US20090159118A1 - Roofing Products Having Receptor Zones and Photovoltaic Roofing Elements and Systems Using Them - Google Patents
Roofing Products Having Receptor Zones and Photovoltaic Roofing Elements and Systems Using Them Download PDFInfo
- Publication number
- US20090159118A1 US20090159118A1 US12/339,943 US33994308A US2009159118A1 US 20090159118 A1 US20090159118 A1 US 20090159118A1 US 33994308 A US33994308 A US 33994308A US 2009159118 A1 US2009159118 A1 US 2009159118A1
- Authority
- US
- United States
- Prior art keywords
- roofing
- photovoltaic
- receptor
- top surface
- flexible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000758 substrate Substances 0.000 claims abstract description 135
- 239000000463 material Substances 0.000 claims description 90
- 239000000853 adhesive Substances 0.000 claims description 28
- 230000001070 adhesive effect Effects 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 26
- 238000000576 coating method Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000009434 installation Methods 0.000 claims description 13
- 230000000295 complement effect Effects 0.000 claims description 11
- 239000011888 foil Substances 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000004744 fabric Substances 0.000 claims description 5
- 229920006254 polymer film Polymers 0.000 claims description 4
- 239000013618 particulate matter Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 110
- 239000012528 membrane Substances 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 21
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 15
- 239000005038 ethylene vinyl acetate Substances 0.000 description 14
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 14
- 239000012790 adhesive layer Substances 0.000 description 13
- 239000008187 granular material Substances 0.000 description 12
- -1 scrim Substances 0.000 description 11
- 239000010426 asphalt Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 229920000098 polyolefin Polymers 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 229920002313 fluoropolymer Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229920002620 polyvinyl fluoride Polymers 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000004811 fluoropolymer Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000004224 protection Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920009441 perflouroethylene propylene Polymers 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920003313 Bynel® Polymers 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229920006355 Tefzel Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003300 Plexar® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010038743 Restlessness Diseases 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007931 coated granule Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D5/00—Roof covering by making use of flexible material, e.g. supplied in roll form
- E04D5/02—Roof covering by making use of flexible material, e.g. supplied in roll form of materials impregnated with sealing substances, e.g. roofing felt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/20—Supporting structures directly fixed to an immovable object
- H02S20/22—Supporting structures directly fixed to an immovable object specially adapted for buildings
- H02S20/23—Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- the present invention relates generally to roofing products.
- the present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements joined to a roofing substrate.
- photovoltaic cells are often made from semiconductor-type materials such as doped silicon in either single crystalline, polycrystalline, or amorphous form.
- semiconductor-type materials such as doped silicon in either single crystalline, polycrystalline, or amorphous form.
- the use of photovoltaic cells on roofs is becoming increasingly common, especially as device performance has improved. They can be used to provide at least a significant fraction of the electrical energy needed for a building's overall function; or they can be used to power one or more particular devices, such as exterior lighting systems.
- Photovoltaic cells can be packaged as photovoltaic elements, in which one or more photovoltaic cells are electrically interconnected and provided in a common package.
- One common type of photovoltaic element is an encapsulated photovoltaic element, in which the photovoltaic cells are packaged together in between layers of layer material.
- the layer materials are often chosen to be highly light-transmissive, and to retain their transmissivity over time.
- Encapsulated photovoltaic elements can be convenient for integration with various substrates.
- roofing products in which a photovoltaic element is integrated with a roofing substrate (such as a shingle or tile) have been proposed.
- a photovoltaic roofing element also known as “roofing-integrated photovoltaics” or “RIPV”
- RIPV photovoltaic roofing elements
- photovoltaic roofing elements can provide aesthetic benefit, as they can be made to blend with the architecture of the overall roof much better than can conventional photovoltaic modules.
- Encapsulated photovoltaic elements can be convenient for integration with various substrates. However, in many circumstances, formation of a long-lived physical connection between the material of the encapsulated photovoltaic element and the material of a substrate can be difficult, especially when the materials used to make the encapsulated photovoltaic element have low surface tension. Notably, the surfaces used as the top layer of many roofing substrates, such as the coated granules typically used with bituminous roofing products, can be less than optimal for adhesion to a photovoltaic element.
- photovoltaic roofing elements can require special skills and tools for installation, making them challenging for installation by a roofing professional. Moreover, once installed on a roof, they can be relatively susceptible to damage. Accordingly, at any point after a roof has photovoltaic roofing elements installed thereon, it can be more difficult for workers to perform any other necessary tasks on the roof.
- One aspect of the present invention is a roofing product including:
- photovoltaic roofing element including:
- Another aspect of the present invention is a photovoltaic roofing system comprising one or more photovoltaic roofing elements as described above disposed on a roof deck.
- Another aspect of the present invention is a method for installing a photovoltaic roofing system, the method comprising:
- kits for the installation of a photovoltaic roofing system comprising:
- the products and systems of the present invention can result in a number of advantages.
- the products and systems of the present invention can provide enhanced adhesion between the photovoltaic element and the flexible roofing substrate.
- the methods of the present invention can be used to install a photovoltaic roofing system so that the installation of the relatively rugged flexible roofing substrate can be performed by a roofing professional, and the more fragile photovoltaic elements can be installed much later, by a person skilled in electrical interconnections.
- Other advantages will be apparent to the person of skill in the art.
- FIG. 1 is a schematic perspective view of a roofing product according to one embodiment of the invention.
- FIG. 2 is a schematic exploded view and a schematic cross-sectional view of an encapsulated photovoltaic element suitable for use in the present invention
- FIG. 3 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention.
- FIG. 4 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention.
- FIG. 5 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention.
- FIG. 6 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention.
- FIG. 7 is top schematic view of roofing products according to other embodiments of the invention.
- FIG. 8 is a top schematic view and a schematic cross-sectional view of a photovoltaic roofing element according to the invention.
- FIG. 9 is a schematic top perspective view of a photovoltaic element according to one embodiment of the invention.
- FIG. 10 is a top perspective schematic view of a photovoltaic roofing system according to the invention.
- FIGS. 11-13 are top schematic views of roofing products according to the present invention.
- FIG. 14 is a top schematic view of a photovoltaic roofing system according to one embodiment of the invention.
- FIG. 15 is a top schematic view of a photovoltaic roofing system according to another embodiment of the invention.
- FIG. 16 is a top schematic view of a photovoltaic roofing system according to another embodiment of the invention.
- FIG. 17 is a schematic top view and in schematic cross-sectional view of a photovoltaic roofing element according to one embodiment of the invention.
- FIG. 18 is a partial schematic cross-sectional/perspective view of a photovoltaic roofing system according to one embodiment of the invention.
- FIG. 19 is a partial schematic cross-sectional view of a photovoltaic roofing system according to another embodiment of the invention.
- roofing product 100 comprises a flexible roofing substrate 110 having a top surface 112 .
- One or more (in this embodiment, six) receptor zones 120 are on the top surface 112 of flexible roofing substrate 110 .
- Each receptor zone 120 is adapted to receive one or more photovoltaic elements, and has a different surfacing than the area 122 of the top surface adjacent to the receptor zone 120 .
- the sizes and shapes of the one or more receptor zones can, for example, be selected based on the sizes and shapes of the photovoltaic elements envisioned for use therewith.
- certain photovoltaic elements available from Uni-solar Ovonic have dimensions of about 12 cm ⁇ 18 cm (T-Cells); about 24 cm ⁇ 36 cm (L-Cells); or about 40 cm ⁇ 5 m (strip).
- the receptor zone has dimensions that are somewhat larger than (e.g., in the range of 101-120% of, or even 101-110% of) the dimensions of the photovoltaic elements with which they are to be used.
- Such embodiments can be more user-friendly, as precise alignment is not necessary for an installer to accurately place the photovoltaic element completely within the receptor zone.
- an elongated photovoltaic element such as the strips available from Uni-solar Ovonic, minor angular misalignments can be tolerated.
- Photovoltaic elements suitable for use in conjunction with the roofing products of the invention, and in the photovoltaic roofing elements, systems, methods and kits of the invention comprise one or more interconnected photovoltaic cells provided together in a single package.
- the photovoltaic cells of the photovoltaic elements can be based on any desirable photovoltaic material system, such as monocrystalline silicon; polycrystalline silicon; amorphous silicon; III-V materials such as indium gallium nitride; II-VI materials such as cadmium telluride; and more complex chalcogenides (group VI) and pnicogenides (group V) such as copper indium diselenide.
- one type of suitable photovoltaic cell includes an n-type silicon layer (doped with an electron donor such as phosphorus) oriented toward incident solar radiation on top of a p-type silicon layer (doped with an electron acceptor, such as boron), sandwiched between a pair of electrically-conductive electrode layers.
- Another type of suitable photovoltaic cell is an indium phosphide-based thermo-photovoltaic cell, which has high energy conversion efficiency in the near-infrared region of the solar spectrum.
- Thin film photovoltaic materials and flexible photovoltaic materials can be used in the construction of photovoltaic elements for use in the present invention.
- the photovoltaic element includes a monocrystalline silicon photovoltaic cell or a polycrystalline silicon photovoltaic cell.
- the photovoltaic elements for use in the present invention can be flexible, or alternatively can be rigid.
- the photovoltaic elements can be encapsulated photovoltaic elements, in which photovoltaic cells are encapsulated between various layers of material.
- an encapsulated photovoltaic element can include a top layer material at its top surface, and a bottom layer material at its bottom surface.
- the top layer material can, for example, provide environmental protection to the underlying photovoltaic cells, and any other underlying layers.
- suitable materials for the top layer material include fluoropolymers, for example ETFE (“TEFZEL”), PFE, FEP, PVF (“TEDLAR”), PCTFE or PVDF.
- the top layer material can alternatively be, for example, a glass sheet, or a non-fluorinated polymeric material.
- the bottom layer material can be, for example, a fluoropolymer, for example ETFE (“TEFZEL”), PFE, FEP, PVDF or PVF (“TEDLAR”).
- the bottom layer material can alternatively be, for example, a polymeric material (e.g., polyester such as PET); or a metallic material (e.g., steel or aluminum sheet).
- an encapsulated photovoltaic element can include other layers interspersed between the top layer material and the bottom layer material.
- an encapsulated photovoltaic element can include structural elements (e.g., a reinforcing layer of glass, metal or polymer fibers, or a rigid film); adhesive layers (e.g., EVA to adhere other layers together); mounting structures (e.g., clips, holes, or tabs); one or more electrical connectors (e.g., electrodes, electrical connectors; optionally connectorized electrical wires or cables) for electrically interconnecting the photovoltaic cell(s) of the encapsulated photovoltaic element with an electrical system.
- structural elements e.g., a reinforcing layer of glass, metal or polymer fibers, or a rigid film
- adhesive layers e.g., EVA to adhere other layers together
- mounting structures e.g., clips, holes, or tabs
- one or more electrical connectors e.g., electrodes, electrical connectors; optionally
- Encapsulated photovoltaic element 260 includes a top protective layer 252 (e.g., glass or a fluoropolymer film such as ETFE, PVDF, PVF, FEP, PFA or PCTFE); encapsulant layers 254 (e.g., EVA, functionalized EVA, crosslinked EVA, silicone, thermoplastic polyurethane, maleic acid-modified polyolefin, ionomer, or ethylene/(meth)acrylic acid copolymer); a layer of electrically-interconnected photovoltaic cells 256 ; and a backing layer 258 (e.g., PVDF, PVF, PET).
- a top protective layer 252 e.g., glass or a fluoropolymer film such as ETFE, PVDF, PVF, FEP, PFA or PCTFE
- encapsulant layers 254 e.g., EVA, functionalized EVA, crosslinked EVA, silicone, thermoplastic polyurethane, maleic acid-modified poly
- a photovoltaic element having a self-adhesive layer on its bottom surface can be suitable for use in the present invention (e.g., it can be adhered in the receptor zone).
- the self-adhesive layer is a 3-10 mil thick layer of a butyl rubber-based or rubber resin pressure sensitive adhesive. Suitable rubber resin pressure sensitive adhesives are disclosed, for example, in U.S. Pat. No. 3,451,537, which is hereby incorporated herein by reference.
- the adhesive package on the bottom surface of the photovoltaic element has a composite structure comprising a layer of pressure sensitive adhesive and a layer of deformable material. The deformable material can allow for more economical usage of a higher performance, higher cost pressure sensitive adhesive.
- deformable layers to improve contact between pressure sensitive adhesives and irregular surfaces is disclosed in U.S. Pat. No. 5,310,278, which is hereby incorporated herein by reference in its entirety.
- the self-adhesive layer can be protected with a releasable liner; the releasable liner can be removed (e.g., by peeling) to expose the adhesive for attachment to the receptor zone of a flexible roofing substrate.
- the photovoltaic element can include at least one antireflection coating, for example as the top layer material in an encapsulated photovoltaic element, or disposed between the top layer material and the photovoltaic cells.
- Suitable photovoltaic elements can be obtained, for example, from China Electric Equipment Group of Nanjing, China, as well as from several domestic suppliers such as Uni-Solar Ovonic, Sharp, Shell Solar, BP Solar, USFC, First Solar, General Electric, Schott Solar, Evergreen Solar and Global Solar. Moreover, the person of skill in the art can fabricate encapsulated photovoltaic elements using techniques such as lamination or autoclave processes. Encapsulated photovoltaic elements can be made, for example, using methods disclosed in U.S. Pat. No. 5,273,608, which is hereby incorporated herein by reference.
- the top surface of photovoltaic element is the surface presenting the photoelectrically-active areas of its one or more photoelectric cells.
- the photovoltaic roofing elements of the present invention should be oriented so that the top surface of the photovoltaic element is able to be illuminated by solar radiation.
- the bottom surface is the surface opposite the top surface.
- the photovoltaic element also has an operating wavelength range.
- Solar radiation includes light of wavelengths spanning the near UV, the visible, and the near infrared spectra.
- the term “solar radiation,” when used without further elaboration means radiation in the wavelength range of 300 nm to 2500 nm, inclusive.
- Different photovoltaic elements have different power generation efficiencies with respect to different parts of the solar spectrum.
- Amorphous doped silicon is most efficient at visible wavelengths, and polycrystalline doped silicon and monocrystalline doped silicon are most efficient at near-infrared wavelengths.
- the operating wavelength range of a photovoltaic element is the wavelength range over which the relative spectral response is at least 10% of the maximal spectral response.
- the operating wavelength range of the photovoltaic element falls within the range of about 300 nm to about 2000 nm. In certain embodiments of the invention, the operating wavelength range of the photovoltaic element falls within the range of about 300 nm to about 1200 nm.
- the surfacing of the one or more receptor zones can be adapted to provide increased adhesion between the flexible roofing substrate and a photovoltaic element (for example, an encapsulated roofing element). Accordingly, the receptor zones can provide areas of increased adhesion for photovoltaic elements, while the remainder of the top surface of the flexible roofing substrate can be surfaced to provide, for example, weather resistance, UV resistance, solar reflectivity, a color or appearance complementary to photovoltaic elements or adjacent areas of the flexible roofing substrate, or other desirable properties.
- a photovoltaic element for example, an encapsulated roofing element
- the surfacing of the receptor zones is textured.
- the surfacing can include, for example, a textured layer such as a fabric, scrim, a woven or non-woven web, a felt, a porous film, or a sheet having a microstructured surface.
- the surfacing includes a texturing material such as sand, glass or quartz grit, fibers (e.g., polymeric, glass).
- the textured layer can provide additional surface area for adhesion of the encapsulated photovoltaic element to the flexible roofing substrate.
- the textured layer can intermingle with the materials of an encapsulated photovoltaic element, the flexible roofing substrate, and/or an adhesive material in order to improve adhesion through mechanical interlocking.
- a textured layer can be especially useful in conjunction with a bituminous roofing substrate; during fabrication, the textured layer can embed itself in the softened bituminous material.
- a textured layer can be useful in conjunction with a polymeric roofing substrate, embedding itself in the polymeric material through use of heat and/or pressure.
- the textured layer is a fibrous layer (e.g., scrim, fabric, non-woven web). Textured layers are described in more detail in U.S. Patent Application Publication no.
- the material of the textured layer is at least partially embedded in the material of the top surface of the flexible roofing substrate.
- the surfacing includes a textured web (e.g., fiberglass mat) coated on one side (e.g., with a polymeric coating), with its uncoated side embedded in the material of the top surface of the flexible roofing substrate (e.g., a bituminous roofing substrate) in the receptor zone.
- the coating can provide increased adhesion to a photovoltaic element, while the embedded textured web improves adhesion to the flexible roofing substrate.
- the textured surfacing is achieved by mechanically embossing or chemically etching the top surface of the flexible roofing substrate in the receptor zone.
- the surfacing of the one or more receptor zones includes a polymer material or a metal foil.
- roofing product 300 includes flexible roofing substrate 310 , which has top surface 312 .
- a polymer material 330 Disposed on the top surface 312 in the receptor zone 320 is a polymer material 330 (e.g., in film form).
- the polymer material or metal foil can provide enhanced adhesion to a photovoltaic element (e.g., through a tie layer system such as an adhesive layer, as described below).
- the surfacing can be a polymer film formed from a polymer such as a fluorinated polymer, an acrylic polymer, a urethane polymer, a polyester, or a polyolefin.
- the surfacing of the one or more receptor zones includes a metal foil, such as an aluminum foil or a steel foil.
- a metal foil such as an aluminum foil or a steel foil.
- 2 mil thickness deadsoft aluminum foil available from Kaiser aluminum is laminated to portions of the surface of a bituminous roofing membrane prior to the application of roofing granules thereto.
- the polymer film or metal foil can be surface-treated (e.g., as described below) to enhance adhesion.
- the surfacing of the one or more receptor zones includes an adhesive material covered by a releasable liner.
- roofing product 400 includes flexible roofing substrate 410 , which has top surface 412 .
- Disposed on the top surface 412 in the receptor zone 420 is an adhesive material 432 covered by a releasable liner 434 .
- the releasable liner can be removed (e.g., by peeling using pull tab 436 ) to expose the adhesive material, which can be used to affix a photovoltaic element to the receptor zone.
- the releasable liner can be, for example, release-coated paper.
- the adhesive material can be, for example, a pressure sensitive adhesive such as a functionalized EVA-based pressure-sensitive adhesive (e.g., HP Fuller 9917).
- the surfacing of the one of more receptor zones includes uncoated bituminous material covered by a releasable liner.
- roofing product 500 includes bituminous roofing substrate 510 (e.g., a glass-reinforced bituminous membrane or shingle), which has top surface 512 .
- the top surface 512 is coated with roofing granules 540 in areas outside the receptor zone 520 .
- the top surface is not coated with granules, but instead is left uncoated and covered by releasable liner 534 (which can optionally include a pull tab 536 ).
- the uncoated bituminous material when exposed by removing the release liner, can provide sufficient adhesive character to directly adhere a photovoltaic element in the receptor zone.
- a tie layer system e.g., an adhesive layer
- an adhesive layer can be used to adhere the photovoltaic element to the receptor zone.
- the surfacing of the one or more receptor zones is selected so that the appearance of the receptor zone is complementary to the top surface of the flexible roofing substrate in the area adjacent to the receptor zone.
- L*, a* and b* are the color measurements for a given sample using the 1976 CIE color space.
- L*, a* and b* values are measured using a HunterLab Model Labscan XE spectrophotometer using a 0° viewing angle, a 45° illumination angle, a 10° standard observer, and a D-65 illuminant. Lower L* values correspond to relatively darker tones.
- the receptor zone has a ⁇ E* ⁇ 30 compared to the top surface of the flexible roofing substrate in the area adjacent to the receptor zone. In some embodiments, the receptor zone has a ⁇ E* ⁇ 20 compared to the top surface of the flexible roofing substrate in the area adjacent to the receptor zone.
- the flexible roofing substrate is an asphalt shingle substrate, and the surfacing of the one or more receptor zones is selected so that the receptor zone is black.
- the surfacing of the one or more receptor zones is selected so that the receptor zone is black.
- the surfacing of the one or more receptor zones is selected so that the appearance of the receptor zone is complementary to the photovoltaic element with which the roofing product is to be used.
- a receptor zone if part or all of a receptor zone is not covered by a photovoltaic element, it can complement the photovoltaic element disposed thereon, or photovoltaic elements disposed on neighboring receptor zones.
- the receptor zone has a ⁇ E* ⁇ 30 compared to the photovoltaically active surface of the photovoltaic element. In some embodiments, the receptor zone has a ⁇ E* ⁇ 20 compared to the photovoltaically active surface of the photovoltaic element.
- the receptor zone can be provided with a desired appearance, for example, through printing or coating.
- a desired appearance can in some embodiments be provided by anodization.
- the surfacing of the receptor zone is stabilized to UV radiation, for example through UV stabilization or through use of UV-resistant materials.
- any exposed surface is resistant to UV damage.
- the flexible roofing substrate is formed from bituminous material.
- the surfacing may include ETFE, PVC, acrylic or another UV-resistant polymer film, for example including UV stabilizers and/or antioxidants.
- Metal foil is opaque to UV, and can alternatively be used. UV-opaque particles can also be used; in such embodiments, it is preferable that such particles have substantially complete coverage over the surface of the receptor zone.
- the surface of the receptor zone is at least partially covered by small granules, for example roofing granules of #18 or #22 size, so that any areas of the receptor zone that are not blocked by a photovoltaic element are protected from UV damage.
- small granules for example roofing granules of #18 or #22 size
- the surfacing of the receptor zone is both stabilized to UV radiation and selected so that the appearance of the receptor zone is complementary to the photovoltaic element with which the roofing product is to be used, adjacent areas of the flexible roofing substrate, or is black, as described above.
- any portion of the receptor zone that remains exposed can be UV resistant and complementary in appearance to other parts of the flexible roofing substrate or the photovoltaic elements used therewith.
- the top surface of the flexible roofing substrate in the receptor zone is recessed from the top surface of the flexible roofing substrate in the area adjacent to the receptor zone.
- roofing product 600 includes flexible roofing substrate 610 , which has a top surface 612 .
- the top surface of the flexible roofing substrate in the receptor zone 620 is recessed from the top surface of the flexible roofing substrate in the area 614 adjacent to the receptor zone 620 .
- a photovoltaic element when disposed in the receptor zone, its top surface can be substantially flush with the top surface of the area adjacent to the receptor zone.
- the surfacing of the one or more receptor zones includes one or more alignment marks (e.g., printed or embossed) to aid in the alignment and installation of a photovoltaic element.
- the alignment marks can correspond with the visible separations between sets of photovoltaic cells in the photovoltaic element.
- the alignment marks can correspond with markings formed on the top surface and/or the bottom surface (e.g., the bottom surface of an adhesive layer) of the photovoltaic element.
- the alignment marks can correspond to markings formed on a surface of a releasable liner (e.g., the surface in contact with an adhesive layer, or the bottom surface); as the releasable liner is removed to expose the adhesive layer (e.g., when the photovoltaic element is supplied in roll form), the installer can use it as a guide to ensure alignment of the photovoltaic element to the receptor zone.
- the use of alignment marks can be especially useful when using photovoltaic elements in strip form, as the potential for alignment is higher for long, thin strips (e.g., Uni-Solar Ovonic strip photovoltaic element).
- the use of alignment marks in the receptor zone can be especially useful when the photovoltaic element is smaller than the receptor zone, so that the alignment marks are visible when the photovoltaic element is disposed thereon.
- the flexible roofing substrate includes one or more alignment marks (e.g., printed or embossed) in the area adjacent the receptor zone to aid in the alignment and installation of a photovoltaic element.
- the alignment marks can be as described above for the alignment marks in the receptor zone.
- the alignment marks can correspond with the visible separations between sets of photovoltaic cells in the photovoltaic element.
- the alignment marks can correspond with markings formed on the top surface of the photovoltaic element.
- the alignment marks can be, for example, in the headlap area.
- the alignment marks can be, for example, in the headlap area.
- the top surface of the flexible roofing substrate has solar reflective properties, through a solar reflective coating or solar reflective roofing granules (see U.S. Pat. No. 7,241,500, which is hereby incorporated by reference in its entirety). Solar reflectance can reduce the effective temperature of the roof surface, which can improve the efficiency of power generation of the photovoltaic elements disposed thereon, as described in U.S. patent application Ser. No. 12/266,481, which is hereby incorporated herein by reference in its entirety.
- the top surface of the flexible roofing substrate does not have solar reflective properties in the one or more receptor zones, resulting in more economical use of solar reflective coating or solar reflective roofing granules.
- the solar reflective properties do not extend to areas of the flexible roofing substrate which are not visible when installed (e.g., the headlap region of a shingle, or the selvage region of a roofing membrane).
- the one or more receptor zones can be provided on the flexible roofing substrate in a wide variety of geometries. For example, they can be provided as islands or isolated zones; or alternatively can extend the length of a flexible roofing substrate.
- the receptor zones 720 are formed as isolated zones on the top surface of a roofing membrane 710 .
- a receptor zone 721 is formed to continuously extend along the length of a roofing membrane 715 , as shown in FIG. 7( b ).
- the receptor zone 722 is formed to cover the entire surface of a roofing membrane 717 except for one or more selvage zones 723 formed along one or more edges, as shown in FIG. 7( b ) and 7 ( c ).
- the flexible roofing substrate is a roofing membrane, such as the type used in multiple layer or built-up roofing systems.
- the flexible roofing substrate can be provided, for example, as elongated sheets, which can be transported to the worksite in roll form.
- the roofing membrane can be, for example, formed from a bituminous material, and can be reinforced with fibers, glass mat, felt, or fabric, and coated with roofing granules (e.g., in areas outside of the receptor zones).
- the roofing membrane can be formed from a rubber or polymeric material. Installation of the membrane can be performed through a variety of mechanical fasteners, adhesives, torching, or any other suitable methods. Adjacent sheets of roofing membrane can be sealed together where they adjoin.
- roofing membranes of the present invention can be installed together with conventional roofing membrane products, to provide only certain areas of the roof with photovoltaic power generation capability.
- roofing membranes can be formed, for example, from a single sheet of material with different surfacings formed thereon, or can be formed by combining sheets of material side-by-side so as to make a single membrane having different surfacings.
- the flexible roofing substrate is a shingle.
- the shingle can be formed from a bituminous material, which can be reinforced with fibers, glass mat, felt, or fabric, and coated with roofing granules (e.g., in areas outside of the receptor zones).
- Shingles can be manufactured, for example, using conventional methods, and cut into individual pieces. Shingles can be provided in bundles to a worksite, and can be installed using mechanical fasteners or other suitable methods. Adjacent courses of shingles can be applied in an overlapping manner to cover and protect the roof.
- the shingles of the present invention can be installed together with conventional shingles, to provide only certain areas of the roof with photovoltaic power generation capability.
- Photovoltaic roofing element 850 includes a flexible roofing substrate 810 having a top surface 812 , the top surface having one or more (in this example, four) receptor zones 820 thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it, as described above. Photovoltaic roofing element 850 further comprises one or more photovoltaic elements 860 disposed in the one or more receptor zones of the top surface of the flexible roofing substrate.
- the one or more photovoltaic elements can be adhered to the top surface of the flexible roofing substrate in the receptor zones as described above.
- a tie layer system e.g., adhesive material
- the top surface can include, as described above, a polymer or metal film, texturing, or a self-adhesive material (not shown).
- a photovoltaic roofing system comprises one or more photovoltaic roofing elements as described herein disposed on a roof deck.
- the photovoltaic roofing elements can be disposed with a certain amount of overlap to provide a waterproof covering, as is conventional in the roofing arts.
- the photovoltaic roofing system can include a wiring system as described above, and as described in U.S. patent application Ser. No. 11/743,073, which is hereby incorporated herein by reference in its entirety.
- the photovoltaic elements of the photovoltaic roofing elements are desirably connected to an electrical system, either in series, in parallel, or in series-parallel, as would be recognized by the skilled artisan. Electrical connections can be made using electrical connectors, such as those available from Tyco International.
- the photovoltaic roofing elements of the present invention can be installed on top of an existing roof, in such embodiments, there would be one or more layers of standard (i.e., non-photovoltaic) roofing elements (e.g., asphalt coated shingles or membrane roofing) between the roof deck and the photovoltaic roofing elements of the present invention.
- Electrical connections are desirably made using cables, connectors and methods that meet UNDERWRITERS LABORATORIES and NATIONAL ELECTRICAL CODE standards.
- the roof can also include one or more standard roofing elements, for example to provide weather protection at the edges of the roof, or in any hips, valleys, and ridges of the roof, or in areas not suitable for photovoltaic power generation.
- photovoltaic elements of the invention at least about 70%, at least about 80%, or even at least about 90% of the total receptor zone area of a flexible roofing substrate is covered by photovoltaic elements.
- At least about 70%, at least about 80%, or even at least about 90% of the total receptor zone area of the flexible roofing substrates is covered by photovoltaic elements.
- a tie layer system can be used to adhere the photovoltaic element in the receptor zone of the top surface of the flexible roofing substrate, as described in U.S. patent application Ser. No. 12/266,409, which is hereby incorporated herein by reference in its entirety.
- the tie layer system can include layers that are provided together with the photovoltaic element, the flexible roofing substrate on which the photovoltaic element is disposed, or both.
- the tie layer system when it is a layer of adhesive material, it can be provided as a layer on the flexible roofing substrate (e.g., as described above with respect to FIG. 4 ); as a layer of adhesive on the bottom of the photovoltaic element (e.g., exposed by removing a release liner); or both.
- the tie layer system is a polymeric tie layer system (i.e., it comprises one or more polymer layers).
- the tie layer system consists of a single polymer layer.
- the tie layer system consists of a plurality of polymer layers.
- a tie layer system can include an adhesive layer and a reinforcing layer and/or a surface activation layer.
- the tie layer system can comprise other layers of structural features, such as woven or nonwoven mat, a fibrous surface, a patterned surface, a nano-structured surface, or blends of various materials to improve the bonding.
- the tie layer system has a stratified structure, for example having an upper surface and a lower surface, each of which has different surface chemistry. For example, each surface can be adapted to adhere to a different adherend.
- tie layer systems provide sufficient bond strength to join the bottom surface of the photovoltaic element to the top surface of the flexible roofing substrate, and should be able to withstand severe outdoor weathering.
- the tie layer system provides greater than 10 lb/inch adhesive bond strength in a 90° peel test.
- the tie layer system maintains the bond strength in severe outdoor conditions for an extended period of time, e.g., 20 years of service life.
- the tie layer system can, for example, meet the humidity-freeze cycle test, thermal cycle test, and damp-heat test requirements listed in IEC 1646.
- the materials of the tie layer system can flexibly be incorporated through use of a variety of adhesive processes.
- a polymeric tie layer system can act to adhere the photovoltaic element to the flexible roofing substrate, especially when they are formed of partially incompatible materials (for example, when the photovoltaic element is an encapsulated photovoltaic element having a fluoropolymer at its bottom surface).
- the tie layer system consists of a single polymer layer having a surface tension in the range of about 25% to about 75% of the way between the surface tension value of the top surface of the roofing element and the surface tension value of the bottom surface of the photovoltaic element.
- the tie layer system includes a polymeric material having a Chang viscoelastic window exhibiting at least one set of coordinates (log(G′′), log(G′)) lying within the window bound by the coordinates (4.5, 3), (4.5, 6), (6, 6), (6, 3) (e.g., pressure sensitive adhesives).
- the polymeric material has a Chang viscoelastic window exhibiting at least one set of coordinates (log(G′′), log(G′)) lying within the window bound by the coordinates (4.5, 6), (6, 6), (6, 3.7).
- the polymeric material has a Chang viscoelastic window exhibiting at least one set of coordinates (log(G′′), log(G′)) lying within the window bound by the coordinates (4.5, 6), (4.5,8), (8, 8), (8, 3.7), (6, 3.7).
- the polymeric material has a Chang viscoelastic window exhibiting at least one set of coordinates (log(G′′), log(G′)) lying within the window bound by the coordinates (4.5, 6), (4.5,8), (8, 8), (8,3.7), (6, 3.7), (6, 6).
- G′′ is the viscous shear modulus in units of Pa
- G′ is the elastic shear modulus in units of Pa.
- G and G′′ can be measured as described in ASTM 882-97, for example at frequencies of 0.01 R/S and 100 R/S.
- Dissipative materials generally have Chang viscoelastic window coordinates within the above-referenced windows. Such materials are described in more detail in U.S. Pat. No. 6,869,981, and at pages 171-184 of Handbook of Pressure Sensitive Adhesive Technology, 3rd Ed., D. Satas editor, 1999, each of which is hereby incorporated herein by reference in its entirety; the UV curable materials described therein can be converted to heat-curable materials by changing initiators. Other examples include VHB adhesive materials available from 3M.
- the tie layer system has a coefficient of thermal expansion (“CTE”) between the CTE of the top surface of the flexible roofing substrate and the CTE of the bottom surface of the photovoltaic element, measured at 100° F.
- CTE coefficient of thermal expansion
- the tie layer system has a CTE in the range of about 25% to about 75% of the way between the CTE of the top surface of the flexible roofing substrate and the CTE of the bottom surface of the photovoltaic element, measured at 100° F.
- the top surface of the roofing element is bitumen-based with a CTE of ⁇ 2.5 ⁇ 10 ⁇ 4 in/in/° F.
- the tie layer materials are not conductive.
- the photovoltaic elements do not require additional grounding to prevent electric shock or to meet electrical code requirements.
- the tie layer system can include one or more materials selected from the group consisting of a polyolefin functionalized with carboxylate and/or anhydride (e.g., maleic anhydride); ethylene vinyl acetate (optionally modified with anhydride); acid-modified polyolefins (e.g., ethylene/(meth)acrylic acid); a combination of an acid-modified polyolefin with an amine-functional polymer; maleic anhydride-grafted EPDM; a hot melt containing a thermoplastic or elastomeric fluoropolymer; and a curable resin (e.g., an epoxy resin such as BondiT from Reltek LLC, or an ethylenically-unsaturated resin), butyl adhesives, or pressure-sensitive adhesives.
- a polyolefin functionalized with carboxylate and/or anhydride e.g., maleic anhydride
- ethylene vinyl acetate optionally modified with anhydride
- the tie layer system is a blend of functionalized EVA and polyolefin (e.g., polypropylene).
- the tie layer system can contain 5-75% by weight of polyolefin (e.g., 15-55%).
- the tie layer system can be, for example, a 70% polypropylene/30% EVA blend, or a 50% polypropylene/50% EVA blend.
- the tie layer system includes (or consists essentially of) an EVA-based PSA (e.g., HB Fuller HL2688PT); EVA (e.g., DuPont Bynel 3860); maleic acid-grafted EVA (e.g., DuPont Bynel E418); maleic acid grafted polypropylene (e.g., Equistar Plexar 6002); an epoxy/maleic acid grafted ethylene/butyl acrylate polymer (e.g., Arkema Lotader AX8900); a blend of polypropylene, PVDF and functionalized EVA-based pressure-sensitive adhesive (e.g., 50% polypropylene, 25% Arkema 2500, 25% HP Fuller 9917); a polyethylene/polypropylene copolymer (e.g., Dow Versify DE2300 having 12% ethylene content); or a functionalized EVA-based pressure-sensitive adhesive (e.g., HP Fuller 9917
- the tie layer system comprises an amino-substituted organosilane layer, for example as described in U.S. Pat. No. 6,753,087, which is hereby incorporated herein by reference.
- the tie layer system can comprise a polymeric layer (e.g., having polar functionality) having blended therein an amino-substituted organosilane.
- the thickness of the tie layer system can be, for example, in the range of about 25 ⁇ m to about 2.5 mm. In certain embodiments of the invention, the thickness of the tie layer system is in the range of about 50 ⁇ m to about 1 mm.
- Examples of various processes for completing the bonding of the tie layer between the bottom layer of the photovoltaic element and the top surface of the roofing substrate (in the receptor zone) may include, for example, compression molding, injection molding, co-extrusion, lamination, vacuum lamination (e.g., to remove air bubbles and outgassing), ultrasonic welding, vibration welding, laser welding, and IR welding.
- the method for completing the bonding will depend on whether the bonding is to be completed at a worksite (e.g., after installation of the flexible roofing substrate on a roof deck as described below) or in a factory setting.
- Equipment intensive processes such as lamination and molding are especially suited to be performed in a factory setting; while use of adhesive materials can be suitable for use on site.
- an adhesive material is provided on the photovoltaic element, the receptor zone, or both, and is covered by a releasable liner, as described above. Peeling the liner can expose the adhesive material, which can adhere the photovoltaic element to the top surface of the roofing substrate.
- the top surface of the flexible roofing substrate or the bottom surface of the photovoltaic element or both can be surface treated to enhance their affinity to each other, or to the tie layer system, if used.
- the surface treatments include flame treatment, plasma treatment, corona treatment, ozone treatment, sodium treatment, etching, ion implantation, electron beam treatment, or combinations thereof.
- Surface treatments can also include chemical modification with reactive organic species such as polymerizable monomers, or coupling agents such as organosilanes, organozirconates or organotitanates.
- a mechanical fastener is used together with a tie layer system (e.g., adhesive layer) to attach the photovoltaic element to the receptor zone of the top surface of the flexible roofing substrate.
- the mechanical fastener can be, for example, nails, staples, screws, clips or the like; such fasteners can attach the photovoltaic element only to the flexible roofing substrate on which it is disposed, or can go through the flexible roofing substrate down to underlying flexible roofing substrates, or even through to the roof deck itself.
- the mechanical fastener can provide for additional security of attachment of the photovoltaic element under conditions of steep slope or high temperature, where a tie layer system may be subject to shear stresses.
- the mechanical attachment can be particularly helpful on the lower edge of the photovoltaic element to prevent sliding movement down the roof. Moreover, mechanical attachment at the lower edge may impart added resistance to wind uplift detachment of the photovoltaic element or the flexible roofing substrate. Mechanical attachment at one edge of the photovoltaic element can also allow a degree of movement within the tie layer system to accommodate differential thermal expansion and contraction between the photovoltaic element and the flexible roofing substrate.
- the photovoltaic element will include fastening tabs or a fastening zone (e.g., a marked area) to aid in the attachment of the photovoltaic element to the receptor zone of the top surface of the flexible roofing substrate.
- Fastening zones and tabs may be configured using a flexible material, such as described in U.S. Pat. Nos. 5,729,946; 5,857,303; 5,887,743; 5,857,303 and 6,000,185, each of which is hereby incorporated by reference in its entirety.
- Flexible fastening zones can help to accommodate movement between the photovoltaic element and the flexible roofing substrate, for example due to differential thermal expansion.
- photovoltaic element 960 (having photovoltaically active area 963 ) is disposed in the receptor zones of flexible roofing substrate 910 .
- Photovoltaic element 960 includes both fastening tabs 961 and a fastening zone 962 .
- the fastening tabs 961 and fastening zone 962 denote places that where fastening will cause no damage to the photovoltaic element (e.g., areas devoid of photovoltaic cells or electrical components such as wiring).
- the fastening tabs can in some embodiments be covered by an overlying course of flexible roofing substrates (e.g., shingles).
- the photovoltaic element includes fastening tabs (e.g., as denoted by 961 in FIG. 9 ), but no other fastening zone.
- each flexible roofing substrate 1010 is a length of roofing membrane, four of which are shown applied to a roof deck (not shown) in overlapping strips to form a photovoltaic roofing system 1080 .
- a receptor zone is disposed longitudinally on the top surface of each flexible roofing substrate, spaced somewhat away from the lateral edges. The dimensions of the receptor zones can be selected to accommodate one or more desired photovoltaic elements.
- certain currently available roofing membranes e.g., from CertainTeed Corporation
- One currently available photovoltaic element is an encapsulated photovoltaic strip, about 40 cm in width and about 5 m in length.
- the photovoltaic elements have one or more electrical connections (e.g., electrodes, electrical connectors, wires or cables optionally terminated with connectors).
- the electrical connections can be used to interconnect the photovoltaic element with other photovoltaic elements or with a wiring system for take-off of electrical power.
- the photovoltaic strips 1060 have connectorized wires 1064 at one of their longitudinal ends.
- the electrical connections ( 1064 ) are at a longitudinal end of the flexible roofing substrate 1010 .
- the lengths of the photovoltaic elements and the roofing membrane are chosen so that the length of the roofing membrane is slightly greater than twice (e.g., 200-220% of) the length of the photovoltaic elements.
- the photovoltaic elements are disposed in the receptor zone(s) so that at least one of the elements has an electrical connection at a longitudinal end of the roofing membrane, as shown in FIG. 10 .
- the photovoltaic elements are disposed so that at least one of the photovoltaic elements has an electrical connection at the longitudinal center of a roofing membrane.
- a wiring system or bus system can be provided to collect the electrical power generated by the photovoltaic elements.
- waterproofing may be provided via an optional bead of an adhesive, caulk or other sealant between adjacent photovoltaic elements.
- a pressure sensitive adhesive tape with a backing layer stabilized for outdoor performance can be used to seal the seams between adjacent photovoltaic elements.
- the flexible roofing substrate is a shingle (e.g., as shown in FIG. 8 ).
- Shingles can, for example, be provided in product constructions that have a single layer of bituminous shingle material.
- multilayer laminated shingle constructions can be used.
- Laminated shingles can provide for a wide range of aesthetic effects in shingle design, as well as provide space within the shingle to accommodate wiring and electrical connector structures. Laminated shingles can yield a flatter laying product without undesirable bumps when installed.
- roofing product 1200 has four tab areas 1116 , each having a receptor zone 1120 formed thereon, on which a photovoltaic element can be disposed.
- shingle 1210 has four tab areas 1216 , each having a receptor zone 1220 formed thereon.
- roofing product 1200 also includes a backing shim 1218 (i.e., a second thickness of shingle material) laminated to the bottom of shingle 1210 .
- the backing shim can provide an aesthetic effect delineating the tabs and create the illusion of shadows and structure, as well as well as providing another layer of material to cover a roof.
- the backing shim can underlay the entire shingle, or alternatively can underlay only part of the shingle.
- the shingle 1310 need not have any individual tabs, and can have a single receptor zone 1320 formed thereon.
- the receptor zone(s) can be formed to cover the entire exposure area of the shingle.
- roofing granules e.g., colored and/or solar reflective
- Lower cost granules can be used in the headlap zones that would be covered when the shingle is installed on a roof.
- Photovoltaic roofing elements based on shingles can be arrayed on a roof deck in a variety of ways.
- photovoltaic roofing elements 1450 are arrayed as laterally-offset courses of shingles.
- Each flexible roofing substrate 1410 is a four-tab shingle, with a receptor zone 1420 (shown exposed on one shingle) on each tab.
- Photovoltaic elements 1460 are disposed in the receptor zones 1420 .
- a shingle similar to the Grand Manor® Shangle®, available from CertainTeed Corporation has a shingle exposure height of 8 inches and an overall shingle dimension of 18 inches by 36 inches, with four tabs in the exposure area.
- Each of the tabs has a receptor zone having a coating of small particle sand in place of conventional roofing granules.
- a T-cell photovoltaic element (Uni-Solar Ovonic) equipped with a pressure-sensitive adhesive is attached to each of the receptor zones of each shingle.
- photovoltaic roofing elements 1550 are provided and arrayed as described above with reference to FIG. 14 .
- Each photovoltaic element 1560 extends across and is disposed on the receptor zones 1520 (shown exposed on one shingle) of all four tabs of the shingle on which it is disposed.
- Each photovoltaic element can be, for example, a strip of four electrically interconnected T-cell photovoltaic elements in a laminate structure, with a pressure-sensitive adhesive on the bottom surface of the laminate structure.
- the receptor zone spans the length of the exposed section of each shingle.
- the shingles can be applied (e.g., in a typical fashion) by a roofing professional, who need not have any particular expertise with respect to photovoltaic systems.
- One or more extended length photovoltaic elements can then be disposed in the receptor zones as described above, spanning the length of a plurality of shingles). For example, the Grand Manor® Shangl® exposure height of 8 inches could be entirely covered by the photovoltaic element.
- a course of three shingles 1610 is arrayed on a roof deck.
- the shingles have receptor zones 1620 , which include alignment marks 1628 as described above.
- the photovoltaic element 1660 is provided as a strip, in roll form, and has alignment marks 1668 on its bottom surface. As the photovoltaic element is unrolled and disposed on the receptor zones, the installer can align the alignment marks on the photovoltaic element with those on the receptor zone to ensure proper placement. Of course, alignment marks could alternatively (or also) be provided on the releasable liner.
- a receptor zone can have disposed therein a piece of roofing material (e.g., roofing membrane, asphalt shingle).
- roofing material e.g., roofing membrane, asphalt shingle
- the roofing material can further protect the receptor zone from weathering, and better match the appearance of the unused receptor zone with the rest of the roof.
- the roofing material can be, for example, an appropriately-sized piece of roofing membrane or asphalt shingle having on its bottom surface an adhesive layer covered by a releasable liner. The installer can peel-and-stick the pieces of roofing material to the desired receptor zones.
- at least about 70%, at least about 80%, or even at least about 90% of the total receptor zone area of the flexible roofing substrates is covered by photovoltaic elements and/or pieces of roofing material.
- a cap layer is disposed on the flexible roofing substrate.
- a cap layer can be disposed on the flexible roofing substrate to cover areas of the receptor zone in which a photovoltaic element is not disposed.
- flexible roofing substrate 1710 has a receptor zone 1720 on its top surface 1712 . Affixed to in the receptor zone (through adhesive layer 1732 ), but not covering it completely, are two photovoltaic elements 1760 .
- Cap layer 1772 is disposed on the top surface 1712 of flexible roofing substrate 1710 to cover areas of the receptor zone 1720 in which a photovoltaic element 1760 is not disposed.
- a cap layer can also cover electrical connections (e.g., electrical connections 1774 to electrical cable 1775 ), thereby protecting them from the elements.
- a cap layer can cover electrical connections and/or wiring systems even when it is not used to cover exposed areas of a receptor zone.
- a cap layer can seal the edges of a joint between the photovoltaic element(s) and the flexible roofing substrate, whether or not the photovoltaic element(s) cover the entire receptor zone.
- cap layer 1772 seals the joint between the flexible roofing substrate 1712 and the photovoltaic elements 1760 .
- the cap layer can be provided in individual pieces (e.g., tape-shaped strips), or as a single piece.
- the cap layer can be provided as a single piece with cutout areas to expose the photovoltaically active areas of the photovoltaic elements.
- the cap layer can be provided, for example, as roofing membrane (e.g., self-adhesive, such as that available from CertainTeed Corporation), shingle material, or other materials.
- the cap layer can alternatively be provided as a roof coating. Such roof coatings are known in the art, and can also provide other attributes to the roof, such as reflectivity of solar radiation. Coatings can be formed, for example, from acrylic or fluorinated polymers, or latex-based materials.
- a cap layer can cover one or more photovoltaic roofing elements.
- a protective conduit covers the wiring interconnecting the photovoltaic elements, thereby protecting it from the elements, for example as shown in FIG. 18 .
- the conduit 1878 is at the junction of two adjacent roofing membranes 1810 , and covers wiring system 1877 that interconnects photovoltaic elements 1860 .
- the conduit can be disposed in the middle part of a membrane (e.g., between the connectorized ends of the horizontally-arranged photovoltaic elements).
- a conduit can also be used with a shingle-based photovoltaic roofing system.
- the conduit can, for example, be similar in structure to a wire covering product such as is commonly used for covering wires or cables on floors in office environments.
- the conduit can take any of a number of other forms, such as round or rectangular tube.
- a cap layer e.g., protective tape or cover sheet
- a cap layer can also be applied over a conduit so as to provide a desired aesthetic effect or weathering protection to the conduit.
- a cap layer can also or alternatively be disposed within the conduit to provide further protection.
- a protective covering is disposed over the electrical connections.
- the protective covering can have holes formed therein near the electrical connections of the photovoltaic elements, so that wires for connection to an electrical system can pass through the holes to a wiring system for collection of the power generated by the photovoltaic elements.
- the protective cover 1978 covers cables 1976 that interconnects photovoltaic elements 1960 (disposed on roofing membranes 1910 ) into a wiring system.
- the holes can be sealed with an appropriate adhesive or sealant, such as a butyl, a mastic, or a neoprene adhesive.
- the wiring system can be provided in a conduit, which can be mounted within the roofing system and covered by a conventional roofing material strip or tape.
- the conduit can be mounted above the surface of the roof in the vicinity of the electrical connections of the photovoltaic elements.
- a conduit could be provided as a tube of any desired geometry) supported on legs which have pitch pockets filled with tar, adhesive, caulk, or the like to accommodate dimensional changes or vibrational effects experienced during use, this minimizing transfer of forces to the wiring system.
- individual photovoltaic elements are electrically interconnected in series, with sets of series-connected photovoltaic elements being connected to a wiring system or a bus system (e.g., within a conduit) along one or more edges of a roof section.
- roofing substrates can be made using a variety of techniques.
- the person of skill in the art can use methods described in U.S. Pat. Nos. 5,953,877; 6,237,288; 6,355,132; 6,467,235; 6,523,316; 6,679,308; 6,715,252; 7,118,794; U.S. Patent Application Publication 2006/0029775; and International Patent Application Publication WO 2006/121433, each of which is hereby incorporated herein by reference in its entirety.
- Photovoltaic roofing elements can be fabricated in a continuous process and then cut into individual elements as is done in the fabrication of asphalt shingles. When a continuous process is used, it can be necessary to individually prepare any electrical cables running between elements, for example by cutting the cables between elements and adding connectors to the cut ends.
- the present invention may also be practiced using techniques described in U.S. Patent Application Publication nos. 2005/0072456 and 2004/0144043, and in U.S. Pat. No. 4,860,509, each of which is hereby incorporated herein by reference in its entirety.
- Another aspect of the invention is a method for installing a photovoltaic roofing system on a roof deck.
- one or more flexible roofing substrates as described above are installed on a roof deck.
- one or more photovoltaic elements are disposed in the one or more receptor zones of the top surface of the flexible roofing substrate.
- the flexible roofing substrates can be installed robustly in a rugged manner to cover the roof, this step can be performed by a roofing professional, who need not have any particular expertise with respect to photovoltaic systems.
- the one or more photovoltaic elements can then be disposed in the receptor zones as described above.
- the releasable liner can be removed, and the photovoltaic elements affixed to the flexible roofing substrate.
- one or more cap layers as described above are disposed on the flexible roofing substrates after the photovoltaic elements are disposed thereon.
- Another benefit derived in certain embodiments of the invention is that when photovoltaic elements are separately installed on a roof, it is possible to test the performance of the photovoltaic elements before they are attached to the shingles. Such testing can be performed, for example, immediately prior to attachment, so that any faulty photovoltaic elements are discovered before they are attached to the flexible roofing substrate.
- the flexible roofing elements can be applied to the roof deck in bottom-up manner (i.e., from the lower edge of the roof to the upper edge), as is conventional.
- the photovoltaic elements can then be installed, for example, from the top of roof to the bottom. Top-down installation can allow the more fragile and potentially slippery photovoltaic elements to be applied in a more gentle manner, and without the need for an installer to walk on already-installed photovoltaic elements.
- the photovoltaic elements can be installed in any other convenient order.
- the photovoltaic elements are disposed on the flexible roofing substrate before the flexible roofing substrate is installed on the roof.
- the photovoltaic elements can be disposed on the flexible roofing substrate at the worksite, but before installation. This can allow the individual materials to be transported more efficiently, and be put together to fit the particular dimensions of the roof.
- the photovoltaic elements can be disposed on the flexible roofing substrate in a factory setting. In such embodiments, the use of a flexible roofing substrate with a receptor zone can increase adhesion of the photovoltaic roofing element without sacrificing properties of the rest of the flexible roofing substrate, and can increase process flexibility during manufacture.
- the photovoltaic elements are provided with removable cover elements covering their photovoltaically-active areas, as described in U.S. patent application Ser. No. 12/145,166, which is hereby incorporated herein by reference in its entirety.
- the removable cover elements can be removed after installation to expose the photovoltaically active areas.
- a roofing coating e.g., a solar reflective coating
- the removable cover elements can be removed after the roofing coating is applied.
- the roofing coating can be applied over the entire roof, and can help to waterproof the seams between the photovoltaic elements and the flexible roofing substrates.
- kits for the installation of a photovoltaic roofing system comprising one or more flexible roofing substrates as described above; and one or more photovoltaic elements.
- the one or more photovoltaic elements can be selected to be compatible, both in size and in adhesive characteristics as described above, with the flexible roofing substrates.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Applications Ser. No. 61/014,902, filed Dec. 19, 2007; and Ser. No. 61/043,707, filed Apr. 9, 2008, each of which is hereby incorporated herein by reference in its entirety.
- 1. Field of the Invention
- The present invention relates generally to roofing products. The present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements joined to a roofing substrate.
- 2. Technical Background
- The search for alternative sources of energy has been motivated by at least two factors. First, fossil fuels have become increasingly expensive due to increasing scarcity and unrest in areas rich in petroleum deposits. Second, there exists overwhelming concern about the effects of the combustion of fossil fuels on the environment due to factors such as air pollution (from NOx, hydrocarbons and ozone) and global warming (from CO2). In recent years, research and development attention has focused on harvesting energy from natural environmental sources such as wind, flowing water, and the sun. Of the three, the sun appears to be the most widely useful energy source across the continental United States; most locales get enough sunshine to make solar energy feasible.
- Accordingly, there are now available components that convert light energy into electrical energy. Such “photovoltaic cells” are often made from semiconductor-type materials such as doped silicon in either single crystalline, polycrystalline, or amorphous form. The use of photovoltaic cells on roofs is becoming increasingly common, especially as device performance has improved. They can be used to provide at least a significant fraction of the electrical energy needed for a building's overall function; or they can be used to power one or more particular devices, such as exterior lighting systems.
- Photovoltaic cells can be packaged as photovoltaic elements, in which one or more photovoltaic cells are electrically interconnected and provided in a common package. One common type of photovoltaic element is an encapsulated photovoltaic element, in which the photovoltaic cells are packaged together in between layers of layer material. The layer materials are often chosen to be highly light-transmissive, and to retain their transmissivity over time. Encapsulated photovoltaic elements can be convenient for integration with various substrates.
- Roofing products in which a photovoltaic element is integrated with a roofing substrate (such as a shingle or tile) have been proposed. Such “photovoltaic roofing elements” (also known as “roofing-integrated photovoltaics” or “RIPV”) can provide both protection from the elements and power generation capability in a single product. Moreover, photovoltaic roofing elements can provide aesthetic benefit, as they can be made to blend with the architecture of the overall roof much better than can conventional photovoltaic modules.
- Encapsulated photovoltaic elements can be convenient for integration with various substrates. However, in many circumstances, formation of a long-lived physical connection between the material of the encapsulated photovoltaic element and the material of a substrate can be difficult, especially when the materials used to make the encapsulated photovoltaic element have low surface tension. Notably, the surfaces used as the top layer of many roofing substrates, such as the coated granules typically used with bituminous roofing products, can be less than optimal for adhesion to a photovoltaic element.
- One disadvantage to the use of photovoltaic roofing elements is that they can require special skills and tools for installation, making them challenging for installation by a roofing professional. Moreover, once installed on a roof, they can be relatively susceptible to damage. Accordingly, at any point after a roof has photovoltaic roofing elements installed thereon, it can be more difficult for workers to perform any other necessary tasks on the roof.
- There remains a need for roofing products and photovoltaic roofing systems that can address these deficiencies.
- One aspect of the present invention is a roofing product including:
-
- a flexible roofing substrate having a top surface, the top surface having one or more receptor zones thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it.
- Another aspect of the present invention is a photovoltaic roofing element including:
-
- a flexible roofing substrate having a top surface, the top surface having one or more receptor zones thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it; and
- one or more photovoltaic elements disposed in the one or more receptor zones of the top surface of the flexible roofing substrate.
- Another aspect of the present invention is a photovoltaic roofing system comprising one or more photovoltaic roofing elements as described above disposed on a roof deck.
- Another aspect of the present invention is a method for installing a photovoltaic roofing system, the method comprising:
-
- installing on a roof deck a flexible roofing substrate having a top surface, the top surface having one or more receptor zones thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it; then
- disposing the one or more photovoltaic elements on the one or more receptor zones of the top surface of the flexible roofing substrate.
- Another aspect of the present invention is a kit for the installation of a photovoltaic roofing system, the kit comprising:
-
- one or more flexible roofing substrates having a top surface, the top surface having one or more receptor zones thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it; and
- one or more photovoltaic elements.
- The products, elements, systems, methods and kits of the present invention can result in a number of advantages. For example, in some embodiments, the products and systems of the present invention can provide enhanced adhesion between the photovoltaic element and the flexible roofing substrate. In other examples, the methods of the present invention can be used to install a photovoltaic roofing system so that the installation of the relatively rugged flexible roofing substrate can be performed by a roofing professional, and the more fragile photovoltaic elements can be installed much later, by a person skilled in electrical interconnections. Other advantages will be apparent to the person of skill in the art.
- The accompanying drawings are not necessarily to scale, and sizes of various elements can be distorted for clarity.
-
FIG. 1 is a schematic perspective view of a roofing product according to one embodiment of the invention; -
FIG. 2 is a schematic exploded view and a schematic cross-sectional view of an encapsulated photovoltaic element suitable for use in the present invention; -
FIG. 3 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention; -
FIG. 4 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention; -
FIG. 5 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention; -
FIG. 6 is a partial schematic cross-sectional view of a roofing product according to another embodiment of the invention; -
FIG. 7 is top schematic view of roofing products according to other embodiments of the invention; -
FIG. 8 is a top schematic view and a schematic cross-sectional view of a photovoltaic roofing element according to the invention; -
FIG. 9 is a schematic top perspective view of a photovoltaic element according to one embodiment of the invention; -
FIG. 10 is a top perspective schematic view of a photovoltaic roofing system according to the invention; -
FIGS. 11-13 are top schematic views of roofing products according to the present invention; -
FIG. 14 is a top schematic view of a photovoltaic roofing system according to one embodiment of the invention; -
FIG. 15 is a top schematic view of a photovoltaic roofing system according to another embodiment of the invention; -
FIG. 16 is a top schematic view of a photovoltaic roofing system according to another embodiment of the invention; -
FIG. 17 is a schematic top view and in schematic cross-sectional view of a photovoltaic roofing element according to one embodiment of the invention; -
FIG. 18 is a partial schematic cross-sectional/perspective view of a photovoltaic roofing system according to one embodiment of the invention; and -
FIG. 19 is a partial schematic cross-sectional view of a photovoltaic roofing system according to another embodiment of the invention. - One embodiment of a roofing product according to the present invention is shown in schematic perspective view in
FIG. 1 .Roofing product 100 comprises aflexible roofing substrate 110 having atop surface 112. One or more (in this embodiment, six)receptor zones 120 are on thetop surface 112 offlexible roofing substrate 110. Eachreceptor zone 120 is adapted to receive one or more photovoltaic elements, and has a different surfacing than thearea 122 of the top surface adjacent to thereceptor zone 120. The sizes and shapes of the one or more receptor zones can, for example, be selected based on the sizes and shapes of the photovoltaic elements envisioned for use therewith. For example, certain photovoltaic elements available from Uni-solar Ovonic have dimensions of about 12 cm×18 cm (T-Cells); about 24 cm×36 cm (L-Cells); or about 40 cm×5 m (strip). - In some embodiments, the receptor zone has dimensions that are somewhat larger than (e.g., in the range of 101-120% of, or even 101-110% of) the dimensions of the photovoltaic elements with which they are to be used. Such embodiments can be more user-friendly, as precise alignment is not necessary for an installer to accurately place the photovoltaic element completely within the receptor zone. In certain embodiments, when an elongated photovoltaic element is used, such as the strips available from Uni-solar Ovonic, minor angular misalignments can be tolerated.
- Photovoltaic elements suitable for use in conjunction with the roofing products of the invention, and in the photovoltaic roofing elements, systems, methods and kits of the invention comprise one or more interconnected photovoltaic cells provided together in a single package. The photovoltaic cells of the photovoltaic elements can be based on any desirable photovoltaic material system, such as monocrystalline silicon; polycrystalline silicon; amorphous silicon; III-V materials such as indium gallium nitride; II-VI materials such as cadmium telluride; and more complex chalcogenides (group VI) and pnicogenides (group V) such as copper indium diselenide. For example, one type of suitable photovoltaic cell includes an n-type silicon layer (doped with an electron donor such as phosphorus) oriented toward incident solar radiation on top of a p-type silicon layer (doped with an electron acceptor, such as boron), sandwiched between a pair of electrically-conductive electrode layers. Another type of suitable photovoltaic cell is an indium phosphide-based thermo-photovoltaic cell, which has high energy conversion efficiency in the near-infrared region of the solar spectrum. Thin film photovoltaic materials and flexible photovoltaic materials can be used in the construction of photovoltaic elements for use in the present invention. In one embodiment of the invention, the photovoltaic element includes a monocrystalline silicon photovoltaic cell or a polycrystalline silicon photovoltaic cell. The photovoltaic elements for use in the present invention can be flexible, or alternatively can be rigid.
- The photovoltaic elements can be encapsulated photovoltaic elements, in which photovoltaic cells are encapsulated between various layers of material. For example, an encapsulated photovoltaic element can include a top layer material at its top surface, and a bottom layer material at its bottom surface. The top layer material can, for example, provide environmental protection to the underlying photovoltaic cells, and any other underlying layers. Examples of suitable materials for the top layer material include fluoropolymers, for example ETFE (“TEFZEL”), PFE, FEP, PVF (“TEDLAR”), PCTFE or PVDF. The top layer material can alternatively be, for example, a glass sheet, or a non-fluorinated polymeric material. The bottom layer material can be, for example, a fluoropolymer, for example ETFE (“TEFZEL”), PFE, FEP, PVDF or PVF (“TEDLAR”). The bottom layer material can alternatively be, for example, a polymeric material (e.g., polyester such as PET); or a metallic material (e.g., steel or aluminum sheet).
- As the person of skill in the art will appreciate, an encapsulated photovoltaic element can include other layers interspersed between the top layer material and the bottom layer material. For example, an encapsulated photovoltaic element can include structural elements (e.g., a reinforcing layer of glass, metal or polymer fibers, or a rigid film); adhesive layers (e.g., EVA to adhere other layers together); mounting structures (e.g., clips, holes, or tabs); one or more electrical connectors (e.g., electrodes, electrical connectors; optionally connectorized electrical wires or cables) for electrically interconnecting the photovoltaic cell(s) of the encapsulated photovoltaic element with an electrical system. An example of an encapsulated photovoltaic element suitable for use in the present invention is shown in schematic exploded view and schematic cross sectional view in
FIG. 2 . Encapsulatedphotovoltaic element 260 includes a top protective layer 252 (e.g., glass or a fluoropolymer film such as ETFE, PVDF, PVF, FEP, PFA or PCTFE); encapsulant layers 254 (e.g., EVA, functionalized EVA, crosslinked EVA, silicone, thermoplastic polyurethane, maleic acid-modified polyolefin, ionomer, or ethylene/(meth)acrylic acid copolymer); a layer of electrically-interconnectedphotovoltaic cells 256; and a backing layer 258 (e.g., PVDF, PVF, PET). - A photovoltaic element having a self-adhesive layer on its bottom surface can be suitable for use in the present invention (e.g., it can be adhered in the receptor zone). In one example, the self-adhesive layer is a 3-10 mil thick layer of a butyl rubber-based or rubber resin pressure sensitive adhesive. Suitable rubber resin pressure sensitive adhesives are disclosed, for example, in U.S. Pat. No. 3,451,537, which is hereby incorporated herein by reference. In certain embodiments, the adhesive package on the bottom surface of the photovoltaic element has a composite structure comprising a layer of pressure sensitive adhesive and a layer of deformable material. The deformable material can allow for more economical usage of a higher performance, higher cost pressure sensitive adhesive. The use of deformable layers to improve contact between pressure sensitive adhesives and irregular surfaces is disclosed in U.S. Pat. No. 5,310,278, which is hereby incorporated herein by reference in its entirety. The self-adhesive layer can be protected with a releasable liner; the releasable liner can be removed (e.g., by peeling) to expose the adhesive for attachment to the receptor zone of a flexible roofing substrate.
- The photovoltaic element can include at least one antireflection coating, for example as the top layer material in an encapsulated photovoltaic element, or disposed between the top layer material and the photovoltaic cells.
- Suitable photovoltaic elements can be obtained, for example, from China Electric Equipment Group of Nanjing, China, as well as from several domestic suppliers such as Uni-Solar Ovonic, Sharp, Shell Solar, BP Solar, USFC, First Solar, General Electric, Schott Solar, Evergreen Solar and Global Solar. Moreover, the person of skill in the art can fabricate encapsulated photovoltaic elements using techniques such as lamination or autoclave processes. Encapsulated photovoltaic elements can be made, for example, using methods disclosed in U.S. Pat. No. 5,273,608, which is hereby incorporated herein by reference.
- The top surface of photovoltaic element is the surface presenting the photoelectrically-active areas of its one or more photoelectric cells. When installed, the photovoltaic roofing elements of the present invention should be oriented so that the top surface of the photovoltaic element is able to be illuminated by solar radiation. The bottom surface is the surface opposite the top surface.
- The photovoltaic element also has an operating wavelength range. Solar radiation includes light of wavelengths spanning the near UV, the visible, and the near infrared spectra. As used herein, the term “solar radiation,” when used without further elaboration means radiation in the wavelength range of 300 nm to 2500 nm, inclusive. Different photovoltaic elements have different power generation efficiencies with respect to different parts of the solar spectrum. Amorphous doped silicon is most efficient at visible wavelengths, and polycrystalline doped silicon and monocrystalline doped silicon are most efficient at near-infrared wavelengths. As used herein, the operating wavelength range of a photovoltaic element is the wavelength range over which the relative spectral response is at least 10% of the maximal spectral response. According to certain embodiments of the invention, the operating wavelength range of the photovoltaic element falls within the range of about 300 nm to about 2000 nm. In certain embodiments of the invention, the operating wavelength range of the photovoltaic element falls within the range of about 300 nm to about 1200 nm.
- The surfacing of the one or more receptor zones can be adapted to provide increased adhesion between the flexible roofing substrate and a photovoltaic element (for example, an encapsulated roofing element). Accordingly, the receptor zones can provide areas of increased adhesion for photovoltaic elements, while the remainder of the top surface of the flexible roofing substrate can be surfaced to provide, for example, weather resistance, UV resistance, solar reflectivity, a color or appearance complementary to photovoltaic elements or adjacent areas of the flexible roofing substrate, or other desirable properties.
- For example, in one embodiment of the invention, the surfacing of the receptor zones is textured. The surfacing can include, for example, a textured layer such as a fabric, scrim, a woven or non-woven web, a felt, a porous film, or a sheet having a microstructured surface. In other embodiments, the surfacing includes a texturing material such as sand, glass or quartz grit, fibers (e.g., polymeric, glass). The textured layer can provide additional surface area for adhesion of the encapsulated photovoltaic element to the flexible roofing substrate. In certain embodiments of the invention, the textured layer can intermingle with the materials of an encapsulated photovoltaic element, the flexible roofing substrate, and/or an adhesive material in order to improve adhesion through mechanical interlocking. A textured layer can be especially useful in conjunction with a bituminous roofing substrate; during fabrication, the textured layer can embed itself in the softened bituminous material. Similarly, a textured layer can be useful in conjunction with a polymeric roofing substrate, embedding itself in the polymeric material through use of heat and/or pressure. In certain embodiments of the invention, the textured layer is a fibrous layer (e.g., scrim, fabric, non-woven web). Textured layers are described in more detail in U.S. Patent Application Publication no. 2008/0248241, which is hereby incorporated herein by reference in its entirety. In certain embodiments of the invention, the material of the textured layer is at least partially embedded in the material of the top surface of the flexible roofing substrate. For example, in one embodiment, the surfacing includes a textured web (e.g., fiberglass mat) coated on one side (e.g., with a polymeric coating), with its uncoated side embedded in the material of the top surface of the flexible roofing substrate (e.g., a bituminous roofing substrate) in the receptor zone. In this embodiment, the coating can provide increased adhesion to a photovoltaic element, while the embedded textured web improves adhesion to the flexible roofing substrate. In other embodiments of the invention, the textured surfacing is achieved by mechanically embossing or chemically etching the top surface of the flexible roofing substrate in the receptor zone.
- In other embodiments of the invention, the surfacing of the one or more receptor zones includes a polymer material or a metal foil. For example, as shown in partial schematic cross-sectional view in
FIG. 3 ,roofing product 300 includesflexible roofing substrate 310, which hastop surface 312. Disposed on thetop surface 312 in thereceptor zone 320 is a polymer material 330 (e.g., in film form). The polymer material or metal foil can provide enhanced adhesion to a photovoltaic element (e.g., through a tie layer system such as an adhesive layer, as described below). For example, the surfacing can be a polymer film formed from a polymer such as a fluorinated polymer, an acrylic polymer, a urethane polymer, a polyester, or a polyolefin. In other embodiments, the surfacing of the one or more receptor zones includes a metal foil, such as an aluminum foil or a steel foil. For example, in one embodiment, 2 mil thickness deadsoft aluminum foil available from Kaiser aluminum is laminated to portions of the surface of a bituminous roofing membrane prior to the application of roofing granules thereto. The polymer film or metal foil can be surface-treated (e.g., as described below) to enhance adhesion. - In another embodiment, the surfacing of the one or more receptor zones includes an adhesive material covered by a releasable liner. For example, as shown in partial schematic cross-sectional view in
FIG. 4 ,roofing product 400 includesflexible roofing substrate 410, which hastop surface 412. Disposed on thetop surface 412 in thereceptor zone 420 is anadhesive material 432 covered by areleasable liner 434. In such embodiments, the releasable liner can be removed (e.g., by peeling using pull tab 436) to expose the adhesive material, which can be used to affix a photovoltaic element to the receptor zone. The releasable liner can be, for example, release-coated paper. The adhesive material can be, for example, a pressure sensitive adhesive such as a functionalized EVA-based pressure-sensitive adhesive (e.g., HP Fuller 9917). - In another embodiment, the surfacing of the one of more receptor zones includes uncoated bituminous material covered by a releasable liner. For example, as shown in partial schematic cross-sectional view in
FIG. 5 ,roofing product 500 includes bituminous roofing substrate 510 (e.g., a glass-reinforced bituminous membrane or shingle), which hastop surface 512. Thetop surface 512 is coated withroofing granules 540 in areas outside thereceptor zone 520. Inreceptor zone 520, the top surface is not coated with granules, but instead is left uncoated and covered by releasable liner 534 (which can optionally include a pull tab 536). In certain embodiments, the uncoated bituminous material, when exposed by removing the release liner, can provide sufficient adhesive character to directly adhere a photovoltaic element in the receptor zone. In other embodiments, a tie layer system (e.g., an adhesive layer) can be used to adhere the photovoltaic element to the receptor zone. - In some embodiments of the invention, the surfacing of the one or more receptor zones is selected so that the appearance of the receptor zone is complementary to the top surface of the flexible roofing substrate in the area adjacent to the receptor zone. As used herein L*, a* and b* are the color measurements for a given sample using the 1976 CIE color space. The strength in color space E* is defined as E*=(L*2+a*2+b*2)1/2. The total color difference ΔE* between two articles is defined as ΔE*=(ΔL*2+Δa*2+Δb*2)1/2, in which ΔL*, Δa* and Δb* are respectively the differences in L*, a* and b* for the two articles. L*, a* and b* values are measured using a HunterLab Model Labscan XE spectrophotometer using a 0° viewing angle, a 45° illumination angle, a 10° standard observer, and a D-65 illuminant. Lower L* values correspond to relatively darker tones. In such embodiments, if part or all of a receptor zone is not covered by a photovoltaic element, it can complement the rest of the surface of the flexible roofing substrate. In certain embodiments of the invention, the receptor zone has a ΔE*<30 compared to the top surface of the flexible roofing substrate in the area adjacent to the receptor zone. In some embodiments, the receptor zone has a ΔE*<20 compared to the top surface of the flexible roofing substrate in the area adjacent to the receptor zone.
- In other embodiments, the flexible roofing substrate is an asphalt shingle substrate, and the surfacing of the one or more receptor zones is selected so that the receptor zone is black. In such embodiments, if part or all of a receptor zone is not covered by a photovoltaic element, it can complement the black color of the asphalt shingle substrate.
- In other embodiments, the surfacing of the one or more receptor zones is selected so that the appearance of the receptor zone is complementary to the photovoltaic element with which the roofing product is to be used. In such embodiments, if part or all of a receptor zone is not covered by a photovoltaic element, it can complement the photovoltaic element disposed thereon, or photovoltaic elements disposed on neighboring receptor zones. For example, in certain embodiments of the invention, the receptor zone has a ΔE*<30 compared to the photovoltaically active surface of the photovoltaic element. In some embodiments, the receptor zone has a ΔE*<20 compared to the photovoltaically active surface of the photovoltaic element.
- In embodiments in which the surfacing of the one or more receptor zones are selected to provide appearance complementary to some other aspect of the flexible roofing substrate or a photovoltaic element, the receptor zone can be provided with a desired appearance, for example, through printing or coating. When the receptor zone includes an aluminum foil, a desired appearance can in some embodiments be provided by anodization.
- In some embodiments, the surfacing of the receptor zone is stabilized to UV radiation, for example through UV stabilization or through use of UV-resistant materials. In such embodiments, when the receptor zone is not completely occluded by photovoltaic elements, any exposed surface is resistant to UV damage. Such embodiments are especially useful when the flexible roofing substrate is formed from bituminous material. For example, the surfacing may include ETFE, PVC, acrylic or another UV-resistant polymer film, for example including UV stabilizers and/or antioxidants. Metal foil is opaque to UV, and can alternatively be used. UV-opaque particles can also be used; in such embodiments, it is preferable that such particles have substantially complete coverage over the surface of the receptor zone. For example, in one embodiment, the surface of the receptor zone is at least partially covered by small granules, for example roofing granules of #18 or #22 size, so that any areas of the receptor zone that are not blocked by a photovoltaic element are protected from UV damage.
- In certain embodiments, the surfacing of the receptor zone is both stabilized to UV radiation and selected so that the appearance of the receptor zone is complementary to the photovoltaic element with which the roofing product is to be used, adjacent areas of the flexible roofing substrate, or is black, as described above. In such embodiments, any portion of the receptor zone that remains exposed can be UV resistant and complementary in appearance to other parts of the flexible roofing substrate or the photovoltaic elements used therewith.
- In certain embodiments of the invention, the top surface of the flexible roofing substrate in the receptor zone is recessed from the top surface of the flexible roofing substrate in the area adjacent to the receptor zone. For example, as shown in partial schematic cross-sectional view in
FIG. 6 ,roofing product 600 includesflexible roofing substrate 610, which has atop surface 612. The top surface of the flexible roofing substrate in thereceptor zone 620 is recessed from the top surface of the flexible roofing substrate in thearea 614 adjacent to thereceptor zone 620. In certain such embodiments, when a photovoltaic element is disposed in the receptor zone, its top surface can be substantially flush with the top surface of the area adjacent to the receptor zone. - In some embodiments of the invention, the surfacing of the one or more receptor zones includes one or more alignment marks (e.g., printed or embossed) to aid in the alignment and installation of a photovoltaic element. For example, the alignment marks can correspond with the visible separations between sets of photovoltaic cells in the photovoltaic element. In other embodiments, the alignment marks can correspond with markings formed on the top surface and/or the bottom surface (e.g., the bottom surface of an adhesive layer) of the photovoltaic element. In other embodiments, the alignment marks can correspond to markings formed on a surface of a releasable liner (e.g., the surface in contact with an adhesive layer, or the bottom surface); as the releasable liner is removed to expose the adhesive layer (e.g., when the photovoltaic element is supplied in roll form), the installer can use it as a guide to ensure alignment of the photovoltaic element to the receptor zone. The use of alignment marks can be especially useful when using photovoltaic elements in strip form, as the potential for alignment is higher for long, thin strips (e.g., Uni-Solar Ovonic strip photovoltaic element). The use of alignment marks in the receptor zone can be especially useful when the photovoltaic element is smaller than the receptor zone, so that the alignment marks are visible when the photovoltaic element is disposed thereon.
- In other embodiments, the flexible roofing substrate includes one or more alignment marks (e.g., printed or embossed) in the area adjacent the receptor zone to aid in the alignment and installation of a photovoltaic element. The alignment marks can be as described above for the alignment marks in the receptor zone. For example, the alignment marks can correspond with the visible separations between sets of photovoltaic cells in the photovoltaic element. In other embodiments, the alignment marks can correspond with markings formed on the top surface of the photovoltaic element. When the flexible roofing substrate is a shingle, the alignment marks can be, for example, in the headlap area. When the flexible roofing substrate is a shingle, the alignment marks can be, for example, in the headlap area.
- In certain embodiments, the top surface of the flexible roofing substrate has solar reflective properties, through a solar reflective coating or solar reflective roofing granules (see U.S. Pat. No. 7,241,500, which is hereby incorporated by reference in its entirety). Solar reflectance can reduce the effective temperature of the roof surface, which can improve the efficiency of power generation of the photovoltaic elements disposed thereon, as described in U.S. patent application Ser. No. 12/266,481, which is hereby incorporated herein by reference in its entirety. In some such embodiments, the top surface of the flexible roofing substrate does not have solar reflective properties in the one or more receptor zones, resulting in more economical use of solar reflective coating or solar reflective roofing granules. Similarly, in some embodiments, the solar reflective properties do not extend to areas of the flexible roofing substrate which are not visible when installed (e.g., the headlap region of a shingle, or the selvage region of a roofing membrane).
- The one or more receptor zones can be provided on the flexible roofing substrate in a wide variety of geometries. For example, they can be provided as islands or isolated zones; or alternatively can extend the length of a flexible roofing substrate. For example, in one embodiment, as shown in
FIG. 7( a), the receptor zones 720 are formed as isolated zones on the top surface of a roofing membrane 710. In another embodiment, as shown inFIG. 7( b), a receptor zone 721 is formed to continuously extend along the length of a roofing membrane 715, as shown inFIG. 7( b). In other embodiments, the receptor zone 722 is formed to cover the entire surface of a roofing membrane 717 except for one or more selvage zones 723 formed along one or more edges, as shown inFIG. 7( b) and 7(c). - In one embodiment, the flexible roofing substrate is a roofing membrane, such as the type used in multiple layer or built-up roofing systems. In such embodiments, the flexible roofing substrate can be provided, for example, as elongated sheets, which can be transported to the worksite in roll form. The roofing membrane can be, for example, formed from a bituminous material, and can be reinforced with fibers, glass mat, felt, or fabric, and coated with roofing granules (e.g., in areas outside of the receptor zones). In other embodiments, the roofing membrane can be formed from a rubber or polymeric material. Installation of the membrane can be performed through a variety of mechanical fasteners, adhesives, torching, or any other suitable methods. Adjacent sheets of roofing membrane can be sealed together where they adjoin. The roofing membranes of the present invention can be installed together with conventional roofing membrane products, to provide only certain areas of the roof with photovoltaic power generation capability. Roofing membranes can be formed, for example, from a single sheet of material with different surfacings formed thereon, or can be formed by combining sheets of material side-by-side so as to make a single membrane having different surfacings.
- In another embodiment, the flexible roofing substrate is a shingle. For example, the shingle can be formed from a bituminous material, which can be reinforced with fibers, glass mat, felt, or fabric, and coated with roofing granules (e.g., in areas outside of the receptor zones). Shingles can be manufactured, for example, using conventional methods, and cut into individual pieces. Shingles can be provided in bundles to a worksite, and can be installed using mechanical fasteners or other suitable methods. Adjacent courses of shingles can be applied in an overlapping manner to cover and protect the roof. The shingles of the present invention can be installed together with conventional shingles, to provide only certain areas of the roof with photovoltaic power generation capability.
- Another aspect of the invention is a photovoltaic roofing element, for example as shown in schematic top perspective view and in partial (i.e., of a single tab) schematic cross-sectional view in
FIG. 8 .Photovoltaic roofing element 850 includes aflexible roofing substrate 810 having atop surface 812, the top surface having one or more (in this example, four)receptor zones 820 thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it, as described above.Photovoltaic roofing element 850 further comprises one or morephotovoltaic elements 860 disposed in the one or more receptor zones of the top surface of the flexible roofing substrate. The one or more photovoltaic elements can be adhered to the top surface of the flexible roofing substrate in the receptor zones as described above. For example, as shown inFIG. 8 , a tie layer system (e.g., adhesive material) 832 can adhere eachphotovoltaic element 860 to thetop surface 812 offlexible roofing substrate 810 inreceptor zones 820. In the receptor zone, the top surface can include, as described above, a polymer or metal film, texturing, or a self-adhesive material (not shown). - In another aspect of the invention, a photovoltaic roofing system comprises one or more photovoltaic roofing elements as described herein disposed on a roof deck. The photovoltaic roofing elements can be disposed with a certain amount of overlap to provide a waterproof covering, as is conventional in the roofing arts. The photovoltaic roofing system can include a wiring system as described above, and as described in U.S. patent application Ser. No. 11/743,073, which is hereby incorporated herein by reference in its entirety. The photovoltaic elements of the photovoltaic roofing elements are desirably connected to an electrical system, either in series, in parallel, or in series-parallel, as would be recognized by the skilled artisan. Electrical connections can be made using electrical connectors, such as those available from Tyco International. There can be one or more layers of material, such as underlayment, between the roof deck and the photovoltaic roofing elements of the present invention. The photovoltaic roofing elements of the present invention can be installed on top of an existing roof, in such embodiments, there would be one or more layers of standard (i.e., non-photovoltaic) roofing elements (e.g., asphalt coated shingles or membrane roofing) between the roof deck and the photovoltaic roofing elements of the present invention. Electrical connections are desirably made using cables, connectors and methods that meet UNDERWRITERS LABORATORIES and NATIONAL ELECTRICAL CODE standards. Even when the photovoltaic roofing elements of the present invention are not installed on top of preexisting roofing materials, the roof can also include one or more standard roofing elements, for example to provide weather protection at the edges of the roof, or in any hips, valleys, and ridges of the roof, or in areas not suitable for photovoltaic power generation.
- In certain photovoltaic elements of the invention, at least about 70%, at least about 80%, or even at least about 90% of the total receptor zone area of a flexible roofing substrate is covered by photovoltaic elements.
- In certain photovoltaic roofing systems of the invention, at least about 70%, at least about 80%, or even at least about 90% of the total receptor zone area of the flexible roofing substrates is covered by photovoltaic elements.
- A tie layer system can be used to adhere the photovoltaic element in the receptor zone of the top surface of the flexible roofing substrate, as described in U.S. patent application Ser. No. 12/266,409, which is hereby incorporated herein by reference in its entirety. The tie layer system can include layers that are provided together with the photovoltaic element, the flexible roofing substrate on which the photovoltaic element is disposed, or both. For example, when the tie layer system is a layer of adhesive material, it can be provided as a layer on the flexible roofing substrate (e.g., as described above with respect to
FIG. 4 ); as a layer of adhesive on the bottom of the photovoltaic element (e.g., exposed by removing a release liner); or both. - In certain embodiments of the invention, the tie layer system is a polymeric tie layer system (i.e., it comprises one or more polymer layers). For example, in one embodiment of the invention, the tie layer system consists of a single polymer layer. In other embodiments of the invention, the tie layer system consists of a plurality of polymer layers. For example, a tie layer system can include an adhesive layer and a reinforcing layer and/or a surface activation layer. Yet in another example, the tie layer system can comprise other layers of structural features, such as woven or nonwoven mat, a fibrous surface, a patterned surface, a nano-structured surface, or blends of various materials to improve the bonding. In some embodiments, the tie layer system has a stratified structure, for example having an upper surface and a lower surface, each of which has different surface chemistry. For example, each surface can be adapted to adhere to a different adherend.
- Especially suitable tie layer systems provide sufficient bond strength to join the bottom surface of the photovoltaic element to the top surface of the flexible roofing substrate, and should be able to withstand severe outdoor weathering. In one embodiment of the invention, the tie layer system provides greater than 10 lb/inch adhesive bond strength in a 90° peel test. In certain embodiments, the tie layer system maintains the bond strength in severe outdoor conditions for an extended period of time, e.g., 20 years of service life. The tie layer system can, for example, meet the humidity-freeze cycle test, thermal cycle test, and damp-heat test requirements listed in IEC 1646. Moreover, in certain embodiments the materials of the tie layer system can flexibly be incorporated through use of a variety of adhesive processes.
- A polymeric tie layer system can act to adhere the photovoltaic element to the flexible roofing substrate, especially when they are formed of partially incompatible materials (for example, when the photovoltaic element is an encapsulated photovoltaic element having a fluoropolymer at its bottom surface). In one embodiment of the invention, the tie layer system consists of a single polymer layer having a surface tension in the range of about 25% to about 75% of the way between the surface tension value of the top surface of the roofing element and the surface tension value of the bottom surface of the photovoltaic element.
- In one embodiment of the invention, the tie layer system includes a polymeric material having a Chang viscoelastic window exhibiting at least one set of coordinates (log(G″), log(G′)) lying within the window bound by the coordinates (4.5, 3), (4.5, 6), (6, 6), (6, 3) (e.g., pressure sensitive adhesives). In certain embodiments of the invention, the polymeric material has a Chang viscoelastic window exhibiting at least one set of coordinates (log(G″), log(G′)) lying within the window bound by the coordinates (4.5, 6), (6, 6), (6, 3.7). In other embodiments of the invention, the polymeric material has a Chang viscoelastic window exhibiting at least one set of coordinates (log(G″), log(G′)) lying within the window bound by the coordinates (4.5, 6), (4.5,8), (8, 8), (8, 3.7), (6, 3.7). In other embodiments of the invention, the polymeric material has a Chang viscoelastic window exhibiting at least one set of coordinates (log(G″), log(G′)) lying within the window bound by the coordinates (4.5, 6), (4.5,8), (8, 8), (8,3.7), (6, 3.7), (6, 6). G″ is the viscous shear modulus in units of Pa, and G′ is the elastic shear modulus in units of Pa. G and G″ can be measured as described in ASTM 882-97, for example at frequencies of 0.01 R/S and 100 R/S. Dissipative materials generally have Chang viscoelastic window coordinates within the above-referenced windows. Such materials are described in more detail in U.S. Pat. No. 6,869,981, and at pages 171-184 of Handbook of Pressure Sensitive Adhesive Technology, 3rd Ed., D. Satas editor, 1999, each of which is hereby incorporated herein by reference in its entirety; the UV curable materials described therein can be converted to heat-curable materials by changing initiators. Other examples include VHB adhesive materials available from 3M.
- In certain embodiments of the invention, the tie layer system has a coefficient of thermal expansion (“CTE”) between the CTE of the top surface of the flexible roofing substrate and the CTE of the bottom surface of the photovoltaic element, measured at 100° F. In one embodiment of the invention, the tie layer system has a CTE in the range of about 25% to about 75% of the way between the CTE of the top surface of the flexible roofing substrate and the CTE of the bottom surface of the photovoltaic element, measured at 100° F. In one embodiment of the invention, the top surface of the roofing element is bitumen-based with a CTE of ˜2.5×10−4 in/in/° F.
- In certain embodiments of the invention, the tie layer materials are not conductive. In such embodiments, the photovoltaic elements do not require additional grounding to prevent electric shock or to meet electrical code requirements.
- In some embodiments of the invention, the tie layer system can include one or more materials selected from the group consisting of a polyolefin functionalized with carboxylate and/or anhydride (e.g., maleic anhydride); ethylene vinyl acetate (optionally modified with anhydride); acid-modified polyolefins (e.g., ethylene/(meth)acrylic acid); a combination of an acid-modified polyolefin with an amine-functional polymer; maleic anhydride-grafted EPDM; a hot melt containing a thermoplastic or elastomeric fluoropolymer; and a curable resin (e.g., an epoxy resin such as BondiT from Reltek LLC, or an ethylenically-unsaturated resin), butyl adhesives, or pressure-sensitive adhesives. Examples of such materials are described, for example, in U.S. Pat. Nos. 6,465,103; 6,632,518; 7,070,675; 6,524,671; 5,143,761; and 6,630,047, each of which is hereby incorporated herein by reference in its entirety.
- In certain embodiments of the invention, the tie layer system is a blend of functionalized EVA and polyolefin (e.g., polypropylene). For example, the tie layer system can contain 5-75% by weight of polyolefin (e.g., 15-55%). The tie layer system can be, for example, a 70% polypropylene/30% EVA blend, or a 50% polypropylene/50% EVA blend. In other embodiments of the invention, the tie layer system includes (or consists essentially of) an EVA-based PSA (e.g., HB Fuller HL2688PT); EVA (e.g., DuPont Bynel 3860); maleic acid-grafted EVA (e.g., DuPont Bynel E418); maleic acid grafted polypropylene (e.g., Equistar Plexar 6002); an epoxy/maleic acid grafted ethylene/butyl acrylate polymer (e.g., Arkema Lotader AX8900); a blend of polypropylene, PVDF and functionalized EVA-based pressure-sensitive adhesive (e.g., 50% polypropylene, 25% Arkema 2500, 25% HP Fuller 9917); a polyethylene/polypropylene copolymer (e.g., Dow Versify DE2300 having 12% ethylene content); or a functionalized EVA-based pressure-sensitive adhesive (e.g., HP Fuller 9917). In such embodiments, the top surface of the roofing substrate can be, for example, polyolefin (e.g., polypropylene).
- In other embodiments of the invention, the tie layer system comprises an amino-substituted organosilane layer, for example as described in U.S. Pat. No. 6,753,087, which is hereby incorporated herein by reference. For example, the tie layer system can comprise a polymeric layer (e.g., having polar functionality) having blended therein an amino-substituted organosilane.
- The thickness of the tie layer system can be, for example, in the range of about 25 μm to about 2.5 mm. In certain embodiments of the invention, the thickness of the tie layer system is in the range of about 50 μm to about 1 mm.
- Examples of various processes for completing the bonding of the tie layer between the bottom layer of the photovoltaic element and the top surface of the roofing substrate (in the receptor zone) may include, for example, compression molding, injection molding, co-extrusion, lamination, vacuum lamination (e.g., to remove air bubbles and outgassing), ultrasonic welding, vibration welding, laser welding, and IR welding. The method for completing the bonding will depend on whether the bonding is to be completed at a worksite (e.g., after installation of the flexible roofing substrate on a roof deck as described below) or in a factory setting. Equipment intensive processes such as lamination and molding are especially suited to be performed in a factory setting; while use of adhesive materials can be suitable for use on site. In certain embodiments, an adhesive material is provided on the photovoltaic element, the receptor zone, or both, and is covered by a releasable liner, as described above. Peeling the liner can expose the adhesive material, which can adhere the photovoltaic element to the top surface of the roofing substrate.
- In some embodiments of this invention, the top surface of the flexible roofing substrate or the bottom surface of the photovoltaic element or both can be surface treated to enhance their affinity to each other, or to the tie layer system, if used. Examples of the surface treatments include flame treatment, plasma treatment, corona treatment, ozone treatment, sodium treatment, etching, ion implantation, electron beam treatment, or combinations thereof. Surface treatments can also include chemical modification with reactive organic species such as polymerizable monomers, or coupling agents such as organosilanes, organozirconates or organotitanates.
- In certain embodiments, a mechanical fastener is used together with a tie layer system (e.g., adhesive layer) to attach the photovoltaic element to the receptor zone of the top surface of the flexible roofing substrate. The mechanical fastener can be, for example, nails, staples, screws, clips or the like; such fasteners can attach the photovoltaic element only to the flexible roofing substrate on which it is disposed, or can go through the flexible roofing substrate down to underlying flexible roofing substrates, or even through to the roof deck itself. The mechanical fastener can provide for additional security of attachment of the photovoltaic element under conditions of steep slope or high temperature, where a tie layer system may be subject to shear stresses. The mechanical attachment can be particularly helpful on the lower edge of the photovoltaic element to prevent sliding movement down the roof. Moreover, mechanical attachment at the lower edge may impart added resistance to wind uplift detachment of the photovoltaic element or the flexible roofing substrate. Mechanical attachment at one edge of the photovoltaic element can also allow a degree of movement within the tie layer system to accommodate differential thermal expansion and contraction between the photovoltaic element and the flexible roofing substrate.
- In some embodiments, the photovoltaic element will include fastening tabs or a fastening zone (e.g., a marked area) to aid in the attachment of the photovoltaic element to the receptor zone of the top surface of the flexible roofing substrate. Fastening zones and tabs may be configured using a flexible material, such as described in U.S. Pat. Nos. 5,729,946; 5,857,303; 5,887,743; 5,857,303 and 6,000,185, each of which is hereby incorporated by reference in its entirety. Flexible fastening zones can help to accommodate movement between the photovoltaic element and the flexible roofing substrate, for example due to differential thermal expansion. For example, in one example of a
photovoltaic roofing element 950 of the invention, shown in top perspective view inFIG. 9 , photovoltaic element 960 (having photovoltaically active area 963) is disposed in the receptor zones offlexible roofing substrate 910.Photovoltaic element 960 includes bothfastening tabs 961 and afastening zone 962. Thefastening tabs 961 andfastening zone 962 denote places that where fastening will cause no damage to the photovoltaic element (e.g., areas devoid of photovoltaic cells or electrical components such as wiring). The fastening tabs can in some embodiments be covered by an overlying course of flexible roofing substrates (e.g., shingles). In certain embodiments, the photovoltaic element includes fastening tabs (e.g., as denoted by 961 inFIG. 9 ), but no other fastening zone. - In one embodiment of the invention, shown in schematic top perspective view in
FIG. 10 , eachflexible roofing substrate 1010 is a length of roofing membrane, four of which are shown applied to a roof deck (not shown) in overlapping strips to form aphotovoltaic roofing system 1080. A receptor zone is disposed longitudinally on the top surface of each flexible roofing substrate, spaced somewhat away from the lateral edges. The dimensions of the receptor zones can be selected to accommodate one or more desired photovoltaic elements. For example, certain currently available roofing membranes (e.g., from CertainTeed Corporation) are about 1 m in width and about 10 m in length. One currently available photovoltaic element is an encapsulated photovoltaic strip, about 40 cm in width and about 5 m in length. Accordingly, up to four suchphotovoltaic strips 1060 can fit in an appropriately-sized receptor zone on eachflexible roofing substrate 1010. In certain embodiments, the photovoltaic elements have one or more electrical connections (e.g., electrodes, electrical connectors, wires or cables optionally terminated with connectors). The electrical connections can be used to interconnect the photovoltaic element with other photovoltaic elements or with a wiring system for take-off of electrical power. InFIG. 10 , thephotovoltaic strips 1060 have connectorizedwires 1064 at one of their longitudinal ends. In the embodiment ofFIG. 10 , the electrical connections (1064) are at a longitudinal end of theflexible roofing substrate 1010. - In certain embodiments, the lengths of the photovoltaic elements and the roofing membrane are chosen so that the length of the roofing membrane is slightly greater than twice (e.g., 200-220% of) the length of the photovoltaic elements. In one embodiment, the photovoltaic elements are disposed in the receptor zone(s) so that at least one of the elements has an electrical connection at a longitudinal end of the roofing membrane, as shown in
FIG. 10 . In another embodiment, the photovoltaic elements are disposed so that at least one of the photovoltaic elements has an electrical connection at the longitudinal center of a roofing membrane. At the point where electrical connections are to be made, a wiring system or bus system can be provided to collect the electrical power generated by the photovoltaic elements. - In embodiments in which multiple photovoltaic elements are disposed adjacent to one another in a receptor zone, waterproofing may be provided via an optional bead of an adhesive, caulk or other sealant between adjacent photovoltaic elements. Alternatively, a pressure sensitive adhesive tape with a backing layer stabilized for outdoor performance can be used to seal the seams between adjacent photovoltaic elements.
- In another embodiment, the flexible roofing substrate is a shingle (e.g., as shown in
FIG. 8 ). Shingles can, for example, be provided in product constructions that have a single layer of bituminous shingle material. In other embodiments, multilayer laminated shingle constructions can be used. Laminated shingles can provide for a wide range of aesthetic effects in shingle design, as well as provide space within the shingle to accommodate wiring and electrical connector structures. Laminated shingles can yield a flatter laying product without undesirable bumps when installed. - For example, in the
roofing product 1100 ofFIG. 11 ,shingle 1110 has fourtab areas 1116, each having areceptor zone 1120 formed thereon, on which a photovoltaic element can be disposed. In theroofing product 1200 ofFIG. 12 ,shingle 1210 has fourtab areas 1216, each having areceptor zone 1220 formed thereon.Roofing product 1200 also includes a backing shim 1218 (i.e., a second thickness of shingle material) laminated to the bottom ofshingle 1210. The backing shim can provide an aesthetic effect delineating the tabs and create the illusion of shadows and structure, as well as well as providing another layer of material to cover a roof. The backing shim can underlay the entire shingle, or alternatively can underlay only part of the shingle. In other embodiments, as in theroofing product 1300 shown inFIG. 13 , theshingle 1310 need not have any individual tabs, and can have asingle receptor zone 1320 formed thereon. The receptor zone(s) can be formed to cover the entire exposure area of the shingle. In other embodiments, roofing granules (e.g., colored and/or solar reflective) can be disposed on exposed areas of the shingle. Lower cost granules can be used in the headlap zones that would be covered when the shingle is installed on a roof. - Photovoltaic roofing elements based on shingles can be arrayed on a roof deck in a variety of ways. For example, in the
photovoltaic roofing system 1480 shown in top schematic view inFIG. 14 ,photovoltaic roofing elements 1450 are arrayed as laterally-offset courses of shingles. Eachflexible roofing substrate 1410 is a four-tab shingle, with a receptor zone 1420 (shown exposed on one shingle) on each tab.Photovoltaic elements 1460 are disposed in thereceptor zones 1420. In one example, a shingle similar to the Grand Manor® Shangle®, available from CertainTeed Corporation, has a shingle exposure height of 8 inches and an overall shingle dimension of 18 inches by 36 inches, with four tabs in the exposure area. Each of the tabs has a receptor zone having a coating of small particle sand in place of conventional roofing granules. A T-cell photovoltaic element (Uni-Solar Ovonic) equipped with a pressure-sensitive adhesive is attached to each of the receptor zones of each shingle. - As described above, more than one photovoltaic element may be disposed on each receptor zone. Similarly, a single photovoltaic element may be disposed on more than one receptor zone. For example, in the
photovoltaic roofing system 1580 ofFIG. 15 ,photovoltaic roofing elements 1550 are provided and arrayed as described above with reference toFIG. 14 . Eachphotovoltaic element 1560 extends across and is disposed on the receptor zones 1520 (shown exposed on one shingle) of all four tabs of the shingle on which it is disposed. Each photovoltaic element can be, for example, a strip of four electrically interconnected T-cell photovoltaic elements in a laminate structure, with a pressure-sensitive adhesive on the bottom surface of the laminate structure. - In certain embodiments, in shingles similar to those described above with respect to
FIG. 14 , the receptor zone spans the length of the exposed section of each shingle. The shingles can be applied (e.g., in a typical fashion) by a roofing professional, who need not have any particular expertise with respect to photovoltaic systems. One or more extended length photovoltaic elements can then be disposed in the receptor zones as described above, spanning the length of a plurality of shingles). For example, the Grand Manor® Shangl® exposure height of 8 inches could be entirely covered by the photovoltaic element. In thephotovoltaic roofing system 1680 shown inFIG. 16 , a course of threeshingles 1610 is arrayed on a roof deck. The shingles havereceptor zones 1620, which includealignment marks 1628 as described above. Thephotovoltaic element 1660 is provided as a strip, in roll form, and hasalignment marks 1668 on its bottom surface. As the photovoltaic element is unrolled and disposed on the receptor zones, the installer can align the alignment marks on the photovoltaic element with those on the receptor zone to ensure proper placement. Of course, alignment marks could alternatively (or also) be provided on the releasable liner. - In certain embodiments of the invention, a receptor zone can have disposed therein a piece of roofing material (e.g., roofing membrane, asphalt shingle). In some cases (e.g., for aesthetic reasons or to avoid putting photovoltaic elements in shaded areas), it may not be desired to equip a given receptor zone with a photovoltaic element. The roofing material can further protect the receptor zone from weathering, and better match the appearance of the unused receptor zone with the rest of the roof. The roofing material can be, for example, an appropriately-sized piece of roofing membrane or asphalt shingle having on its bottom surface an adhesive layer covered by a releasable liner. The installer can peel-and-stick the pieces of roofing material to the desired receptor zones. In certain photovoltaic roofing systems of the invention, at least about 70%, at least about 80%, or even at least about 90% of the total receptor zone area of the flexible roofing substrates is covered by photovoltaic elements and/or pieces of roofing material.
- In certain embodiments, a cap layer is disposed on the flexible roofing substrate. For example, as shown in schematic top view and in schematic cross-sectional view in
FIG. 17 , a cap layer can be disposed on the flexible roofing substrate to cover areas of the receptor zone in which a photovoltaic element is not disposed. In thephotovoltaic roofing element 1750 ofFIG. 17 ,flexible roofing substrate 1710 has areceptor zone 1720 on itstop surface 1712. Affixed to in the receptor zone (through adhesive layer 1732), but not covering it completely, are twophotovoltaic elements 1760.Cap layer 1772 is disposed on thetop surface 1712 offlexible roofing substrate 1710 to cover areas of thereceptor zone 1720 in which aphotovoltaic element 1760 is not disposed. As shown inFIG. 17 , a cap layer can also cover electrical connections (e.g.,electrical connections 1774 to electrical cable 1775), thereby protecting them from the elements. Notably, a cap layer can cover electrical connections and/or wiring systems even when it is not used to cover exposed areas of a receptor zone. In other embodiments, a cap layer can seal the edges of a joint between the photovoltaic element(s) and the flexible roofing substrate, whether or not the photovoltaic element(s) cover the entire receptor zone. For example, as shown inFIG. 17 ,cap layer 1772 seals the joint between theflexible roofing substrate 1712 and thephotovoltaic elements 1760. The cap layer can be provided in individual pieces (e.g., tape-shaped strips), or as a single piece. For example, in certain embodiments, the cap layer can be provided as a single piece with cutout areas to expose the photovoltaically active areas of the photovoltaic elements. The cap layer can be provided, for example, as roofing membrane (e.g., self-adhesive, such as that available from CertainTeed Corporation), shingle material, or other materials. The cap layer can alternatively be provided as a roof coating. Such roof coatings are known in the art, and can also provide other attributes to the roof, such as reflectivity of solar radiation. Coatings can be formed, for example, from acrylic or fluorinated polymers, or latex-based materials. A cap layer can cover one or more photovoltaic roofing elements. - In certain embodiments, a protective conduit covers the wiring interconnecting the photovoltaic elements, thereby protecting it from the elements, for example as shown in
FIG. 18 . In thephotovoltaic roofing system 1880 shown in partial schematic cross-sectional/perspective viewFIG. 18 , theconduit 1878 is at the junction of twoadjacent roofing membranes 1810, and coverswiring system 1877 that interconnectsphotovoltaic elements 1860. In other embodiments, the conduit can be disposed in the middle part of a membrane (e.g., between the connectorized ends of the horizontally-arranged photovoltaic elements). Of course, a conduit can also be used with a shingle-based photovoltaic roofing system. The conduit can, for example, be similar in structure to a wire covering product such as is commonly used for covering wires or cables on floors in office environments. Of course, the conduit can take any of a number of other forms, such as round or rectangular tube. A cap layer (e.g., protective tape or cover sheet) comprising a suitable roof covering material can also be applied over a conduit so as to provide a desired aesthetic effect or weathering protection to the conduit. A cap layer can also or alternatively be disposed within the conduit to provide further protection. - In another embodiment, a protective covering is disposed over the electrical connections. As shown in partial schematic cross-sectional view in
FIG. 19 , the protective covering can have holes formed therein near the electrical connections of the photovoltaic elements, so that wires for connection to an electrical system can pass through the holes to a wiring system for collection of the power generated by the photovoltaic elements. In thephotovoltaic roofing system 1980 ofFIG. 19 , theprotective cover 1978 covers cables 1976 that interconnects photovoltaic elements 1960 (disposed on roofing membranes 1910) into a wiring system. The holes can be sealed with an appropriate adhesive or sealant, such as a butyl, a mastic, or a neoprene adhesive. The wiring system can be provided in a conduit, which can be mounted within the roofing system and covered by a conventional roofing material strip or tape. Alternatively, the conduit can be mounted above the surface of the roof in the vicinity of the electrical connections of the photovoltaic elements. For example, a conduit could be provided as a tube of any desired geometry) supported on legs which have pitch pockets filled with tar, adhesive, caulk, or the like to accommodate dimensional changes or vibrational effects experienced during use, this minimizing transfer of forces to the wiring system. - In other embodiments, individual photovoltaic elements are electrically interconnected in series, with sets of series-connected photovoltaic elements being connected to a wiring system or a bus system (e.g., within a conduit) along one or more edges of a roof section.
- Photovoltaic roofing elements of the present invention can be fabricated using many techniques familiar to the skilled artisan. Roofing substrates can be made using a variety of techniques. For example, when the roofing substrate is an asphalt shingle or an asphalt non-woven glass reinforced laminate, the person of skill in the art can use methods described in U.S. Pat. Nos. 5,953,877; 6,237,288; 6,355,132; 6,467,235; 6,523,316; 6,679,308; 6,715,252; 7,118,794; U.S. Patent Application Publication 2006/0029775; and International Patent Application Publication WO 2006/121433, each of which is hereby incorporated herein by reference in its entirety. Photovoltaic roofing elements can be fabricated in a continuous process and then cut into individual elements as is done in the fabrication of asphalt shingles. When a continuous process is used, it can be necessary to individually prepare any electrical cables running between elements, for example by cutting the cables between elements and adding connectors to the cut ends.
- In certain embodiments, the present invention may also be practiced using techniques described in U.S. Patent Application Publication nos. 2005/0072456 and 2004/0144043, and in U.S. Pat. No. 4,860,509, each of which is hereby incorporated herein by reference in its entirety.
- Another aspect of the invention is a method for installing a photovoltaic roofing system on a roof deck. First, one or more flexible roofing substrates as described above are installed on a roof deck. Then, one or more photovoltaic elements are disposed in the one or more receptor zones of the top surface of the flexible roofing substrate. The flexible roofing substrates can be installed robustly in a rugged manner to cover the roof, this step can be performed by a roofing professional, who need not have any particular expertise with respect to photovoltaic systems. The one or more photovoltaic elements can then be disposed in the receptor zones as described above. For example, when the photovoltaic element, the flexible roofing substrate, or both have releasable liners covering an adhesive material, the releasable liner can be removed, and the photovoltaic elements affixed to the flexible roofing substrate. In certain embodiments, one or more cap layers as described above are disposed on the flexible roofing substrates after the photovoltaic elements are disposed thereon.
- Another benefit derived in certain embodiments of the invention is that when photovoltaic elements are separately installed on a roof, it is possible to test the performance of the photovoltaic elements before they are attached to the shingles. Such testing can be performed, for example, immediately prior to attachment, so that any faulty photovoltaic elements are discovered before they are attached to the flexible roofing substrate.
- The flexible roofing elements can be applied to the roof deck in bottom-up manner (i.e., from the lower edge of the roof to the upper edge), as is conventional. The photovoltaic elements can then be installed, for example, from the top of roof to the bottom. Top-down installation can allow the more fragile and potentially slippery photovoltaic elements to be applied in a more gentle manner, and without the need for an installer to walk on already-installed photovoltaic elements. Of course, the photovoltaic elements can be installed in any other convenient order.
- Of course, in other embodiments, the photovoltaic elements are disposed on the flexible roofing substrate before the flexible roofing substrate is installed on the roof. For example, the photovoltaic elements can be disposed on the flexible roofing substrate at the worksite, but before installation. This can allow the individual materials to be transported more efficiently, and be put together to fit the particular dimensions of the roof. In other embodiments, the photovoltaic elements can be disposed on the flexible roofing substrate in a factory setting. In such embodiments, the use of a flexible roofing substrate with a receptor zone can increase adhesion of the photovoltaic roofing element without sacrificing properties of the rest of the flexible roofing substrate, and can increase process flexibility during manufacture.
- In certain embodiments, the photovoltaic elements are provided with removable cover elements covering their photovoltaically-active areas, as described in U.S. patent application Ser. No. 12/145,166, which is hereby incorporated herein by reference in its entirety. The removable cover elements can be removed after installation to expose the photovoltaically active areas. Moreover, in embodiments in which a roofing coating (e.g., a solar reflective coating) is disposed on roof as described above, the removable cover elements can be removed after the roofing coating is applied. In such embodiments, the roofing coating can be applied over the entire roof, and can help to waterproof the seams between the photovoltaic elements and the flexible roofing substrates.
- Another aspect of the invention is a kit for the installation of a photovoltaic roofing system, the kit comprising one or more flexible roofing substrates as described above; and one or more photovoltaic elements. The one or more photovoltaic elements can be selected to be compatible, both in size and in adhesive characteristics as described above, with the flexible roofing substrates.
- It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims (24)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/339,943 US20090159118A1 (en) | 2007-12-19 | 2008-12-19 | Roofing Products Having Receptor Zones and Photovoltaic Roofing Elements and Systems Using Them |
US13/669,118 US10563406B2 (en) | 2007-12-19 | 2012-11-05 | Roofing products having receptor zones and photovoltaic roofing elements and systems using them |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1490207P | 2007-12-19 | 2007-12-19 | |
US4370708P | 2008-04-09 | 2008-04-09 | |
US12/339,943 US20090159118A1 (en) | 2007-12-19 | 2008-12-19 | Roofing Products Having Receptor Zones and Photovoltaic Roofing Elements and Systems Using Them |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/669,118 Continuation US10563406B2 (en) | 2007-12-19 | 2012-11-05 | Roofing products having receptor zones and photovoltaic roofing elements and systems using them |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090159118A1 true US20090159118A1 (en) | 2009-06-25 |
Family
ID=40787161
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/339,943 Abandoned US20090159118A1 (en) | 2007-12-19 | 2008-12-19 | Roofing Products Having Receptor Zones and Photovoltaic Roofing Elements and Systems Using Them |
US13/669,118 Active 2031-09-25 US10563406B2 (en) | 2007-12-19 | 2012-11-05 | Roofing products having receptor zones and photovoltaic roofing elements and systems using them |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/669,118 Active 2031-09-25 US10563406B2 (en) | 2007-12-19 | 2012-11-05 | Roofing products having receptor zones and photovoltaic roofing elements and systems using them |
Country Status (4)
Country | Link |
---|---|
US (2) | US20090159118A1 (en) |
EP (1) | EP2232580A2 (en) |
CA (1) | CA2709778A1 (en) |
WO (1) | WO2009086110A2 (en) |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070251571A1 (en) * | 2006-04-26 | 2007-11-01 | Jacobs Gregory F | Shingle with photovoltaic element(s) and array of same laid up on a roof |
US20090126782A1 (en) * | 2007-11-06 | 2009-05-21 | Krause Richard H | Photovoltaic Roofing Systems and Methods for Installing Them |
US20100132305A1 (en) * | 2009-10-06 | 2010-06-03 | Steve Heckeroth | Method and system for providing and installing photovoltaic material |
WO2010068677A2 (en) | 2008-12-09 | 2010-06-17 | Koch Steven A | Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits |
US20100180523A1 (en) * | 2007-04-06 | 2010-07-22 | Certainteed Corporation | Photovoltaic Roof Covering |
US20100199584A1 (en) * | 2009-02-10 | 2010-08-12 | Certainteed Corporation | Composite Roofing or Other Surfacing Board, Method of Making and Using and Roof Made Thereby |
WO2010125173A1 (en) * | 2009-04-30 | 2010-11-04 | Vincent Piront | Roof cover comprising a sealing membrane covered with thin-film solar cells |
US20100282318A1 (en) * | 2008-01-08 | 2010-11-11 | Kalkanoglu Husnu M | Photovoltaic module |
US20100300528A1 (en) * | 2009-05-29 | 2010-12-02 | Nitto Denko Corporation | Adhesive seal material for end portion of frameless solar cell module, frameless solar cell module, and sealed structure of end portion thereof |
US7858874B2 (en) | 2009-05-04 | 2010-12-28 | Raymond Henry Ruskin | Continuous circuit overlay solar shingles |
DE102009033357A1 (en) * | 2009-07-16 | 2011-01-27 | Christian Lenz | Coating system for upper surfaces, particularly for walls or roof upper surfaces, has material that is applied on wall or roof upper surface, and has p-doped conductive semiconductor layer with barrier layer |
US20110017278A1 (en) * | 2009-06-25 | 2011-01-27 | Kalkanoglu Husnu M | Roofing products, photovoltaic roofing elements and systems using them |
US20110030761A1 (en) * | 2009-08-10 | 2011-02-10 | Kalkanoglu Husnu M | Roofing products, photovoltaic roofing elements and systems using them |
US20120023842A1 (en) * | 2010-08-02 | 2012-02-02 | Yong Wang | Photovoltaic Panel Wall |
US20120103396A1 (en) * | 2010-07-27 | 2012-05-03 | Lintao Hu | Electrical Component Connection System And Method Of Use |
US20120152319A1 (en) * | 2010-12-15 | 2012-06-21 | Lee Bailey | Portable Solar Power Generator and Water Heating System |
WO2012082622A1 (en) * | 2010-12-17 | 2012-06-21 | Rohm And Haas Company | Restrippable photovoltaic coatings |
US20120267901A1 (en) * | 2011-04-21 | 2012-10-25 | Miasole | Combination photovoltaic and wind power generation installation |
US8319093B2 (en) | 2006-07-08 | 2012-11-27 | Certainteed Corporation | Photovoltaic module |
US20130000689A1 (en) * | 2011-07-01 | 2013-01-03 | Miasolé | Photovoltaic module support assembly with standoff clamps |
US20130055664A1 (en) * | 2011-08-29 | 2013-03-07 | Certainteed Corporation | Photovoltaic Roofing Elements, Photovoltaic Roofing Systems, Methods and Kits |
ITTV20110175A1 (en) * | 2011-12-12 | 2013-06-13 | Energyka Electrosystem Srl | COUPLING SYSTEM PHOTOVOLTAIC MODULES OF FLEXIBLE TYPE WITH WATERPROOF MEMBRANE AND PRODUCT SO OBTAINED. |
US8511006B2 (en) | 2009-07-02 | 2013-08-20 | Owens Corning Intellectual Capital, Llc | Building-integrated solar-panel roof element systems |
US8522493B1 (en) * | 2011-06-09 | 2013-09-03 | Randy William Rogers | Solar-power roof components and systems, and method of manufacturing same |
US8601753B2 (en) | 2011-01-27 | 2013-12-10 | Certainteed Corporation | Electrical wiring systems for use in roofing applications |
US20140021903A1 (en) * | 2012-07-18 | 2014-01-23 | Veka Inc. | Windows and doors having integrated solar powered charging devices |
US20140102505A1 (en) * | 2010-04-19 | 2014-04-17 | Sunpower Corporation | Photovoltaic laminate segments and segmented photovoltaic modules |
JP2014082399A (en) * | 2012-10-18 | 2014-05-08 | Shin Etsu Chem Co Ltd | Method for manufacturing solar battery module, and solar battery module |
US8720132B2 (en) | 2011-01-27 | 2014-05-13 | Certainteed Corporation | Electrical wiring systems for use in roofing applications |
US8782972B2 (en) | 2011-07-14 | 2014-07-22 | Owens Corning Intellectual Capital, Llc | Solar roofing system |
US8863451B2 (en) | 2011-11-03 | 2014-10-21 | Certainteed Corporation | Photovoltaic roofing systems and methods for repairing them |
US20140338272A1 (en) * | 2007-11-06 | 2014-11-20 | Certainteed Corporation | Photovoltaic Roofing Elements Including Tie Layer Systems, And Roofs Using Them, And Methods For Making Them |
CN104428991A (en) * | 2012-07-05 | 2015-03-18 | 陶氏环球技术有限责任公司 | Flexible building integrated PV device |
US20160344339A1 (en) * | 2015-05-18 | 2016-11-24 | Gixia Group Co. | Solar cell module with improved heat dissipation capability |
WO2017069998A1 (en) | 2015-10-19 | 2017-04-27 | Dow Global Technologies Llc | Photovoltaic elements including drainage elements |
US9966898B1 (en) | 2016-10-26 | 2018-05-08 | Solarcity Corporation | Building integrated photovoltaic system for tile roofs |
US20190123679A1 (en) * | 2012-10-02 | 2019-04-25 | Building Materials Investment Corporation | Roof Integrated Solar Power System With Top Mounted Electrical Components And Cables |
US10298171B2 (en) | 2017-09-21 | 2019-05-21 | Tesla, Inc. | Hinged building integrated photovoltaic roof tile modules |
US10505493B2 (en) | 2017-07-18 | 2019-12-10 | Tesla, Inc. | Building integrated photovoltaic tile mounting system |
US10530292B1 (en) * | 2019-04-02 | 2020-01-07 | Solarmass Energy Group Ltd. | Solar roof tile with integrated cable management system |
US10658969B2 (en) | 2014-12-04 | 2020-05-19 | Solarmass Energy Group Ltd. | Photovoltaic solar roof tile assembly |
US10778139B2 (en) | 2016-10-27 | 2020-09-15 | Tesla, Inc. | Building integrated photovoltaic system with glass photovoltaic tiles |
WO2021107915A1 (en) * | 2019-11-25 | 2021-06-03 | Millennium Slate, Llc | Roofing system and method |
US11217715B2 (en) | 2020-04-30 | 2022-01-04 | GAF Energy LLC | Photovoltaic module frontsheet and backsheet |
US11251744B1 (en) | 2020-06-04 | 2022-02-15 | GAF Energy LLC | Photovoltaic shingles and methods of installing same |
US11283394B2 (en) | 2020-02-18 | 2022-03-22 | GAF Energy LLC | Photovoltaic module with textured superstrate providing shingle-mimicking appearance |
US11309828B2 (en) | 2019-11-27 | 2022-04-19 | GAF Energy LLC | Roof integrated photovoltaic module with spacer |
USD950482S1 (en) | 2020-10-02 | 2022-05-03 | GAF Energy LLC | Solar roofing system |
USD950481S1 (en) | 2020-10-02 | 2022-05-03 | GAF Energy LLC | Solar roofing system |
US11394344B2 (en) | 2020-08-11 | 2022-07-19 | GAF Energy LLC | Roof mounted photovoltaic system and method for wireless transfer of electrical energy |
US11398795B2 (en) | 2019-12-20 | 2022-07-26 | GAF Energy LLC | Roof integrated photovoltaic system |
US11431281B2 (en) | 2020-02-27 | 2022-08-30 | GAF Energy LLC | Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance |
US11444569B2 (en) | 2020-10-14 | 2022-09-13 | GAF Energy LLC | Mounting apparatus for photovoltaic modules |
US11454027B2 (en) | 2020-10-29 | 2022-09-27 | GAF Energy LLC | System of roofing and photovoltaic shingles and methods of installing same |
US11459757B2 (en) | 2021-01-19 | 2022-10-04 | GAF Energy LLC | Watershedding features for roofing shingles |
US11489482B2 (en) | 2020-01-22 | 2022-11-01 | GAF Energy LLC | Integrated photovoltaic roofing shingles, methods, systems, and kits thereof |
US11486144B2 (en) | 2020-11-12 | 2022-11-01 | GAF Energy LLC | Roofing shingles with handles |
US11496088B2 (en) | 2021-02-19 | 2022-11-08 | GAF Energy LLC | Photovoltaic module for a roof with continuous fiber tape |
US11508861B1 (en) | 2021-06-02 | 2022-11-22 | GAF Energy LLC | Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance |
US11512480B1 (en) | 2021-07-16 | 2022-11-29 | GAF Energy LLC | Roof material storage bracket |
US11527665B2 (en) | 2021-05-06 | 2022-12-13 | GAF Energy LLC | Photovoltaic module with transparent perimeter edges |
US11545928B2 (en) | 2020-10-13 | 2023-01-03 | GAF Energy LLC | Solar roofing system |
US11545927B2 (en) | 2020-04-09 | 2023-01-03 | GAF Energy LLC | Three-dimensional laminate photovoltaic module |
US11578494B2 (en) | 2017-06-05 | 2023-02-14 | Millennium Slate, Llc | Roofing system and method |
US11658470B2 (en) | 2020-05-13 | 2023-05-23 | GAF Energy LLC | Electrical cable passthrough |
US11723274B2 (en) | 2010-09-20 | 2023-08-08 | Certainteed Llc | Solar thermoelectric power generation system, and process for making same |
US11728759B2 (en) | 2021-09-01 | 2023-08-15 | GAF Energy LLC | Photovoltaic modules for commercial roofing |
US11811361B1 (en) | 2022-12-14 | 2023-11-07 | GAF Energy LLC | Rapid shutdown device for photovoltaic modules |
US11824487B2 (en) | 2020-11-13 | 2023-11-21 | GAF Energy LLC | Photovoltaic module systems and methods |
US11824486B2 (en) | 2022-01-20 | 2023-11-21 | GAF Energy LLC | Roofing shingles for mimicking the appearance of photovoltaic modules |
US11843067B2 (en) | 2020-07-22 | 2023-12-12 | GAF Energy LLC | Photovoltaic modules |
US11870227B2 (en) | 2020-09-03 | 2024-01-09 | GAF Energy LLC | Building integrated photovoltaic system |
US11927017B2 (en) | 2017-06-05 | 2024-03-12 | Millennuim Slate, LLC | Roofing system and method |
US11961928B2 (en) | 2020-02-27 | 2024-04-16 | GAF Energy LLC | Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance |
US11984521B2 (en) | 2022-03-10 | 2024-05-14 | GAF Energy LLC | Combined encapsulant and backsheet for photovoltaic modules |
US11996797B2 (en) | 2020-12-02 | 2024-05-28 | GAF Energy LLC | Step flaps for photovoltaic and roofing shingles |
US12009782B1 (en) | 2023-04-04 | 2024-06-11 | GAF Energy LLC | Photovoltaic systems with wireways |
US12009781B2 (en) | 2021-07-06 | 2024-06-11 | GAF Energy LLC | Jumper module for photovoltaic systems |
US12015374B2 (en) | 2022-09-26 | 2024-06-18 | GAF Energy LLC | Photovoltaic modules integrated with building siding and fencing |
US12013153B2 (en) | 2022-02-08 | 2024-06-18 | GAF Energy LLC | Building integrated photovoltaic system |
US12034089B2 (en) | 2022-09-01 | 2024-07-09 | GAF Energy LLC | Anti-reflective photovoltaic shingles and related methods |
US12031332B2 (en) | 2022-10-25 | 2024-07-09 | GAF Energy LLC | Roofing materials and related methods |
US12051996B2 (en) | 2022-09-13 | 2024-07-30 | GAF Energy LLC | Sensing roofing system and method thereof |
US12095415B2 (en) | 2021-03-29 | 2024-09-17 | GAF Energy LLC | Electrical components for photovoltaic systems |
US12126301B2 (en) | 2022-07-11 | 2024-10-22 | GAF Energy LLC | Roof mounted photovoltaic system and method for wireless transfer of electrical energy |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10985688B2 (en) | 2017-06-05 | 2021-04-20 | Tesla, Inc. | Sidelap interconnect for photovoltaic roofing modules |
US10734938B2 (en) * | 2017-07-21 | 2020-08-04 | Tesla, Inc. | Packaging for solar roof tiles |
US10862420B2 (en) | 2018-02-20 | 2020-12-08 | Tesla, Inc. | Inter-tile support for solar roof tiles |
US11245354B2 (en) | 2018-07-31 | 2022-02-08 | Tesla, Inc. | Solar roof tile spacer with embedded circuitry |
US11245355B2 (en) | 2018-09-04 | 2022-02-08 | Tesla, Inc. | Solar roof tile module |
DE102019117665B4 (en) | 2019-07-01 | 2021-03-25 | Sabine Kassner | COMPONENT WITH PHOTOVOLTAICS |
EP4139967A4 (en) * | 2020-04-21 | 2024-05-01 | SolarCA LLC | Reduced overlap shingled single-sku cell design for shingled panels |
US20230238913A1 (en) * | 2022-01-21 | 2023-07-27 | Joseph Richards | Roofing shingle for collecting solar energy |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4860509A (en) * | 1987-05-18 | 1989-08-29 | Laaly Heshmat O | Photovoltaic cells in combination with single ply roofing membranes |
US20010054262A1 (en) * | 2000-06-09 | 2001-12-27 | Prem Nath | Self-adhesive photovoltaic module |
US20020112419A1 (en) * | 2001-02-21 | 2002-08-22 | Karl-Werner Dorr | Thermal insulating sheet metal panel with photovoltaic element for a roof covering or wall cladding |
US6553729B1 (en) * | 2000-06-09 | 2003-04-29 | United Solar Systems Corporation | Self-adhesive photovoltaic module |
US20040144043A1 (en) * | 2003-01-23 | 2004-07-29 | Stevenson Edward J | Integrated photovoltaic roofing component and panel |
US20050072456A1 (en) * | 2003-01-23 | 2005-04-07 | Stevenson Edward J. | Integrated photovoltaic roofing system |
US20050178429A1 (en) * | 2004-02-17 | 2005-08-18 | Eik Premium Building Products, Inc. | Flexible integrated photovoltaic roofing membrane and related methods of manufacturing same |
US20050178428A1 (en) * | 2004-02-17 | 2005-08-18 | Solar Roofing Systems Inc. | Photovoltaic system and method of making same |
US20060137733A1 (en) * | 2002-05-17 | 2006-06-29 | Schripsema Jason E | Photovoltaic module with adjustable heat sink and method of fabrication |
US20060207645A1 (en) * | 2005-03-16 | 2006-09-21 | Fuji Electric Holdings Co., Ltd. | Method of manufacturing a solor cell module |
US20080236653A1 (en) * | 2007-03-29 | 2008-10-02 | Kelly Thomas L | Photovoltaic roofing panel |
US20080245405A1 (en) * | 2005-03-11 | 2008-10-09 | Bp Corporation North America Inc. | Integrated Solar Cell Roofing System and Method of Manufacture |
US20080245404A1 (en) * | 2007-04-05 | 2008-10-09 | Deliddo Jack P | Apparatus and method for attaching solar panels to roof system surfaces |
US20080302030A1 (en) * | 2007-05-07 | 2008-12-11 | Robert Stancel | Structures for Low Cost, Reliable Solar Roofing |
US20090132497A1 (en) * | 2007-11-15 | 2009-05-21 | Canon Kabushiki Kaisha | Document management apparatus and document management method |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4674244A (en) * | 1986-07-17 | 1987-06-23 | Single-Ply Institute Of America, Inc. | Roof construction having insulation structure, membrane and photovoltaic cells |
US5575861A (en) | 1993-12-30 | 1996-11-19 | United Solar Systems Corporation | Photovoltaic shingle system |
JP3610178B2 (en) * | 1997-02-05 | 2005-01-12 | キヤノン株式会社 | Roof and its construction method |
JP3397637B2 (en) * | 1997-06-11 | 2003-04-21 | キヤノン株式会社 | Solar cell integrated roofing sheet, method for manufacturing the same, and method for constructing the same |
JPH1150607A (en) | 1997-08-05 | 1999-02-23 | Asahi Chem Ind Co Ltd | Waterproof sheet integrally formed with solar cell |
JPH11150287A (en) * | 1997-09-10 | 1999-06-02 | Canon Inc | Solar cell module, solar cell with enclosure, method for fitting enclosure with the solar cell, and solar power generating system |
JPH11193613A (en) * | 1998-01-06 | 1999-07-21 | Canon Inc | Solar battery module and surrounding body with solar battery |
JP4044237B2 (en) * | 1999-03-25 | 2008-02-06 | 株式会社カネカ | Solar panel installation structure and installation method |
US6295818B1 (en) * | 1999-06-29 | 2001-10-02 | Powerlight Corporation | PV-thermal solar power assembly |
ATE556184T1 (en) * | 2000-03-28 | 2012-05-15 | Kaneka Corp | SOLAR CELL MODULE AND ROOF EQUIPPED WITH GENERATOR FUNCTION FOR USE THEREOF |
US7012188B2 (en) * | 2000-04-04 | 2006-03-14 | Peter Stuart Erling | Framing system for solar panels |
JP2001332752A (en) | 2000-05-19 | 2001-11-30 | Canon Inc | Solar cell module and its transporting and assembling methods and solar photovoltaic generator |
US7102074B2 (en) * | 2003-09-10 | 2006-09-05 | Kuo-Yow Yen | Photovoltaic attachment system |
CA2589929C (en) * | 2005-05-09 | 2013-02-05 | Husnu M. Kalkanoglu | Method of making a shingle and shingle made thereby |
GB0610525D0 (en) * | 2006-05-26 | 2006-07-05 | Solar Century Holdings Ltd | Flexible solar collector roof system |
US7506477B2 (en) * | 2006-06-30 | 2009-03-24 | Lumeta, Inc. | Profile roof tile with integrated photovoltaic module |
US8607510B2 (en) * | 2006-10-25 | 2013-12-17 | Gregory S. Daniels | Form-fitting solar panel for roofs and roof vents |
WO2008073905A2 (en) | 2006-12-11 | 2008-06-19 | Sunmodular, Inc. | Solar roof tiles and modules with heat exchange |
ITTV20080018A1 (en) | 2008-01-28 | 2009-07-29 | Tegola Canadese Spa | PHOTOVOLTAIC BITUMINOUS TILE, METHOD OF PRODUCTION OF THE PHOTOVOLTAIC BITUMINOUS TILE AND THE METHOD OF LAYING THE PHOTOVOLTAIC ROOF. |
-
2008
- 2008-12-19 EP EP08866461A patent/EP2232580A2/en not_active Withdrawn
- 2008-12-19 WO PCT/US2008/087685 patent/WO2009086110A2/en active Application Filing
- 2008-12-19 US US12/339,943 patent/US20090159118A1/en not_active Abandoned
- 2008-12-19 CA CA2709778A patent/CA2709778A1/en not_active Abandoned
-
2012
- 2012-11-05 US US13/669,118 patent/US10563406B2/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4860509A (en) * | 1987-05-18 | 1989-08-29 | Laaly Heshmat O | Photovoltaic cells in combination with single ply roofing membranes |
US20010054262A1 (en) * | 2000-06-09 | 2001-12-27 | Prem Nath | Self-adhesive photovoltaic module |
US6553729B1 (en) * | 2000-06-09 | 2003-04-29 | United Solar Systems Corporation | Self-adhesive photovoltaic module |
US6729081B2 (en) * | 2000-06-09 | 2004-05-04 | United Solar Systems Corporation | Self-adhesive photovoltaic module |
US20020112419A1 (en) * | 2001-02-21 | 2002-08-22 | Karl-Werner Dorr | Thermal insulating sheet metal panel with photovoltaic element for a roof covering or wall cladding |
US20060137733A1 (en) * | 2002-05-17 | 2006-06-29 | Schripsema Jason E | Photovoltaic module with adjustable heat sink and method of fabrication |
US20040144043A1 (en) * | 2003-01-23 | 2004-07-29 | Stevenson Edward J | Integrated photovoltaic roofing component and panel |
US20050072456A1 (en) * | 2003-01-23 | 2005-04-07 | Stevenson Edward J. | Integrated photovoltaic roofing system |
US7342171B2 (en) * | 2003-01-23 | 2008-03-11 | Solar Intergrated Technologies, Inc. | Integrated photovoltaic roofing component and panel |
US20050178428A1 (en) * | 2004-02-17 | 2005-08-18 | Solar Roofing Systems Inc. | Photovoltaic system and method of making same |
US20050178429A1 (en) * | 2004-02-17 | 2005-08-18 | Eik Premium Building Products, Inc. | Flexible integrated photovoltaic roofing membrane and related methods of manufacturing same |
US20080245405A1 (en) * | 2005-03-11 | 2008-10-09 | Bp Corporation North America Inc. | Integrated Solar Cell Roofing System and Method of Manufacture |
US20060207645A1 (en) * | 2005-03-16 | 2006-09-21 | Fuji Electric Holdings Co., Ltd. | Method of manufacturing a solor cell module |
US20080236653A1 (en) * | 2007-03-29 | 2008-10-02 | Kelly Thomas L | Photovoltaic roofing panel |
US20080245404A1 (en) * | 2007-04-05 | 2008-10-09 | Deliddo Jack P | Apparatus and method for attaching solar panels to roof system surfaces |
US20080302030A1 (en) * | 2007-05-07 | 2008-12-11 | Robert Stancel | Structures for Low Cost, Reliable Solar Roofing |
US20090132497A1 (en) * | 2007-11-15 | 2009-05-21 | Canon Kabushiki Kaisha | Document management apparatus and document management method |
Cited By (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070251571A1 (en) * | 2006-04-26 | 2007-11-01 | Jacobs Gregory F | Shingle with photovoltaic element(s) and array of same laid up on a roof |
US8168880B2 (en) | 2006-04-26 | 2012-05-01 | Certainteed Corporation | Shingle with photovoltaic element(s) and array of same laid up on a roof |
US8319093B2 (en) | 2006-07-08 | 2012-11-27 | Certainteed Corporation | Photovoltaic module |
US8513517B2 (en) | 2006-07-08 | 2013-08-20 | Certainteed Corporation | Photovoltaic module |
US8671630B2 (en) * | 2007-04-06 | 2014-03-18 | Certainteed Corporation | Photovoltaic roof covering |
US20100180523A1 (en) * | 2007-04-06 | 2010-07-22 | Certainteed Corporation | Photovoltaic Roof Covering |
US8468757B2 (en) | 2007-11-06 | 2013-06-25 | Certainteed Corporation | Photovoltaic roofing systems and methods for installing them |
US9178465B2 (en) * | 2007-11-06 | 2015-11-03 | Certainteed Corporation | Photovoltaic roofing elements including tie layer systems and roofs using them |
US20090126782A1 (en) * | 2007-11-06 | 2009-05-21 | Krause Richard H | Photovoltaic Roofing Systems and Methods for Installing Them |
US8209920B2 (en) * | 2007-11-06 | 2012-07-03 | Certain Teed Corporation | Photovoltaic roofing systems and methods for installing them |
US20140338272A1 (en) * | 2007-11-06 | 2014-11-20 | Certainteed Corporation | Photovoltaic Roofing Elements Including Tie Layer Systems, And Roofs Using Them, And Methods For Making Them |
US8835751B2 (en) | 2008-01-08 | 2014-09-16 | Certainteed Corporation | Photovoltaic module |
US8404967B2 (en) | 2008-01-08 | 2013-03-26 | Certainteed Corporation | Photovoltaic module |
US10784813B2 (en) | 2008-01-08 | 2020-09-22 | Certainteed Llc | Photovoltaic module |
US11258399B2 (en) | 2008-01-08 | 2022-02-22 | Certainteed Llc | Photovoltaic module |
US11677349B2 (en) | 2008-01-08 | 2023-06-13 | Certainteed Llc | Photovoltaic module |
US11463042B2 (en) | 2008-01-08 | 2022-10-04 | Certainteed Llc | Photovoltaic module |
US11012026B2 (en) | 2008-01-08 | 2021-05-18 | Certainteed Llc | Photovoltaic module |
US20100282318A1 (en) * | 2008-01-08 | 2010-11-11 | Kalkanoglu Husnu M | Photovoltaic module |
WO2010068677A2 (en) | 2008-12-09 | 2010-06-17 | Koch Steven A | Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits |
US20100199584A1 (en) * | 2009-02-10 | 2010-08-12 | Certainteed Corporation | Composite Roofing or Other Surfacing Board, Method of Making and Using and Roof Made Thereby |
US8397446B2 (en) | 2009-02-10 | 2013-03-19 | Certainteed Corporation | Composite roofing or other surfacing board, method of making and using and roof made thereby |
WO2010125173A1 (en) * | 2009-04-30 | 2010-11-04 | Vincent Piront | Roof cover comprising a sealing membrane covered with thin-film solar cells |
US7858874B2 (en) | 2009-05-04 | 2010-12-28 | Raymond Henry Ruskin | Continuous circuit overlay solar shingles |
US20100300528A1 (en) * | 2009-05-29 | 2010-12-02 | Nitto Denko Corporation | Adhesive seal material for end portion of frameless solar cell module, frameless solar cell module, and sealed structure of end portion thereof |
US20110017278A1 (en) * | 2009-06-25 | 2011-01-27 | Kalkanoglu Husnu M | Roofing products, photovoltaic roofing elements and systems using them |
US8511006B2 (en) | 2009-07-02 | 2013-08-20 | Owens Corning Intellectual Capital, Llc | Building-integrated solar-panel roof element systems |
DE102009033357B4 (en) * | 2009-07-16 | 2011-09-01 | Christian Lenz | coating system |
DE102009033357A1 (en) * | 2009-07-16 | 2011-01-27 | Christian Lenz | Coating system for upper surfaces, particularly for walls or roof upper surfaces, has material that is applied on wall or roof upper surface, and has p-doped conductive semiconductor layer with barrier layer |
WO2011019745A3 (en) * | 2009-08-10 | 2011-06-30 | Kalkanoglu Husnu M | Roofing products, photovoltaic roofing elements and systems using them |
US8793940B2 (en) | 2009-08-10 | 2014-08-05 | Certainteed Corporation | Roofing products, photovoltaic roofing elements and systems using them |
US9217584B2 (en) | 2009-08-10 | 2015-12-22 | Certainteed Corporation | Roofing products, photovoltaic roofing elements and systems using them |
US20110030761A1 (en) * | 2009-08-10 | 2011-02-10 | Kalkanoglu Husnu M | Roofing products, photovoltaic roofing elements and systems using them |
US20100132305A1 (en) * | 2009-10-06 | 2010-06-03 | Steve Heckeroth | Method and system for providing and installing photovoltaic material |
US20140102505A1 (en) * | 2010-04-19 | 2014-04-17 | Sunpower Corporation | Photovoltaic laminate segments and segmented photovoltaic modules |
US20120103396A1 (en) * | 2010-07-27 | 2012-05-03 | Lintao Hu | Electrical Component Connection System And Method Of Use |
US20120023842A1 (en) * | 2010-08-02 | 2012-02-02 | Yong Wang | Photovoltaic Panel Wall |
US11723274B2 (en) | 2010-09-20 | 2023-08-08 | Certainteed Llc | Solar thermoelectric power generation system, and process for making same |
US20120152319A1 (en) * | 2010-12-15 | 2012-06-21 | Lee Bailey | Portable Solar Power Generator and Water Heating System |
CN103262257A (en) * | 2010-12-17 | 2013-08-21 | 罗门哈斯公司 | Restrippable photovoltaic coatings |
US20130247985A1 (en) * | 2010-12-17 | 2013-09-26 | Rohm And Haas Company | Restrippable photovoltaic coatings |
WO2012082622A1 (en) * | 2010-12-17 | 2012-06-21 | Rohm And Haas Company | Restrippable photovoltaic coatings |
US8601753B2 (en) | 2011-01-27 | 2013-12-10 | Certainteed Corporation | Electrical wiring systems for use in roofing applications |
US8720132B2 (en) | 2011-01-27 | 2014-05-13 | Certainteed Corporation | Electrical wiring systems for use in roofing applications |
US10612238B2 (en) | 2011-01-27 | 2020-04-07 | Certainteed Corporation | Electrical wiring systems for use in roofing applications |
US9469992B2 (en) | 2011-01-27 | 2016-10-18 | Certainteed Corporation | Electrical wiring systems for use in roofing applications |
US8710350B2 (en) * | 2011-04-21 | 2014-04-29 | Paul Shufflebotham | Combination photovoltaic and wind power generation installation |
US20120267901A1 (en) * | 2011-04-21 | 2012-10-25 | Miasole | Combination photovoltaic and wind power generation installation |
US8522493B1 (en) * | 2011-06-09 | 2013-09-03 | Randy William Rogers | Solar-power roof components and systems, and method of manufacturing same |
US20130000689A1 (en) * | 2011-07-01 | 2013-01-03 | Miasolé | Photovoltaic module support assembly with standoff clamps |
US8782972B2 (en) | 2011-07-14 | 2014-07-22 | Owens Corning Intellectual Capital, Llc | Solar roofing system |
US20130055664A1 (en) * | 2011-08-29 | 2013-03-07 | Certainteed Corporation | Photovoltaic Roofing Elements, Photovoltaic Roofing Systems, Methods and Kits |
US8943766B2 (en) * | 2011-08-29 | 2015-02-03 | Certainteed Corporation | Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits |
US8863451B2 (en) | 2011-11-03 | 2014-10-21 | Certainteed Corporation | Photovoltaic roofing systems and methods for repairing them |
ITTV20110175A1 (en) * | 2011-12-12 | 2013-06-13 | Energyka Electrosystem Srl | COUPLING SYSTEM PHOTOVOLTAIC MODULES OF FLEXIBLE TYPE WITH WATERPROOF MEMBRANE AND PRODUCT SO OBTAINED. |
US20150222224A1 (en) * | 2012-07-05 | 2015-08-06 | Dow Global Technologies Llc | Flexible building integrated pv device |
CN104428991A (en) * | 2012-07-05 | 2015-03-18 | 陶氏环球技术有限责任公司 | Flexible building integrated PV device |
US20140021903A1 (en) * | 2012-07-18 | 2014-01-23 | Veka Inc. | Windows and doors having integrated solar powered charging devices |
US20190123679A1 (en) * | 2012-10-02 | 2019-04-25 | Building Materials Investment Corporation | Roof Integrated Solar Power System With Top Mounted Electrical Components And Cables |
US11894796B2 (en) * | 2012-10-02 | 2024-02-06 | Bmic Llc | Roof integrated solar power system with top mounted electrical components and cables |
JP2014082399A (en) * | 2012-10-18 | 2014-05-08 | Shin Etsu Chem Co Ltd | Method for manufacturing solar battery module, and solar battery module |
US10658969B2 (en) | 2014-12-04 | 2020-05-19 | Solarmass Energy Group Ltd. | Photovoltaic solar roof tile assembly |
US10756669B2 (en) | 2014-12-04 | 2020-08-25 | Solarmass Energy Group Ltd. | Solar roof tile |
US11626829B2 (en) | 2014-12-04 | 2023-04-11 | Solarmass Energy Group Ltd. | Methods of manufacturing and installing a solar roof tile assembly |
CN106169908A (en) * | 2015-05-18 | 2016-11-30 | 奇想创造事业股份有限公司 | Solar module and manufacture method thereof |
US20160343892A1 (en) * | 2015-05-18 | 2016-11-24 | Gixia Group Co. | Solar cell module and manufacturing method of same |
US20160344339A1 (en) * | 2015-05-18 | 2016-11-24 | Gixia Group Co. | Solar cell module with improved heat dissipation capability |
WO2017069998A1 (en) | 2015-10-19 | 2017-04-27 | Dow Global Technologies Llc | Photovoltaic elements including drainage elements |
US10505494B2 (en) | 2016-10-26 | 2019-12-10 | Tesla, Inc. | Building integrated photovoltaic system for tile roofs |
US9966898B1 (en) | 2016-10-26 | 2018-05-08 | Solarcity Corporation | Building integrated photovoltaic system for tile roofs |
US10778139B2 (en) | 2016-10-27 | 2020-09-15 | Tesla, Inc. | Building integrated photovoltaic system with glass photovoltaic tiles |
US11451188B2 (en) | 2016-10-27 | 2022-09-20 | Tesla, Inc. | Building integrated photovoltaic system with glass photovoltaic tiles |
US11578494B2 (en) | 2017-06-05 | 2023-02-14 | Millennium Slate, Llc | Roofing system and method |
US11927017B2 (en) | 2017-06-05 | 2024-03-12 | Millennuim Slate, LLC | Roofing system and method |
US10505493B2 (en) | 2017-07-18 | 2019-12-10 | Tesla, Inc. | Building integrated photovoltaic tile mounting system |
US10855220B2 (en) | 2017-09-21 | 2020-12-01 | Tesla, Inc. | Hinged building integrated photovoltaic roof tile modules |
US10298171B2 (en) | 2017-09-21 | 2019-05-21 | Tesla, Inc. | Hinged building integrated photovoltaic roof tile modules |
US10530292B1 (en) * | 2019-04-02 | 2020-01-07 | Solarmass Energy Group Ltd. | Solar roof tile with integrated cable management system |
US10998848B2 (en) | 2019-04-02 | 2021-05-04 | Solarmass Energy Group Ltd. | Method of routing and securing electrical power cables for a solar roof installation |
WO2021107915A1 (en) * | 2019-11-25 | 2021-06-03 | Millennium Slate, Llc | Roofing system and method |
US11309828B2 (en) | 2019-11-27 | 2022-04-19 | GAF Energy LLC | Roof integrated photovoltaic module with spacer |
US20220385228A1 (en) * | 2019-11-27 | 2022-12-01 | GAF Energy LLC | Roof integrated photovoltaic module with spacer |
US11398795B2 (en) | 2019-12-20 | 2022-07-26 | GAF Energy LLC | Roof integrated photovoltaic system |
US12051990B2 (en) | 2020-01-22 | 2024-07-30 | GAF Energy LLC | Integrated photovoltaic roofing shingles, methods, systems, and kits thereof |
US11489482B2 (en) | 2020-01-22 | 2022-11-01 | GAF Energy LLC | Integrated photovoltaic roofing shingles, methods, systems, and kits thereof |
US11283394B2 (en) | 2020-02-18 | 2022-03-22 | GAF Energy LLC | Photovoltaic module with textured superstrate providing shingle-mimicking appearance |
US11961928B2 (en) | 2020-02-27 | 2024-04-16 | GAF Energy LLC | Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance |
US11431281B2 (en) | 2020-02-27 | 2022-08-30 | GAF Energy LLC | Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance |
US11545927B2 (en) | 2020-04-09 | 2023-01-03 | GAF Energy LLC | Three-dimensional laminate photovoltaic module |
US11424379B2 (en) | 2020-04-30 | 2022-08-23 | GAF Energy LLC | Photovoltaic module frontsheet and backsheet |
US11217715B2 (en) | 2020-04-30 | 2022-01-04 | GAF Energy LLC | Photovoltaic module frontsheet and backsheet |
US11705531B2 (en) | 2020-04-30 | 2023-07-18 | GAF Energy LLC | Photovoltaic module frontsheet and backsheet |
US11658470B2 (en) | 2020-05-13 | 2023-05-23 | GAF Energy LLC | Electrical cable passthrough |
US11404997B2 (en) | 2020-06-04 | 2022-08-02 | GAF Energy LLC | Photovoltaic shingles and methods of installing same |
US11876480B2 (en) | 2020-06-04 | 2024-01-16 | GAF Energy LLC | Photovoltaic shingles and methods of installing same |
US11251744B1 (en) | 2020-06-04 | 2022-02-15 | GAF Energy LLC | Photovoltaic shingles and methods of installing same |
US11843067B2 (en) | 2020-07-22 | 2023-12-12 | GAF Energy LLC | Photovoltaic modules |
US11394344B2 (en) | 2020-08-11 | 2022-07-19 | GAF Energy LLC | Roof mounted photovoltaic system and method for wireless transfer of electrical energy |
US11870227B2 (en) | 2020-09-03 | 2024-01-09 | GAF Energy LLC | Building integrated photovoltaic system |
USD950481S1 (en) | 2020-10-02 | 2022-05-03 | GAF Energy LLC | Solar roofing system |
USD950482S1 (en) | 2020-10-02 | 2022-05-03 | GAF Energy LLC | Solar roofing system |
US11545928B2 (en) | 2020-10-13 | 2023-01-03 | GAF Energy LLC | Solar roofing system |
US11689149B2 (en) | 2020-10-14 | 2023-06-27 | GAF Energy LLC | Mounting apparatus for photovoltaic modules |
US11444569B2 (en) | 2020-10-14 | 2022-09-13 | GAF Energy LLC | Mounting apparatus for photovoltaic modules |
US11454027B2 (en) | 2020-10-29 | 2022-09-27 | GAF Energy LLC | System of roofing and photovoltaic shingles and methods of installing same |
US11661745B2 (en) | 2020-11-12 | 2023-05-30 | GAF Energy LLC | Roofing shingles with handles |
US11486144B2 (en) | 2020-11-12 | 2022-11-01 | GAF Energy LLC | Roofing shingles with handles |
US11824487B2 (en) | 2020-11-13 | 2023-11-21 | GAF Energy LLC | Photovoltaic module systems and methods |
US11996797B2 (en) | 2020-12-02 | 2024-05-28 | GAF Energy LLC | Step flaps for photovoltaic and roofing shingles |
US11459757B2 (en) | 2021-01-19 | 2022-10-04 | GAF Energy LLC | Watershedding features for roofing shingles |
US11965335B2 (en) | 2021-01-19 | 2024-04-23 | GAF Energy LLC | Watershedding features for roofing shingles |
US11496088B2 (en) | 2021-02-19 | 2022-11-08 | GAF Energy LLC | Photovoltaic module for a roof with continuous fiber tape |
US12095415B2 (en) | 2021-03-29 | 2024-09-17 | GAF Energy LLC | Electrical components for photovoltaic systems |
US11527665B2 (en) | 2021-05-06 | 2022-12-13 | GAF Energy LLC | Photovoltaic module with transparent perimeter edges |
US11869997B2 (en) | 2021-05-06 | 2024-01-09 | GAF Energy LLC | Photovoltaic module with transparent perimeter edges |
US11508861B1 (en) | 2021-06-02 | 2022-11-22 | GAF Energy LLC | Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance |
US12100775B2 (en) | 2021-06-02 | 2024-09-24 | GAF Energy LLC | Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance |
US12009781B2 (en) | 2021-07-06 | 2024-06-11 | GAF Energy LLC | Jumper module for photovoltaic systems |
US11512480B1 (en) | 2021-07-16 | 2022-11-29 | GAF Energy LLC | Roof material storage bracket |
US11732490B2 (en) | 2021-07-16 | 2023-08-22 | GAF Energy LLC | Roof material storage bracket |
US12009773B2 (en) | 2021-09-01 | 2024-06-11 | GAF Energy LLC | Photovoltaic modules for commercial roofing |
US11728759B2 (en) | 2021-09-01 | 2023-08-15 | GAF Energy LLC | Photovoltaic modules for commercial roofing |
US11824486B2 (en) | 2022-01-20 | 2023-11-21 | GAF Energy LLC | Roofing shingles for mimicking the appearance of photovoltaic modules |
US12013153B2 (en) | 2022-02-08 | 2024-06-18 | GAF Energy LLC | Building integrated photovoltaic system |
US11984521B2 (en) | 2022-03-10 | 2024-05-14 | GAF Energy LLC | Combined encapsulant and backsheet for photovoltaic modules |
US12126301B2 (en) | 2022-07-11 | 2024-10-22 | GAF Energy LLC | Roof mounted photovoltaic system and method for wireless transfer of electrical energy |
US12034089B2 (en) | 2022-09-01 | 2024-07-09 | GAF Energy LLC | Anti-reflective photovoltaic shingles and related methods |
US12123194B2 (en) | 2022-09-12 | 2024-10-22 | GAF Energy LLC | System of roofing and photovoltaic shingles and methods of installing same |
US12051996B2 (en) | 2022-09-13 | 2024-07-30 | GAF Energy LLC | Sensing roofing system and method thereof |
US12015374B2 (en) | 2022-09-26 | 2024-06-18 | GAF Energy LLC | Photovoltaic modules integrated with building siding and fencing |
US12031332B2 (en) | 2022-10-25 | 2024-07-09 | GAF Energy LLC | Roofing materials and related methods |
US11811361B1 (en) | 2022-12-14 | 2023-11-07 | GAF Energy LLC | Rapid shutdown device for photovoltaic modules |
US12009782B1 (en) | 2023-04-04 | 2024-06-11 | GAF Energy LLC | Photovoltaic systems with wireways |
Also Published As
Publication number | Publication date |
---|---|
WO2009086110A3 (en) | 2011-03-31 |
CA2709778A1 (en) | 2009-07-09 |
EP2232580A2 (en) | 2010-09-29 |
WO2009086110A2 (en) | 2009-07-09 |
US10563406B2 (en) | 2020-02-18 |
US20130067852A1 (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10563406B2 (en) | Roofing products having receptor zones and photovoltaic roofing elements and systems using them | |
US8733038B2 (en) | Roofing and siding products having receptor zones and photovoltaic roofing and siding elements and systems using them | |
US20110017278A1 (en) | Roofing products, photovoltaic roofing elements and systems using them | |
US8966850B2 (en) | Roofing products, photovoltaic roofing elements and systems using them | |
US9217584B2 (en) | Roofing products, photovoltaic roofing elements and systems using them | |
US9178465B2 (en) | Photovoltaic roofing elements including tie layer systems and roofs using them | |
US8375653B2 (en) | Photovoltaic roofing elements including tie layer systems | |
US8863451B2 (en) | Photovoltaic roofing systems and methods for repairing them | |
US8943766B2 (en) | Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits | |
US9786802B2 (en) | Photovoltaic roofing panels, photovoltaic roofing assemblies, and roofs using them | |
US8468757B2 (en) | Photovoltaic roofing systems and methods for installing them | |
US20110209420A1 (en) | Photovoltaic Elements, Systems, Methods And Kits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CERTAINTEED CORPORATION, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALKANOGLU, HUSNU M.;JACOBS, GREGORY F.;SHAW, WAYNE E.;AND OTHERS;REEL/FRAME:023714/0710;SIGNING DATES FROM 20090114 TO 20090116 Owner name: CERTAINTEED CORPORATION,PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALKANOGLU, HUSNU M.;JACOBS, GREGORY F.;SHAW, WAYNE E.;AND OTHERS;SIGNING DATES FROM 20090114 TO 20090116;REEL/FRAME:023714/0710 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |