US20080182324A1 - Method and reagent system with non-regenerable enzyme-coenzyme complex - Google Patents
Method and reagent system with non-regenerable enzyme-coenzyme complex Download PDFInfo
- Publication number
- US20080182324A1 US20080182324A1 US12/008,283 US828308A US2008182324A1 US 20080182324 A1 US20080182324 A1 US 20080182324A1 US 828308 A US828308 A US 828308A US 2008182324 A1 US2008182324 A1 US 2008182324A1
- Authority
- US
- United States
- Prior art keywords
- coenzyme
- enzyme
- reagent system
- reagent
- analyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005515 coenzyme Substances 0.000 title claims abstract description 55
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 18
- 239000012491 analyte Substances 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 230000008929 regeneration Effects 0.000 claims abstract description 7
- 238000011069 regeneration method Methods 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 108090000790 Enzymes Proteins 0.000 claims description 16
- 102000004190 Enzymes Human genes 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 16
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 15
- 239000008103 glucose Substances 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 5
- 239000008280 blood Substances 0.000 claims description 5
- 108090000854 Oxidoreductases Proteins 0.000 claims description 3
- 102000004316 Oxidoreductases Human genes 0.000 claims description 3
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical group CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 claims description 2
- 210000001124 body fluid Anatomy 0.000 claims description 2
- 239000010839 body fluid Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 229940088598 enzyme Drugs 0.000 description 15
- 239000000126 substance Substances 0.000 description 12
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 description 8
- -1 for example Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000006911 enzymatic reaction Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 2
- VDBJCDWTNCKRTF-UHFFFAOYSA-N 6'-hydroxyspiro[2-benzofuran-3,9'-9ah-xanthene]-1,3'-dione Chemical compound O1C(=O)C2=CC=CC=C2C21C1C=CC(=O)C=C1OC1=CC(O)=CC=C21 VDBJCDWTNCKRTF-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- 108010015776 Glucose oxidase Proteins 0.000 description 2
- 239000004366 Glucose oxidase Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000002983 circular dichroism Methods 0.000 description 2
- 235000017471 coenzyme Q10 Nutrition 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229940116332 glucose oxidase Drugs 0.000 description 2
- 235000019420 glucose oxidase Nutrition 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 229960002715 nicotine Drugs 0.000 description 2
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- OTKCEEWUXHVZQI-UHFFFAOYSA-N 1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(=O)CC1=CC=CC=C1 OTKCEEWUXHVZQI-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- 241001539917 Actina Species 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 108010089254 Cholesterol oxidase Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YPZRHBJKEMOYQH-UYBVJOGSSA-L FADH2(2-) Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP([O-])(=O)OP([O-])(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-L 0.000 description 1
- YTNIXZGTHTVJBW-SCRDCRAPSA-L FMNH2(2-) Chemical compound [O-]P(=O)([O-])OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2NC2=C1NC(=O)NC2=O YTNIXZGTHTVJBW-SCRDCRAPSA-L 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- 108030000198 L-amino-acid dehydrogenases Proteins 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- SQHOAFZGYFNDQX-UHFFFAOYSA-N ethyl-[7-(ethylamino)-2,8-dimethylphenothiazin-3-ylidene]azanium;chloride Chemical compound [Cl-].S1C2=CC(=[NH+]CC)C(C)=CC2=NC2=C1C=C(NCC)C(C)=C2 SQHOAFZGYFNDQX-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 235000003969 glutathione Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 1
- ZMLXKXHICXTSDM-UHFFFAOYSA-N n-[1,2-dihydroxy-2-(prop-2-enoylamino)ethyl]prop-2-enamide Chemical compound C=CC(=O)NC(O)C(O)NC(=O)C=C ZMLXKXHICXTSDM-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 150000004059 quinone derivatives Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 150000003669 ubiquinones Chemical class 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001043 yellow dye Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
- C12Q1/32—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/002—Electrode membranes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54353—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- the invention relates to a method and a reagent system for detecting an analyte in a sample through an enzymatic reaction, comprising the use of an enzyme-coenzyme complex as non-regenerable, in particular stoichiometric reactant for the analyte present in the sample.
- analytes for example glucose in blood
- enzymatic methods entail the analyte to be determined being brought into contact with a suitable enzyme and a coenzyme, the enzyme being employed in catalytic amounts.
- the redox equivalents produced on reduction or oxidation of the coenzyme are transferred to mediators which are then detected electrochemically or photometrically in a further step.
- a calibration provides a direct connection between the measurement and the concentration of the analyte to be determined.
- Narayanaswamy et al. (Analytical Letters 21 (7) (1988), 1165-1175) describe a fluorescence measurement with glucose dehydrogenase and NAD for glucose determination.
- the enzyme is in this case employed in catalytic, i.e. non-stoichiometric, amounts.
- the fluorescence measurement detects the free NADH in the solution.
- the mediators often also have to be employed in large excess relative to the enzyme-coenzyme system.
- the coenzyme has a high reactivity, so that the enzymic activity declines markedly on decomposition of the mediator, even in small amounts, e.g. ⁇ 1% or on exposure to foreign substances, e.g. volatilization of the substances from packaging materials. This may lead to false signals in the determination of the analyte.
- the determination times for the analytes are normally in the region of at least a few seconds, for example for glucose in the region of >4 s, and the required sample volumes are large, e.g. >0.5 ⁇ l.
- the object on which the present invention was based is at least partly to avoid the described disadvantages of the prior art. It was particularly intended to provide a non-sensitive and rapid method for the enzymatic detection of analytes, which leads to reliable measurement results even in the absence of mediators or/and indicators.
- This object is achieved by using an enzyme-coenzyme complex as stoichiometric reactant instead of, as usual, as catalyst. Detection of the analyte requires only a single reaction step and is therefore extremely fast. The use of mediators and indicators, associated with the employment of complex reaction mixtures, with low stability and high susceptibility to interference, is no longer necessary.
- the present invention provides one aspect of the invention is thus a method for detecting an analyte in a sample by an enzymatic reaction, comprising the steps:
- a further aspect of the invention is a reagent system for detecting an analyte in a sample, comprising:
- a detection reagent comprising an enzyme-coenzyme complex, where no regeneration of the coenzyme takes place
- the present invention makes a simple qualitative or quantitative determination of analytes possible within a very short reaction time of, preferably, ⁇ 5 s, particularly preferably ⁇ 1 s, most preferably ⁇ 0.1 s.
- the reaction is carried out under conditions with which no regeneration of the coenzyme takes place during the determination. It is moreover possible for a molecule enzyme-coenzyme complex to react only with a single molecule of the analyte.
- the reaction is therefore expediently carried out in the absence of mediators or other substances able to bring about regeneration of the coenzyme.
- the detection reagent comprises the enzyme-coenzyme complex in an amount sufficient to make qualitative or/and quantitative determination of the analyte possible according to the desired test format.
- the enzyme-coenzyme complex is employed in an amount such that the number of reacting molecules of the enzyme-coenzyme complex correlates with the analyte concentration present in the sample.
- the enzyme-coenzyme complex is particularly preferably employed in an at least stoichiometric amount relative to the analyte present in the sample, preferably in a stoichiometric excess relative to the analyte.
- the statement “in at least a stoichiometric amount” means that the size of the sample is adjusted relative to the number of molecules of the enzyme-coenzyme complex in such a way that, with the analyte concentrations to be expected in the sample, the number of molecules of the enzyme-coenzyme complex which react with the analyte correlates with the analyte concentration present in the sample.
- “Stoichiometric amount” preferably means that the number of molecules of the enzyme-coenzyme complex corresponds to the maximum number of analyte molecules to be expected in the investigative sample.
- the method and the detection system permit the use of very small amounts of sample, for example sample volumes of ⁇ 1 ⁇ l, in particular ⁇ 0.1 ⁇ l.
- sample can where appropriate also be diluted before contacting with the detection reagent.
- the method and detection system of the invention is suitable for determining any analytes, for example parameters in body fluids such as, for example, blood, serum, plasma or urine, but also in effluent samples or foodstuffs.
- the method can also be carried out as wet test, e.g. in a cuvette, or as dry test on an appropriate reagent support.
- the analytes which can be determined are any biological or chemical substances which are able to undergo a reaction, in particular a redox reaction, with an enzyme-coenzyme complex, such as, for example, glucose, lactic acid, malic acid, glycerol, alcohol, cholesterol, triglycerides, ascorbic acid, cysteine, glutathione, peptides etc.
- an enzyme-coenzyme complex such as, for example, glucose, lactic acid, malic acid, glycerol, alcohol, cholesterol, triglycerides, ascorbic acid, cysteine, glutathione, peptides etc.
- the enzymatic reaction is preferably a redox reaction in which the coenzyme in the enzyme-coenzyme complex is reduced or oxidized.
- the enzyme preferably used for a reaction of this type is an oxidoreductase.
- the enzyme particularly preferably used is a dehydrogenase, for example selected from a glucose dehydrogenase (E.C. 1.1.1.47), lactate dehydrogenase (E.C. 1.1.1.27, 1.1.1.28), malate dehydrogenase (E.C. 1.1.1.37), glycerol dehydrogenase (E.C. 1.1.1.6), alcohol dehydrogenase (E.C.
- oxidases such as, for example, glucose oxidase (E.C.1.1.3.4) or cholesterol oxidase (E.C.1.1.3.6).
- Coenzymes for the purposes of the present invention are preferably organic molecules which are linked covalently or noncovalently to an enzyme and are changed, for example oxidized or reduced, by the conversion of the analyte.
- Preferred examples of coenzymes are flavin, nicotine and quinone derivatives, for example flavin nucleoside derivatives such as, for example, FAD, FADH 2 , FMN, FMNH 2 , etc., nicotine nucleoside derivatives such as, for example, NAD + , NADH/H + , NADP + , NADPH/H + etc. or ubiquinones such as, for example, coenzyme Q, PQQ etc.
- the change in the coenzyme through reaction with the analyte can in principle be detected in any manner. It is possible in principle to employ for this all methods known in the art for detecting enzymatic reactions.
- the change in the coenzyme is preferably detected by optical methods. Optical detection methods include for example measuring absorption, fluorescence, circular dichroism (CD), optical rotary dispersion (ORD), refractometry etc.
- the change in the coenzyme is particularly preferably detected by measuring the fluorescence. The fluorescence measurement is highly sensitive and makes it possible to detect even low concentrations of the analyte in miniaturized systems.
- the method or detection system of the invention may comprise a liquid test, in which case the reagent is present for example in the form of a solution or suspension in an aqueous or nonaqueous liquid or as powder or lyophilizate.
- the method and detection system of the invention preferably comprises a dry test, in which case the reagent is applied to a support.
- the support may comprise for example a test strip comprising an absorbent or/and swellable material which is wetted by the sample liquid to be investigated.
- the detection reagent used is a gel matrix with an enzyme-coenzyme complex embedded therein.
- the gel matrix preferably has a layer thickness of ⁇ 50 ⁇ m, in particular ⁇ 5 ⁇ m, and is applied to a support, for example an at least partly optically transparent support.
- the gel matrix may be a matrix comprising one or more soluble polymers, as in known dry test systems (e.g. AccuChek Active), and can be produced by knife application and drying.
- the matrix is preferably a polymer with a structure based on photopolymerizable substances such as, for example, acrylic monomers, e.g.
- a gel matrix of this type can be produced by applying a liquid which contains the reagent, comprising enzyme, photopolymerizable monomer and, where appropriate, coenzyme, photoinitiator or/and unreactive constituents, to an at least partly optically transparent support, for example to a plastics sheet, and irradiating, for example with UV light from the reverse side, so that polymerization of the monomer or of the monomers takes place on the support up to a predefined layer thickness.
- the layer thickness can be controlled by adding absorbing substances to the reagent or/and through the duration or intensity of irradiation. Excess liquid reagent can be removed and reused after the polymerization (see, for example, FIG. 2 ).
- the gel matrix can also be produced by conventional coating procedures, in which case the liquid reagent is applied to a support, brought to the desired thickness using suitable methods, e.g. using a knife, and then completely polymerized.
- the enzyme After inclusion by polymerization or embedding in the gel matrix, the enzyme is in a protected microenvironment. If the polymeric gel matrix is sufficiently crosslinked, the enzyme molecules are present in an immobilized form. Low molecular weight substances or glucose or other analytes or else coenzymes can, however, diffuse freely through the polymer network.
- the enzyme can either be included together with its coenzyme by polymerization in the matrix or, after the polymerization, the matrix can be brought into contact with a solution of the coenzyme, so that the appropriate enzyme-coenzyme complex is formed.
- concentration of the enzyme in the gel matrix is preferably chosen to be high enough for a stoichiometric reaction with the analyte to be determined, and a direct determination of the coenzyme which is changed by the reaction, to be possible.
- the reaction consists only of a single catalytic reaction, for example, a redox reaction, which can take place in the region of milliseconds or microseconds.
- the coenzyme which is changed by the reaction is optimally protected from interfering influences through binding to the active center of the enzyme and, where appropriate, additionally by embedding in the gel matrix.
- FIG. 1 shows a first embodiment of the detection system of the invention.
- a reagent layer ( 2 ) e.g. a gel matrix with an enzyme-coenzyme complex
- the enzyme-coenzyme complex is in a form such that no regeneration of the coenzyme can take place during the analyte determination.
- a sample ( 3 ) e.g. blood, is put on the reagent layer. Determination of the enzymatic reaction between the analyte contained in the sample ( 3 ), and the enzyme-coenzyme complex contained in the reagent layer ( 2 ) takes place by optical methods.
- a laser or an LED is beamed from behind (through the support) onto the reagent layer ( 2 ).
- Absorption light or fluorescent light beamed back from the sample is detected in a detector ( 5 ).
- an optical filter element ( 6 ) is put in front of the detector in order to block leakage of the fluorescence-exciting light.
- FIG. 2 shows the production of a detection system of the invention.
- a liquid reagent ( 12 ) is applied, for example in a first position ( 13 ), to an optically transparent support ( 11 ), e.g. a plastics sheet.
- the liquid reagent ( 12 ) is irradiated at a second position from below through the support ( 11 ) with light from a light source ( 14 ).
- the support is moved in the direction ( 15 ) identified by the arrow.
- a polymerized reagent layer ( 16 ) is formed directly on the support ( 11 ). Excess liquid reagent is present above the polymer layer ( 16 ).
- the thickness of the polymerized reagent layer ( 16 ) can be controlled through the reagent composition, the duration and intensity of the beaming in of light, and through the properties of the support ( 11 ).
- FIG. 3 shows an embodiment of a fluorescence-based sensor from below.
- a polymerized reagent layer for example one produced by the continuous process in FIG. 2 , can be cut and applied to a support ( 21 ) by use of known techniques.
- exciting light e.g. UV light
- the fluorescence 24 ), e.g. blue light, generated through the reaction of the analyte with the enzyme-coenzyme complex in the reagent layer ( 22 ) is detected with a detector.
- a plurality of (identical or different) reagents can be applied to a support.
- One example of such an embodiment in the form of a disk is shown in FIG. 4 .
- a plurality of reagent spots ( 62 ) is disposed on the optically transparent support ( 61 ).
- FIGS. 5A and 5B show the fluorescence of a detection system of the invention (glucose dehydrogenase and NAD + ) with increasing glucose concentration under a CCD camera.
- the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation.
- the term “substantially” is also utilized herein to represent the degree by which a quantitative representation may very from a stated reference without resulting in a change in the basic function of the subject matter at issue.
- the solution with the enzyme system does not fluoresce without glucose. Nor do glucose and NAD + result in any fluorescence.
- Amount Weight Substance [g] [%] Acrylamide 2.5 22.02 Methylenebisacrylamide 0.7 6.17 2,2-Dimethoxy-2-phenylacetophenone 0.05 0.44 Glycerol 5 44.05 Hydroxyethyl methacrylate 1.4 12.33 Methyl methacrylate 0.4 3.52 Crodasinic O solution, pH 8, 0.3 g/1000 ml 1 8.81 N,N′-(1,2-Dihydroxyethylene)bisacrylamide 0.3 2.64 TOTAL 11.35 100
- the clear solution was poured onto a corona-treated polycarbonate sheet 125 mm thick and illuminated with a conventional illumination apparatus (Isel UV illumination device 2 ) for 20 min.
- the sheet was briefly washed with water and then dried in the air.
- the resulting layer thickness was ⁇ 2 ⁇ m.
- a freshly prepared glucose/NAD + solution (GKL-3 solution, 300 mg/dl glucose, 1 ml/6.4 mg of NAD + ) was spotted on the film. A strong fluorescence was immediately visible under a UV lamp.
- a polymer layer comprising a blue dye (absorption maximum ⁇ 650 nm) for better identification was produced (formula 2).
- a yellow dye was admixed as UV absorber to the initial formula (formula 3).
- the mixture was homogenized by stirring and by ultrasonic bath treatment, distributed with a pipette on a 140 ⁇ m Pokalon sheet (corona-treated, stage 4) and illuminated in a UV illumination device (Actina U4, W. Lemmen GmbH) for 1 min.
- the resulting layer thickness was measured with a screw gage and was 240.5 ⁇ m.
- Substance Amount Weight [%] Formula 2 1 ml ca. 99.99 Mordant Yellow 7 (No. 686) 0.0001 g 0.001 (UV absorber) TOTAL ca. 1.0001 g 100
- the mixture was distributed on a sheet and then polymerized as described above.
- the resulting layer thickness was measured with a screw gage and was 79.3 ⁇ m.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Polymerisation Methods In General (AREA)
- Laminated Bodies (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Moulding By Coating Moulds (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
- The invention relates to a method and a reagent system for detecting an analyte in a sample through an enzymatic reaction, comprising the use of an enzyme-coenzyme complex as non-regenerable, in particular stoichiometric reactant for the analyte present in the sample.
- The detection of analytes, for example glucose in blood, by enzymatic methods is known. These entail the analyte to be determined being brought into contact with a suitable enzyme and a coenzyme, the enzyme being employed in catalytic amounts. The redox equivalents produced on reduction or oxidation of the coenzyme are transferred to mediators which are then detected electrochemically or photometrically in a further step. A calibration provides a direct connection between the measurement and the concentration of the analyte to be determined.
- Sierra et al. (Anal. Chem. 69 (1997), 1471-1476) describe a determination of blood glucose based on the intrinsic fluorescence of glucose oxidase. In this method too, the enzyme is employed together with its coenzyme FAD in catalytic amounts, with redox equivalents being transferred to oxygen as mediator.
- Narayanaswamy et al. (Analytical Letters 21 (7) (1988), 1165-1175) describe a fluorescence measurement with glucose dehydrogenase and NAD for glucose determination. The enzyme is in this case employed in catalytic, i.e. non-stoichiometric, amounts. The fluorescence measurement detects the free NADH in the solution.
- It is possible through the electrochemically active substances (mediators) required for the prior art detection systems to detect the analytes to be determined only indirectly, i.e. via a plurality of chemical reactions. For this purpose, a complicated adjustment of the concentrations of the substances involved to optimize the reaction rate is often necessary. There is moreover the risk that the required electrochemically active substances are unstable on prolonged storage.
- The mediators often also have to be employed in large excess relative to the enzyme-coenzyme system. The coenzyme has a high reactivity, so that the enzymic activity declines markedly on decomposition of the mediator, even in small amounts, e.g. <1% or on exposure to foreign substances, e.g. volatilization of the substances from packaging materials. This may lead to false signals in the determination of the analyte. Yet a further disadvantage is that the determination times for the analytes are normally in the region of at least a few seconds, for example for glucose in the region of >4 s, and the required sample volumes are large, e.g. >0.5 μl.
- The object on which the present invention was based is at least partly to avoid the described disadvantages of the prior art. It was particularly intended to provide a non-sensitive and rapid method for the enzymatic detection of analytes, which leads to reliable measurement results even in the absence of mediators or/and indicators.
- This object is achieved by using an enzyme-coenzyme complex as stoichiometric reactant instead of, as usual, as catalyst. Detection of the analyte requires only a single reaction step and is therefore extremely fast. The use of mediators and indicators, associated with the employment of complex reaction mixtures, with low stability and high susceptibility to interference, is no longer necessary.
- It is against the above background that the present invention proves certain unobvious advantages and advancements over the prior art. In particular, the inventor has recognized a need for improvements in a method and reagent system with non- regenerable enzyme-coenzyme complex.
- Although the present invention is not limited to specific advantage or functionality, it is noted that the present invention provides one aspect of the invention is thus a method for detecting an analyte in a sample by an enzymatic reaction, comprising the steps:
- contacting the sample with a detection reagent comprising an enzyme-coenzyme complex, where no regeneration of the coenzyme takes place, and
- detecting a reaction of the analyte through a change in the enzyme-coenzyme complex.
- A further aspect of the invention is a reagent system for detecting an analyte in a sample, comprising:
- a detection reagent comprising an enzyme-coenzyme complex, where no regeneration of the coenzyme takes place, and
-
- a support to receive the detection reagent.
- The present invention makes a simple qualitative or quantitative determination of analytes possible within a very short reaction time of, preferably, <5 s, particularly preferably ≦1 s, most preferably ≦0.1 s. The reaction is carried out under conditions with which no regeneration of the coenzyme takes place during the determination. It is moreover possible for a molecule enzyme-coenzyme complex to react only with a single molecule of the analyte. The reaction is therefore expediently carried out in the absence of mediators or other substances able to bring about regeneration of the coenzyme.
- The detection reagent comprises the enzyme-coenzyme complex in an amount sufficient to make qualitative or/and quantitative determination of the analyte possible according to the desired test format. In particular, for quantitative determination of the analyte, the enzyme-coenzyme complex is employed in an amount such that the number of reacting molecules of the enzyme-coenzyme complex correlates with the analyte concentration present in the sample. The enzyme-coenzyme complex is particularly preferably employed in an at least stoichiometric amount relative to the analyte present in the sample, preferably in a stoichiometric excess relative to the analyte. In this connection, the statement “in at least a stoichiometric amount” means that the size of the sample is adjusted relative to the number of molecules of the enzyme-coenzyme complex in such a way that, with the analyte concentrations to be expected in the sample, the number of molecules of the enzyme-coenzyme complex which react with the analyte correlates with the analyte concentration present in the sample. “Stoichiometric amount” preferably means that the number of molecules of the enzyme-coenzyme complex corresponds to the maximum number of analyte molecules to be expected in the investigative sample.
- The method and the detection system permit the use of very small amounts of sample, for example sample volumes of ≦1 μl, in particular ≦0.1 μl. The sample can where appropriate also be diluted before contacting with the detection reagent.
- The method and detection system of the invention is suitable for determining any analytes, for example parameters in body fluids such as, for example, blood, serum, plasma or urine, but also in effluent samples or foodstuffs. The method can also be carried out as wet test, e.g. in a cuvette, or as dry test on an appropriate reagent support.
- The analytes which can be determined are any biological or chemical substances which are able to undergo a reaction, in particular a redox reaction, with an enzyme-coenzyme complex, such as, for example, glucose, lactic acid, malic acid, glycerol, alcohol, cholesterol, triglycerides, ascorbic acid, cysteine, glutathione, peptides etc.
- The enzymatic reaction is preferably a redox reaction in which the coenzyme in the enzyme-coenzyme complex is reduced or oxidized. The enzyme preferably used for a reaction of this type is an oxidoreductase. The enzyme particularly preferably used is a dehydrogenase, for example selected from a glucose dehydrogenase (E.C. 1.1.1.47), lactate dehydrogenase (E.C. 1.1.1.27, 1.1.1.28), malate dehydrogenase (E.C. 1.1.1.37), glycerol dehydrogenase (E.C. 1.1.1.6), alcohol dehydrogenase (E.C. 1.1.1.1) or amino-acid dehydrogenase, e.g. L-amino-acid dehydrogenase (E.C.1.4.1.5). Further suitable enzymes are oxidases such as, for example, glucose oxidase (E.C.1.1.3.4) or cholesterol oxidase (E.C.1.1.3.6).
- Coenzymes for the purposes of the present invention are preferably organic molecules which are linked covalently or noncovalently to an enzyme and are changed, for example oxidized or reduced, by the conversion of the analyte. Preferred examples of coenzymes are flavin, nicotine and quinone derivatives, for example flavin nucleoside derivatives such as, for example, FAD, FADH2, FMN, FMNH2, etc., nicotine nucleoside derivatives such as, for example, NAD+, NADH/H+, NADP+, NADPH/H+ etc. or ubiquinones such as, for example, coenzyme Q, PQQ etc.
- The change in the coenzyme through reaction with the analyte can in principle be detected in any manner. It is possible in principle to employ for this all methods known in the art for detecting enzymatic reactions. However, the change in the coenzyme is preferably detected by optical methods. Optical detection methods include for example measuring absorption, fluorescence, circular dichroism (CD), optical rotary dispersion (ORD), refractometry etc. The change in the coenzyme is particularly preferably detected by measuring the fluorescence. The fluorescence measurement is highly sensitive and makes it possible to detect even low concentrations of the analyte in miniaturized systems.
- The method or detection system of the invention may comprise a liquid test, in which case the reagent is present for example in the form of a solution or suspension in an aqueous or nonaqueous liquid or as powder or lyophilizate. However, the method and detection system of the invention preferably comprises a dry test, in which case the reagent is applied to a support. The support may comprise for example a test strip comprising an absorbent or/and swellable material which is wetted by the sample liquid to be investigated.
- In a particularly preferred embodiment, the detection reagent used is a gel matrix with an enzyme-coenzyme complex embedded therein. The gel matrix preferably has a layer thickness of ≦50 μm, in particular ≦5 μm, and is applied to a support, for example an at least partly optically transparent support. The gel matrix may be a matrix comprising one or more soluble polymers, as in known dry test systems (e.g. AccuChek Active), and can be produced by knife application and drying. The matrix is preferably a polymer with a structure based on photopolymerizable substances such as, for example, acrylic monomers, e.g. acrylamide or/and acrylic esters such as polyethylene glycol diacrylate, or vinylaromatic monomers, e.g. 4-vinylbenzenesulfonic acid, or combinations thereof. A gel matrix of this type can be produced by applying a liquid which contains the reagent, comprising enzyme, photopolymerizable monomer and, where appropriate, coenzyme, photoinitiator or/and unreactive constituents, to an at least partly optically transparent support, for example to a plastics sheet, and irradiating, for example with UV light from the reverse side, so that polymerization of the monomer or of the monomers takes place on the support up to a predefined layer thickness. The layer thickness can be controlled by adding absorbing substances to the reagent or/and through the duration or intensity of irradiation. Excess liquid reagent can be removed and reused after the polymerization (see, for example,
FIG. 2 ). - On the other hand, the gel matrix can also be produced by conventional coating procedures, in which case the liquid reagent is applied to a support, brought to the desired thickness using suitable methods, e.g. using a knife, and then completely polymerized.
- After inclusion by polymerization or embedding in the gel matrix, the enzyme is in a protected microenvironment. If the polymeric gel matrix is sufficiently crosslinked, the enzyme molecules are present in an immobilized form. Low molecular weight substances or glucose or other analytes or else coenzymes can, however, diffuse freely through the polymer network.
- The enzyme can either be included together with its coenzyme by polymerization in the matrix or, after the polymerization, the matrix can be brought into contact with a solution of the coenzyme, so that the appropriate enzyme-coenzyme complex is formed. The concentration of the enzyme in the gel matrix is preferably chosen to be high enough for a stoichiometric reaction with the analyte to be determined, and a direct determination of the coenzyme which is changed by the reaction, to be possible. The reaction consists only of a single catalytic reaction, for example, a redox reaction, which can take place in the region of milliseconds or microseconds. The coenzyme which is changed by the reaction is optimally protected from interfering influences through binding to the active center of the enzyme and, where appropriate, additionally by embedding in the gel matrix.
- The invention is additionally to be explained by the following figures and examples.
- These and other features and advantages of the present invention will be more fully understood from the following detailed description of the invention taken together with the accompanying claims. It is noted that the scope of the claims is definitely by the recitations therein and not by the specific discussion of the features and advantages set forth in the present description.
- The following detailed description of the embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
-
FIG. 1 shows a first embodiment of the detection system of the invention. A reagent layer (2), e.g. a gel matrix with an enzyme-coenzyme complex, is applied to an optically transparent support (1). The enzyme-coenzyme complex is in a form such that no regeneration of the coenzyme can take place during the analyte determination. A sample (3), e.g. blood, is put on the reagent layer. Determination of the enzymatic reaction between the analyte contained in the sample (3), and the enzyme-coenzyme complex contained in the reagent layer (2) takes place by optical methods. Light from a light source (4), e.g. a laser or an LED, is beamed from behind (through the support) onto the reagent layer (2). Absorption light or fluorescent light beamed back from the sample is detected in a detector (5). Where appropriate—in particular for detecting fluorescent light—an optical filter element (6) is put in front of the detector in order to block leakage of the fluorescence-exciting light. -
FIG. 2 shows the production of a detection system of the invention. A liquid reagent (12) is applied, for example in a first position (13), to an optically transparent support (11), e.g. a plastics sheet. The liquid reagent (12) is irradiated at a second position from below through the support (11) with light from a light source (14). At the same time, the support is moved in the direction (15) identified by the arrow. A polymerized reagent layer (16) is formed directly on the support (11). Excess liquid reagent is present above the polymer layer (16). The thickness of the polymerized reagent layer (16) can be controlled through the reagent composition, the duration and intensity of the beaming in of light, and through the properties of the support (11). -
FIG. 3 shows an embodiment of a fluorescence-based sensor from below. A polymerized reagent layer, for example one produced by the continuous process inFIG. 2 , can be cut and applied to a support (21) by use of known techniques. After application of the sample to the upper side, exciting light (23), e.g. UV light, is beamed in from a light source from below. The fluorescence (24), e.g. blue light, generated through the reaction of the analyte with the enzyme-coenzyme complex in the reagent layer (22) is detected with a detector. - It is also possible for a plurality of (identical or different) reagents to be applied to a support. One example of such an embodiment in the form of a disk is shown in
FIG. 4 . A plurality of reagent spots (62) is disposed on the optically transparent support (61). -
FIGS. 5A and 5B show the fluorescence of a detection system of the invention (glucose dehydrogenase and NAD+) with increasing glucose concentration under a CCD camera. - Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figure may be exaggerated relative to other elements to help improve understanding of the embodiment(s) of the present invention.
- In order that the invention may be more readily understood, reference is made to the following examples, which are intended to illustrate the invention, but not limit the scope thereof.
- The following description of the preferred embodiment is merely exemplary in nature and is in no way intended to limit the invention or its application or uses.
- It is noted that terms like “preferably”, “commonly”, and “typically” are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present invention.
- For the purposes of describing and defining the present invention it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may very from a stated reference without resulting in a change in the basic function of the subject matter at issue.
- 100 mg/ml GlucDH are dissolved in buffer of pH 7 and mixed with the appropriate amount of NAD+. On addition of increasing amounts of glucose, an increase in the fluorescence can be detected visually under a UV lamp (excitation wavelength 366 nm) (
FIGS. 5A and 5B ). - The solution with the enzyme system does not fluoresce without glucose. Nor do glucose and NAD+ result in any fluorescence.
- A suspension of the following substance was mixed in a plastic test tube
-
-
Amount Weight Substance [g] [%] Acrylamide 2.5 22.02 Methylenebisacrylamide 0.7 6.17 2,2-Dimethoxy-2-phenylacetophenone 0.05 0.44 Glycerol 5 44.05 Hydroxyethyl methacrylate 1.4 12.33 Methyl methacrylate 0.4 3.52 Crodasinic O solution, pH 8, 0.3 g/1000 ml 1 8.81 N,N′-(1,2-Dihydroxyethylene)bisacrylamide 0.3 2.64 TOTAL 11.35 100 - 0.5 ml of this suspension were mixed with 0.5 ml of a solution of GlucDH (100 mg/ml), and the mixture was homogenized free of air bubbles in an ultrasonic bath.
- The clear solution was poured onto a corona-treated polycarbonate sheet 125 mm thick and illuminated with a conventional illumination apparatus (Isel UV illumination device 2) for 20 min. The sheet was briefly washed with water and then dried in the air.
- The resulting layer thickness was <2 μm. A freshly prepared glucose/NAD+ solution (GKL-3 solution, 300 mg/dl glucose, 1 ml/6.4 mg of NAD+) was spotted on the film. A strong fluorescence was immediately visible under a UV lamp.
- A polymer layer comprising a blue dye (absorption maximum≈650 nm) for better identification was produced (formula 2). In a further experiment, a yellow dye was admixed as UV absorber to the initial formula (formula 3).
-
-
Weight Substance Amount [%] Acrylamide 37.5 g (0.53 mol) 25.78 Polyethylene glycol diacrylate, 52.5 g (ca. 0.96 mol) 36.10 Mw ≈ 575 g/mol Solution of Crodasinic O (0.3 g/1 l) 50 g 34.38 4-Vinylbenzenesulfonic acid 5 g 3.44 2,2-Dimethoxy-2- 350 mg 0.24 phenylacetophenone photoinitiator New methylene blue N 100 mg 0.06 TOTAL 145.45 g 100 - The mixture was homogenized by stirring and by ultrasonic bath treatment, distributed with a pipette on a 140 μm Pokalon sheet (corona-treated, stage 4) and illuminated in a UV illumination device (Actina U4, W. Lemmen GmbH) for 1 min. The resulting layer thickness was measured with a screw gage and was 240.5 μm.
-
-
Substance Amount Weight [%] Formula 2 1 ml ca. 99.99 Mordant Yellow 7 (No. 686) 0.0001 g 0.001 (UV absorber) TOTAL ca. 1.0001 g 100 - The mixture was distributed on a sheet and then polymerized as described above. The resulting layer thickness was measured with a screw gage and was 79.3 μm.
- This experiment shows that it is possible to influence the layer thickness. With reaction conditions which were otherwise the same, the layer thickness without UV absorber is 240.5 μm (see above); only 79.3 μm with UV absorber (Mordant Yellow 7).
- Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modification and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as preferred or particularly advantageous, it is contemplated that the present invention is not necessarily limed to these preferred aspects of the invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/008,283 US7951581B2 (en) | 2002-05-16 | 2008-01-10 | Method and reagent system with non-regenerable enzyme-coenzyme complex |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10221840 | 2002-05-16 | ||
DE10221846.3 | 2002-05-16 | ||
DE10221846 | 2002-05-16 | ||
DE10221512 | 2002-05-16 | ||
DE2002121845 DE10221845A1 (en) | 2002-05-16 | 2002-05-16 | Detecting analyte by enzymatic reaction, useful specifically for measuring glucose in blood, based on reaction with enzyme-coenzyme complex |
DE10221840.4 | 2002-05-16 | ||
DE10221512.5 | 2002-05-16 | ||
DE2002121846 DE10221846A1 (en) | 2002-05-16 | 2002-05-16 | Detecting an analyte by enzymatic reaction, useful specifically for measuring glucose in blood, based on reaction with coenzyme and inactive coenzyme-binding protein |
DE10221845 | 2002-05-16 | ||
DE2002121840 DE10221840A1 (en) | 2002-05-16 | 2002-05-16 | Production of polymer layers on a transparent support, for use in sensors, e.g. for blood analysis, comprises coating the support with a photopolymerizable liquid composition and irradiating the liquid through the support |
PCT/EP2003/005178 WO2003097864A1 (en) | 2002-05-16 | 2003-05-16 | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
US10/514,451 US7341830B2 (en) | 2002-05-16 | 2003-05-16 | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
US12/008,283 US7951581B2 (en) | 2002-05-16 | 2008-01-10 | Method and reagent system with non-regenerable enzyme-coenzyme complex |
Related Parent Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/005178 Continuation WO2003097864A1 (en) | 2002-05-16 | 2003-05-16 | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
PCT/EP2003/005178 Division WO2003097864A1 (en) | 2002-05-16 | 2003-05-16 | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
US10514451 Division | 2003-05-16 | ||
US10/514,451 Continuation US7341830B2 (en) | 2002-05-16 | 2003-05-16 | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080182324A1 true US20080182324A1 (en) | 2008-07-31 |
US7951581B2 US7951581B2 (en) | 2011-05-31 |
Family
ID=29553736
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/514,451 Expired - Fee Related US7341830B2 (en) | 2002-05-16 | 2003-05-16 | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
US10/514,758 Active 2026-05-08 US8846132B2 (en) | 2002-05-16 | 2003-05-16 | Method for producing polymer layers |
US12/008,283 Expired - Fee Related US7951581B2 (en) | 2002-05-16 | 2008-01-10 | Method and reagent system with non-regenerable enzyme-coenzyme complex |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/514,451 Expired - Fee Related US7341830B2 (en) | 2002-05-16 | 2003-05-16 | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
US10/514,758 Active 2026-05-08 US8846132B2 (en) | 2002-05-16 | 2003-05-16 | Method for producing polymer layers |
Country Status (15)
Country | Link |
---|---|
US (3) | US7341830B2 (en) |
EP (3) | EP1504113B1 (en) |
JP (4) | JP2005532796A (en) |
KR (2) | KR101164048B1 (en) |
CN (2) | CN1653189B (en) |
AT (1) | ATE345396T1 (en) |
AU (3) | AU2003232790A1 (en) |
BR (2) | BR0311175A (en) |
CA (2) | CA2493918C (en) |
DE (1) | DE50305687D1 (en) |
DK (1) | DK1504113T3 (en) |
ES (1) | ES2275095T3 (en) |
HK (2) | HK1081599A1 (en) |
MX (2) | MXPA04011220A (en) |
WO (3) | WO2003097859A2 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7341830B2 (en) * | 2002-05-16 | 2008-03-11 | Roche Diagnostics Operations, Inc. | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
DE10325699B3 (en) * | 2003-06-06 | 2005-02-10 | Roche Diagnostics Gmbh | System for analyzing a sample to be tested and using such a system |
DE102004007983A1 (en) * | 2004-02-18 | 2005-09-08 | Roche Diagnostics Gmbh | Test element with single-layer reaction film |
DE102004051830B4 (en) * | 2004-10-25 | 2007-12-13 | Roche Diagnostics Gmbh | Multifunctional reference system for analyte determination by fluorescence |
US20060281187A1 (en) | 2005-06-13 | 2006-12-14 | Rosedale Medical, Inc. | Analyte detection devices and methods with hematocrit/volume correction and feedback control |
DE102005035461A1 (en) | 2005-07-28 | 2007-02-15 | Roche Diagnostics Gmbh | Stable NAD / NADH derivatives |
US8801631B2 (en) | 2005-09-30 | 2014-08-12 | Intuity Medical, Inc. | Devices and methods for facilitating fluid transport |
EP1928302B1 (en) | 2005-09-30 | 2012-08-01 | Intuity Medical, Inc. | Fully integrated wearable or handheld monitor |
CA2564666A1 (en) * | 2005-10-25 | 2007-04-25 | F. Hoffmann-La Roche Ag | Fluorescence spectroscopy in absorbing media |
GB0526051D0 (en) * | 2005-12-21 | 2006-02-01 | Oxford Biosensors Ltd | Cholesterol sensor |
EP1830177A1 (en) * | 2006-03-02 | 2007-09-05 | F. Hoffman-la Roche AG | Integrated test element |
WO2007147086A2 (en) * | 2006-06-14 | 2007-12-21 | Brigham Young University | Adsorption-resistant acrylic copolymer for fluidic devices |
EP2022859A1 (en) * | 2007-08-01 | 2009-02-11 | Roche Diagnostics GmbH | Method and device for determining the concentration of an analyte using measurement of fluorescence |
EP2093284A1 (en) | 2008-02-19 | 2009-08-26 | F.Hoffmann-La Roche Ag | Stabilisation of dehydrogenases with stable coenzymes |
US9833183B2 (en) | 2008-05-30 | 2017-12-05 | Intuity Medical, Inc. | Body fluid sampling device—sampling site interface |
EP3639744B1 (en) | 2008-06-06 | 2021-11-24 | Intuity Medical, Inc. | Blood glucose meter and method of operating |
WO2009148624A1 (en) | 2008-06-06 | 2009-12-10 | Intuity Medical, Inc. | Detection meter and mode of operation |
AU2009269702B2 (en) | 2008-07-11 | 2016-07-21 | Universal Biosensors Pty Ltd | Enhanced immunoassay sensor |
EP2226007A1 (en) | 2009-02-19 | 2010-09-08 | Roche Diagnostics GmbH | Test element magazine with covered test fields |
EP2226008A1 (en) | 2009-02-19 | 2010-09-08 | Roche Diagnostics GmbH | Method for producing an analytical magazine |
EP2398909B1 (en) | 2009-02-19 | 2015-07-22 | F. Hoffmann-La Roche AG | Fast reaction kinetics of enzymes having low activity in dry chemistry layers |
WO2010094427A2 (en) | 2009-02-19 | 2010-08-26 | Roche Diagnostics Gmbh | Compact storage of auxiliary analytical devices in a cartridge |
EP2292751A1 (en) | 2009-08-20 | 2011-03-09 | Roche Diagnostics GmbH | Stabilisation of enzymes with stable coenzymes |
WO2011065981A1 (en) | 2009-11-30 | 2011-06-03 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
EP2362207A1 (en) * | 2010-01-28 | 2011-08-31 | F. Hoffmann-La Roche AG | Measuring system and method, in particular for determining blood sugar |
US9752990B2 (en) | 2013-09-30 | 2017-09-05 | Honeywell International Inc. | Low-powered system for driving a fuel control mechanism |
KR101530804B1 (en) | 2011-04-12 | 2015-06-22 | 에프. 호프만-라 로슈 아게 | Analytical aid |
EP3750480B1 (en) | 2011-08-03 | 2022-02-02 | Intuity Medical, Inc. | Body fluid sampling arrangement |
EP2620507A1 (en) | 2012-01-25 | 2013-07-31 | Roche Diagnostics GmbH | Method for the evaluation of the quality of a test element |
KR101728597B1 (en) | 2012-04-19 | 2017-04-19 | 에프. 호프만-라 로슈 아게 | Method and device for determining an analyte concentration in blood |
DE102013104906B4 (en) * | 2013-05-13 | 2015-06-25 | Brandenburgische Technische Universität Cottbus-Senftenberg | Anhydrous immobilization of enzymes |
JP2016528175A (en) | 2013-06-04 | 2016-09-15 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Novel compounds useful for FRET and methods related thereto |
US20170233787A1 (en) * | 2014-08-05 | 2017-08-17 | Becton, Dickinson And Company | Methods and compositions for analyzing glucose-6-phosphate dehydrogenase activity in blood samples |
KR102273051B1 (en) | 2014-10-21 | 2021-07-06 | 삼성디스플레이 주식회사 | Compound for hole transporting and organic light emitting device utilizing same |
EP3339431A1 (en) | 2016-12-22 | 2018-06-27 | Roche Diabetes Care GmbH | Glucose dehydrogenase variants with improved properties |
EP3856139A1 (en) * | 2018-09-24 | 2021-08-04 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Tailored layers of cellulose dispersions for detecting analytes |
US11579093B2 (en) * | 2020-04-22 | 2023-02-14 | SciLogica Corp. | Optical component |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964974A (en) * | 1972-09-28 | 1976-06-22 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Enzymatic determination of glucose |
US4451568A (en) * | 1981-07-13 | 1984-05-29 | Battelle Memorial Institute | Composition for binding bioactive substances |
US4820399A (en) * | 1984-08-31 | 1989-04-11 | Shimadzu Corporation | Enzyme electrodes |
US4919767A (en) * | 1987-08-04 | 1990-04-24 | Imperial Chemical Industries Plc | Sensor and method for analyte determination |
US5059526A (en) * | 1982-09-06 | 1991-10-22 | Konishiroku Photo Industry Co., Ltd. | Dry multilayer analytical element for analysis of enzymes or triglycerides |
US5340722A (en) * | 1988-08-24 | 1994-08-23 | Avl Medical Instruments Ag | Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method |
US5447847A (en) * | 1993-09-02 | 1995-09-05 | Nissui Pharmaceutical Co., Ltd. | Quantitative determination of pyruvic acid and quantitative analysis for component of living body making use of such determination |
US20080213808A1 (en) * | 2007-02-27 | 2008-09-04 | Wolfgang-Reinhold Knappe | Mediators for photometric tests and means and methods relating to use thereof |
US20080219809A1 (en) * | 2003-11-10 | 2008-09-11 | Van Der Meulen Peter | Semiconductor manufacturing process modules |
US7553615B2 (en) * | 2005-07-28 | 2009-06-30 | Roche Diagnostics Operations, Inc. | Compounds, methods, complexes, apparatuses and uses relating to stabile forms of NAD/NADH |
US20100227348A1 (en) * | 2007-08-01 | 2010-09-09 | Wolfgang Petrich | Method and device for determining the concentration of an analyte using fluorescence measurement |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE638336A (en) * | 1964-12-21 | 1964-02-03 | ||
US4238565A (en) | 1978-06-22 | 1980-12-09 | Miles Laboratories, Inc. | Specific binding assay with a prosthetic group as a label component |
DE2924249C2 (en) * | 1978-06-22 | 1989-04-27 | Miles, Inc., Elkhart, Ind., Us | SPECIFIC BINDING INVESTIGATION METHOD FOR DETERMINING LIGAND IN A FLUID MEDIUM AND REAGENTS FOR CARRYING OUT THIS METHOD |
AT367796B (en) * | 1979-10-29 | 1982-07-26 | List Hans | METHOD FOR DETERMINING A SUBSTANCE CONCENTRATION IN A SOLUTION |
DE3477849D1 (en) * | 1983-12-06 | 1989-05-24 | Ici Plc | Dry film resists |
GB8608435D0 (en) | 1986-04-07 | 1986-05-14 | Cranfield Inst Of Tech | Specific binding assays |
JPH0710896B2 (en) | 1987-04-30 | 1995-02-08 | 第一工業製薬株式会社 | Method for producing high molecular weight cationic acrylic polymer |
CA1322324C (en) * | 1988-02-10 | 1993-09-21 | Joel M. Blatt | Self-indicating and improved resolution analyses employing stoichiometric chemical subtraction |
US5296305A (en) | 1990-05-11 | 1994-03-22 | Esslior International (Compagnie Generale D'optique) | Method of fabricating a lens made of transparent polymer with modulated refracting index |
GB9022304D0 (en) * | 1990-10-15 | 1990-11-28 | Ares Serono Res & Dev Ltd | Assay technique |
JP2977265B2 (en) * | 1990-11-19 | 1999-11-15 | 旭化成工業株式会社 | Photosensitive elastomer composition |
DE4118880C2 (en) * | 1991-06-08 | 1998-12-17 | Fraunhofer Ges Forschung | Method for the selective determination of the concentration of dissolved substances in enzymatic reactions |
CA2100970A1 (en) * | 1991-12-18 | 1993-06-19 | Paul J. Buscemi | Lubricous polyer network |
DE59307720D1 (en) * | 1992-03-23 | 1998-01-08 | Siemens Ag | Biosensor |
JPH07115998A (en) | 1993-08-31 | 1995-05-09 | Iatron Lab Inc | Reagent for got determination |
JPH07115997A (en) | 1993-08-31 | 1995-05-09 | Iatron Lab Inc | Reagent for gpt determination |
GB9404805D0 (en) * | 1994-03-11 | 1994-04-27 | Minnesota Mining & Mfg | Novel developing agents for (photo)thermographic systems |
US5691205A (en) | 1994-06-23 | 1997-11-25 | Canon Kabushiki Kaisha | Fluorometric analysis of chloride ion and chemical sensor therefor |
JP2986712B2 (en) * | 1995-05-01 | 1999-12-06 | キヤノン株式会社 | Chemical sensor, apparatus and method for measuring chloride ion concentration using the same |
DE4424179C2 (en) * | 1994-07-08 | 1998-09-10 | Biotechnolog Forschung Gmbh | UV-polymerizable enzyme paste for the production of thick-film biosensors and thick-film biosensors produced therewith |
JPH09248200A (en) | 1996-03-13 | 1997-09-22 | Nissho Corp | Reagent for assaying glucose |
US5863650A (en) | 1997-05-05 | 1999-01-26 | Bioengineered Materials, Inc. | Interfacial coatings |
JP2000035413A (en) | 1998-07-16 | 2000-02-02 | Sapporo Imuno Diagnostic Laboratory:Kk | Biosensor using dehydrogenase and coenzyme |
AT409307B (en) | 1999-01-12 | 2002-07-25 | Hoffmann La Roche | OPTICAL-CHEMICAL SENSOR |
JP3869601B2 (en) | 1999-11-26 | 2007-01-17 | 株式会社トクヤマ | Method for measuring homocysteine |
US6635412B2 (en) * | 2000-07-11 | 2003-10-21 | Martin A. Afromowitz | Method for fabricating 3-D structures with smoothly-varying topographic features in photo-sensitized epoxy resists |
WO2002052045A1 (en) | 2000-12-26 | 2002-07-04 | Aviva Biosciences | Active and biocompatible platforms prepared by polymerization of surface coating films |
US20030087178A1 (en) * | 2001-04-20 | 2003-05-08 | Adrian Lungu | Photopolymerizable element for use as a flexographic printing plate and a process for preparing the plate from the element |
US7341830B2 (en) * | 2002-05-16 | 2008-03-11 | Roche Diagnostics Operations, Inc. | Method and reagent system having a non-regenerative enzyme-coenzyme complex |
-
2003
- 2003-05-16 US US10/514,451 patent/US7341830B2/en not_active Expired - Fee Related
- 2003-05-16 MX MXPA04011220A patent/MXPA04011220A/en active IP Right Grant
- 2003-05-16 AU AU2003232790A patent/AU2003232790A1/en not_active Abandoned
- 2003-05-16 CN CN038110814A patent/CN1653189B/en not_active Expired - Fee Related
- 2003-05-16 EP EP03730061A patent/EP1504113B1/en not_active Expired - Lifetime
- 2003-05-16 DK DK03730061T patent/DK1504113T3/en active
- 2003-05-16 CA CA2493918A patent/CA2493918C/en not_active Expired - Fee Related
- 2003-05-16 KR KR1020047018213A patent/KR101164048B1/en not_active IP Right Cessation
- 2003-05-16 WO PCT/EP2003/005179 patent/WO2003097859A2/en active IP Right Grant
- 2003-05-16 CN CNB038110679A patent/CN100439513C/en not_active Expired - Fee Related
- 2003-05-16 WO PCT/EP2003/005177 patent/WO2003097863A1/en active Application Filing
- 2003-05-16 DE DE50305687T patent/DE50305687D1/en not_active Expired - Lifetime
- 2003-05-16 JP JP2004506519A patent/JP2005532796A/en active Pending
- 2003-05-16 AU AU2003240260A patent/AU2003240260B2/en not_active Ceased
- 2003-05-16 EP EP03752757A patent/EP1504116A1/en not_active Withdrawn
- 2003-05-16 MX MXPA04011103A patent/MXPA04011103A/en active IP Right Grant
- 2003-05-16 US US10/514,758 patent/US8846132B2/en active Active
- 2003-05-16 KR KR1020047018212A patent/KR101002194B1/en not_active IP Right Cessation
- 2003-05-16 CA CA2486950A patent/CA2486950C/en not_active Expired - Fee Related
- 2003-05-16 AU AU2003240666A patent/AU2003240666B2/en not_active Ceased
- 2003-05-16 BR BR0311175-0A patent/BR0311175A/en not_active IP Right Cessation
- 2003-05-16 EP EP03732396A patent/EP1504115A1/en not_active Withdrawn
- 2003-05-16 AT AT03730061T patent/ATE345396T1/en active
- 2003-05-16 ES ES03730061T patent/ES2275095T3/en not_active Expired - Lifetime
- 2003-05-16 BR BRPI0309947-4B1A patent/BR0309947B1/en not_active IP Right Cessation
- 2003-05-16 JP JP2004506518A patent/JP4656938B2/en not_active Expired - Fee Related
- 2003-05-16 JP JP2004506514A patent/JP5118288B2/en not_active Expired - Fee Related
- 2003-05-16 WO PCT/EP2003/005178 patent/WO2003097864A1/en active Application Filing
-
2006
- 2006-02-07 HK HK06101610.2A patent/HK1081599A1/en not_active IP Right Cessation
- 2006-02-08 HK HK06101676.3A patent/HK1081600A1/en not_active IP Right Cessation
-
2008
- 2008-01-10 US US12/008,283 patent/US7951581B2/en not_active Expired - Fee Related
-
2009
- 2009-08-19 JP JP2009190529A patent/JP2009275233A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964974A (en) * | 1972-09-28 | 1976-06-22 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Enzymatic determination of glucose |
US4451568A (en) * | 1981-07-13 | 1984-05-29 | Battelle Memorial Institute | Composition for binding bioactive substances |
US5059526A (en) * | 1982-09-06 | 1991-10-22 | Konishiroku Photo Industry Co., Ltd. | Dry multilayer analytical element for analysis of enzymes or triglycerides |
US4820399A (en) * | 1984-08-31 | 1989-04-11 | Shimadzu Corporation | Enzyme electrodes |
US4919767A (en) * | 1987-08-04 | 1990-04-24 | Imperial Chemical Industries Plc | Sensor and method for analyte determination |
US5340722A (en) * | 1988-08-24 | 1994-08-23 | Avl Medical Instruments Ag | Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method |
US5447847A (en) * | 1993-09-02 | 1995-09-05 | Nissui Pharmaceutical Co., Ltd. | Quantitative determination of pyruvic acid and quantitative analysis for component of living body making use of such determination |
US20080219809A1 (en) * | 2003-11-10 | 2008-09-11 | Van Der Meulen Peter | Semiconductor manufacturing process modules |
US7553615B2 (en) * | 2005-07-28 | 2009-06-30 | Roche Diagnostics Operations, Inc. | Compounds, methods, complexes, apparatuses and uses relating to stabile forms of NAD/NADH |
US20090246818A1 (en) * | 2005-07-28 | 2009-10-01 | Dieter Heindl | Compounds, methods, complexes, apparatuses and uses relating to stabile forms of nad/nadh |
US20080213808A1 (en) * | 2007-02-27 | 2008-09-04 | Wolfgang-Reinhold Knappe | Mediators for photometric tests and means and methods relating to use thereof |
US20100227348A1 (en) * | 2007-08-01 | 2010-09-09 | Wolfgang Petrich | Method and device for determining the concentration of an analyte using fluorescence measurement |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7951581B2 (en) | Method and reagent system with non-regenerable enzyme-coenzyme complex | |
AU689614B2 (en) | Biological fluid analyzing device and method | |
JP3342077B2 (en) | Improved oxidative coupling dyes for spectrophotometric determination of analytes | |
US6107083A (en) | Optical oxidative enzyme-based sensors | |
US5340722A (en) | Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method | |
US20060121547A1 (en) | Diffusion layer for an enzyme-based sensor application | |
JP2005528896A5 (en) | ||
US20030164024A1 (en) | Biosensor and method for production thereof | |
US10400233B2 (en) | High load enzyme immobilization by crosslinking | |
DE10221845A1 (en) | Detecting analyte by enzymatic reaction, useful specifically for measuring glucose in blood, based on reaction with enzyme-coenzyme complex | |
de Marcos et al. | Comparative study of polymeric supports as the base of immobilisation of chemically modified enzymes | |
DE10221846A1 (en) | Detecting an analyte by enzymatic reaction, useful specifically for measuring glucose in blood, based on reaction with coenzyme and inactive coenzyme-binding protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROCHE DIAGNOSTICS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORN, CARINA;HOENES, JOACHIM;KNAPPE, WOLFGANG-REINHOLD;SIGNING DATES FROM 20050404 TO 20050510;REEL/FRAME:026148/0507 Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS GMBH;REEL/FRAME:026148/0524 Effective date: 20050512 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
AS | Assignment |
Owner name: ROCHE DIABETES CARE, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:036008/0670 Effective date: 20150302 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150531 |