US20080002369A1 - Portable device docking station - Google Patents
Portable device docking station Download PDFInfo
- Publication number
- US20080002369A1 US20080002369A1 US11/493,107 US49310706A US2008002369A1 US 20080002369 A1 US20080002369 A1 US 20080002369A1 US 49310706 A US49310706 A US 49310706A US 2008002369 A1 US2008002369 A1 US 2008002369A1
- Authority
- US
- United States
- Prior art keywords
- connector
- computer
- body portion
- bearing surface
- apparatus body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1632—External expansion units, e.g. docking stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T70/00—Locks
- Y10T70/50—Special application
- Y10T70/5009—For portable articles
Definitions
- the present invention relates generally to trays for holding portable devices, and in particular to quick release docking stations for portable computers and other portable electronics devices having one or more input/output (I/O) communication ports.
- I/O input/output
- Portable notebook-type computers using a built-in battery pack power source are generally well-known and have an advantage in being handy to carry about and freely used even in those places which are not accessible to the commercial power supply.
- Such computers are compact in design for higher portability, so that their standard functions are inevitably more limited than those of desktop computers. Accordingly, such portable computers are generally provided with one or more connectors and ports for function expansion, usually on the rear face of its casing which supports a keyboard and a display unit. These computers are additionally furnished with new functions by connecting peripheral devices, such as a hard disk drive, mouse, printer, etc., to the connectors and ports.
- peripheral devices such as a hard disk drive, mouse, printer, etc.
- FIGS. 1 and 2 illustrate a notebook-type portable computer 1 for use as a portable electronic device which is connected to an external expanding apparatus, commonly referred to as a “docking station.”
- the computer 1 includes a plastic casing 2 serving as an apparatus body.
- the casing 2 is in the form of a flat generally rectangular box having a bottom face 2 a and a top face 2 b , which extend generally parallel to each other, and a front face 2 c , a rear face 2 d , and side faces 2 e and 2 f , which are continuous with the bottom and top faces 2 a and 2 b .
- At least one such computer casing 2 further includes a tongue 2 g projected from the front face 2 c and having a bottom face 2 h which may be continuous with the bottom face 2 a of the casing 2 , a top face 2 i which extends generally parallel to the bottom face 2 h , and a front face 2 j that is spaced away from the casing front face 2 c .
- the tongue 2 g may include side surfaces 2 k and 21 extending between the computer casing front surface 2 c and the tongue front face 2 j .
- Other surfaces of the casing 2 such as one of the side faces 2 e , 2 f may includes additional features, such as but not limited to a CD-ROM or DVD-ROM 3 a and a main power switch 3 b.
- a keyboard 7 Arranged on the top face 2 b of the casing 2 , as illustrated in FIG. 1 , is a keyboard 7 which is used to input information and commands.
- a flat display unit 9 having a thickness t is connected to the display supporting portions 8 a and 8 b .
- the display unit 9 is rotated about a hinge axis h on a pair of legs 10 a and 10 b , left and right, which are pivotally mounted on the supporting portions 8 a and 8 b , respectively, by means of hinge devices as is generally well-known.
- the display unit 9 is supported on the casing 2 to be rotatable about the hinge axis h relative to the casing 2 between a closed position, in which a display screen surface 9 a of the display unit 9 touches the top face 2 b of the casing 2 .
- the display unit 9 thereby covers the keyboard 7 for protecting both the keyboard 7 and display screen surface 9 a of the display unit 9 with a hard shell backing portion 9 b of the display unit 9 .
- the display unit 9 alternately rotates into an open position in which the display unit 9 stands upright with the display screen surface 9 a exposed at the back of the keyboard 7 , as illustrated.
- a hard shell lip portion 9 c of the display unit 9 surrounds the sensitive display screen 9 d , the display screen 9 d is slightly recessed below the hard shell lip portion 9 c.
- FIG. 2 illustrates an input/output (I/O) connector or port 4 of the known portable computer being provided in the rear face 2 d between interface apertures 4 a and 4 b on either side thereof.
- the I/O connector 4 includes a quantity of pins or pin receptors (shown) 4 c are organized in a selected pattern.
- the pins or pin receptors 4 c provided input/output (I/O) capability for communicating with various peripheral components that may provide such functions as for example but not limited to: a modem, a game port, audio output, a microphone input, serial connections, parallel connections, a video display output, USB (Universal Serial Bus) connection, a mouse connection, a keyboard connection, an external power supply connection.
- I/O input/output
- connection to these or other peripheral devices are provided by a separate and individual modem connector, a game port, audio speaker connectors, a microphone connector, two serial connectors, a parallel connector, a display unit connector, a USB connector, a mouse connector, a keyboard connector, and an external power supply connector, as are generally well-known in the art.
- a metallic terminal plate 5 is exposed on the rear face 2 d and surrounds the I/O connector 4 and includes an open end of each of the apertures 4 a and 4 b .
- the apertures 4 a and 4 b each include a cylindrical aperture or a lengthwise slot (shown) or an aperture of another shape extending from the rear face 2 d of the casing 2 toward the opposite front face 2 c.
- peripheral devices In transporting the computer 1 peripheral devices must be removed from their corresponding connectors or ports, or alternatively the single I/O connector 4 . In restoring the computer 1 to its original state after using it elsewhere, any peripheral devices must be connected again via the I/O connector 4 . In the case where a large number of peripheral devices are connected, therefore, the removal and connection require very troublesome operations.
- FIG. 3 illustrates one such docking station 13 having a plurality of connectors and ports connectable with the peripheral devices, external power supply connector, etc., and an expansion connector 15 is presented at a connector presentation surface 21 which is opposed to the rear face 2 d of the computer casing 2 .
- the expansion connector 15 is structured to engage the computer's I/O connector 4 .
- the expansion connector 15 is mounted on a movable bracket 18 structured to engage apertures 4 a and 4 b on opposite sides of the I/O connector 4 as a prelude to the expansion connector 15 actually engaging the I/O connector 4 .
- the bracket 18 includes a pair of guide pins or arms 18 a and 18 b that are positioned on opposite sides of the expansion connector 15 to engage apertures 4 a and 4 b on opposite sides of the I/O connector 4 .
- the expansion connector 15 includes a quantity of pin receptors or pins (shown) 15 a organized in a selected pattern to engage the pins or pin receptors 4 c of the computer's I/O connector 4 .
- the pins 15 a of the expansion connector 15 are connected electrically to different ones of the connectors and ports that are connectable with the peripheral devices.
- the pair of guide pins or arms 18 a and 18 b positioned on opposite sides of the expansion connector 15 are extended forward of the expansion connector 15 and its pin receptors or pins (shown) 15 a such that the guide arms 18 a , 18 b engage the apertures 4 a and 4 b on opposite sides of the I/O connector 4 before the expansion connector 15 and its pin receptors or pins 15 a the I/O connector 4 .
- the expansion connector 15 is typically loosely mounted on the bracket 18 with a little lateral play such that the expansion connector 15 is permitted to move relative to the bracket 18 and its pin receptors or pins (shown) 15 a wiggle or “float” into final mating positions with the respective pin receptors (or pins) 4 c of the I/O connector 4 after the guide arms 18 a , 18 b have established a nominal docking position.
- the guide arms 18 a , 18 b with the respective interface apertures 4 a , 4 b fine tunes the positioning of the pins (or pin receptors) 15 a of the expansion connector 15 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4 prior to final insertion.
- the docking station 13 also includes a mounting platform 17 on which the computer 1 is removably mounted.
- the mounting platform 17 is, for example, adjacent connector presentation surface 21 , and includes a bearing surface 19 on which the bottom face 2 a of the computer casing 2 is placed.
- the docking station apparatus 13 also includes bullet-nosed engaging pins 23 a and 23 b , which are provided on the bearing surface 19 adjacent to the connector presentation surface 21 .
- the bottom face 2 a of the computer casing 2 includes a pair of locating holes 6 a and 6 b situated adjacent to the rear face 2 d and the side faces 2 e and 2 f of the casing 2 .
- the locating holes 6 a , 6 b each include a cylindrical aperture extending from the bottom face 2 a toward the opposite top face 2 b and sized to accept the bullet-nosed engaging pins 23 a , 23 b on the bearing surface 19 of the docking station 13 .
- the locating holes 6 a and 6 b thus serve to locate the computer's I/O connector 4 relative to the expansion connector 15 on the presentation surface 21 of the docking station 13 .
- the tongue 2 g of the computer casing 2 is fit into a mouth 25 of a mating receiver structure 27 adjacent to the bearing surface 19 opposite from and facing toward the connector presentation surface 21 .
- the computer casing 2 is rotated about the tongue 2 g with the bottom surface 2 a of the casing 2 guided toward the bearing surface 19 .
- the mating locating holes 6 a and 6 b in the bottom surface 2 a of the casing 2 engage the locating pins 23 a , 23 b of the docking station 13 , which positions the casing 2 relative to the docking station 13 , and in particular positions the I/O connector 4 relative to the docking station's expansion connector 15 .
- the docking station's expansion connector 15 and the pair of guide pins or arms 18 a , 18 b on either side of the expansion connector 15 are moved together in the direction indicated by the arrow toward the rear face 2 d of the computer 1 in a manner such that the pair of guide pins or arms 18 a , 18 b are fitted individually in the recesses of the respective interface apertures 4 a , 4 b by operation of a swingable operating lever 29 .
- Such engagement of the guide arms 18 a , 18 b with the respective interface apertures 4 a , 4 b fine tunes the positioning of the pins (or pin receptors) 15 a of the expansion connector 15 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4 .
- Continued operation of the operating lever 29 continues movement of the expansion connector 15 toward the computer's I/O connector 4 , and engages the pins (or pin receptors) 15 a with the pin receptors (or pins) 4 c during final insertion.
- the expansion connector 15 of the docking station 13 is connected to the computer's I/O connector 4 .
- the computer 1 cannot be removed from the docking station 13 because the guide pins or arms 18 a , 18 b engaging the interface apertures 4 a , 4 b conspire with the receiver structure 27 engaging the computer casing's tongue 2 g , and the locating pins 23 a and 23 b engaging the mating locating holes 6 a and 6 b in the bottom surface 2 a of the computer casing 2 to secure the computer 1 relative to the docking station's connector presentation surface 21 and the bearing surface 19 , respectively.
- the operating lever 29 is reversed to move the expansion connector 15 away from the computer rear surface 2 d , whereby the expansion connector 15 is disconnected from the computer's I/O connector 4 , and the guide pins or arms 18 a , 18 b are disengaged from the respective interface apertures 4 a , 4 b .
- the computer casing 2 can be rotated about the tongue 2 g so that the bottom surface 2 a of the casing 2 is disengaged from the bearing surface 19 , and the computer 1 is disengaged from the docking station 13 .
- the pins (or pin receptors) 15 a of the expansion connector 15 are attached to a circuit board which is located within a casing 31 of the apparatus 13 , and the expansion connector 15 is connected to the circuit board through a flexible wiring harness.
- the flexible wiring board is in turn connected through other flexible wiring harnesses to separate and individual modem connector, a game port, audio speaker connectors, a microphone connector, two serial connectors, a parallel connector, a display unit connector, a USB connector, a mouse connector, a keyboard connector, and an external power supply connector, as are generally well-known in the art.
- FIG. 4 illustrates an input/output (I/O) plate 33 of the docking station 13 where the flexible wiring harnesses of external devices may be connected to, for example, a mouse connector 35 , a keyboard connector 37 , a display unit connector 39 , one or more serial connectors 41 , a game port 43 , a parallel connector 45 , a serial connector 47 , one or more USB connectors 49 , a microphone connector 51 , one or more speaker connectors 53 , an external power supply connector 55 , a modem connector 57 , or a power switch 59 .
- I/O input/output
- the present invention is an external expanding apparatus or “docking station” operable with a portable computer device of a type having a display unit having a display screen on an inner surface thereof and a hard shell backing surface opposite thereof and pivotally mounted on a substantially rigid casing having a pair of locating holes adjacent to opposite corners of a substantially planar bottom surface thereof, and an input/output (I/O) connector positioned on a back plane thereof with a pair of positioning apertures provided on opposite sides thereof.
- the external expanding apparatus or “docking station” of the present invention provides all of the features of prior art expanding apparatus with a novel external wire harness support apparatus.
- the docking station includes a substantially rigid apparatus body portion having a pair of upper and lower body portions having respective substantially rigid peripheral side wall portions separable along a line of mutual contact.
- One or more edge mounting structures are formed along the line of contact between the side wall portions, with each of the edge mounting structures having a clearance hole formed through at least one of the pair of side walls adjacent to the line of contact, a nut pocket formed on an interior portion of at least one of the pair of side walls in substantial alignment with the clearance hole, an opening formed in one of the bearing plate and the bottom plane of the apparatus body portion, and a well shaft communicating between the opening and the nut pocket.
- the nut pocket is further formed integrally with the well shaft communicating therewith.
- the clearance hole includes a first recess formed in a first one of the pair of peripheral side walls in communication with the line of contact therebetween.
- the clearance hole also includes a second recess formed in a second one of the pair of peripheral side walls in communication with the first recess along the line of contact therebetween.
- FIG. 1 is a perspective view showing an example of a known portable computer
- FIG. 2 illustrates an input/output (I/O) connector or port of the known portable computer illustrated in FIG. 1 as being provided in the rear face thereof between interface apertures;
- I/O input/output
- FIG. 3 illustrates a known computer docking station having an expansion connector structured to engage the computer's I/O connector and being provided on a connector presentation surface thereof which is opposed to the rear face of the known computer illustrated in FIGS. 1 and 2 and a plurality of connectors and ports connectable with different peripheral devices, external power supply, etc.;
- FIG. 4 illustrates an input/output (I/O) plate of the known docking station where flexible wiring harnesses of different external peripheral devices, external power supply, etc. may be connected;
- FIG. 5 is a front perspective view that illustrates the novel external computer expanding apparatus or “docking station” of the invention
- FIG. 6 is a front perspective view that illustrates the novel docking station of the invention.
- FIG. 7 is a side perspective view that illustrates the novel docking station of the invention.
- FIG. 8 is another side perspective view that illustrates the novel docking station of the invention.
- FIG. 9 is a bottom perspective view of the novel docking station of the invention.
- FIG. 10 is another bottom perspective view of the docking station of the invention.
- FIG. 11 is another bottom perspective view of the docking station of the invention.
- FIG. 12 is a close-up bottom perspective view of an external wire harness support of the invention of the docking station of the invention.
- FIG. 13 is another close-up bottom perspective view of the external wire harness support of the invention.
- FIG. 14 is a cross-sectional view that shows novel cable supports of the external wire harness support of the invention.
- FIG. 15 is a perspective view of the external wire harness support of the invention illustrating a side view of the cable supports of the invention and an end cross-sectional view of one of a novel gang support of the invention;
- FIG. 16 is perspective view inside an upper body portion of the docking station of the invention and illustrates a novel expansion connector drive mechanism of the present invention as well as novel features of the upper body portion that operate with the expansion connector drive mechanism;
- FIG. 17 illustrates the alternative non-locking latch mechanism by example and without limitation as a flexible latch mechanism useful with the novel expansion connector drive mechanism of the present invention
- FIG. 18 illustrates a novel guide mechanism of the invention that cooperates with a novel frame portion of the novel expansion connector drive mechanism of the present invention
- FIG. 19 illustrates the expansion connector drive mechanism of the present invention as well as novel features of the upper body portion that operate with the expansion connector drive mechanism
- FIG. 20 illustrates the expansion connector drive mechanism of the present invention in a deployed position
- FIG. 21 is a section view of the expansion connector drive mechanism of the invention.
- FIG. 22 illustrates the docking station of the invention being in an initial state of readiness to accept the computer
- FIG. 23 illustrates the docking station of the invention being in an intermediate state of accepting the computer
- FIG. 24 illustrates the docking station of the invention being in final state of accepting the computer
- FIG. 25 illustrates the docking station of the invention being in final state of accepting the computer removed here for clarity
- FIGS. 26 and 27 are respective top and bottom perspective views that together illustrate one embodiment of a frame portion of the expansion connector drive of the invention
- FIG. 28 is perspective view inside the upper body portion of the docking station of the invention and further illustrates a simplified expansion connector drive mechanism of the present invention
- FIG. 29 is an upside-down close-up view showing novel edge mounting holes of the invention formed along a mutual contact line between the upper and lower body portions of the novel docking station's two-piece body;
- FIG. 30 illustrates that an extension portion of a well portion of a novel nut pocket of the invention extends past the contact line between the upper and lower body portions of the novel docking station's two-piece body;
- FIG. 31 is a section view of the nut pockets of the invention taken from inside the two-piece body of the docking station of the invention.
- FIG. 32 is a section view of the nut pockets of the invention taken from inside the two-piece body of the docking station of the invention.
- FIG. 33 illustrates a mechanical nut installed in the nut pocket of the invention with a screw or bolt inserted through the edge mounting hole of the invention and mated with the nut,
- FIG. 34 illustrates the lower body portion of the novel docking station with the upper body portion removed for clarity, the nut pockets here illustrated as being optionally fully formed in the selected upper body portion or lower body portion (shown);
- FIG. 35 illustrates one of the novel edge mounting holes of the invention alternatively formed with a novel screw or bolt pocket of the invention formed by example and without limitation as a pair of mating pockets (shown in a subsequent figure) integrally formed on inside surfaces of the respective lower body portion and upper body portion of the docking station of the invention and adjacent to the respective edges thereof;
- FIG. 36 is a section view of one of the novel screw pockets of the invention taken from inside the two-piece body of the docking station of the invention.
- FIG. 37 illustrates the novel screw pocket of the invention being alternatively configured to accommodate a carriage bolt (shown in phantom) wherein the nut pocket is formed having integral near and far portions substantially aligned with a novel edge mounting hole of the invention;
- FIG. 38 is a section view of the novel screw or carriage bolt pocket of the invention taken from inside the two-piece body of the docking station of the invention.
- FIG. 39 illustrates a novel display unit support of the invention that is structured for supporting the computer's flat display unit
- FIG. 40 illustrates the novel display unit support of the invention in a stored position having a rigid support arm rotated about a pivot axis toward a bearing surface of the upper body portion of the novel docking station of the invention, and an anvil of the novel display unit support being nested in an edge recess of the novel body portion;
- FIG. 41 is a side view that illustrates the jaw of the novel display unit support of the invention being rotated about a drive axis of a novel biasing mechanism into substantial alignment with the support arm during storing of the novel display unit support;
- FIG. 42 illustrates the novel docking station of the invention with the novel display unit support in an active position having the support arm rotated about the pivot axis with the novel display unit clamping mechanism supporting the display unit of the computer in an open upright position relative to the computer's keyboard on the computer casing top face;
- FIG. 43 illustrates the docking station of the invention with the novel display unit support in an active position having the support arm rotated about the pivot axis with the display unit clamping mechanism of the invention supporting the computer display unit in an open upright position relative to the computer keyboard with the anvil being positioned supporting the hard shell backing portion of the computer display unit;
- FIGS. 44 through 50 illustrate that the arcuate support surface of the anvil portion of the novel display unit clamping mechanism of the invention permits the backing portion of the computer display unit to roll thereabout in smooth substantially constant contact during rotation relative to the computer keyboard, wherein:
- FIG. 44 also illustrates the docking station of the invention with the novel display unit support in the active position of FIG. 43 having the support arm rotated about the pivot axis with the novel display unit clamping mechanism supporting the computer's display unit in an open upright position relative to the computer's keyboard,
- FIG. 45 is a side view of the docking station of the invention having the computer's display unit support in one active position, as illustrated in previous figures, having the support arm rotated about the pivot axis with the novel display unit clamping mechanism of the invention supporting the computer display unit in one open over-center position relative to the computer's keyboard;
- FIG. 46 is an opposite side view of the novel display unit support of the invention in the active position of FIG. 45 for constraining the computer's display unit in the open over-center position by a pincer action of the jaw portion relative to the anvil with the knob being tightened to secure the support arm in the active over-center position;
- FIG. 47 is a side view of the docking station of the invention having the novel display unit support in another active position having the support arm rotated about the pivot axis with the novel display unit clamping mechanism of the invention supporting the computer's display unit in a substantially vertical upright position relative to the computer's keyboard with the anvil portion being positioned supporting the hard shell backing portion of the computer display unit;
- FIG. 48 is an opposite side view of the novel display unit support of the invention in the active position of FIG. 47 for constraining the computer's display unit in the substantially vertical upright position by the pincer action of the jaw portion relative to the anvil portion with the knob being tightened to secure the support arm in the upright position;
- FIG. 49 is a side view of the docking station of the invention having the novel display unit support of the invention in another active position having the support arm rotated about the pivot axis with the novel display unit clamping mechanism of the invention supporting the computer display unit in another open position having the display unit in an extreme over-center upright position relative to the computer keyboard;
- FIG. 50 is an opposite side view of the novel display unit support of the invention in the active position of FIG. 49 for constraining the computer display unit in the extreme over-center open position by the pincer action of the jaw portion relative to the anvil portion with the knob being tightened to secure the support arm in the extreme over-center position;
- FIG. 51 illustrates by example and without limitation the pivot mechanism of the invention that constrains the support arm to operate about the pivot axis with the shoulder portion abutting the body's hub portion;
- FIG. 52 illustrates by example and without limitation one alternative configuration of the pivot mechanism of the invention wherein the head portion of a screw or bolt type pivot axle is constrained in the body's novel nut pockets;
- FIG. 53 illustrates by example and without limitation another alternative configuration of the pivot mechanism illustrated in FIG. 52 ;
- FIG. 54 illustrates by example and without limitation the novel display unit clamping mechanism of the invention of the novel display unit support of the invention in an active configuration clamping the computer's display unit in an open position relative to computer casing;
- FIG. 55 illustrates by example and without limitation the novel display unit clamping mechanism of the novel display unit support invention in a passive configuration wherein the hard shell backing portion of the computer's display unit is supported by the anvil portion of the support arm with the opposing jaw portion in an open position relative to the computer display unit's display screen surface.
- FIG. 5 is a front perspective view that illustrates the present invention embodied by example and without limitation as a novel external computer expanding apparatus or “docking station” 100 which is adapted to be interposed between a portable computer of the type illustrated in FIGS. 1-3 and a plurality of peripheral devices and relay signals transferred between the computer and the devices.
- a novel external computer expanding apparatus or “docking station” 100 which is adapted to be interposed between a portable computer of the type illustrated in FIGS. 1-3 and a plurality of peripheral devices and relay signals transferred between the computer and the devices.
- the docking station 100 includes a two-piece body 102 having an upper body portion 102 a connected to a lower body portion 102 b along a line 103 of mutual contact.
- the upper body portion 102 a is formed with a bearing surface 104 on one face of a substantially rigid bearing plate 105 .
- the bearing surface 104 is structured for the computer casing 2 to be removably placed thereon.
- a connector presentation surface 106 is projected above the bearing surface 104 for presenting an expansion connector 108 to the rear face 2 d of the computer 1 when the computer's bottom face 2 a is placed on the bearing surface 104 .
- the upper body portion 102 a also includes means for securing the computer 1 to the bearing surface 104 in fixed position relative to the connector presentation surface 106 such that a coupling with the expansion connector 108 is not interrupted unintentionally.
- the securing means includes a receiver structure 110 fixedly positioned adjacent to a front portion 111 of the bearing surface 104 opposite from the connector presentation surface 106 and having an open jaw structure 112 facing toward the connector presentation surface 106 and structured to receive and mate with the tongue 2 g on the front face of the computer casing 2 . Mating of the tongue 2 g within the open jaw 112 of the receiver structure 110 resists separation of the computer casing's bottom face 2 a from the bearing surface 104 .
- Such mating of the tongue 2 g within the jaw 112 of the receiver structure 110 also resists sliding of the computer casing 2 along the bearing surface 104 away from the connector presentation surface 106 .
- the open jaw 112 may optionally include lips on either side thereof that engage side surfaces 2 k and 21 (if present) of the tongue 2 g , and by such engagement, resist sideways slippage along the bearing surface 104 parallel of the connector presentation surface 106 .
- the securing means also includes a pair of engaging pins 114 a and 114 b fixedly positioned on a rear portion 115 of the bearing surface 104 adjacent to the connector presentation surface 106 , the engaging pins 114 a , 114 b are structured to be slidingly received into the mating locating holes 6 a and 6 b in the bottom surface 2 a of the casing 2 .
- the two engaging pins 114 a and 114 b operate to position the computer casing 2 relative to the docking station bearing surface 104 , and in particular to position the computer's I/O connector 4 relative to the docking station's expansion connector 108 .
- Such mating of the two engaging pins 114 a , 114 b within the respective locating holes 6 a , 6 b also serve to resist both lateral and longitudinal slippage of the computer casing 2 relative to the bearing surface 104 .
- the two engaging pins 114 a , 114 b resist both sliding of the computer casing 2 along the bearing surface 104 away from the connector presentation surface 106 , and simultaneously resist sideways slippage along the bearing surface 104 parallel of the connector presentation surface 106 .
- the securing means also includes a pair of guides 116 a and 116 b provided as either substantially rigid pins or stiff arms that are positioned on opposite sides of the expansion connector 108 .
- the guides 116 a and 116 b extend past the expansion connector 108 and engage the apertures 4 a and 4 b on opposite sides of the computer's I/O connector 4 in advance of the expansion connector 108 engaging the computer's I/O connector 4 .
- the expansion connector 108 simultaneously with the pair of guide pins or arms 116 a , 116 b (hereinafter “guide arms”) on either side of the expansion connector 108 are together moved inward from the presentation surface 106 (in the direction indicated by arrow 120 ) across the bearing surface 104 toward the opposing open jaw 112 of the receiver structure 110 in a manner such that the pair of guide arms 116 a , 116 b are fitted individually in the recesses of the respective interface apertures 4 a , 4 b the rear face 2 d of the computer casing 2 in advance of connection of the connector 108 with the computer's I/O connector 4 .
- the mating of the guide arms 116 a , 116 b within the respective computer casing interface apertures 4 a , 4 b resists separation of the computer casing's bottom face 2 a from the bearing surface 104 so that the two engaging pins 114 a , 114 b within the respective locating holes 6 a , 6 b more effectively resist both lateral and longitudinal slippage of the computer casing 2 relative to the bearing surface 104 .
- the expansion connector 108 includes a quantity of pin receptors or pins (shown) 122 organized in a selected pattern to engage the pins or pin receptors 4 c of the computer's I/O connector 4 . Accordingly, such engagement of the guide arms 116 a , 116 b on either side of the expansion connector 108 with the respective interface apertures 4 a , 4 b also fine tunes the positioning of pin receptors or pins (shown) 122 of the expansion connector 108 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4 , whereby operation of the expansion connector drive 118 causes the expansion connector 108 to engage the computer's I/O connector 4 , and engages the pins (or pin receptors) 122 with the pin receptors (or pins) 4 c.
- the three-part computer securing means includes the receiver structure 110 fixed adjacent the front portion 111 of the bearing surface 104 , the engaging pins 114 a and 114 b fixed on the rear face 115 of the bearing surface 104 , and the guide arms 116 a , 116 b on either side of the expansion connector 108 , which operate together to retain the computer's I/O connector 4 on the rear face 2 d of the casing 2 in uninterrupted engagement with the docking station's expansion connector 108 .
- a sensing means 123 is optionally provided for sensing that the computer's casing 2 is emplaced on the docking station's bearing surface 104 with its I/O connector 4 positioned to receive the docking station's expansion connector 108 .
- the optional sensing means 123 may be provided in the form of safety catch 124 having a stem or button that cooperates with the expansion connector drive 118 to detect presence of the computer 1 against the bearing surface 104 .
- the sensing means 123 is an optional safety mechanism that prevents the expansion connector drive 118 from being operated unless the computer casing 2 is firmly seated against the bearing surface 104 of the docking station upper body portion 102 a , which depresses the safety catch 124 .
- the docking station 100 optionally senses the presence of the computer 1 when installation of the casing 2 causes depression of the safety catch 124 , if present.
- the expansion connector 108 cannot be deployed until the computer's I/O connector 4 is positioned to receive it. Accordingly, neither the guide arms 116 a , 116 b nor the expansion connector 108 can interfere with seating the computer casing 2 .
- the expansion connector 108 remains tucked safely away in a home position on the sidelines of the bearing surface 104 .
- the expansion connector 108 is protected in a disengaged “safe” position within an integral housing portion 126 of the casing upper body 102 a positioned at the rear 115 of the bearing surface 104 , where the expansion connector 108 is out of harm's way during seating of the computer casing 2 .
- the housing 126 extends above the bearing surface 104 and is formed with a cavity 128 that is extended rearward of the bearing surface 104 .
- the cavity 128 is sized to hold the expansion connector 108 on a connector bracket 130 having guide arms 116 a , 116 b projected therefrom on either side of the expansion connector 108 .
- the bracket 130 together with the expansion connector 108 and guide arms 116 a , 116 b on either side thereof, is movable (as indicated by arrow 120 ) by operation of the expansion connector drive mechanism 118 out of the cavity 128 and inward of the bearing surface 104 through an opening 132 formed in the presentation surface 106 of the housing 126 .
- the docking station 100 of the present invention optionally includes a locking latch mechanism 134 for constraining the expansion connector drive mechanism 118 relative to the upper body portion 102 a of the docking station 100 . Accordingly, the locking latch mechanism 134 constrains the bracket 130 having the expansion connector 108 and guide arms 116 a , 116 b in a deployed position, the deployed position having the expansion connector 108 outside the cavity 128 and extended over the bearing surface 104 .
- the expansion connector 108 of the docking station 100 is connected to the computer's I/O connector 4 .
- the computer 1 cannot be removed from engagement with the docking station 100 because the guide arms 116 a , 116 b engaging the interface apertures 4 a , 4 b cooperate with the receiver structure 110 engaging the computer casing's tongue 2 g , and the locating pins 114 a and 114 b engaging the mating locating holes 6 a and 6 b in the bottom surface 2 a of the computer casing 2 to secure the computer 1 relative to the connector presentation surface 106 and the bearing surface 104 , respectively, of the docking station apparatus 100 .
- the locking latch mechanism 134 ensures the expansion connector drive mechanism 118 cannot be dislodged so that the guide arms 116 a , 116 b continue to engage the interface apertures 4 a , 4 b , even if the expansion connector drive mechanism 118 is attempted to be dislodged, either accidentally or intentionally.
- the expansion connector drive mechanism 118 is reversed to move the expansion connector 108 away from the computer rear surface 2 d , whereby the expansion connector 108 is disconnected from the computer's I/O connector 4 , and the guide arms 116 a , 116 b are disengaged from the respective interface apertures 4 a , 4 b .
- the computer casing 2 can be rotated about the tongue 2 g so that the bottom surface 2 a of the casing 2 is disengaged from the bearing surface 104 , and the computer 1 is disengaged from the docking station 100 .
- the expansion connector 108 is optionally loosely mounted on the bracket 130 with a little lateral play such that the expansion connector 108 is permitted to move relative to the bracket 130 and its pin receptors or pins (shown) 122 wiggle or “float” into final mating positions with the respective pin receptors (or pins) 4 c of the I/O connector 4 after the guide arms 116 a , 116 b have established a nominal docking position, as in the prior art.
- the guide arms 116 a , 116 b with the respective interface apertures 4 a , 4 b fine tunes the positioning of the pins (or pin receptors) 122 of the expansion connector 108 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4 prior to final insertion.
- the expansion connector 108 is optionally securely mounted on the bracket 130 without appreciable lateral play such that the expansion connector 108 is not permitted to move relative to the bracket 130 and its pin receptors or pins (shown) 15 a do not wiggle or float into final mating positions with the respective pin receptors (or pins) 4 c of the I/O connector 4 .
- the expansion connector drive mechanism 118 provides sufficient lateral play that, the guide arms 18 a , 18 b operate to establish both a nominal docking position and a final insertion position of the expansion connector 108 relative to the computer's I/O connector 4 .
- the complexity of the prior art bracket 18 as discussed herein above, is eliminated, while the positioning function is maintained as a feature of the expansion connector drive mechanism 118 of the invention.
- hand clearances 137 communicate with either side of the docking station's computer bearing surface 104 for access to the bottom surface 2 a of the computer 1 for lifting it free of the bearing surface 104 and the guide pins 114 a , 114 b projected therefrom.
- the hand clearances 137 are provided as indentations in the upper body portion 102 a and optionally in the lower body portion 102 b as well.
- the hand clearances 137 are located near the connector presentation surface 106 and the guide pins 114 a , 114 b for more easily lifting the computer 1 clear of the guide pins 114 a , 114 b and the jaw 112 of the receiver structure 110 opposite.
- an edge recess 139 communicates with the docking station's computer bearing surface 104 and one side of the upper body portion 102 a for storing a novel display unit support 142 that is structured for supporting the computer's flat display unit 9 .
- the docking station's expansion connector 108 is electrically coupled to a plurality of peripheral device connectors 136 a , 136 b through 136 n provided by example and without limitation on a peripheral device connector presentation surface 138 of the lower body portion 102 b .
- the lower body portion 102 b includes an integral rear housing 140 having the presentation surface 138 provided thereon.
- the docking station 100 includes a novel display unit support 142 structured for supporting the computer's flat display unit 9 in any convenient orientation relative to the keyboard 7 on the computer's top face 2 b.
- FIG. 6 is a front perspective view that illustrates the present invention embodied by example and without limitation as a the docking station 100 .
- the bracket 130 having only the guide pins 116 a , 116 b projected therefrom, without the expansion connector 108 .
- FIG. 7 is a side perspective view that illustrates the present invention embodied by example and without limitation as a the docking station 100 .
- the bracket 130 having only the guide pins 116 a , 116 b projected therefrom, without the expansion connector 108 .
- FIG. 8 is another side perspective view that illustrates the present invention embodied by example and without limitation as a the docking station 100 .
- the receiver structure 110 is more clearly illustrated as having the open jaw structure 112 formed between the front portion 111 of the bearing surface 104 and an upper lip 144 which engages the top face 2 b of the computer casing 2 , while the front portion 111 of the bearing surface 104 engages the computer casing bottom face 2 a .
- a recessed throat portion 146 of the receiver structure's jaw 112 is set back between the front portion 111 of the bearing surface 104 and the upper lip 144 .
- the recessed throat portion 146 of the jaw 112 engages the front face 2 c of the computer casing 2 .
- edge mounting holes 148 formed along the mutual contact line 103 which also operates as a separation line between the upper and lower body portions 102 a , 102 b of the docking station's two-piece body 102 .
- the edge mounting holes 148 each provide novel means for holding a square- or hex-head screw with its threaded shaft extending out of the respective mounting hole 148 substantially parallel with the bearing surface 104 and perpendicular to respective side faces 152 and 154 of the upper and lower body portions 102 a , 102 b .
- Any external device can be threadedly attached to the body 102 by means of a nut threaded to the extended shaft of the screw.
- FIG. 9 is a bottom perspective view of the docking station 100 of the invention that includes a mounting structure 155 that is structured to adapt the docking station 100 for mounting to an external support structure, by example and without limitation, the universally positionable device invented by the inventor of the present invention and disclosed in U.S. Pat. No. 5,845,885, which is incorporated herein by reference.
- the mounting structure 155 is provided as a plurality of mounting holes 157 projected from a bottom plane 156 of the lower body portion 102 b within an integral ring 159 with optional supports 161 formed as elongated gussets integrally structured between the bottom plane 156 and the ring 159 .
- Other mounting structures 155 are also contemplated and may be substituted without departing from the spirit and scope of the invention.
- This view further illustrates the peripheral device connector presentation surface 138 of the lower body portion 102 b having the a plurality of peripheral device connectors 136 a , 136 b through 136 n , including by example and without limitation, a video display output 13 a , a mouse connection 136 , a keyboard connection 136 c , USB (Universal Serial Bus) connection 136 d , an external power supply connection 136 e , an audio output 136 f , a microphone input 136 g , a modem 136 h , serial connections 136 j and 136 k , and a parallel connection 136 m .
- a video display output 13 a a mouse connection 136 , a keyboard connection 136 c , USB (Universal Serial Bus) connection 136 d , an external power supply connection 136 e , an audio output 136 f , a microphone input 136 g , a modem 136 h , serial connections 136 j and 136
- peripheral device connectors 136 a - 136 n are electrically coupled to the docking station's expansion connector 108 , as discussed herein. As illustrated here, the peripheral device connector presentation surface 138 is projected from the bottom plane 156 of the lower body portion 102 b and is optionally oriented substantially perpendicular thereto. Therefore, the peripheral device connectors 136 a - 136 n face across the bottom plane 156 of the lower body portion 102 b and are protected by the integral rear housing 140 .
- an external wire harness support 158 that provides strain relief to a plurality of connections between the peripheral device connectors 136 a - 136 n and connectors 160 on a wiring harness 162 , as illustrated in subsequent figures.
- the external wire harness support 158 includes one or more individual cable supports 164 a , 164 b through 164 n projected from the bottom plane 156 of the lower body portion 102 b adjacent to the peripheral device connector presentation surface 138 on the integral rear housing 140 . As illustrated, each of the one or more individual cable supports 164 a - 164 n positioned in close proximity to one of the peripheral device connectors 136 a - 136 n .
- each of the individual cable supports 164 a - 164 n is substantially aligned with one of the peripheral device connectors 136 a - 136 n .
- Each of the individual cable supports 164 a - 164 n provides strain relief for a cable connected to a respective one of the peripheral device connectors 136 a - 136 n .
- the external wire harness support 158 further includes one or more gang cable supports 166 projected from the bottom plane 156 of the lower body portion 102 b in a position spaced away from the group of individual cable supports 164 a - 164 n , and optionally spaced away from the peripheral device connector presentation surface 138 as well.
- one or more additional gang cable supports 166 are provided on the bottom plane 156 of the lower body portion 102 b in positions that are spaced away from the peripheral device connector presentation surface 138 and spaced away from others of the peripheral device connectors 136 j - 136 m.
- FIG. 10 is another bottom perspective view of the docking station 100 of the invention that includes the wiring harness 162 having a plurality of individual cables 168 each having one of the connectors 160 coupled to a respective one of the peripheral device connectors 136 a - 136 n presented on the peripheral device connector presentation surface 138 of the lower body portion 102 b .
- the wiring harness 162 is illustrated here having two individual cables 168 a and 168 b each having one of the connectors 160 coupled to one of the peripheral device connectors 136 a - 136 n .
- the external wire harness support 158 of the invention is illustrated having wire ties 170 tying the individual cables 168 a , 168 b to respective individual cable supports 164 a , 164 b . Furthermore, another of the wire ties 170 straps a group or “gang” of the individual cables 168 a , 168 b to one of the gang supports 166 .
- the wire ties 170 are any wire ties selected from a group of wire ties of various types that are generally well-known in the art.
- the wire ties 170 may be plastic coated wires, plastic straps with a catch at one end that mates with teeth along one face, and other known wire ties.
- edge mounting holes 148 formed along the mutual contact line 103 between the upper and lower body portions 102 a , 102 b of the docking station's two-piece body 102 . Additional one or more of the edge mounting holes 148 are optionally formed along the mutual contact line 103 which extends between respective front faces 172 and 174 of the docking station's upper and lower body portions 102 a , 102 b.
- FIG. 11 is another bottom perspective view of the docking station 100 of the invention that includes the wiring harness 162 having a plurality of individual cables each having one of the connectors 160 coupled to a respective one of the peripheral device connectors 136 a - 136 n presented on the peripheral device connector presentation surface 138 of the lower body portion 102 b .
- the wiring harness 162 is illustrated here having two individual cables 168 a and 168 b each having one of the connectors 160 coupled to one of the peripheral device connectors 136 b and 136 c .
- the external wire harness support 158 of the invention is illustrated having wire ties 170 tying the individual cables 168 a , 168 b to respective individual cable supports 164 a , 164 b .
- wire ties 170 straps a group or “gang” of the individual cables 168 a , 168 b to one of the gang supports 166 .
- the wire ties 170 are any wire ties selected from a group of wire ties of various types that are generally well-known in the art.
- the wire ties 170 may be plastic coated wires, plastic straps with a catch at one end that mates with teeth along one face, and other known wire ties.
- FIG. 12 is a close-up bottom perspective view of the docking station 100 of the invention that includes the wiring harness 162 having a plurality of individual cables 168 each having one of the connectors 160 coupled to a respective one of the peripheral device connectors 136 a - 136 n presented on the peripheral device connector presentation surface 138 of the lower body portion 102 b .
- the wiring harness 162 is also illustrated here having two individual cables 168 a and 168 b each having one of the connectors 160 coupled to one of the peripheral device connectors 136 a - 136 n .
- the external wire harness support 158 of the invention is illustrated having wire ties 170 tying the individual cables 168 a , 168 b to respective individual cable supports 164 a , 164 b . Furthermore, another of the wire ties 170 straps a group or “gang” of the individual cables 168 a , 168 b to one of the gang supports 166 .
- the wire ties 170 are any wire ties selected from a group of wire ties of various types that are generally well-known in the art.
- the wire ties 170 may be plastic coated wires, plastic straps with a catch at one end that mates with teeth along one face, and other known wire ties.
- each of the individual cable supports 164 a - 164 n is formed with a valley 176 that is structured to securely receive the cable 168 a , 168 b thereinto.
- the valley 176 is spaced away from the bottom plane 156 of the lower body portion 102 b to the extent that it is substantially aligned with the corresponding one of the peripheral device connectors 136 a - 136 n on the presentation surface 138 of the lower body portion 102 b such that the respective cable 168 a - 168 n is substantially straight between the respective cable support 164 a - 164 n and peripheral device connector 136 a - 136 n .
- the valley 176 is optionally curved in a semi-tubular shape to conform to the typical round cable shape and sized to admit such cable.
- the cable support 164 n is further shown to include wall portion 178 extended from either side of the curved valley 176 and substantially contiguous therewith and oriented tangentially therewith.
- the wall portions 178 are optionally crenellated as shown, or continuous.
- the wire tie clearance is provided by a tunnel 180 that is extend under and completely through each of the individual cable supports 164 a - 164 n directly below and slightly spaced away from the valley 176 and oriented crosswise of the valley 176 .
- a slight recess 182 is formed in the bottom plane 156 of the lower body portion 102 b directly below the valley 176 , such that the tunnel 180 is recessed into the bottom plane 156 of the lower body portion 102 b directly below and slightly spaced away from the valley 176 .
- FIG. 13 is another close-up bottom perspective view of the docking station's external wire harness support 158 of the invention without the wiring harness 162 .
- the individual cable supports 164 a - 164 n are each formed on the bottom plane 156 of the lower body portion 102 b in a position that is spaced away from a corresponding one of the peripheral device connectors 136 a - 136 n on the peripheral device connector presentation surface 138 of the lower body portion 102 b .
- the valleys 176 are illustrated as being curved in a semi-cylindrical form that is substantially aligned with the corresponding peripheral device connectors 136 a - 136 n on the peripheral device connector presentation surface 138 .
- each cable support 164 a - 164 n is illustrated with the wall portion 178 extended from either side thereof and substantially contiguous therewith and oriented tangentially therewith.
- the wall portions 178 are shown as being optionally crenellated, but the wall portions 178 are optionally continuous.
- the tunnel 180 is illustrated here as an optional single common tunnel having the optional recess 182 extending under all of the individual cable supports 164 a - 164 n and beyond them to either end 184 and 186 .
- the gang support 166 is illustrated as being formed with a substantial body portion 200 spaced from the bottom plane 156 of the lower body portion 102 b on spaced apart legs 202 that are projected from the bottom plane 156 . Furthermore, one of the gang supports 166 is illustrated as including a tunnel 188 formed thereunder and having an optional recess 189 recessed into the bottom plane 156 of the lower body portion 102 b substantially crosswise thereof. Optionally, the tunnel 188 extends therebeyond to either side 190 and 192 .
- FIG. 14 is a cross-sectional view that shows the cable supports 164 a - 164 n of the external wire harness support 158 each being formed with a substantial body portion 194 projected from the bottom plane 156 of the lower body portion 102 b .
- the valley 176 is formed in the body 194 distal of the bottom plane 156 , and the crenellated wall portions 178 extended therefrom.
- the tunnel 180 is illustrated here as the optional single common tunnel having the optional recess 182 extending under all of the individual cable supports 164 a - 164 n and beyond them to either end 184 and 186 .
- the tunnel 180 is illustrated here as being formed completely through the bottom plane 156 of the lower body portion 102 b.
- the cables 168 a , 168 b are shown seated in the valleys 176 of the respective cable supports 164 a , 164 b of the docking station's external wire harness support 158 .
- the cables 168 a , 168 b are secured in place by the wire ties 170 wrapped around the body portion 194 a , 194 b of the respective cable supports 164 a , 164 b .
- the wire ties 170 pass through embrasures 196 between spaced apart merlons 198 that form the crenellated wall portions 178 .
- FIG. 15 is a perspective view of the external wire harness support 158 that shows a side view of the cable supports 164 a - 164 n and an end cross-sectional view of one of the gang supports 166 projected from the bottom plane 156 of the lower body portion 102 b .
- the cables 168 a , 168 b are shown seated in the valleys 176 of the respective cable supports 164 a , 164 b and being secured in place by the wire ties 170 wrapped around the respective body portion 194 a , 194 b thereof.
- the wire ties 170 are shown passing through the embrasures 196 between the spaced apart merlons 198 that form the crenellated wall portions 178 .
- the gang support 166 is illustrated as being formed with the substantial body portion 200 that is projected from the bottom plane 156 of the lower body portion 102 b on the spaced apart legs 202 (one shown, more clearly shown in FIG. 13 ).
- the cables 168 a , 168 b are gathered together and secured in place by a single wire tie 170 wrapped around the body portion 200 . Furthermore, that form the crenellated wall portions 178 .
- the gang support 166 is substantially the same as the cable supports 164 a - 164 n and includes the crenellated wall portions 178 spaced apart on either lengthwise side 190 , 192 of the body portion 200 and formed distal of the bottom plane 156 of the lower body portion 102 b , and the wire tie 170 pass through embrasures 196 between spaced apart merlons 198 of the crenellated wall portions 178 .
- FIG. 16 is perspective view inside the upper body portion 102 a and illustrates the expansion connector drive mechanism 118 of the present invention as well as features of the upper body portion 102 a that operate with the expansion connector drive mechanism 118 .
- the expansion connector drive mechanism 118 is formed of a single-piece elongated frame 204 having a substantially planar interface surface 233 (shown in one or more subsequent figures).
- a follower mechanism 206 is provided by example and without limitation as an elongated lengthwise inner slot that extends substantially along a longitudinal axis L thereof for nearly the entire length of the frame 204 within a retention plate 207 .
- An integral expanded connector seat 208 is positioned at a first distal or far end 210 of the frame 204 for mounting the expansion connector 108 thereon.
- An inner surface 224 of the upper body portion's substantially rigid bearing plate 105 opposite from the bearing surface 104 includes a guide mechanism 226 that cooperates with the inner slot 206 to guide the frame 204 substantially along a drive axis DA that is substantially coincident with a longitudinal axis L of the slot 206 .
- the inner slot follower mechanism 206 of the frame 204 thus cooperates with the guide mechanism 226 for moving the frame 204 across the inner surface 224 of the upper body portion 102 a along the drive axis DA with the frame's substantially planar interface surface 233 moving substantially parallel with the inner surface 224 of the bearing plate 105 .
- the interior of the guide mechanism 226 is exposed for clarity.
- the guide mechanism 226 is formed by two guides 228 arranged on the upper body portion's inner surface 224 in spaced apart positions along the drive axis DA.
- the guides 228 are rotating disk guides formed as wheels or rollers that rotate about respective axles or hubs 232 provided on the upper body portion's inner surface 224 .
- the axles or hubs 232 may be configured to space the rotating disk guides 228 slightly away from the upper body portion's inner surface 224 for easier rotation.
- the two guides 228 are optionally provided as one or more slides fixed to the inner surface 224 of the upper body portion 102 a and permit the frame 204 to slide freely along the drive axis DA. As described herein below, the frame 204 is constrained relative to the guides 228 to move across the upper body portion's inner surface 224 along the drive axis DA.
- the expansion connector 108 When mounted on the connector seat 208 at the far end 210 of the frame 204 , the expansion connector 108 fits within the cavity portion 128 of the housing 126 and extends above the bearing surface 104 of the upper body portion 102 a .
- the frame 204 is moveable, either by sliding or rolling, in cooperation with the guide mechanism 226 across the inner surface 224 of the upper body portion 102 a and along the drive axis DA.
- the expansion connector drive mechanism 118 of the invention also provides a small amount of lateral play (indicated by arrow 241 ) such that the connector seat 208 is permitted to move laterally relative to the upper body portion's inner surface 224 and the bearing surface 104 on the opposite surface of the bearing plate 105 and substantially crosswise of the drive axis DA.
- the follower mechanism or slot 206 fits with sufficient play on the guides 228 that the frame 204 is permitted sufficient lateral play along arrow 241 that lateral play the connector seat 208 permits the expansion connector 108 securely mounted thereon to move laterally relative to the bearing surface 104 of the upper body portion's bearing plate 105 .
- the connector seat 208 actually has sufficient lateral play through the expansion connector drive mechanism 118 of the invention to establish both a nominal docking position of the expansion connector 108 relative to the computer's I/O connector 4 and a final insertion position of the pin receptors or pins (shown) 122 relative to the I/O connector's pin receptors (or pins) 4 c .
- the complexity of the prior art bracket 18 is eliminated, while the positioning function is maintained as a feature of the expansion connector drive mechanism 118 of the invention.
- An integral catch mechanism 212 and integral handle 214 are both positioned adjacent to a second proximal or near end 216 of the frame 204 opposite from the connector seat 208 .
- the handle 214 may be provided, by example and without limitation, on one side 218 of the frame 204 , while the catch mechanism 212 may be provided, by example and without limitation, at the near end 216 .
- the catch mechanism 212 is structured to cooperate with the locking latch mechanism 134 for securely fixing the expansion connector drive mechanism 118 relative to the upper body portion 102 a of the docking station 100 with the bracket 130 holding the expansion connector 108 and guide arms 116 a , 116 b on either side thereof in a deployed position, i.e., with the expansion connector 108 outside the cavity 128 and extended over the bearing surface 104 .
- the frame's integral catch mechanism 212 includes a lip portion 242 of the that engages either the optional lock mechanism 134 , or an alternative non-locking latch mechanism 244 (shown here), which is optionally substituted.
- the alternative non-locking latch mechanism 244 is substituted for the optional locking latch mechanism 134 .
- the alternative non-locking latch mechanism 244 similarly constrains the expansion connector 108 to remain in the deployed position, as described herein.
- the alternative non-locking latch 244 is a flexible latch mechanism of the type illustrated in U.S. patent application Ser. No. 11/064,777 filed in the name of the inventor of the present invention on Feb. 23, 2005, which is incorporated herein in its entirety.
- the optional locking mechanism 134 lockingly secures the expansion connector 108 in the deployed position.
- the sensing means 123 is provided as a security mechanism 220 that is structured to cooperate with the safety catch 124 to resist deployment of the expansion connector 108 until the computer 1 is seated against the bearing surface 104 and the computer's I/O connector 4 is positioned to receive the expansion connector 108 .
- the security mechanism 220 is provided in an integral security plate 221 formed, by example and without limitation, along the side 218 of the frame 204 and spaced away from the lengthwise inner slot 206 , for example, between the connector seat 208 and the handle 214 .
- the security mechanism 220 is provided as a keyhole 222 formed in the security plate 221 , the keyhole 222 being structured for cooperating with the safety catch 124 such that, when the safety catch 124 is engaged with the keyhole 222 , the frame 204 cannot be moved relative to the casing's upper body portion 102 a . Furthermore, when the safety catch 124 is disengaged from the cooperating keyhole 222 in the security plate 221 , the frame 204 is free to move along the longitudinal axis L.
- the novel expansion connector drive mechanism 118 is operated by first depressing the safety catch 124 relative to the bearing surface 104 of the upper body portion 102 a , for example by seating the bottom face 2 a of the computer casing 2 against the bearing surface 104 . Depressing the safety catch 124 simultaneously disengages the safety catch 124 of the security mechanism 220 from the cooperating keyhole portion 222 in the security plate 221 , which thereby permits the frame 204 to move along the frame drive axis DA.
- the handle 214 of the expansion connector drive mechanism 118 is pulled along the drive axis DA toward the front face 172 of the casing's upper body portion 102 a , which in turn pulls the expansion connector 108 and the guide arms 116 a , 116 b on either side thereof into the deployed position described herein, i.e., with the expansion connector 108 outside the cavity 128 and extended over the bearing surface 104 .
- the lip portion 242 of the frame's integral catch mechanism 212 engages either the optional lock mechanism 134 , or alternative non-locking latch mechanism 244 (shown here), which constrains the expansion connector drive mechanism 118 in the deployed position.
- An optional retraction mechanism 246 is operated for retracting the expansion connector 108 from the deployed position by driving the frame 204 along the drive axis DA away from the upper body portion's front face 172 toward its rear face 248 .
- the retraction mechanism 246 includes a resilient biasing mechanism 250 , such as a tension spring (shown), that is coupled between the rear face 248 of the upper body portion 102 a and the second or near end 216 of the frame 204 adjacent to the handle 214 .
- the biasing mechanism 250 operates between the rear face 248 and the near end 216 of the frame 204 for pulling the frame 204 toward the rear face 248 .
- the biasing mechanism 250 thereby operates to automatically retract the expansion connector 108 from the deployed position when the locking latch mechanism 134 or non-locking latch mechanism 244 (shown here) is operated to release the frame's integral catch mechanism 212 .
- the spring 250 is coupled between a stanchion 251 near the rear face 248 and the near end 216 of the frame 204 for retracting the expansion connector 108 .
- the resilient biasing mechanism or tension spring 250 being mounted on one side 218 of the frame 204 offset of the drive axis DA provides leverage to the force applied by the spring 250 . Therefore, the spring 250 also biases the frame 204 on the guides 228 relative to the upper body portion's inner surface 224 crosswise of the drive axis DA. Accordingly, the spring 250 also pulls the inner slot 206 of the frame 204 against the guides 228 so that the connector seat 208 and the expansion connector 108 securely mounted thereon are biased laterally relative to the upper body portion's inner surface 224 and the bearing surface 104 on the opposite surface of the bearing plate 105 and substantially crosswise of the drive axis DA.
- the lateral bias provided by the offset biasing mechanism 250 stabilizes the expansion connector 108 relative to the computer's I/O connector 4 for reducing effects on the interconnection of shocks and vibrations experienced by the docking station 100 .
- the novel expansion connector drive mechanism 118 of the invention thus further improves the interconnection of expansion connector 108 with the computer's I/O connector 4 over the prior art docking station's expansion connector 15 , as discussed above.
- the safety catch 124 will not interfere with the retraction mechanism 246 retracting the frame 204 .
- another biasing mechanism 252 (shown in subsequent figures) operates to reset the sensing means for sensing that the computer's casing 2 is emplaced on the docking station's bearing surface 104 before the expansion connector drive 118 can be operated.
- FIG. 17 illustrates the alternative non-locking latch mechanism 244 by example and without limitation as a flexible latch mechanism of the type illustrated in U.S. patent application Ser. No. 11/064,777, which is incorporated herein in its entirety, for latching the expansion connector 108 in the deployed position.
- the alternative non-locking latch mechanism 244 includes a tooth 254 positioned at one end of a flexible arm 256 that is integrally (shown) or separately attached at its opposite end to the upper body portion 102 a , such as to the front face 172 thereof.
- Inclined surfaces 257 and 258 cooperate to allow the to tooth 254 to automatically engage the lip portion 242 of the frame's integral catch mechanism 212 when the frame 204 is moved into the position for deploying the expansion connector 108 , i.e., when the near end 216 of the frame 204 is pulled close to the front face 172 of the upper body portion 102 a .
- a handle 260 is provided on the flexible arm 256 or another part of the alternative non-locking latch mechanism 244 for disengaging the tooth 254 from the frame's lip portion 242 , which releases the frame 204 for retracting the expansion connector 108 from the deployed position.
- FIG. 18 illustrates the guide mechanism 226 that cooperates with the inner slot 206 to guide the frame 204 substantially along the drive axis DA.
- the frame 204 is constrained to move along the two guides 228 relative to the upper body portion's inner surface 224 along the drive axis DA.
- one or more keepers 240 are secured to the upper body portion's inner surface 224 by one or more fasteners 236 for constraining the frame 204 to move along the drive axis DA.
- the one or more keepers 240 also operate to constrain the guide discs 228 , when present, in a position for cooperating with the inner slot 206 of the frame 204 .
- the one or more keepers 240 are provided by a pair of disk-shaped keepers, i.e., flat washers, that are secured to the upper body portion's inner surface 224 by the fasteners 236 for constraining the frame 204 to move along the drive axis DA.
- FIG. 19 illustrates the expansion connector drive mechanism 118 of the present invention as well as features of the upper body portion 102 a that operate with the expansion connector drive mechanism 118 .
- the frame 204 is shown adjacent to the rear face 248 of the upper body portion 102 a with the expansion connector 108 retracted from its deployed position.
- the security mechanism 220 is disengaged by having the safety catch 124 disengaged from the cooperating keyhole 222 in the security plate 221 so that the frame 204 is free to move along the drive axis DA.
- the biasing mechanism 252 is shown as a compression spring that operates between the safety catch 124 and, for example, an inner surface 253 of the lower body portion 102 b (omitted here for clarity, shown in a subsequent figure) to drive the safety catch 124 into security plate 221 and reset the docking station's computer sensing means.
- FIG. 20 illustrates the expansion connector drive mechanism 118 of the present invention with the frame 204 is shown adjacent to the front face 172 of the upper body portion 102 a with the expansion connector 108 in its deployed position extended over the bearing surface 104 .
- the biasing mechanism 250 is shown as being in an expanded state for pulling the frame 204 toward the rear face 248 when the security mechanism 220 is subsequently disengaged.
- the biasing mechanism 250 thereupon operates to retract the expansion connector 108 from the deployed position when the optional lock mechanism 134 is operated to release the frame's integral catch mechanism 212 .
- FIG. 21 is a section view taken substantially along a drive axis DA of the expansion connector drive mechanism 118 .
- This figure illustrates the novel guide mechanism 226 of the invention having the movable frame 204 shifted toward the front face 172 of the upper body portion 102 a such that the integral connector seat 208 is positioned to place the expansion connector 108 (removed for clarity) in the deployed position relative to the bearing surface 104 .
- the guide mechanism 226 is formed by the two guides 228 arranged on the upper body portion's inner surface 224 in spaced apart positions along the drive axis DA within the cooperating inner slot 206 of the frame 204 .
- the two guides 228 are illustrated here as wheels or rollers that rotate about respective axles or hubs 232 provided on the upper body portion's inner surface 224 .
- the frame 204 is constrained to move relative to the upper body portion's inner surface 224 along the drive axis DA by a single one-piece keeper 240 that is held in place by the two fasteners 236 .
- the optionally lock mechanism 134 constrains the expansion connector 108 to remain in the deployed position, as described herein.
- the latch on the upper body portion 102 a for securely fixing the expansion connector drive mechanism 118 relative to the upper body portion 102 a of the docking station 100 is illustrated here as the lock mechanism 134 .
- the lock mechanism 134 includes a retractable tooth 262 positioned at one end of a lock cylinder 264 that is attached at its opposite end to the upper body portion 102 a , such as to the front face 172 thereof.
- An inclined lead surface 266 allows the to tooth 262 to automatically engage the lip portion 242 of the frame's integral catch mechanism 212 when the frame 204 is moved into the position for deploying the expansion connector 108 , i.e., when the near end 216 of the frame 204 is pulled close to the front face 172 of the upper body portion 102 a .
- a key 268 is applied to a key hole 270 in the lock cylinder 264 for disengaging the tooth 262 from the frame's lip portion 242 , which releases the frame 204 for retracting the expansion connector 108 from the deployed position.
- FIG. 22 illustrates the docking station 100 being in an initial state of readiness to accept the computer 1 (shown in phantom) with the bottom face 2 a of the casing 2 spaced away from the docking station's bearing surface 104 .
- the expansion connector 108 is mounted on the connector seat 208 at the far end 210 of the frame 204 , and the expansion connector 108 along with the two guide pins or arms 116 a , 116 b that are positioned on opposite sides thereof are fully retracted within the cavity portion 128 of the housing 126 adjacent to the bearing surface 104 at the rear face 248 of the upper body portion 102 a.
- the frame 204 cannot be moved relative to the casing's upper body portion 102 a and the bearing surface 104 .
- the expansion connector 108 and guide pins or arms 116 a , 116 b are likewise cannot be moved out of the cavity 128 to interfere with seating the computer 1 .
- a stem portion 272 of the safety catch 124 projects above the bearing surface 104 where the computer 1 is to be seated.
- the stem 272 is sized to pass through both a narrow elongated slot portion 274 at a distal end of the keyhole 222 , and a clearance passage 276 through the bearing surface 104 . Furthermore, the stem portion 272 is cooperatively sized with the narrow slot portion 274 to slide freely along a substantial length thereof, which thus permits the frame 204 to move between the fully retracted position (shown here) and the fully deployed position (shown in subsequent figures).
- the stem portion 272 of the safety catch 124 extends from a base portion 278 having a shoulder 280 that is oversized relative to the passage 276 so that the upper body portion's inner surface 224 on the backside of the bearing surface 104 operates as a stop for the safety catch 124 .
- the base portion 278 of the safety catch 124 is too large to pass through the narrow slot portion 274 of the keyhole 222 .
- the keyhole 222 includes an enlarged passage 282 that communicates with a near end 284 of the slot portion 274 and is sized to pass the base portion 278 of the safety catch 124 .
- the safety catch 124 is structured to cooperate with the biasing mechanism 252 that operates to reset the sensing means for sensing that the computer's casing 2 is emplaced on the docking station's bearing surface 104 before the expansion connector drive 118 can be operated.
- the base portion 278 of the safety catch 124 is structured with a cavity or pocket 286 that is sized to admit a first end portion 288 of the spring 252 and orient the spring 252 along a drive axis DS of the safety catch 124 that is by example and without limitation oriented substantially perpendicular to the bearing surface 104 of the upper body portion 102 a .
- a second end portion 290 of the spring 252 is compressed against the inner surface 253 of the lower body portion 102 b (omitted here for clarity).
- the spring 252 operates against the inner surface 253 of the lower body portion 102 b to drive the safety catch 124 through the security plate 221 and the passage 276 to project from the bearing surface 104 .
- the docking station's computer sensing means 123 is set and the expansion connector 108 is secure against being inadvertently deployed.
- FIG. 23 illustrates the docking station 100 being in an intermediate state of accepting the computer 1 (shown in phantom) with the bottom face 2 a of the casing 2 seated against the docking station's bearing surface 104 .
- the expansion connector 108 is mounted on the connector seat 208 at the far end 210 of the frame 204 , and the expansion connector 108 along with the two guide pins or arms 116 a , 116 b on opposite sides thereof are still fully retracted within the cavity portion 128 of the housing 126 adjacent to the bearing surface 104 at the rear face 248 of the upper body portion 102 a.
- the compression spring of the biasing mechanism 252 is compressed against the inner surface 253 of the lower body portion 102 b (shown in a subsequent figure, removed here for clarity). Accordingly, the safety catch 124 is pushed into the passage 276 and flush with the bearing surface 104 . Simultaneously, the safety catch's base portion 278 , which is oversized relative to the narrow slot portion 274 of the keyhole 222 , is pushed through the keyhole 222 and completely out of the security plate 221 . Only the stem portion 272 of the safety catch 124 now extends through the narrow slot portion 274 of the keyhole 222 . Thus, the docking station's computer sensing means 123 recognizes the presence of the computer 1 as being firmly seated against the bearing surface 104 , and the expansion connector 108 can now be safely deployed.
- FIG. 24 illustrates the docking station 100 being in final state of accepting the computer 1 (shown in phantom) with the bottom face 2 a of the casing 2 seated against the docking station's bearing surface 104 . Furthermore, the expansion connector 108 mounted on the connector seat 208 is positioned to engage the computer's I/O connector 4 .
- the expansion connector 108 and the two guide pins or arms 116 a , 116 b on opposite sides thereof are shown as being deployed out of the cavity portion 128 of the housing 126 of the upper body portion 102 a .
- engagement of the guide pins or arms 116 a , 116 b with the respective interface apertures 4 a , 4 b fine tunes positioning of the expansion connector 108 relative to the computer's I/O connector 4 , whereby operation of the expansion connector drive 118 has here caused the expansion connector 108 to engage the computer's I/O connector 4 , and has here caused the pins (or pin receptors) 122 to engage the pin receptors (or pins) 4 c.
- the compression spring of the biasing mechanism 252 is compressed against the inner surface 253 of the lower body portion 102 b (shown in a subsequent figure, removed here for clarity).
- the stem portion 272 of the safety catch 124 is freely moved along the narrow slot portion 274 of the keyhole 222 .
- the security plate 221 is moved along the drive axis DA toward the front face 172 of the upper body portion 102 a for deploying the expansion connector 108 .
- the expansion connector 108 can now be fully deployed (as illustrated) by moving the frame 204 along the drive axis DA.
- the frame's handle 214 (shown in previous figures) is pulled toward the front face 172 of the upper body portion 102 a.
- the lip portion 242 of the frame's integral catch mechanism 212 is fully engaged with the lock mechanism 134 provided on the upper body portion 102 a . Accordingly, the expansion connector 108 and guide arms 116 a , 116 b on either side thereof are configured in the deployed position described herein, i.e., out of the cavity 128 and extended over the bearing surface 104 for coupling with the computer 1 . Until released, the lock mechanism 134 thus constrains the expansion connector 108 to remain in the deployed position, as described herein.
- the locking latch mechanism 134 When present, the locking latch mechanism 134 is released by application of the key 268 to the key hole 270 and subsequent operation thereof. Else, the alternative non-locking latch mechanism 244 is operated by application of pressure against the latch handle 260 .
- the retraction mechanism 246 automatically retracts the expansion connector drive mechanism 118 from its deployed position along with the expansion connector 108 .
- the frame 204 is automatically retracted from the deployed position adjacent to the front face 172 of the upper body portion 102 a toward the retracted position adjacent to the rear face 248 .
- the guide mechanism 226 cooperates with the inner slot 206 to guide the frame 204 toward the retracted position substantially along the drive axis DA.
- Retraction of the frame 204 simultaneously retracts the expansion connector 108 seated thereon from the computer 1 and into the safe position within the cavity 128 of the integral housing portion 126 of the casing upper body 102 a adjacent the rear 115 of the bearing surface 104 , where the expansion connector 108 is out of harm's way during removal of the computer 1 , as illustrated and discussed herein.
- FIG. 25 illustrates the docking station 100 being in final state of accepting the computer 1 (removed for clarity). Furthermore, the expansion connector 108 mounted on the connector seat 208 is positioned to engage the computer's I/O connector 4 , as discussed herein. Here, the expansion connector 108 and the two guide pins or arms 116 a , 116 b on opposite sides thereof are shown as being deployed out of the cavity portion 128 of the housing 126 of the upper body portion 102 a by operation of the expansion connector drive 118 , as discussed herein.
- a cavity or pocket 292 is provided on the inner surface 253 of the lower body portion 102 b , the pocket 292 being sized to admit the second end portion 290 of the spring 252 opposite from the pocket 286 in the safety catch base portion 278 , and being structured to cooperate with the pocket 286 in the safety catch base portion 278 for orienting the spring 252 along the drive axis DS of the safety catch 124 .
- the spring 252 is thus compressed between the two pockets 286 and 292 for driving the safety catch 124 through the security plate 221 and the passage 276 to project from the bearing surface 104 .
- the spring 252 operates to set the docking station's computer sensing means 123 for securing the expansion connector 108 against inadvertent deployment.
- FIG. 26 and FIG. 27 are respective top and bottom perspective views that together illustrate one embodiment of the frame 204 portion of the expansion connector drive 118 of the invention.
- the single-piece elongated frame 204 is illustrated having the elongated lengthwise inner slot 206 extending nearly the entire length thereof substantially along the longitudinal axis L thereof.
- the integral expanded connector seat 208 is positioned at the first distal or far end 210 for mounting the expansion connector 108 thereon, and includes a pattern of several mounting holes 294 for attaching the expansion connector 108 .
- the integral catch mechanism 212 and integral handle 214 portions are both positioned adjacent to the second proximal or near end 216 of the frame 204 opposite from the connector seat 208 .
- the handle 214 may be provided, by example and without limitation, on one side 218 of the frame 204 , while the catch mechanism 212 may be provided, by example and without limitation, at the near end 216 .
- the catch mechanism 212 includes the lip portion 242 that is structured to cooperate with either the locking latch mechanism 134 or alternative non-locking latch mechanism 244 for securely fixing the expansion connector drive mechanism 118 relative to the upper body portion 102 a of the docking station 100 with the expansion connector 108 in a deployed position.
- the lip portion 242 is integrally formed with the inclined surface 258 that cooperates with the inclined surface 257 of the latch mechanism's tooth 254 for helping the to tooth 254 to automatically engage the lip portion 242 when the frame 204 is moved into the position for deploying the expansion connector 108 .
- the inclined surface 258 of the lip portion 242 similarly cooperates with the inclined surface 266 of the retractable tooth 262 of the optional lock mechanism 134 , when present.
- the inclined surface 258 similarly helps the to tooth 262 to automatically engage the lip portion 242 when the frame 204 is moved into the position for deploying the expansion connector 108 .
- the security mechanism 220 is structured to cooperate with the safety catch 124 to resist deployment of the expansion connector 108 until the computer 1 is seated against the bearing surface 104 .
- the frame 204 includes the integral security plate 221 formed along the side 218 thereof and spaced away from the lengthwise inner slot 206 between the connector seat 208 and the handle 214 .
- the keyhole 222 is formed in the security plate 221 with the narrow slot portion 274 formed substantially parallel with the longitudinal axis L and having the enlarged passage 282 communicating with the proximal or near end 284 thereof.
- the second proximal or near end 216 of the frame 204 includes means for coupling the resilient biasing mechanism 250 for retracting the expansion connector 108 from the deployed position along the drive axis DA.
- the second proximal or near end 216 of the frame 204 includes a simple clearance hole 298 for coupling the biasing mechanism 250 , i.e., spring 252 , between it and the rear face 248 of the upper body portion 102 a , as shown in FIG. 16 .
- the resilient biasing mechanism 250 thus operates between the upper body portion's rear face 248 and the near end 216 of the frame 204 for retracting the expansion connector drive 118 from the deployed position when the locking latch mechanism 134 or alternative non-locking latch mechanism 244 is operated to release the frame's integral catch mechanism 212 .
- FIG. 28 is perspective view inside the upper body portion 102 a and illustrates the expansion connector drive mechanism 118 of the present invention having a simplified single-piece elongated frame 304 having an elongated lengthwise inner slot 306 extending nearly the entire length of the frame 304 substantially along a longitudinal axis LA thereof.
- An integral expanded connector seat 308 is positioned at a first distal or far end 310 of the frame 304 for mounting the expansion connector 108 thereon.
- An integral catch mechanism 312 and integral handle portion 314 are both positioned adjacent to a second proximal or near end 316 of the frame 304 opposite from the connector seat 308 .
- the handle 314 may be provided, by example and without limitation, on an arm 317 extended from one side 318 of the frame 304 , while the catch mechanism 312 may be provided, by example and without limitation, at the near end 316 .
- the catch mechanism 312 is structured to cooperate with either the locking latch mechanism 134 or alternative non-locking latch mechanism 244 for constraining the expansion connector 108 to remain in the deployed position, as described herein.
- the lengthwise slot 306 in the alternate frame 304 cooperates with the guide mechanism 226 on the inner surface 224 of the upper body portion 102 a opposite from the bearing surface 104 for guiding the frame 304 substantially along the drive axis DA, as described herein.
- lengthwise slot 306 cooperates with the two guides 228 of the guide mechanism 226 that are arranged on the upper body portion's inner surface 224 in spaced apart positions along the drive axis DA.
- the two guides 228 are optionally provided as one or more slides that permit the frame 304 to slide freely along the drive axis DA.
- the guides 228 are optionally formed as wheels or rollers that rotate about respective axles or hubs 232 provided on the upper body portion's inner surface 224 .
- the axles or hubs 232 may be configured to space the guides 228 slightly away from the upper body portion's inner surface 224 for easier rotation.
- the frame 304 is constrained to move relative to the upper body portion's inner surface 224 along the drive axis DA by one or more keepers 240 (shown in phantom).
- keepers 240 shown in phantom.
- a pair of disc-shaped keepers 240 are secured to the upper body portion's inner surface 224 by one or more fasteners 236 for constraining the frame 304 to move along the drive axis DA.
- the one or more keepers 240 also operate to constrain the guide wheels 228 , when present, in a position for cooperating with the inner slot 306 of the frame 304 .
- Other structures for the guide mechanism 226 are also contemplated and may be substituted without deviating from the scope and intent of the present invention.
- the alternate frame 304 is structured such that, when the expansion connector 108 is mounted on the connector seat 308 at the far end 310 of the frame 304 , it fits within the cavity portion 128 of the housing 126 and extends above the bearing surface 104 of the upper body portion 102 a .
- the alternate frame 304 is moveable, either by sliding or rolling, in cooperation with the guide mechanism 226 across the inner surface 224 of the upper body portion 102 a and along the drive axis DA.
- a security mechanism 320 is structured to cooperate with the safety catch 124 to resist deployment of the expansion connector 108 until the computer 1 is seated against the bearing surface 104 and the computer's I/O connector 4 is positioned to receive the expansion connector 108 .
- the security mechanism 320 of the alternate frame 304 is provided in an integral security plate 321 formed, by example and without limitation, along the side 318 of the frame 304 and spaced away from the lengthwise inner slot 306 , for example, between the connector seat 308 and the handle 314 .
- the security mechanism 320 is provided as a keyhole 322 formed in the security plate 321 , the keyhole 322 being structured for cooperating with the safety catch 124 such that, when the safety catch 124 is engaged with the keyhole 322 , the frame 304 cannot be moved relative to the casing's upper body portion 102 a .
- the keyhole 322 includes at a distal end thereof a narrow slot portion 324 sized to freely move the stem portion 272 of the safety catch 124 along a substantial length thereof so that the frame 304 is permitted to move between the fully retracted position (shown here) and the fully deployed position (shown in previous figures).
- the keyhole 322 also includes an enlarged passage 326 that communicates with a near end 328 of the slot portion 324 and is sized to pass the base portion 278 of the safety catch 124 for disarming the safety catch 124 .
- the novel expansion connector drive mechanism 118 of the invention is operated by first depressing the safety catch 124 relative to the bearing surface 104 of the upper body portion 102 a , for example by seating the bottom face 2 a of the computer casing 2 against the bearing surface 104 . Depressing the safety catch 124 simultaneously disengages the safety catch 124 of the security mechanism 320 from the cooperating keyhole portion 322 in the security plate 321 , which thereby permits the frame 304 to move along the frame drive axis DA.
- the handle 314 of the expansion connector drive mechanism 118 is pulled parallel to the drive axis DA toward the front face 172 of the casing's upper body portion 102 a , which in turn pulls the expansion connector 108 and guide arms 116 a , 116 b on either side thereof into the deployed position described herein, i.e., the expansion connector 108 outside the cavity 128 and extended over the bearing surface 104 .
- a integral lip portion 330 of the frame's integral catch mechanism 312 engages either the locking latch mechanism 134 (shown) or the alternative non-locking latch mechanism 244 provided on the upper body portion 102 a .
- the locking latch mechanism 134 (shown) or alternative non-locking latch mechanism 244 constrains the expansion connector 108 to remain in the deployed position, as described herein.
- the a retractable tooth 262 of the lock mechanism 134 automatically engages the lip 330 when the alternate frame 304 is moved into the position for deploying the expansion connector 108 as discussed herein.
- an inclined lead surface 332 on the frame's lip portion 330 cooperates with the lead surface 258 to automatically engage the tooth 262 of the lock mechanism 134 when the alternate frame 304 is moved into the position for deploying the expansion connector 108 .
- the retraction mechanism 246 automatically retracts the expansion connector 108 from the deployed position by pulling the frame 304 along the drive axis DA away from the upper body portion's front face 172 toward its rear face 248 .
- the biasing mechanism 250 such as a tension spring (shown) is coupled between the rear face 248 and a simple catchment 334 at the second or near end 316 of the frame 304 adjacent to the handle 314 .
- the biasing mechanism 250 operates between the rear face 248 the catchment 334 for retracting the frame 304 toward the rear face 248 .
- the biasing mechanism 250 thereby operates to retract the expansion connector 108 from the deployed position when the locking latch mechanism 134 (shown) or alternative non-locking latch mechanism 244 is operated to release the frame's integral catch mechanism 312 .
- a compression spring 335 is substituted for the compression spring as the biasing mechanism 250 of the retraction mechanism 246 for automatically retracting the expansion connector 108 from the deployed position.
- the compression spring 335 operates by pushing the frame 304 along the drive axis DA away from the upper body portion's front face 172 toward its rear face 248 .
- the safety catch 124 will not interfere with retraction of the alternate frame 304 .
- the biasing mechanism 252 operates to reset the sensing means for sensing that the computer's casing 2 is emplaced on the docking station's bearing surface 104 before the expansion connector drive 118 can be operated.
- FIG. 29 is an upside-down close-up view showing the edge mounting holes 148 formed along the mutual contact line 103 between the upper and lower body portions 102 a , 102 b of the docking station's two-piece body 102 .
- the edge mounting holes 148 each provide novel means for holding for example but not limited to a square- or hex-shaped mechanical nut N with its threaded bore aligned with the respective mounting hole 148 substantially parallel with the bearing surface 104 and perpendicular to respective side faces 152 and 154 of the upper and lower body portions 102 a , 102 b .
- Any external device can be threadedly attached to the body 102 by means of the shaft S of a screw or bolt B being inserted into a selected one of the edge mounting holes 148 and threaded into the bore of the nut N.
- the edge mounting holes 148 are formed by a pair of mating shapes 336 and 338 formed in the docking station's two-piece body 102 through the mating upper and lower body portions 102 a , 102 b .
- the shapes 336 , 338 meet along the mutual contact line 103 .
- the edge mounting holes 148 are formed by a pair of mating semi-circular holes 336 and 338 formed in the docking station's two-piece body 102 through the mating upper and lower body portions 102 a , 102 b along the mutual contact line 103 .
- the mating holes 336 , 338 may alternatively be different in shape from semi-circular, for example, the holes 336 , 338 may be mating rectangular shapes that form a square hole when mated, or semi-hexagonal shapes that form a hexagonal shape when mated, or another combination of shapes that form an aperture adjacent to the mating line 103 of the upper and lower body portions 102 a , 102 b , and such shapes may be substituted for the semi-circular shapes illustrated without departing from the spirit and scope of the invention.
- the entire shape of the resultant edge mounting holes 148 may be alternatively formed in the edge of either one of the upper and lower body portions 102 a , 102 b without departing from the spirit and scope of the invention.
- the edge mounting holes 148 may alternatively be formed as a generally “U” or “V” or square-shaped hole 336 entirely within an edge portion 340 of one of the side faces 154 of the lower body portion 102 b , or the front 172 or rear face 248 , while the mating hole is entirely eliminated from the upper body portion 102 a , and the shape 338 is an edge portion 342 of an opposite face 154 , 174 or 248 of the upper body portion 102 a that is exposed by the hole 336 in the lower body portion 102 b , whereby the edge mounting hole 148 is formed by the shaped hole 336 that is closed by the mating shape 338 of the upper body portion's exposed edge portion 342 .
- the edge mounting holes 148 may alternatively be formed as a generally “U” or “V” or square-shaped hole 338 entirely within the edge portion 342 of the upper body portion 102 a , while the mating hole 336 is entirely eliminated from the lower body portion 102 b , and the shape 336 is the edge portion 340 of the lower body portion 102 b that is exposed by the hole 338 in the upper body portion 102 a , whereby the edge mounting hole 148 is formed by the shaped hole 338 that is closed by the mating shape 336 of the lower body portion's exposed edge portion 340 .
- Each of the edge mounting holes 148 is backed by a respective nut pocket 346 formed by an open well 348 .
- the well 348 of the integral nut pocket 346 is formed in one of the upper body portion 102 a or the lower body portion 102 b (shown).
- the well 348 is generally rectangular in cross-section and extends through the bottom plane 156 of the lower body portion 102 b past the contact line 103 .
- the well 348 is formed having an opening 350 formed in the bottom plane 156 of the lower body portion 102 b (shown) or adjacent to the bearing surface 104 in the upper body portion 102 a .
- the nut pocket's well 348 and opening 350 thereto are sized to admit a nut N of a desired size, such as #2, #4, #6, #8, #10, 1 ⁇ 4 inch, or metric size nut or bolt head H.
- the well 348 is formed by a pair of spaced apart rigid side walls 352 and 354 that extend inwardly of the side face 154 of the lower body portion 102 b and downwardly of the bottom plane 156 and substantially perpendicular to each.
- the side walls 352 , 354 are sufficiently spaced to easily admit the nut N of the desired size without being significantly oversized such that the nut N cannot rotate in the well 348 .
- the side walls 352 , 354 may include a slight draft angle from the opening 350 toward the contact line 103 .
- the mating shapes 336 , 338 along the contact line 103 are correspondingly sized to admit the shaft of the bolt B sized to mate with the nut N.
- FIG. 30 illustrates that an extension portion 356 of each well 348 extends past the contact line 103 .
- the extension portion 356 closes the end of the corresponding well 348 .
- the extension portion 356 is optionally formed integrally with the corresponding well 348 , and may optionally be formed into a point having integral bottom walls 358 and 360 that are contiguous along a corner 362 in the central bottom of the nut pocket's well 348 .
- the bottom walls 358 , 360 may optionally form an included angle 363 therebetween centered about the corner 362 , the included angle 363 being constructed to mate with the angled walls of the nut N of the desired size and shape, i.e., square or hex.
- the included angle 363 between the bottom walls 358 , 360 is structured to mate with the nut N such as a square or hex nut (shown), whereby the nut N is constrained from turning when torque is applied during insertion and tightening of the screw or bolt B.
- the angle 363 formed by the bottom walls 358 , 360 is about 90 degrees to accommodate a square nut.
- the angle 363 is about 120 degrees to accommodate a hex nut.
- the extension portion 356 of the well 348 may be integral with the side walls 352 , 354 (shown at center and right) and extended from the upper or lower body portion 102 b (shown) past the contact line 103 toward the opposite lower or upper body portion 102 a (shown).
- the nut pockets 346 are optionally fully formed in the selected upper body portion 102 a or lower body portion 102 b (shown).
- the extension portion 356 is optionally formed in the opposing body portion 102 a (shown) and positioned to align with the walls 352 , 354 of the well 348 .
- Each nut pocket's well 348 also includes a backing panel 364 that is optionally integral with the well's side walls 352 , 354 and is spaced away from the side faces 152 and 154 of the upper and lower body portions 102 a , 102 b sufficiently to admit the nut N of desired size.
- the backing panel 364 is a means for constraining the nut N from backing away from the edge hole 148 when the screw or bolt B is applied thereto.
- the nut pocket 346 is operated by simply dropping the nut N of the appropriate size through the opening 350 into the well 348 corresponding to the selected edge mounting hole 148 with two of the nut's parallel sides S 1 and S 2 oriented substantially parallel with the well's side walls 352 , 354 , as illustrated. Thereafter, the nut N falls into the extension portion 356 at the end of the well 348 and nests between the side walls 352 , 354 and the bottom walls 358 , 360 of the extension 356 that combine to form the bottom of the well 348 .
- the nut's threaded bore Nb substantially automatically self-aligns with the edge mounting hole 148 . Thereafter, the screw or bolt B of the appropriate size is inserted through the corresponding hole 148 and threaded into the nut's bore Nb for attaching a desired edge attachment.
- FIG. 31 is a section view of the nut pockets 346 taken from inside the two-piece body 102 of the docking station 100 of the invention.
- the nut pocket 346 (far left) is illustrated having the extension portion 356 optionally formed in the opposing body portion 102 a (shown) and positioned in alignment with the walls 352 , 354 of the well 348 .
- This view also illustrates two of a plurality of optional tabs 366 that extend between the upper and lower body portions 102 a , 102 b for alignment therebetween.
- FIG. 32 is a section view of the nut pockets 346 taken from inside the two-piece body 102 of the docking station 100 of the invention.
- the nut pocket 346 (far left) is illustrated having the extension portion 356 optionally formed in the opposing body portion 102 a (shown) and positioned in alignment with the walls 352 , 354 of the well 348 .
- the nut N is illustrated as being installed in the nut pocket 346 with the screw or bolt B inserted through the edge mounting hole 148 and mated with the nut N.
- the screw or bolt B is thereby positioned to secure an external object O (shown in phantom) to the sides 152 , 154 of the upper and lower body portions 102 a , 102 b of the docking station 100 of the invention.
- FIG. 33 illustrates the nut N installed in the nut pocket 346 with the screw or bolt B inserted through the edge mounting hole 148 and mated with the nut N.
- the screw or bolt B is thereby positioned to secure the external object O (shown in phantom) to the sides 152 , 154 of the upper and lower body portions 102 a , 102 b of the docking station 100 of the invention.
- FIG. 34 illustrates lower body portion 102 b with the upper body portion 102 a removed for clarity.
- the nut pockets 346 are illustrated as being optionally fully formed in the selected upper body portion 102 a or lower body portion 102 b (shown).
- the extension portion 356 of the well 348 is integral with the side walls 352 , 354 and extended from the upper or lower body portion 102 b (shown) past the contact line 103 toward the opposite lower or upper body portion 102 a (shown).
- the nut N is illustrated as being installed in the nut pocket 346 with the screw or bolt B inserted through the edge mounting hole 148 and mated with the nut N.
- FIG. 35 illustrates one of the edge mounting holes 148 alternatively formed with a screw or bolt pocket 368 formed by example and without limitation as a pair of mating pockets 370 and 372 (shown in a subsequent figure) integrally formed on inside surfaces 374 and 376 of the respective lower body portion 102 b and upper body portion 102 a and adjacent to the respective edges 340 and 342 thereof.
- the pocket 370 is formed by example and without limitation as a construction of integral walls 378 interconnected along corners 380 and a backing panel 382 integrated with the walls 378 .
- the pockets 370 , 372 mate along the contact line 103 of the upper and lower body portions 102 a , 102 b in substantial alignment with the corresponding shaped holes 336 , 338 that form the edge mounting hole 148 .
- the screw pockets 368 are optionally formed with a substantially square shape to accommodate a square-head screw or bolt of a desired size, or may be formed with a substantially hexagonal shape (shown) to accommodate a hex-head screw or bolt of the desired size.
- Each screw pocket 368 is thus structured to mate with the square or hex head of the screw or bolt B, whereby the screw or bolt B is constrained from turning when torque is applied during installation and tightening of the mating nut N for securing the external object.
- FIG. 36 is a section view of one of the screw pockets 368 taken from inside the two-piece body 102 of the docking station 100 of the invention.
- the screw pocket 368 is illustrated having the mating pockets 370 and 372 integrally formed on inside surfaces 374 and 376 of the respective lower body portion 102 b and upper body portion 102 a and adjacent to the respective edges 340 and 342 thereof.
- the mating pockets 370 and 372 are illustrated with the respective backing panels 382 removed for clarity.
- the mating pockets 370 and 372 are positioned in alignment with the shaped holes 336 , 338 that form the corresponding edge mounting hole 148 (shown in previous figures).
- the screw pockets 368 are optionally formed with a substantially square shape to accommodate the head H of the square-head screw or bolt B of a desired size, or may be formed with a substantially hexagonal shape (shown) to accommodate a hex-head screw or bolt B of the desired size.
- FIG. 37 illustrates the screw pocket 368 being alternatively configured to accommodate a carriage bolt Bc (shown in phantom) wherein the pocket 368 is formed having integral near and far portions 384 and 386 substantially aligned with the shaped nut hole 338 (or 336 ), and the integral backing panel 364 .
- the near portion 384 adjacent to the wall 152 (or 154 ) of the body portion 102 a (or 102 b ) is formed as one half of a square, either as an approximately 90 degree “V” shape or a rectangle (shown) that is sized to accept a square base portion Bc 1 of the carriage bolt head Bch without turning when the nut N is installed and tightened.
- the far portion 386 spaced away from the wall 152 of the body portion 102 a by the depth of the near portion 384 is structured to accept a round pan portion Bc 2 of the carriage bolt Bc.
- the far portion 386 of the screw pocket 368 is a “V” shape or a rectangle shape (shown) aligned with the shaped hole 338 (or 336 ) and sized to accept the round pan portion Bc 2 of the carriage bolt Bc.
- FIG. 38 is a section view of the screw or carriage bolt pocket 368 taken from inside the two-piece body 102 of the docking station 100 of the invention.
- the carriage bolt pocket 368 is illustrated by example and without limitation as having the far portion 386 of the screw pocket 368 being a semi-cylindrical shape aligned with the shaped hole 338 (or 336 ) and sized to accept the round pan portion Bc 2 of the carriage bolt Bc.
- FIG. 39 illustrates the novel display unit support 142 of the invention that is structured for supporting the computer's flat display unit 9 .
- the display unit support 142 includes an elongated rigid support arm 388 having a first pivot end portion 390 that is pivotally coupled to the docking station body 102 , the rigid support arm 388 being pivotal about a pivot axis 392 in a plane 394 that is substantially parallel and adjacent to the side faces 152 , 154 of the body portions 102 a , 102 b and substantially perpendicular to the upper body portion's bearing surface 104 .
- the pivot end 390 of the support arm 388 is coupled in a pivotal relationship with the two-piece body 102 by a pivot mechanism 398 .
- the pivot mechanism 398 operates about the pivot axis 392 between a hub portion 400 of the body 102 and an enlarged shoulder portion 402 at the pivot end 390 of the arm 388 .
- the shoulder portion 402 of the support arm 388 rotates about a pivot axle 404 (shown in one or more subsequent figures) that is aligned along the pivot axis 392 and extends between a hub portion 400 of the body 102 and the arm's shoulder portion 402 .
- Alternative embodiments of the pivot mechanism 398 may be substituted without departing from the spirit and scope of the invention.
- the support arm 388 is constrained to operate about the pivot mechanism 398 with the shoulder portion 402 abutting the body's hub portion 400 by the pivot mechanism 398 .
- the axle 404 is optionally a screw or bolt passed through one of the edge mounting holes 148 of the type described herein and threaded into a nut 406 (shown in one or more subsequent figures) in one of the nut pockets 346 of the type described herein. Thereafter, a knob or handle 408 on the axle 404 is operated for tightening and loosening of the shoulder portion 402 of the support arm 388 vis-á-vis the hub portion 400 of the body 102 by turning relative to the nut 406 in the nut pocket 346 of the body 102 .
- the handle 408 on the head portion 410 of the axle 404 operates against an outside face 412 of the shoulder portion 402 of the support arm 388 to compress the shoulder portion 402 against the body's hub 400 . Accordingly, friction between the shoulder portion 402 and the hub 400 caused by tightening of the handle 408 on the head portion 410 of the axle 404 constrains the support arm 388 to remain in a selected rotational orientation with the upper body portion's bearing surface 104 .
- the display unit support 142 thus constrains the computer's flat display unit 9 in the selected rotational orientation.
- the rotational orientation of the support arm 388 of the display unit support 142 with the upper body portion's bearing surface 104 is thus infinitely adjustable by alternately loosening and tightening the handle 408 .
- the novel display unit support 142 of the invention also includes a novel display unit clamping mechanism 414 adjacent to a second extreme support end portion 416 of the rigid support arm 388 opposite from the first pivot end portion 390 .
- the display unit clamping mechanism 414 adjacent to the second support end portion 416 of the support arm 388 is structured as a spring-loaded vice for constraining the display unit 9 relative to the support end portion 416 of the support arm 388 .
- the display unit 9 is pinched between an integral substantially rigid anvil 418 and a separate and rotatable substantially rigid jaw 420 .
- the clamping mechanism 414 includes the substantially rigid anvil 418 being integral with the elongated support arm 388 .
- the supporting anvil 418 is extended laterally to a longitudinal axis 422 of the support arm 388 to an extent 423 that at least an end portion 424 of the anvil 418 distal from the support arm 388 is projected into space in a position opposite from a portion of the bearing surface 104 in the vicinity of either one of the pair of fixedly positioned engaging pins 114 a and 114 b (shown) and spaced away from the computer bearing surface 104 by several inches.
- the anvil 418 is formed with an arcuate support surface 426 that is curved in a convex shape covering an extended arc having a substantially smooth face aligned generally with the longitudinal axis 422 of the elongated support arm 388 and facing toward the front face 172 of the body 102 a such that the hard shell backing portion 9 b of the display unit 9 is supported in an upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 by resting against the arcuate support surface 426 of the anvil 418 , as illustrated herein.
- the separate substantially rigid jaw 420 includes a first proximate barrel-shaped knuckle portion 428 that is projected inward of a substantially rigid finger 430 .
- the knuckle portion 428 of the jaw 420 is coupled to the anvil 418 adjacent to a heal portion 432 thereof proximate to the end portion 416 of the support arm 388 .
- the knuckle portion 428 spaces the rigid finger 430 away from the arcuate support surface 426 of the anvil 418 by a variable short distance 434 that is adjustably configured to permit the flat display unit 9 of the computer 1 to fit therebetween.
- the short distance 434 by which the finger 430 is spaced away from the arcuate support surface 426 of the anvil 418 is adjustable to accept therebetween different thicknesses t of flat display units 9 of different computers 1 (illustrated in FIG. 1 ).
- the short distance 434 is also variable as discussed herein to permit the flat display units 9 to rotate to different orientations with the keyboard 7 on the top face 2 b of the computer casing 2 , while remaining constrained against the arcuate support surface 426 of the anvil 418 by the jaw 420 .
- an integral hard nub or button 436 (more clearly shown in one or more subsequent figures) is optionally projected slightly from an inward facing surface 438 of the rigid finger 430 adjacent to a second end 440 thereof distal from the first proximate knuckle portion 428 thereof.
- the jaw 420 is thus positioned in a pinching relationship to the anvil 418 such as to capture the display unit 9 between the arcuate support surface 426 of the anvil 418 and the nub 436 projected from the distal end 440 of the rigid finger 430 .
- the display screen surface portion 9 a of the display unit 9 is supported in an upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 by the rigid jaw 420 , as illustrated herein. Accordingly, the display unit 9 of the computer 1 is constrained from falling backward away from the keyboard 7 by the anvil 418 , and is simultaneously constrained from falling forward toward the keyboard 7 by the jaw 420 .
- the display unit clamping mechanism 414 also includes a variable pressure resilient biasing mechanism 442 (detailed in a subsequent figure) that resiliently biases the jaw 420 toward the arcuate support surface 426 of the anvil 418 in the pinching relationship described herein.
- the biasing mechanism 442 automatically varies the spacing distance 434 to accommodate the varying cross-sectional thickness of the display unit 9 of the computer 1 of the prior art as the display unit 9 is rotated relative to the top face 2 b of the computer casing 2 about its hinge axis h into different upright positions at the back of the keyboard 7 .
- FIG. 40 illustrates the novel display unit support 142 of the invention in a stored position having the support arm 388 rotated about the pivot axis 392 toward the bearing surface 104 of the upper body portion 102 a , and the anvil 418 is nested in the edge recess 139 .
- the edge recess 139 is sized such that the anvil 418 is nested below the bearing surface 104 so as not to interfere with seating of the computer 1 .
- the knob 408 may be tightened to secure the support arm 388 in the stored position.
- FIG. 41 is a side view that illustrates the jaw 420 of the display unit support 142 of the invention being rotated about a drive axis 444 of the biasing mechanism 442 into substantial alignment with the support arm 388 during storing of the display unit support 142 .
- the jaw 420 When rotated into this rest position, the jaw 420 does not interfere with nesting of the anvil 418 in the edge recess 139 .
- FIG. 42 illustrates the docking station 100 of the invention with the novel display unit support 142 in an active position having the support arm 388 rotated about the pivot axis 392 with the display unit clamping mechanism 414 supporting the display unit 9 in an open upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the anvil 418 is positioned supporting the hard shell backing portion 9 b of the display unit 9 .
- the jaw 420 is illustrated as being rotated about the drive axis 444 into substantial alignment with the support arm 388 . Accordingly, the jaw 420 does not interfere with closing the display unit 9 over the top face 2 b of the computer casing 2 .
- the knob 408 may be tightened to secure the support arm 388 in the active position.
- FIG. 43 illustrates the docking station 100 of the invention with the novel display unit support 142 in an active position having the support arm 388 rotated about the pivot axis 392 with the display unit clamping mechanism 414 supporting the display unit 9 in an open upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the anvil 418 is positioned supporting the hard shell backing portion 9 b of the display unit 9 .
- the jaw 420 is illustrated as being rotated into its active position supporting the display screen surface portion 9 a of the display unit 9 in the upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the display unit 9 is thus constrained in the upright position by the pincer action of the jaw 420 relative to the anvil 418 .
- the button 436 at the second end 440 of the inward facing surface 438 of the rigid finger 430 presses against the display screen surface portion 9 a of the display unit 9 .
- the second end 440 of the rigid finger 430 extends sufficiently from the jaw 420 that the button 436 on the inward facing surface 438 thereof is extended over the hard shell lip portion 9 c of the display unit 9 onto the display screen 9 d .
- the rigid finger 430 thus wraps around the hard shell lip portion 9 c of the display unit 9 , and the button 436 thus falls below the lip portion 9 c onto the display screen 9 d . Accordingly, the novel display unit clamping mechanism 414 is constrained from slipping laterally off of the lip portion 9 c and inadvertently releasing the display unit 9 .
- FIGS. 44 through 50 illustrate that the arcuate support surface 426 of the anvil 418 permits the backing portion 9 b of the display unit 9 to roll thereabout in smooth substantially constant contact during rotation relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the rigid jaw 420 constrains the display unit 9 to follow rotations of the support arm 388 about the pivot axis 392 .
- the integral hard nub or button 436 on the tip 440 of the rigid finger 430 presses against the display screen 9 d and forces the display screen surface 9 a toward the arcuate support surface 426 of the anvil 418 .
- FIG. 44 also illustrates the docking station 100 of the invention with the novel display unit support 142 in the active position of FIG. 43 having the support arm 388 rotated about the pivot axis 392 with the display unit clamping mechanism 414 supporting the display unit 9 in an open upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the anvil 418 is positioned supporting the hard shell backing portion 9 b of the display unit 9
- the jaw 420 is positioned supporting the display screen surface portion 9 a .
- the display unit 9 is thus constrained in the upright position between the jaw 420 and the anvil 418 .
- FIG. 45 is a side view of the docking station 100 having the display unit support 142 in one active position, as illustrated in previous figures, having the support arm 388 rotated about the pivot axis 392 with the display unit clamping mechanism 414 supporting the display unit 9 in one open over-center position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the anvil 418 is positioned supporting the hard shell backing portion 9 b of the display unit 9 .
- the jaw 420 is rotated into its active position supporting the display screen surface portion 9 a of the display unit 9 in the upright over-center position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the display unit 9 is thus constrained in the open over-center position by the pincer action of the jaw 420 relative to the anvil 418 .
- FIG. 46 is an opposite side view of the display unit support 142 in the active position of FIG. 45 for constraining the display unit 9 in the open over-center position by the pincer action of the jaw 420 relative to the anvil 418 .
- the knob 408 is tightened to secure the support arm 388 in the active over-center position.
- FIG. 47 is a side view of the docking station 100 having the display unit support 142 in another active position having the support arm 388 rotated about the pivot axis 392 with the display unit clamping mechanism 414 supporting the display unit 9 in a substantially vertical upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the anvil 418 is positioned supporting the hard shell backing portion 9 b of the display unit 9 .
- the jaw 420 is rotated into its active position supporting the display screen surface portion 9 a of the display unit 9 in the upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the display unit 9 is thus constrained in the upright position by the pincer action of the jaw 420 relative to the anvil 418 .
- FIG. 48 is an opposite side view of the display unit support 142 in the active position of FIG. 47 for constraining the display unit 9 in the substantially vertical upright position by the pincer action of the jaw 420 relative to the anvil 418 .
- the knob 408 is tightened to secure the support arm 388 in the upright position.
- FIG. 49 is a side view of the docking station 100 having the display unit support 142 in another active position having the support arm 388 rotated about the pivot axis 392 with the display unit clamping mechanism 414 supporting the display unit 9 in another open position having the display unit 9 in an extreme over-center upright position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the anvil 418 is positioned supporting the hard shell backing portion 9 b of the display unit 9 .
- the jaw 420 is rotated into its active position supporting the display screen surface portion 9 a of the display unit 9 in the extreme over-center open position relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the display unit 9 is thus constrained in the extreme over-center open position by the pincer action of the jaw 420 relative to the anvil 418 .
- FIG. 50 is an opposite side view of the display unit support 142 in the active position of FIG. 49 for constraining the display unit 9 in the extreme over-center open position by the pincer action of the jaw 420 relative to the anvil 418 .
- the knob 408 is tightened to secure the support arm 388 in the extreme over-center position.
- FIG. 51 illustrates by example and without limitation the pivot mechanism 398 that constrains the support arm 388 to operate about the pivot axis 392 with the shoulder portion 402 abutting the body's hub portion 400 .
- the pivot axle 404 is a screw or bolt such as a shoulder bolt, it includes a first threaded end 450 that is sized to pass through one of the body's edge mounting holes 148 of the type described herein.
- the threaded end 450 of the screw or bolt type pivot axle 404 is threaded into the nut 406 installed in one of the nut pockets 346 of the type described herein, wherein the nut 406 is optionally a lock nut of the hex variety.
- a shaft portion 452 of the screw or bolt type pivot axle 404 passes through a complementary rotational clearance bore 454 which is formed through the shoulder portion 402 of the support arm 388 and which is sized to rotate smoothly about the pivot axle shaft portion 452 .
- the head portion 410 of the screw or bolt type pivot axle 404 distal from the body 102 is by example and without limitation constrained in a recessed nut pocket 456 formed in the knob or handle 408 .
- the knob 408 constrains the head portion 410 of the pivot axle 404 for tightening and loosening of the shoulder portion 402 of the support arm 388 vis-á-vis the hub portion 400 of the body 102 by turning relative to the nut 406 in the nut pocket 346 of the body portion's bearing surface 104 , whereby the display unit support 142 constrains the computer's flat display unit 9 in the selected rotational orientation.
- the rotational orientation of the support arm 388 of the display unit support 142 is thus infinitely adjustable relative to the upper body portion's bearing surface 104 .
- pivot mechanism 398 may be substituted without departing from the spirit and scope of the invention.
- FIG. 52 illustrates by example and without limitation one alternative configuration of the pivot mechanism 398 wherein the head portion 410 of the screw or bolt type pivot axle 404 is constrained in the one of the body's nut pockets 346 .
- the shaft portion 452 of the pivot axle 404 passes through the body's edge mounting holes 148 and extends through the complementary rotational clearance bore 454 which is formed through the shoulder portion 402 of the support arm 388 .
- the threaded end 450 of the pivot axle 404 is threaded into a complementary threaded bore 462 in the knob 408 , which is operable for tightening and loosening of the shoulder portion 402 of the support arm 388 vis-á-vis the hub portion 400 of the body 102 by turning relative to the pivot axle 404 .
- FIG. 53 illustrates by example and without limitation another alternative configuration of the pivot mechanism 398 .
- an optional resilient biasing mechanism 470 may be provided for biasing the shoulder portion 402 of the support arm 388 toward the face 460 on the hub portion 400 of the body 102 .
- the optional resilient biasing mechanism 470 may be formed of a conventional compression spring 472 installed inside an enlarged counter-bore 474 formed in the shoulder portion 402 through an opening 476 in the outside face 412 of the shoulder portion 402 .
- the spring portion 418 of the biasing mechanism 470 is constrained between a floor portion 478 of the counter-bore 420 and the head portion 410 of the screw or bolt type pivot axle 404 .
- a washer 480 may be inserted between the bolt head 410 and the compression spring 472 .
- the spring portion 418 of the biasing mechanism 470 thus operates against the floor portion 478 of the counter-bore 474 to compress 102 .
- the handle 408 on the head portion 410 of the pivot axle 404 operates against the outside face 412 of the shoulder portion 402 of the support arm 388 to compress an inside face 458 the shoulder portion 402 against an outside face 460 of the hub 400 .
- a ratcheting mechanism 482 is optionally provided for securing the support arm 388 in rotational relationship with the bearing surface 104 of the body portion 102 a .
- a first quantity of one or more teeth 484 are provided on the outside face 460 of the hub 400 portion of the body 102 in a variable intermeshing relationship with a quantity of one or more notches 486 formed on the inside face 458 the arm's shoulder portion 402 .
- the intermeshing teeth 428 and notches 430 permit the arm to be secured in a desired rotational relationship with the body 102 for supporting the computer's display unit 9 in a desired discrete orientation relative to the docking station's computer bearing surface 104 .
- FIG. 54 illustrates by example and without limitation the novel display unit clamping mechanism 414 of the display unit support 142 of the invention in an active configuration clamping the display unit 9 in an open position relative to the computer casing 2 .
- the novel display unit clamping mechanism 414 is positioned adjacent to a second extreme support end portion 416 of the rigid support arm 388 opposite from the first pivot end portion 390 .
- the display unit clamping mechanism 414 adjacent to the second support end portion 416 of the support arm 388 is a hand for constraining the display unit 9 relative to the support end portion 416 of the support arm 388 .
- the clamping mechanism 414 includes the substantially rigid anvil 418 that is integral with the elongated support arm 388 .
- the anvil 418 is extended laterally to a longitudinal axis 422 of the support arm 388 with its end portion 424 being projected into space in a position above the bearing surface 104 .
- the arcuate support surface 426 of the anvil 418 is curved in the convex shape that covers an extended arc having a center of rotation 488 (best shown in one or more previous figures).
- the center of rotation 488 is oriented generally parallel with pivot axis 392 of the support arm 388 , substantially lateral of the longitudinal axis 422 , and substantially crosswise of the drive axis 444 of the biasing mechanism 442 .
- the smooth arcuate support surface 426 is directed generally toward the front face 172 of the body 102 a for supporting the hard shell backing portion 9 b of the display unit 9 .
- the first proximate knuckle portion 428 of the separate jaw 420 is movably coupled to the anvil 418 adjacent to the heal portion 432 thereof.
- the finger portion 430 of the jaw 420 is thus spaced away from the arcuate support surface 426 of the anvil 418 by the variable short distance 434 that is adjustably configured to permit the flat display unit 9 of the computer 1 to fit therebetween.
- the short distance 434 by which the finger portion 430 of the jaw 420 is spaced away from the arcuate support surface 426 of the anvil 418 is adjustable to accept different thicknesses of flat display units 9 of different computers 1 therebetween.
- the integral hard nub or button 436 is optionally projected slightly from the inside surface 438 of the rigid finger 430 adjacent to its distal tip 440 .
- the jaw 420 is thus positioned in a pinching relationship to the anvil 418 such as to capture the display unit 9 between the arcuate support surface 426 and the projected nub 436 on the tip 440 of the rigid finger 430 .
- the display unit 9 is compressed against the arcuate support surface 426 of the anvil 418 by the hard nub 436 on the tip 440 of the rigid finger 430 , as illustrated herein.
- the display unit clamping mechanism 414 also includes the variable pressure resilient biasing mechanism 442 that resiliently biases the jaw 420 toward the arcuate support surface 426 of the anvil 418 to form the pinching relationship described herein.
- the biasing mechanism 442 automatically varies the spacing distance 434 to accommodate a varying cross-sectional thickness of the display unit 9 as it is rotated about its hinge axis h relative to the top face 2 b of the computer casing 2 into different upright positions at the back of the keyboard 7 .
- the biasing mechanism 442 is constructed along the longitudinal drive axis 444 that is oriented generally crosswise of both the longitudinal axis 422 of the support arm 388 and the center of rotation 488 of the arcuate support surface 426 of the anvil 418 .
- the biasing mechanism 442 includes a compression spring 490 recessed inside a tubular spring cavity 492 that is counter-bored in a barrel-shaped spring casing 494 of the heal portion 432 at the support end portion 416 of the rigid support arm 388 .
- the tubular spring cavity 492 is substantially aligned along the longitudinal drive axis 444 of the biasing mechanism 442 .
- the tubular spring cavity 492 has a full size input opening 496 at it outer end, and terminates in a floor portion 498 at its inner end.
- a smaller guide pin portion 500 of the heal portion 432 extends from the barrel-shaped cavity 494 along the longitudinal drive axis 444 .
- the guide pin portion 500 of the heal portion 432 is formed therethrough with a tubular clearance bore 502 that communicates between the floor 498 of the tubular spring cavity 492 and an opening 504 at the clearance bore's outer tip 506 .
- the tubular clearance bore 502 through the guide pin portion 500 is sized to complement a pivot axle 508 such as a screw or bolt.
- the barrel-shaped knuckle portion 428 of the separate jaw 420 is projected inward of the inward facing surface 438 of the rigid finger 430 along the longitudinal drive axis 444 of the biasing mechanism 442 .
- the barrel-shaped knuckle portion 428 is formed with a complementary tubular counter-bore 510 that is sized to slidingly receive the guide pin portion 500 of the support arm's heal portion 432 through an opening 512 in the end of the knuckle portion 428 distal from the rigid finger 430 .
- the pivot axle 508 is projected substantially central of the tubular counter-bore 510 from a floor 514 thereof and along the longitudinal drive axis 444 of the biasing mechanism 442 .
- an aperture or passage 516 is formed in the floor 514 of the tubular counter-bore 510 and communicates with an outward facing surface 518 of the rigid finger 430 opposite from the inward facing surface 438 .
- the passage 516 is sized to receive a shaft portion 520 of the screw-type pivot axle 508 , while the aperture 516 is sized to constrain a head portion 522 from passing.
- the passage 516 in the floor of the tubular counter-bore 510 is substantially aligned with the tubular clearance bore 502 in the guide pin 500 .
- the shaft 520 of the pivot axle 508 is slidingly received through the passage 516 , along the tubular clearance bore 502 in the guide pin portion 500 of the spring casing 494 , and into the tubular spring cavity 492 .
- the compression spring 490 is received over the pivot axle's shaft 520 and compressed in the tubular spring cavity 492 between the floor portion 498 at its inner end and a second end 524 of the pivot axle 508 opposite from its head 522 .
- a nut 526 and optional washer 528 are installed onto the threaded end of the pivot axle shaft 520 .
- a detent mechanism 530 is provided between the guide pin portion 500 of the anvil 418 and the knuckle portion 428 of the jaw 420 .
- the detent mechanism 530 may be formed by example and without limitation by one or more teeth 532 sized to slide into one or more slots 534 formed between the guide pin 500 and the knuckle portion 428 of the jaw 420 .
- variable pressure resilient biasing mechanism 442 of the display unit clamping mechanism 414 resiliently biases the jaw 420 toward the arcuate support surface 426 of the anvil 418 in the pinching relationship described herein.
- the cross-sectional thickness t of the display unit 9 increases and decreases as it is rotated into different orientations relative to the keyboard 7 on the top face 2 b of the computer casing 2 , the cross-sectional thickness t varying between a minimum when the display unit 9 is in the substantially vertical upright position illustrated in FIG. 47 , and a maximum when the display unit 9 is in the extreme over-center position illustrated in FIG. 49 .
- the biasing mechanism 442 floats the rigid finger 430 along the longitudinal drive axis 444 over the barrel-shaped portion 494 of the anvil 418 .
- the biasing mechanism 442 thus permits the clamping mechanism 414 to accommodate the varying cross-sectional thickness t of the display unit 9 as it is rotated into different orientations relative to the keyboard 7 on the top face 2 b of the computer casing 2 .
- the cross-sectional thickness t increases, and the display unit 9 exerts pressure on the biasing mechanism 442 , which spreads the jaw portion 420 of the clamping mechanism 414 resiliently away from the anvil portion 418 .
- the spring 490 exerts an opposite compression pressure that squeezes the rigid finger 430 of the jaw 420 against the display screen surface 9 a so that the display unit 9 is pressed against the arcuate support surface 426 of the anvil 418 .
- the spring 490 continues to exert the compression pressure that squeezes the rigid finger 430 of the jaw 420 against the display screen surface 9 a so that the display unit 9 is pressed against the arcuate support surface 426 of the anvil 418 even while the cross-sectional thickness t decreases.
- the second end 440 of the rigid finger 430 extends sufficiently from the jaw 420 that the button 436 on the inward facing surface 438 thereof is extended over the hard shell lip portion 9 c of the display unit 9 onto the display screen 9 d .
- the rigid finger 430 thus wraps around the hard shell lip portion 9 c of the display unit 9 .
- the biasing mechanism 442 operating along the longitudinal drive axis 444 forces the button 436 below the lip portion 9 c and against the display screen 9 d . Accordingly, the biasing mechanism 442 operates the button 436 to constrain the novel display unit clamping mechanism 414 from slipping laterally off of the lip portion 9 c and inadvertently releasing the display unit 9 .
- FIG. 55 illustrates by example and without limitation the novel display unit clamping mechanism 414 of the display unit support 142 invention in a passive configuration wherein the hard shell backing portion 9 b of the display unit 9 is supported by the anvil 418 portion of the support arm 388 with the opposing jaw portion 420 in an open position relative to the display screen surface 9 a . Accordingly, the jaw 420 including the finger portion 430 is rotated away from the active position over the display screen surface 9 a . For example, the knuckle 428 is pulled away from the anvil 418 along the longitudinal drive axis 444 until the detent 530 disengages, i.e., until the teeth 532 slide free of the slots 534 .
- the jaw portion 420 is rotated until the finger 430 clears the display unit 9 .
- the jaw 420 is freed and the compression spring 490 draws the knuckle 428 toward the anvil 418 along the longitudinal drive axis 444 .
- the teeth 532 and slots 534 may be additionally configured to form the detent 530 between the between the guide pin portion 500 and the knuckle portion 428 for securing the jaw 420 in the passive configuration vis-á-vis the anvil 418 .
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Details Of Connecting Devices For Male And Female Coupling (AREA)
- Casings For Electric Apparatus (AREA)
Abstract
An external expanding apparatus or “docking station” operable with a portable computer device of a type having a display unit having a display screen on an inner surface thereof and a hard shell backing surface opposite thereof and pivotally mounted on a substantially rigid casing having a pair of locating holes adjacent to opposite corners of a substantially planar bottom surface thereof, and an input/output (I/O) connector positioned on a back plane thereof with a pair of positioning apertures provided on opposite sides thereof.
Description
- This Divisional application claims priority benefit of co-pending parent U.S. patent application Ser. No. 11/480,666 filed in the name of Jeffrey D. Carnevali on Jun. 30, 2006, the complete disclosure of which is incorporated herein by reference.
- The present invention relates generally to trays for holding portable devices, and in particular to quick release docking stations for portable computers and other portable electronics devices having one or more input/output (I/O) communication ports.
- Portable notebook-type computers using a built-in battery pack power source are generally well-known and have an advantage in being handy to carry about and freely used even in those places which are not accessible to the commercial power supply.
- Such computers are compact in design for higher portability, so that their standard functions are inevitably more limited than those of desktop computers. Accordingly, such portable computers are generally provided with one or more connectors and ports for function expansion, usually on the rear face of its casing which supports a keyboard and a display unit. These computers are additionally furnished with new functions by connecting peripheral devices, such as a hard disk drive, mouse, printer, etc., to the connectors and ports.
-
FIGS. 1 and 2 illustrate a notebook-typeportable computer 1 for use as a portable electronic device which is connected to an external expanding apparatus, commonly referred to as a “docking station.” Thecomputer 1 includes aplastic casing 2 serving as an apparatus body. Thecasing 2 is in the form of a flat generally rectangular box having abottom face 2 a and atop face 2 b, which extend generally parallel to each other, and afront face 2 c, arear face 2 d, andside faces 2 e and 2 f, which are continuous with the bottom andtop faces such computer casing 2 further includes a tongue 2 g projected from thefront face 2 c and having abottom face 2 h which may be continuous with thebottom face 2 a of thecasing 2, atop face 2 i which extends generally parallel to thebottom face 2 h, and afront face 2 j that is spaced away from the casingfront face 2 c. The tongue 2 g may includeside surfaces front surface 2 c and thetongue front face 2 j. Other surfaces of thecasing 2, such as one of the side faces 2 e, 2 f may includes additional features, such as but not limited to a CD-ROM or DVD-ROM 3 a and amain power switch 3 b. - Arranged on the
top face 2 b of thecasing 2, as illustrated inFIG. 1 , is akeyboard 7 which is used to input information and commands. A pair ofdisplay supporting portions top face 2 b. Aflat display unit 9 having a thickness t is connected to thedisplay supporting portions display unit 9 is rotated about a hinge axis h on a pair oflegs portions display unit 9 is supported on thecasing 2 to be rotatable about the hinge axis h relative to thecasing 2 between a closed position, in which adisplay screen surface 9 a of thedisplay unit 9 touches thetop face 2 b of thecasing 2. Thedisplay unit 9 thereby covers thekeyboard 7 for protecting both thekeyboard 7 anddisplay screen surface 9 a of thedisplay unit 9 with a hardshell backing portion 9 b of thedisplay unit 9. Thedisplay unit 9 alternately rotates into an open position in which thedisplay unit 9 stands upright with thedisplay screen surface 9 a exposed at the back of thekeyboard 7, as illustrated. Furthermore, a hardshell lip portion 9 c of thedisplay unit 9 surrounds thesensitive display screen 9 d, thedisplay screen 9 d is slightly recessed below the hardshell lip portion 9 c. -
FIG. 2 illustrates an input/output (I/O) connector orport 4 of the known portable computer being provided in therear face 2 d betweeninterface apertures O connector 4 includes a quantity of pins or pin receptors (shown) 4 c are organized in a selected pattern. The pins orpin receptors 4 c provided input/output (I/O) capability for communicating with various peripheral components that may provide such functions as for example but not limited to: a modem, a game port, audio output, a microphone input, serial connections, parallel connections, a video display output, USB (Universal Serial Bus) connection, a mouse connection, a keyboard connection, an external power supply connection. Alternatively, connection to these or other peripheral devices are provided by a separate and individual modem connector, a game port, audio speaker connectors, a microphone connector, two serial connectors, a parallel connector, a display unit connector, a USB connector, a mouse connector, a keyboard connector, and an external power supply connector, as are generally well-known in the art. Ametallic terminal plate 5 is exposed on therear face 2 d and surrounds the I/O connector 4 and includes an open end of each of theapertures apertures rear face 2 d of thecasing 2 toward theopposite front face 2 c. - In transporting the
computer 1 peripheral devices must be removed from their corresponding connectors or ports, or alternatively the single I/O connector 4. In restoring thecomputer 1 to its original state after using it elsewhere, any peripheral devices must be connected again via the I/O connector 4. In the case where a large number of peripheral devices are connected, therefore, the removal and connection require very troublesome operations. - To cope with this, there have recently been provided external expanding apparatuses or “docking stations” which are adapted to be interposed between a portable computer and a plurality of peripheral devices and relay signals transferred between the computer and the devices.
-
FIG. 3 illustrates onesuch docking station 13 having a plurality of connectors and ports connectable with the peripheral devices, external power supply connector, etc., and anexpansion connector 15 is presented at aconnector presentation surface 21 which is opposed to therear face 2 d of thecomputer casing 2. Theexpansion connector 15 is structured to engage the computer's I/O connector 4. Theexpansion connector 15 is mounted on amovable bracket 18 structured to engageapertures O connector 4 as a prelude to theexpansion connector 15 actually engaging the I/O connector 4. By example and without limitation, thebracket 18 includes a pair of guide pins orarms expansion connector 15 to engageapertures O connector 4. Theexpansion connector 15 includes a quantity of pin receptors or pins (shown) 15 a organized in a selected pattern to engage the pins orpin receptors 4 c of the computer's I/O connector 4. Thepins 15 a of theexpansion connector 15 are connected electrically to different ones of the connectors and ports that are connectable with the peripheral devices. - In known prior art
docking station devices 13 the pair of guide pins orarms expansion connector 15 are extended forward of theexpansion connector 15 and its pin receptors or pins (shown) 15 a such that theguide arms apertures O connector 4 before theexpansion connector 15 and its pin receptors orpins 15 a the I/O connector 4. Furthermore, theexpansion connector 15 is typically loosely mounted on thebracket 18 with a little lateral play such that theexpansion connector 15 is permitted to move relative to thebracket 18 and its pin receptors or pins (shown) 15 a wiggle or “float” into final mating positions with the respective pin receptors (or pins) 4 c of the I/O connector 4 after theguide arms guide arms respective interface apertures expansion connector 15 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4 prior to final insertion. - The
docking station 13 also includes amounting platform 17 on which thecomputer 1 is removably mounted. Themounting platform 17 is, for example, adjacentconnector presentation surface 21, and includes abearing surface 19 on which thebottom face 2 a of thecomputer casing 2 is placed. Thedocking station apparatus 13 also includes bullet-nosedengaging pins bearing surface 19 adjacent to theconnector presentation surface 21. Thebottom face 2 a of thecomputer casing 2 includes a pair of locatingholes rear face 2 d and the side faces 2 e and 2 f of thecasing 2. The locatingholes bottom face 2 a toward theopposite top face 2 b and sized to accept the bullet-nosedengaging pins bearing surface 19 of thedocking station 13. The locatingholes O connector 4 relative to theexpansion connector 15 on thepresentation surface 21 of thedocking station 13. - In connecting the computer to the
docking station 13, the tongue 2 g of thecomputer casing 2 is fit into amouth 25 of amating receiver structure 27 adjacent to thebearing surface 19 opposite from and facing toward theconnector presentation surface 21. Thecomputer casing 2 is rotated about the tongue 2 g with thebottom surface 2 a of thecasing 2 guided toward thebearing surface 19. When thebottom surface 2 a of thecasing 2 is close to thebearing surface 19, themating locating holes bottom surface 2 a of thecasing 2 engage the locatingpins docking station 13, which positions thecasing 2 relative to thedocking station 13, and in particular positions the I/O connector 4 relative to the docking station'sexpansion connector 15. - Thereafter, the docking station's
expansion connector 15 and the pair of guide pins orarms expansion connector 15 are moved together in the direction indicated by the arrow toward therear face 2 d of thecomputer 1 in a manner such that the pair of guide pins orarms respective interface apertures swingable operating lever 29. Such engagement of theguide arms respective interface apertures expansion connector 15 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4. Continued operation of theoperating lever 29 continues movement of theexpansion connector 15 toward the computer's I/O connector 4, and engages the pins (or pin receptors) 15 a with the pin receptors (or pins) 4 c during final insertion. - As a result, the
expansion connector 15 of thedocking station 13 is connected to the computer's I/O connector 4. Additionally, thecomputer 1 cannot be removed from thedocking station 13 because the guide pins orarms interface apertures receiver structure 27 engaging the computer casing's tongue 2 g, and the locatingpins mating locating holes bottom surface 2 a of thecomputer casing 2 to secure thecomputer 1 relative to the docking station'sconnector presentation surface 21 and thebearing surface 19, respectively. - In removing the computer from the
docking station apparatus 13, theoperating lever 29 is reversed to move theexpansion connector 15 away from the computerrear surface 2 d, whereby theexpansion connector 15 is disconnected from the computer's I/O connector 4, and the guide pins orarms respective interface apertures computer casing 2 can be rotated about the tongue 2 g so that thebottom surface 2 a of thecasing 2 is disengaged from thebearing surface 19, and thecomputer 1 is disengaged from thedocking station 13. - In the
docking station apparatus 13 described above, the pins (or pin receptors) 15 a of theexpansion connector 15 are attached to a circuit board which is located within acasing 31 of theapparatus 13, and theexpansion connector 15 is connected to the circuit board through a flexible wiring harness. The flexible wiring board is in turn connected through other flexible wiring harnesses to separate and individual modem connector, a game port, audio speaker connectors, a microphone connector, two serial connectors, a parallel connector, a display unit connector, a USB connector, a mouse connector, a keyboard connector, and an external power supply connector, as are generally well-known in the art. -
FIG. 4 illustrates an input/output (I/O)plate 33 of thedocking station 13 where the flexible wiring harnesses of external devices may be connected to, for example, amouse connector 35, akeyboard connector 37, adisplay unit connector 39, one or moreserial connectors 41, agame port 43, aparallel connector 45, aserial connector 47, one ormore USB connectors 49, amicrophone connector 51, one ormore speaker connectors 53, an externalpower supply connector 55, amodem connector 57, or apower switch 59. - However, known docking station apparatus are limited in their ability to provide the above expansion efficiently and reliably.
- The present invention is an external expanding apparatus or “docking station” operable with a portable computer device of a type having a display unit having a display screen on an inner surface thereof and a hard shell backing surface opposite thereof and pivotally mounted on a substantially rigid casing having a pair of locating holes adjacent to opposite corners of a substantially planar bottom surface thereof, and an input/output (I/O) connector positioned on a back plane thereof with a pair of positioning apertures provided on opposite sides thereof. The external expanding apparatus or “docking station” of the present invention provides all of the features of prior art expanding apparatus with a novel external wire harness support apparatus.
- According to one aspect of the invention the docking station includes a substantially rigid apparatus body portion having a pair of upper and lower body portions having respective substantially rigid peripheral side wall portions separable along a line of mutual contact. One or more edge mounting structures are formed along the line of contact between the side wall portions, with each of the edge mounting structures having a clearance hole formed through at least one of the pair of side walls adjacent to the line of contact, a nut pocket formed on an interior portion of at least one of the pair of side walls in substantial alignment with the clearance hole, an opening formed in one of the bearing plate and the bottom plane of the apparatus body portion, and a well shaft communicating between the opening and the nut pocket.
- According to another aspect of the invention, the nut pocket is further formed integrally with the well shaft communicating therewith.
- According to another aspect of the invention, the clearance hole includes a first recess formed in a first one of the pair of peripheral side walls in communication with the line of contact therebetween.
- According to another aspect of the invention, the clearance hole also includes a second recess formed in a second one of the pair of peripheral side walls in communication with the first recess along the line of contact therebetween.
- Other aspects of the invention are detailed herein.
- The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is a perspective view showing an example of a known portable computer; -
FIG. 2 illustrates an input/output (I/O) connector or port of the known portable computer illustrated inFIG. 1 as being provided in the rear face thereof between interface apertures; -
FIG. 3 illustrates a known computer docking station having an expansion connector structured to engage the computer's I/O connector and being provided on a connector presentation surface thereof which is opposed to the rear face of the known computer illustrated inFIGS. 1 and 2 and a plurality of connectors and ports connectable with different peripheral devices, external power supply, etc.; -
FIG. 4 illustrates an input/output (I/O) plate of the known docking station where flexible wiring harnesses of different external peripheral devices, external power supply, etc. may be connected; -
FIG. 5 is a front perspective view that illustrates the novel external computer expanding apparatus or “docking station” of the invention; -
FIG. 6 is a front perspective view that illustrates the novel docking station of the invention; -
FIG. 7 is a side perspective view that illustrates the novel docking station of the invention; -
FIG. 8 is another side perspective view that illustrates the novel docking station of the invention; -
FIG. 9 is a bottom perspective view of the novel docking station of the invention; -
FIG. 10 is another bottom perspective view of the docking station of the invention; -
FIG. 11 is another bottom perspective view of the docking station of the invention; -
FIG. 12 is a close-up bottom perspective view of an external wire harness support of the invention of the docking station of the invention; -
FIG. 13 is another close-up bottom perspective view of the external wire harness support of the invention; -
FIG. 14 is a cross-sectional view that shows novel cable supports of the external wire harness support of the invention; -
FIG. 15 is a perspective view of the external wire harness support of the invention illustrating a side view of the cable supports of the invention and an end cross-sectional view of one of a novel gang support of the invention; -
FIG. 16 is perspective view inside an upper body portion of the docking station of the invention and illustrates a novel expansion connector drive mechanism of the present invention as well as novel features of the upper body portion that operate with the expansion connector drive mechanism; -
FIG. 17 illustrates the alternative non-locking latch mechanism by example and without limitation as a flexible latch mechanism useful with the novel expansion connector drive mechanism of the present invention; -
FIG. 18 illustrates a novel guide mechanism of the invention that cooperates with a novel frame portion of the novel expansion connector drive mechanism of the present invention; -
FIG. 19 illustrates the expansion connector drive mechanism of the present invention as well as novel features of the upper body portion that operate with the expansion connector drive mechanism; -
FIG. 20 illustrates the expansion connector drive mechanism of the present invention in a deployed position; -
FIG. 21 is a section view of the expansion connector drive mechanism of the invention; -
FIG. 22 illustrates the docking station of the invention being in an initial state of readiness to accept the computer; -
FIG. 23 illustrates the docking station of the invention being in an intermediate state of accepting the computer; -
FIG. 24 illustrates the docking station of the invention being in final state of accepting the computer; -
FIG. 25 illustrates the docking station of the invention being in final state of accepting the computer removed here for clarity; -
FIGS. 26 and 27 are respective top and bottom perspective views that together illustrate one embodiment of a frame portion of the expansion connector drive of the invention; -
FIG. 28 is perspective view inside the upper body portion of the docking station of the invention and further illustrates a simplified expansion connector drive mechanism of the present invention; -
FIG. 29 is an upside-down close-up view showing novel edge mounting holes of the invention formed along a mutual contact line between the upper and lower body portions of the novel docking station's two-piece body; -
FIG. 30 illustrates that an extension portion of a well portion of a novel nut pocket of the invention extends past the contact line between the upper and lower body portions of the novel docking station's two-piece body; -
FIG. 31 is a section view of the nut pockets of the invention taken from inside the two-piece body of the docking station of the invention; -
FIG. 32 is a section view of the nut pockets of the invention taken from inside the two-piece body of the docking station of the invention; -
FIG. 33 illustrates a mechanical nut installed in the nut pocket of the invention with a screw or bolt inserted through the edge mounting hole of the invention and mated with the nut, -
FIG. 34 illustrates the lower body portion of the novel docking station with the upper body portion removed for clarity, the nut pockets here illustrated as being optionally fully formed in the selected upper body portion or lower body portion (shown); -
FIG. 35 illustrates one of the novel edge mounting holes of the invention alternatively formed with a novel screw or bolt pocket of the invention formed by example and without limitation as a pair of mating pockets (shown in a subsequent figure) integrally formed on inside surfaces of the respective lower body portion and upper body portion of the docking station of the invention and adjacent to the respective edges thereof; -
FIG. 36 is a section view of one of the novel screw pockets of the invention taken from inside the two-piece body of the docking station of the invention; -
FIG. 37 illustrates the novel screw pocket of the invention being alternatively configured to accommodate a carriage bolt (shown in phantom) wherein the nut pocket is formed having integral near and far portions substantially aligned with a novel edge mounting hole of the invention; -
FIG. 38 is a section view of the novel screw or carriage bolt pocket of the invention taken from inside the two-piece body of the docking station of the invention; -
FIG. 39 illustrates a novel display unit support of the invention that is structured for supporting the computer's flat display unit; -
FIG. 40 illustrates the novel display unit support of the invention in a stored position having a rigid support arm rotated about a pivot axis toward a bearing surface of the upper body portion of the novel docking station of the invention, and an anvil of the novel display unit support being nested in an edge recess of the novel body portion; -
FIG. 41 is a side view that illustrates the jaw of the novel display unit support of the invention being rotated about a drive axis of a novel biasing mechanism into substantial alignment with the support arm during storing of the novel display unit support; -
FIG. 42 illustrates the novel docking station of the invention with the novel display unit support in an active position having the support arm rotated about the pivot axis with the novel display unit clamping mechanism supporting the display unit of the computer in an open upright position relative to the computer's keyboard on the computer casing top face; -
FIG. 43 illustrates the docking station of the invention with the novel display unit support in an active position having the support arm rotated about the pivot axis with the display unit clamping mechanism of the invention supporting the computer display unit in an open upright position relative to the computer keyboard with the anvil being positioned supporting the hard shell backing portion of the computer display unit; -
FIGS. 44 through 50 illustrate that the arcuate support surface of the anvil portion of the novel display unit clamping mechanism of the invention permits the backing portion of the computer display unit to roll thereabout in smooth substantially constant contact during rotation relative to the computer keyboard, wherein: -
FIG. 44 also illustrates the docking station of the invention with the novel display unit support in the active position ofFIG. 43 having the support arm rotated about the pivot axis with the novel display unit clamping mechanism supporting the computer's display unit in an open upright position relative to the computer's keyboard, -
FIG. 45 is a side view of the docking station of the invention having the computer's display unit support in one active position, as illustrated in previous figures, having the support arm rotated about the pivot axis with the novel display unit clamping mechanism of the invention supporting the computer display unit in one open over-center position relative to the computer's keyboard; -
FIG. 46 is an opposite side view of the novel display unit support of the invention in the active position ofFIG. 45 for constraining the computer's display unit in the open over-center position by a pincer action of the jaw portion relative to the anvil with the knob being tightened to secure the support arm in the active over-center position; -
FIG. 47 is a side view of the docking station of the invention having the novel display unit support in another active position having the support arm rotated about the pivot axis with the novel display unit clamping mechanism of the invention supporting the computer's display unit in a substantially vertical upright position relative to the computer's keyboard with the anvil portion being positioned supporting the hard shell backing portion of the computer display unit; -
FIG. 48 is an opposite side view of the novel display unit support of the invention in the active position ofFIG. 47 for constraining the computer's display unit in the substantially vertical upright position by the pincer action of the jaw portion relative to the anvil portion with the knob being tightened to secure the support arm in the upright position; -
FIG. 49 is a side view of the docking station of the invention having the novel display unit support of the invention in another active position having the support arm rotated about the pivot axis with the novel display unit clamping mechanism of the invention supporting the computer display unit in another open position having the display unit in an extreme over-center upright position relative to the computer keyboard; -
FIG. 50 is an opposite side view of the novel display unit support of the invention in the active position ofFIG. 49 for constraining the computer display unit in the extreme over-center open position by the pincer action of the jaw portion relative to the anvil portion with the knob being tightened to secure the support arm in the extreme over-center position; -
FIG. 51 illustrates by example and without limitation the pivot mechanism of the invention that constrains the support arm to operate about the pivot axis with the shoulder portion abutting the body's hub portion; -
FIG. 52 illustrates by example and without limitation one alternative configuration of the pivot mechanism of the invention wherein the head portion of a screw or bolt type pivot axle is constrained in the body's novel nut pockets; -
FIG. 53 illustrates by example and without limitation another alternative configuration of the pivot mechanism illustrated inFIG. 52 ; -
FIG. 54 illustrates by example and without limitation the novel display unit clamping mechanism of the invention of the novel display unit support of the invention in an active configuration clamping the computer's display unit in an open position relative to computer casing; and -
FIG. 55 illustrates by example and without limitation the novel display unit clamping mechanism of the novel display unit support invention in a passive configuration wherein the hard shell backing portion of the computer's display unit is supported by the anvil portion of the support arm with the opposing jaw portion in an open position relative to the computer display unit's display screen surface. - In the Figures, like numerals indicate like elements.
-
FIG. 5 is a front perspective view that illustrates the present invention embodied by example and without limitation as a novel external computer expanding apparatus or “docking station” 100 which is adapted to be interposed between a portable computer of the type illustrated inFIGS. 1-3 and a plurality of peripheral devices and relay signals transferred between the computer and the devices. - The
docking station 100 includes a two-piece body 102 having anupper body portion 102 a connected to alower body portion 102 b along aline 103 of mutual contact. Theupper body portion 102 a is formed with abearing surface 104 on one face of a substantiallyrigid bearing plate 105. The bearingsurface 104 is structured for thecomputer casing 2 to be removably placed thereon. Aconnector presentation surface 106 is projected above the bearingsurface 104 for presenting anexpansion connector 108 to therear face 2 d of thecomputer 1 when the computer'sbottom face 2 a is placed on thebearing surface 104. Theupper body portion 102 a also includes means for securing thecomputer 1 to thebearing surface 104 in fixed position relative to theconnector presentation surface 106 such that a coupling with theexpansion connector 108 is not interrupted unintentionally. By example and without limitation, the securing means includes areceiver structure 110 fixedly positioned adjacent to afront portion 111 of the bearingsurface 104 opposite from theconnector presentation surface 106 and having anopen jaw structure 112 facing toward theconnector presentation surface 106 and structured to receive and mate with the tongue 2 g on the front face of thecomputer casing 2. Mating of the tongue 2 g within theopen jaw 112 of thereceiver structure 110 resists separation of the computer casing'sbottom face 2 a from the bearingsurface 104. Such mating of the tongue 2 g within thejaw 112 of thereceiver structure 110 also resists sliding of thecomputer casing 2 along the bearingsurface 104 away from theconnector presentation surface 106. Additionally, theopen jaw 112 may optionally include lips on either side thereof that engageside surfaces 2 k and 21 (if present) of the tongue 2 g, and by such engagement, resist sideways slippage along the bearingsurface 104 parallel of theconnector presentation surface 106. - The securing means also includes a pair of engaging
pins rear portion 115 of the bearingsurface 104 adjacent to theconnector presentation surface 106, the engagingpins mating locating holes bottom surface 2 a of thecasing 2. The twoengaging pins computer casing 2 relative to the dockingstation bearing surface 104, and in particular to position the computer's I/O connector 4 relative to the docking station'sexpansion connector 108. Such mating of the twoengaging pins holes computer casing 2 relative to thebearing surface 104. The twoengaging pins computer casing 2 along the bearingsurface 104 away from theconnector presentation surface 106, and simultaneously resist sideways slippage along the bearingsurface 104 parallel of theconnector presentation surface 106. - The securing means also includes a pair of
guides expansion connector 108. Theguides expansion connector 108 and engage theapertures O connector 4 in advance of theexpansion connector 108 engaging the computer's I/O connector 4. As is discussed in detail below, by operation of a sliding expansionconnector drive mechanism 118, theexpansion connector 108 simultaneously with the pair of guide pins orarms expansion connector 108 are together moved inward from the presentation surface 106 (in the direction indicated by arrow 120) across the bearingsurface 104 toward the opposingopen jaw 112 of thereceiver structure 110 in a manner such that the pair ofguide arms respective interface apertures rear face 2 d of thecomputer casing 2 in advance of connection of theconnector 108 with the computer's I/O connector 4. Such engagement of theguide arms respective interface apertures guide arms respective interface apertures rear face 2 d of thecomputer casing 2, which in turn pushes thefront face 2 c toward thereceiver structure 110 and the tongue 2 g into itsopen jaw 112. Additionally, the mating of theguide arms casing interface apertures surface 104 parallel of theconnector presentation surface 106. More importantly, the mating of theguide arms casing interface apertures bottom face 2 a from the bearingsurface 104 so that the twoengaging pins holes computer casing 2 relative to thebearing surface 104. - Furthermore, the
expansion connector 108 includes a quantity of pin receptors or pins (shown) 122 organized in a selected pattern to engage the pins orpin receptors 4 c of the computer's I/O connector 4. Accordingly, such engagement of theguide arms expansion connector 108 with therespective interface apertures expansion connector 108 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4, whereby operation of theexpansion connector drive 118 causes theexpansion connector 108 to engage the computer's I/O connector 4, and engages the pins (or pin receptors) 122 with the pin receptors (or pins) 4 c. - Thus, the three-part computer securing means includes the
receiver structure 110 fixed adjacent thefront portion 111 of the bearingsurface 104, the engagingpins rear face 115 of the bearingsurface 104, and theguide arms expansion connector 108, which operate together to retain the computer's I/O connector 4 on therear face 2 d of thecasing 2 in uninterrupted engagement with the docking station'sexpansion connector 108. - However, the
guide arms expansion connector 108 might interfere with seating thecomputer casing 2 against the bearingsurface 104, so a sensing means 123 is optionally provided for sensing that the computer'scasing 2 is emplaced on the docking station'sbearing surface 104 with its I/O connector 4 positioned to receive the docking station'sexpansion connector 108. For example, the optional sensing means 123 may be provided in the form ofsafety catch 124 having a stem or button that cooperates with theexpansion connector drive 118 to detect presence of thecomputer 1 against the bearingsurface 104. As discussed herein below, if present, the sensing means 123 is an optional safety mechanism that prevents theexpansion connector drive 118 from being operated unless thecomputer casing 2 is firmly seated against the bearingsurface 104 of the docking stationupper body portion 102 a, which depresses thesafety catch 124. Thus, thedocking station 100 optionally senses the presence of thecomputer 1 when installation of thecasing 2 causes depression of thesafety catch 124, if present. By requiring previous operation of thesafety catch 124, if present, theexpansion connector 108 cannot be deployed until the computer's I/O connector 4 is positioned to receive it. Accordingly, neither theguide arms expansion connector 108 can interfere with seating thecomputer casing 2. - Furthermore, while the
computer casing 2 is being seated, theexpansion connector 108 remains tucked safely away in a home position on the sidelines of the bearingsurface 104. For example, theexpansion connector 108 is protected in a disengaged “safe” position within anintegral housing portion 126 of the casingupper body 102 a positioned at the rear 115 of the bearingsurface 104, where theexpansion connector 108 is out of harm's way during seating of thecomputer casing 2. By example and without limitation, thehousing 126 extends above the bearingsurface 104 and is formed with acavity 128 that is extended rearward of the bearingsurface 104. Thecavity 128 is sized to hold theexpansion connector 108 on aconnector bracket 130 having guidearms expansion connector 108. Thebracket 130, together with theexpansion connector 108 and guidearms connector drive mechanism 118 out of thecavity 128 and inward of the bearingsurface 104 through anopening 132 formed in thepresentation surface 106 of thehousing 126. - The
docking station 100 of the present invention optionally includes a lockinglatch mechanism 134 for constraining the expansionconnector drive mechanism 118 relative to theupper body portion 102 a of thedocking station 100. Accordingly, the lockinglatch mechanism 134 constrains thebracket 130 having theexpansion connector 108 and guidearms expansion connector 108 outside thecavity 128 and extended over the bearingsurface 104. - As a result, the
expansion connector 108 of thedocking station 100 is connected to the computer's I/O connector 4. Additionally, thecomputer 1 cannot be removed from engagement with thedocking station 100 because theguide arms interface apertures receiver structure 110 engaging the computer casing's tongue 2 g, and the locating pins 114 a and 114 b engaging themating locating holes bottom surface 2 a of thecomputer casing 2 to secure thecomputer 1 relative to theconnector presentation surface 106 and thebearing surface 104, respectively, of thedocking station apparatus 100. The lockinglatch mechanism 134 ensures the expansionconnector drive mechanism 118 cannot be dislodged so that theguide arms interface apertures connector drive mechanism 118 is attempted to be dislodged, either accidentally or intentionally. - In removing the computer from the
docking station apparatus 100 of the invention, the expansionconnector drive mechanism 118 is reversed to move theexpansion connector 108 away from the computerrear surface 2 d, whereby theexpansion connector 108 is disconnected from the computer's I/O connector 4, and theguide arms respective interface apertures computer casing 2 can be rotated about the tongue 2 g so that thebottom surface 2 a of thecasing 2 is disengaged from the bearingsurface 104, and thecomputer 1 is disengaged from thedocking station 100. - According to one embodiment of the
docking station 100 of the invention, theexpansion connector 108 is optionally loosely mounted on thebracket 130 with a little lateral play such that theexpansion connector 108 is permitted to move relative to thebracket 130 and its pin receptors or pins (shown) 122 wiggle or “float” into final mating positions with the respective pin receptors (or pins) 4 c of the I/O connector 4 after theguide arms guide arms respective interface apertures expansion connector 108 relative to the pin receptors (or pins) 4 c of the computer's I/O connector 4 prior to final insertion. - Alternatively, the
expansion connector 108 is optionally securely mounted on thebracket 130 without appreciable lateral play such that theexpansion connector 108 is not permitted to move relative to thebracket 130 and its pin receptors or pins (shown) 15 a do not wiggle or float into final mating positions with the respective pin receptors (or pins) 4 c of the I/O connector 4. Rather, as discussed herein below, the expansionconnector drive mechanism 118 provides sufficient lateral play that, theguide arms expansion connector 108 relative to the computer's I/O connector 4. Thus, the complexity of theprior art bracket 18, as discussed herein above, is eliminated, while the positioning function is maintained as a feature of the expansionconnector drive mechanism 118 of the invention. - Optionally,
hand clearances 137 communicate with either side of the docking station'scomputer bearing surface 104 for access to thebottom surface 2 a of thecomputer 1 for lifting it free of the bearingsurface 104 and the guide pins 114 a, 114 b projected therefrom. By example and without limitation, thehand clearances 137 are provided as indentations in theupper body portion 102 a and optionally in thelower body portion 102 b as well. Thehand clearances 137 are located near theconnector presentation surface 106 and the guide pins 114 a, 114 b for more easily lifting thecomputer 1 clear of the guide pins 114 a, 114 b and thejaw 112 of thereceiver structure 110 opposite. - Additionally, an
edge recess 139 communicates with the docking station'scomputer bearing surface 104 and one side of theupper body portion 102 a for storing a noveldisplay unit support 142 that is structured for supporting the computer'sflat display unit 9. - Additionally, as discussed herein below and more clearly illustrated in subsequent figures, the docking station's
expansion connector 108 is electrically coupled to a plurality ofperipheral device connectors connector presentation surface 138 of thelower body portion 102 b. For example, thelower body portion 102 b includes an integralrear housing 140 having thepresentation surface 138 provided thereon. - According to one embodiment of the invention, the
docking station 100 includes a noveldisplay unit support 142 structured for supporting the computer'sflat display unit 9 in any convenient orientation relative to thekeyboard 7 on the computer'stop face 2 b. -
FIG. 6 is a front perspective view that illustrates the present invention embodied by example and without limitation as a thedocking station 100. Here, for clarity thebracket 130 having only the guide pins 116 a, 116 b projected therefrom, without theexpansion connector 108. -
FIG. 7 is a side perspective view that illustrates the present invention embodied by example and without limitation as a thedocking station 100. Here, for clarity thebracket 130 having only the guide pins 116 a, 116 b projected therefrom, without theexpansion connector 108. -
FIG. 8 is another side perspective view that illustrates the present invention embodied by example and without limitation as a thedocking station 100. Here, thereceiver structure 110 is more clearly illustrated as having theopen jaw structure 112 formed between thefront portion 111 of the bearingsurface 104 and anupper lip 144 which engages thetop face 2 b of thecomputer casing 2, while thefront portion 111 of the bearingsurface 104 engages the computer casingbottom face 2 a. A recessedthroat portion 146 of the receiver structure'sjaw 112 is set back between thefront portion 111 of the bearingsurface 104 and theupper lip 144. The recessedthroat portion 146 of thejaw 112 engages thefront face 2 c of thecomputer casing 2. - Here also are illustrated a plurality of
edge mounting holes 148 formed along themutual contact line 103 which also operates as a separation line between the upper andlower body portions piece body 102. As discussed herein below, theedge mounting holes 148 each provide novel means for holding a square- or hex-head screw with its threaded shaft extending out of the respective mountinghole 148 substantially parallel with the bearingsurface 104 and perpendicular to respective side faces 152 and 154 of the upper andlower body portions body 102 by means of a nut threaded to the extended shaft of the screw. -
FIG. 9 is a bottom perspective view of thedocking station 100 of the invention that includes a mountingstructure 155 that is structured to adapt thedocking station 100 for mounting to an external support structure, by example and without limitation, the universally positionable device invented by the inventor of the present invention and disclosed in U.S. Pat. No. 5,845,885, which is incorporated herein by reference. By example and without limitation, the mountingstructure 155 is provided as a plurality of mountingholes 157 projected from abottom plane 156 of thelower body portion 102 b within anintegral ring 159 withoptional supports 161 formed as elongated gussets integrally structured between thebottom plane 156 and thering 159. Other mountingstructures 155 are also contemplated and may be substituted without departing from the spirit and scope of the invention. - This view further illustrates the peripheral device
connector presentation surface 138 of thelower body portion 102 b having the a plurality ofperipheral device connectors keyboard connection 136 c, USB (Universal Serial Bus)connection 136 d, an externalpower supply connection 136 e, an audio output 136 f, amicrophone input 136 g, amodem 136 h,serial connections 136 j and 136 k, and aparallel connection 136 m. These peripheral device connectors 136 a-136 n are electrically coupled to the docking station'sexpansion connector 108, as discussed herein. As illustrated here, the peripheral deviceconnector presentation surface 138 is projected from thebottom plane 156 of thelower body portion 102 b and is optionally oriented substantially perpendicular thereto. Therefore, the peripheral device connectors 136 a-136 n face across thebottom plane 156 of thelower body portion 102 b and are protected by the integralrear housing 140. - Additionally illustrated here is an external
wire harness support 158 that provides strain relief to a plurality of connections between the peripheral device connectors 136 a-136 n andconnectors 160 on awiring harness 162, as illustrated in subsequent figures. By example and without limitation, the externalwire harness support 158 includes one or more individual cable supports 164 a, 164 b through 164 n projected from thebottom plane 156 of thelower body portion 102 b adjacent to the peripheral deviceconnector presentation surface 138 on the integralrear housing 140. As illustrated, each of the one or more individual cable supports 164 a-164 n positioned in close proximity to one of the peripheral device connectors 136 a-136 n. Optionally, each of the individual cable supports 164 a-164 n is substantially aligned with one of the peripheral device connectors 136 a-136 n. Each of the individual cable supports 164 a-164 n provides strain relief for a cable connected to a respective one of the peripheral device connectors 136 a-136 n. The externalwire harness support 158 further includes one or more gang cable supports 166 projected from thebottom plane 156 of thelower body portion 102 b in a position spaced away from the group of individual cable supports 164 a-164 n, and optionally spaced away from the peripheral deviceconnector presentation surface 138 as well. Optionally, one or more additional gang cable supports 166 are provided on thebottom plane 156 of thelower body portion 102 b in positions that are spaced away from the peripheral deviceconnector presentation surface 138 and spaced away from others of the peripheral device connectors 136 j-136 m. -
FIG. 10 is another bottom perspective view of thedocking station 100 of the invention that includes thewiring harness 162 having a plurality of individual cables 168 each having one of theconnectors 160 coupled to a respective one of the peripheral device connectors 136 a-136 n presented on the peripheral deviceconnector presentation surface 138 of thelower body portion 102 b. For clarity and by example and without limitation, thewiring harness 162 is illustrated here having twoindividual cables connectors 160 coupled to one of the peripheral device connectors 136 a-136 n. The externalwire harness support 158 of the invention is illustrated havingwire ties 170 tying theindividual cables individual cables - Also illustrated are more of the
edge mounting holes 148 formed along themutual contact line 103 between the upper andlower body portions piece body 102. Additional one or more of theedge mounting holes 148 are optionally formed along themutual contact line 103 which extends between respective front faces 172 and 174 of the docking station's upper andlower body portions -
FIG. 11 is another bottom perspective view of thedocking station 100 of the invention that includes thewiring harness 162 having a plurality of individual cables each having one of theconnectors 160 coupled to a respective one of the peripheral device connectors 136 a-136 n presented on the peripheral deviceconnector presentation surface 138 of thelower body portion 102 b. For clarity and by example and without limitation, thewiring harness 162 is illustrated here having twoindividual cables connectors 160 coupled to one of theperipheral device connectors wire harness support 158 of the invention is illustrated havingwire ties 170 tying theindividual cables individual cables -
FIG. 12 is a close-up bottom perspective view of thedocking station 100 of the invention that includes thewiring harness 162 having a plurality of individual cables 168 each having one of theconnectors 160 coupled to a respective one of the peripheral device connectors 136 a-136 n presented on the peripheral deviceconnector presentation surface 138 of thelower body portion 102 b. For clarity and by example and without limitation, thewiring harness 162 is also illustrated here having twoindividual cables connectors 160 coupled to one of the peripheral device connectors 136 a-136 n. The externalwire harness support 158 of the invention is illustrated havingwire ties 170 tying theindividual cables individual cables - As also illustrated here with respect to the unoccupied
individual cable 164 n, each of the individual cable supports 164 a-164 n is formed with avalley 176 that is structured to securely receive thecable valley 176 is spaced away from thebottom plane 156 of thelower body portion 102 b to the extent that it is substantially aligned with the corresponding one of the peripheral device connectors 136 a-136 n on thepresentation surface 138 of thelower body portion 102 b such that the respective cable 168 a-168 n is substantially straight between the respective cable support 164 a-164 n and peripheral device connector 136 a-136 n. By example and without limitation, thevalley 176 is optionally curved in a semi-tubular shape to conform to the typical round cable shape and sized to admit such cable. Thecable support 164 n is further shown to includewall portion 178 extended from either side of thecurved valley 176 and substantially contiguous therewith and oriented tangentially therewith. Thewall portions 178 are optionally crenellated as shown, or continuous. - Clearance is provided for the wire ties 170 between the
valley 176 and thebottom plane 156 of thelower body portion 102 b. By example and without limitation, the wire tie clearance is provided by atunnel 180 that is extend under and completely through each of the individual cable supports 164 a-164 n directly below and slightly spaced away from thevalley 176 and oriented crosswise of thevalley 176. Optionally, aslight recess 182 is formed in thebottom plane 156 of thelower body portion 102 b directly below thevalley 176, such that thetunnel 180 is recessed into thebottom plane 156 of thelower body portion 102 b directly below and slightly spaced away from thevalley 176. -
FIG. 13 is another close-up bottom perspective view of the docking station's externalwire harness support 158 of the invention without thewiring harness 162. As illustrated, the individual cable supports 164 a-164 n are each formed on thebottom plane 156 of thelower body portion 102 b in a position that is spaced away from a corresponding one of the peripheral device connectors 136 a-136 n on the peripheral deviceconnector presentation surface 138 of thelower body portion 102 b. Thevalleys 176 are illustrated as being curved in a semi-cylindrical form that is substantially aligned with the corresponding peripheral device connectors 136 a-136 n on the peripheral deviceconnector presentation surface 138. Additionally, thevalley 176 portion of each cable support 164 a-164 n is illustrated with thewall portion 178 extended from either side thereof and substantially contiguous therewith and oriented tangentially therewith. Thewall portions 178 are shown as being optionally crenellated, but thewall portions 178 are optionally continuous. - The
tunnel 180 is illustrated here as an optional single common tunnel having theoptional recess 182 extending under all of the individual cable supports 164 a-164 n and beyond them to either end 184 and 186. - The
gang support 166 is illustrated as being formed with asubstantial body portion 200 spaced from thebottom plane 156 of thelower body portion 102 b on spaced apartlegs 202 that are projected from thebottom plane 156. Furthermore, one of the gang supports 166 is illustrated as including atunnel 188 formed thereunder and having anoptional recess 189 recessed into thebottom plane 156 of thelower body portion 102 b substantially crosswise thereof. Optionally, thetunnel 188 extends therebeyond to eitherside -
FIG. 14 is a cross-sectional view that shows the cable supports 164 a-164 n of the externalwire harness support 158 each being formed with a substantial body portion 194 projected from thebottom plane 156 of thelower body portion 102 b. Thevalley 176 is formed in the body 194 distal of thebottom plane 156, and thecrenellated wall portions 178 extended therefrom. Thetunnel 180 is illustrated here as the optional single common tunnel having theoptional recess 182 extending under all of the individual cable supports 164 a-164 n and beyond them to either end 184 and 186. Furthermore, thetunnel 180 is illustrated here as being formed completely through thebottom plane 156 of thelower body portion 102 b. - The
cables valleys 176 of the respective cable supports 164 a, 164 b of the docking station's externalwire harness support 158. Thecables body portion embrasures 196 between spaced apartmerlons 198 that form thecrenellated wall portions 178. -
FIG. 15 is a perspective view of the externalwire harness support 158 that shows a side view of the cable supports 164 a-164 n and an end cross-sectional view of one of the gang supports 166 projected from thebottom plane 156 of thelower body portion 102 b. Thecables valleys 176 of the respective cable supports 164 a, 164 b and being secured in place by the wire ties 170 wrapped around therespective body portion embrasures 196 between the spaced apartmerlons 198 that form thecrenellated wall portions 178. - In the end cross-sectional view of the
gang support 166, thegang support 166 is illustrated as being formed with thesubstantial body portion 200 that is projected from thebottom plane 156 of thelower body portion 102 b on the spaced apart legs 202 (one shown, more clearly shown inFIG. 13 ). Thecables single wire tie 170 wrapped around thebody portion 200. Furthermore, that form thecrenellated wall portions 178. Optionally, thegang support 166 is substantially the same as the cable supports 164 a-164 n and includes thecrenellated wall portions 178 spaced apart on either lengthwiseside body portion 200 and formed distal of thebottom plane 156 of thelower body portion 102 b, and thewire tie 170 pass throughembrasures 196 between spaced apartmerlons 198 of thecrenellated wall portions 178. -
FIG. 16 is perspective view inside theupper body portion 102 a and illustrates the expansionconnector drive mechanism 118 of the present invention as well as features of theupper body portion 102 a that operate with the expansionconnector drive mechanism 118. By example and without limitation the expansionconnector drive mechanism 118 is formed of a single-pieceelongated frame 204 having a substantially planar interface surface 233 (shown in one or more subsequent figures). Afollower mechanism 206 is provided by example and without limitation as an elongated lengthwise inner slot that extends substantially along a longitudinal axis L thereof for nearly the entire length of theframe 204 within a retention plate 207. An integral expandedconnector seat 208 is positioned at a first distal orfar end 210 of theframe 204 for mounting theexpansion connector 108 thereon. - An
inner surface 224 of the upper body portion's substantiallyrigid bearing plate 105 opposite from the bearingsurface 104 includes aguide mechanism 226 that cooperates with theinner slot 206 to guide theframe 204 substantially along a drive axis DA that is substantially coincident with a longitudinal axis L of theslot 206. The innerslot follower mechanism 206 of theframe 204 thus cooperates with theguide mechanism 226 for moving theframe 204 across theinner surface 224 of theupper body portion 102 a along the drive axis DA with the frame's substantiallyplanar interface surface 233 moving substantially parallel with theinner surface 224 of thebearing plate 105. Here, the interior of theguide mechanism 226 is exposed for clarity. By example and without limitation, theguide mechanism 226 is formed by twoguides 228 arranged on the upper body portion'sinner surface 224 in spaced apart positions along the drive axis DA. Optionally, theguides 228 are rotating disk guides formed as wheels or rollers that rotate about respective axles orhubs 232 provided on the upper body portion'sinner surface 224. The axles orhubs 232 may be configured to space the rotating disk guides 228 slightly away from the upper body portion'sinner surface 224 for easier rotation. By example and without limitation, the twoguides 228 are optionally provided as one or more slides fixed to theinner surface 224 of theupper body portion 102 a and permit theframe 204 to slide freely along the drive axis DA. As described herein below, theframe 204 is constrained relative to theguides 228 to move across the upper body portion'sinner surface 224 along the drive axis DA. - When mounted on the
connector seat 208 at thefar end 210 of theframe 204, theexpansion connector 108 fits within thecavity portion 128 of thehousing 126 and extends above the bearingsurface 104 of theupper body portion 102 a. Theframe 204 is moveable, either by sliding or rolling, in cooperation with theguide mechanism 226 across theinner surface 224 of theupper body portion 102 a and along the drive axis DA. - The expansion
connector drive mechanism 118 of the invention also provides a small amount of lateral play (indicated by arrow 241) such that theconnector seat 208 is permitted to move laterally relative to the upper body portion'sinner surface 224 and thebearing surface 104 on the opposite surface of thebearing plate 105 and substantially crosswise of the drive axis DA. For example, the follower mechanism or slot 206 fits with sufficient play on theguides 228 that theframe 204 is permitted sufficient lateral play alongarrow 241 that lateral play theconnector seat 208 permits theexpansion connector 108 securely mounted thereon to move laterally relative to thebearing surface 104 of the upper body portion'sbearing plate 105. Thus, although is securely mounted on thebracket 130 without appreciable lateral play, theconnector seat 208 actually has sufficient lateral play through the expansionconnector drive mechanism 118 of the invention to establish both a nominal docking position of theexpansion connector 108 relative to the computer's I/O connector 4 and a final insertion position of the pin receptors or pins (shown) 122 relative to the I/O connector's pin receptors (or pins) 4 c. Thus, the complexity of theprior art bracket 18, as discussed herein above, is eliminated, while the positioning function is maintained as a feature of the expansionconnector drive mechanism 118 of the invention. - An
integral catch mechanism 212 andintegral handle 214 are both positioned adjacent to a second proximal ornear end 216 of theframe 204 opposite from theconnector seat 208. Thehandle 214 may be provided, by example and without limitation, on oneside 218 of theframe 204, while thecatch mechanism 212 may be provided, by example and without limitation, at thenear end 216. Thecatch mechanism 212 is structured to cooperate with the lockinglatch mechanism 134 for securely fixing the expansionconnector drive mechanism 118 relative to theupper body portion 102 a of thedocking station 100 with thebracket 130 holding theexpansion connector 108 and guidearms expansion connector 108 outside thecavity 128 and extended over the bearingsurface 104. By example and without limitation, the frame'sintegral catch mechanism 212 includes alip portion 242 of the that engages either theoptional lock mechanism 134, or an alternative non-locking latch mechanism 244 (shown here), which is optionally substituted. - As illustrated here, the alternative
non-locking latch mechanism 244 is substituted for the optionallocking latch mechanism 134. The alternativenon-locking latch mechanism 244 similarly constrains theexpansion connector 108 to remain in the deployed position, as described herein. By example and without limitation, the alternativenon-locking latch 244 is a flexible latch mechanism of the type illustrated in U.S. patent application Ser. No. 11/064,777 filed in the name of the inventor of the present invention on Feb. 23, 2005, which is incorporated herein in its entirety. Alternatively, when present, theoptional locking mechanism 134 lockingly secures theexpansion connector 108 in the deployed position. - The sensing means 123 is provided as a
security mechanism 220 that is structured to cooperate with thesafety catch 124 to resist deployment of theexpansion connector 108 until thecomputer 1 is seated against the bearingsurface 104 and the computer's I/O connector 4 is positioned to receive theexpansion connector 108. By example and without limitation, thesecurity mechanism 220 is provided in anintegral security plate 221 formed, by example and without limitation, along theside 218 of theframe 204 and spaced away from the lengthwiseinner slot 206, for example, between theconnector seat 208 and thehandle 214. Thesecurity mechanism 220 is provided as akeyhole 222 formed in thesecurity plate 221, thekeyhole 222 being structured for cooperating with thesafety catch 124 such that, when thesafety catch 124 is engaged with thekeyhole 222, theframe 204 cannot be moved relative to the casing'supper body portion 102 a. Furthermore, when thesafety catch 124 is disengaged from the cooperatingkeyhole 222 in thesecurity plate 221, theframe 204 is free to move along the longitudinal axis L. - The novel expansion
connector drive mechanism 118 is operated by first depressing thesafety catch 124 relative to thebearing surface 104 of theupper body portion 102 a, for example by seating thebottom face 2 a of thecomputer casing 2 against the bearingsurface 104. Depressing thesafety catch 124 simultaneously disengages thesafety catch 124 of thesecurity mechanism 220 from the cooperatingkeyhole portion 222 in thesecurity plate 221, which thereby permits theframe 204 to move along the frame drive axis DA. Thehandle 214 of the expansionconnector drive mechanism 118 is pulled along the drive axis DA toward thefront face 172 of the casing'supper body portion 102 a, which in turn pulls theexpansion connector 108 and theguide arms expansion connector 108 outside thecavity 128 and extended over the bearingsurface 104. Thelip portion 242 of the frame'sintegral catch mechanism 212 engages either theoptional lock mechanism 134, or alternative non-locking latch mechanism 244 (shown here), which constrains the expansionconnector drive mechanism 118 in the deployed position. - An
optional retraction mechanism 246 is operated for retracting theexpansion connector 108 from the deployed position by driving theframe 204 along the drive axis DA away from the upper body portion'sfront face 172 toward itsrear face 248. By example and without limitation, theretraction mechanism 246 includes aresilient biasing mechanism 250, such as a tension spring (shown), that is coupled between therear face 248 of theupper body portion 102 a and the second ornear end 216 of theframe 204 adjacent to thehandle 214. Thebiasing mechanism 250 operates between therear face 248 and thenear end 216 of theframe 204 for pulling theframe 204 toward therear face 248. Thebiasing mechanism 250 thereby operates to automatically retract theexpansion connector 108 from the deployed position when the lockinglatch mechanism 134 or non-locking latch mechanism 244 (shown here) is operated to release the frame'sintegral catch mechanism 212. Alternatively, as illustrated, thespring 250 is coupled between astanchion 251 near therear face 248 and thenear end 216 of theframe 204 for retracting theexpansion connector 108. - Furthermore, the resilient biasing mechanism or
tension spring 250 being mounted on oneside 218 of theframe 204 offset of the drive axis DA provides leverage to the force applied by thespring 250. Therefore, thespring 250 also biases theframe 204 on theguides 228 relative to the upper body portion'sinner surface 224 crosswise of the drive axis DA. Accordingly, thespring 250 also pulls theinner slot 206 of theframe 204 against theguides 228 so that theconnector seat 208 and theexpansion connector 108 securely mounted thereon are biased laterally relative to the upper body portion'sinner surface 224 and thebearing surface 104 on the opposite surface of thebearing plate 105 and substantially crosswise of the drive axis DA. The lateral bias provided by the offsetbiasing mechanism 250 stabilizes theexpansion connector 108 relative to the computer's I/O connector 4 for reducing effects on the interconnection of shocks and vibrations experienced by thedocking station 100. The novel expansionconnector drive mechanism 118 of the invention thus further improves the interconnection ofexpansion connector 108 with the computer's I/O connector 4 over the prior art docking station'sexpansion connector 15, as discussed above. - As disclosed herein, the
safety catch 124 will not interfere with theretraction mechanism 246 retracting theframe 204. However, another biasing mechanism 252 (shown in subsequent figures) operates to reset the sensing means for sensing that the computer'scasing 2 is emplaced on the docking station'sbearing surface 104 before theexpansion connector drive 118 can be operated. -
FIG. 17 illustrates the alternativenon-locking latch mechanism 244 by example and without limitation as a flexible latch mechanism of the type illustrated in U.S. patent application Ser. No. 11/064,777, which is incorporated herein in its entirety, for latching theexpansion connector 108 in the deployed position. As illustrated here by example and without limitation the alternativenon-locking latch mechanism 244 includes atooth 254 positioned at one end of aflexible arm 256 that is integrally (shown) or separately attached at its opposite end to theupper body portion 102 a, such as to thefront face 172 thereof.Inclined surfaces tooth 254 to automatically engage thelip portion 242 of the frame'sintegral catch mechanism 212 when theframe 204 is moved into the position for deploying theexpansion connector 108, i.e., when thenear end 216 of theframe 204 is pulled close to thefront face 172 of theupper body portion 102 a. Ahandle 260 is provided on theflexible arm 256 or another part of the alternativenon-locking latch mechanism 244 for disengaging thetooth 254 from the frame'slip portion 242, which releases theframe 204 for retracting theexpansion connector 108 from the deployed position. -
FIG. 18 illustrates theguide mechanism 226 that cooperates with theinner slot 206 to guide theframe 204 substantially along the drive axis DA. As discussed above, theframe 204 is constrained to move along the twoguides 228 relative to the upper body portion'sinner surface 224 along the drive axis DA. Here, by example and without limitation one ormore keepers 240 are secured to the upper body portion'sinner surface 224 by one ormore fasteners 236 for constraining theframe 204 to move along the drive axis DA. The one ormore keepers 240 also operate to constrain theguide discs 228, when present, in a position for cooperating with theinner slot 206 of theframe 204. Other structures for theguide mechanism 226 are also contemplated and may be substituted without deviating from the scope and intent of the present invention. For example, the one ormore keepers 240 are provided by a pair of disk-shaped keepers, i.e., flat washers, that are secured to the upper body portion'sinner surface 224 by thefasteners 236 for constraining theframe 204 to move along the drive axis DA. -
FIG. 19 illustrates the expansionconnector drive mechanism 118 of the present invention as well as features of theupper body portion 102 a that operate with the expansionconnector drive mechanism 118. Here, theframe 204 is shown adjacent to therear face 248 of theupper body portion 102 a with theexpansion connector 108 retracted from its deployed position. However, thesecurity mechanism 220 is disengaged by having thesafety catch 124 disengaged from the cooperatingkeyhole 222 in thesecurity plate 221 so that theframe 204 is free to move along the drive axis DA. As illustrated here, thebiasing mechanism 252 is shown as a compression spring that operates between thesafety catch 124 and, for example, an inner surface 253 of thelower body portion 102 b (omitted here for clarity, shown in a subsequent figure) to drive thesafety catch 124 intosecurity plate 221 and reset the docking station's computer sensing means. -
FIG. 20 illustrates the expansionconnector drive mechanism 118 of the present invention with theframe 204 is shown adjacent to thefront face 172 of theupper body portion 102 a with theexpansion connector 108 in its deployed position extended over the bearingsurface 104. Here, thebiasing mechanism 250 is shown as being in an expanded state for pulling theframe 204 toward therear face 248 when thesecurity mechanism 220 is subsequently disengaged. Thebiasing mechanism 250 thereupon operates to retract theexpansion connector 108 from the deployed position when theoptional lock mechanism 134 is operated to release the frame'sintegral catch mechanism 212. -
FIG. 21 is a section view taken substantially along a drive axis DA of the expansionconnector drive mechanism 118. This figure illustrates thenovel guide mechanism 226 of the invention having themovable frame 204 shifted toward thefront face 172 of theupper body portion 102 a such that theintegral connector seat 208 is positioned to place the expansion connector 108 (removed for clarity) in the deployed position relative to thebearing surface 104. As illustrated here, theguide mechanism 226 is formed by the twoguides 228 arranged on the upper body portion'sinner surface 224 in spaced apart positions along the drive axis DA within the cooperatinginner slot 206 of theframe 204. By example and without limitation, the twoguides 228 are illustrated here as wheels or rollers that rotate about respective axles orhubs 232 provided on the upper body portion'sinner surface 224. Theframe 204 is constrained to move relative to the upper body portion'sinner surface 224 along the drive axis DA by a single one-piece keeper 240 that is held in place by the twofasteners 236. - As illustrated here the
optionally lock mechanism 134 constrains theexpansion connector 108 to remain in the deployed position, as described herein. - The latch on the
upper body portion 102 a for securely fixing the expansionconnector drive mechanism 118 relative to theupper body portion 102 a of thedocking station 100 is illustrated here as thelock mechanism 134. As illustrated, thelock mechanism 134 includes aretractable tooth 262 positioned at one end of alock cylinder 264 that is attached at its opposite end to theupper body portion 102 a, such as to thefront face 172 thereof. Aninclined lead surface 266 allows the totooth 262 to automatically engage thelip portion 242 of the frame'sintegral catch mechanism 212 when theframe 204 is moved into the position for deploying theexpansion connector 108, i.e., when thenear end 216 of theframe 204 is pulled close to thefront face 172 of theupper body portion 102 a. A key 268 is applied to akey hole 270 in thelock cylinder 264 for disengaging thetooth 262 from the frame'slip portion 242, which releases theframe 204 for retracting theexpansion connector 108 from the deployed position. -
FIG. 22 illustrates thedocking station 100 being in an initial state of readiness to accept the computer 1 (shown in phantom) with thebottom face 2 a of thecasing 2 spaced away from the docking station'sbearing surface 104. Here, theexpansion connector 108 is mounted on theconnector seat 208 at thefar end 210 of theframe 204, and theexpansion connector 108 along with the two guide pins orarms cavity portion 128 of thehousing 126 adjacent to thebearing surface 104 at therear face 248 of theupper body portion 102 a. - As discussed herein, when the
safety catch 124 of theoptional sensing mechanism 123 is engaged with thekeyhole 222 in thesecurity plate 221, as shown, theframe 204 cannot be moved relative to the casing'supper body portion 102 a and thebearing surface 104. Furthermore, theexpansion connector 108 and guide pins orarms cavity 128 to interfere with seating thecomputer 1. For example, astem portion 272 of thesafety catch 124 projects above the bearingsurface 104 where thecomputer 1 is to be seated. Thestem 272 is sized to pass through both a narrowelongated slot portion 274 at a distal end of thekeyhole 222, and aclearance passage 276 through the bearingsurface 104. Furthermore, thestem portion 272 is cooperatively sized with thenarrow slot portion 274 to slide freely along a substantial length thereof, which thus permits theframe 204 to move between the fully retracted position (shown here) and the fully deployed position (shown in subsequent figures). Thestem portion 272 of thesafety catch 124 extends from abase portion 278 having ashoulder 280 that is oversized relative to thepassage 276 so that the upper body portion'sinner surface 224 on the backside of the bearingsurface 104 operates as a stop for thesafety catch 124. Furthermore, thebase portion 278 of thesafety catch 124 is too large to pass through thenarrow slot portion 274 of thekeyhole 222. However, thekeyhole 222 includes anenlarged passage 282 that communicates with anear end 284 of theslot portion 274 and is sized to pass thebase portion 278 of thesafety catch 124. As discussed herein, thesafety catch 124 is structured to cooperate with thebiasing mechanism 252 that operates to reset the sensing means for sensing that the computer'scasing 2 is emplaced on the docking station'sbearing surface 104 before theexpansion connector drive 118 can be operated. By example and without limitation, when thebiasing mechanism 252 is a conventional compression spring, as illustrated here, thebase portion 278 of thesafety catch 124 is structured with a cavity orpocket 286 that is sized to admit afirst end portion 288 of thespring 252 and orient thespring 252 along a drive axis DS of thesafety catch 124 that is by example and without limitation oriented substantially perpendicular to thebearing surface 104 of theupper body portion 102 a. Asecond end portion 290 of thespring 252 is compressed against the inner surface 253 of thelower body portion 102 b (omitted here for clarity). Accordingly, thespring 252 operates against the inner surface 253 of thelower body portion 102 b to drive thesafety catch 124 through thesecurity plate 221 and thepassage 276 to project from the bearingsurface 104. Thus, the docking station's computer sensing means 123 is set and theexpansion connector 108 is secure against being inadvertently deployed. -
FIG. 23 illustrates thedocking station 100 being in an intermediate state of accepting the computer 1 (shown in phantom) with thebottom face 2 a of thecasing 2 seated against the docking station'sbearing surface 104. Here, theexpansion connector 108 is mounted on theconnector seat 208 at thefar end 210 of theframe 204, and theexpansion connector 108 along with the two guide pins orarms cavity portion 128 of thehousing 126 adjacent to thebearing surface 104 at therear face 248 of theupper body portion 102 a. - As discussed herein, when the
bottom face 2 a of thecasing 2 is seated against the docking station'sbearing surface 104, as shown, the compression spring of thebiasing mechanism 252 is compressed against the inner surface 253 of thelower body portion 102 b (shown in a subsequent figure, removed here for clarity). Accordingly, thesafety catch 124 is pushed into thepassage 276 and flush with the bearingsurface 104. Simultaneously, the safety catch'sbase portion 278, which is oversized relative to thenarrow slot portion 274 of thekeyhole 222, is pushed through thekeyhole 222 and completely out of thesecurity plate 221. Only thestem portion 272 of thesafety catch 124 now extends through thenarrow slot portion 274 of thekeyhole 222. Thus, the docking station's computer sensing means 123 recognizes the presence of thecomputer 1 as being firmly seated against the bearingsurface 104, and theexpansion connector 108 can now be safely deployed. -
FIG. 24 illustrates thedocking station 100 being in final state of accepting the computer 1 (shown in phantom) with thebottom face 2 a of thecasing 2 seated against the docking station'sbearing surface 104. Furthermore, theexpansion connector 108 mounted on theconnector seat 208 is positioned to engage the computer's I/O connector 4. Here, theexpansion connector 108 and the two guide pins orarms cavity portion 128 of thehousing 126 of theupper body portion 102 a. Accordingly, as discussed herein, engagement of the guide pins orarms respective interface apertures expansion connector 108 relative to the computer's I/O connector 4, whereby operation of theexpansion connector drive 118 has here caused theexpansion connector 108 to engage the computer's I/O connector 4, and has here caused the pins (or pin receptors) 122 to engage the pin receptors (or pins) 4 c. - As discussed herein, when the
bottom face 2 a of thecasing 2 is seated against the docking station'sbearing surface 104, as shown here, the compression spring of thebiasing mechanism 252 is compressed against the inner surface 253 of thelower body portion 102 b (shown in a subsequent figure, removed here for clarity). With thesafety catch 124 being pushed into thepassage 276 and flush with the bearingsurface 104, thestem portion 272 of thesafety catch 124 is freely moved along thenarrow slot portion 274 of thekeyhole 222. When only thestem portion 272 of thesafety catch 124 extends through thenarrow slot portion 274 of thekeyhole 222, as here, thesecurity plate 221 is moved along the drive axis DA toward thefront face 172 of theupper body portion 102 a for deploying theexpansion connector 108. Thus, when thecomputer 1 is firmly seated against the bearingsurface 104, theexpansion connector 108 can now be fully deployed (as illustrated) by moving theframe 204 along the drive axis DA. For example, the frame's handle 214 (shown in previous figures) is pulled toward thefront face 172 of theupper body portion 102 a. - The
lip portion 242 of the frame'sintegral catch mechanism 212 is fully engaged with thelock mechanism 134 provided on theupper body portion 102 a. Accordingly, theexpansion connector 108 and guidearms cavity 128 and extended over the bearingsurface 104 for coupling with thecomputer 1. Until released, thelock mechanism 134 thus constrains theexpansion connector 108 to remain in the deployed position, as described herein. - When present, the locking
latch mechanism 134 is released by application of the key 268 to thekey hole 270 and subsequent operation thereof. Else, the alternativenon-locking latch mechanism 244 is operated by application of pressure against thelatch handle 260. - Upon release of either the locking
latch mechanism 134 ornon-locking latch mechanism 244, theretraction mechanism 246, for example the tension spring shown, automatically retracts the expansionconnector drive mechanism 118 from its deployed position along with theexpansion connector 108. As illustrated by example and without limitation, theframe 204 is automatically retracted from the deployed position adjacent to thefront face 172 of theupper body portion 102 a toward the retracted position adjacent to therear face 248. Theguide mechanism 226 cooperates with theinner slot 206 to guide theframe 204 toward the retracted position substantially along the drive axis DA. Retraction of theframe 204 simultaneously retracts theexpansion connector 108 seated thereon from thecomputer 1 and into the safe position within thecavity 128 of theintegral housing portion 126 of the casingupper body 102 a adjacent the rear 115 of the bearingsurface 104, where theexpansion connector 108 is out of harm's way during removal of thecomputer 1, as illustrated and discussed herein. -
FIG. 25 illustrates thedocking station 100 being in final state of accepting the computer 1 (removed for clarity). Furthermore, theexpansion connector 108 mounted on theconnector seat 208 is positioned to engage the computer's I/O connector 4, as discussed herein. Here, theexpansion connector 108 and the two guide pins orarms cavity portion 128 of thehousing 126 of theupper body portion 102 a by operation of theexpansion connector drive 118, as discussed herein. - As discussed herein, when the
bottom face 2 a of thecasing 2 is seated against the docking station'sbearing surface 104, as shown in previous figures, the compression spring of thebiasing mechanism 252 is compressed against the inner surface 253 of thelower body portion 102 b. By example and without limitation, a cavity orpocket 292 is provided on the inner surface 253 of thelower body portion 102 b, thepocket 292 being sized to admit thesecond end portion 290 of thespring 252 opposite from thepocket 286 in the safetycatch base portion 278, and being structured to cooperate with thepocket 286 in the safetycatch base portion 278 for orienting thespring 252 along the drive axis DS of thesafety catch 124. Thespring 252 is thus compressed between the twopockets safety catch 124 through thesecurity plate 221 and thepassage 276 to project from the bearingsurface 104. Thus, thespring 252 operates to set the docking station's computer sensing means 123 for securing theexpansion connector 108 against inadvertent deployment. -
FIG. 26 andFIG. 27 are respective top and bottom perspective views that together illustrate one embodiment of theframe 204 portion of theexpansion connector drive 118 of the invention. Here, the single-pieceelongated frame 204 is illustrated having the elongated lengthwiseinner slot 206 extending nearly the entire length thereof substantially along the longitudinal axis L thereof. The integral expandedconnector seat 208 is positioned at the first distal orfar end 210 for mounting theexpansion connector 108 thereon, and includes a pattern of several mountingholes 294 for attaching theexpansion connector 108. Theintegral catch mechanism 212 andintegral handle 214 portions are both positioned adjacent to the second proximal ornear end 216 of theframe 204 opposite from theconnector seat 208. Thehandle 214 may be provided, by example and without limitation, on oneside 218 of theframe 204, while thecatch mechanism 212 may be provided, by example and without limitation, at thenear end 216. As discussed herein, thecatch mechanism 212 includes thelip portion 242 that is structured to cooperate with either the lockinglatch mechanism 134 or alternativenon-locking latch mechanism 244 for securely fixing the expansionconnector drive mechanism 118 relative to theupper body portion 102 a of thedocking station 100 with theexpansion connector 108 in a deployed position. As illustrated here by example and without limitation thelip portion 242 is integrally formed with theinclined surface 258 that cooperates with theinclined surface 257 of the latch mechanism'stooth 254 for helping the totooth 254 to automatically engage thelip portion 242 when theframe 204 is moved into the position for deploying theexpansion connector 108. - The
inclined surface 258 of thelip portion 242 similarly cooperates with theinclined surface 266 of theretractable tooth 262 of theoptional lock mechanism 134, when present. Theinclined surface 258 similarly helps the totooth 262 to automatically engage thelip portion 242 when theframe 204 is moved into the position for deploying theexpansion connector 108. - The
security mechanism 220 is structured to cooperate with thesafety catch 124 to resist deployment of theexpansion connector 108 until thecomputer 1 is seated against the bearingsurface 104. Accordingly, theframe 204 includes theintegral security plate 221 formed along theside 218 thereof and spaced away from the lengthwiseinner slot 206 between theconnector seat 208 and thehandle 214. Thekeyhole 222 is formed in thesecurity plate 221 with thenarrow slot portion 274 formed substantially parallel with the longitudinal axis L and having theenlarged passage 282 communicating with the proximal ornear end 284 thereof. - The second proximal or
near end 216 of theframe 204 includes means for coupling theresilient biasing mechanism 250 for retracting theexpansion connector 108 from the deployed position along the drive axis DA. By example and without limitation, the second proximal ornear end 216 of theframe 204 includes asimple clearance hole 298 for coupling thebiasing mechanism 250, i.e.,spring 252, between it and therear face 248 of theupper body portion 102 a, as shown inFIG. 16 . Theresilient biasing mechanism 250 thus operates between the upper body portion'srear face 248 and thenear end 216 of theframe 204 for retracting theexpansion connector drive 118 from the deployed position when the lockinglatch mechanism 134 or alternativenon-locking latch mechanism 244 is operated to release the frame'sintegral catch mechanism 212. -
FIG. 28 is perspective view inside theupper body portion 102 a and illustrates the expansionconnector drive mechanism 118 of the present invention having a simplified single-pieceelongated frame 304 having an elongated lengthwiseinner slot 306 extending nearly the entire length of theframe 304 substantially along a longitudinal axis LA thereof. An integral expandedconnector seat 308 is positioned at a first distal orfar end 310 of theframe 304 for mounting theexpansion connector 108 thereon. Anintegral catch mechanism 312 andintegral handle portion 314 are both positioned adjacent to a second proximal or near end 316 of theframe 304 opposite from theconnector seat 308. Thehandle 314 may be provided, by example and without limitation, on anarm 317 extended from oneside 318 of theframe 304, while thecatch mechanism 312 may be provided, by example and without limitation, at the near end 316. Thecatch mechanism 312 is structured to cooperate with either the lockinglatch mechanism 134 or alternativenon-locking latch mechanism 244 for constraining theexpansion connector 108 to remain in the deployed position, as described herein. - The
lengthwise slot 306 in thealternate frame 304 cooperates with theguide mechanism 226 on theinner surface 224 of theupper body portion 102 a opposite from the bearingsurface 104 for guiding theframe 304 substantially along the drive axis DA, as described herein. By example and without limitation, lengthwiseslot 306 cooperates with the twoguides 228 of theguide mechanism 226 that are arranged on the upper body portion'sinner surface 224 in spaced apart positions along the drive axis DA. By example and without limitation, the twoguides 228 are optionally provided as one or more slides that permit theframe 304 to slide freely along the drive axis DA. Alternatively, theguides 228 are optionally formed as wheels or rollers that rotate about respective axles orhubs 232 provided on the upper body portion'sinner surface 224. The axles orhubs 232 may be configured to space theguides 228 slightly away from the upper body portion'sinner surface 224 for easier rotation. Theframe 304 is constrained to move relative to the upper body portion'sinner surface 224 along the drive axis DA by one or more keepers 240 (shown in phantom). For example, a pair of disc-shapedkeepers 240 are secured to the upper body portion'sinner surface 224 by one ormore fasteners 236 for constraining theframe 304 to move along the drive axis DA. The one ormore keepers 240 also operate to constrain theguide wheels 228, when present, in a position for cooperating with theinner slot 306 of theframe 304. Other structures for theguide mechanism 226 are also contemplated and may be substituted without deviating from the scope and intent of the present invention. - The
alternate frame 304 is structured such that, when theexpansion connector 108 is mounted on theconnector seat 308 at thefar end 310 of theframe 304, it fits within thecavity portion 128 of thehousing 126 and extends above the bearingsurface 104 of theupper body portion 102 a. Thealternate frame 304 is moveable, either by sliding or rolling, in cooperation with theguide mechanism 226 across theinner surface 224 of theupper body portion 102 a and along the drive axis DA. - A
security mechanism 320 is structured to cooperate with thesafety catch 124 to resist deployment of theexpansion connector 108 until thecomputer 1 is seated against the bearingsurface 104 and the computer's I/O connector 4 is positioned to receive theexpansion connector 108. Similar to thesecurity mechanism 220 of theframe 204 discussed herein, by example and without limitation, thesecurity mechanism 320 of thealternate frame 304 is provided in anintegral security plate 321 formed, by example and without limitation, along theside 318 of theframe 304 and spaced away from the lengthwiseinner slot 306, for example, between theconnector seat 308 and thehandle 314. Thesecurity mechanism 320 is provided as akeyhole 322 formed in thesecurity plate 321, thekeyhole 322 being structured for cooperating with thesafety catch 124 such that, when thesafety catch 124 is engaged with thekeyhole 322, theframe 304 cannot be moved relative to the casing'supper body portion 102 a. For example, thekeyhole 322 includes at a distal end thereof anarrow slot portion 324 sized to freely move thestem portion 272 of thesafety catch 124 along a substantial length thereof so that theframe 304 is permitted to move between the fully retracted position (shown here) and the fully deployed position (shown in previous figures). Thekeyhole 322 also includes anenlarged passage 326 that communicates with anear end 328 of theslot portion 324 and is sized to pass thebase portion 278 of thesafety catch 124 for disarming thesafety catch 124. - Similar to the novel expansion
connector drive mechanism 118 operated with theframe 204, here the novel expansionconnector drive mechanism 118 of the invention is operated by first depressing thesafety catch 124 relative to thebearing surface 104 of theupper body portion 102 a, for example by seating thebottom face 2 a of thecomputer casing 2 against the bearingsurface 104. Depressing thesafety catch 124 simultaneously disengages thesafety catch 124 of thesecurity mechanism 320 from the cooperatingkeyhole portion 322 in thesecurity plate 321, which thereby permits theframe 304 to move along the frame drive axis DA. Thehandle 314 of the expansionconnector drive mechanism 118 is pulled parallel to the drive axis DA toward thefront face 172 of the casing'supper body portion 102 a, which in turn pulls theexpansion connector 108 and guidearms expansion connector 108 outside thecavity 128 and extended over the bearingsurface 104. Aintegral lip portion 330 of the frame'sintegral catch mechanism 312 engages either the locking latch mechanism 134 (shown) or the alternativenon-locking latch mechanism 244 provided on theupper body portion 102 a. The locking latch mechanism 134 (shown) or alternativenon-locking latch mechanism 244 constrains theexpansion connector 108 to remain in the deployed position, as described herein. As illustrated, the aretractable tooth 262 of thelock mechanism 134 automatically engages thelip 330 when thealternate frame 304 is moved into the position for deploying theexpansion connector 108 as discussed herein. For example, aninclined lead surface 332 on the frame'slip portion 330 cooperates with thelead surface 258 to automatically engage thetooth 262 of thelock mechanism 134 when thealternate frame 304 is moved into the position for deploying theexpansion connector 108. - The
retraction mechanism 246 automatically retracts theexpansion connector 108 from the deployed position by pulling theframe 304 along the drive axis DA away from the upper body portion'sfront face 172 toward itsrear face 248. By example and without limitation, thebiasing mechanism 250, such as a tension spring (shown), is coupled between therear face 248 and asimple catchment 334 at the second or near end 316 of theframe 304 adjacent to thehandle 314. Thebiasing mechanism 250 operates between therear face 248 thecatchment 334 for retracting theframe 304 toward therear face 248. Thebiasing mechanism 250 thereby operates to retract theexpansion connector 108 from the deployed position when the locking latch mechanism 134 (shown) or alternativenon-locking latch mechanism 244 is operated to release the frame'sintegral catch mechanism 312. - Alternatively, a
compression spring 335 is substituted for the compression spring as thebiasing mechanism 250 of theretraction mechanism 246 for automatically retracting theexpansion connector 108 from the deployed position. Thecompression spring 335 operates by pushing theframe 304 along the drive axis DA away from the upper body portion'sfront face 172 toward itsrear face 248. - As disclosed herein, the
safety catch 124 will not interfere with retraction of thealternate frame 304. However, thebiasing mechanism 252 operates to reset the sensing means for sensing that the computer'scasing 2 is emplaced on the docking station'sbearing surface 104 before theexpansion connector drive 118 can be operated. -
FIG. 29 is an upside-down close-up view showing theedge mounting holes 148 formed along themutual contact line 103 between the upper andlower body portions piece body 102. As discussed herein, theedge mounting holes 148 each provide novel means for holding for example but not limited to a square- or hex-shaped mechanical nut N with its threaded bore aligned with the respective mountinghole 148 substantially parallel with the bearingsurface 104 and perpendicular to respective side faces 152 and 154 of the upper andlower body portions body 102 by means of the shaft S of a screw or bolt B being inserted into a selected one of theedge mounting holes 148 and threaded into the bore of the nut N. - The
edge mounting holes 148 are formed by a pair of mating shapes 336 and 338 formed in the docking station's two-piece body 102 through the mating upper andlower body portions shapes mutual contact line 103. By example and without limitation, theedge mounting holes 148 are formed by a pair of matingsemi-circular holes piece body 102 through the mating upper andlower body portions mutual contact line 103. However, the mating holes 336, 338 may alternatively be different in shape from semi-circular, for example, theholes mating line 103 of the upper andlower body portions edge mounting holes 148 may be alternatively formed in the edge of either one of the upper andlower body portions edge mounting hole 148 at the far left of the figure, theedge mounting holes 148 may alternatively be formed as a generally “U” or “V” or square-shapedhole 336 entirely within anedge portion 340 of one of the side faces 154 of thelower body portion 102 b, or the front 172 orrear face 248, while the mating hole is entirely eliminated from theupper body portion 102 a, and theshape 338 is anedge portion 342 of anopposite face upper body portion 102 a that is exposed by thehole 336 in thelower body portion 102 b, whereby theedge mounting hole 148 is formed by the shapedhole 336 that is closed by themating shape 338 of the upper body portion's exposededge portion 342. Alternatively, as illustrated by theedge mounting hole 148 at the center of the figure, theedge mounting holes 148 may alternatively be formed as a generally “U” or “V” or square-shapedhole 338 entirely within theedge portion 342 of theupper body portion 102 a, while themating hole 336 is entirely eliminated from thelower body portion 102 b, and theshape 336 is theedge portion 340 of thelower body portion 102 b that is exposed by thehole 338 in theupper body portion 102 a, whereby theedge mounting hole 148 is formed by the shapedhole 338 that is closed by themating shape 336 of the lower body portion's exposededge portion 340. - Each of the
edge mounting holes 148 is backed by arespective nut pocket 346 formed by anopen well 348. As illustrated by the cross-sectional view of theedge mounting hole 148 andcorresponding nut pocket 346, the well 348 of theintegral nut pocket 346 is formed in one of theupper body portion 102 a or thelower body portion 102 b (shown). The well 348 is generally rectangular in cross-section and extends through thebottom plane 156 of thelower body portion 102 b past thecontact line 103. The well 348 is formed having anopening 350 formed in thebottom plane 156 of thelower body portion 102 b (shown) or adjacent to thebearing surface 104 in theupper body portion 102 a. The nut pocket's well 348 andopening 350 thereto are sized to admit a nut N of a desired size, such as #2, #4, #6, #8, #10, ¼ inch, or metric size nut or bolt head H. For example, the well 348 is formed by a pair of spaced apartrigid side walls side face 154 of thelower body portion 102 b and downwardly of thebottom plane 156 and substantially perpendicular to each. Theside walls well 348. Theside walls opening 350 toward thecontact line 103. The mating shapes 336, 338 along thecontact line 103 are correspondingly sized to admit the shaft of the bolt B sized to mate with the nut N. -
FIG. 30 illustrates that anextension portion 356 of each well 348 extends past thecontact line 103. Theextension portion 356 closes the end of the corresponding well 348. Theextension portion 356 is optionally formed integrally with the corresponding well 348, and may optionally be formed into a point having integralbottom walls corner 362 in the central bottom of the nut pocket'swell 348. Additionally, thebottom walls angle 363 therebetween centered about thecorner 362, the includedangle 363 being constructed to mate with the angled walls of the nut N of the desired size and shape, i.e., square or hex. For example, the includedangle 363 between thebottom walls angle 363 formed by thebottom walls angle 363 is about 120 degrees to accommodate a hex nut. - The
extension portion 356 of the well 348 may be integral with theside walls 352, 354 (shown at center and right) and extended from the upper orlower body portion 102 b (shown) past thecontact line 103 toward the opposite lower orupper body portion 102 a (shown). As illustrated (center and right) the nut pockets 346 are optionally fully formed in the selectedupper body portion 102 a orlower body portion 102 b (shown). Alternatively, as illustrated by the nut pocket 340 (far left) theextension portion 356 is optionally formed in the opposingbody portion 102 a (shown) and positioned to align with thewalls well 348. - Each nut pocket's well 348 also includes a
backing panel 364 that is optionally integral with the well'sside walls lower body portions backing panel 364 is a means for constraining the nut N from backing away from theedge hole 148 when the screw or bolt B is applied thereto. - Also illustrated here is the simplicity of operation of the nut pockets 346. Here, the
nut pocket 346 is operated by simply dropping the nut N of the appropriate size through theopening 350 into the well 348 corresponding to the selectededge mounting hole 148 with two of the nut's parallel sides S1 and S2 oriented substantially parallel with the well'sside walls extension portion 356 at the end of the well 348 and nests between theside walls bottom walls extension 356 that combine to form the bottom of thewell 348. Upon the nut N nesting in theextension portion 356 of the well 348, the nut's threaded bore Nb substantially automatically self-aligns with theedge mounting hole 148. Thereafter, the screw or bolt B of the appropriate size is inserted through thecorresponding hole 148 and threaded into the nut's bore Nb for attaching a desired edge attachment. -
FIG. 31 is a section view of the nut pockets 346 taken from inside the two-piece body 102 of thedocking station 100 of the invention. Here, the nut pocket 346 (far left) is illustrated having theextension portion 356 optionally formed in the opposingbody portion 102 a (shown) and positioned in alignment with thewalls well 348. - This view also illustrates two of a plurality of
optional tabs 366 that extend between the upper andlower body portions -
FIG. 32 is a section view of the nut pockets 346 taken from inside the two-piece body 102 of thedocking station 100 of the invention. Here, the nut pocket 346 (far left) is illustrated having theextension portion 356 optionally formed in the opposingbody portion 102 a (shown) and positioned in alignment with thewalls well 348. The nut N is illustrated as being installed in thenut pocket 346 with the screw or bolt B inserted through theedge mounting hole 148 and mated with the nut N. The screw or bolt B is thereby positioned to secure an external object O (shown in phantom) to thesides lower body portions docking station 100 of the invention. -
FIG. 33 illustrates the nut N installed in thenut pocket 346 with the screw or bolt B inserted through theedge mounting hole 148 and mated with the nut N. The screw or bolt B is thereby positioned to secure the external object O (shown in phantom) to thesides lower body portions docking station 100 of the invention. -
FIG. 34 illustrateslower body portion 102 b with theupper body portion 102 a removed for clarity. Here, the nut pockets 346 are illustrated as being optionally fully formed in the selectedupper body portion 102 a orlower body portion 102 b (shown). Theextension portion 356 of the well 348 is integral with theside walls lower body portion 102 b (shown) past thecontact line 103 toward the opposite lower orupper body portion 102 a (shown). The nut N is illustrated as being installed in thenut pocket 346 with the screw or bolt B inserted through theedge mounting hole 148 and mated with the nut N. -
FIG. 35 illustrates one of theedge mounting holes 148 alternatively formed with a screw orbolt pocket 368 formed by example and without limitation as a pair of mating pockets 370 and 372 (shown in a subsequent figure) integrally formed on insidesurfaces lower body portion 102 b andupper body portion 102 a and adjacent to therespective edges pocket 370 is formed by example and without limitation as a construction ofintegral walls 378 interconnected alongcorners 380 and abacking panel 382 integrated with thewalls 378. Thepockets contact line 103 of the upper andlower body portions holes edge mounting hole 148. The screw pockets 368 are optionally formed with a substantially square shape to accommodate a square-head screw or bolt of a desired size, or may be formed with a substantially hexagonal shape (shown) to accommodate a hex-head screw or bolt of the desired size. Eachscrew pocket 368 is thus structured to mate with the square or hex head of the screw or bolt B, whereby the screw or bolt B is constrained from turning when torque is applied during installation and tightening of the mating nut N for securing the external object. -
FIG. 36 is a section view of one of the screw pockets 368 taken from inside the two-piece body 102 of thedocking station 100 of the invention. Here, thescrew pocket 368 is illustrated having the mating pockets 370 and 372 integrally formed on insidesurfaces lower body portion 102 b andupper body portion 102 a and adjacent to therespective edges respective backing panels 382 removed for clarity. The mating pockets 370 and 372 are positioned in alignment with the shapedholes -
FIG. 37 illustrates thescrew pocket 368 being alternatively configured to accommodate a carriage bolt Bc (shown in phantom) wherein thepocket 368 is formed having integral near andfar portions integral backing panel 364. Thenear portion 384 adjacent to the wall 152 (or 154) of thebody portion 102 a (or 102 b) is formed as one half of a square, either as an approximately 90 degree “V” shape or a rectangle (shown) that is sized to accept a square base portion Bc1 of the carriage bolt head Bch without turning when the nut N is installed and tightened. Thefar portion 386 spaced away from thewall 152 of thebody portion 102 a by the depth of thenear portion 384 is structured to accept a round pan portion Bc2 of the carriage bolt Bc. By example and without limitation, thefar portion 386 of thescrew pocket 368 is a “V” shape or a rectangle shape (shown) aligned with the shaped hole 338 (or 336) and sized to accept the round pan portion Bc2 of the carriage bolt Bc. -
FIG. 38 is a section view of the screw orcarriage bolt pocket 368 taken from inside the two-piece body 102 of thedocking station 100 of the invention. Here, thecarriage bolt pocket 368 is illustrated by example and without limitation as having thefar portion 386 of thescrew pocket 368 being a semi-cylindrical shape aligned with the shaped hole 338 (or 336) and sized to accept the round pan portion Bc2 of the carriage bolt Bc. -
FIG. 39 illustrates the noveldisplay unit support 142 of the invention that is structured for supporting the computer'sflat display unit 9. Thedisplay unit support 142 includes an elongatedrigid support arm 388 having a firstpivot end portion 390 that is pivotally coupled to thedocking station body 102, therigid support arm 388 being pivotal about apivot axis 392 in aplane 394 that is substantially parallel and adjacent to the side faces 152, 154 of thebody portions bearing surface 104. By example and without limitation, thepivot end 390 of thesupport arm 388 is coupled in a pivotal relationship with the two-piece body 102 by apivot mechanism 398. For example, thepivot mechanism 398 operates about thepivot axis 392 between ahub portion 400 of thebody 102 and anenlarged shoulder portion 402 at thepivot end 390 of thearm 388. According to one optional embodiment of thedisplay unit support 142, theshoulder portion 402 of thesupport arm 388 rotates about a pivot axle 404 (shown in one or more subsequent figures) that is aligned along thepivot axis 392 and extends between ahub portion 400 of thebody 102 and the arm'sshoulder portion 402. Alternative embodiments of thepivot mechanism 398 may be substituted without departing from the spirit and scope of the invention. - The
support arm 388 is constrained to operate about thepivot mechanism 398 with theshoulder portion 402 abutting the body'shub portion 400 by thepivot mechanism 398. By example and without limitation, theaxle 404 is optionally a screw or bolt passed through one of theedge mounting holes 148 of the type described herein and threaded into a nut 406 (shown in one or more subsequent figures) in one of the nut pockets 346 of the type described herein. Thereafter, a knob or handle 408 on theaxle 404 is operated for tightening and loosening of theshoulder portion 402 of thesupport arm 388 vis-á-vis thehub portion 400 of thebody 102 by turning relative to thenut 406 in thenut pocket 346 of thebody 102. Thus, thehandle 408 on thehead portion 410 of theaxle 404 operates against anoutside face 412 of theshoulder portion 402 of thesupport arm 388 to compress theshoulder portion 402 against the body'shub 400. Accordingly, friction between theshoulder portion 402 and thehub 400 caused by tightening of thehandle 408 on thehead portion 410 of theaxle 404 constrains thesupport arm 388 to remain in a selected rotational orientation with the upper body portion'sbearing surface 104. Thedisplay unit support 142 thus constrains the computer'sflat display unit 9 in the selected rotational orientation. The rotational orientation of thesupport arm 388 of thedisplay unit support 142 with the upper body portion'sbearing surface 104 is thus infinitely adjustable by alternately loosening and tightening thehandle 408. - The novel
display unit support 142 of the invention also includes a novel displayunit clamping mechanism 414 adjacent to a second extremesupport end portion 416 of therigid support arm 388 opposite from the firstpivot end portion 390. By example and without limitation, the displayunit clamping mechanism 414 adjacent to the secondsupport end portion 416 of thesupport arm 388 is structured as a spring-loaded vice for constraining thedisplay unit 9 relative to thesupport end portion 416 of thesupport arm 388. Accordingly, thedisplay unit 9 is pinched between an integral substantiallyrigid anvil 418 and a separate and rotatable substantiallyrigid jaw 420. By example and without limitation, theclamping mechanism 414 includes the substantiallyrigid anvil 418 being integral with theelongated support arm 388. The supportinganvil 418 is extended laterally to alongitudinal axis 422 of thesupport arm 388 to anextent 423 that at least anend portion 424 of theanvil 418 distal from thesupport arm 388 is projected into space in a position opposite from a portion of the bearingsurface 104 in the vicinity of either one of the pair of fixedly positioned engagingpins computer bearing surface 104 by several inches. Theanvil 418 is formed with anarcuate support surface 426 that is curved in a convex shape covering an extended arc having a substantially smooth face aligned generally with thelongitudinal axis 422 of theelongated support arm 388 and facing toward thefront face 172 of thebody 102 a such that the hardshell backing portion 9 b of thedisplay unit 9 is supported in an upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2 by resting against thearcuate support surface 426 of theanvil 418, as illustrated herein. - The separate substantially
rigid jaw 420 includes a first proximate barrel-shapedknuckle portion 428 that is projected inward of a substantiallyrigid finger 430. Theknuckle portion 428 of thejaw 420 is coupled to theanvil 418 adjacent to a healportion 432 thereof proximate to theend portion 416 of thesupport arm 388. Theknuckle portion 428 spaces therigid finger 430 away from thearcuate support surface 426 of theanvil 418 by a variableshort distance 434 that is adjustably configured to permit theflat display unit 9 of thecomputer 1 to fit therebetween. Theshort distance 434 by which thefinger 430 is spaced away from thearcuate support surface 426 of theanvil 418 is adjustable to accept therebetween different thicknesses t offlat display units 9 of different computers 1 (illustrated inFIG. 1 ). Theshort distance 434 is also variable as discussed herein to permit theflat display units 9 to rotate to different orientations with thekeyboard 7 on thetop face 2 b of thecomputer casing 2, while remaining constrained against thearcuate support surface 426 of theanvil 418 by thejaw 420. - Furthermore, an integral hard nub or button 436 (more clearly shown in one or more subsequent figures) is optionally projected slightly from an inward facing surface 438 of the
rigid finger 430 adjacent to asecond end 440 thereof distal from the firstproximate knuckle portion 428 thereof. Thejaw 420 is thus positioned in a pinching relationship to theanvil 418 such as to capture thedisplay unit 9 between thearcuate support surface 426 of theanvil 418 and thenub 436 projected from thedistal end 440 of therigid finger 430. Thus, the displayscreen surface portion 9 a of thedisplay unit 9 is supported in an upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2 by therigid jaw 420, as illustrated herein. Accordingly, thedisplay unit 9 of thecomputer 1 is constrained from falling backward away from thekeyboard 7 by theanvil 418, and is simultaneously constrained from falling forward toward thekeyboard 7 by thejaw 420. - The display
unit clamping mechanism 414 also includes a variable pressure resilient biasing mechanism 442 (detailed in a subsequent figure) that resiliently biases thejaw 420 toward thearcuate support surface 426 of theanvil 418 in the pinching relationship described herein. By example and without limitation, thebiasing mechanism 442 automatically varies thespacing distance 434 to accommodate the varying cross-sectional thickness of thedisplay unit 9 of thecomputer 1 of the prior art as thedisplay unit 9 is rotated relative to thetop face 2 b of thecomputer casing 2 about its hinge axis h into different upright positions at the back of thekeyboard 7. -
FIG. 40 illustrates the noveldisplay unit support 142 of the invention in a stored position having thesupport arm 388 rotated about thepivot axis 392 toward the bearingsurface 104 of theupper body portion 102 a, and theanvil 418 is nested in theedge recess 139. Theedge recess 139 is sized such that theanvil 418 is nested below the bearingsurface 104 so as not to interfere with seating of thecomputer 1. Theknob 408 may be tightened to secure thesupport arm 388 in the stored position. -
FIG. 41 is a side view that illustrates thejaw 420 of thedisplay unit support 142 of the invention being rotated about adrive axis 444 of thebiasing mechanism 442 into substantial alignment with thesupport arm 388 during storing of thedisplay unit support 142. When rotated into this rest position, thejaw 420 does not interfere with nesting of theanvil 418 in theedge recess 139. -
FIG. 42 illustrates thedocking station 100 of the invention with the noveldisplay unit support 142 in an active position having thesupport arm 388 rotated about thepivot axis 392 with the displayunit clamping mechanism 414 supporting thedisplay unit 9 in an open upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Accordingly, theanvil 418 is positioned supporting the hardshell backing portion 9 b of thedisplay unit 9. Here, thejaw 420 is illustrated as being rotated about thedrive axis 444 into substantial alignment with thesupport arm 388. Accordingly, thejaw 420 does not interfere with closing thedisplay unit 9 over thetop face 2 b of thecomputer casing 2. Theknob 408 may be tightened to secure thesupport arm 388 in the active position. -
FIG. 43 illustrates thedocking station 100 of the invention with the noveldisplay unit support 142 in an active position having thesupport arm 388 rotated about thepivot axis 392 with the displayunit clamping mechanism 414 supporting thedisplay unit 9 in an open upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Here, theanvil 418 is positioned supporting the hardshell backing portion 9 b of thedisplay unit 9. Furthermore, thejaw 420 is illustrated as being rotated into its active position supporting the displayscreen surface portion 9 a of thedisplay unit 9 in the upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Thedisplay unit 9 is thus constrained in the upright position by the pincer action of thejaw 420 relative to theanvil 418. As illustrated, thebutton 436 at thesecond end 440 of the inward facing surface 438 of therigid finger 430 presses against the displayscreen surface portion 9 a of thedisplay unit 9. - Furthermore, as illustrated here, the
second end 440 of therigid finger 430 extends sufficiently from thejaw 420 that thebutton 436 on the inward facing surface 438 thereof is extended over the hardshell lip portion 9 c of thedisplay unit 9 onto thedisplay screen 9 d. Therigid finger 430 thus wraps around the hardshell lip portion 9 c of thedisplay unit 9, and thebutton 436 thus falls below thelip portion 9 c onto thedisplay screen 9 d. Accordingly, the novel displayunit clamping mechanism 414 is constrained from slipping laterally off of thelip portion 9 c and inadvertently releasing thedisplay unit 9. -
FIGS. 44 through 50 illustrate that thearcuate support surface 426 of theanvil 418 permits thebacking portion 9 b of thedisplay unit 9 to roll thereabout in smooth substantially constant contact during rotation relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Simultaneously therewith therigid jaw 420 constrains thedisplay unit 9 to follow rotations of thesupport arm 388 about thepivot axis 392. For example, the integral hard nub orbutton 436 on thetip 440 of therigid finger 430 presses against thedisplay screen 9 d and forces thedisplay screen surface 9 a toward thearcuate support surface 426 of theanvil 418. -
FIG. 44 also illustrates thedocking station 100 of the invention with the noveldisplay unit support 142 in the active position ofFIG. 43 having thesupport arm 388 rotated about thepivot axis 392 with the displayunit clamping mechanism 414 supporting thedisplay unit 9 in an open upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Here, theanvil 418 is positioned supporting the hardshell backing portion 9 b of thedisplay unit 9, while thejaw 420 is positioned supporting the displayscreen surface portion 9 a. Thedisplay unit 9 is thus constrained in the upright position between thejaw 420 and theanvil 418. -
FIG. 45 is a side view of thedocking station 100 having thedisplay unit support 142 in one active position, as illustrated in previous figures, having thesupport arm 388 rotated about thepivot axis 392 with the displayunit clamping mechanism 414 supporting thedisplay unit 9 in one open over-center position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. In this active over-center position, theanvil 418 is positioned supporting the hardshell backing portion 9 b of thedisplay unit 9. Thejaw 420 is rotated into its active position supporting the displayscreen surface portion 9 a of thedisplay unit 9 in the upright over-center position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Thedisplay unit 9 is thus constrained in the open over-center position by the pincer action of thejaw 420 relative to theanvil 418. -
FIG. 46 is an opposite side view of thedisplay unit support 142 in the active position ofFIG. 45 for constraining thedisplay unit 9 in the open over-center position by the pincer action of thejaw 420 relative to theanvil 418. Here, theknob 408 is tightened to secure thesupport arm 388 in the active over-center position. -
FIG. 47 is a side view of thedocking station 100 having thedisplay unit support 142 in another active position having thesupport arm 388 rotated about thepivot axis 392 with the displayunit clamping mechanism 414 supporting thedisplay unit 9 in a substantially vertical upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. In this active upright position, theanvil 418 is positioned supporting the hardshell backing portion 9 b of thedisplay unit 9. Thejaw 420 is rotated into its active position supporting the displayscreen surface portion 9 a of thedisplay unit 9 in the upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Thedisplay unit 9 is thus constrained in the upright position by the pincer action of thejaw 420 relative to theanvil 418. -
FIG. 48 is an opposite side view of thedisplay unit support 142 in the active position ofFIG. 47 for constraining thedisplay unit 9 in the substantially vertical upright position by the pincer action of thejaw 420 relative to theanvil 418. Here, theknob 408 is tightened to secure thesupport arm 388 in the upright position. -
FIG. 49 is a side view of thedocking station 100 having thedisplay unit support 142 in another active position having thesupport arm 388 rotated about thepivot axis 392 with the displayunit clamping mechanism 414 supporting thedisplay unit 9 in another open position having thedisplay unit 9 in an extreme over-center upright position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. In this active extreme over-center position, theanvil 418 is positioned supporting the hardshell backing portion 9 b of thedisplay unit 9. Thejaw 420 is rotated into its active position supporting the displayscreen surface portion 9 a of thedisplay unit 9 in the extreme over-center open position relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. Thedisplay unit 9 is thus constrained in the extreme over-center open position by the pincer action of thejaw 420 relative to theanvil 418. -
FIG. 50 is an opposite side view of thedisplay unit support 142 in the active position ofFIG. 49 for constraining thedisplay unit 9 in the extreme over-center open position by the pincer action of thejaw 420 relative to theanvil 418. Here, theknob 408 is tightened to secure thesupport arm 388 in the extreme over-center position. -
FIG. 51 illustrates by example and without limitation thepivot mechanism 398 that constrains thesupport arm 388 to operate about thepivot axis 392 with theshoulder portion 402 abutting the body'shub portion 400. By example and without limitation, when thepivot axle 404 is a screw or bolt such as a shoulder bolt, it includes a first threadedend 450 that is sized to pass through one of the body'sedge mounting holes 148 of the type described herein. The threadedend 450 of the screw or bolttype pivot axle 404 is threaded into thenut 406 installed in one of the nut pockets 346 of the type described herein, wherein thenut 406 is optionally a lock nut of the hex variety. Additionally, ashaft portion 452 of the screw or bolttype pivot axle 404 passes through a complementary rotational clearance bore 454 which is formed through theshoulder portion 402 of thesupport arm 388 and which is sized to rotate smoothly about the pivotaxle shaft portion 452. Thehead portion 410 of the screw or bolttype pivot axle 404 distal from thebody 102 is by example and without limitation constrained in a recessednut pocket 456 formed in the knob or handle 408. Theknob 408 constrains thehead portion 410 of thepivot axle 404 for tightening and loosening of theshoulder portion 402 of thesupport arm 388 vis-á-vis thehub portion 400 of thebody 102 by turning relative to thenut 406 in thenut pocket 346 of the body portion'sbearing surface 104, whereby thedisplay unit support 142 constrains the computer'sflat display unit 9 in the selected rotational orientation. The rotational orientation of thesupport arm 388 of thedisplay unit support 142 is thus infinitely adjustable relative to the upper body portion'sbearing surface 104. - Alternative embodiments of the
pivot mechanism 398 may be substituted without departing from the spirit and scope of the invention. -
FIG. 52 illustrates by example and without limitation one alternative configuration of thepivot mechanism 398 wherein thehead portion 410 of the screw or bolttype pivot axle 404 is constrained in the one of the body's nut pockets 346. Theshaft portion 452 of thepivot axle 404 passes through the body'sedge mounting holes 148 and extends through the complementary rotational clearance bore 454 which is formed through theshoulder portion 402 of thesupport arm 388. The threadedend 450 of thepivot axle 404 is threaded into a complementary threadedbore 462 in theknob 408, which is operable for tightening and loosening of theshoulder portion 402 of thesupport arm 388 vis-á-vis thehub portion 400 of thebody 102 by turning relative to thepivot axle 404. -
FIG. 53 illustrates by example and without limitation another alternative configuration of thepivot mechanism 398. For example, an optionalresilient biasing mechanism 470 may be provided for biasing theshoulder portion 402 of thesupport arm 388 toward theface 460 on thehub portion 400 of thebody 102. By example and without limitation, the optionalresilient biasing mechanism 470 may be formed of aconventional compression spring 472 installed inside anenlarged counter-bore 474 formed in theshoulder portion 402 through anopening 476 in theoutside face 412 of theshoulder portion 402. Thespring portion 418 of thebiasing mechanism 470 is constrained between afloor portion 478 of the counter-bore 420 and thehead portion 410 of the screw or bolttype pivot axle 404. Optionally, awasher 480 may be inserted between thebolt head 410 and thecompression spring 472. Thespring portion 418 of thebiasing mechanism 470 thus operates against thefloor portion 478 of the counter-bore 474 to compress 102. Thus, thehandle 408 on thehead portion 410 of thepivot axle 404 operates against theoutside face 412 of theshoulder portion 402 of thesupport arm 388 to compress aninside face 458 theshoulder portion 402 against anoutside face 460 of thehub 400. Accordingly, friction between theinside face 458 theshoulder portion 402 against anoutside face 460 of thehub 400 constrains thesupport arm 388 to remain in a selected rotational orientation with the upper body theinside face 458 of theshoulder portion 402 of thesupport arm 388 against theoutside face 460 of the body'shub portion 400. - Alternative embodiments of the
resilient biasing mechanism 470 may be substituted without departing from the spirit and scope of the invention. - Additionally, a
ratcheting mechanism 482 is optionally provided for securing thesupport arm 388 in rotational relationship with the bearingsurface 104 of thebody portion 102 a. By example and without limitation, a first quantity of one ormore teeth 484 are provided on theoutside face 460 of thehub 400 portion of thebody 102 in a variable intermeshing relationship with a quantity of one ormore notches 486 formed on theinside face 458 the arm'sshoulder portion 402. Theintermeshing teeth 428 andnotches 430 permit the arm to be secured in a desired rotational relationship with thebody 102 for supporting the computer'sdisplay unit 9 in a desired discrete orientation relative to the docking station'scomputer bearing surface 104. -
FIG. 54 illustrates by example and without limitation the novel displayunit clamping mechanism 414 of thedisplay unit support 142 of the invention in an active configuration clamping thedisplay unit 9 in an open position relative to thecomputer casing 2. The novel displayunit clamping mechanism 414 is positioned adjacent to a second extremesupport end portion 416 of therigid support arm 388 opposite from the firstpivot end portion 390. By example and without limitation, the displayunit clamping mechanism 414 adjacent to the secondsupport end portion 416 of thesupport arm 388 is a hand for constraining thedisplay unit 9 relative to thesupport end portion 416 of thesupport arm 388. As discussed herein, by example and without limitation, theclamping mechanism 414 includes the substantiallyrigid anvil 418 that is integral with theelongated support arm 388. Theanvil 418 is extended laterally to alongitudinal axis 422 of thesupport arm 388 with itsend portion 424 being projected into space in a position above the bearingsurface 104. Thearcuate support surface 426 of theanvil 418 is curved in the convex shape that covers an extended arc having a center of rotation 488 (best shown in one or more previous figures). The center ofrotation 488 is oriented generally parallel withpivot axis 392 of thesupport arm 388, substantially lateral of thelongitudinal axis 422, and substantially crosswise of thedrive axis 444 of thebiasing mechanism 442. The smootharcuate support surface 426 is directed generally toward thefront face 172 of thebody 102 a for supporting the hardshell backing portion 9 b of thedisplay unit 9. - The first
proximate knuckle portion 428 of theseparate jaw 420 is movably coupled to theanvil 418 adjacent to the healportion 432 thereof. Thefinger portion 430 of thejaw 420 is thus spaced away from thearcuate support surface 426 of theanvil 418 by the variableshort distance 434 that is adjustably configured to permit theflat display unit 9 of thecomputer 1 to fit therebetween. Theshort distance 434 by which thefinger portion 430 of thejaw 420 is spaced away from thearcuate support surface 426 of theanvil 418 is adjustable to accept different thicknesses offlat display units 9 ofdifferent computers 1 therebetween. Furthermore, the integral hard nub orbutton 436 is optionally projected slightly from the inside surface 438 of therigid finger 430 adjacent to itsdistal tip 440. Thejaw 420 is thus positioned in a pinching relationship to theanvil 418 such as to capture thedisplay unit 9 between thearcuate support surface 426 and the projectednub 436 on thetip 440 of therigid finger 430. Thus, thedisplay unit 9 is compressed against thearcuate support surface 426 of theanvil 418 by thehard nub 436 on thetip 440 of therigid finger 430, as illustrated herein. - The display
unit clamping mechanism 414 also includes the variable pressureresilient biasing mechanism 442 that resiliently biases thejaw 420 toward thearcuate support surface 426 of theanvil 418 to form the pinching relationship described herein. By example and without limitation, thebiasing mechanism 442 automatically varies thespacing distance 434 to accommodate a varying cross-sectional thickness of thedisplay unit 9 as it is rotated about its hinge axis h relative to thetop face 2 b of thecomputer casing 2 into different upright positions at the back of thekeyboard 7. - By example and without limitation, the
biasing mechanism 442 is constructed along thelongitudinal drive axis 444 that is oriented generally crosswise of both thelongitudinal axis 422 of thesupport arm 388 and the center ofrotation 488 of thearcuate support surface 426 of theanvil 418. By example and without limitation, thebiasing mechanism 442 includes acompression spring 490 recessed inside atubular spring cavity 492 that is counter-bored in a barrel-shapedspring casing 494 of the healportion 432 at thesupport end portion 416 of therigid support arm 388. Thetubular spring cavity 492 is substantially aligned along thelongitudinal drive axis 444 of thebiasing mechanism 442. Thetubular spring cavity 492 has a full size input opening 496 at it outer end, and terminates in afloor portion 498 at its inner end. A smallerguide pin portion 500 of the healportion 432 extends from the barrel-shapedcavity 494 along thelongitudinal drive axis 444. Theguide pin portion 500 of the healportion 432 is formed therethrough with a tubular clearance bore 502 that communicates between thefloor 498 of thetubular spring cavity 492 and anopening 504 at the clearance bore'souter tip 506. The tubular clearance bore 502 through theguide pin portion 500 is sized to complement apivot axle 508 such as a screw or bolt. - The barrel-shaped
knuckle portion 428 of theseparate jaw 420 is projected inward of the inward facing surface 438 of therigid finger 430 along thelongitudinal drive axis 444 of thebiasing mechanism 442. The barrel-shapedknuckle portion 428 is formed with a complementary tubular counter-bore 510 that is sized to slidingly receive theguide pin portion 500 of the support arm's healportion 432 through anopening 512 in the end of theknuckle portion 428 distal from therigid finger 430. Thepivot axle 508 is projected substantially central of the tubular counter-bore 510 from afloor 514 thereof and along thelongitudinal drive axis 444 of thebiasing mechanism 442. By example and without limitation, an aperture orpassage 516 is formed in thefloor 514 of thetubular counter-bore 510 and communicates with an outward facingsurface 518 of therigid finger 430 opposite from the inward facing surface 438. When thepivot axle 508 is provided as a screw or bolt, thepassage 516 is sized to receive ashaft portion 520 of the screw-type pivot axle 508, while theaperture 516 is sized to constrain ahead portion 522 from passing. - When the tubular counter-bore 510 in the
knuckle portion 428 of thejaw 420 is slidingly fit over theguide pin portion 500 projected from the support arm's healportion 432, thepassage 516 in the floor of thetubular counter-bore 510 is substantially aligned with the tubular clearance bore 502 in theguide pin 500. Theshaft 520 of thepivot axle 508 is slidingly received through thepassage 516, along the tubular clearance bore 502 in theguide pin portion 500 of thespring casing 494, and into thetubular spring cavity 492. Thecompression spring 490 is received over the pivot axle'sshaft 520 and compressed in thetubular spring cavity 492 between thefloor portion 498 at its inner end and asecond end 524 of thepivot axle 508 opposite from itshead 522. For example, anut 526 andoptional washer 528 are installed onto the threaded end of thepivot axle shaft 520. - Additionally, means are provided for securing the
jaw 420 relative to theanvil 418 with thefinger portion 430 positioned over thedisplay screen surface 9 a of thedisplay unit 9 opposite from thearcuate support surface 426. By example and without limitation, adetent mechanism 530 is provided between theguide pin portion 500 of theanvil 418 and theknuckle portion 428 of thejaw 420. Thedetent mechanism 530 may be formed by example and without limitation by one ormore teeth 532 sized to slide into one ormore slots 534 formed between theguide pin 500 and theknuckle portion 428 of thejaw 420. - As described, the variable pressure
resilient biasing mechanism 442 of the displayunit clamping mechanism 414 resiliently biases thejaw 420 toward thearcuate support surface 426 of theanvil 418 in the pinching relationship described herein. As will be generally well-understood, the cross-sectional thickness t of thedisplay unit 9 increases and decreases as it is rotated into different orientations relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2, the cross-sectional thickness t varying between a minimum when thedisplay unit 9 is in the substantially vertical upright position illustrated inFIG. 47 , and a maximum when thedisplay unit 9 is in the extreme over-center position illustrated inFIG. 49 . - Accordingly, the
biasing mechanism 442 floats therigid finger 430 along thelongitudinal drive axis 444 over the barrel-shapedportion 494 of theanvil 418. Thebiasing mechanism 442 thus permits theclamping mechanism 414 to accommodate the varying cross-sectional thickness t of thedisplay unit 9 as it is rotated into different orientations relative to thekeyboard 7 on thetop face 2 b of thecomputer casing 2. As thedisplay unit 9 rotates from the substantially vertical upright position illustrated inFIG. 47 , the cross-sectional thickness t increases, and thedisplay unit 9 exerts pressure on thebiasing mechanism 442, which spreads thejaw portion 420 of theclamping mechanism 414 resiliently away from theanvil portion 418. However, thespring 490 exerts an opposite compression pressure that squeezes therigid finger 430 of thejaw 420 against thedisplay screen surface 9 a so that thedisplay unit 9 is pressed against thearcuate support surface 426 of theanvil 418. Similarly, when thedisplay unit 9 is rotated from any non-vertical position, such as the extreme over-center position illustrated inFIG. 49 , thespring 490 continues to exert the compression pressure that squeezes therigid finger 430 of thejaw 420 against thedisplay screen surface 9 a so that thedisplay unit 9 is pressed against thearcuate support surface 426 of theanvil 418 even while the cross-sectional thickness t decreases. - Furthermore, as illustrated here, the
second end 440 of therigid finger 430 extends sufficiently from thejaw 420 that thebutton 436 on the inward facing surface 438 thereof is extended over the hardshell lip portion 9 c of thedisplay unit 9 onto thedisplay screen 9 d. As discussed elsewhere herein, therigid finger 430 thus wraps around the hardshell lip portion 9 c of thedisplay unit 9. Thebiasing mechanism 442 operating along thelongitudinal drive axis 444 forces thebutton 436 below thelip portion 9 c and against thedisplay screen 9 d. Accordingly, thebiasing mechanism 442 operates thebutton 436 to constrain the novel displayunit clamping mechanism 414 from slipping laterally off of thelip portion 9 c and inadvertently releasing thedisplay unit 9. -
FIG. 55 illustrates by example and without limitation the novel displayunit clamping mechanism 414 of thedisplay unit support 142 invention in a passive configuration wherein the hardshell backing portion 9 b of thedisplay unit 9 is supported by theanvil 418 portion of thesupport arm 388 with the opposingjaw portion 420 in an open position relative to thedisplay screen surface 9 a. Accordingly, thejaw 420 including thefinger portion 430 is rotated away from the active position over thedisplay screen surface 9 a. For example, theknuckle 428 is pulled away from theanvil 418 along thelongitudinal drive axis 444 until thedetent 530 disengages, i.e., until theteeth 532 slide free of theslots 534. Thejaw portion 420 is rotated until thefinger 430 clears thedisplay unit 9. With thefinger 430 in this passive configuration, thejaw 420 is freed and thecompression spring 490 draws theknuckle 428 toward theanvil 418 along thelongitudinal drive axis 444. Theteeth 532 andslots 534 may be additionally configured to form thedetent 530 between the between theguide pin portion 500 and theknuckle portion 428 for securing thejaw 420 in the passive configuration vis-á-vis theanvil 418. - Alternative embodiments of the display
unit clamping mechanism 414 andbiasing mechanism 442 may be substituted without departing from the spirit and scope of the invention. - While the preferred and additional alternative embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. Therefore, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. Accordingly, the inventor makes the following claims.
Claims (21)
1-20. (canceled)
21: An external expanding apparatus that is operable with a portable computer of a type having an input/output (I/O) connector positioned on a back plane thereof for interconnecting with a mating connector of the external expanding apparatus, the external expanding apparatus comprising:
a substantially rigid two-part apparatus body having an upper apparatus body portion and a lower body apparatus portion being structured for mating together along a mutual line of contact, wherein:
a) the upper apparatus body portion further comprises a substantially rigid bearing plate formed with a substantially rectangular computer bearing surface on an outer face thereof, an expansion connector drive mechanism coupled to an inner face thereof opposite from the bearing surface and being moveable relative to the bearing plate, and a side skirt portion extended from the bearing plate and having a mating surface coincident with the line of contact,
b) the lower apparatus body portion is further adapted for mounting to an external support structure and comprising a side skirt portion extended from a bottom plate thereof and having a mating surface coincident with the line of contact,
c) a peripheral device connector presentation surface provided on one of the upper and lower apparatus body portions, and
d) a mounting apparatus is formed along the line of contact, the mounting hole comprising:
i) a pair of mating shapes along the line of contact between the respective skirt portions of the upper and lower apparatus body portions and forming a passage extending between outer and inner surfaces of the respective skirt portions, and
ii) a nut pocket adjacent to the inner surface of the respective skirt portions and substantially aligned with the passage extending between the outer and inner surfaces thereof, the nut pocket having a plurality of intersecting substantially planar walls oriented substantially perpendicular to the outer surfaces of the respective skirt portions and a retainer opposite from the passage and spaced away therefrom;
engaging structure projected above the bearing surface at opposite corners thereof and being structured for matingly engaging the bottom surface of the casing of the portable computer;
a computer expansion connector structured to mate with the I/O connector of the computer and being movably mounted on the expansion connector drive mechanism adjacent to the computer bearing surface of the bearing plate for moving relative thereto; and
a plurality of peripheral device connectors electrically coupled to the computer expansion connector and presented at the peripheral device connector presentation surface, each of the peripheral device connectors being structured to receive a corresponding peripheral device connector.
22: The apparatus of claim 21 wherein the mounting apparatus further comprises an opening formed in one of the upper and lower apparatus body portions, and a well shaft communicating between the opening and the nut pocket.
23: The apparatus of claim 22 wherein the opening is formed in one of the bearing plate of the upper apparatus body portion and the bottom plate of the lower apparatus body portion.
24: The apparatus of claim 23 wherein the well shaft is further integral with the one of the upper and lower apparatus body portion having the opening formed therein.
25: The apparatus of claim 24 wherein the nut pocket is further integral with the well shaft.
26: The apparatus of claim 25 wherein the well shaft further comprises a substantially constant cross-sectional interior shape between the opening and the nut pocket.
27: The apparatus of claim 24 wherein the well shaft is further integral with the skirt portion of a first one of the upper and lower apparatus body portion having the opening formed therein, and the nut pocket is further integral with a second one of the skirt portions of the upper and lower apparatus body portions opposite from and aligned with the well shaft of the first one of the skirt portions.
28: The apparatus of claim 24 wherein the passage further comprises a clearance aperture sized proportionally with the nut pocket for permitting clearance of a threaded shaft sized to mate with a threaded nut that is sized to mate with the nut pocket.
29: The apparatus of claim 23 wherein the pair of mating shapes along the line of contact between the respective skirt portions of the upper and lower apparatus body portions further comprises a first passage recessed in the mating surface of a first one of the skirt portions of the upper and lower apparatus body portions.
30: The apparatus of claim 23 wherein the pair of mating shapes along the line of contact between the respective skirt portions of the upper and lower apparatus body portions further comprises a second mating passage recessed in the mating surfaces of a second one of the skirt portions of the upper and lower apparatus body portions opposite from and aligned with the first passage recessed in the mating surface of the first one of the skirt portions.
31: An external expanding apparatus for expanding the function of a portable electronic device having a device body provided with an input/output (I/O) connector, the external expanding apparatus comprising:
an apparatus body having first and second apparatus body portions each formed with side skirt portions having respective mating surfaces structured for mating along a mutual line of contact, one or more edge mounting holes formed between the first and second mating surfaces and extending exterior and interior portions of the apparatus body, and one of the first and second apparatus body portions having a bearing surface on which the device body is to be placed, and a connector presentation surface for opposing the device I/O connector of the device body placed on the bearing surface;
a pair of engaging pins positioned on a rear portion of the bearing surface adjacent to the connector presentation surface, the engaging pins being structured for being slidingly received into mating locating holes in the device body;
an expansion connector connectable with the device I/O connector;
an expansion connector drive mechanism structured for moving the expansion connector relative to the connector presentation surface between a disengaged position spaced away from the bearing surface and an engaged position extended over the bearing surface;
one or more peripheral device connectors electrically coupled to the expansion connector and presented at a peripheral device connector presentation surface of the apparatus body portion;
one or more nut pockets on an interior portion of the side skirt portion of one of the first and second apparatus body portions and substantially aligned with a respective one of the one or more edge mounting holes;
one or more opening formed in one of the first and second apparatus body portions and substantially aligned with a respective one of the one or more nut pockets;
one or more well shafts on an interior portion of the side skirt portion of one of the first and second apparatus body portions and communicating substantially continuously between a respective one of the one or more openings and the respective nut pocket corresponding thereto; and
a mounting structure that is structured to adapt the body portion for mounting to an external support structure.
32: The apparatus of claim 31 wherein at least one of the one or more nut pockets is further integral with the well shaft communicating therewith.
33: The apparatus of claim 31 wherein at least one of the one or more nut pockets is further integral with the skirt portion of the first apparatus body portion, and the well shaft communicating therewith is further integral with the skirt portion of the second apparatus body portion.
34: The apparatus of claim 31 wherein at least one of the one or more edge mounting holes further comprises a first passage recessed in the mating surface of the skirt portion of the first apparatus body portion.
35: The apparatus of claim 34 wherein the one of the one or more edge mounting holes having the first passage recessed in the mating surface of the skirt portion of the first apparatus body portion further comprises a second passage recessed in the mating surface of the skirt portion of the second apparatus body portion and communicating with the first passage.
36: The apparatus of claim 31 wherein the at least one of the one or more openings is further formed in a surface of the one of the first and second apparatus body portions opposite from the mating surface thereof
37: An external expanding apparatus that is operable with a portable computer of a type having an input/output (I/O) connector positioned on a back plane thereof for interconnecting with a mating connector of the external expanding apparatus, the external expanding apparatus comprising:
a substantially rigid apparatus body portion having a substantially rigid bearing plate formed with a substantially rectangular computer bearing surface on an outer face thereof on which the computer device body is to be placed and one or more guides on an inner face thereof opposite from the bearing surface, a connector presentation surface adjacent to the bearing surface along a rear edge thereof and having an opening formed therein projected above the bearing surface in a position for opposing the device I/O connector of the computer device body placed on the bearing surface, a computer device receiver structure fixedly positioned adjacent to a front edge of the bearing surface and projected there above opposite from the connector presentation surface and having a jaw structure with an opening facing toward the connector presentation surface and structured to receive and mate with a front face of the computer device casing, a substantially rigid bottom plane formed opposite from the bearing plate with a peripheral device connector presentation surface adjacent to an edge thereof and having one or more peripheral device connectors, and a pair of substantially rigid peripheral side walls extending between the bearing plate and the bottom plate and mating along a line of contact therebetween;
a plurality of edge mounting structures formed along the line of contact between the pair of peripheral side walls, each of the edge mounting structures comprising:
a clearance hole formed through at least one of the pair of side walls adjacent to the line of contact,
a nut pocket formed on an interior portion of at least one of the pair of side walls in substantial alignment with the clearance hole,
an opening formed in one of the bearing plate and the bottom plane of the apparatus body portion, and
a well shaft communicating between the opening and the nut pocket;
a pair of engaging pins sized to be matingly received into the pair of locating holes in the bottom surface of the casing of the portable computer device, the engaging pins being fixedly projected above the bearing surface at opposite corners thereof and adjacent to the rear edge thereof in positions for being matingly received into the pair of device locating holes;
an expansion connector drive mechanism movable relative to the connector presentation surface, the expansion connector drive mechanism being movably coupled to the one or more guides on the inner face of the bearing plate for moving relative thereto between the front and rear edges of the bearing surface along a drive axis substantially aligned with the opening in the connector presentation surface;
a connector bracket connectable with the pair of positioning apertures provided on opposite sides of the device I/O connector and being coupled to the expansion connector drive mechanism and projected above the bearing surface of the bearing plate and substantially aligned with the opening in the connector presentation surface, the connector bracket having a pair of substantially rigid guides in spaced-apart positions for engaging the pair of positioning apertures provided on the computer device back plane on opposite sides of the I/O connector;
a computer expansion connector connectable with the I/O connector of the computer, the computer expansion connector being mounted on the connector bracket between the guides thereof and electrically interfaced to one or more of the peripheral device connectors; and
the connector bracket being linearly movable substantially parallel with the drive axis of the expansion connector drive mechanism between a first disengaged position having the connector bracket guides and expansion connector retracted within the opening in the connector presentation surface adjacent to the rear edge of the bearing surface, and a second engaged position having the connector bracket guides and expansion connector extended from the opening in the connector presentation surface over the rear edge of the bearing surface.
38: The apparatus of claim 37 wherein the nut pocket is further formed integrally with the well shaft communicating therewith.
39: The apparatus of claim 37 wherein the clearance hole further comprises a first recess formed in a first one of the pair of peripheral side walls in communication with the line of contact therebetween.
40: The apparatus of claim 39 wherein the clearance hole further comprises a second recess formed in a second one of the pair of peripheral side walls in communication with the first recess along the line of contact therebetween.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/493,107 US7315453B1 (en) | 2006-06-30 | 2006-07-26 | Portable device docking station |
US11/525,354 US7508661B2 (en) | 2006-06-30 | 2006-09-23 | Portable device docking station |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/480,666 US7298611B1 (en) | 2006-06-30 | 2006-06-30 | Portable device docking station |
US11/493,107 US7315453B1 (en) | 2006-06-30 | 2006-07-26 | Portable device docking station |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/480,666 Division US7298611B1 (en) | 2006-06-30 | 2006-06-30 | Portable device docking station |
US11/496,643 Division US7573706B2 (en) | 2006-06-30 | 2006-07-31 | Portable device docking station |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/490,402 Division US7417855B2 (en) | 2006-06-30 | 2006-07-19 | Portable device docking station |
Publications (2)
Publication Number | Publication Date |
---|---|
US7315453B1 US7315453B1 (en) | 2008-01-01 |
US20080002369A1 true US20080002369A1 (en) | 2008-01-03 |
Family
ID=38690972
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/480,666 Active US7298611B1 (en) | 2006-06-30 | 2006-06-30 | Portable device docking station |
US11/490,402 Active 2027-01-24 US7417855B2 (en) | 2006-06-30 | 2006-07-19 | Portable device docking station |
US11/493,107 Active US7315453B1 (en) | 2006-06-30 | 2006-07-26 | Portable device docking station |
US11/496,643 Active 2027-08-17 US7573706B2 (en) | 2006-06-30 | 2006-07-31 | Portable device docking station |
US11/525,354 Expired - Fee Related US7508661B2 (en) | 2006-06-30 | 2006-09-23 | Portable device docking station |
US12/462,838 Active 2026-07-23 US7894180B2 (en) | 2006-06-30 | 2009-08-10 | Portable device docking station |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/480,666 Active US7298611B1 (en) | 2006-06-30 | 2006-06-30 | Portable device docking station |
US11/490,402 Active 2027-01-24 US7417855B2 (en) | 2006-06-30 | 2006-07-19 | Portable device docking station |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/496,643 Active 2027-08-17 US7573706B2 (en) | 2006-06-30 | 2006-07-31 | Portable device docking station |
US11/525,354 Expired - Fee Related US7508661B2 (en) | 2006-06-30 | 2006-09-23 | Portable device docking station |
US12/462,838 Active 2026-07-23 US7894180B2 (en) | 2006-06-30 | 2009-08-10 | Portable device docking station |
Country Status (1)
Country | Link |
---|---|
US (6) | US7298611B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080273297A1 (en) * | 1999-04-07 | 2008-11-06 | Rajendra Kumar | Portable computing, communication and entertainment device with central processor carried in a detachable portable device |
US20080304688A1 (en) * | 1999-04-07 | 2008-12-11 | Rajendra Kumar | Docking display station with docking port for retaining a hands-free headset therein |
US20090213536A1 (en) * | 2008-02-27 | 2009-08-27 | Lewandowski Jason M | Computer docking station for a vehicle |
US20110121776A1 (en) * | 2008-08-12 | 2011-05-26 | Jeffrey A Lev | Notebook Computer Charging Systems |
US20110266230A1 (en) * | 2010-04-28 | 2011-11-03 | Carnevali Jeffrey D | Support device having variable security level |
WO2013158057A1 (en) * | 2012-04-16 | 2013-10-24 | World Richman Manufacturing Corporation | Rotating mechanism for computer or similar device |
US9080716B2 (en) | 2012-04-16 | 2015-07-14 | World Richman Mfg. Corp. | Cradle apparatus and method for rotating and linearly displacing an electronic device |
US20160056647A1 (en) * | 2014-08-25 | 2016-02-25 | Samsung Electronics Co., Ltd. | Cradle for Electronic Device |
EP3023685A1 (en) | 2014-07-31 | 2016-05-25 | Iordanka Koleva Mulhern | Cradle-cassette apparatus for an electronic device |
EP3070574A1 (en) | 2015-03-17 | 2016-09-21 | World Richman Manufacturing Corporation | Reversible case for an electronic device |
US9634711B2 (en) | 2014-08-19 | 2017-04-25 | World Richman Manufacturing Corporation | Universal device-holding case construction with magnetic fastener feature |
EP3193233A1 (en) | 2015-08-19 | 2017-07-19 | World Richman Manufacturing Corporation | Universal device-holding case construction with magnetic fastener feature |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2849800Y (en) * | 2005-12-01 | 2006-12-20 | 鸿富锦精密工业(深圳)有限公司 | Extension base and notebook computer with same |
DE102007026565A1 (en) * | 2006-06-09 | 2007-12-27 | ResMed Ltd., Bella Vista | Accessory devices for portable positive airway device and method of use thereof |
US8179672B2 (en) | 2006-06-30 | 2012-05-15 | National Products, Inc. | Portable device docking station |
US7583495B2 (en) * | 2006-06-30 | 2009-09-01 | Carnevali Jeffrey D | Portable device docking station |
KR100810264B1 (en) * | 2006-07-20 | 2008-03-07 | 삼성전자주식회사 | Portable terminal with locking release device |
TW200811637A (en) * | 2006-08-30 | 2008-03-01 | Compal Electronics Inc | A computer dock |
KR20070044407A (en) * | 2007-02-14 | 2007-04-27 | 배석희 | Intellect station |
US8339254B2 (en) * | 2007-08-09 | 2012-12-25 | Drew Technologies | User configured display system for motor vehicle |
US9563988B2 (en) * | 2007-08-09 | 2017-02-07 | Drew Technologies | Vehicle tuner and display module and docking station |
TWI345145B (en) * | 2008-03-13 | 2011-07-11 | Compal Electronics Inc | Expansion unit for electronic device |
US7751185B2 (en) * | 2008-09-16 | 2010-07-06 | Amtek System Co., Ltd. | Docking station applied to a portable electronic device |
JP2010200168A (en) * | 2009-02-26 | 2010-09-09 | Toshiba Corp | Electronic apparatus, expansion apparatus and electronic apparatus system |
US8185681B2 (en) * | 2009-06-15 | 2012-05-22 | Hewlett-Packard Development Company, L.P. | Docking Station |
US8320960B2 (en) * | 2009-07-21 | 2012-11-27 | Azurewave Technologies, Inc. | Docking station and computer system using the docking station |
US8419479B2 (en) * | 2009-09-17 | 2013-04-16 | Matthew Leigh Vroom | Docking station for an electronic device with improved electrical interface |
US9285831B2 (en) | 2009-09-17 | 2016-03-15 | Henge Docks Llc | Docking station for portable electronics |
US8441787B2 (en) * | 2009-12-09 | 2013-05-14 | Man & Machine Inc. | EZconnect tablet/stylus PC portable docking accessory with I/O ports |
JP5406751B2 (en) * | 2010-02-04 | 2014-02-05 | パナソニック株式会社 | Anti-theft device |
US8289698B1 (en) | 2010-09-29 | 2012-10-16 | The United States Of America As Represented By The Secretary Of The Navy | Integrated docking station |
US8427826B2 (en) * | 2010-11-29 | 2013-04-23 | L&P Property Management Company | Computer docking station assembly |
CN102759946A (en) * | 2011-04-26 | 2012-10-31 | 鸿富锦精密工业(深圳)有限公司 | Locking element and computer housing employing same |
TWM413308U (en) * | 2011-04-28 | 2011-10-01 | cheng-jun Zhang | Improved overlap connection base |
US8659889B2 (en) * | 2011-05-20 | 2014-02-25 | Apple Inc. | Docking station for providing digital signage |
CN102790333B (en) * | 2011-05-20 | 2016-01-13 | 富泰华工业(深圳)有限公司 | Base |
CN102856755B (en) * | 2011-06-28 | 2016-04-20 | 富泰华工业(深圳)有限公司 | Base |
US8929065B2 (en) * | 2011-08-23 | 2015-01-06 | L&P Property Management Company | Docking station with ruggedized case |
US9298218B2 (en) * | 2011-10-02 | 2016-03-29 | Intal Tech Ltd. | Portable computer vehicle dock |
US8873233B2 (en) | 2011-10-28 | 2014-10-28 | Xplore Technologies Corp. | Vehicle dock for ruggedized tablet |
US8619417B1 (en) * | 2011-11-08 | 2013-12-31 | The United States Of America As Represented By The Secretary Of The Navy | Water-resistant computer docking station |
CN103123517B (en) * | 2011-11-21 | 2015-10-28 | 英业达股份有限公司 | Electronic installation |
US8926349B2 (en) * | 2012-02-23 | 2015-01-06 | Jeffrey D. Carnevali | Universal adaptor mount for a docking station |
US8911246B2 (en) * | 2012-02-23 | 2014-12-16 | Jeffrey D. Carnevali | Universal adaptor mount for a docking station |
CN103313554A (en) * | 2012-03-13 | 2013-09-18 | 鸿富锦精密工业(深圳)有限公司 | Fixation device and electronic equipment therewith |
JP5906919B2 (en) * | 2012-04-23 | 2016-04-20 | 富士通株式会社 | Support device |
US9436830B2 (en) * | 2012-10-17 | 2016-09-06 | Sandisk Technologies Llc | Securing access of removable media devices |
TWI495985B (en) * | 2012-12-20 | 2015-08-11 | Compal Electronics Inc | Docking station and display system |
CN104111706B (en) * | 2013-04-16 | 2018-03-20 | 鸿富锦精密电子(天津)有限公司 | Cabinet |
US9400529B2 (en) * | 2013-09-27 | 2016-07-26 | Apple Inc. | Electronic device having housing with embedded interconnects |
US9429993B2 (en) | 2013-11-21 | 2016-08-30 | Toshiba Global Commerce Solutions Holdings Corporation | Computing device docking systems |
US9650814B2 (en) | 2013-12-31 | 2017-05-16 | Henge Docks Llc | Alignment and drive system for motorized horizontal docking station |
US9927838B2 (en) | 2013-12-31 | 2018-03-27 | Henge Docks Llc | Sensor system for docking station |
JP6389774B2 (en) * | 2015-02-10 | 2018-09-12 | 東芝テック株式会社 | Product sales data processing device |
USD752054S1 (en) | 2015-03-02 | 2016-03-22 | Clingo.Com Llc | Stand for personal electronic devices |
JP6531492B2 (en) * | 2015-05-27 | 2019-06-19 | 富士通クライアントコンピューティング株式会社 | Expansion equipment and electronic equipment |
US10061353B2 (en) * | 2015-06-05 | 2018-08-28 | Hewlett-Packard Development Company, L.P. | Docking stations |
US9833064B2 (en) * | 2015-07-23 | 2017-12-05 | Gamber-Johnson Llc | Keyboard mounting assembly |
US20170068272A1 (en) * | 2015-09-04 | 2017-03-09 | Erik Jens Loscalzo | Laptop computer case with integrated file storage and batteries |
US9575510B1 (en) | 2015-10-23 | 2017-02-21 | Matthew Leigh Vroom | Precision docking station for an electronic device having integrated retention mechanism |
US9727084B2 (en) | 2015-10-23 | 2017-08-08 | Henge Docks Llc | Drivetrain for a motorized docking station |
US9811118B2 (en) | 2015-10-23 | 2017-11-07 | Henge Docks Llc | Secure assembly for a docking station |
WO2017200882A1 (en) * | 2016-05-18 | 2017-11-23 | Canon U.S.A., Inc. | Apparatus and method for remotely engaging and disengaging a connector |
US10067533B1 (en) * | 2018-03-27 | 2018-09-04 | Precision Mounting Technologies Ltd. | Locking dock for portable electronic device |
US10365688B1 (en) | 2018-04-19 | 2019-07-30 | Henge Docks Llc | Alignment sleeve for docking station |
CN108922256A (en) * | 2018-06-15 | 2018-11-30 | 德森商学院(深圳)有限公司 | A kind of portable Internet education instructional device |
JP2020047166A (en) * | 2018-09-21 | 2020-03-26 | レノボ・シンガポール・プライベート・リミテッド | Portable information appliance and docking device |
CN109582090B (en) * | 2018-12-12 | 2020-09-29 | 沧州师范学院 | Tablet personal computer support frame |
TWI739415B (en) * | 2019-05-07 | 2021-09-11 | 仁寶電腦工業股份有限公司 | Multi-mode notebook computer |
WO2022170524A1 (en) * | 2021-02-09 | 2022-08-18 | 深圳市显盈科技股份有限公司 | Docking station |
US11543856B1 (en) | 2021-06-30 | 2023-01-03 | Apple Inc. | Modular electronic device system |
CN114241936B (en) * | 2021-12-22 | 2023-04-28 | 江西瑞晟光电科技有限公司 | All-in-one flip-chip full-color SMD LED |
CN114590471B (en) * | 2021-12-27 | 2024-10-08 | 杭州康大晨星医学科技有限公司 | A partial shipment bottle tray for chemiluminescent reagent filling |
CN114601262A (en) * | 2022-03-03 | 2022-06-10 | 深圳市方维达科技有限公司 | Multifunctional docking station |
Citations (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5175671A (en) * | 1990-03-20 | 1992-12-29 | Kabushiki Kaisha Toshiba | Expanding apparatus for portable electronic apparatus |
US5477415A (en) * | 1993-11-12 | 1995-12-19 | Texas Instruments Incorporated | Automatic computer docking station having a motorized tray, cammed side connectors, motorized side connectors, and locking and unlocking guide pins |
US5592362A (en) * | 1993-10-29 | 1997-01-07 | Kabushiki Kaisha Toshiba | Electronic system having portable electronic apparatus and external expansion unit for expanding function of electronic apparatus |
US5704212A (en) * | 1996-09-13 | 1998-01-06 | Itronix Corporation | Active cooling system for cradle of portable electronic devices |
US5738537A (en) * | 1995-04-28 | 1998-04-14 | Kabushiki Kaisha Toshiba | External extension apparatus for extending the function of a portable electronic apparatus |
US5757616A (en) * | 1996-10-31 | 1998-05-26 | Hewlett-Packard Company | Physical security system for portable computer |
US5768101A (en) * | 1996-12-20 | 1998-06-16 | Compaq Computer Corporation | Portable computer docking base with ducted interior cooling air passsage |
US5790375A (en) * | 1995-06-14 | 1998-08-04 | Samsung Electronics Co., Ltd. | Locking device for locking a note book computer onto a docking station |
US5812356A (en) * | 1996-08-14 | 1998-09-22 | Dell U.S.A., L.P. | Computer docking system having an electromagnetic lock |
US5818691A (en) * | 1997-01-21 | 1998-10-06 | Dell Usa, L.P. | Portable computer docking system with push to engage and push to disengage connection module |
US5825616A (en) * | 1997-01-21 | 1998-10-20 | Dell Usa, L.P. | Media module locking and ejecting mechanism |
US5870283A (en) * | 1996-03-28 | 1999-02-09 | International Business Machines Corporation | Portable computer docking unit having an inhibitor for inhibiting movement of a mechanical lock to a lock position |
US5933321A (en) * | 1996-10-18 | 1999-08-03 | Compaq Computer Corporation | Portable computer docking station having modular motorized docking/undocking structure |
US5933322A (en) * | 1996-10-23 | 1999-08-03 | Compaq Computer Corporation | Computer docking station with integral base security system |
US5995366A (en) * | 1998-01-16 | 1999-11-30 | Dell U.S.A., L.P. | Computer anti-theft system and method |
US6034869A (en) * | 1996-12-20 | 2000-03-07 | Compaq Computer Corporation | Locking apparatus for locking a notebook computer on a docking station |
US6061234A (en) * | 1999-03-15 | 2000-05-09 | Dell U.S.A., L.P. | Secured snap-on cover for a computer system docking station |
US6088620A (en) * | 1995-09-29 | 2000-07-11 | Kabushiki Kaisha Toshiba | Computer system in which a high-order application program recognizes a power-on factor or a state of an expansion unit |
US6151218A (en) * | 1998-08-21 | 2000-11-21 | Compaq Computer Corporation | Physical security system for portable computer/port replicator |
US6185095B1 (en) * | 1998-08-28 | 2001-02-06 | Hewlett-Packard Company | Computer docking station with retractable release lever |
US6189349B1 (en) * | 1999-05-28 | 2001-02-20 | Hewlett-Packard Company | Single retracting security hook of desktop port replicator providing security for dissimilar multiple portable computers |
US6216499B1 (en) * | 1998-08-26 | 2001-04-17 | Computer Security Devices, Inc. | Laptop computer security device |
US6219233B1 (en) * | 1999-01-26 | 2001-04-17 | Dell Usa, L.P. | Extended thermal solution for portable personal computers |
US6236571B1 (en) * | 1996-03-29 | 2001-05-22 | Sanyo Electric Co., Ltd. | Attachment device of portable electronic equipment and feature expanding unit of portable electronic equipment, and separation type feature expanding device of portable electronic equipment comprising attachment device and feature expanding unit |
US6239970B1 (en) * | 1998-12-04 | 2001-05-29 | Sony Corporation | Cooling assisting device, cooling assisting method, electronic apparatus, and information processor |
US6259601B1 (en) * | 1999-09-30 | 2001-07-10 | Dell Usa, L.P. | Apparatus for providing docking station assisted cooling of a portable computer |
US6275945B1 (en) * | 1996-11-26 | 2001-08-14 | Kabushiki Kaisha Toshiba | Apparatus for radiating heat for use in computer system |
US6275378B1 (en) * | 1999-01-19 | 2001-08-14 | Compal Electronics, Inc. | Safety lock for notebook-type computer dock |
US6309230B2 (en) * | 1999-06-25 | 2001-10-30 | Hewlett-Packard Company | Docking station for multiple devices |
US6331934B1 (en) * | 1998-05-01 | 2001-12-18 | Hewlett-Packard Company | Computer docking station with anti-theft locking mechanisms for removable components |
US6362959B2 (en) * | 1998-11-12 | 2002-03-26 | Compaq Computer Corporation | Docking station with thermoelectric heat dissipation system for docked portable computer |
US6418013B1 (en) * | 1999-12-06 | 2002-07-09 | Dell Products Inc. | System and method for one touch operation of a docking station |
US6427499B1 (en) * | 2000-10-05 | 2002-08-06 | Jay S Derman | Portable equipment security device |
US6453378B1 (en) * | 1998-12-16 | 2002-09-17 | Gateway, Inc. | Portable computer with enhanced performance management |
US6473043B1 (en) * | 2001-04-17 | 2002-10-29 | Hon Hai Precision Ind. Co., Ltd. | Antenna assembly |
US6560103B1 (en) * | 1998-09-22 | 2003-05-06 | Sanyo Electric Co., Ltd. | Accessory of electronic device |
US6574102B2 (en) * | 2000-04-17 | 2003-06-03 | International Business Machines Corporation | Docking station for portable computer and docking structure thereof |
US6581420B1 (en) * | 2000-10-17 | 2003-06-24 | Sinox Co., Ltd. | Locking apparatus for a compact computer |
US6606243B2 (en) * | 1997-04-23 | 2003-08-12 | Hitachi, Ltd. | Information processing unit and information processing related units |
US6697252B2 (en) * | 1996-12-24 | 2004-02-24 | International Business Machines Corporation | Docking unit for portable computer |
US6744627B2 (en) * | 2002-01-08 | 2004-06-01 | Samsung Electronics Co., Ltd. | Notebook computer and docking station having anti-theft lock |
US6885552B2 (en) * | 2002-12-20 | 2005-04-26 | Dell Products L.P. | System and method for a multi-functional security mechanism in a docking station |
US20050105259A1 (en) * | 2003-11-05 | 2005-05-19 | Samsung Electronics Co., Ltd. | Display apparatus |
US6898079B2 (en) * | 2002-10-16 | 2005-05-24 | Samsung Electronics Co., Ltd. | Docking station and notebook computer using the same |
US6934151B2 (en) * | 2003-03-07 | 2005-08-23 | Lenovo Pte Ltd | Docking station |
US6937468B2 (en) * | 2003-11-20 | 2005-08-30 | Tatung Co., Ltd. | Portable computer and portable docking station arrangement |
US7024566B2 (en) * | 2001-05-29 | 2006-04-04 | Matsushita Electric Industrial Co., Ltd. | Information terminal |
US7027111B2 (en) * | 2000-03-03 | 2006-04-11 | Hitachi, Ltd. | Liquid crystal display device having nut member fixed on housing |
US20070159800A1 (en) * | 2006-01-10 | 2007-07-12 | Funai Electric Co., Ltd. | Cabinet for electric apparatus |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4845913A (en) * | 1987-10-19 | 1989-07-11 | Bell Peter D | Holding strap |
US5796579A (en) * | 1994-05-31 | 1998-08-18 | Kabushiki Kaisha Toshiba | Portable electronic apparatus having expansion connector covered by pivotally mounted upper and lower covers having laterally extending guide portions |
US5568359A (en) * | 1995-05-24 | 1996-10-22 | Dell Usa, L.P. | Portable computer desktop docking system |
US5619398A (en) * | 1995-12-27 | 1997-04-08 | Compaq Computer Corporation | Manual docking apparatus having latch and drive mechanism for a portable computer |
KR100265704B1 (en) * | 1997-10-17 | 2000-09-15 | 윤종용 | Cable manager system and computer with the same |
US6407914B1 (en) * | 2000-04-11 | 2002-06-18 | Hewlett-Packard Company | Docking system for portable computer |
US6480376B1 (en) * | 2000-04-18 | 2002-11-12 | Compaq Computer Corporation | Elevationally adjustable portable computer docking station |
WO2003103357A1 (en) * | 2002-05-28 | 2003-12-11 | Eric Thompson | Vertical docking station |
US6952343B2 (en) * | 2002-06-11 | 2005-10-04 | Fujitsu Limited | Functional expansion apparatus and method for attaching electronic apparatus to the functional expansion apparatus |
TW547905U (en) * | 2002-06-13 | 2003-08-11 | Wistron Corp | Fastener |
US20040037031A1 (en) * | 2002-08-23 | 2004-02-26 | Inventec Corporation | Notebook computer plug-in recess structure |
US6804123B1 (en) * | 2003-04-01 | 2004-10-12 | King Young Technology Co., Ltd. | Computer mainframe with superposed architecture |
TWM251200U (en) * | 2004-01-09 | 2004-11-21 | Hon Hai Prec Ind Co Ltd | Expansion card fastening assembly |
US7483262B2 (en) * | 2004-01-15 | 2009-01-27 | Hewlett-Packard Development Company, L.P. | Computer system with multiple-connector apparatus |
US7484841B2 (en) * | 2004-01-21 | 2009-02-03 | Silverbrook Research Pty Ltd | Mobile web printer |
US7025627B2 (en) * | 2004-01-27 | 2006-04-11 | Leap Technologies, Inc. | Apparatus for connecting and organizing cords and cables |
CN2715215Y (en) * | 2004-07-02 | 2005-08-03 | 鸿富锦精密工业(深圳)有限公司 | Computer connector and cable protector |
US20060026326A1 (en) * | 2004-07-30 | 2006-02-02 | Hunt Peter D | Docking station that can perform an activity without a portable electronics device mated thereto |
US7502225B2 (en) * | 2004-09-17 | 2009-03-10 | Hewlett-Packard Development Company, L.P. | Portable computer docking station |
DE102005008443B4 (en) * | 2005-02-24 | 2009-06-18 | Airbus Deutschland Gmbh | Loading device for at least partially automatic loading and unloading of a cargo space of a means of transport |
WO2006119081A2 (en) * | 2005-05-04 | 2006-11-09 | Acco Brands Usa Llc | Docking station |
KR100662454B1 (en) * | 2005-07-29 | 2007-01-02 | 엘지전자 주식회사 | Stand structure for flat panel display |
US7327560B1 (en) * | 2005-11-01 | 2008-02-05 | Logitech Europe S.A. | Keyboard with integrated laptop stand |
GB2433799B (en) * | 2005-12-29 | 2008-11-05 | Motorola Inc | Mobile computing apparatus |
US20070222758A1 (en) * | 2006-03-22 | 2007-09-27 | Mulcahy Michael R | Method, system, and computer peripheral for docking a handheld computer |
CN100489733C (en) * | 2006-06-28 | 2009-05-20 | 鸿富锦精密工业(深圳)有限公司 | Expansion card fixer |
US7426108B2 (en) * | 2006-06-30 | 2008-09-16 | Carnevali Jeffrey D | Portable device docking station |
US20080003860A1 (en) * | 2006-06-30 | 2008-01-03 | Carnevali Jeffrey D | Portable device docking station |
US20100038508A1 (en) * | 2006-10-06 | 2010-02-18 | Dirk Jan Stoelinga | Support Arm |
-
2006
- 2006-06-30 US US11/480,666 patent/US7298611B1/en active Active
- 2006-07-19 US US11/490,402 patent/US7417855B2/en active Active
- 2006-07-26 US US11/493,107 patent/US7315453B1/en active Active
- 2006-07-31 US US11/496,643 patent/US7573706B2/en active Active
- 2006-09-23 US US11/525,354 patent/US7508661B2/en not_active Expired - Fee Related
-
2009
- 2009-08-10 US US12/462,838 patent/US7894180B2/en active Active
Patent Citations (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5175671A (en) * | 1990-03-20 | 1992-12-29 | Kabushiki Kaisha Toshiba | Expanding apparatus for portable electronic apparatus |
US5592362A (en) * | 1993-10-29 | 1997-01-07 | Kabushiki Kaisha Toshiba | Electronic system having portable electronic apparatus and external expansion unit for expanding function of electronic apparatus |
US5477415A (en) * | 1993-11-12 | 1995-12-19 | Texas Instruments Incorporated | Automatic computer docking station having a motorized tray, cammed side connectors, motorized side connectors, and locking and unlocking guide pins |
US5738537A (en) * | 1995-04-28 | 1998-04-14 | Kabushiki Kaisha Toshiba | External extension apparatus for extending the function of a portable electronic apparatus |
US5790375A (en) * | 1995-06-14 | 1998-08-04 | Samsung Electronics Co., Ltd. | Locking device for locking a note book computer onto a docking station |
US6088620A (en) * | 1995-09-29 | 2000-07-11 | Kabushiki Kaisha Toshiba | Computer system in which a high-order application program recognizes a power-on factor or a state of an expansion unit |
US5870283A (en) * | 1996-03-28 | 1999-02-09 | International Business Machines Corporation | Portable computer docking unit having an inhibitor for inhibiting movement of a mechanical lock to a lock position |
US6236571B1 (en) * | 1996-03-29 | 2001-05-22 | Sanyo Electric Co., Ltd. | Attachment device of portable electronic equipment and feature expanding unit of portable electronic equipment, and separation type feature expanding device of portable electronic equipment comprising attachment device and feature expanding unit |
US5812356A (en) * | 1996-08-14 | 1998-09-22 | Dell U.S.A., L.P. | Computer docking system having an electromagnetic lock |
US5704212A (en) * | 1996-09-13 | 1998-01-06 | Itronix Corporation | Active cooling system for cradle of portable electronic devices |
US5933321A (en) * | 1996-10-18 | 1999-08-03 | Compaq Computer Corporation | Portable computer docking station having modular motorized docking/undocking structure |
US5933322A (en) * | 1996-10-23 | 1999-08-03 | Compaq Computer Corporation | Computer docking station with integral base security system |
US5757616A (en) * | 1996-10-31 | 1998-05-26 | Hewlett-Packard Company | Physical security system for portable computer |
US6275945B1 (en) * | 1996-11-26 | 2001-08-14 | Kabushiki Kaisha Toshiba | Apparatus for radiating heat for use in computer system |
US5768101A (en) * | 1996-12-20 | 1998-06-16 | Compaq Computer Corporation | Portable computer docking base with ducted interior cooling air passsage |
US6034869A (en) * | 1996-12-20 | 2000-03-07 | Compaq Computer Corporation | Locking apparatus for locking a notebook computer on a docking station |
US6697252B2 (en) * | 1996-12-24 | 2004-02-24 | International Business Machines Corporation | Docking unit for portable computer |
US5825616A (en) * | 1997-01-21 | 1998-10-20 | Dell Usa, L.P. | Media module locking and ejecting mechanism |
US5818691A (en) * | 1997-01-21 | 1998-10-06 | Dell Usa, L.P. | Portable computer docking system with push to engage and push to disengage connection module |
US6606243B2 (en) * | 1997-04-23 | 2003-08-12 | Hitachi, Ltd. | Information processing unit and information processing related units |
US5995366A (en) * | 1998-01-16 | 1999-11-30 | Dell U.S.A., L.P. | Computer anti-theft system and method |
US6331934B1 (en) * | 1998-05-01 | 2001-12-18 | Hewlett-Packard Company | Computer docking station with anti-theft locking mechanisms for removable components |
US6151218A (en) * | 1998-08-21 | 2000-11-21 | Compaq Computer Corporation | Physical security system for portable computer/port replicator |
US6216499B1 (en) * | 1998-08-26 | 2001-04-17 | Computer Security Devices, Inc. | Laptop computer security device |
US6185095B1 (en) * | 1998-08-28 | 2001-02-06 | Hewlett-Packard Company | Computer docking station with retractable release lever |
US6560103B1 (en) * | 1998-09-22 | 2003-05-06 | Sanyo Electric Co., Ltd. | Accessory of electronic device |
US6362959B2 (en) * | 1998-11-12 | 2002-03-26 | Compaq Computer Corporation | Docking station with thermoelectric heat dissipation system for docked portable computer |
US6239970B1 (en) * | 1998-12-04 | 2001-05-29 | Sony Corporation | Cooling assisting device, cooling assisting method, electronic apparatus, and information processor |
US6453378B1 (en) * | 1998-12-16 | 2002-09-17 | Gateway, Inc. | Portable computer with enhanced performance management |
US6275378B1 (en) * | 1999-01-19 | 2001-08-14 | Compal Electronics, Inc. | Safety lock for notebook-type computer dock |
US6219233B1 (en) * | 1999-01-26 | 2001-04-17 | Dell Usa, L.P. | Extended thermal solution for portable personal computers |
US6061234A (en) * | 1999-03-15 | 2000-05-09 | Dell U.S.A., L.P. | Secured snap-on cover for a computer system docking station |
US6189349B1 (en) * | 1999-05-28 | 2001-02-20 | Hewlett-Packard Company | Single retracting security hook of desktop port replicator providing security for dissimilar multiple portable computers |
US6309230B2 (en) * | 1999-06-25 | 2001-10-30 | Hewlett-Packard Company | Docking station for multiple devices |
US6259601B1 (en) * | 1999-09-30 | 2001-07-10 | Dell Usa, L.P. | Apparatus for providing docking station assisted cooling of a portable computer |
US6418013B1 (en) * | 1999-12-06 | 2002-07-09 | Dell Products Inc. | System and method for one touch operation of a docking station |
US7027111B2 (en) * | 2000-03-03 | 2006-04-11 | Hitachi, Ltd. | Liquid crystal display device having nut member fixed on housing |
US6574102B2 (en) * | 2000-04-17 | 2003-06-03 | International Business Machines Corporation | Docking station for portable computer and docking structure thereof |
US6427499B1 (en) * | 2000-10-05 | 2002-08-06 | Jay S Derman | Portable equipment security device |
US6581420B1 (en) * | 2000-10-17 | 2003-06-24 | Sinox Co., Ltd. | Locking apparatus for a compact computer |
US6473043B1 (en) * | 2001-04-17 | 2002-10-29 | Hon Hai Precision Ind. Co., Ltd. | Antenna assembly |
US7024566B2 (en) * | 2001-05-29 | 2006-04-04 | Matsushita Electric Industrial Co., Ltd. | Information terminal |
US6744627B2 (en) * | 2002-01-08 | 2004-06-01 | Samsung Electronics Co., Ltd. | Notebook computer and docking station having anti-theft lock |
US6898079B2 (en) * | 2002-10-16 | 2005-05-24 | Samsung Electronics Co., Ltd. | Docking station and notebook computer using the same |
US6885552B2 (en) * | 2002-12-20 | 2005-04-26 | Dell Products L.P. | System and method for a multi-functional security mechanism in a docking station |
US6934151B2 (en) * | 2003-03-07 | 2005-08-23 | Lenovo Pte Ltd | Docking station |
US20050105259A1 (en) * | 2003-11-05 | 2005-05-19 | Samsung Electronics Co., Ltd. | Display apparatus |
US6937468B2 (en) * | 2003-11-20 | 2005-08-30 | Tatung Co., Ltd. | Portable computer and portable docking station arrangement |
US20070159800A1 (en) * | 2006-01-10 | 2007-07-12 | Funai Electric Co., Ltd. | Cabinet for electric apparatus |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080273297A1 (en) * | 1999-04-07 | 2008-11-06 | Rajendra Kumar | Portable computing, communication and entertainment device with central processor carried in a detachable portable device |
US20080304688A1 (en) * | 1999-04-07 | 2008-12-11 | Rajendra Kumar | Docking display station with docking port for retaining a hands-free headset therein |
US8600437B2 (en) | 1999-04-07 | 2013-12-03 | Khyber Technologies Corporation | Portable computing, communication and entertainment device with central processor carried in a detachable portable device |
US8483755B2 (en) | 1999-04-07 | 2013-07-09 | Khyber Technoliges, Corporation | Docking display station with docking port for retaining a hands-free headset therein |
US7978466B2 (en) * | 2008-02-27 | 2011-07-12 | L&P Property Management Company | Computer docking station for a vehicle |
US20090213536A1 (en) * | 2008-02-27 | 2009-08-27 | Lewandowski Jason M | Computer docking station for a vehicle |
US20110128689A1 (en) * | 2008-02-27 | 2011-06-02 | Lewandowski Jason M | Computer docking station for a vehicle |
US8098488B2 (en) * | 2008-02-27 | 2012-01-17 | L&P Property Management Company | Computer docking station for a vehicle |
USRE43869E1 (en) | 2008-02-27 | 2012-12-25 | L&P Property Management Company | Computer docking station for a vehicle |
WO2009148578A1 (en) * | 2008-06-05 | 2009-12-10 | Khyber Technologies Corporation | Portable computing, communication and entertainment device with central processor carried in a detachable portable device |
US20110121776A1 (en) * | 2008-08-12 | 2011-05-26 | Jeffrey A Lev | Notebook Computer Charging Systems |
US8665593B2 (en) * | 2008-08-12 | 2014-03-04 | Hewlett-Packard Development Company, L.P. | Support tray including a platform and a body providing a cavity |
US9145715B2 (en) | 2010-04-28 | 2015-09-29 | Jeffrey D. Carnevali | Support device having variable security level |
US20110266230A1 (en) * | 2010-04-28 | 2011-11-03 | Carnevali Jeffrey D | Support device having variable security level |
US9334680B2 (en) | 2010-04-28 | 2016-05-10 | Jeffrey D. Carnevali | Support device having variable security level |
US9945159B2 (en) * | 2010-04-28 | 2018-04-17 | Jeffrey D. Carnevali | Support device having variable security level |
US9080716B2 (en) | 2012-04-16 | 2015-07-14 | World Richman Mfg. Corp. | Cradle apparatus and method for rotating and linearly displacing an electronic device |
WO2013158057A1 (en) * | 2012-04-16 | 2013-10-24 | World Richman Manufacturing Corporation | Rotating mechanism for computer or similar device |
US9316351B2 (en) | 2012-04-16 | 2016-04-19 | World Richman Manufacturing Corporation | Cradle apparatus and method for rotating and linearly displacing an electronic device |
EP3023685A1 (en) | 2014-07-31 | 2016-05-25 | Iordanka Koleva Mulhern | Cradle-cassette apparatus for an electronic device |
US9847805B2 (en) | 2014-08-19 | 2017-12-19 | World Richman Manufacturing Corporation | Cradle-case combination with magnetic fastener feature |
US9634711B2 (en) | 2014-08-19 | 2017-04-25 | World Richman Manufacturing Corporation | Universal device-holding case construction with magnetic fastener feature |
US20160056647A1 (en) * | 2014-08-25 | 2016-02-25 | Samsung Electronics Co., Ltd. | Cradle for Electronic Device |
US10298036B2 (en) * | 2014-08-25 | 2019-05-21 | Samsung Electronics Co., Ltd. | Cradle for electronic device |
EP3070574A1 (en) | 2015-03-17 | 2016-09-21 | World Richman Manufacturing Corporation | Reversible case for an electronic device |
EP3193233A1 (en) | 2015-08-19 | 2017-07-19 | World Richman Manufacturing Corporation | Universal device-holding case construction with magnetic fastener feature |
Also Published As
Publication number | Publication date |
---|---|
US7298611B1 (en) | 2007-11-20 |
US20080002345A1 (en) | 2008-01-03 |
US7508661B2 (en) | 2009-03-24 |
US20080002351A1 (en) | 2008-01-03 |
US7894180B2 (en) | 2011-02-22 |
US7417855B2 (en) | 2008-08-26 |
US7315453B1 (en) | 2008-01-01 |
US7573706B2 (en) | 2009-08-11 |
US20100073862A1 (en) | 2010-03-25 |
US20080002353A1 (en) | 2008-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7315453B1 (en) | Portable device docking station | |
US7426108B2 (en) | Portable device docking station | |
US9036343B2 (en) | Portable device docking station | |
US20080003860A1 (en) | Portable device docking station | |
US6583985B2 (en) | Elevationally adjustable portable computer docking station | |
US6185095B1 (en) | Computer docking station with retractable release lever | |
AU2008101163B4 (en) | Insert for adapting hand held electronic devices to a docking station | |
US20080002355A1 (en) | Portable device docking station | |
US20040226973A1 (en) | One-hand-holding aid for tablet personal computer | |
US8171762B2 (en) | Anti-theft device for the security | |
US20140168885A1 (en) | Docking station with ruggedized case | |
US20040007651A1 (en) | Universal support for electronic devices | |
EP0448053A2 (en) | Expanding apparatus for portable electronic apparatus | |
US10917986B2 (en) | Dock for a portable electronic device | |
JPH09179656A (en) | Computer capable of easily separating/loading peripheral equipment | |
WO2012071510A2 (en) | Systems and methods f0r securing mobile computing devices | |
US6332658B1 (en) | Lock device for expansion unit in computer | |
US20060028791A1 (en) | Mobile computer and peripheral device arrangement | |
US10372161B2 (en) | Docking system | |
US5745341A (en) | Inclined docking base for a portable computer with a slidable monitor support member | |
JP4659997B2 (en) | Storage case | |
GB2373994A (en) | Holding device for drawer slide rail assembly | |
WO2014089432A1 (en) | Docking station with ruggedized case |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2556); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |