[go: nahoru, domu]

US20090238578A1 - apparatus and method of compensating for compact digital domain chromatic dispersion - Google Patents

apparatus and method of compensating for compact digital domain chromatic dispersion Download PDF

Info

Publication number
US20090238578A1
US20090238578A1 US12/248,821 US24882108A US2009238578A1 US 20090238578 A1 US20090238578 A1 US 20090238578A1 US 24882108 A US24882108 A US 24882108A US 2009238578 A1 US2009238578 A1 US 2009238578A1
Authority
US
United States
Prior art keywords
sub
chromatic dispersion
digital
signal processor
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/248,821
Inventor
Michael George Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/248,821 priority Critical patent/US20090238578A1/en
Publication of US20090238578A1 publication Critical patent/US20090238578A1/en
Assigned to HUAWEI TECHNOLOGIES CO., LTD. reassignment HUAWEI TECHNOLOGIES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAYLOR, MICHAEL GEORGE
Priority to US14/449,484 priority patent/US9450674B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6972Arrangements for reducing noise and distortion using passive filtering

Definitions

  • This invention relates to optical communications. Specifically, and not by way of limitation, the present invention relates an apparatus and method of compensating for compact digital domain chromatic dispersion.
  • a typical transmission system might have several spans of optical fiber with erbium doped fiber amplifiers (EDFAs) between spans.
  • EDFAs erbium doped fiber amplifiers
  • the EDFAs amplify the optical signal to overcome the loss of the fiber spans.
  • the total transmission distance through optical fiber experienced by an optical signal may be several thousand kilometers.
  • the simplest way of imposing information onto the optical carrier at the transmitter is by modulation of the amplitude (or power or intensity) of the light. For binary digital signals this corresponds to on-off modulation.
  • the receiver then comprises a simple photodetector, employing direct detection.
  • the photocurrent generated by the photodetector is a replica of the power falling on the photodetector.
  • Subsequent electronic circuits amplify and process the photocurrent electrical signal to determine the information content of the received optical signal.
  • a simple direct detection receiver cannot be used, because it responds to the power (the absolute value squared of the electric field) and not to the electric field of the optical signal. Thus, any information in the phase of the optical signal is lost.
  • a coherent detection receiver may be used, as this type of receiver does respond to the optical signal's electric field.
  • the incoming optical signal is mixed with continuous wave light from a local oscillator of the same wavelength, and then detected.
  • the photocurrent in the photodetector includes a term which is the beat product of the optical signal and local oscillator, and which depends on the optical signal's electric field. Typically further processing is needed to obtain the electric field from the beat product.
  • Patent Application 2004/0114939 discloses a phase diverse coherent receiver configuration using digital signal processing (DSP) to calculate the electric field. Values of the real and imaginary parts (the inphase and quadrature components) of the complex electric field are then available within the digital processor for further processing.
  • DSP digital signal processing
  • the optical signal may be distorted by propagation through the optical fiber.
  • Chromatic dispersion CD is the propagation effect most often encountered.
  • a 10 Gb/s on-off modulated optical signal is substantially distorted by CD after propagation through about 100 km of non-dispersion shifted fiber (NDSF), so it is necessary to compensate for chromatic dispersion in some way in order to transmit over longer distances than 100 km.
  • NDSF non-dispersion shifted fiber
  • DCF dispersion compensation fiber
  • DCF has the positive feature that it compensates exactly for chromatic dispersion, but it has disadvantages that it is expensive, it is physically large in size, it has substantial optical loss, and the amount of CD being compensated is fixed.
  • the first method precompensates for chromatic dispersion, and is disclosed in U.S. Pat. No. 7,023,601.
  • An optical signal is transmitted which may not resemble the information content, and after propagation through optical fiber the chromatic dispersion of the fiber transforms the optical signal into the desired form, which does resemble the information content.
  • a pair of Mach-Zehnder optical modulators in the transmitter allow the inphase and quadrature parts (the real and imaginary parts) of the electric field to be modulated independently.
  • Each of the two Mach-Zehnder modulators is driven by an electrical signal set by a digital-to-analog (D/A) converter, which in turn, is controlled by a digital signal processor.
  • the DSP calculates the electric field of the precompensated optical signal such that after propagating through the known chromatic dispersion of the fiber optic transmission system the correct optical signal arrives at the receiver.
  • the receiver may be a direct detection receiver, given that the precompensated optical signal is calculated to become an on-off modulated signal after propagation through the optical fiber.
  • the receiver may be of a more advanced design, such as a coherent receiver, and the optical signal arriving at the receiver may then be a phase modulated signal.
  • the second method of CD compensation that operates on the electric field of the optical signal is with a phase diverse coherent receiver, as described in U.S. Patent Application Number 2004/0114939.
  • a conventional optical signal is transmitted, such as an on-off modulated signal or a phase modulated signal.
  • the optical signal becomes distorted by the chromatic dispersion of the fiber optic transmission system.
  • the coherent receiver uses DSP to calculate the electric field of the incoming optical signal, and these electric field values can then be acted upon to compensate for the effect of the chromatic dispersion.
  • the present invention is related to the calculation performed within the digital signal processor to compensate for chromatic dispersion. Although the two methods differ in that one precompensates for CD at the transmitter, while the other postcompensates at the receiver, the calculation is very similar.
  • the digital signal processor takes the given electric field, either the undistorted signal in the case of precompensation or the distorted signal in the case of postcompensation, and calculates the impact of an element of chromatic dispersion having the same magnitude and the opposite sign to the actual chromatic dispersion of the fiber optic transmission system.
  • the calculation is typically done by a finite impulse response (FIR) filter, also known as a transversal filter.
  • FIG. 1 illustrates a structure of an FIR filter.
  • Each delay r corresponds to one sample of the digitized representation, which is typically half a digital symbol period.
  • the FIR filter implements the following equation:
  • x(n) are the input electric field values
  • y(n) are the output values
  • h(k) are the tap weights. All three variables are complex numbers, and the multiplication appearing on the right hand side is complex multiplication.
  • n is the sample number, incrementing at typically two times per digital symbol, and N refers to the number of filter taps.
  • the FIR filter is implemented as digital logic gates in an integrated circuit, and so it does not follow that the structure of FIG. 1 will appear in the integrated circuit.
  • the tap weight coefficients h(k) may be determined from the inverse Fourier transform of the transfer function of the required amount of chromatic dispersion. For example, FIG.
  • FIG. 2 is a graph illustrating the real and imaginary parts of the tap weights to compensate for 2000 km NDSF at a symbol rate of 10 Gbaud.
  • Each point in time in the graph of FIG. 2 corresponds to one tap weight.
  • 140 delay and multiply stages are needed to accurately compensate for chromatic dispersion in this case.
  • the set of tap weight coefficients associated with chromatic dispersion is always symmetric about the center, so it is possible to use each multiplication result twice. Taking that saving into account, there are still 70 multiplications to be executed for each symbol period. This number is so large, that in practice, most of the computations performed by the digital signal processor are for chromatic dispersion compensation, and the amount of computations are on the edge of what is possible using today's integrated circuit technology.
  • the power dissipation of the integrated circuit is proportional to the amount of computations, so it is beneficial for that reason to reduce the amount of computations.
  • variables x(n), y(n) and h(k) are in general continuous quantities, and they can take on a smooth range of values.
  • these variables are approximated by a discrete set of values, which is a finite length binary digital representation.
  • the D/A converter used with precompensation, and the A/D converter for the postcompensation case work on discrete values of a certain number of binary digits. When a small number of binary digits is used to represent a variable, it makes the CD compensation less accurate, but it saves on integrated circuit resources.
  • the variable x(n) in equation 1 refers to the electric field of the optical signal containing the specified information
  • y(n) refers to the desired transmit signal electric field to be sent to the D/A converters.
  • x(n) takes on only values from a small set. For example, if on-off modulation is used x(n) can take on two possible values from the set ⁇ 0,1 ⁇ at the symbol centers.
  • x(n) takes on one of four possible values at the symbol centers, ⁇ 1,1, ⁇ i,i ⁇ , where i refers to the imaginary number ⁇ square root over ( ⁇ 1) ⁇ .
  • QPSK quadrature phase shift keying
  • x(n) may take on a wide range of values in this case, typically limited by the resolution of the D/A converter. It requires several binary digits to adequately represent x(n), and there is no economy in the number of logic gates to calculate the terms x(n ⁇ k) h(k). For this reason, precompensation typically requires fewer computation resources than postcompensation for an equivalent quality of CD compensation. However there are other benefits to using a coherent receiver, and it is desirable to implement CD compensation in a coherent receiver using the same amount of computations or fewer than precompensation.
  • DFT discrete Fourier transform
  • the discrete Fourier transform may be calculated using one of the well-established multistage fast Fourier transform algorithms which are described in “Understanding Digital Signal Processing” by Richard G. Lyons (Prentice Hall, 1996), herein incorporated by reference.
  • the fast Fourier transform algorithm calculates the Fourier transform of N points in log 2 N stages, each stage involving the multiplication and addition of pairs of values.
  • the output values of the DFT (the spectrum of the input) are multiplied by the phase factors associated with the chromatic dispersion transfer function.
  • the inverse discrete Fourier transform is calculated by a similar algorithm to the forward DFT, to produce a discrete-time sequence which represents the CD compensated optical signal as a function of time.
  • the DFT may use fewer arithmetic operations compared to the FIR filter. For example, in the case of compensation for 2000 km NDSF at 10 Gbaud with a 512-point DFT window, the number of multiplications per symbol is 44. However, more buffering of data values is needed since the DFT window is larger than the CD impulse response (the FIR filter width), so the reduction in number of multiplications may be offset by the extra latches and communication resources needed in the integrated circuit.
  • the digital signal processor in an actual implementation is likely to be organized in a parallel architecture, and there is a difficulty implementing an IIR filter in a parallel digital processor.
  • the IIR filter inherently uses feedback from previous results, such as y(n ⁇ 1), to calculate result y(n).
  • the FIR filter of equation 1 does not have any terms in y(n ⁇ 1) on the right hand side.
  • the result y(n ⁇ 1) may not be available at the time of calculating y(n), so the IIR algorithm cannot be implemented. This issue is discussed in U.S. Patent Application Number 2006/0245766, herein incorporated by reference.
  • the present invention is a method and apparatus to compensate for chromatic dispersion in a digital signal processor.
  • the present invention improves upon the prior art by using fewer computation resources to achieve the same result.
  • the digital signal processor may be located at the fiber optic transmitter if CD precompensation is used, or at the receiver if postcompensation is used in conjunction with coherent detection.
  • the present invention reduces the number of computations needed to implement an FIR filter by approximating the actual filter coefficients to a limited set of allowed digitization values lying on a circle on the complex plane. Following this approximation, the same filter coefficients recur many times. A multiplication of a signal value by a certain filter coefficient may be executed in full once, and then reused many times without repeating the multiplication, so as to save on computation resources.
  • the present invention reduces the amount of computations by dividing the signal into several spectral sub-bands.
  • the sub-bands are separately CD compensated, and then combined into a single output signal.
  • the total amount of computations to compensate for CD on all the sub-bands plus performing the sub-band filtering is less than the amount of computations to compensate for CD directly.
  • the present invention is a digital signal processor utilized in a fiber optic communication system.
  • the digital signal processor compensates for chromatic dispersion and executes a digital filter function.
  • the digital filter function includes an operation of multiplying a signal value received by the digital signal processor by a coefficient to produce a multiplication result.
  • the multiplication result is used three or more times during the execution of the digital filter function.
  • the present invention is a method of compensating for chromatic dispersion experienced by an optical signal propagating through a fiber optic transmission system, said method acting on a discrete-time representation of the optical signal with a digital filter operation.
  • the method includes evaluating a multiplication term to obtain a multiplication result and using the multiplication result as the value of three multiplication terms in the digital filter operation.
  • FIG. 1 (prior art) is a simplified block diagram of a finite impulse response filter.
  • FIG. 2 (prior art) is an exemplary graph of the FIR filter coefficients used to compensate for chromatic dispersion for a system configuration of 2000 km of NDSF at 10 Gbaud.
  • FIG. 3A is a graph illustrates the FIR filter coefficients of FIG. 2 plotted on the complex plane for tap weights only.
  • FIG. 3B is a graph illustrating the FIR filter coefficients of FIG. 2 with grids for standard digitization.
  • FIG. 3C is a graph illustrating the FIR filter coefficients of FIG. 2 with allowed digitization values assuming digitization using circular coefficient approximation.
  • FIG. 4A is a diagram illustrating the frequency response in amplitude associated with the exemplary element of chromatic dispersion.
  • FIG. 4B is a diagram illustrating the frequency response in phase associated with the exemplary element of chromatic dispersion.
  • FIG. 5A exemplary graph illustrating the frequency response of an apodized version in amplitude of the chromatic dispersion transfer function.
  • FIG. 5B exemplary graph illustrating the frequency response of an apodized version in phase of the chromatic dispersion transfer function.
  • FIG. 5C is an exemplary graph illustrating the frequency response of an apodized version with corresponding impulse response plotted on complex plane.
  • FIG. 6 is an exemplary graph illustrating the FIR filter coefficients for chromatic dispersion compensation when the signal is divided into three sub-bands and the sub-band signal representation has a three times lower sample than the original signal.
  • FIG. 7 is a simplified block diagraph illustrating a set of digital signal processing operations to compensate for chromatic dispersion by dividing a signal into multiple sub-bands.
  • FIG. 8A is a graph illustrating exemplary square non-overlapping sub-band shapes utilized when implementing sub-band processing.
  • FIG. 8B is a graph illustrating exemplary rounded overlapping sub-band shapes utilized when implementing sub-band processing.
  • FIG. 3A is a plot on the complex plane of the tap weight coefficients of FIG. 2 , the example of a 10 Gbaud signal over 2000 km NDSF. Each point is a plot of the imaginary part of the coefficient versus the real part.
  • the key feature of FIG. 3A is that most of the points lie close to a circle on the complex plane. Only the tails of the tap weight coefficients, as marked on FIG. 2 and FIG. 3A , deviate significantly from the circle. This circular nature is common to all sets of tap weight coefficients that are designed to compensate for chromatic dispersion.
  • the standard approach to digitization of the tap weights is to digitize the real and imaginary parts independently, to a certain number of binary digits.
  • An alternative way to reuse multiplication results is to perform a multiplication and then fan out the result to all the locations in the integrated circuit that will use it.
  • the multiplication result may be used over several clock cycles of the digital signal processor, and one or more buffers may be used to keep it available.
  • This method of reusing multiplication results is equivalent to the look-up table method, but differs in that a result may be buffered in several places instead of one, or it may not be buffered at all if all computations occur in the same processor clock cycle.
  • Each of the grid points h is defined by its real and imaginary parts, Re[h] and Im[h].
  • the complex multiplication xh is done by evaluating the two parts of separately
  • the number of multiplications to implement the FIR filter directly is 70, taking into account the symmetry of the coefficients. Therefore, there are substantial savings in the amount of computations via the circular coefficient approximation if only 8 real-real multiplications are made for each x(n) instead of 70 complex multiplications.
  • the allowed digitization values of h indicated in FIG. 3C are approximations to the actual values.
  • the approximation will lead to a penalty compared to exact CD compensation.
  • the case of 10 Gbaud QPSK transmission over 2000 km NDSF has been modeled numerically, and is described in “Compact Digital Dispersion Compensation Algorithms” by M. G. Taylor (OFC 2008 conference, San Diego, US, paper OTuO1, February 2008), which is herein incorporated by reference.
  • the penalty due to the circular coefficient approximation was found to be approximately 0.83 dB, which is acceptable. It is only 0.32 dB worse than if CD compensation were performed by precompensation using existing algorithms. However, the amount of computations is significantly less than for precompensation.
  • FIG. 2 real and imaginary parts vs. time
  • FIG. 3 complex plane plot
  • the magnitude of the frequency response is flat.
  • FIGS. 5A and 5B show the phase angle and amplitude of an alternative apodized frequency response.
  • the amplitude is a raised cosine function which decays at the edges.
  • a key feature common to all these alternative embodiments of the circular coefficient approximation is that a multiplication result xh is used more than twice. It is well known that a multiplication result may be used twice because of the symmetrical nature of the tap weight coefficients.
  • the circular coefficient approximation advances on the prior art in that it provides a way for a multiplication result to be used more than twice.
  • An additional way to reduce the amount of computations for chromatic dispersion compensation is to divide the optical spectrum being processed into smaller sub-bands, and process each sub-band separately. This approach may be combined with the circular coefficient approximation.
  • the spectral region occupied by a digitized narrowband signal (both inphase and quadrature components) has a width equal to the sample rate. For example if the digitized signal has two samples per digital symbol then the spectral width of the digitized signal is twice the symbol rate. The details of how sample rate and spectral width are related are given in Lyons' book.
  • a sub-band having a lower spectral width than the original signal may be represented by a proportionally lower sample rate digitized representation. Provided that the combination of the spectral regions associated with all the sub-bands covers the same spectral region as the original signal, perhaps with some overlapping, then the representation of the signal as multiple lower sample rate sub-bands is as valid as the single band representation of the signal. It is acceptable to apply chromatic dispersion compensation to each of the sub-bands, provided that the chromatic dispersion compensation operation applied to each sub-band is appropriate to the spectral region occupied by that sub-band.
  • a 10 Gbaud signal may be represented by a discrete-time sequence of samples separated by 50 ps.
  • it may be represented as three sub-band signals, each one having samples separated by 150 ps, where the three sub-bands' spectra are contiguous.
  • the FIR filter coefficients for CD compensation of 2000 km NDSF of the single band representation were given in FIG. 2 .
  • the FIR filter coefficients for the same CD compensation of the three sub-bands are shown in FIG. 6 (only the real part is shown; the imaginary part has similar behavior).
  • the points in FIG. 6 are spaced by 150 ps, instead of the 50 ps spacing of FIG. 2 .
  • each sub-band has non-zero coefficient over a small range in time; there are about 20 non-zero coefficients each in FIG. 6 .
  • This property that there is a saving in the number of coefficients by dividing the FIR filter operation into sub-bands is associated with the transfer function of chromatic dispersion compensation.
  • An arbitrarily chosen linear filter operation does not require fewer multiplication operations when organized into sub-bands. Thus, it is not the normal practice for the designer of a digital signal processor to consider executing a linear filter operation in sub-bands, because usually it delivers no benefit.
  • the digital signal processor must include operations to separate the signal into sub-bands, and then to combine the CD-compensated sub-bands into a single signal.
  • Many methods of sub-band filtering are described in “Multirate Systems And Filter Banks” by P. P. Vaidyanathan (Prentice Hall, 1993), herein incorporated by reference.
  • the arrangement of FIG. 7 may be used to achieve this.
  • Each block in FIG. 7 corresponds to a digital signal processing operation that is a mathematical operation, and is performed by digital logic within an integrated circuit.
  • the input signal 701 is separated into multiple sub-band signals 703 by a decimated analysis filter bank 702 . There are several possible designs for the decimated analysis filter bank.
  • a bank of FIR filters or IIR filters may be implemented as a bank of FIR filters or IIR filters, or as a cosine modulated filter bank, or as a DFT modulated filter bank.
  • Another option is to use a tree structured filter bank. For example, a tree structure of M stages of half-band filters has 2 M outputs, each one having a spectrum occupying about 1 ⁇ 2 M of the full band.
  • sub-band analysis filters may be chosen to have square non-overlapping spectral responses, as shown in FIG. 8A .
  • FIG. 8A Typically it requires a large amount of computations to obtain square edges for such a filter, and realistically the sub-band filter spectral response may have some side lobes. These features will in turn lead to a penalty in the quality of the compensated signal due to aliasing.
  • FIG. 8B An alternative set of sub-band analysis filter spectral responses is given in FIG. 8B , where each response has a decaying edge and where the responses overlap. The rounded nature means that the a small amount of computations may provide an actual response close to the design target.
  • the sample rate may be set to ⁇ f total /N sub-bands where N sub-bands is the number of sub-bands and ⁇ f total is the input signal bandwidth as indicated on FIG. 8B .
  • This option known as maximally decimated sub-bands, will mean that there is some aliasing, and the analysis and synthesis filter functions should be chosen to minimize the amount of aliasing.
  • the sub-band sample rate may be set to ⁇ f band , which is higher than ⁇ f total /N sub-bands . There will then be no aliasing.
  • ⁇ f band it is advantageous to choose ⁇ f band to be related to ⁇ f total by a ratio of integers.
  • the width of the sub-band should be chosen carefully, since when ⁇ f band is large the savings on amount of computations for the CD compensation part is reduced, and when ⁇ f band is too small more computations are needed to implement the analysis and synthesis filter banks.
  • Each sub-band is processed to compensate for chromatic dispersion by CD compensation operations 704 .
  • CD compensation operations 704 The use of FIR filters for CD compensation was discussed above, and the use of IIR filters is discussed below.
  • the output of the chromatic dispersion compensation operation is represented in several sub-bands 705 , each having a sample rate lower than that of the original input signal 701 .
  • these sub-band signals 705 are combined into a single output signal 707 by a synthesis filter bank 706 .
  • the output signal has a higher sample rate than the sub-band signals. It may have the same sample rate as the input signal 701 , or the sample rate may be lower, for example if the output is directed to a decision operation which requires one sample per symbol instead of the two samples per symbol of the original input signal.
  • the synthesis filter bank there are several possible designs for the synthesis filter bank. Often the synthesis filter bank performs the converse operation of the analysis filter bank and so has similar design.
  • one CD compensated sub-band signal contains information to be directed to one user or to one location in the transmission system for further processing. There is no need to combine that sub-band signal with the others and then subsequently extract it from the output signal, and that sub-band signal may be forwarded to its destination directly.
  • the shape of the sub-band filters and the interpolation filters may be chosen so that the sum of the combined responses for the sub-bands is a flat response.
  • the term “combined response” refers to the spectral response of the analysis filter for a particular sub-band followed by the spectral response of the corresponding synthesis filter.
  • One way to achieve a flat spectral response for the sum of the combined sub-band responses is to set the spectral response of each sub-band filter, and the corresponding interpolation filter, to be the square root of a raised cosine function in the frequency domain.
  • the total amount of computations includes the sub-band analysis and synthesis filter banks and the CD compensation operation. It can be seen that there is a saving in the CD compensation portion, as was made clear earlier by comparing FIG. 2 and FIG. 6 . It has been shown in “Compact Digital Dispersion Compensation Algorithms” by M. G. Taylor that there is a saving in the amount of computations overall using sub-band processing for CD compensation of a 25 Gbaud QPSK signal over 6400 km of NDSF.
  • the sub-band processing approach may also be of benefit with an IIR filter for CD compensation.
  • One of the disadvantages of the IIR filter for direct CD compensation (without sub-band processing) is that the IIR filter uses a recent result y(n ⁇ 1) to calculate y(n), and y(n ⁇ 1) is not available because of the slow clock speed of the digital signal processor.
  • the CD compensation elements within the sub-band processing configuration of FIG. 7 operate on a discrete-time sequence of a lower sample rate. This means that the restriction of unavailable y(n ⁇ 1) may not occur. If it does occur then the solution to recast the algorithm using a look-ahead computation may not give rise to a punitive increase in the amount of computations.
  • the combination of sub-band processing with IIR filtering for CD compensation may lead to a substantial reduction in the overall amount of computations, while the use of IIR filtering alone does not.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

A method and apparatus of compensating for compact digital domain chromatic dispersion. The distortion of an optical signal due to chromatic dispersion is compensated by a digital signal processing in the electrical domain, either prior to the optical transmitter or following the receiver. The circular coefficient approximation and sub-band processing reduce the amount of computations to execute a given level of chromatic dispersion compensation compared to a direct finite impulse response filter implementation.

Description

    RELATED APPLICATIONS
  • This utility application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/998,184 filed Oct. 9, 2007 and Ser. No. 61/015,508 filed Dec. 20, 2007, both by Michael G. Taylor, which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to optical communications. Specifically, and not by way of limitation, the present invention relates an apparatus and method of compensating for compact digital domain chromatic dispersion.
  • 2. Description of the Related Art
  • Information has been transmitted over optical fibers since the late 1970s. Discussions in this field are disclosed in “Optical Communication Systems” by John Gowar (Prentice Hall, 2nd ed., 1993) and “Fiber-optic communication systems” by Govind P. Agrawal (Wiley, 2nd ed., 1997), which are herein incorporated by reference. The information is usually in the form of binary digital signals, i.e. logical “1”s and “0”s, but fiber optics is also used to transport analog signals. The remainder of this document will refer only to the applications with digital signals. Every transmission system has a transmitter, which emits light modulated with information into the fiber, and a receiver at the far end which detects the light and recovers the information. A typical transmission system might have several spans of optical fiber with erbium doped fiber amplifiers (EDFAs) between spans. The EDFAs amplify the optical signal to overcome the loss of the fiber spans. The total transmission distance through optical fiber experienced by an optical signal may be several thousand kilometers.
  • The simplest way of imposing information onto the optical carrier at the transmitter is by modulation of the amplitude (or power or intensity) of the light. For binary digital signals this corresponds to on-off modulation. The receiver then comprises a simple photodetector, employing direct detection. The photocurrent generated by the photodetector is a replica of the power falling on the photodetector. Subsequent electronic circuits amplify and process the photocurrent electrical signal to determine the information content of the received optical signal. Alternatively it is possible to modulate information onto the electric field of the optical carrier. There are several advantages to imposing information by modulating the electric field, but it is not yet in widespread use because the receiver is more complex. A simple direct detection receiver cannot be used, because it responds to the power (the absolute value squared of the electric field) and not to the electric field of the optical signal. Thus, any information in the phase of the optical signal is lost. A coherent detection receiver may be used, as this type of receiver does respond to the optical signal's electric field. In a coherent receiver, the incoming optical signal is mixed with continuous wave light from a local oscillator of the same wavelength, and then detected. The photocurrent in the photodetector includes a term which is the beat product of the optical signal and local oscillator, and which depends on the optical signal's electric field. Typically further processing is needed to obtain the electric field from the beat product. U.S. Patent Application 2004/0114939, herein incorporated by reference, discloses a phase diverse coherent receiver configuration using digital signal processing (DSP) to calculate the electric field. Values of the real and imaginary parts (the inphase and quadrature components) of the complex electric field are then available within the digital processor for further processing.
  • The optical signal may be distorted by propagation through the optical fiber. There are several distinct propagation effects that can occur, as described in “Nonlinear fiber optics” by Govind P. Agrawal (Academic Press, 2nd ed., 1995). Chromatic dispersion (CD) is the propagation effect most often encountered. A 10 Gb/s on-off modulated optical signal is substantially distorted by CD after propagation through about 100 km of non-dispersion shifted fiber (NDSF), so it is necessary to compensate for chromatic dispersion in some way in order to transmit over longer distances than 100 km. The usual way to compensate for CD is via dispersion compensation fiber (DCF), an optical component placed in line with the transmission fiber. DCF has the positive feature that it compensates exactly for chromatic dispersion, but it has disadvantages that it is expensive, it is physically large in size, it has substantial optical loss, and the amount of CD being compensated is fixed. There are ways to compensate for chromatic dispersion in the electronics of the receiver after photodetection. For example, “Adaptive Electronic Feed-Forward Equaliser and Decision Feedback Equaliser for the Mitigation of Chromatic Dispersion and PMD in 43 Gbit/s Optical Transmission Systems” by B. Franz et al. (ECOC 2006 conference, Cannes, France, paper We1.5.1, September 2006) describes an electronic domain CD compensator using analog signal processing, and “Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation” by A. Farbert et al. (ECOC 2004 conference, Stockholm, Sweden, paper Th4.1.5, September 2004) describes one using digital signal processing. Compensation in the electrical domain is expected to cost less than using optical components because of the nature of mass production of electronics. However electrical compensation of CD following direct detection can only compensate for a small amount of chromatic dispersion, equivalent to perhaps 100 km of NDSF at 10 Gb/s, because direct detection discards the phase of the optical signal. For this reason on long fiber optic transmission systems most of the CD compensation has been done via DCF, with electrical domain compensation simply trimming the amount of compensation.
  • Recently two new methods of electrical domain CD compensation have been proposed which are able in principle to compensate for unlimited transmission distances. Both methods use digital signal processing and effectively operate on a discrete-time representation of the electric field of the optical signal. The first method precompensates for chromatic dispersion, and is disclosed in U.S. Pat. No. 7,023,601. An optical signal is transmitted which may not resemble the information content, and after propagation through optical fiber the chromatic dispersion of the fiber transforms the optical signal into the desired form, which does resemble the information content. A pair of Mach-Zehnder optical modulators in the transmitter allow the inphase and quadrature parts (the real and imaginary parts) of the electric field to be modulated independently. Each of the two Mach-Zehnder modulators is driven by an electrical signal set by a digital-to-analog (D/A) converter, which in turn, is controlled by a digital signal processor. The DSP calculates the electric field of the precompensated optical signal such that after propagating through the known chromatic dispersion of the fiber optic transmission system the correct optical signal arrives at the receiver. The receiver may be a direct detection receiver, given that the precompensated optical signal is calculated to become an on-off modulated signal after propagation through the optical fiber. Alternatively, the receiver may be of a more advanced design, such as a coherent receiver, and the optical signal arriving at the receiver may then be a phase modulated signal.
  • The second method of CD compensation that operates on the electric field of the optical signal is with a phase diverse coherent receiver, as described in U.S. Patent Application Number 2004/0114939. A conventional optical signal is transmitted, such as an on-off modulated signal or a phase modulated signal. The optical signal becomes distorted by the chromatic dispersion of the fiber optic transmission system. The coherent receiver uses DSP to calculate the electric field of the incoming optical signal, and these electric field values can then be acted upon to compensate for the effect of the chromatic dispersion.
  • The present invention is related to the calculation performed within the digital signal processor to compensate for chromatic dispersion. Although the two methods differ in that one precompensates for CD at the transmitter, while the other postcompensates at the receiver, the calculation is very similar. The digital signal processor takes the given electric field, either the undistorted signal in the case of precompensation or the distorted signal in the case of postcompensation, and calculates the impact of an element of chromatic dispersion having the same magnitude and the opposite sign to the actual chromatic dispersion of the fiber optic transmission system. The calculation is typically done by a finite impulse response (FIR) filter, also known as a transversal filter. FIG. 1 illustrates a structure of an FIR filter. It comprises several delay stages 102 and multiply stages 104, and the multiplications results are summed 106. Each delay r corresponds to one sample of the digitized representation, which is typically half a digital symbol period. The FIR filter implements the following equation:
  • y ( n ) = k = 0 N - 1 x ( n - k ) h ( k ) ( 1 )
  • where x(n) are the input electric field values, y(n) are the output values, and h(k) are the tap weights. All three variables are complex numbers, and the multiplication appearing on the right hand side is complex multiplication. n is the sample number, incrementing at typically two times per digital symbol, and N refers to the number of filter taps. The FIR filter is implemented as digital logic gates in an integrated circuit, and so it does not follow that the structure of FIG. 1 will appear in the integrated circuit. The tap weight coefficients h(k) may be determined from the inverse Fourier transform of the transfer function of the required amount of chromatic dispersion. For example, FIG. 2 is a graph illustrating the real and imaginary parts of the tap weights to compensate for 2000 km NDSF at a symbol rate of 10 Gbaud. Each point in time in the graph of FIG. 2 corresponds to one tap weight. 140 delay and multiply stages are needed to accurately compensate for chromatic dispersion in this case. In fact, the set of tap weight coefficients associated with chromatic dispersion is always symmetric about the center, so it is possible to use each multiplication result twice. Taking that saving into account, there are still 70 multiplications to be executed for each symbol period. This number is so large, that in practice, most of the computations performed by the digital signal processor are for chromatic dispersion compensation, and the amount of computations are on the edge of what is possible using today's integrated circuit technology. In addition, the power dissipation of the integrated circuit is proportional to the amount of computations, so it is beneficial for that reason to reduce the amount of computations.
  • The variables x(n), y(n) and h(k) are in general continuous quantities, and they can take on a smooth range of values. To compute equation 1, these variables are approximated by a discrete set of values, which is a finite length binary digital representation. Additionally, the D/A converter used with precompensation, and the A/D converter for the postcompensation case, work on discrete values of a certain number of binary digits. When a small number of binary digits is used to represent a variable, it makes the CD compensation less accurate, but it saves on integrated circuit resources.
  • While the CD compensation calculation for precompensation is similar to postcompensation, there are important differences between the amounts of computations needed to implement the two of them. With precompensation, the variable x(n) in equation 1 refers to the electric field of the optical signal containing the specified information, and y(n) refers to the desired transmit signal electric field to be sent to the D/A converters. Depending on the modulation format chosen, x(n) takes on only values from a small set. For example, if on-off modulation is used x(n) can take on two possible values from the set {0,1} at the symbol centers. Alternatively with quadrature phase shift keying (QPSK) modulation format x(n) takes on one of four possible values at the symbol centers, {−1,1,−i,i}, where i refers to the imaginary number √{square root over (−1)}. In both these modulation format examples, any of the allowable values of x(n) is written as a short number in a binary digital representation. This means that the product terms x(n−k) h(k) of equation 1 may be evaluated with a small number of logic gates. In contrast, when postcompensation is implemented in conjunction with coherent detection, the variable x(n) refers to the electric field of the incoming optical signal, and y(n) refers to the signal after chromatic dispersion compensation. x(n) may take on a wide range of values in this case, typically limited by the resolution of the D/A converter. It requires several binary digits to adequately represent x(n), and there is no economy in the number of logic gates to calculate the terms x(n−k) h(k). For this reason, precompensation typically requires fewer computation resources than postcompensation for an equivalent quality of CD compensation. However there are other benefits to using a coherent receiver, and it is desirable to implement CD compensation in a coherent receiver using the same amount of computations or fewer than precompensation.
  • An alternative to the FIR filter is to use the discrete Fourier transform (DFT) for CD compensation. The DFT is calculated for a block of contiguous sample values, where the size of the block is typically several times larger than the extent of the CD impulse response. The discrete Fourier transform may be calculated using one of the well-established multistage fast Fourier transform algorithms which are described in “Understanding Digital Signal Processing” by Richard G. Lyons (Prentice Hall, 1996), herein incorporated by reference. The fast Fourier transform algorithm calculates the Fourier transform of N points in log2N stages, each stage involving the multiplication and addition of pairs of values. The output values of the DFT (the spectrum of the input) are multiplied by the phase factors associated with the chromatic dispersion transfer function. Then the inverse discrete Fourier transform is calculated by a similar algorithm to the forward DFT, to produce a discrete-time sequence which represents the CD compensated optical signal as a function of time. The DFT may use fewer arithmetic operations compared to the FIR filter. For example, in the case of compensation for 2000 km NDSF at 10 Gbaud with a 512-point DFT window, the number of multiplications per symbol is 44. However, more buffering of data values is needed since the DFT window is larger than the CD impulse response (the FIR filter width), so the reduction in number of multiplications may be offset by the extra latches and communication resources needed in the integrated circuit.
  • A second alternative way of performing CD compensation to the FIR filter has been proposed and modeled. A solution using an infinite impulse response (IIR) filter design is described in “Chromatic Dispersion Compensation Using Digital IIR Filtering With Coherent Detection” by G. Goldfarb & G. Li (IEEE Phot. Tech. Lett., vol. 19, no. 13, p. 969-971, 2007). It is well known that the transfer function of an FIR filter having many taps may often be implemented more compactly by an IIR filter. Goldfarb & Li obtained a reduction by a factor of 2.5 in the amount of computations compared to the FIR filter. However, the digital signal processor in an actual implementation is likely to be organized in a parallel architecture, and there is a difficulty implementing an IIR filter in a parallel digital processor. The IIR filter inherently uses feedback from previous results, such as y(n−1), to calculate result y(n). In contrast, the FIR filter of equation 1 does not have any terms in y(n−1) on the right hand side. In a parallel architecture digital processor, the result y(n−1) may not be available at the time of calculating y(n), so the IIR algorithm cannot be implemented. This issue is discussed in U.S. Patent Application Number 2006/0245766, herein incorporated by reference. There are ways to resolve the problem, such as recasting the algorithm using a look-ahead computation, but the solution requires more computations. It is possible that the IIR filter for CD compensation described by Goldfarb & Li would reduce the amount of computations by significantly less than the factor of 2.5, if it were implemented in a parallel digital signal processor. It is desirable to find a way to adapt the IIR filter solution so that it can be implemented in a parallel digital signal processor without requiring excess computations.
  • Thus, there is a need for an algorithm to compensate for chromatic dispersion in a digital signal processor which uses a smaller amount of computations than a direct implementation of an FIR filter. It is preferable that such an algorithm does not require buffering of a larger number of sample values than the FIR filter algorithm. Also there is a need for an IIR filter algorithm that uses a small amount of computations when implemented on a parallel digital signal processor.
  • SUMMARY OF THE INVENTION
  • The present invention is a method and apparatus to compensate for chromatic dispersion in a digital signal processor. The present invention improves upon the prior art by using fewer computation resources to achieve the same result. The digital signal processor may be located at the fiber optic transmitter if CD precompensation is used, or at the receiver if postcompensation is used in conjunction with coherent detection.
  • The present invention reduces the number of computations needed to implement an FIR filter by approximating the actual filter coefficients to a limited set of allowed digitization values lying on a circle on the complex plane. Following this approximation, the same filter coefficients recur many times. A multiplication of a signal value by a certain filter coefficient may be executed in full once, and then reused many times without repeating the multiplication, so as to save on computation resources.
  • In one aspect, the present invention reduces the amount of computations by dividing the signal into several spectral sub-bands. The sub-bands are separately CD compensated, and then combined into a single output signal. The total amount of computations to compensate for CD on all the sub-bands plus performing the sub-band filtering is less than the amount of computations to compensate for CD directly.
  • In another aspect, the present invention is a digital signal processor utilized in a fiber optic communication system. The digital signal processor compensates for chromatic dispersion and executes a digital filter function. The digital filter function includes an operation of multiplying a signal value received by the digital signal processor by a coefficient to produce a multiplication result. The multiplication result is used three or more times during the execution of the digital filter function.
  • In still another aspect, the present invention is a method of compensating for chromatic dispersion experienced by an optical signal propagating through a fiber optic transmission system, said method acting on a discrete-time representation of the optical signal with a digital filter operation. The method includes evaluating a multiplication term to obtain a multiplication result and using the multiplication result as the value of three multiplication terms in the digital filter operation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 (prior art) is a simplified block diagram of a finite impulse response filter.
  • FIG. 2 (prior art) is an exemplary graph of the FIR filter coefficients used to compensate for chromatic dispersion for a system configuration of 2000 km of NDSF at 10 Gbaud.
  • FIG. 3A is a graph illustrates the FIR filter coefficients of FIG. 2 plotted on the complex plane for tap weights only.
  • FIG. 3B is a graph illustrating the FIR filter coefficients of FIG. 2 with grids for standard digitization.
  • FIG. 3C is a graph illustrating the FIR filter coefficients of FIG. 2 with allowed digitization values assuming digitization using circular coefficient approximation.
  • FIG. 4A is a diagram illustrating the frequency response in amplitude associated with the exemplary element of chromatic dispersion.
  • FIG. 4B is a diagram illustrating the frequency response in phase associated with the exemplary element of chromatic dispersion.
  • FIG. 5A exemplary graph illustrating the frequency response of an apodized version in amplitude of the chromatic dispersion transfer function.
  • FIG. 5B exemplary graph illustrating the frequency response of an apodized version in phase of the chromatic dispersion transfer function.
  • FIG. 5C is an exemplary graph illustrating the frequency response of an apodized version with corresponding impulse response plotted on complex plane.
  • FIG. 6 is an exemplary graph illustrating the FIR filter coefficients for chromatic dispersion compensation when the signal is divided into three sub-bands and the sub-band signal representation has a three times lower sample than the original signal.
  • FIG. 7 is a simplified block diagraph illustrating a set of digital signal processing operations to compensate for chromatic dispersion by dividing a signal into multiple sub-bands.
  • FIG. 8A is a graph illustrating exemplary square non-overlapping sub-band shapes utilized when implementing sub-band processing.
  • FIG. 8B is a graph illustrating exemplary rounded overlapping sub-band shapes utilized when implementing sub-band processing.
  • DESCRIPTION OF THE INVENTION A. Circular Coefficient Approximation
  • FIG. 3A is a plot on the complex plane of the tap weight coefficients of FIG. 2, the example of a 10 Gbaud signal over 2000 km NDSF. Each point is a plot of the imaginary part of the coefficient versus the real part. The key feature of FIG. 3A is that most of the points lie close to a circle on the complex plane. Only the tails of the tap weight coefficients, as marked on FIG. 2 and FIG. 3A, deviate significantly from the circle. This circular nature is common to all sets of tap weight coefficients that are designed to compensate for chromatic dispersion. The standard approach to digitization of the tap weights is to digitize the real and imaginary parts independently, to a certain number of binary digits. This is equivalent to moving each point to the closest of a grid of allowed values. The square crosses in FIG. 3B are the allowed digitized values when the complex parts of the coefficients are digitized to 4 binary digits. This is an inefficient way to represent the coefficients h(k) since most of the grid points are not used. It is better to choose the allowed digitization values to lie on a circle, as shown in FIG. 3C.
  • Rounding the actual coefficients to the circular tap weight coefficients leads to a reduction in the number of multiplications to implement equation 1. When a new value of x(n) arrives it is multiplied by all the possible allowed values of h(k) (or a subset of these allowed values, as discussed below). The results of the multiplications are stored in a small look-up table. Then to compute the right hand side of equation 1 each multiplication term is drawn from the look-up table. There will be substantial reuse of each multiplication result on average provided that the number of FIR filter taps is larger than the number of entries in the look-up table. The determination of which look-up table entry to read may be made in advance which simplifies the design of the digital signal processor. Only the value to be stored in the look-up table has to be computed in real time. An alternative way to reuse multiplication results is to perform a multiplication and then fan out the result to all the locations in the integrated circuit that will use it. The multiplication result may be used over several clock cycles of the digital signal processor, and one or more buffers may be used to keep it available. This method of reusing multiplication results is equivalent to the look-up table method, but differs in that a result may be buffered in several places instead of one, or it may not be buffered at all if all computations occur in the same processor clock cycle.
  • This choice of allowed digitization values leads to savings in the amount of computations. Each of the grid points h is defined by its real and imaginary parts, Re[h] and Im[h]. The complex multiplication xh is done by evaluating the two parts of separately

  • Re[xh]=Re[x]Re[h]−Im[x]Im[h]  (2a)

  • Im[xh]=Re[x]Im[h]+Im[x]Re[h]  (2b)
  • Thus, it is acceptable to store the four real results given on the right hand sides of equation 2 in the look-up table instead of storing the complex result xh. If the number of allowed digitization points is a multiple of 4, then the values of the four real multiplication results for each allowed h in three quadrants are obtained easily from the values of the fourth quadrant by multiplying by +1 or −1. Multiplication by −1 is quick to evaluate in a binary digital representation. Furthermore, if the number of allowed digitization points is a multiple of 12 then the grid includes points at 30°, 60°, etc. This means that some values of Re[h] and Im[h] are 0.5, and multiplication by 0.5 is quick to evaluate for binary numbers. If the number of allowed digitization points is a multiple of 8, then there are allowed points at 450 to the axes. This means there are further savings in computations because these points have Re[h]=Im[h]. Putting these possibilities together in an example where the number of allowed circle points is 24, as is shown in FIG. 3C, there are only 8 real-real multiplications that have to be performed for each x(n) and stored in the look-up table. All the other complex multiplication results for the 24 allowed digitization values of h may then be generated by trivial calculations.
  • Referring again to the example of CD compensation for a 10 Gbaud optical signal propagating over 2000 km NDSF, the number of multiplications to implement the FIR filter directly is 70, taking into account the symmetry of the coefficients. Therefore, there are substantial savings in the amount of computations via the circular coefficient approximation if only 8 real-real multiplications are made for each x(n) instead of 70 complex multiplications.
  • The allowed digitization values of h indicated in FIG. 3C are approximations to the actual values. The approximation will lead to a penalty compared to exact CD compensation. The case of 10 Gbaud QPSK transmission over 2000 km NDSF has been modeled numerically, and is described in “Compact Digital Dispersion Compensation Algorithms” by M. G. Taylor (OFC 2008 conference, San Diego, US, paper OTuO1, February 2008), which is herein incorporated by reference. The penalty due to the circular coefficient approximation was found to be approximately 0.83 dB, which is acceptable. It is only 0.32 dB worse than if CD compensation were performed by precompensation using existing algorithms. However, the amount of computations is significantly less than for precompensation.
  • There are two kinds of error in h generated by applying the circular coefficient approximation. First, the tails of the tap weight coefficients are poorly approximated. Second, in the center region the absolute value of the coefficients is not uniform, while the circular coefficient approximation digitizes them to have a fixed absolute value. These two causes of error in h may be dealt with by the following measures. It would be more accurate to use the conventional digitization mode, the grid of FIG. 3B, for the tails, and use the circular coefficient approximation for the center region of the tap weight coefficients. This does not consume many more computations because the tails are typically a smaller region than the center region. To address the non-uniform magnitude of the center region, it would be more accurate to use a small number of circles of allowed digitization values having different radii, for example two circles. This would increase the size of the look-up table by a factor equal to the number of circles chosen, but could still lead to a significant reduction in the amount of computations.
  • Another way to deal with the two kinds of error in h is to use an apodized version of the CD frequency response (also known as a windowed FIR filter). The CD impulse response shown in FIG. 2 (real and imaginary parts vs. time) and FIG. 3 (complex plane plot) is calculated from the exact CD frequency response of 2000 km NDSF for a 10 Gbaud optical signal, whose amplitude and phase angle are shown in FIGS. 4A and 4B. The magnitude of the frequency response is flat. FIGS. 5A and 5B show the phase angle and amplitude of an alternative apodized frequency response. The amplitude is a raised cosine function which decays at the edges. The fact that some frequency components are attenuated by this transfer function typically causes only a small penalty in the quality of the received signal because the frequency components are at the edge of the band, where the signal has little or no energy. The impulse response of this apodized transfer function is shown in FIG. 5C, on the complex plane. Comparing FIG. 5C with the original version of FIG. 3, it is clear that the amplitude of the center region is more constant and that the number of points in the tail region is smaller. This means that the errors in impulse response h by applying the circular coefficient approximation calculated from the apodized CD frequency response is smaller than by applying the circular coefficient approximation to the original (non-apodized) frequency response.
  • A key feature common to all these alternative embodiments of the circular coefficient approximation is that a multiplication result xh is used more than twice. It is well known that a multiplication result may be used twice because of the symmetrical nature of the tap weight coefficients. The circular coefficient approximation advances on the prior art in that it provides a way for a multiplication result to be used more than twice.
  • B. Sub-Band Processing
  • An additional way to reduce the amount of computations for chromatic dispersion compensation is to divide the optical spectrum being processed into smaller sub-bands, and process each sub-band separately. This approach may be combined with the circular coefficient approximation.
  • The spectral region occupied by a digitized narrowband signal (both inphase and quadrature components) has a width equal to the sample rate. For example if the digitized signal has two samples per digital symbol then the spectral width of the digitized signal is twice the symbol rate. The details of how sample rate and spectral width are related are given in Lyons' book. A sub-band having a lower spectral width than the original signal may be represented by a proportionally lower sample rate digitized representation. Provided that the combination of the spectral regions associated with all the sub-bands covers the same spectral region as the original signal, perhaps with some overlapping, then the representation of the signal as multiple lower sample rate sub-bands is as valid as the single band representation of the signal. It is acceptable to apply chromatic dispersion compensation to each of the sub-bands, provided that the chromatic dispersion compensation operation applied to each sub-band is appropriate to the spectral region occupied by that sub-band.
  • For example, a 10 Gbaud signal may be represented by a discrete-time sequence of samples separated by 50 ps. Alternatively it may be represented as three sub-band signals, each one having samples separated by 150 ps, where the three sub-bands' spectra are contiguous. The FIR filter coefficients for CD compensation of 2000 km NDSF of the single band representation were given in FIG. 2. The FIR filter coefficients for the same CD compensation of the three sub-bands are shown in FIG. 6 (only the real part is shown; the imaginary part has similar behavior). The points in FIG. 6 are spaced by 150 ps, instead of the 50 ps spacing of FIG. 2. It can be seen that each sub-band has non-zero coefficient over a small range in time; there are about 20 non-zero coefficients each in FIG. 6. This means that the number on non-zero coefficients for all three sub-bands together (60 in FIG. 6) is less than the number of coefficients for the single band (140 in FIG. 2). This property that there is a saving in the number of coefficients by dividing the FIR filter operation into sub-bands is associated with the transfer function of chromatic dispersion compensation. An arbitrarily chosen linear filter operation does not require fewer multiplication operations when organized into sub-bands. Thus, it is not the normal practice for the designer of a digital signal processor to consider executing a linear filter operation in sub-bands, because usually it delivers no benefit.
  • The digital signal processor must include operations to separate the signal into sub-bands, and then to combine the CD-compensated sub-bands into a single signal. Many methods of sub-band filtering are described in “Multirate Systems And Filter Banks” by P. P. Vaidyanathan (Prentice Hall, 1993), herein incorporated by reference. The arrangement of FIG. 7 may be used to achieve this. Each block in FIG. 7 corresponds to a digital signal processing operation that is a mathematical operation, and is performed by digital logic within an integrated circuit. The input signal 701 is separated into multiple sub-band signals 703 by a decimated analysis filter bank 702. There are several possible designs for the decimated analysis filter bank. It may be implemented as a bank of FIR filters or IIR filters, or as a cosine modulated filter bank, or as a DFT modulated filter bank. Another option is to use a tree structured filter bank. For example, a tree structure of M stages of half-band filters has 2M outputs, each one having a spectrum occupying about ½M of the full band.
  • There are many possible designs of sub-band spectral response. For example the sub-band analysis filters may be chosen to have square non-overlapping spectral responses, as shown in FIG. 8A. Typically it requires a large amount of computations to obtain square edges for such a filter, and realistically the sub-band filter spectral response may have some side lobes. These features will in turn lead to a penalty in the quality of the compensated signal due to aliasing. An alternative set of sub-band analysis filter spectral responses is given in FIG. 8B, where each response has a decaying edge and where the responses overlap. The rounded nature means that the a small amount of computations may provide an actual response close to the design target. There are two approaches to the choice of sub-band sample rate that may be taken with the overlapping sub-band spectral responses. The sample rate may be set to Δftotal/Nsub-bands where Nsub-bands is the number of sub-bands and Δftotal is the input signal bandwidth as indicated on FIG. 8B. This option, known as maximally decimated sub-bands, will mean that there is some aliasing, and the analysis and synthesis filter functions should be chosen to minimize the amount of aliasing. Alternatively the sub-band sample rate may be set to Δfband, which is higher than Δftotal/Nsub-bands. There will then be no aliasing. It is advantageous to choose Δfband to be related to Δftotal by a ratio of integers. The width of the sub-band should be chosen carefully, since when Δfband is large the savings on amount of computations for the CD compensation part is reduced, and when Δfband is too small more computations are needed to implement the analysis and synthesis filter banks.
  • Each sub-band is processed to compensate for chromatic dispersion by CD compensation operations 704. The use of FIR filters for CD compensation was discussed above, and the use of IIR filters is discussed below.
  • The output of the chromatic dispersion compensation operation is represented in several sub-bands 705, each having a sample rate lower than that of the original input signal 701. Next, these sub-band signals 705 are combined into a single output signal 707 by a synthesis filter bank 706. The output signal has a higher sample rate than the sub-band signals. It may have the same sample rate as the input signal 701, or the sample rate may be lower, for example if the output is directed to a decision operation which requires one sample per symbol instead of the two samples per symbol of the original input signal. Like the analysis filter bank, there are several possible designs for the synthesis filter bank. Often the synthesis filter bank performs the converse operation of the analysis filter bank and so has similar design.
  • In some system configurations it may not be necessary to combine all the sub-bands into a single output signal. It is possible that one CD compensated sub-band signal contains information to be directed to one user or to one location in the transmission system for further processing. There is no need to combine that sub-band signal with the others and then subsequently extract it from the output signal, and that sub-band signal may be forwarded to its destination directly.
  • The shape of the sub-band filters and the interpolation filters may be chosen so that the sum of the combined responses for the sub-bands is a flat response. The term “combined response” refers to the spectral response of the analysis filter for a particular sub-band followed by the spectral response of the corresponding synthesis filter. One way to achieve a flat spectral response for the sum of the combined sub-band responses is to set the spectral response of each sub-band filter, and the corresponding interpolation filter, to be the square root of a raised cosine function in the frequency domain.
  • For the sub-band processing approach to CD compensation to be of benefit it is necessary for the total amount of computations to be less than the direct FIR filter approach. The total amount of computations includes the sub-band analysis and synthesis filter banks and the CD compensation operation. It can be seen that there is a saving in the CD compensation portion, as was made clear earlier by comparing FIG. 2 and FIG. 6. It has been shown in “Compact Digital Dispersion Compensation Algorithms” by M. G. Taylor that there is a saving in the amount of computations overall using sub-band processing for CD compensation of a 25 Gbaud QPSK signal over 6400 km of NDSF.
  • It has been described how an FIR filter can implement the CD compensation operation. The sub-band processing approach may also be of benefit with an IIR filter for CD compensation. One of the disadvantages of the IIR filter for direct CD compensation (without sub-band processing) is that the IIR filter uses a recent result y(n−1) to calculate y(n), and y(n−1) is not available because of the slow clock speed of the digital signal processor. However, the CD compensation elements within the sub-band processing configuration of FIG. 7 operate on a discrete-time sequence of a lower sample rate. This means that the restriction of unavailable y(n−1) may not occur. If it does occur then the solution to recast the algorithm using a look-ahead computation may not give rise to a punitive increase in the amount of computations. Thus, the combination of sub-band processing with IIR filtering for CD compensation may lead to a substantial reduction in the overall amount of computations, while the use of IIR filtering alone does not.
  • The present invention may of course, be carried out in other specific ways than those herein set forth without departing from the essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.

Claims (19)

1. A digital signal processor utilized in a fiber optic communication system, the digital signal processor comprising:
means for compensating for chromatic dispersion,
means for executing a digital filter function, wherein the digital filter function includes an operation of multiplying a signal value received by the digital signal processor by a coefficient to produce a multiplication result, the multiplication result being used three or more times during the execution of the digital filter function.
2. The digital signal processor of claim 1 wherein the digital filter function is a finite impulse response filter function.
3. The digital signal processor of claim 2 wherein:
the multiplication result is stored in a look-up table when the operation of multiplying is executed; and
the multiplication result is drawn from the look-up table to be used for different terms in the finite impulse response filter.
4. The digital signal processor of claim 2 wherein the multiplication result is fanned out to one or more locations in the digital signal processor to be used for different terms in the finite impulse response filter.
5. The digital signal processor of claim 1 wherein the frequency response associated with the digital filter function is substantially similar to an apodized version of a chromatic dispersion transfer function.
6. A digital signal processor utilized in a fiber optic communication system compensating for chromatic dispersion, the digital signal processor comprising:
means for dividing a signal represented by a discrete-time sequence of a certain sample rate into a plurality of sub-bands by an analysis filter bank, each sub-band represented by a sub-band signal discrete-time sequence of a lower sample rate; and
means for separately compensating for the sub-band signals for chromatic dispersion by application of chromatic dispersion compensating digital filter functions.
7. The digital signal processor of claim 6 wherein one of the chromatic dispersion compensating digital filter functions is a finite impulse response filter function.
8. The digital signal processor of claim 6 wherein one of the chromatic dispersion compensating digital filter functions is an infinite impulse response filter function.
9. The digital signal processor of claim 6 wherein the sub-band signals are combined by a synthesis filter bank into a chromatic dispersion compensated output signal, the chromatic dispersion compensated output signal being represented by a discrete-time sequence of a sample rate higher than the sub-band signals.
10. The digital signal processor of claim 6 wherein the analysis filter bank comprises a plurality of finite impulse response filters.
11. The digital signal processor of claim 6 wherein the analysis filter bank comprises a plurality of infinite impulse response filters.
12. The digital signal processor of claim 6 wherein the analysis filter bank comprises a cosine modulated filter bank.
13. The digital signal processor of claim 6 wherein the analysis filter bank is a tree structured filter bank.
14. The digital signal processor of claim 6 wherein the spectral shapes of the sub-band signals overlap.
15. A method of compensating for chromatic dispersion experienced by an optical signal propagating through a fiber optic transmission system, said method acting on a discrete-time representation of the optical signal with a digital filter operation, the method including the steps of:
evaluating a multiplication term to obtain a multiplication result; and
using the multiplication result as the value of three multiplication terms in the digital filter operation.
16. The method of claim 15 wherein the step of using the multiplication result as the value of three multiplication terms in the digital filter operation further comprises the steps of:
writing the multiplication result to a look-up table; and
retrieving the multiplication result from the look-up table to be used as a value of multiplication terms in the digital filter operation.
17. The method of claim 15 further including the steps of:
calculating the inverse Fourier transform of an apodized version of the required chromatic dispersion transfer function; and
setting feedforward digital filter coefficients to be approximately equal to the inverse Fourier transform values.
18. A method of compensating for chromatic dispersion experienced by an optical signal propagating through a fiber optic transmission system, said method acting on a discrete-time representation of the optical signal, the method including the steps of:
separating the signal into a plurality of sub-bands, each sub-band having a lower sample rate than the optical signal;
acting on the sub-band signals separately to compensate for chromatic dispersion; and
combining the sub-band signals into a single output signal, the output signal having a sample rate higher than the sub-band signals.
19. The method of claim 18 wherein the sub-band signals have overlapping spectra.
US12/248,821 2007-10-09 2008-10-09 apparatus and method of compensating for compact digital domain chromatic dispersion Abandoned US20090238578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/248,821 US20090238578A1 (en) 2007-10-09 2008-10-09 apparatus and method of compensating for compact digital domain chromatic dispersion
US14/449,484 US9450674B2 (en) 2007-10-09 2014-08-01 Apparatus and method of compensating for compact digital domain chromatic dispersion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US99818407P 2007-10-09 2007-10-09
US1550807P 2007-12-20 2007-12-20
US12/248,821 US20090238578A1 (en) 2007-10-09 2008-10-09 apparatus and method of compensating for compact digital domain chromatic dispersion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/449,484 Continuation US9450674B2 (en) 2007-10-09 2014-08-01 Apparatus and method of compensating for compact digital domain chromatic dispersion

Publications (1)

Publication Number Publication Date
US20090238578A1 true US20090238578A1 (en) 2009-09-24

Family

ID=41089056

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/248,821 Abandoned US20090238578A1 (en) 2007-10-09 2008-10-09 apparatus and method of compensating for compact digital domain chromatic dispersion
US14/449,484 Active 2028-11-07 US9450674B2 (en) 2007-10-09 2014-08-01 Apparatus and method of compensating for compact digital domain chromatic dispersion

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/449,484 Active 2028-11-07 US9450674B2 (en) 2007-10-09 2014-08-01 Apparatus and method of compensating for compact digital domain chromatic dispersion

Country Status (1)

Country Link
US (2) US20090238578A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090304391A1 (en) * 2008-06-10 2009-12-10 Nortel Networks Limited Optical communications system having chromatic dispersion and polarization mode dispersion compensation
US20100296819A1 (en) * 2008-04-24 2010-11-25 Kahn Joseph M Optical Receivers and Communication Systems
US20120301157A1 (en) * 2011-05-27 2012-11-29 Nec Corporation Chromatic dispersion compensation using sign operations and lookup tables
US20140105617A1 (en) * 2012-10-17 2014-04-17 Acacia Communications Inc. Multi-range frequency-domain compensation of chromatic dispersion
US20140270015A1 (en) * 2012-06-28 2014-09-18 Vladimir Kravtsov Inter-carrier interference phase noise compensation based on phase noise spectrum approximation
WO2014166538A1 (en) * 2013-04-11 2014-10-16 Signal Processing Devices Sweden Ab Method and device for compensation of chromatic dispersion
US20140356003A1 (en) * 2013-05-31 2014-12-04 Alcatel-Lucent Optical receiver having a chromatic-dispersion compensation module with a multibranch filter-bank structure
US20160056858A1 (en) * 2014-07-28 2016-02-25 Stephen Harrison Spread spectrum method and apparatus
US20160065312A1 (en) * 2014-09-03 2016-03-03 Fujitsu Limited Optical transmission device, nonlinear distortion compensation method, and nonlinear distortion pre-equalization method
WO2016034246A1 (en) 2014-09-05 2016-03-10 Huawei Technologies Co.,Ltd. A communication receiver for compensating a group delay of a communication signal
WO2016095942A1 (en) * 2014-12-15 2016-06-23 Huawei Technologies Co., Ltd. Chromatic dispersion compensation filter
US20190181960A1 (en) * 2017-10-09 2019-06-13 Infinera Corporation Individually routable digital subcarriers
US20200067598A1 (en) * 2016-11-30 2020-02-27 Ntt Electronics Corporation Chromatic dispersion compensation device, chromatic dispersion compensation method, and communication device
US10965378B2 (en) 2019-05-14 2021-03-30 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US10965439B2 (en) 2019-04-19 2021-03-30 Infinera Corporation Synchronization for subcarrier communication
US10972184B2 (en) 2019-05-07 2021-04-06 Infinera Corporation Bidirectional optical communications
US10992389B2 (en) 2018-02-07 2021-04-27 Infinera Corporation Independently routable digital subcarriers with configurable spacing for optical communication networks
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11206085B2 (en) * 2016-02-26 2021-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Chromatic dispersion compensation
US11239935B2 (en) 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
US11290393B2 (en) 2019-09-05 2022-03-29 Infinera Corporation Dynamically switching queueing schemes for network switches
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11356180B2 (en) 2019-10-10 2022-06-07 Infinera Corporation Hub-leaf laser synchronization
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11451303B2 (en) 2019-10-10 2022-09-20 Influera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US20230101519A1 (en) * 2021-09-24 2023-03-30 Huawei Technologies Co., Ltd. Method and systems to identify types of fibers in an optical network
US20230102960A1 (en) * 2019-10-16 2023-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Controlling Compensation of Chromatic Dispersion in Optical Transport Networks
US11743621B2 (en) 2019-10-10 2023-08-29 Infinera Corporation Network switches systems for optical communications networks
US11742950B2 (en) * 2019-11-28 2023-08-29 Nippon Telegraph And Telephone Corporation Wavelength dispersion amount calculation apparatus and wavelength dispersion amount calculation method
US11876556B1 (en) * 2020-07-24 2024-01-16 Cable Television Laboratories, Inc. Optical line terminal with out-of-band communication channel, and method for implementing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512601B (en) * 2017-02-28 2020-06-02 华为技术有限公司 Method and device for multi-homing access network
US10135645B1 (en) * 2017-10-18 2018-11-20 Cisco Technology, Inc. Equalizer optimization for FEC-protected communication links
CN111064515A (en) * 2019-12-16 2020-04-24 佛山科学技术学院 Optical fiber transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042557A1 (en) * 2002-08-29 2004-03-04 Kabel Allan M. Partial band reconstruction of frequency channelized filters
US20090220239A1 (en) * 2005-09-02 2009-09-03 Monash University Methods and apparatus for optical transmission of digital signals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209461B2 (en) * 2001-05-09 2007-04-24 Qualcomm Incorporated Method and apparatus for chip-rate processing in a CDMA system
US7023601B2 (en) 2002-12-02 2006-04-04 Nortel Networks Limited Optical E-field modulation using a Mach-Zehnder interferometer
US7460793B2 (en) 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
US8041233B2 (en) * 2004-07-14 2011-10-18 Fundación Tarpuy Adaptive equalization in coherent fiber optic communication
US20060245766A1 (en) 2005-04-29 2006-11-02 Taylor Michael G Phase estimation for coherent optical detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042557A1 (en) * 2002-08-29 2004-03-04 Kabel Allan M. Partial band reconstruction of frequency channelized filters
US20090220239A1 (en) * 2005-09-02 2009-09-03 Monash University Methods and apparatus for optical transmission of digital signals

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
http://en.wikipedia.org/wiki/Equalizer_(communications), printed 2/12/2012. *
P. Vaidyanathan, "Filter Banks in Digital Communication", IEEE 2001. *
P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A Tutorial", Proceedings of the IEEE, Vol. 78, No. 1, January 1990. *
Wikipedia, item OFDM, downloaded 7/22/2012. *

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100296819A1 (en) * 2008-04-24 2010-11-25 Kahn Joseph M Optical Receivers and Communication Systems
US20090304391A1 (en) * 2008-06-10 2009-12-10 Nortel Networks Limited Optical communications system having chromatic dispersion and polarization mode dispersion compensation
US9520950B2 (en) * 2008-06-10 2016-12-13 Ciena Corporation Optical communications system having chromatic dispersion and polarization mode dispersion compensation
US20120301157A1 (en) * 2011-05-27 2012-11-29 Nec Corporation Chromatic dispersion compensation using sign operations and lookup tables
US8718474B2 (en) * 2011-05-27 2014-05-06 Nec Laboratories America, Inc. Chromatic dispersion compensation using sign operations and lookup tables
US20140270015A1 (en) * 2012-06-28 2014-09-18 Vladimir Kravtsov Inter-carrier interference phase noise compensation based on phase noise spectrum approximation
US20140105617A1 (en) * 2012-10-17 2014-04-17 Acacia Communications Inc. Multi-range frequency-domain compensation of chromatic dispersion
US9768884B2 (en) * 2012-10-17 2017-09-19 Acacia Communications, Inc. Multi-range frequency-domain compensation of chromatic dispersion
WO2014166538A1 (en) * 2013-04-11 2014-10-16 Signal Processing Devices Sweden Ab Method and device for compensation of chromatic dispersion
CN105284065A (en) * 2013-05-31 2016-01-27 阿尔卡特朗讯 Optical receiver having a chromatic-dispersion compensation module with a multibranch filter-bank structure
US9264145B2 (en) * 2013-05-31 2016-02-16 Alcatel Lucent Optical receiver having a chromatic-dispersion compensation module with a multibranch filter-bank structure
WO2014191830A3 (en) * 2013-05-31 2015-05-14 Alcatel Lucent Optical receiver having a chromatic-dispersion compensation module with a multibranch filter-bank structure
US20140356003A1 (en) * 2013-05-31 2014-12-04 Alcatel-Lucent Optical receiver having a chromatic-dispersion compensation module with a multibranch filter-bank structure
JP2016521084A (en) * 2013-05-31 2016-07-14 アルカテル−ルーセント Optical receiver with chromatic dispersion compensation module using multi-branch filter bank structure
US9479216B2 (en) * 2014-07-28 2016-10-25 Uvic Industry Partnerships Inc. Spread spectrum method and apparatus
US20160056858A1 (en) * 2014-07-28 2016-02-25 Stephen Harrison Spread spectrum method and apparatus
JP2016054412A (en) * 2014-09-03 2016-04-14 富士通株式会社 Optical transmission device, nonlinear distortion compensation method and nonlinear distortion pre-equalization method
EP2993808A1 (en) * 2014-09-03 2016-03-09 Fujitsu Limited Optical transmission device, nonlinear distortion compensation method, and nonlinear distortion pre-equalization method
US9654224B2 (en) * 2014-09-03 2017-05-16 Fujitsu Limited Optical transmission device, nonlinear distortion compensation method, and nonlinear distortion pre-equalization method
US20160065312A1 (en) * 2014-09-03 2016-03-03 Fujitsu Limited Optical transmission device, nonlinear distortion compensation method, and nonlinear distortion pre-equalization method
WO2016034246A1 (en) 2014-09-05 2016-03-10 Huawei Technologies Co.,Ltd. A communication receiver for compensating a group delay of a communication signal
WO2016095942A1 (en) * 2014-12-15 2016-06-23 Huawei Technologies Co., Ltd. Chromatic dispersion compensation filter
US11206085B2 (en) * 2016-02-26 2021-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Chromatic dispersion compensation
US10868617B2 (en) * 2016-11-30 2020-12-15 Ntt Electronics Corporation Chromatic dispersion compensation device, chromatic dispersion compensation method, and communication device
US20200067598A1 (en) * 2016-11-30 2020-02-27 Ntt Electronics Corporation Chromatic dispersion compensation device, chromatic dispersion compensation method, and communication device
US10742328B2 (en) * 2017-10-09 2020-08-11 Infinera Corporation Individually routable digital subcarriers
US11728899B2 (en) * 2017-10-09 2023-08-15 Infinera Corporation Individually routable subcarriers
US11362738B2 (en) 2017-10-09 2022-06-14 Infinera Corporation Individually routable digital subcarriers
US20220116119A1 (en) * 2017-10-09 2022-04-14 Infinera Corporation Individually routable subcarriers
US20190181960A1 (en) * 2017-10-09 2019-06-13 Infinera Corporation Individually routable digital subcarriers
US10992389B2 (en) 2018-02-07 2021-04-27 Infinera Corporation Independently routable digital subcarriers with configurable spacing for optical communication networks
US11343000B2 (en) 2018-02-07 2022-05-24 Infinera Corporation Clock recovery for digital subcarriers for optical networks
US11251878B2 (en) 2018-02-07 2022-02-15 Infinera Corporation Independently routable digital subcarriers for optical communication networks
US11095373B2 (en) 2018-02-07 2021-08-17 Infinera Corporation Network architecture for independently routable digital subcarriers for optical communication networks
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
US11218217B2 (en) 2019-03-04 2022-01-04 Infinera Corporation Code division multiple access optical subcarriers
US11637630B2 (en) 2019-03-04 2023-04-25 Infinera Corporation Frequency division multiple access optical subcarriers
US11539430B2 (en) 2019-03-04 2022-12-27 Infinera Corporation Code division multiple access optical subcarriers
US11483066B2 (en) 2019-03-04 2022-10-25 Infinera Corporation Frequency division multiple access optical subcarriers
US11095364B2 (en) 2019-03-04 2021-08-17 Infiriera Corporation Frequency division multiple access optical subcarriers
US11451292B2 (en) 2019-03-04 2022-09-20 Infinera Corporation Time division multiple access optical subcarriers
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11258508B2 (en) 2019-03-04 2022-02-22 Infinera Corporation Time division multiple access optical subcarriers
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11032020B2 (en) 2019-04-19 2021-06-08 Infiriera Corporation Synchronization for subcarrier communication
US11418312B2 (en) 2019-04-19 2022-08-16 Infinera Corporation Synchronization for subcarrier communication
US10965439B2 (en) 2019-04-19 2021-03-30 Infinera Corporation Synchronization for subcarrier communication
US11838105B2 (en) 2019-05-07 2023-12-05 Infinera Corporation Bidirectional optical communications
US10972184B2 (en) 2019-05-07 2021-04-06 Infinera Corporation Bidirectional optical communications
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US10965378B2 (en) 2019-05-14 2021-03-30 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11088764B2 (en) 2019-05-14 2021-08-10 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11177889B2 (en) 2019-05-14 2021-11-16 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11239935B2 (en) 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11095374B2 (en) 2019-05-14 2021-08-17 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11290393B2 (en) 2019-09-05 2022-03-29 Infinera Corporation Dynamically switching queueing schemes for network switches
US11297005B2 (en) 2019-09-05 2022-04-05 Infiriera Corporation Dynamically switching queueing schemes for network switches
US11483257B2 (en) 2019-09-05 2022-10-25 Infinera Corporation Dynamically switching queueing schemes for network switches
US11470019B2 (en) 2019-09-05 2022-10-11 Infinera Corporation Dynamically switching queueing schemes for network switches
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
US11569915B2 (en) 2019-10-10 2023-01-31 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11451303B2 (en) 2019-10-10 2022-09-20 Influera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11563498B2 (en) 2019-10-10 2023-01-24 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11539443B2 (en) 2019-10-10 2022-12-27 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US12081269B2 (en) 2019-10-10 2024-09-03 Infinera Corporation Hub-leaf laser synchronization
US11515947B2 (en) 2019-10-10 2022-11-29 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11463175B2 (en) 2019-10-10 2022-10-04 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11901950B2 (en) 2019-10-10 2024-02-13 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11356180B2 (en) 2019-10-10 2022-06-07 Infinera Corporation Hub-leaf laser synchronization
US11743621B2 (en) 2019-10-10 2023-08-29 Infinera Corporation Network switches systems for optical communications networks
US11870496B2 (en) 2019-10-10 2024-01-09 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US20230102960A1 (en) * 2019-10-16 2023-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Controlling Compensation of Chromatic Dispersion in Optical Transport Networks
US11784714B2 (en) * 2019-10-16 2023-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Controlling compensation of chromatic dispersion in optical transport networks
US11742950B2 (en) * 2019-11-28 2023-08-29 Nippon Telegraph And Telephone Corporation Wavelength dispersion amount calculation apparatus and wavelength dispersion amount calculation method
US11876556B1 (en) * 2020-07-24 2024-01-16 Cable Television Laboratories, Inc. Optical line terminal with out-of-band communication channel, and method for implementing
US11652547B2 (en) * 2021-09-24 2023-05-16 Huawei Technologies Co., Ltd. Method and systems to identify types of fibers in an optical network
US20230101519A1 (en) * 2021-09-24 2023-03-30 Huawei Technologies Co., Ltd. Method and systems to identify types of fibers in an optical network

Also Published As

Publication number Publication date
US20140341592A1 (en) 2014-11-20
US9450674B2 (en) 2016-09-20

Similar Documents

Publication Publication Date Title
US9450674B2 (en) Apparatus and method of compensating for compact digital domain chromatic dispersion
US9319137B2 (en) Methods and systems for reduced complexity nonlinear compensation
US9002210B2 (en) Method and system for non-linearity compensation in optical transmission systems
JP6250144B2 (en) Optical receiver with chromatic dispersion compensation module using multi-branch filter bank structure
US20120263481A1 (en) Nonlinear compensation using an enhanced backpropagation method with subbanding
US20120290244A1 (en) Method and apparatus for compensating nonlinear damage
CN111181655A (en) Optical receiver based on BP algorithm and nonlinear DFE algorithm
Fougstedt et al. ASIC implementation of time-domain digital back propagation for coherent receivers
US8326159B2 (en) Electronic compensation of impairments using wavelet filters for backward propagation
US20110166846A1 (en) Simulation device and simulation method
EP0868786A1 (en) Method and device for eliminating spurious signals in a direct-sequence spread spectrum link
EP3143708A1 (en) Non-linear propagation impairment equalisation
JP7230568B2 (en) Adaptive equalizer and optical receiver
US20220224415A1 (en) Wavelength dispersion compensation apparatus, optical receiving apparatus, wavelength dispersion compensation method and computer program
EP3157180A1 (en) Fiber nonlinearities compensation
WO2015075895A1 (en) Nonlinear distortion compensator, light receiver using same, and nonlinear distortion compensation method
JP2002359655A (en) Circuit and method for compensating distortion
Taylor Compact digital dispersion compensation algorithms
Zhu et al. Complementary FIR filter pair for distributed impairment compensation of WDM fiber transmission
US20230097741A1 (en) Optical receiving apparatus and optical receiving method
US9419826B2 (en) Adaptive filtering method and system based on error sub-band
US20120082457A1 (en) K-Means Clustered Polyphase Filtering for Sample Rate Conversion in Coherent Polarization Multiplexing Fiber Optic Systems
CN115398827B (en) Digital filter device for compensating group velocity dispersion in optical transmission system
WO2022113268A1 (en) Optical transmission system, optical reception device, optical transmission device, control method, and program
Felipe et al. Reduced-complexity chromatic dispersion compensation method

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUAWEI TECHNOLOGIES CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAYLOR, MICHAEL GEORGE;REEL/FRAME:027329/0312

Effective date: 20111012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION