a subset of previously stored viewer interaction data.
22. The method of claim 21, wherein the inferring of step (e) utilizes the application of the heuristic rules to the previously stored viewer interaction data.
23. The method of claim 20, wherein the heuristic rules are probabilistic in nature.
24. The method of claim 20, wherein the at least on inferred characteristic is expressed as a probability assigned by the heuristic rules based on the viewer interaction data.
25. The method of claim 20, wherein the viewer interaction data includes at least some subset of:
(a) viewing time per channel, category, or network;
(b)channel changes per time;
(c) average volume per time period, channel, category, or network; and
(d) dwell time per channel, category, or network.
26. The method of claim 20, wherein the at least one heuristic process incorporates at least two types of analysis selected from the group consisting of exploratory problem-solving, self-learning, discovery, experiments, trial and error, inferences, educated guesses, market studies, human knowledge and experience.
US11/762,538 1998-12-03 2007-06-13 Subscriber Characterization System with Filters Abandoned US20070240181A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/762,538 US20070240181A1 (en) 1998-12-03 2007-06-13 Subscriber Characterization System with Filters
US12/871,526 US20100333125A1 (en) 1998-12-03 2010-08-30 Subscriber Characterization System with Filters
US14/971,686 US20160105721A1 (en) 1998-12-03 2015-12-16 Subscriber characterization system with filters

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/204,888 US7150030B1 (en) 1998-12-03 1998-12-03 Subscriber characterization system
US09/516,983 US7240355B1 (en) 1998-12-03 2000-03-01 Subscriber characterization system with filters
US11/762,538 US20070240181A1 (en) 1998-12-03 2007-06-13 Subscriber Characterization System with Filters

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/516,983 Continuation US7240355B1 (en) 1998-12-03 2000-03-01 Subscriber characterization system with filters

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/871,526 Continuation US20100333125A1 (en) 1998-12-03 2010-08-30 Subscriber Characterization System with Filters

Publications (1)

Publication Number Publication Date
US20070240181A1 true US20070240181A1 (en) 2007-10-11

Family

ID=38196940

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/516,983 Expired - Fee Related US7240355B1 (en) 1998-12-03 2000-03-01 Subscriber characterization system with filters
US11/762,538 Abandoned US20070240181A1 (en) 1998-12-03 2007-06-13 Subscriber Characterization System with Filters
US12/871,526 Abandoned US20100333125A1 (en) 1998-12-03 2010-08-30 Subscriber Characterization System with Filters
US14/971,686 Abandoned US20160105721A1 (en) 1998-12-03 2015-12-16 Subscriber characterization system with filters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/516,983 Expired - Fee Related US7240355B1 (en) 1998-12-03 2000-03-01 Subscriber characterization system with filters

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/871,526 Abandoned US20100333125A1 (en) 1998-12-03 2010-08-30 Subscriber Characterization System with Filters
US14/971,686 Abandoned US20160105721A1 (en) 1998-12-03 2015-12-16 Subscriber characterization system with filters

Country Status (1)

Country Link
US (4) US7240355B1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020038358A1 (en) * 2000-08-08 2002-03-28 Sweatt Millard E. Method and system for remote television replay control
US20020087661A1 (en) * 2000-08-08 2002-07-04 Matichuk Chris E. One click web records
US20050235307A1 (en) * 2004-04-16 2005-10-20 Sandeep Relan System and method for multimedia viewership surveying
US20060075420A1 (en) * 2004-09-30 2006-04-06 Microsoft Corporation Strategies for generating media consumption statistics
US20060164562A1 (en) * 2002-09-07 2006-07-27 Robertson George M Television and radio programme control
US20070016847A1 (en) * 2000-03-31 2007-01-18 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US20070073646A1 (en) * 2005-09-28 2007-03-29 Hitachi, Ltd. User profiler
US20070110398A1 (en) * 2004-01-08 2007-05-17 Koninklijke Philips Electronics N.V. Graphical representation of programs stored in a personal video recording device
US20080004954A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Methods and architecture for performing client-side directed marketing with caching and local analytics for enhanced privacy and minimal disruption
US20090055268A1 (en) * 2007-08-20 2009-02-26 Ads-Vantage, Ltd. System and method for auctioning targeted advertisement placement for video audiences
US20090132368A1 (en) * 2007-10-19 2009-05-21 Paul Cotter Systems and Methods for Providing Personalized Advertisement
US20100269059A1 (en) * 2003-08-11 2010-10-21 Konstantin Othmer Formatting ticker content in a handheld wireless telecommunication device
US20110289538A1 (en) * 2010-05-19 2011-11-24 Cisco Technology, Inc. Ratings and quality measurements for digital broadcast viewers
US8219926B2 (en) 2003-08-11 2012-07-10 Smith Micro Software, Inc Displaying a map on a handheld wireless telecommunication device
US8701134B2 (en) 2009-09-08 2014-04-15 Cisco Technology Inc. User presence confidence and media content viewing estimation
US9003441B1 (en) * 2005-04-13 2015-04-07 Google Inc. Probabilistic inference of demographic information from user selection of content
US20150304713A1 (en) * 2014-04-22 2015-10-22 clypd, inc. Demand Target Detection
US9215510B2 (en) 2013-12-06 2015-12-15 Rovi Guides, Inc. Systems and methods for automatically tagging a media asset based on verbal input and playback adjustments
US20190158901A1 (en) * 2016-04-15 2019-05-23 Hulu, LLC Generation and Selection Of Actions For Entities In A Video Delivery System
US10390074B2 (en) 2000-08-08 2019-08-20 The Directv Group, Inc. One click web records
CN111447492A (en) * 2019-10-25 2020-07-24 泰州市海陵区一马商务信息咨询有限公司 Targeted advertisement strategy customizing device
US11095940B1 (en) * 2020-06-22 2021-08-17 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population
US11544726B2 (en) * 2020-06-22 2023-01-03 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260823B2 (en) 2001-01-11 2007-08-21 Prime Research Alliance E., Inc. Profiling and identification of television viewers
US7949565B1 (en) * 1998-12-03 2011-05-24 Prime Research Alliance E., Inc. Privacy-protected advertising system
US8290351B2 (en) * 2001-04-03 2012-10-16 Prime Research Alliance E., Inc. Alternative advertising in prerecorded media
JP4212773B2 (en) 1998-12-03 2009-01-21 三星電子株式会社 Data processing system and method for generating subscriber profile vectors
US7599987B2 (en) * 2000-12-06 2009-10-06 Sony Corporation Information processing device for obtaining high-quality content
US7054949B2 (en) 2001-01-19 2006-05-30 World Streaming Network, Inc. System and method for streaming media
US8554940B2 (en) 2001-01-19 2013-10-08 Single Touch Interactive, Inc. System and method for routing media
US7434246B2 (en) * 2001-06-08 2008-10-07 Digeo, Inc. Systems and methods for automatic personalizing of channel favorites in a set top box
US8429688B1 (en) * 2001-09-19 2013-04-23 At&T Intellectual Property I, L.P. Broadcast programming guide
GB0129888D0 (en) * 2001-12-14 2002-02-06 Koninkl Philips Electronics Nv A method of propagating a message and corresponding communications devices for the same
US20040010798A1 (en) * 2002-07-11 2004-01-15 International Business Machines Corporation Apparatus and method for logging television viewing patterns for guardian review
US20040133480A1 (en) * 2002-09-26 2004-07-08 Domes Ronald J. Targeted promotional method & system
US20040093615A1 (en) * 2002-11-07 2004-05-13 International Business Machines Corporation PVR credits by user
US20040141003A1 (en) * 2003-01-21 2004-07-22 Dell Products, L.P. Maintaining a user interest profile reflecting changing interests of a customer
US20050071869A1 (en) * 2003-09-30 2005-03-31 Fairhurst Jon Arthur Informational material selection
US20080065633A1 (en) * 2006-09-11 2008-03-13 Simply Hired, Inc. Job Search Engine and Methods of Use
US20080275894A1 (en) * 2007-05-03 2008-11-06 Motorola, Inc. Content item apparatus and method of operation therefor
US8682982B2 (en) 2007-06-19 2014-03-25 The Invention Science Fund I, Llc Preliminary destination-dependent evaluation of message content
US8984133B2 (en) 2007-06-19 2015-03-17 The Invention Science Fund I, Llc Providing treatment-indicative feedback dependent on putative content treatment
US9374242B2 (en) 2007-11-08 2016-06-21 Invention Science Fund I, Llc Using evaluations of tentative message content
US20090063537A1 (en) * 2007-08-30 2009-03-05 Motorola, Inc. Method and apparatus for generating a user profile
US8065404B2 (en) 2007-08-31 2011-11-22 The Invention Science Fund I, Llc Layering destination-dependent content handling guidance
US8082225B2 (en) 2007-08-31 2011-12-20 The Invention Science Fund I, Llc Using destination-dependent criteria to guide data transmission decisions
US7930389B2 (en) 2007-11-20 2011-04-19 The Invention Science Fund I, Llc Adaptive filtering of annotated messages or the like
US8418198B2 (en) * 2008-04-25 2013-04-09 At&T Intellectual Property I, Lp System and method for sending advertising data based on data associated with video data
US20110185382A2 (en) * 2008-10-07 2011-07-28 Google Inc. Generating reach and frequency data for television advertisements
US8087041B2 (en) * 2008-12-10 2011-12-27 Google Inc. Estimating reach and frequency of advertisements
JP6091213B2 (en) * 2009-06-03 2017-03-08 ヴィジブル ワールド インコーポレイテッド Targeting television advertising based on automatic demographic information optimization
US20110016485A1 (en) * 2009-07-14 2011-01-20 Verizon Patent And Licensing, Inc. Double-click channel button access of user-defined content list
US20110219097A1 (en) * 2010-03-04 2011-09-08 Dolby Laboratories Licensing Corporation Techniques For Client Device Dependent Filtering Of Metadata
US9071370B2 (en) * 2010-05-20 2015-06-30 CSC Holdings, LLC System and method for set top box viewing data
US9183560B2 (en) 2010-05-28 2015-11-10 Daniel H. Abelow Reality alternate
US8990134B1 (en) 2010-09-13 2015-03-24 Google Inc. Learning to geolocate videos
US8924993B1 (en) 2010-11-11 2014-12-30 Google Inc. Video content analysis for automatic demographics recognition of users and videos
US8806545B2 (en) * 2011-05-05 2014-08-12 Motorola Mobility Llc Method and system for facilitating demand-driven distribution of content
US8938748B1 (en) 2011-05-13 2015-01-20 Google Inc. Determining content consumption metrics using display device power status information
US20130191316A1 (en) * 2011-12-07 2013-07-25 Netauthority, Inc. Using the software and hardware configurations of a networked computer to infer the user's demographic
CA2791935A1 (en) * 2012-03-30 2013-09-30 Disternet Technology, Inc. Transcoding system and method
US8862155B2 (en) 2012-08-30 2014-10-14 Time Warner Cable Enterprises Llc Apparatus and methods for enabling location-based services within a premises
US9948573B2 (en) * 2013-03-14 2018-04-17 Comcast Cable Communications, Llc Delivery of multimedia components according to user activity
US10708654B1 (en) 2013-03-15 2020-07-07 CSC Holdings, LLC Optimizing inventory based on predicted viewership
WO2014141704A1 (en) * 2013-03-15 2014-09-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Content presentation method, content presentation device, and program
JP6173935B2 (en) * 2014-01-27 2017-08-02 株式会社東芝 Data analysis apparatus, method and program
US9953330B2 (en) * 2014-03-13 2018-04-24 The Nielsen Company (Us), Llc Methods, apparatus and computer readable media to generate electronic mobile measurement census data
US20150319469A1 (en) * 2014-05-05 2015-11-05 Verizon Patent And Licensing Inc. Distribution management of licensed content
US10028025B2 (en) * 2014-09-29 2018-07-17 Time Warner Cable Enterprises Llc Apparatus and methods for enabling presence-based and use-based services
GB2533110B (en) 2014-12-09 2017-04-19 Sky Cp Ltd Media system analysis and control
KR102408874B1 (en) * 2015-09-23 2022-06-14 삼성전자주식회사 Broadcast receiving apparatus and information providing method thereof
US10586023B2 (en) 2016-04-21 2020-03-10 Time Warner Cable Enterprises Llc Methods and apparatus for secondary content management and fraud prevention
US10003847B2 (en) 2016-04-22 2018-06-19 Google Llc Watch-time clustering for improving video searches, selection and provision
WO2017218651A1 (en) 2016-06-15 2017-12-21 Wal-Mart Stores, Inc. Vector-based characterizations of products and individuals with respect to customer service agent assistance
US11546647B2 (en) * 2019-06-07 2023-01-03 Roku, Inc. Content-modification system with probability-based selection feature
KR20210135851A (en) * 2020-05-06 2021-11-16 엘지전자 주식회사 Image display apparatus and method thereof
US11765416B2 (en) * 2021-09-15 2023-09-19 Roku, Inc. Demographic classification of media accounts based on media content data

Citations (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258386A (en) * 1978-07-31 1981-03-24 Cheung Shiu H Television audience measuring system
US4573072A (en) * 1984-03-21 1986-02-25 Actv Inc. Method for expanding interactive CATV displayable choices for a given channel capacity
US4602279A (en) * 1984-03-21 1986-07-22 Actv, Inc. Method for providing targeted profile interactive CATV displays
US4646145A (en) * 1980-04-07 1987-02-24 R. D. Percy & Company Television viewer reaction determining systems
US4745549A (en) * 1985-06-11 1988-05-17 Hashimoto Corporation Method of and apparatus for optimal scheduling of television programming to maximize customer satisfaction
US4754410A (en) * 1986-02-06 1988-06-28 Westinghouse Electric Corp. Automated rule based process control method with feedback and apparatus therefor
US4833308A (en) * 1986-07-24 1989-05-23 Advance Promotion Technologies, Inc. Checkout counter product promotion system and method
US4930011A (en) * 1988-08-02 1990-05-29 A. C. Nielsen Company Method and apparatus for identifying individual members of a marketing and viewing audience
US5099319A (en) * 1989-10-23 1992-03-24 Esch Arthur G Video information delivery method and apparatus
US5128752A (en) * 1986-03-10 1992-07-07 Kohorn H Von System and method for generating and redeeming tokens
US5201010A (en) * 1989-05-01 1993-04-06 Credit Verification Corporation Method and system for building a database and performing marketing based upon prior shopping history
US5223924A (en) * 1992-05-27 1993-06-29 North American Philips Corporation System and method for automatically correlating user preferences with a T.V. program information database
US5227874A (en) * 1986-03-10 1993-07-13 Kohorn H Von Method for measuring the effectiveness of stimuli on decisions of shoppers
US5231494A (en) * 1991-10-08 1993-07-27 General Instrument Corporation Selection of compressed television signals from single channel allocation based on viewer characteristics
US5285278A (en) * 1992-05-21 1994-02-08 Holman Michael J Electronic redeemable coupon system via television
US5287181A (en) * 1992-08-20 1994-02-15 Holman Michael J Electronic redeemable coupon system and television
US5305196A (en) * 1989-05-01 1994-04-19 Credit Verification Corporation Check transaction processing, database building and marketing method and system utilizing automatic check reading
US5315093A (en) * 1992-02-05 1994-05-24 A. C. Nielsen Company Market research method and system for collecting retail store market research data
US5319455A (en) * 1990-09-28 1994-06-07 Ictv Inc. System for distributing customized commercials to television viewers
US5410344A (en) * 1993-09-22 1995-04-25 Arrowsmith Technologies, Inc. Apparatus and method of selecting video programs based on viewers' preferences
US5515098A (en) * 1994-09-08 1996-05-07 Carles; John B. System and method for selectively distributing commercial messages over a communications network
US5596373A (en) * 1995-01-04 1997-01-21 Sony Corporation Method and apparatus for providing program oriented information in a multiple station broadcast system
US5600364A (en) * 1992-12-09 1997-02-04 Discovery Communications, Inc. Network controller for cable television delivery systems
US5604542A (en) * 1995-02-08 1997-02-18 Intel Corporation Using the vertical blanking interval for transporting electronic coupons
US5608445A (en) * 1994-01-17 1997-03-04 Srg Schweizerische Radio- Und Fernsehgesellschaft Method and device for data capture in television viewers research
US5619709A (en) * 1993-09-20 1997-04-08 Hnc, Inc. System and method of context vector generation and retrieval
US5621812A (en) * 1989-05-01 1997-04-15 Credit Verification Corporation Method and system for building a database for use with selective incentive marketing in response to customer shopping histories
US5632007A (en) * 1994-09-23 1997-05-20 Actv, Inc. Interactive system and method for offering expert based interactive programs
US5636346A (en) * 1994-05-09 1997-06-03 The Electronic Address, Inc. Method and system for selectively targeting advertisements and programming
US5635989A (en) * 1996-02-13 1997-06-03 Hughes Electronics Method and apparatus for sorting and searching a television program guide
US5642485A (en) * 1989-05-01 1997-06-24 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5649114A (en) * 1989-05-01 1997-07-15 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5710884A (en) * 1995-03-29 1998-01-20 Intel Corporation System for automatically updating personal profile server with updates to additional user information gathered from monitoring user's electronic consuming habits generated on computer during use
US5724521A (en) * 1994-11-03 1998-03-03 Intel Corporation Method and apparatus for providing electronic advertisements to end users in a consumer best-fit pricing manner
US5740549A (en) * 1995-06-12 1998-04-14 Pointcast, Inc. Information and advertising distribution system and method
US5749081A (en) * 1995-04-06 1998-05-05 Firefly Network, Inc. System and method for recommending items to a user
US5754939A (en) * 1994-11-29 1998-05-19 Herz; Frederick S. M. System for generation of user profiles for a system for customized electronic identification of desirable objects
US5758259A (en) * 1995-08-31 1998-05-26 Microsoft Corporation Automated selective programming guide
US5761601A (en) * 1993-08-09 1998-06-02 Nemirofsky; Frank R. Video distribution of advertisements to businesses
US5761662A (en) * 1994-12-20 1998-06-02 Sun Microsystems, Inc. Personalized information retrieval using user-defined profile
US5765030A (en) * 1996-07-19 1998-06-09 Symantec Corp Processor emulator module having a variable pre-fetch queue size for program execution
US5768592A (en) * 1994-09-27 1998-06-16 Intel Corporation Method and apparatus for managing profile data
US5771307A (en) * 1992-12-15 1998-06-23 Nielsen Media Research, Inc. Audience measurement system and method
US5774170A (en) * 1994-12-13 1998-06-30 Hite; Kenneth C. System and method for delivering targeted advertisements to consumers
US5774868A (en) * 1994-12-23 1998-06-30 International Business And Machines Corporation Automatic sales promotion selection system and method
US5774664A (en) * 1996-03-08 1998-06-30 Actv, Inc. Enhanced video programming system and method for incorporating and displaying retrieved integrated internet information segments
US5786845A (en) * 1994-11-11 1998-07-28 News Datacom Ltd. CATV message display during the changing of channels
US5857190A (en) * 1996-06-27 1999-01-05 Microsoft Corporation Event logging system and method for logging events in a network system
US5872588A (en) * 1995-12-06 1999-02-16 International Business Machines Corporation Method and apparatus for monitoring audio-visual materials presented to a subscriber
US5877812A (en) * 1995-11-21 1999-03-02 Imedia Corporation Method and apparatus for increasing channel utilization for digital video transmission
US5883818A (en) * 1996-08-29 1999-03-16 International Business Machines Corporation Method for generating an improved model for evaluating the operation of an integrated circuit design
US5912696A (en) * 1996-12-23 1999-06-15 Time Warner Cable Multidimensional rating system for media content
US5915243A (en) * 1996-08-29 1999-06-22 Smolen; Daniel T. Method and apparatus for delivering consumer promotions
US5918014A (en) * 1995-12-27 1999-06-29 Athenium, L.L.C. Automated collaborative filtering in world wide web advertising
US5926205A (en) * 1994-10-19 1999-07-20 Imedia Corporation Method and apparatus for encoding and formatting data representing a video program to provide multiple overlapping presentations of the video program
US5930764A (en) * 1995-10-17 1999-07-27 Citibank, N.A. Sales and marketing support system using a customer information database
US6012051A (en) * 1997-02-06 2000-01-04 America Online, Inc. Consumer profiling system with analytic decision processor
US6014698A (en) * 1997-05-19 2000-01-11 Matchlogic, Inc. System using first banner request that can not be blocked from reaching a server for accurately counting displays of banners on network terminals
US6014634A (en) * 1995-12-26 2000-01-11 Supermarkets Online, Inc. System and method for providing shopping aids and incentives to customers through a computer network
US6018710A (en) * 1996-12-13 2000-01-25 Siemens Corporate Research, Inc. Web-based interactive radio environment: WIRE
US6026369A (en) * 1997-05-09 2000-02-15 International Business Machines Corporation Method for distributing advertising in a distributed web modification system
US6026368A (en) * 1995-07-17 2000-02-15 24/7 Media, Inc. On-line interactive system and method for providing content and advertising information to a targeted set of viewers
US6026370A (en) * 1997-08-28 2000-02-15 Catalina Marketing International, Inc. Method and apparatus for generating purchase incentive mailing based on prior purchase history
US6029195A (en) * 1994-11-29 2000-02-22 Herz; Frederick S. M. System for customized electronic identification of desirable objects
US6032131A (en) * 1997-05-20 2000-02-29 Electronic Data Systems Corporation System and method for accurately modeling spending
US6035280A (en) * 1995-06-16 2000-03-07 Christensen; Scott N. Electronic discount couponing method and apparatus for generating an electronic list of coupons
US6038591A (en) * 1996-12-09 2000-03-14 The Musicbooth Llc Programmed music on demand from the internet
US6055510A (en) * 1997-10-24 2000-04-25 At&T Corp. Method for performing targeted marketing over a large computer network
US6055573A (en) * 1998-12-30 2000-04-25 Supermarkets Online, Inc. Communicating with a computer based on an updated purchase behavior classification of a particular consumer
US6057872A (en) * 1997-07-09 2000-05-02 General Instrument Corporation Digital coupons for pay televisions
US6084628A (en) * 1998-12-18 2000-07-04 Telefonaktiebolaget Lm Ericsson (Publ) System and method of providing targeted advertising during video telephone calls
US6085031A (en) * 1994-12-13 2000-07-04 Johnson; William J. Method and system for segmenting an audio object according to a specified profile into a folder structure
US6177931B1 (en) * 1996-12-19 2001-01-23 Index Systems, Inc. Systems and methods for displaying and recording control interface with television programs, video, advertising information and program scheduling information
US6185541B1 (en) * 1995-12-26 2001-02-06 Supermarkets Online, Inc. System and method for providing shopping aids and incentives to customers through a computer network
US6205247B1 (en) * 1996-06-08 2001-03-20 Siemens Aktiengesellschaft Method and arrangement for pattern recognition on the basis of statistics
US6216129B1 (en) * 1998-12-03 2001-04-10 Expanse Networks, Inc. Advertisement selection system supporting discretionary target market characteristics
US6237022B1 (en) * 1999-03-15 2001-05-22 Webtv Networks, Inc. System and method for distributing preferenced data over a communications network
US6236978B1 (en) * 1997-11-14 2001-05-22 New York University System and method for dynamic profiling of users in one-to-one applications
US6400996B1 (en) * 1999-02-01 2002-06-04 Steven M. Hoffberg Adaptive pattern recognition based control system and method
US20020082923A1 (en) * 1997-06-16 2002-06-27 Merriman Dwight A. Network for distribution of re-targeted advertising
US20030004810A1 (en) * 1999-03-12 2003-01-02 Eldering Charles A. Advertisement selection system supporting discretionary target market characteristics
US6516322B1 (en) * 2000-04-28 2003-02-04 Microsoft Corporation XML-based representation of mobile process calculi
US20030088872A1 (en) * 1997-07-03 2003-05-08 Nds Limited Advanced television system
US6684194B1 (en) * 1998-12-03 2004-01-27 Expanse Network, Inc. Subscriber identification system
US6698020B1 (en) * 1998-06-15 2004-02-24 Webtv Networks, Inc. Techniques for intelligent video ad insertion
US7003792B1 (en) * 1998-11-30 2006-02-21 Index Systems, Inc. Smart agent based on habit, statistical inference and psycho-demographic profiling
US7062510B1 (en) * 1999-12-02 2006-06-13 Prime Research Alliance E., Inc. Consumer profiling and advertisement selection system

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US575938A (en) * 1897-01-26 Bicycle-brake
US4566030A (en) 1983-06-09 1986-01-21 Ctba Associates Television viewer data collection system
US5155591A (en) 1989-10-23 1992-10-13 General Instrument Corporation Method and apparatus for providing demographically targeted television commercials
US5446919A (en) 1990-02-20 1995-08-29 Wilkins; Jeff K. Communication system and method with demographically or psychographically defined audiences
US5251324A (en) 1990-03-20 1993-10-05 Scientific-Atlanta, Inc. Method and apparatus for generating and collecting viewing statistics for remote terminals in a cable television system
CA2036205C (en) 1990-06-01 1996-11-19 Russell J. Welsh Program monitoring unit
US5233423A (en) 1990-11-26 1993-08-03 North American Philips Corporation Embedded commericals within a television receiver using an integrated electronic billboard
US5382970A (en) * 1991-07-19 1995-01-17 Kiefl; John B. Television viewer monitoring system including portable data meter for each viewer
US5565909A (en) 1992-08-31 1996-10-15 Television Computer, Inc. Method of identifying set-top receivers
US6463585B1 (en) * 1992-12-09 2002-10-08 Discovery Communications, Inc. Targeted advertisement using television delivery systems
KR100289174B1 (en) * 1992-12-09 2001-05-02 마크 홀린저 Set Tower Terminal For Cable TV Transmission System
NZ250926A (en) 1993-02-23 1996-11-26 Moore Business Forms Inc Relational database: product, consumer and transactional data for retail shopping targeting
US5579055A (en) 1993-06-07 1996-11-26 Scientific-Atlanta, Inc. Electronic program guide and text channel data controller
JP3500741B2 (en) 1994-03-01 2004-02-23 ソニー株式会社 Channel selection method and channel selection device for television broadcasting
US5529549A (en) 1994-09-21 1996-06-25 Moyer; David F. Hybrid internal combustion engine
US5703655A (en) 1995-03-24 1997-12-30 U S West Technologies, Inc. Video programming retrieval using extracted closed caption data which has been partitioned and stored to facilitate a search and retrieval process
US5805974A (en) 1995-08-08 1998-09-08 Hite; Kenneth C. Method and apparatus for synchronizing commercial advertisements across multiple communication channels
US6002393A (en) 1995-08-22 1999-12-14 Hite; Kenneth C. System and method for delivering targeted advertisements to consumers using direct commands
US6732369B1 (en) 1995-10-02 2004-05-04 Starsight Telecast, Inc. Systems and methods for contextually linking television program information
US5794210A (en) 1995-12-11 1998-08-11 Cybergold, Inc. Attention brokerage
US5790935A (en) 1996-01-30 1998-08-04 Hughes Aircraft Company Virtual on-demand digital information delivery system and method
US5704017A (en) 1996-02-16 1997-12-30 Microsoft Corporation Collaborative filtering utilizing a belief network
US5956637A (en) 1996-02-20 1999-09-21 Telefonaktiebolaget L M Ericsson (Publ) Subscriber database management in a mobile telecommunications system
US5848396A (en) 1996-04-26 1998-12-08 Freedom Of Information, Inc. Method and apparatus for determining behavioral profile of a computer user
DK0932398T3 (en) 1996-06-28 2006-09-25 Ortho Mcneil Pharm Inc Use of topiramate or derivatives thereof for the manufacture of a medicament for the treatment of manic depressive bipolar disorders
US5933811A (en) 1996-08-20 1999-08-03 Paul D. Angles System and method for delivering customized advertisements within interactive communication systems
US6108637A (en) 1996-09-03 2000-08-22 Nielsen Media Research, Inc. Content display monitor
US5948061A (en) 1996-10-29 1999-09-07 Double Click, Inc. Method of delivery, targeting, and measuring advertising over networks
US5801747A (en) * 1996-11-15 1998-09-01 Hyundai Electronics America Method and apparatus for creating a television viewer profile
BR9714949A (en) * 1996-12-20 2005-04-12 Princeton Video Image Inc Superior adjustment device for targeted electronic insertion of video indications
US6983478B1 (en) * 2000-02-01 2006-01-03 Bellsouth Intellectual Property Corporation Method and system for tracking network use
US5819156A (en) 1997-01-14 1998-10-06 Compaq Computer Corp. PC/TV usage tracking and reporting device
US5818935A (en) 1997-03-10 1998-10-06 Maa; Chia-Yiu Internet enhanced video system
US5796952A (en) 1997-03-21 1998-08-18 Dot Com Development, Inc. Method and apparatus for tracking client interaction with a network resource and creating client profiles and resource database
US5974398A (en) 1997-04-11 1999-10-26 At&T Corp. Method and apparatus enabling valuation of user access of advertising carried by interactive information and entertainment services
IL121230A (en) * 1997-07-03 2004-05-12 Nds Ltd Intelligent electronic program guide
US5974399A (en) 1997-08-29 1999-10-26 Catalina Marketing International, Inc. Method and apparatus for generating purchase incentives based on price differentials
US6119098A (en) 1997-10-14 2000-09-12 Patrice D. Guyot System and method for targeting and distributing advertisements over a distributed network
US6009410A (en) 1997-10-16 1999-12-28 At&T Corporation Method and system for presenting customized advertising to a user on the world wide web
US6005597A (en) 1997-10-27 1999-12-21 Disney Enterprises, Inc. Method and apparatus for program selection
US6134532A (en) 1997-11-14 2000-10-17 Aptex Software, Inc. System and method for optimal adaptive matching of users to most relevant entity and information in real-time
US6286140B1 (en) * 1997-11-20 2001-09-04 Thomas P. Ivanyi System and method for measuring and storing information pertaining to television viewer or user behavior
US6286005B1 (en) * 1998-03-11 2001-09-04 Cannon Holdings, L.L.C. Method and apparatus for analyzing data and advertising optimization
US6160570A (en) 1998-04-20 2000-12-12 U.S. Philips Corporation Digital television system which selects images for display in a video sequence
US6133912A (en) 1998-05-04 2000-10-17 Montero; Frank J. Method of delivering information over a communication network
US20020095676A1 (en) * 1998-05-15 2002-07-18 Robert A. Knee Interactive television program guide system for determining user values for demographic categories
US5974299A (en) 1998-05-27 1999-10-26 Massetti; Enrico Emilio Audience rating system for digital television and radio
US6141010A (en) 1998-07-17 2000-10-31 B. E. Technology, Llc Computer interface method and apparatus with targeted advertising
US6457010B1 (en) * 1998-12-03 2002-09-24 Expanse Networks, Inc. Client-server based subscriber characterization system
US7051351B2 (en) * 1999-03-08 2006-05-23 Microsoft Corporation System and method of inserting advertisements into an information retrieval system display

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258386A (en) * 1978-07-31 1981-03-24 Cheung Shiu H Television audience measuring system
US4646145A (en) * 1980-04-07 1987-02-24 R. D. Percy & Company Television viewer reaction determining systems
US4573072A (en) * 1984-03-21 1986-02-25 Actv Inc. Method for expanding interactive CATV displayable choices for a given channel capacity
US4602279A (en) * 1984-03-21 1986-07-22 Actv, Inc. Method for providing targeted profile interactive CATV displays
US4745549A (en) * 1985-06-11 1988-05-17 Hashimoto Corporation Method of and apparatus for optimal scheduling of television programming to maximize customer satisfaction
US4754410A (en) * 1986-02-06 1988-06-28 Westinghouse Electric Corp. Automated rule based process control method with feedback and apparatus therefor
US5227874A (en) * 1986-03-10 1993-07-13 Kohorn H Von Method for measuring the effectiveness of stimuli on decisions of shoppers
US5128752A (en) * 1986-03-10 1992-07-07 Kohorn H Von System and method for generating and redeeming tokens
US4833308A (en) * 1986-07-24 1989-05-23 Advance Promotion Technologies, Inc. Checkout counter product promotion system and method
US4930011A (en) * 1988-08-02 1990-05-29 A. C. Nielsen Company Method and apparatus for identifying individual members of a marketing and viewing audience
US5592560A (en) * 1989-05-01 1997-01-07 Credit Verification Corporation Method and system for building a database and performing marketing based upon prior shopping history
US5642485A (en) * 1989-05-01 1997-06-24 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5201010A (en) * 1989-05-01 1993-04-06 Credit Verification Corporation Method and system for building a database and performing marketing based upon prior shopping history
US5649114A (en) * 1989-05-01 1997-07-15 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5638457A (en) * 1989-05-01 1997-06-10 Credit Verification Corporation Method and system for building a database for use with selective incentive marketing in response to customer shopping histories
US5621812A (en) * 1989-05-01 1997-04-15 Credit Verification Corporation Method and system for building a database for use with selective incentive marketing in response to customer shopping histories
US5305196A (en) * 1989-05-01 1994-04-19 Credit Verification Corporation Check transaction processing, database building and marketing method and system utilizing automatic check reading
US5644723A (en) * 1989-05-01 1997-07-01 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5430644A (en) * 1989-05-01 1995-07-04 Credit Verification Corporation Check transaction processing, database building and marketing method and system utilizing automatic check reading
US5327508A (en) * 1989-05-01 1994-07-05 Credit Verification Corporation Method and system for building a database and performing marketing based upon prior shopping history
US5388165A (en) * 1989-05-01 1995-02-07 Credit Verification Corporation Method and system for building a database and performing marketing based upon prior shopping history
US5099319A (en) * 1989-10-23 1992-03-24 Esch Arthur G Video information delivery method and apparatus
US5319455A (en) * 1990-09-28 1994-06-07 Ictv Inc. System for distributing customized commercials to television viewers
US5231494A (en) * 1991-10-08 1993-07-27 General Instrument Corporation Selection of compressed television signals from single channel allocation based on viewer characteristics
US5315093A (en) * 1992-02-05 1994-05-24 A. C. Nielsen Company Market research method and system for collecting retail store market research data
US5285278A (en) * 1992-05-21 1994-02-08 Holman Michael J Electronic redeemable coupon system via television
US5223924A (en) * 1992-05-27 1993-06-29 North American Philips Corporation System and method for automatically correlating user preferences with a T.V. program information database
US5287181A (en) * 1992-08-20 1994-02-15 Holman Michael J Electronic redeemable coupon system and television
US5600364A (en) * 1992-12-09 1997-02-04 Discovery Communications, Inc. Network controller for cable television delivery systems
US6738978B1 (en) * 1992-12-09 2004-05-18 Discovery Communications, Inc. Method and apparatus for targeted advertising
US5771307A (en) * 1992-12-15 1998-06-23 Nielsen Media Research, Inc. Audience measurement system and method
US5761601A (en) * 1993-08-09 1998-06-02 Nemirofsky; Frank R. Video distribution of advertisements to businesses
US5619709A (en) * 1993-09-20 1997-04-08 Hnc, Inc. System and method of context vector generation and retrieval
US5410344A (en) * 1993-09-22 1995-04-25 Arrowsmith Technologies, Inc. Apparatus and method of selecting video programs based on viewers' preferences
US5608445A (en) * 1994-01-17 1997-03-04 Srg Schweizerische Radio- Und Fernsehgesellschaft Method and device for data capture in television viewers research
US5636346A (en) * 1994-05-09 1997-06-03 The Electronic Address, Inc. Method and system for selectively targeting advertisements and programming
US5515098A (en) * 1994-09-08 1996-05-07 Carles; John B. System and method for selectively distributing commercial messages over a communications network
US5632007A (en) * 1994-09-23 1997-05-20 Actv, Inc. Interactive system and method for offering expert based interactive programs
US5768592A (en) * 1994-09-27 1998-06-16 Intel Corporation Method and apparatus for managing profile data
US5926205A (en) * 1994-10-19 1999-07-20 Imedia Corporation Method and apparatus for encoding and formatting data representing a video program to provide multiple overlapping presentations of the video program
US5724521A (en) * 1994-11-03 1998-03-03 Intel Corporation Method and apparatus for providing electronic advertisements to end users in a consumer best-fit pricing manner
US5786845A (en) * 1994-11-11 1998-07-28 News Datacom Ltd. CATV message display during the changing of channels
US5758257A (en) * 1994-11-29 1998-05-26 Herz; Frederick System and method for scheduling broadcast of and access to video programs and other data using customer profiles
US5754938A (en) * 1994-11-29 1998-05-19 Herz; Frederick S. M. Pseudonymous server for system for customized electronic identification of desirable objects
US6029195A (en) * 1994-11-29 2000-02-22 Herz; Frederick S. M. System for customized electronic identification of desirable objects
US5754939A (en) * 1994-11-29 1998-05-19 Herz; Frederick S. M. System for generation of user profiles for a system for customized electronic identification of desirable objects
US6020883A (en) * 1994-11-29 2000-02-01 Fred Herz System and method for scheduling broadcast of and access to video programs and other data using customer profiles
US5774170A (en) * 1994-12-13 1998-06-30 Hite; Kenneth C. System and method for delivering targeted advertisements to consumers
US6085031A (en) * 1994-12-13 2000-07-04 Johnson; William J. Method and system for segmenting an audio object according to a specified profile into a folder structure
US5761662A (en) * 1994-12-20 1998-06-02 Sun Microsystems, Inc. Personalized information retrieval using user-defined profile
US5774868A (en) * 1994-12-23 1998-06-30 International Business And Machines Corporation Automatic sales promotion selection system and method
US5596373A (en) * 1995-01-04 1997-01-21 Sony Corporation Method and apparatus for providing program oriented information in a multiple station broadcast system
US5604542A (en) * 1995-02-08 1997-02-18 Intel Corporation Using the vertical blanking interval for transporting electronic coupons
US5710884A (en) * 1995-03-29 1998-01-20 Intel Corporation System for automatically updating personal profile server with updates to additional user information gathered from monitoring user's electronic consuming habits generated on computer during use
US5749081A (en) * 1995-04-06 1998-05-05 Firefly Network, Inc. System and method for recommending items to a user
US5740549A (en) * 1995-06-12 1998-04-14 Pointcast, Inc. Information and advertising distribution system and method
US6035280A (en) * 1995-06-16 2000-03-07 Christensen; Scott N. Electronic discount couponing method and apparatus for generating an electronic list of coupons
US6026368A (en) * 1995-07-17 2000-02-15 24/7 Media, Inc. On-line interactive system and method for providing content and advertising information to a targeted set of viewers
US5758259A (en) * 1995-08-31 1998-05-26 Microsoft Corporation Automated selective programming guide
US5930764A (en) * 1995-10-17 1999-07-27 Citibank, N.A. Sales and marketing support system using a customer information database
US5877812A (en) * 1995-11-21 1999-03-02 Imedia Corporation Method and apparatus for increasing channel utilization for digital video transmission
US5872588A (en) * 1995-12-06 1999-02-16 International Business Machines Corporation Method and apparatus for monitoring audio-visual materials presented to a subscriber
US6185541B1 (en) * 1995-12-26 2001-02-06 Supermarkets Online, Inc. System and method for providing shopping aids and incentives to customers through a computer network
US6014634A (en) * 1995-12-26 2000-01-11 Supermarkets Online, Inc. System and method for providing shopping aids and incentives to customers through a computer network
US5918014A (en) * 1995-12-27 1999-06-29 Athenium, L.L.C. Automated collaborative filtering in world wide web advertising
US5635989A (en) * 1996-02-13 1997-06-03 Hughes Electronics Method and apparatus for sorting and searching a television program guide
US5774664A (en) * 1996-03-08 1998-06-30 Actv, Inc. Enhanced video programming system and method for incorporating and displaying retrieved integrated internet information segments
US6205247B1 (en) * 1996-06-08 2001-03-20 Siemens Aktiengesellschaft Method and arrangement for pattern recognition on the basis of statistics
US5857190A (en) * 1996-06-27 1999-01-05 Microsoft Corporation Event logging system and method for logging events in a network system
US5765030A (en) * 1996-07-19 1998-06-09 Symantec Corp Processor emulator module having a variable pre-fetch queue size for program execution
US5915243A (en) * 1996-08-29 1999-06-22 Smolen; Daniel T. Method and apparatus for delivering consumer promotions
US5883818A (en) * 1996-08-29 1999-03-16 International Business Machines Corporation Method for generating an improved model for evaluating the operation of an integrated circuit design
US6038591A (en) * 1996-12-09 2000-03-14 The Musicbooth Llc Programmed music on demand from the internet
US6018710A (en) * 1996-12-13 2000-01-25 Siemens Corporate Research, Inc. Web-based interactive radio environment: WIRE
US6177931B1 (en) * 1996-12-19 2001-01-23 Index Systems, Inc. Systems and methods for displaying and recording control interface with television programs, video, advertising information and program scheduling information
US5912696A (en) * 1996-12-23 1999-06-15 Time Warner Cable Multidimensional rating system for media content
US6012051A (en) * 1997-02-06 2000-01-04 America Online, Inc. Consumer profiling system with analytic decision processor
US6026369A (en) * 1997-05-09 2000-02-15 International Business Machines Corporation Method for distributing advertising in a distributed web modification system
US6014698A (en) * 1997-05-19 2000-01-11 Matchlogic, Inc. System using first banner request that can not be blocked from reaching a server for accurately counting displays of banners on network terminals
US6032131A (en) * 1997-05-20 2000-02-29 Electronic Data Systems Corporation System and method for accurately modeling spending
US20020082923A1 (en) * 1997-06-16 2002-06-27 Merriman Dwight A. Network for distribution of re-targeted advertising
US20030088872A1 (en) * 1997-07-03 2003-05-08 Nds Limited Advanced television system
US6057872A (en) * 1997-07-09 2000-05-02 General Instrument Corporation Digital coupons for pay televisions
US6026370A (en) * 1997-08-28 2000-02-15 Catalina Marketing International, Inc. Method and apparatus for generating purchase incentive mailing based on prior purchase history
US6055510A (en) * 1997-10-24 2000-04-25 At&T Corp. Method for performing targeted marketing over a large computer network
US6236978B1 (en) * 1997-11-14 2001-05-22 New York University System and method for dynamic profiling of users in one-to-one applications
US6698020B1 (en) * 1998-06-15 2004-02-24 Webtv Networks, Inc. Techniques for intelligent video ad insertion
US7003792B1 (en) * 1998-11-30 2006-02-21 Index Systems, Inc. Smart agent based on habit, statistical inference and psycho-demographic profiling
US6216129B1 (en) * 1998-12-03 2001-04-10 Expanse Networks, Inc. Advertisement selection system supporting discretionary target market characteristics
US6714917B1 (en) * 1998-12-03 2004-03-30 Expanse Networks, Inc. Subscriber identification based on electronic program guide data
US6684194B1 (en) * 1998-12-03 2004-01-27 Expanse Network, Inc. Subscriber identification system
US6084628A (en) * 1998-12-18 2000-07-04 Telefonaktiebolaget Lm Ericsson (Publ) System and method of providing targeted advertising during video telephone calls
US6055573A (en) * 1998-12-30 2000-04-25 Supermarkets Online, Inc. Communicating with a computer based on an updated purchase behavior classification of a particular consumer
US6400996B1 (en) * 1999-02-01 2002-06-04 Steven M. Hoffberg Adaptive pattern recognition based control system and method
US6560578B2 (en) * 1999-03-12 2003-05-06 Expanse Networks, Inc. Advertisement selection system supporting discretionary target market characteristics
US20030004810A1 (en) * 1999-03-12 2003-01-02 Eldering Charles A. Advertisement selection system supporting discretionary target market characteristics
US6237022B1 (en) * 1999-03-15 2001-05-22 Webtv Networks, Inc. System and method for distributing preferenced data over a communications network
US7062510B1 (en) * 1999-12-02 2006-06-13 Prime Research Alliance E., Inc. Consumer profiling and advertisement selection system
US6516322B1 (en) * 2000-04-28 2003-02-04 Microsoft Corporation XML-based representation of mobile process calculi

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660846B2 (en) 2000-03-31 2014-02-25 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US10521190B2 (en) 2000-03-31 2019-12-31 Rovi Guides, Inc. User speech interfaces for interactive media guidance applications
US20080162145A1 (en) * 2000-03-31 2008-07-03 Reichardt M Scott User speech interfaces for interactive media guidance applications
US9349369B2 (en) 2000-03-31 2016-05-24 Rovi Guides, Inc. User speech interfaces for interactive media guidance applications
US20080281601A1 (en) * 2000-03-31 2008-11-13 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US7783491B2 (en) 2000-03-31 2010-08-24 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US20070016847A1 (en) * 2000-03-31 2007-01-18 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US8121846B2 (en) * 2000-03-31 2012-02-21 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US8433571B2 (en) 2000-03-31 2013-04-30 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US7783490B2 (en) 2000-03-31 2010-08-24 United Video Properties, Inc. User speech interfaces for interactive media guidance applications
US10713009B2 (en) 2000-03-31 2020-07-14 Rovi Guides, Inc. User speech interfaces for interactive media guidance applications
US20020083153A1 (en) * 2000-08-08 2002-06-27 Sweatt Millard E. Method and system for remote television replay control
US20020087661A1 (en) * 2000-08-08 2002-07-04 Matichuk Chris E. One click web records
US9171851B2 (en) 2000-08-08 2015-10-27 The Directv Group, Inc. One click web records
US8949374B2 (en) 2000-08-08 2015-02-03 The Directv Group, Inc. Method and system for remote television replay control
US9654238B2 (en) 2000-08-08 2017-05-16 The Directv Group, Inc. Method and system for remote television replay control
US10320503B2 (en) 2000-08-08 2019-06-11 The Directv Group, Inc. Method and system for remote television replay control
US20020038358A1 (en) * 2000-08-08 2002-03-28 Sweatt Millard E. Method and system for remote television replay control
US10390074B2 (en) 2000-08-08 2019-08-20 The Directv Group, Inc. One click web records
US7917602B2 (en) * 2000-08-08 2011-03-29 The Directv Group, Inc. Method and system for remote television replay control
US20060164562A1 (en) * 2002-09-07 2006-07-27 Robertson George M Television and radio programme control
US8219925B2 (en) 2003-08-11 2012-07-10 Smith Micro Software, Inc Formatting ticker content in a handheld wireless telecommunication device
US8539371B2 (en) 2003-08-11 2013-09-17 Smith Micro Software, Inc Formatting ticker content in a handheld wireless telecommunication device
US20100269059A1 (en) * 2003-08-11 2010-10-21 Konstantin Othmer Formatting ticker content in a handheld wireless telecommunication device
US8458611B2 (en) 2003-08-11 2013-06-04 Smith Micro Software, Inc. Displaying a map on a handheld wireless telecommunication device
US8219926B2 (en) 2003-08-11 2012-07-10 Smith Micro Software, Inc Displaying a map on a handheld wireless telecommunication device
US8214738B2 (en) 2003-08-11 2012-07-03 Smith Micro Software, Inc Displaying location-based content in a handheld device
US20070110398A1 (en) * 2004-01-08 2007-05-17 Koninklijke Philips Electronics N.V. Graphical representation of programs stored in a personal video recording device
US20050235307A1 (en) * 2004-04-16 2005-10-20 Sandeep Relan System and method for multimedia viewership surveying
US8863205B2 (en) * 2004-04-16 2014-10-14 Broadcom Corporation System and method for multimedia viewership surveying
US20060075420A1 (en) * 2004-09-30 2006-04-06 Microsoft Corporation Strategies for generating media consumption statistics
US7644423B2 (en) * 2004-09-30 2010-01-05 Microsoft Corporation System and method for generating media consumption statistics
US9003441B1 (en) * 2005-04-13 2015-04-07 Google Inc. Probabilistic inference of demographic information from user selection of content
US20070073646A1 (en) * 2005-09-28 2007-03-29 Hitachi, Ltd. User profiler
US20080004954A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Methods and architecture for performing client-side directed marketing with caching and local analytics for enhanced privacy and minimal disruption
US20090055862A1 (en) * 2007-08-20 2009-02-26 Ads-Vantage, Ltd. System and method for providing real time targeted rating to enable content placement for video audiences
US20090055858A1 (en) * 2007-08-20 2009-02-26 Ads-Vantage System and method for providing supervised learning to associate profiles in video audiences
US20090055859A1 (en) * 2007-08-20 2009-02-26 Ads-Vantage System and method for providing unsupervised learning to associate profiles in video audiences
US8930989B2 (en) * 2007-08-20 2015-01-06 AdsVantage System and method for providing supervised learning to associate profiles in video audiences
US20090055268A1 (en) * 2007-08-20 2009-02-26 Ads-Vantage, Ltd. System and method for auctioning targeted advertisement placement for video audiences
US20090055860A1 (en) * 2007-08-20 2009-02-26 Ads-Vantage, Ltd. System and method for providing targeted rating of profiles in video audiences
US20090055861A1 (en) * 2007-08-20 2009-02-26 Ads-Vantage, Ltd. System and method for associating content to at least one viewer profile in video audiences
US20090132368A1 (en) * 2007-10-19 2009-05-21 Paul Cotter Systems and Methods for Providing Personalized Advertisement
US8701134B2 (en) 2009-09-08 2014-04-15 Cisco Technology Inc. User presence confidence and media content viewing estimation
US8819714B2 (en) * 2010-05-19 2014-08-26 Cisco Technology, Inc. Ratings and quality measurements for digital broadcast viewers
US20110289538A1 (en) * 2010-05-19 2011-11-24 Cisco Technology, Inc. Ratings and quality measurements for digital broadcast viewers
US9215510B2 (en) 2013-12-06 2015-12-15 Rovi Guides, Inc. Systems and methods for automatically tagging a media asset based on verbal input and playback adjustments
US9973794B2 (en) * 2014-04-22 2018-05-15 clypd, inc. Demand target detection
US20150304713A1 (en) * 2014-04-22 2015-10-22 clypd, inc. Demand Target Detection
US20190158901A1 (en) * 2016-04-15 2019-05-23 Hulu, LLC Generation and Selection Of Actions For Entities In A Video Delivery System
US10652600B2 (en) 2016-04-15 2020-05-12 Hulu, LLC Generation and selection of actions for entities in a video delivery system
CN111447492A (en) * 2019-10-25 2020-07-24 泰州市海陵区一马商务信息咨询有限公司 Targeted advertisement strategy customizing device
US11095940B1 (en) * 2020-06-22 2021-08-17 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population
US20210400343A1 (en) * 2020-06-22 2021-12-23 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population
US11544726B2 (en) * 2020-06-22 2023-01-03 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population
US11659242B2 (en) * 2020-06-22 2023-05-23 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population
US11836750B2 (en) 2020-06-22 2023-12-05 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population
US12069337B2 (en) * 2020-06-22 2024-08-20 The Nielsen Company (Us), Llc Methods, systems, articles of manufacture, and apparatus to estimate audience population

Also Published As

Publication number Publication date
US7240355B1 (en) 2007-07-03
US20100333125A1 (en) 2010-12-30
US20160105721A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
US7240355B1 (en) Subscriber characterization system with filters
US7150030B1 (en) Subscriber characterization system
US6457010B1 (en) Client-server based subscriber characterization system
US8484677B1 (en) Advertisement monitoring system
US7949565B1 (en) Privacy-protected advertising system
US9635406B2 (en) Interactive television program guide system for determining user values for demographic categories
US20020083451A1 (en) User-friendly electronic program guide based on subscriber characterizations
CN101047826B (en) Electronic apparatus, information browsing method thereof
CN102523494B (en) Method and system for cross-platform predictive popularity ratings for use in interactive television applications
US20010021994A1 (en) Television
JP2002531895A (en) Smart agents based on habits, statistical inference, and psychodemographic profiling
WO2001065747A1 (en) Advertisment monitoring and feedback system
EP1237372B1 (en) Interactive television program guide system for determining user values for demographic categories
AU2004201402B2 (en) Generating a subscriber profile
ZA200005841B (en) Interactive television program guide system for determining user values for demographic categories.

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRIME RESEARCH ALLIANCE E., INC., VIRGIN ISLANDS,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EXPANSE NETWORKS, INC.;REEL/FRAME:019486/0690

Effective date: 20040818

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: PRIME RESEARCH ALLIANCE E, LLC, DELAWARE

Free format text: RE-DOMESTICATION AND ENTITY CONVERSION;ASSIGNOR:PRIME RESEARCH ALLIANCE E, INC.;REEL/FRAME:050090/0721

Effective date: 20190621