US20090128407A1 - Systems and Methods for Detecting GPS Measurement Errors - Google Patents
Systems and Methods for Detecting GPS Measurement Errors Download PDFInfo
- Publication number
- US20090128407A1 US20090128407A1 US11/942,912 US94291207A US2009128407A1 US 20090128407 A1 US20090128407 A1 US 20090128407A1 US 94291207 A US94291207 A US 94291207A US 2009128407 A1 US2009128407 A1 US 2009128407A1
- Authority
- US
- United States
- Prior art keywords
- prs
- drs
- threshold
- delta
- differences
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/20—Integrity monitoring, fault detection or fault isolation of space segment
Definitions
- the present disclosure is generally related to navigation and, more particularly, is related to systems and methods for detecting global positioning system (GPS) measurement errors.
- GPS global positioning system
- GPS global positioning system
- each GPS satellite also called “space vehicle” (SV)
- SV space vehicle
- a GPS receiver tracks the satellites whose signals are within its field of view. From these visible satellites, a GPS receiver extracts the navigation data and obtains range measurements from its received GPS satellite signals. The range measurements are used in a navigation solution to calculate a position fix of the GPS receiver.
- the GPS navigation data contain, but are not limited to, satellite ephemeris, where ephemeris parameters can be used to accurately calculate satellite position and velocity.
- the GPS receiver receives the range measurement to the satellite in order to calculate the position fix.
- Range measurements include, but are not limited to, two types of measurements—pseudorange (PR) and delta range (DR).
- a pseudorange is the apparent distance from the GPS receiver to the satellite. It is calculated by multiplying the speed of light by the apparent transit time, which is the time difference between a signal reception time based on a receiver clock and a signal transmission time based on a satellite clock. This range is termed pseudorange since the receiver clock is not synchronized with the satellite clock and thus the measured range is not necessarily the true range.
- a second type of range measurement that is used to calculate the position (including velocity) fix is the DR.
- DR is a range change rate in unit of meters per second or Doppler.
- Doppler measurement is a function of a relative velocity, and a relative frequency clock drift between the satellite and the GPS receiver.
- Accumulated DR (ADR) measurement is also called carrier phase measurement or integrated Doppler measurements in the GPS field. The Doppler or DR measurement allows the receiver to calculate a receiver velocity and a receiver frequency clock drift rate, from which a new position fix can then be obtained if a previous position is known.
- the GPS receiver typically includes algorithms that contain some failure detection and exclusion (FDE) functions to detect and exclude failed range measurements.
- FDE failure detection and exclusion
- GPS measurements can be affected by multipath signals, where the GPS signals reflect off, for example, surrounding terrain, buildings, canyon walls, and hard ground, among others. When a signal is reflected, the signal typically passes through a longer path than the corresponding direct-path signal. Thus, the multipath signal can affect the pseudorange measurements, resulting in potential unexpected positive or negative errors. When direct-path signal is blocked, then multipath can make pseudorange measurements erroneously longer. Accordingly, pseudorange residuals, also known as, innovations or errors, can be referred to as a pseudorange measurement minus an estimated range.
- pseudorange residuals also known as, innovations or errors
- a large pseudorange residual typically indicates a failure or a potential failure.
- the FDE function can either exclude or de-weight the failed measurements in the navigation computation.
- the FDE algorithms have a certain probability of false alarms (Pfa), such as, for example, mistakenly excluding good measurements, and a certain probability of misdetections (Pmd), such as, for example, failing to detect bad measurements. Excluding measurements can adversely affect satellite geometry distribution or, in other words, dilution of position (DOP), which, in turn, can magnify measurement errors into position solution errors.
- DOP dilution of position
- excluding a pseudorange measurement among only three or four available pseudorange measurements can reduce GPS availability.
- an estimated range is the distance between a satellite position, which can be precisely computed based on its ephemeris, and a receiver position, which generally refers to a GPS fix.
- a receiver position which generally refers to a GPS fix.
- range residuals are calculated based on previously estimated receiver position, and therefore the accuracy of range residuals also depends on the accuracy of GPS position fixes.
- FDE algorithms are effective in detecting spike errors, they are not effective in detecting slow-change errors.
- a representative system includes a navigation device that is configured to receive GPS signals from signal sources, the navigation device being configured to calculate pseudoranges (PRs) and delta ranges (DRs) based on the received GPS signals, the navigation device including a consistency check algorithm that is configured to: determine mismatches between the respective calculated PRs and DRs, and indicate that an error exists in the respective calculated PRs and DRs based on at least one of the mismatches.
- PRs pseudoranges
- DRs delta ranges
- a representative method, among others, for detecting GPS measurement errors includes receiving GPS signals from signal sources; calculating pseudoranges (PRs) and delta ranges (DRs) based on the received GPS signals; determining mismatches between the respective calculated PRs and DRs; and responsive to determining that the at least one of the mismatches exceeded the mismatch threshold, indicating that an error exists in the respective calculated PRs and DRs based on at least one of the mismatches.
- PRs pseudoranges
- DRs delta ranges
- FIG. 1 is a block diagram that illustrates a system for detecting GPS measurement errors
- FIG. 2 is a block diagram that illustrates an embodiment of a navigation device 115 , such as that shown in FIG. 1 ;
- FIG. 3 is a block diagram that illustrates an embodiment of a GPS signal processing system, such as that shown in FIG. 2 , which detects GPS measurement errors;
- FIG. 4 is a block diagram that illustrates an embodiment of a position, velocity and time (PVT) unit, such as that shown in FIG. 3 , which includes a consistency check algorithm for detecting GPS measurement errors;
- PVT position, velocity and time
- FIG. 5 is a flow diagram that illustrates an embodiment of the architecture, functionality, and/or operation of a consistency check algorithm, such as that shown in FIG. 4 ;
- FIG. 6 is a flow diagram that illustrates an embodiment of the architecture, functionality, and/or operation for determining whether the pseudoranges (PRs) and delta ranges (DRs) passed a consistency check, such as that shown in step 510 of FIG. 5 ;
- PRs pseudoranges
- DRs delta ranges
- FIG. 7 is a diagram that illustrates a GPS measurement scenario in which a GPS measurement error is detected using steps 605 to 615 of FIG. 6 ;
- FIG. 8 is a diagram that illustrates another GPS measurement scenario in which slow-changing GPS measurement errors are detected using steps 620 to 625 of FIG. 6 ;
- FIG. 9 is a block diagram that illustrates an embodiment of a GPS signal process system, such as that shown in FIGS. 2 and 3 .
- FIG. 1 is a block diagram that illustrates a system 100 for synthesizing GPS measurements.
- a simple system 100 comprises a plurality of signal sources 105 , 110 , 113 , 114 and a navigation device 115 .
- a more complex system 100 such as an assisted global positioning system (AGPS)
- AGPS assisted global positioning system
- a more complex system 100 such as an assisted global positioning system (AGPS)
- AGPS assisted global positioning system
- the system 100 can include multiple navigation devices, multiple base stations and/or multiple servers.
- the server 125 may be co-located with the base station 120 or with the navigation device 115 .
- the signal sources 105 , 110 , 113 , 114 include GPS satellites (also known as space vehicles), among others.
- the signal sources 105 , 110 , 113 , 114 generally orbit above the location of the navigation devices 115 at any given time.
- the navigation devices 115 include, but are not limited to, GPS receivers, cell phones with embedded signal receivers, and Personal Digital Assistants (PDAs) with embedded signal receivers, among others.
- the signal sources 105 , 110 , 113 , 114 transmit signals to the navigation devices 115 , which use the signals to calculate GPS measurements and determine the location, speed, and direction of the navigation devices 115 .
- the navigation devices 115 can detect errors in the GPS measurements before the GPS measurements are used to determine the location, speed, and direction of the navigation devices 115 . Operations for detecting the GPS measurement errors are described in relation to FIGS. 5 and 6 .
- FIG. 2 is a block diagram that illustrates an embodiment of the navigation device 115 , such as that shown in FIG. 1 .
- the navigation device 115 includes, but is not limited to, sensor(s) 205 , a GPS signal processing system 210 , and a user interface 215 . It should be noted that the sensor 205 may not be included in some navigation devices 115 .
- the sensor 205 can include, but is not limited to, inertial sensors that include, for example, micro-electromechanical system (MEMS) sensors, such as, for example, accelerometers and gyroscopes, among others. In general, accelerometers measure acceleration of their vehicle, and gyroscope measures orientation or angular rate of the vehicle.
- MEMS micro-electromechanical system
- the GPS signal processing system 210 can include, but is not limited to, a GPS receiver, among others.
- the navigation device 115 can utilize the sensors 205 and the GPS signal processing system 210 to sense movement of the vehicle.
- the GPS signal processing system 210 can use data generated by the sensors 205 in dead reckoning calculations to produce positioning information during periods of GPS outages.
- the positioning information includes data related to the position, velocity, and attitude of a vehicle.
- dead reckoning refers to a process of calculating location by integrating measured increments of distance and direction of travel relative to a known location.
- the GPS signal processing system 210 can further include an extended Kalman filter (EKF), which estimates position, velocity, attitude, and accelerometer and gyro errors in three dimensions, such as, for example, the position (X, Y, and Z) and velocity (Vx, Vy, and Vz) of the vehicle, among others.
- EKF extended Kalman filter
- the estimated information is passed to a user interface 215 that provides a user with navigational information.
- the GPS signal processing system 210 receives GPS signals from the signal sources 105 , 110 , 113 , 114 ( FIG. 1 ) and calculate GPS measurements that are utilized to determine the location, speed, and direction of the navigation devices 115 . Alternatively or additionally, the GPS signal processing system 210 can detect errors in the calculated GPS measurements to avoid calculating a poor position fix.
- the GPS signal processing system 210 is described in detail in relation to FIG. 3 . Operations for detecting the GPS measurement errors are described in relation to FIGS. 5 and 6 .
- FIG. 3 is a block diagram that illustrates an embodiment of the GPS signal processing system, such as that shown in FIG. 2 , which detects GPS measurement errors.
- the GPS signal processing system 210 can include, but is not limited to, an antenna 305 , an application-specific integration circuit (ASIC) hardware 303 and a navigation computing device 317 .
- the ASIC hardware 303 includes a radio frequency (RF) front end 310 and a baseband digital signal processing (DSP) 320 .
- the navigation computing device 317 includes, but is not limited to, a position, velocity, and time (PVT) unit 330 and tracking loops unit 320 that controls the DSP.
- the navigation computing device 317 can be, but is not limited to, a microprocessor, among others.
- the antenna 305 receives GPS signals as well as multipath signals, and sends the received signals to the RF front end unit 310 that down-converts, magnifies, filters, and digitizes the received signals into digital immediate frequency (IF) signals 315 .
- IF signals 315 are input to the baseband DSP unit 320 that acquires and tracks the received signals and then generates GPS measurements 325 that includes pseudorange measurements according to the received GPS signals.
- the baseband DSP 320 includes a carrier tracking loop (not shown) that computes delta range (DRs) and a code tracking loop (not shown) that computes pseudoranges (PRs).
- the baseband DSP unit 320 delivers the generated GPS measurements 325 to the PVT unit 330 that computes a GPS solution or position fix 335 based on the generated GPS measurements 325 .
- the PVT unit 330 includes, but is not limited to, a navigation algorithm (not shown), among others, which can include, but is not limited to, a Least-Square (LS) or Kalman filtering, among others.
- the baseband DSP unit 320 or the PVT unit 330 includes a consistency check algorithm 405 ( FIG. 4 ) that can detect errors in the generated GPS measurements 325 before sending the generated GPS measurements 325 to the PVT unit 330 or calculating the position fix 335 , respectively.
- the consistency check algorithm 405 can be independent and separate of the baseband DSP unit 320 and the PVT unit 330 .
- One embodiment of the consistency check algorithm 405 is described in relation to FIG. 4 . It should be noted that in a mobile-assisted (MS) AGPS system, the server 125 receives the GPS measurements from the navigation devices 115 , calculates a position fix on the receiver's position, and sends the position fix to the navigation devices 115 or to other dispatchers.
- MS mobile-assisted
- FIG. 4 is a block diagram that illustrates an embodiment of a position, velocity and time (PVT) unit, such as that shown in FIG. 3 , which includes a consistency check algorithm 405 for detecting GPS measurement errors.
- the consistency check algorithm 405 can also be a part of the baseband DSP unit 320 or independent and separate of the baseband DSP unit 320 and the PVT unit 330 .
- the consistency check algorithm 405 can also be regarded as a part of Failure Detection and Exclusion Algorithm 415 .
- GPS measurements such as, pseudoranges (PRs) and delta ranges (DRs), among others, are sent to the consistency check algorithm 405 , which determines mismatches between the respective PRs and DRs. If the mismatches are determined, the consistency check algorithm 405 sends an error message to the navigation algorithm 410 and/or failure detection and exclusion algorithm 415 . If the mismatches are not determined, the consistency check algorithm 405 sends the GPS measurements to the navigation algorithm 410 that delivers a position fix.
- Failure detection and exclusion (FDE) algorithm 415 can have other methods to further independently detect and excludes failed pseudorange measurements. As illustrated in FIG.
- the consistency check algorithm 405 detects GPS measurement errors independent of the navigation state, which generally includes three components of position, clock offset, and clock drift, among others.
- the consistency check algorithm 405 removes all or at least a portion of the erroneous measurement inputs into the navigation algorithm 410 , which then can deliver bad position fixes.
- the consistency check algorithm 405 can function during normal operation whether or not the navigation state is valid and correct.
- many algorithms in the FDE algorithm 415 generally rely on the righteousness of the navigation state. If the navigation state is invalid or wrong, then the FDE algorithm 415 may not be effective in detecting measurement failures and/or rejecting good GPS measurements.
- FIG. 5 is a flow diagram that illustrates an embodiment of the architecture, functionality, and/or operation of the consistency check algorithm 405 , such as that shown in FIG. 4 .
- the consistency check algorithm 405 receives pseudoranges (PRs) and delta ranges (DRs) and determines whether the PRs and DRs passed the consistency check, respectively.
- PRs pseudoranges
- DRs delta ranges
- the consistency check is described in detail in relation to FIG. 6 . If the PRs and DRS did not pass the consistency check, the consistency check algorithm 405 in step 515 sends error messages to the navigation algorithm 410 . Alternatively or additionally, the consistency check algorithm 405 continues to send the GPS measurements along with the error messages or simply blocks the measurements to the navigation algorithm 410 .
- the consistency check algorithm 405 in step 520 sends the PRs and DRs to the navigation algorithm 410 to calculate a position fix.
- the consistency check algorithm 405 sends the PRs and DRs to the FDE algorithm 415 for more FDE checks.
- FIG. 6 is a flow diagram that illustrates another embodiment of the architecture, functionality, and/or operation for determining whether the pseudoranges (PRs) and delta ranges (DRs) passed the consistency check, such as that shown in step 510 of FIG. 5 .
- PRs pseudoranges
- DRs delta ranges
- pr 1 and pr 2 are the noise-free pseudorange measurements for the same satellite 105 , 110 , 113 , 114 delivered by a GPS receiver 210 at t 1 and t 2 , respectively, and dr 2 is the corresponding noise-free DR measurement at t 2 .
- An approximation equality used in the above formula is due to the code/carrier phase ionospheric divergence, among others. For example, the ionospheric delay makes PR measurements longer while the DR measurements shorter. It should be noted that equation 1 generally deals with range measurements, and is not involved in any estimated receiver position and other navigation states.
- the consistency check can be determined by the following:
- the threshold 1 generally refers to the limit of inconsistency between pr and dr measurements mainly due to normal GPS receiver noise. If a calculated inconsistency is larger than threshold 1 , then typically both pr 2 and dr 2 may be detected as failed measurements; otherwise, both pr 2 and dr 2 are regarded as good ones. Therefore, as for many FDE algorithms, the value of threshold 1 cannot be too tight, which can lead to a high Pfa, and cannot be too loose, either, which can lead to a high Pmd.
- threshold 1 can be determined typically based on statistics (e.g., 5 sigmas) of test measurement data under a clear sky and normal GPS receiver operation case. For example, threshold 1 can be set at approximately around 18 meters. It can further be a function of carrier-to-noise ratio (CN0). It should be noted that equation 2 is generally utilized to detect large pseudorange errors (also known as pseudorange spike errors), which further described in relation to FIG. 7 .
- the consistency check algorithm 405 calculates delta PR by determining the difference between pr 2 and pr 1 .
- the consistency check algorithm 405 calculates delta PR and DR mismatches by determining the difference between delta PR and DR.
- the consistency check algorithm 405 determines whether the calculated delta PR and DR mismatches have exceeded the threshold 1 . If the threshold was exceeded, e.g., the inconsistency is larger than threshold 1 , the sequence continues to step 515 of FIG. 5 , which sends an error message to the navigation algorithm 410 . Alternatively or additionally, if the threshold 1 was not exceeded, the sequence continues to step 520 of FIG. 5 , which sends the PR and DR to the navigation algorithm 410 for delivering a position fix.
- a GPS measurement error scenario using steps 605 to 615 is described in relation to FIG. 7 .
- steps 605 to 615 may not be effective in detecting slowly-changing pseudorange errors, for example, from a line of sight-multipath (LOS-MP) signal or MP-only signal.
- steps 620 and 625 can be taken to detect the slowly-changing pseudorange errors. Accordingly, if the threshold, was not exceeded, the consistency check algorithm 405 in step 620 accumulates the delta PR and DR mismatch by, for example, the following:
- equation 3 can also be expressed as follows:
- equation 4 can also be expressed as follows:
- n+1 is the number of seconds during which measurements are accumulated.
- the value n should not be too large mostly due to code-carrier ionospheric divergence effect. If the value of n is large, the detection delay may be longer than if the value of n is small. However, the large value of n causes the consistency check algorithm 405 to be more effective in detecting slow-changing errors.
- the values of threshold 2 , threshold, and threshold n+1 can be determined by the same way as determining threshold 1 , e.g., based on statistics of testing data. Alternatively or additionally, all thresholds can be further tuned based on navigation performance test results. For example, 25 and 30 meters are some representative threshold values for threshold 2 and threshold 3 .
- step 625 the consistency check algorithm 405 determines whether the accumulation of the difference between the respective calculated delta PRs and DRs has exceeded the threshold 2 . If the threshold 2 was exceeded, the sequence continues to step 515 of FIG. 5 , which sends an error message to the navigation algorithm 410 . If the threshold 2 was not exceeded, the sequence continues to step 520 of FIG. 5 , which sends the PR and DR to the navigation algorithm 410 for delivering a position fix.
- a GPS measurement error scenario using steps 620 to 625 is described in relation to FIG. 8 .
- the accumulated PR and DR mismatches could further be determined whether the mismatches have exceeded threshold 3 , threshold 4 and so on in a similar way as for threshold 1 and threshold 2 .
- the PR and DR measurements that passed the consistency checks associated with all the thresholds are regarded as good measurements which are sent to the navigation algorithm 410 for a position fix.
- FIG. 7 is a diagram that illustrates a GPS measurement scenario in which a GPS spike measurement error is detected using steps 605 to 615 of FIG. 6 .
- the GPS measurement error scenario generally occurs in urban canyon environments, and spike errors could happen when the receiver tracking loops, originally tracking a LOS signal, suddenly turn to track its long-delay multipath signal for, for example, signal blockage reason.
- the GPS signals are tracked according to the current Week Number and time of week (TOW) GPS time 705 .
- the TOW refers to the number of seconds into the week ranging from 0 second to 604800 seconds and is counted from midnight Saturday/Sunday on the GPS time scale.
- a pseudorange (PR) spike error occurred at 327659 seconds while the receiver continuously tracked the signal.
- pseudorange errors were calculated based on the receiver's truth trajectory from another reference navigational system, not from the GPS receiver itself.
- a delta PR is calculated to be 18404.1 meters at 327659 seconds using PRs 710 at 327659 seconds and 327658 seconds.
- the measured delta range (DR) 720 was 18234.5 meters and a delta PR and DR mismatch 725 at 327659 seconds is calculated to be 169.6 meters using delta PR 715 and DR 720 at 327659 seconds.
- the calculated delta PR and DR mismatch is compared to a threshold to determine whether the consistency check between the PR and DR passed. It should be noted that the spike errors, such as that shown in FIG. 7 , can also be easily detected by other FED algorithms 415 if the navigation state is reasonably valid and correct.
- FIG. 8 is a diagram that illustrates a GPS measurement scenario in which slow-changing GPS measurement errors are detected using steps 620 to 625 of FIG. 6 .
- the GPS signals are tracked according to time of week (TOW) GPS time 805 .
- TOW time of week
- GPS measurements were examined for the twenty-four seconds from 327042 seconds to 327066 seconds.
- Line 810 refers to the PR residual based on received GPS signals from the signal sources 105 , 110 , 113 , 114 ( FIG. 1 ). In this example, these PR residuals were calculated not based on receiver's position fix, but based on its truth trajectory from a reference navigational system.
- Line 820 refers to delta PR and DR mismatches and line 825 refers to delta DR.
- PR-DR mismatches in Line 820 are not well beyond threshold, e.g., 20 meters, which illustrates that the consistency check associated with threshold 1 could cause misdetections in detecting slow-changing errors.
- Line 815 is the cumulative sum (CUSUM) of PR-DR mismatches, e.g., the sum of previous PR-DR mismatches till the current epoch.
- CUSUM cumulative sum
- the accumulated PR-DR mismatch methods that use Eqs. (3) and (4) are variations of the CUSUM, which could improve the CUSUM method to detect more quickly.
- FIG. 9 is a block diagram that illustrates an embodiment of the GPS signal process system 210 , such as that shown in FIGS. 2 and 3 .
- the GPS signal process system 210 includes a processor 910 , a network interface 920 , memory 930 , and non-volatile storage 940 .
- non-volatile storage include, for example, a hard disk, flash RAM, flash ROM, EEPROM, etc. These components are coupled via a bus 950 .
- the memory 930 includes a consistency check manager 960 that facilitates detecting GPS measurement errors based on the calculated pseudoranges and delta ranges. Operations of the consistency check manager 960 can be described in detail in relation to FIGS. 5 and 6 .
- the memory 930 contains instructions which, when executed by the processor 910 , implement at least a portion of the methods and systems disclosed herein, particularly the consistency check manager 960 . Omitted from FIG. 9 are a number of conventional components, known to those skilled in the art that are unnecessary to explain the operation of the device 210 .
- the systems and methods disclosed herein can be implemented in software, hardware, or a combination thereof.
- the system and/or method is implemented in software that is stored in a memory and that is executed by a suitable microprocessor ( ⁇ P) situated in a computing device.
- ⁇ P microprocessor
- the systems and methods can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device.
- Such instruction execution systems include any computer-based system, processor-containing system, or other system that can fetch and execute the instructions from the instruction execution system.
- a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by, or in connection with, the instruction execution system.
- the computer readable medium can be, for example, but not limited to, a system or propagation medium that is based on electronic, magnetic, optical, electromagnetic, infrared, or semiconductor technology.
- a computer-readable medium using electronic technology would include (but are not limited to) the following: an electrical connection (electronic) having one or more wires; a random access memory (RAM); a read-only memory (ROM); an erasable programmable read-only memory (EPROM or Flash memory).
- RAM random access memory
- ROM read-only memory
- EPROM or Flash memory erasable programmable read-only memory
- a specific example using magnetic technology includes (but is not limited to) a portable computer diskette.
- Specific examples using optical technology include (but are not limited to) optical fiber and compact disc read-only memory (CD-ROM).
- the computer-readable medium could even be paper or another suitable medium on which the program is printed.
- the program can be electronically captured (using, for instance, optical scanning of the paper or other medium), compiled, interpreted or otherwise processed in a suitable manner, and then stored in a computer memory.
- the scope of the certain embodiments of the present disclosure includes embodying the functionality of the preferred embodiments of the present disclosure in logic embodied in hardware or software-configured mediums.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
Description
- The present disclosure is generally related to navigation and, more particularly, is related to systems and methods for detecting global positioning system (GPS) measurement errors.
- The global positioning system (GPS) is a satellite-based radio navigation system. In the GPS system, each GPS satellite, also called “space vehicle” (SV), broadcasts time-tagged ranging signals and navigation data. A GPS receiver tracks the satellites whose signals are within its field of view. From these visible satellites, a GPS receiver extracts the navigation data and obtains range measurements from its received GPS satellite signals. The range measurements are used in a navigation solution to calculate a position fix of the GPS receiver.
- The GPS navigation data contain, but are not limited to, satellite ephemeris, where ephemeris parameters can be used to accurately calculate satellite position and velocity. In addition to knowing the satellite position, the GPS receiver receives the range measurement to the satellite in order to calculate the position fix. Range measurements include, but are not limited to, two types of measurements—pseudorange (PR) and delta range (DR).
- A pseudorange is the apparent distance from the GPS receiver to the satellite. It is calculated by multiplying the speed of light by the apparent transit time, which is the time difference between a signal reception time based on a receiver clock and a signal transmission time based on a satellite clock. This range is termed pseudorange since the receiver clock is not synchronized with the satellite clock and thus the measured range is not necessarily the true range.
- A second type of range measurement that is used to calculate the position (including velocity) fix is the DR. DR is a range change rate in unit of meters per second or Doppler. Doppler measurement is a function of a relative velocity, and a relative frequency clock drift between the satellite and the GPS receiver. Accumulated DR (ADR) measurement is also called carrier phase measurement or integrated Doppler measurements in the GPS field. The Doppler or DR measurement allows the receiver to calculate a receiver velocity and a receiver frequency clock drift rate, from which a new position fix can then be obtained if a previous position is known.
- To achieve accuracy and integrity, the GPS receiver typically includes algorithms that contain some failure detection and exclusion (FDE) functions to detect and exclude failed range measurements. GPS measurements can be affected by multipath signals, where the GPS signals reflect off, for example, surrounding terrain, buildings, canyon walls, and hard ground, among others. When a signal is reflected, the signal typically passes through a longer path than the corresponding direct-path signal. Thus, the multipath signal can affect the pseudorange measurements, resulting in potential unexpected positive or negative errors. When direct-path signal is blocked, then multipath can make pseudorange measurements erroneously longer. Accordingly, pseudorange residuals, also known as, innovations or errors, can be referred to as a pseudorange measurement minus an estimated range. Many FDE functions can determine whether the pseudorange measurements are normal or failures based typically on the magnitude of the pseudorange residuals. It should be noted that since one pseudorange measurement is typically converted to a corresponding pseudorange residual in navigation algorithms, these two terms sometimes can be exchanged. For example, processing pseudorange measurement residual has the same meaning as processing pseudorange measurement. The two terms will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description.
- A large pseudorange residual typically indicates a failure or a potential failure. The FDE function can either exclude or de-weight the failed measurements in the navigation computation. However, the FDE algorithms have a certain probability of false alarms (Pfa), such as, for example, mistakenly excluding good measurements, and a certain probability of misdetections (Pmd), such as, for example, failing to detect bad measurements. Excluding measurements can adversely affect satellite geometry distribution or, in other words, dilution of position (DOP), which, in turn, can magnify measurement errors into position solution errors. In addition, excluding a pseudorange measurement among only three or four available pseudorange measurements can reduce GPS availability.
- As mentioned above, many FDE algorithms determine the quality of a measurement based on its corresponding residual, which is the measurement minus an estimated measurement. However, an estimated range is the distance between a satellite position, which can be precisely computed based on its ephemeris, and a receiver position, which generally refers to a GPS fix. However, in tough environments and/or in any cases when a receiver previously performed badly, the previous GPS fix of the receiver position can be inaccurate as well as the estimated range residuals. In other words, range residuals are calculated based on previously estimated receiver position, and therefore the accuracy of range residuals also depends on the accuracy of GPS position fixes. In addition, though many FDE algorithms are effective in detecting spike errors, they are not effective in detecting slow-change errors.
- Systems and methods for detecting global positioning system (GPS) measurement errors are provided. In this regard, a representative system, among others, includes a navigation device that is configured to receive GPS signals from signal sources, the navigation device being configured to calculate pseudoranges (PRs) and delta ranges (DRs) based on the received GPS signals, the navigation device including a consistency check algorithm that is configured to: determine mismatches between the respective calculated PRs and DRs, and indicate that an error exists in the respective calculated PRs and DRs based on at least one of the mismatches.
- A representative method, among others, for detecting GPS measurement errors includes receiving GPS signals from signal sources; calculating pseudoranges (PRs) and delta ranges (DRs) based on the received GPS signals; determining mismatches between the respective calculated PRs and DRs; and responsive to determining that the at least one of the mismatches exceeded the mismatch threshold, indicating that an error exists in the respective calculated PRs and DRs based on at least one of the mismatches.
- Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
- Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
-
FIG. 1 is a block diagram that illustrates a system for detecting GPS measurement errors; -
FIG. 2 is a block diagram that illustrates an embodiment of anavigation device 115, such as that shown inFIG. 1 ; -
FIG. 3 is a block diagram that illustrates an embodiment of a GPS signal processing system, such as that shown inFIG. 2 , which detects GPS measurement errors; -
FIG. 4 is a block diagram that illustrates an embodiment of a position, velocity and time (PVT) unit, such as that shown inFIG. 3 , which includes a consistency check algorithm for detecting GPS measurement errors; -
FIG. 5 is a flow diagram that illustrates an embodiment of the architecture, functionality, and/or operation of a consistency check algorithm, such as that shown inFIG. 4 ; -
FIG. 6 is a flow diagram that illustrates an embodiment of the architecture, functionality, and/or operation for determining whether the pseudoranges (PRs) and delta ranges (DRs) passed a consistency check, such as that shown instep 510 ofFIG. 5 ; -
FIG. 7 is a diagram that illustrates a GPS measurement scenario in which a GPS measurement error is detected usingsteps 605 to 615 ofFIG. 6 ; -
FIG. 8 is a diagram that illustrates another GPS measurement scenario in which slow-changing GPS measurement errors are detected usingsteps 620 to 625 ofFIG. 6 ; and -
FIG. 9 is a block diagram that illustrates an embodiment of a GPS signal process system, such as that shown inFIGS. 2 and 3 . - Exemplary systems are first discussed with reference to the figures. Although these systems are described in detail, they are provided for purposes of illustration only and various modifications are feasible. After the exemplary systems are described, examples of flow diagrams of the systems are provided to explain the manner in which GPS measurement errors are detected.
-
FIG. 1 is a block diagram that illustrates asystem 100 for synthesizing GPS measurements. Asimple system 100 comprises a plurality ofsignal sources navigation device 115. Alternatively or additionally, a morecomplex system 100, such as an assisted global positioning system (AGPS), further comprises abase station 120 and aserver 125. Although only onenavigation device 115, onebase station 120, and oneserver 125 are shown insystem 100, thesystem 100 can include multiple navigation devices, multiple base stations and/or multiple servers. Alternatively or additionally, theserver 125 may be co-located with thebase station 120 or with thenavigation device 115. - The signal sources 105, 110, 113, 114 include GPS satellites (also known as space vehicles), among others. The signal sources 105, 110, 113, 114 generally orbit above the location of the
navigation devices 115 at any given time. Thenavigation devices 115 include, but are not limited to, GPS receivers, cell phones with embedded signal receivers, and Personal Digital Assistants (PDAs) with embedded signal receivers, among others. The signal sources 105, 110, 113, 114 transmit signals to thenavigation devices 115, which use the signals to calculate GPS measurements and determine the location, speed, and direction of thenavigation devices 115. Alternatively or additionally, thenavigation devices 115 can detect errors in the GPS measurements before the GPS measurements are used to determine the location, speed, and direction of thenavigation devices 115. Operations for detecting the GPS measurement errors are described in relation toFIGS. 5 and 6 . -
FIG. 2 is a block diagram that illustrates an embodiment of thenavigation device 115, such as that shown inFIG. 1 . Thenavigation device 115 includes, but is not limited to, sensor(s) 205, a GPSsignal processing system 210, and a user interface 215. It should be noted that thesensor 205 may not be included in somenavigation devices 115. Thesensor 205 can include, but is not limited to, inertial sensors that include, for example, micro-electromechanical system (MEMS) sensors, such as, for example, accelerometers and gyroscopes, among others. In general, accelerometers measure acceleration of their vehicle, and gyroscope measures orientation or angular rate of the vehicle. - The GPS
signal processing system 210 can include, but is not limited to, a GPS receiver, among others. Thenavigation device 115 can utilize thesensors 205 and the GPSsignal processing system 210 to sense movement of the vehicle. The GPSsignal processing system 210 can use data generated by thesensors 205 in dead reckoning calculations to produce positioning information during periods of GPS outages. The positioning information includes data related to the position, velocity, and attitude of a vehicle. In general, dead reckoning refers to a process of calculating location by integrating measured increments of distance and direction of travel relative to a known location. The GPSsignal processing system 210 can further include an extended Kalman filter (EKF), which estimates position, velocity, attitude, and accelerometer and gyro errors in three dimensions, such as, for example, the position (X, Y, and Z) and velocity (Vx, Vy, and Vz) of the vehicle, among others. The estimated information is passed to a user interface 215 that provides a user with navigational information. - The GPS
signal processing system 210 receives GPS signals from thesignal sources FIG. 1 ) and calculate GPS measurements that are utilized to determine the location, speed, and direction of thenavigation devices 115. Alternatively or additionally, the GPSsignal processing system 210 can detect errors in the calculated GPS measurements to avoid calculating a poor position fix. The GPSsignal processing system 210 is described in detail in relation toFIG. 3 . Operations for detecting the GPS measurement errors are described in relation toFIGS. 5 and 6 . -
FIG. 3 is a block diagram that illustrates an embodiment of the GPS signal processing system, such as that shown inFIG. 2 , which detects GPS measurement errors. The GPSsignal processing system 210 can include, but is not limited to, anantenna 305, an application-specific integration circuit (ASIC)hardware 303 and anavigation computing device 317. TheASIC hardware 303 includes a radio frequency (RF)front end 310 and a baseband digital signal processing (DSP) 320. Thenavigation computing device 317 includes, but is not limited to, a position, velocity, and time (PVT)unit 330 and trackingloops unit 320 that controls the DSP. Thenavigation computing device 317 can be, but is not limited to, a microprocessor, among others. - The
antenna 305 receives GPS signals as well as multipath signals, and sends the received signals to the RFfront end unit 310 that down-converts, magnifies, filters, and digitizes the received signals into digital immediate frequency (IF) signals 315. Such digital IF signals 315 are input to thebaseband DSP unit 320 that acquires and tracks the received signals and then generatesGPS measurements 325 that includes pseudorange measurements according to the received GPS signals. In one embodiment, thebaseband DSP 320 includes a carrier tracking loop (not shown) that computes delta range (DRs) and a code tracking loop (not shown) that computes pseudoranges (PRs). - The
baseband DSP unit 320 delivers the generatedGPS measurements 325 to thePVT unit 330 that computes a GPS solution or position fix 335 based on the generatedGPS measurements 325. ThePVT unit 330 includes, but is not limited to, a navigation algorithm (not shown), among others, which can include, but is not limited to, a Least-Square (LS) or Kalman filtering, among others. Alternatively or additionally, thebaseband DSP unit 320 or thePVT unit 330 includes a consistency check algorithm 405 (FIG. 4 ) that can detect errors in the generatedGPS measurements 325 before sending the generatedGPS measurements 325 to thePVT unit 330 or calculating theposition fix 335, respectively. Alternatively or additionally, theconsistency check algorithm 405 can be independent and separate of thebaseband DSP unit 320 and thePVT unit 330. One embodiment of theconsistency check algorithm 405 is described in relation toFIG. 4 . It should be noted that in a mobile-assisted (MS) AGPS system, theserver 125 receives the GPS measurements from thenavigation devices 115, calculates a position fix on the receiver's position, and sends the position fix to thenavigation devices 115 or to other dispatchers. -
FIG. 4 is a block diagram that illustrates an embodiment of a position, velocity and time (PVT) unit, such as that shown inFIG. 3 , which includes aconsistency check algorithm 405 for detecting GPS measurement errors. As mentioned above, theconsistency check algorithm 405 can also be a part of thebaseband DSP unit 320 or independent and separate of thebaseband DSP unit 320 and thePVT unit 330. - Alternatively or additionally, the
consistency check algorithm 405 can also be regarded as a part of Failure Detection and Exclusion Algorithm 415. - GPS measurements, such as, pseudoranges (PRs) and delta ranges (DRs), among others, are sent to the
consistency check algorithm 405, which determines mismatches between the respective PRs and DRs. If the mismatches are determined, theconsistency check algorithm 405 sends an error message to thenavigation algorithm 410 and/or failure detection and exclusion algorithm 415. If the mismatches are not determined, theconsistency check algorithm 405 sends the GPS measurements to thenavigation algorithm 410 that delivers a position fix. Failure detection and exclusion (FDE) algorithm 415 can have other methods to further independently detect and excludes failed pseudorange measurements. As illustrated inFIG. 4 and will be more clear in the detailed formulas later, theconsistency check algorithm 405 detects GPS measurement errors independent of the navigation state, which generally includes three components of position, clock offset, and clock drift, among others. Theconsistency check algorithm 405 removes all or at least a portion of the erroneous measurement inputs into thenavigation algorithm 410, which then can deliver bad position fixes. Theconsistency check algorithm 405 can function during normal operation whether or not the navigation state is valid and correct. However, many algorithms in the FDE algorithm 415 generally rely on the righteousness of the navigation state. If the navigation state is invalid or wrong, then the FDE algorithm 415 may not be effective in detecting measurement failures and/or rejecting good GPS measurements. -
FIG. 5 is a flow diagram that illustrates an embodiment of the architecture, functionality, and/or operation of theconsistency check algorithm 405, such as that shown inFIG. 4 . Beginning withsteps consistency check algorithm 405 receives pseudoranges (PRs) and delta ranges (DRs) and determines whether the PRs and DRs passed the consistency check, respectively. The consistency check is described in detail in relation toFIG. 6 . If the PRs and DRS did not pass the consistency check, theconsistency check algorithm 405 instep 515 sends error messages to thenavigation algorithm 410. Alternatively or additionally, theconsistency check algorithm 405 continues to send the GPS measurements along with the error messages or simply blocks the measurements to thenavigation algorithm 410. If the PRs and DRs passed the consistency check, theconsistency check algorithm 405 instep 520 sends the PRs and DRs to thenavigation algorithm 410 to calculate a position fix. Alternatively or additionally, theconsistency check algorithm 405 sends the PRs and DRs to the FDE algorithm 415 for more FDE checks. -
FIG. 6 is a flow diagram that illustrates another embodiment of the architecture, functionality, and/or operation for determining whether the pseudoranges (PRs) and delta ranges (DRs) passed the consistency check, such as that shown instep 510 ofFIG. 5 . In general, the relationship between PR and DR is expressed by -
pr 2 −pr 1≈(t 2 −t 1)×dr 2 (Eq. 1) - where pr1 and pr2 are the noise-free pseudorange measurements for the
same satellite GPS receiver 210 at t1 and t2, respectively, and dr2 is the corresponding noise-free DR measurement at t2. An approximation equality used in the above formula is due to the code/carrier phase ionospheric divergence, among others. For example, the ionospheric delay makes PR measurements longer while the DR measurements shorter. It should be noted thatequation 1 generally deals with range measurements, and is not involved in any estimated receiver position and other navigation states. - Accordingly, the consistency check can be determined by the following:
-
|(pr 2 −pr 1)−dr 2|<threshold1 (Eq. 2) - where dr2 refers to the DR measurement multiplied by (t2−t1) for simplicity reasons, though (t2−t1) is very close to 1 seconds. This new definition of dr is also used in equations disclosed below. The threshold1 generally refers to the limit of inconsistency between pr and dr measurements mainly due to normal GPS receiver noise. If a calculated inconsistency is larger than threshold1, then typically both pr2 and dr2 may be detected as failed measurements; otherwise, both pr2 and dr2 are regarded as good ones. Therefore, as for many FDE algorithms, the value of threshold1 cannot be too tight, which can lead to a high Pfa, and cannot be too loose, either, which can lead to a high Pmd. The value of threshold1 can be determined typically based on statistics (e.g., 5 sigmas) of test measurement data under a clear sky and normal GPS receiver operation case. For example, threshold1 can be set at approximately around 18 meters. It can further be a function of carrier-to-noise ratio (CN0). It should be noted that equation 2 is generally utilized to detect large pseudorange errors (also known as pseudorange spike errors), which further described in relation to
FIG. 7 . - Based on Equation 2, beginning with
step 605, theconsistency check algorithm 405 calculates delta PR by determining the difference between pr2 and pr1. Instep 610, theconsistency check algorithm 405 calculates delta PR and DR mismatches by determining the difference between delta PR and DR. Instep 615, theconsistency check algorithm 405 determines whether the calculated delta PR and DR mismatches have exceeded the threshold1. If the threshold was exceeded, e.g., the inconsistency is larger than threshold1, the sequence continues to step 515 ofFIG. 5 , which sends an error message to thenavigation algorithm 410. Alternatively or additionally, if the threshold1 was not exceeded, the sequence continues to step 520 ofFIG. 5 , which sends the PR and DR to thenavigation algorithm 410 for delivering a position fix. A GPS measurement errorscenario using steps 605 to 615 is described in relation toFIG. 7 . - However,
steps 605 to 615 may not be effective in detecting slowly-changing pseudorange errors, for example, from a line of sight-multipath (LOS-MP) signal or MP-only signal. Alternatively or additionally, steps 620 and 625 can be taken to detect the slowly-changing pseudorange errors. Accordingly, if the threshold, was not exceeded, theconsistency check algorithm 405 instep 620 accumulates the delta PR and DR mismatch by, for example, the following: -
|[(pr k −pr k−1)−dr k]+[(pr k−1 −pr k−2)−dr k−1]<threshold2 (Eq. 3) - It should be noted that equation 3 can also be expressed as follows:
-
|[(pr k −pr k−1)−dr k]+ . . . +[(pr k−n −pr k−n−1)−dr k−n]<thresholdn+1 (Eq. 4) - It should be noted that equation 4 can also be expressed as follows:
-
|(pr k −pr k−n−1)−(dr k + . . . +dr k−n)<thresholdn+1 (Eq. 5) - where n+1 is the number of seconds during which measurements are accumulated. The value n should not be too large mostly due to code-carrier ionospheric divergence effect. If the value of n is large, the detection delay may be longer than if the value of n is small. However, the large value of n causes the
consistency check algorithm 405 to be more effective in detecting slow-changing errors. The values of threshold2, threshold, and thresholdn+1 can be determined by the same way as determining threshold1, e.g., based on statistics of testing data. Alternatively or additionally, all thresholds can be further tuned based on navigation performance test results. For example, 25 and 30 meters are some representative threshold values for threshold2 and threshold3. - In
step 625, theconsistency check algorithm 405 determines whether the accumulation of the difference between the respective calculated delta PRs and DRs has exceeded the threshold2. If the threshold2 was exceeded, the sequence continues to step 515 ofFIG. 5 , which sends an error message to thenavigation algorithm 410. If the threshold2 was not exceeded, the sequence continues to step 520 ofFIG. 5 , which sends the PR and DR to thenavigation algorithm 410 for delivering a position fix. A GPS measurement errorscenario using steps 620 to 625 is described in relation toFIG. 8 . - Alternatively or additionally, if the threshold2 was not exceeded, the accumulated PR and DR mismatches could further be determined whether the mismatches have exceeded threshold3, threshold4 and so on in a similar way as for threshold1 and threshold2. The PR and DR measurements that passed the consistency checks associated with all the thresholds are regarded as good measurements which are sent to the
navigation algorithm 410 for a position fix. -
FIG. 7 is a diagram that illustrates a GPS measurement scenario in which a GPS spike measurement error is detected usingsteps 605 to 615 ofFIG. 6 . The GPS measurement error scenario generally occurs in urban canyon environments, and spike errors could happen when the receiver tracking loops, originally tracking a LOS signal, suddenly turn to track its long-delay multipath signal for, for example, signal blockage reason. The GPS signals are tracked according to the current Week Number and time of week (TOW)GPS time 705. The TOW refers to the number of seconds into the week ranging from 0 second to 604800 seconds and is counted from midnight Saturday/Sunday on the GPS time scale. - In this example, during the seven seconds from 327656 seconds to 327661 seconds, a pseudorange (PR) spike error occurred at 327659 seconds while the receiver continuously tracked the signal. In order to identify the effectiveness of the inconsistency check, pseudorange errors, for this example, were calculated based on the receiver's truth trajectory from another reference navigational system, not from the GPS receiver itself. A delta PR is calculated to be 18404.1 meters at 327659
seconds using PRs 710 at 327659 seconds and 327658 seconds. The measured delta range (DR) 720 was 18234.5 meters and a delta PR andDR mismatch 725 at 327659 seconds is calculated to be 169.6 meters usingdelta PR 715 andDR 720 at 327659 seconds. The calculated delta PR and DR mismatch is compared to a threshold to determine whether the consistency check between the PR and DR passed. It should be noted that the spike errors, such as that shown inFIG. 7 , can also be easily detected by other FED algorithms 415 if the navigation state is reasonably valid and correct. -
FIG. 8 is a diagram that illustrates a GPS measurement scenario in which slow-changing GPS measurement errors are detected usingsteps 620 to 625 ofFIG. 6 . The GPS signals are tracked according to time of week (TOW)GPS time 805. In this example, GPS measurements were examined for the twenty-four seconds from 327042 seconds to 327066 seconds.Line 810 refers to the PR residual based on received GPS signals from thesignal sources FIG. 1 ). In this example, these PR residuals were calculated not based on receiver's position fix, but based on its truth trajectory from a reference navigational system.Line 820 refers to delta PR and DR mismatches andline 825 refers to delta DR. Though pseudorange (PR)errors 830 occurred from 327052 seconds to 327065 seconds, PR-DR mismatches inLine 820 are not well beyond threshold, e.g., 20 meters, which illustrates that the consistency check associated with threshold1 could cause misdetections in detecting slow-changing errors. - In order to illustrate the effect of slow-changing errors,
Line 815 is the cumulative sum (CUSUM) of PR-DR mismatches, e.g., the sum of previous PR-DR mismatches till the current epoch. Though the consistency check associated with threshold1 may fail to detect the slow-changing errors, the CUSUM can still reach to a very large value and thus the underlying slow-changing error can be easily detected. The accumulated PR-DR mismatch methods that use Eqs. (3) and (4) are variations of the CUSUM, which could improve the CUSUM method to detect more quickly. -
FIG. 9 is a block diagram that illustrates an embodiment of the GPSsignal process system 210, such as that shown inFIGS. 2 and 3 . The GPSsignal process system 210 includes aprocessor 910, anetwork interface 920,memory 930, andnon-volatile storage 940. Examples of non-volatile storage include, for example, a hard disk, flash RAM, flash ROM, EEPROM, etc. These components are coupled via a bus 950. Thememory 930 includes aconsistency check manager 960 that facilitates detecting GPS measurement errors based on the calculated pseudoranges and delta ranges. Operations of theconsistency check manager 960 can be described in detail in relation toFIGS. 5 and 6 . Thememory 930 contains instructions which, when executed by theprocessor 910, implement at least a portion of the methods and systems disclosed herein, particularly theconsistency check manager 960. Omitted fromFIG. 9 are a number of conventional components, known to those skilled in the art that are unnecessary to explain the operation of thedevice 210. - The systems and methods disclosed herein can be implemented in software, hardware, or a combination thereof. In some embodiments, the system and/or method is implemented in software that is stored in a memory and that is executed by a suitable microprocessor (μP) situated in a computing device. However, the systems and methods can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device. Such instruction execution systems include any computer-based system, processor-containing system, or other system that can fetch and execute the instructions from the instruction execution system. In the context of this disclosure, a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by, or in connection with, the instruction execution system. The computer readable medium can be, for example, but not limited to, a system or propagation medium that is based on electronic, magnetic, optical, electromagnetic, infrared, or semiconductor technology.
- Specific examples of a computer-readable medium using electronic technology would include (but are not limited to) the following: an electrical connection (electronic) having one or more wires; a random access memory (RAM); a read-only memory (ROM); an erasable programmable read-only memory (EPROM or Flash memory). A specific example using magnetic technology includes (but is not limited to) a portable computer diskette. Specific examples using optical technology include (but are not limited to) optical fiber and compact disc read-only memory (CD-ROM).
- Note that the computer-readable medium could even be paper or another suitable medium on which the program is printed. Using such a medium, the program can be electronically captured (using, for instance, optical scanning of the paper or other medium), compiled, interpreted or otherwise processed in a suitable manner, and then stored in a computer memory. In addition, the scope of the certain embodiments of the present disclosure includes embodying the functionality of the preferred embodiments of the present disclosure in logic embodied in hardware or software-configured mediums.
- It should be noted that any process descriptions or blocks in flowcharts should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. As would be understood by those of ordinary skill in the art of the software development, alternate embodiments are also included within the scope of the disclosure. In these alternate embodiments, functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved.
- This description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments discussed, however, were chosen to illustrate the principles of the disclosure, and its practical application. The disclosure is thus intended to enable one of ordinary skill in the art to use the disclosure, in various embodiments and with various modifications, as are suited to the particular use contemplated. All such modifications and variation are within the scope of this disclosure, as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly and legally entitled.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/942,912 US7821454B2 (en) | 2007-11-20 | 2007-11-20 | Systems and methods for detecting GPS measurement errors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/942,912 US7821454B2 (en) | 2007-11-20 | 2007-11-20 | Systems and methods for detecting GPS measurement errors |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090128407A1 true US20090128407A1 (en) | 2009-05-21 |
US7821454B2 US7821454B2 (en) | 2010-10-26 |
Family
ID=40641370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/942,912 Expired - Fee Related US7821454B2 (en) | 2007-11-20 | 2007-11-20 | Systems and methods for detecting GPS measurement errors |
Country Status (1)
Country | Link |
---|---|
US (1) | US7821454B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100117884A1 (en) * | 2008-11-11 | 2010-05-13 | Qualcomm Incorporated | Method for performing consistency checks for multiple signals received from a transmitter |
US20110115669A1 (en) * | 2009-11-17 | 2011-05-19 | Topcon Positioning Systems, Inc. | Detection and Correction of Anomalous Measurements and Ambiguity Resolution in a Global ... |
WO2011105446A1 (en) * | 2010-02-26 | 2011-09-01 | 古野電気株式会社 | Location method, location program, gnss receiver apparatus, and mobile terminal |
WO2011105445A1 (en) * | 2010-02-26 | 2011-09-01 | 古野電気株式会社 | Pseudo range estimation method, pseudo range estimation program, gnss receiver apparatus, and mobile terminal |
WO2011105447A1 (en) * | 2010-02-26 | 2011-09-01 | 古野電気株式会社 | Multipath detection method, multipath detection program, gnss receiver apparatus, and mobile terminal |
US20130002854A1 (en) * | 2010-09-17 | 2013-01-03 | Certusview Technologies, Llc | Marking methods, apparatus and systems including optical flow-based dead reckoning features |
WO2013037844A3 (en) * | 2011-09-12 | 2013-06-20 | Continental Teves Ag & Co. Ohg | Method for selecting a satellite |
US20140050251A1 (en) * | 2009-01-30 | 2014-02-20 | Analog Devices, Inc. | Method and apparatus for software gps receiver |
US8768618B1 (en) * | 2013-05-15 | 2014-07-01 | Google Inc. | Determining a location of a mobile device using a multi-modal kalman filter |
JP2014153084A (en) * | 2013-02-05 | 2014-08-25 | Railway Technical Research Institute | Vehicle position measuring method and vehicle position measuring system |
US20150061934A1 (en) * | 2013-08-27 | 2015-03-05 | Microsoft Corporation | Cloud-offloaded global satellite positioning |
US9124780B2 (en) | 2010-09-17 | 2015-09-01 | Certusview Technologies, Llc | Methods and apparatus for tracking motion and/or orientation of a marking device |
CN108627857A (en) * | 2017-03-17 | 2018-10-09 | 展讯通信(上海)有限公司 | Multi-path detecting method, device and GNSS receiver |
CN111045036A (en) * | 2019-10-14 | 2020-04-21 | 广东星舆科技有限公司 | Method and system for testing positioning capability of high-precision positioning terminal |
US11567216B2 (en) | 2020-05-18 | 2023-01-31 | Honeywell International Inc. | Single delta range differences using synthetic clock steering |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2816374B1 (en) * | 2013-06-20 | 2016-05-25 | Intel Corporation | Vehicle positioning in high-reflection environments |
US10778748B2 (en) | 2015-06-05 | 2020-09-15 | Apple Inc. | Rapid reconfiguration of device location system |
US11624840B2 (en) * | 2021-06-30 | 2023-04-11 | Guangzhou Xiaopeng Autopilot Technology Co., Ltd. | System and method for global navigation satellite system (GNSS) outlier detection and rejection and application of same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6018818A (en) * | 1995-05-05 | 2000-01-25 | Trimble Navigation Limited | High level testing to test and recover the damaged differential corrections |
US20020015532A1 (en) * | 1997-07-28 | 2002-02-07 | Physical Optics Corporation | Method of isomorphic singular manifold projection still/video imagery compression |
US6411892B1 (en) * | 2000-07-13 | 2002-06-25 | Global Locate, Inc. | Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris |
US6417801B1 (en) * | 2000-11-17 | 2002-07-09 | Global Locate, Inc. | Method and apparatus for time-free processing of GPS signals |
US6429814B1 (en) * | 2000-11-17 | 2002-08-06 | Global Locate, Inc. | Method and apparatus for enhancing a global positioning system with terrain model |
US6453237B1 (en) * | 1999-04-23 | 2002-09-17 | Global Locate, Inc. | Method and apparatus for locating and providing services to mobile devices |
US6542820B2 (en) * | 2001-06-06 | 2003-04-01 | Global Locate, Inc. | Method and apparatus for generating and distributing satellite tracking information |
US6560534B2 (en) * | 2001-06-06 | 2003-05-06 | Global Locate, Inc. | Method and apparatus for distributing satellite tracking information |
US6606346B2 (en) * | 2001-05-18 | 2003-08-12 | Global Locate, Inc. | Method and apparatus for computing signal correlation |
US20050018795A1 (en) * | 2003-05-30 | 2005-01-27 | Cmc Electronics Inc. | Low cost, high integrity digital signal processing |
US20060126454A1 (en) * | 2004-12-14 | 2006-06-15 | Lsi Logic Corporation, A Delaware Corporation | Single PLL demodulation of pre-formatted information embedded in optical recording medium |
-
2007
- 2007-11-20 US US11/942,912 patent/US7821454B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6018818A (en) * | 1995-05-05 | 2000-01-25 | Trimble Navigation Limited | High level testing to test and recover the damaged differential corrections |
US20020015532A1 (en) * | 1997-07-28 | 2002-02-07 | Physical Optics Corporation | Method of isomorphic singular manifold projection still/video imagery compression |
US6510387B2 (en) * | 1999-04-23 | 2003-01-21 | Global Locate, Inc. | Correction of a pseudo-range model from a GPS almanac |
US6453237B1 (en) * | 1999-04-23 | 2002-09-17 | Global Locate, Inc. | Method and apparatus for locating and providing services to mobile devices |
US6484097B2 (en) * | 1999-04-23 | 2002-11-19 | Global Locate, Inc. | Wide area inverse differential GPS |
US6487499B1 (en) * | 1999-04-23 | 2002-11-26 | Global Locate, Inc. | Method for adjusting a pseudo-range model |
US6411892B1 (en) * | 2000-07-13 | 2002-06-25 | Global Locate, Inc. | Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris |
US6704651B2 (en) * | 2000-07-13 | 2004-03-09 | Global Locate, Inc. | Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris |
US6417801B1 (en) * | 2000-11-17 | 2002-07-09 | Global Locate, Inc. | Method and apparatus for time-free processing of GPS signals |
US6429814B1 (en) * | 2000-11-17 | 2002-08-06 | Global Locate, Inc. | Method and apparatus for enhancing a global positioning system with terrain model |
US6606346B2 (en) * | 2001-05-18 | 2003-08-12 | Global Locate, Inc. | Method and apparatus for computing signal correlation |
US6542820B2 (en) * | 2001-06-06 | 2003-04-01 | Global Locate, Inc. | Method and apparatus for generating and distributing satellite tracking information |
US6560534B2 (en) * | 2001-06-06 | 2003-05-06 | Global Locate, Inc. | Method and apparatus for distributing satellite tracking information |
US20050018795A1 (en) * | 2003-05-30 | 2005-01-27 | Cmc Electronics Inc. | Low cost, high integrity digital signal processing |
US20060126454A1 (en) * | 2004-12-14 | 2006-06-15 | Lsi Logic Corporation, A Delaware Corporation | Single PLL demodulation of pre-formatted information embedded in optical recording medium |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100117884A1 (en) * | 2008-11-11 | 2010-05-13 | Qualcomm Incorporated | Method for performing consistency checks for multiple signals received from a transmitter |
US8989326B2 (en) * | 2009-01-30 | 2015-03-24 | Analog Devices, Inc. | Method and apparatus for software GPS receiver |
US20140050251A1 (en) * | 2009-01-30 | 2014-02-20 | Analog Devices, Inc. | Method and apparatus for software gps receiver |
US20110115669A1 (en) * | 2009-11-17 | 2011-05-19 | Topcon Positioning Systems, Inc. | Detection and Correction of Anomalous Measurements and Ambiguity Resolution in a Global ... |
US8760343B2 (en) | 2009-11-17 | 2014-06-24 | Topcon Positioning Systems, Inc. | Detection and correction of anomalous measurements and ambiguity resolution in a global navigation satellite system receiver |
US9891325B2 (en) | 2009-11-17 | 2018-02-13 | Topcon Positioning Systems, Inc. | Detection and correction of anomalous measurements and ambiguity resolution in a global navigation satellite system receiver |
CN102782523A (en) * | 2010-02-26 | 2012-11-14 | 古野电气株式会社 | Multipath detection method, multipath detection program, gnss receiver apparatus, and mobile terminal |
CN102770782A (en) * | 2010-02-26 | 2012-11-07 | 古野电气株式会社 | Location method, location program, GNSS receiver apparatus, and mobile terminal |
JPWO2011105445A1 (en) * | 2010-02-26 | 2013-06-20 | 古野電気株式会社 | Pseudo distance estimation method, pseudo distance estimation program, GNSS receiver, and mobile terminal |
JPWO2011105447A1 (en) * | 2010-02-26 | 2013-06-20 | 古野電気株式会社 | Multipath detection method, multipath detection program, GNSS receiver, and mobile terminal |
WO2011105447A1 (en) * | 2010-02-26 | 2011-09-01 | 古野電気株式会社 | Multipath detection method, multipath detection program, gnss receiver apparatus, and mobile terminal |
WO2011105445A1 (en) * | 2010-02-26 | 2011-09-01 | 古野電気株式会社 | Pseudo range estimation method, pseudo range estimation program, gnss receiver apparatus, and mobile terminal |
US9121936B2 (en) | 2010-02-26 | 2015-09-01 | Furuno Electric Company Limited | Positioning method, GNSS receiving apparatus, and mobile terminal |
JP5508515B2 (en) * | 2010-02-26 | 2014-06-04 | 古野電気株式会社 | Positioning method, positioning program, GNSS receiver, and mobile terminal |
WO2011105446A1 (en) * | 2010-02-26 | 2011-09-01 | 古野電気株式会社 | Location method, location program, gnss receiver apparatus, and mobile terminal |
US20130002854A1 (en) * | 2010-09-17 | 2013-01-03 | Certusview Technologies, Llc | Marking methods, apparatus and systems including optical flow-based dead reckoning features |
US9124780B2 (en) | 2010-09-17 | 2015-09-01 | Certusview Technologies, Llc | Methods and apparatus for tracking motion and/or orientation of a marking device |
US9903956B2 (en) | 2011-09-12 | 2018-02-27 | Continental Teves Ag & Co. Ohg | Method for selecting a satellite |
CN103797380A (en) * | 2011-09-12 | 2014-05-14 | 大陆-特韦斯贸易合伙股份公司及两合公司 | Method for selecting a satellite |
WO2013037844A3 (en) * | 2011-09-12 | 2013-06-20 | Continental Teves Ag & Co. Ohg | Method for selecting a satellite |
JP2014153084A (en) * | 2013-02-05 | 2014-08-25 | Railway Technical Research Institute | Vehicle position measuring method and vehicle position measuring system |
US8768618B1 (en) * | 2013-05-15 | 2014-07-01 | Google Inc. | Determining a location of a mobile device using a multi-modal kalman filter |
KR20160046815A (en) * | 2013-08-27 | 2016-04-29 | 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 | Cloud-offloaded global satellite positioning |
CN105492927A (en) * | 2013-08-27 | 2016-04-13 | 微软技术许可有限责任公司 | Cloud-offloaded global satellite positioning |
US20150061934A1 (en) * | 2013-08-27 | 2015-03-05 | Microsoft Corporation | Cloud-offloaded global satellite positioning |
RU2667085C2 (en) * | 2013-08-27 | 2018-09-14 | МАЙКРОСОФТ ТЕКНОЛОДЖИ ЛАЙСЕНСИНГ, ЭлЭлСи | Cloud-offloaded global satellite positioning |
US10317538B2 (en) * | 2013-08-27 | 2019-06-11 | Microsoft Technology Licensing, Llc | Cloud-offloaded global satellite positioning |
KR102290732B1 (en) * | 2013-08-27 | 2021-08-17 | 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 | Cloud-offloaded global satellite positioning |
CN108627857A (en) * | 2017-03-17 | 2018-10-09 | 展讯通信(上海)有限公司 | Multi-path detecting method, device and GNSS receiver |
CN111045036A (en) * | 2019-10-14 | 2020-04-21 | 广东星舆科技有限公司 | Method and system for testing positioning capability of high-precision positioning terminal |
US11567216B2 (en) | 2020-05-18 | 2023-01-31 | Honeywell International Inc. | Single delta range differences using synthetic clock steering |
Also Published As
Publication number | Publication date |
---|---|
US7821454B2 (en) | 2010-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7821454B2 (en) | Systems and methods for detecting GPS measurement errors | |
US8670882B2 (en) | Systems and methods for monitoring navigation state errors | |
US12072426B2 (en) | Time-differenced carrier phase measurement value-based navigation system, and position measurement method | |
US9405012B2 (en) | Advanced global navigation satellite systems (GNSS) positioning using precise satellite information | |
US12055644B2 (en) | System and method for reconverging GNSS position estimates | |
TWI524083B (en) | Satellite navigation receivers, apparatuses and methods for positioning | |
US5917445A (en) | GPS multipath detection method and system | |
US7286083B2 (en) | Method and apparatus for improving fault detection and exclusion systems | |
US8378887B2 (en) | Systems and methods for synthesizing GPS measurements to improve GPS location availability | |
KR20130024181A (en) | Gps receiver and navigation solution calculation method thereof | |
US20230341563A1 (en) | System and method for computing positioning protection levels | |
CN112731496B (en) | GNSS precise single-point positioning data quality control method for intelligent terminal | |
US20240134065A1 (en) | System and method for distributed integrity monitoring | |
US8190365B2 (en) | Systems and methods for processing navigational solutions | |
JP4322829B2 (en) | Cycle slip detection device and cycle slip detection method | |
US6720913B1 (en) | Lock slip detection using inertial information | |
JP3851376B2 (en) | Positioning system satellite signal receiver | |
US20240012158A1 (en) | Method for Estimating Multipath Error of Pseudo-Range Measurement Value, and Positioning Method Using Same | |
CN114509796A (en) | Satellite positioning method and device in GNSS system | |
CN116917768A (en) | Navigation during satellite signal receiver spoofing operations | |
Iwase et al. | Estimation of Multipath Range Error for Detection of Erroneous Satellites | |
JP2011107108A (en) | Positioning device for mobile object | |
US20240337756A1 (en) | Integrity-checking method and associated computer program and device | |
CN116829987A (en) | Navigation during satellite signal receiver spoofing operations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIRF TECHNOLOGY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIE, GANG;CHANSARKAR, MANGESH;LIAO, DANIEL;AND OTHERS;REEL/FRAME:020167/0959;SIGNING DATES FROM 20071106 TO 20071113 Owner name: SIRF TECHNOLOGY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIE, GANG;CHANSARKAR, MANGESH;LIAO, DANIEL;AND OTHERS;SIGNING DATES FROM 20071106 TO 20071113;REEL/FRAME:020167/0959 |
|
AS | Assignment |
Owner name: CSR TECHNOLOGY INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:SIRF TECHNOLOGY, INC.;REEL/FRAME:027437/0324 Effective date: 20101119 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20181026 |