[go: nahoru, domu]

US20100030476A1 - Irrigation System with ET Based Seasonal Watering Adjustment - Google Patents

Irrigation System with ET Based Seasonal Watering Adjustment Download PDF

Info

Publication number
US20100030476A1
US20100030476A1 US12/181,894 US18189408A US2010030476A1 US 20100030476 A1 US20100030476 A1 US 20100030476A1 US 18189408 A US18189408 A US 18189408A US 2010030476 A1 US2010030476 A1 US 2010030476A1
Authority
US
United States
Prior art keywords
controller
irrigation
sensor
weather station
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/181,894
Inventor
Peter J. Woytowitz
Christopher M. Shearin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunter Industries Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/181,894 priority Critical patent/US20100030476A1/en
Publication of US20100030476A1 publication Critical patent/US20100030476A1/en
Assigned to HUNTER INDUSTRIES, INC. reassignment HUNTER INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHEARIN, CHRISTOPHER M., WOYTOWITZ, PETER J.
Priority to US13/153,270 priority patent/US8600569B2/en
Priority to US14/090,281 priority patent/US20140081471A1/en
Priority to US14/188,235 priority patent/US9301461B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering

Definitions

  • the present invention relates to residential and commercial irrigation systems, and more particularly to irrigation controllers that use evapotranspiration (ET) data in calculating and executing watering schedules.
  • ET evapotranspiration
  • Electronic irrigation controllers have long been used on residential and commercial sites to water turf and landscaping. They typically comprise a plastic housing that encloses circuitry including a processor that executes a watering program. Watering schedules are typically manually entered or selected by a user with pushbutton and/or rotary controls while observing an LCD display. The processor turns a plurality of solenoid actuated valves ON and OFF with solid state switches in accordance with the watering schedules that are carried out by the watering program. The valves deliver water to sprinklers connected by subterranean pipes.
  • the run cycles times for individual stations can be increased or decreased by pushing “more” and “less” watering buttons.
  • Another conventional irrigation controller of the type that is used in the commercial market typically includes a seasonal adjustment feature. This feature is typically a simple global adjustment implemented by the user that adjusts the overall watering as a percentage of the originally scheduled cycle times. It is common for the seasonal adjustment to vary between a range of about ten percent to about one hundred and fifty percent of the scheduled watering. This is the simplest and most common overall watering adjustment that users of irrigation controllers can effectuate. Users can move the amount of adjustment down to ten to thirty percent in the winter, depending on their local requirements. They may run the system at fifty percent during the spring or fall seasons, and then at one hundred percent for the summer.
  • the ability to seasonally adjust up to one hundred and fifty percent of the scheduled watering accommodates the occasional heat wave when turf and landscaping require significantly increased watering.
  • the seasonal adjustment feature does not produce the optimum watering schedules because it does not take into consideration all of the ET factors such as soil type, plant type, slope, temperature, humidity, solar radiation, wind speed, etc. Instead, the seasonal adjustment feature simply adjusts the watering schedules globally to run a longer or shorter period of time based on the existing watering program.
  • the seasonal adjustment feature is re-set on a regular basis a substantial amount of water is conserved and while still providing adequate irrigation in a variety of weather conditions. The problem is that most users forget about the seasonal adjustment feature and do not re-set it on a regular basis, so a considerable amount of water is still wasted, or turf and landscaping die.
  • irrigation controllers used with turf and landscaping have used ET data to calculate watering schedules based on actual weather conditions.
  • Irrigation controllers that utilize ET data are quite cumbersome to set up and use, and require knowledge of horticulture that is lacking with most end users.
  • the typical ET based irrigation controller requires the user to enter the following types of information: soil type, soil infiltration rates, sprinkler precipitation rate, plant type, slope percentage, root zone depth, and plant maturity.
  • the controller receives information, either directly or indirectly, from a weather station that monitors weather conditions such as: amount of rainfall, humidity, hours of available sunlight, amount of solar radiation, temperature, and wind speed.
  • the typical ET based irrigation controller then automatically calculates an appropriate watering schedule that may change daily based on the weather conditions and individual plant requirements. These changes typically include the number of minutes each irrigation station operates, the number of times it operates per day (cycles), and the number of days between watering. All of these factors are important in achieving the optimum watering schedules for maximum water conservation while maintaining the health of turf and
  • ET based irrigation controllers help to conserve water and maintain plant health over a wide range of weather conditions they are complex and their set up is intimidating to many users. They typically require a locally mounted weather station having a complement of environmental sensors. Such locally mounted weather stations are complex, expensive and require frequent maintenance. Instead of receiving data from a locally mounted weather station, home owners and property owners can arrange for their ET based irrigation controllers to receive weather data collected by a private company on a daily basis and transmitted to the end user wirelessly, via phone lines or over an Internet connection. This reduces the user's up-front costs, and maintenance challenges, but requires an ongoing subscription expense for the life of the ET based irrigation controller. In addition, the user must still have a substantial understanding of horticulture to set up the ET based irrigation controller.
  • ET based irrigation controllers are set up by irrigation professionals for a fee. These same irrigation professionals must be called back to the property when changes need to be made, because the set up procedures are complex and not intuitive to most users. These challenges are limiting the sale and use of ET based irrigation controllers to a very small minority of irrigation sites. This impairs water conservation efforts that would otherwise occur if ET based irrigation controllers were easier to set up and adjust.
  • the system of the present invention may take the form of stand alone irrigation controller connected to a stand alone ET unit that is connectable to a specially configured stand alone weather station.
  • the system may take the form of a stand alone irrigation controller with a removable ET module that is connectable to a specially configured stand alone weather station.
  • the system may take the form of a stand alone ET based irrigation controller with all the components mounted in a single box-like housing that is connectable to a specially configured stand alone weather station.
  • an ET based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a specially configured stand alone weather station including at least one environmental sensor.
  • the ET based irrigation system further includes a stand alone ET unit operatively connected to the irrigation controller and the weather station.
  • the ET unit includes programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value to thereby conserve water while maintaining plant health.
  • an ET based irrigation system includes an interface that enables a user to select and/or enter a watering schedule and a memory for storing the watering schedule.
  • the system further includes at least one sensor for generating a signal representative of an environmental condition.
  • a processor is included in the system that is capable of calculating an estimated ET value based at least in part on the signal from the sensor.
  • the system further includes a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule.
  • the program includes a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated ET value to thereby conserve water while maintaining plant health.
  • the present invention also provides a unique method of controlling a plurality of valves on an irrigation site using ET data.
  • the method includes the step of calculating an estimated ET value based in part on a signal from an environmental sensor.
  • the method further includes the step of automatically modifying a watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site.
  • the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
  • the present invention also provides a weather station for use with an irrigation controller.
  • the weather station includes a housing that supports a rain sensor, a solar radiation sensor and a temperature sensor.
  • a micro-controller is also supported by the housing and is connected to the sensors.
  • a communications interface permits communications between the micro-controller and an irrigation controller.
  • Firmware is executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the irrigation controller.
  • FIG. 1 is a simplified block diagram of an irrigation system in accordance with an embodiment of the present invention.
  • FIG. 2 is a front elevation view of the stand alone irrigation controller of the system of FIG. 1 with its front door open to reveal its removable face pack.
  • FIG. 3 is an enlarged perspective view of the back panel of the stand alone irrigation controller of FIG. 2 illustrating one base module and one station module plugged into their respective receptacles in the back panel.
  • FIG. 4 is a block diagram of the electronic portion of the stand alone irrigation controller of FIG. 2 .
  • FIG. 5 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in the face pack of the controller.
  • FIG. 6 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in the base module.
  • FIG. 7 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in each of the station modules.
  • FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller of FIG. 2 .
  • FIG. 9 is a perspective view of the stand alone ET unit of the system of FIG. 1 .
  • FIG. 10 is a block diagram of the electronic portion of the stand alone ET unit of FIG. 9 .
  • FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit of FIG. 9 .
  • FIG. 12A is an enlarged vertical cross-section of the stand alone weather station of the system of FIG. 1 .
  • FIG. 12B is a fragmentary perspective view illustrating the spring biased arm of the stand alone weather station of FIG. 12A .
  • FIG. 13 is a block diagram illustrating the electronic portion of the stand alone weather station of FIG. 12 .
  • FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station of FIG. 12 .
  • the present invention addresses the hesitancy or inability of users to learn the horticultural factors required to set up a conventional ET based irrigation controller.
  • the irrigation system of the present invention has a familiar manner of entering, selecting and modifying its watering schedules, and either built-in or add-on capability to automatically modify its watering schedules based on ET data in order to conserve water and effectively irrigate vegetation throughout the year as weather conditions vary.
  • the user friendly irrigation system of the present invention is capable of achieving, for example, eighty-five percent of the maximum amount of water that can theoretically be conserved on a given irrigation site, but is still able to be used by most non-professionals.
  • an irrigation system 10 comprises a stand alone irrigation controller 12 connected via cable 14 to a stand alone ET unit 16 that is in turn connected via cable 18 to a stand alone weather station 20 .
  • the controller 12 and ET unit 16 would typically be mounted in a garage or other protected location, although they can have a waterproof construction that allows them to be mounted out of doors.
  • the weather station 20 is typically mounted on an exterior wall, gutter, post or fence near the garage.
  • the cables 14 and 18 typically include copper wires so that power can be supplied to the ET 16 unit and the weather station 20 from the irrigation controller 12 . Data and commands are sent on other copper wires in the cables. Fiber optic cables can also be utilized for sending data and commands.
  • the controller 12 , ET unit 16 and weather station 20 may exchange data and commands via wireless communication links 22 and 24 .
  • a transformer 25 that plugs into a standard household 110 volt AC duplex outlet supplies twenty-four volt AC power to the stand alone irrigation controller 12 .
  • the irrigation system 10 employs a hard wired communication link 14 between the stand alone irrigation controller 12 and the stand alone ET unit 16 that are normally mounted adjacent one another, such as on a garage wall, and a wireless communication link 24 between the stand alone ET unit 16 and the stand alone weather station 20 .
  • the stand alone irrigation controller 12 may be the Pro-C modular irrigation controller commercially available from Hunter Industries, Inc.
  • the irrigation controller 12 includes a wall-mountable plastic housing structure in the form of a generally box-shaped front door 26 hinged along one vertical edge to a generally box-shaped back panel 28 ( FIG. 3 ).
  • a generally rectangular face pack 30 ( FIG. 2 ) is removably mounted over the back panel 28 and is normally concealed by the front door 26 when not being accessed for programming.
  • the face pack 30 has an interface in the form of a plurality of manually actuable controls including a rotary knob switch 31 and push button switches 32 a - 32 g as well as slide switch 34 which serves as a sensor by-pass switch.
  • Watering schedules consisting of various run and cycle times can be entered by the user by manipulating the rotary knob switch 31 and selected ones of the push button switches 32 a - 32 g in conjunction with observing numbers, words and/or graphic symbols indicated on a liquid crystal display (LCD) 36 .
  • Push buttons 32 c and 32 d are used to increase or decrease the seasonal adjust value.
  • the watering schedules can be a complicated set of run time and cycle algorithms, or a portion thereof, such as a simple five minute cycle for a single station. Alternatively, existing pre-programmed watering schedules can be selected, such as selected zones every other day.
  • Any or sub-combination of manually actuable input devices such as rotary switches, dials, push buttons, slide switches, rocker switches, toggle switches, membrane switches, track balls, conventional screens, touch screens, etc. may be used to provide an interface that enables a user to select and/or enter a watering schedule.
  • Still another alternative involves uploading watering schedules through the SMART PORT (Trademark) feature of the irrigation controller 12 , more details of which are set forth in the aforementioned U.S. Pat. No. 6,088,621.
  • the face pack 30 ( FIG. 2 ) encloses and supports a printed circuit board (not illustrated) with a processor for executing and implementing a stored watering program.
  • An electrical connection is made between the face pack 30 and the components in the back panel 28 through a detachable ribbon cable including a plurality of conductors 38 a - g ( FIG. 4 ).
  • the circuitry inside the face pack 30 can be powered by a battery to allow a person to remove the face pack 30 , un-plug the ribbon cable, and walk around the lawn, garden area or golf course while entering watering schedules or altering pre-existing watering schedules.
  • a processor 40 ( FIG. 5 ) is mounted on the printed circuit board inside the face pack 30 .
  • a watering program stored in a memory 42 is executable by the processor 40 to enable the processor to generate commands for selectively turning a plurality of solenoid actuated irrigation valves (not illustrated) ON and OFF in accordance with the selected or entered watering schedule.
  • An example of such an irrigation valve is disclosed in U.S. Pat. No. 5,996,608 granted Dec. 7, 1999 of Richard E. Hunter et al. entitled DIAPHRAGM VALVE WITH FILTER SCREEN AND MOVEABLE WIPER ELEMENT, the entire disclosure of which is hereby incorporated by reference. Said patent is also assigned to Hunter Industries, Inc.
  • the solenoid actuated valves are mounted in subterranean plastic boxes (not illustrated) on the irrigated site.
  • the processor 40 communicates with removable modules 44 and 46 a - c ( FIG. 3 ) each containing a circuit that includes a plurality of solid state switches, such as triacs. These switches turn twenty-four volt AC current ON and OFF to open and close corresponding solenoid actuated valves via connected to dedicated field valve wires and a common return line to screw terminals 48 on the modules 44 and 46 a - c.
  • removable modules 44 and 46 a - c FIG. 3
  • These switches turn twenty-four volt AC current ON and OFF to open and close corresponding solenoid actuated valves via connected to dedicated field valve wires and a common return line to screw terminals 48 on the modules 44 and 46 a - c.
  • the modules 44 and 46 a are shown installed in side-by-side fashion in station module receptacles formed in the back panel 28 .
  • the module 44 serves as a base module that can turn a master valve ON and OFF in addition to a plurality of separate station valves.
  • Each module includes an outer generally rectangular plastic housing with a slot at its forward end.
  • a small printed circuit board (not illustrated) within the module housing supports the station module circuit that includes conductive traces that lead to the screw terminals 48 and to V-shaped spring-type electrical contacts (not illustrated) that are accessible via the slot in the forward end of the module housing.
  • These V-shaped electrical contacts register with corresponding flat electrical contacts on the underside of a relatively large printed circuit board 49 ( FIG.
  • the relatively large printed circuit board 49 is referred to as a “back plane.”
  • the base module 44 and station modules 46 a - c and the back plane 49 are thus electrically and mechanically connected in releasable fashion through a so-called “card edge” connection scheme when the base module 44 and station modules 46 a - c are inserted or plugged into their respective receptacles.
  • An elongate locking bar 50 ( FIG. 3 ) can be manually slid up and down in FIG. 4 between locked and unlocked positions to secure and un-secure the modules 44 and 46 a - c after they have been fully inserted into their respective receptacles.
  • Opposing raised projections 52 formed on the locking bar 50 facilitate sliding the locking bar 50 with a thumb.
  • a pointer 54 extends from one of the raised projections 52 and serves as a position indicator that aligns with LOCKED and UNLOCKED indicia (not illustrated) molded into the upper surface of another plastic support structure 56 mounted inside back panel 28 .
  • the receptacles for the modules such as 44 and 46 a - c are partially defined by vertical walls 58 ( FIG. 3 ) formed on the back panel 28 .
  • Vertical walls 60 also formed on the back panel 28 to provide support to the modules 44 and 46 a - c.
  • An auxiliary terminal strip provides additional screw terminals 62 for connecting remote sensors and accessories.
  • the term “receptacles” should be broadly construed as defined in one or more of the patents and pending applications incorporated by reference above.
  • FIGS. 4 and 5 are block diagrams of the electronic portion of the stand alone irrigation controller 12 .
  • the electronic components are mounted on printed circuit boards contained within the face pack 30 , back panel 28 , base module 44 and station modules 46 a - c.
  • the processor 40 ( FIG. 4 ) is mounted on the printed circuit board inside the face pack 30 and executes the watering program stored in the memory 42 .
  • the processor 40 may be a Samsung S3F8289 processor that executes a program stored in the separate memory 42 which can be an industry standard designation Serial EEPROM 93AA6A non-volatile memory device.
  • the processor 40 and memory 42 may be provided in the form of a micro-computer with on-chip memory.
  • the manually actuable controls 31 , 32 a - 32 g and 34 and the LCD display 36 of the face pack 30 are connected to the processor 40 .
  • the processor 40 sends drive signals through buffer 64 and back plane 49 to the base module 44 .
  • the buffer 64 may be an industry standard designation 74HC125 device.
  • the processor 40 sends data signals to the modules 46 a - c through buffer 66 .
  • the buffer 66 may be an H-bridge buffer including industry standard 2N3904/3906 discrete bipolar transistors.
  • the processor 40 controls the base module 44 and the station modules 46 a - c in accordance with one or more watering schedules. Serial or multiplexed communication is enabled via the back plane 49 to the base module 44 and to each of the output modules 46 a - c. Suitable synchronous serial data and asynchronous serial data station module circuits are disclosed in the aforementioned U.S. Pat. No. 6,721,630. The location of each module in terms of which receptacle it is plugged into is sensed using resistors on the back plane 49 and a comparator 68 ( FIG. 5 ) which may be an industry standard LM393 device.
  • the face pack 30 receives twenty-four volt AC power from the transformer 25 through the back plane 49 and regulates the same via a power supply circuit 70 ( FIG. 5 ).
  • the power supply circuit 70 includes a National Semiconductor LM7906 voltage regulator, a Microchip Technology MCP101-450 power supervisor, and a Samsung KA431 voltage regulator.
  • a lithium battery 72 such as an industry standard CR2032 battery is included in the power supply circuit 70 and provides backup power to the micro controller to maintain the internal clock in the event of a power failure.
  • the face pack ribbon cable 38 a - g ( FIG. 4 ) that connects the face pack 30 and the back plane 49 can be disconnected, and a nine volt battery ( FIG. 5 ) then supplies power to the face pack 30 . This allows a user to remove the face 30 pack from the back panel 28 and enter or modify watering schedules as he or she walks around the irrigation site.
  • the modules 44 and 46 a - c have contacts 74 ( FIG. 4 ) on the top sides of their outer plastic housings.
  • contacts 74 FIG. 4
  • the modules When the modules are first plugged into their receptacles, only a communication path is established with the processor 40 via the back plane 49 .
  • the locking bar 50 FIG. 3
  • finger-like contacts 76 FIG. 4
  • finger-like contacts 76 FIG. 4
  • the finger-like contacts 76 are connected to a common conductor 78 carried by the locking bar 50 .
  • a common conductor 78 carried by the locking bar 50 .
  • FIG. 6 is a block diagram illustrating details of the electronic circuit of the base module 44 .
  • the base module circuit includes transistor drivers 80 and triacs 82 for switching the twenty-four volt AC signal ON and OFF to different solenoid actuated valves.
  • the transistor drivers 80 may be industry standard 2N4403 transistors and the triacs may be ST Microelectronics (Trademark) T410 triacs.
  • the twenty-four volt AC signal is supplied to the triacs 82 via contact 74 and line 83 .
  • the twenty-four volt AC signal from each of the triacs 82 is routed through an inductor/MOV network 84 for surge suppression to four field valve lines 86 a - d, each of which can be connected to a corresponding solenoid actuated valve.
  • the valves are each connected to a valve common return line 88 .
  • the twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90 .
  • the unregulated DC signal from the rectifier/filter circuit 90 is supplied to a National Semiconductor LM7905 voltage regulator 92 which supplies five volt DC power to the face pack 30 via a conductor 38 c ( FIG. 4 ) in the ribbon cable.
  • FIG. 7 is a block diagram illustrating details of the electronic circuit in each of the station modules 46 a - c.
  • the station module circuit includes a microcontroller such as the Microchip (Trademark) PIC 12C508 processor 94 .
  • the station module circuit further includes triacs 96 for switching the twenty-four volt AC signal ON and OFF to three different solenoid actuated valves.
  • the twenty-four volt AC signal is supplied to the triacs 96 via contact 74 and line 98 .
  • the twenty-four volt AC signal from each of the triacs 94 is routed through an inductor/MOV network 98 including Epcos Inc.
  • S10K35 MOV's for surge suppression to three field valve lines 100 a - c, each of which can be connected to a corresponding solenoid actuated valve.
  • the valves are each connected to the valve common return line 88 .
  • the twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90 .
  • the unregulated DC signal from the rectifier/filter circuit 102 is supplied to a National Semiconductor LM7905 voltage regulator 104 which supplies five volt DC power to the microcontroller through a conductor (not illustrated).
  • FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller 12 of FIG. 2 .
  • This watering program enables the processor 40 to generate commands for selectively turning the plurality of valves ON and OFF in accordance with the selected or entered watering schedules.
  • the watering program includes a seasonal adjustment feature that provides the capability for automatically modifying the watering schedules to thereby conserve water while maintaining plant health. By actuating one of the push buttons 32 c or 32 d the user can increase or decrease the run types for all stations by a selected scaling factor, such as ten percent, to account for seasonal variations in temperature and rainfall.
  • the stand alone ET unit 16 includes a rectangular outer plastic housing 106 enclosing a printed circuit board (not illustrated) which supports the electronic circuit of the ET unit 16 that is illustrated in the block diagram of FIG. 10 .
  • a microcontroller 108 such as a Microchip PIC18F65J90 processor executes firmware programming stored in a memory 110 such as an industry standard 93AA66A EEPROM memory.
  • the microcontroller 108 can receive DC power from a lithium battery 112 such as an industry standard CR2032 battery, which allows accurate time keeping in the event of a power failure. Insulating strip 113 ( FIG. 9 ) must be manually pulled out to establish an operative connection of the battery 112 .
  • External power for the ET unit 16 is supplied from the transformer 25 ( FIG.
  • the twenty-four volt AC power from the transformer 25 is supplied to a rectifier/filter circuit 114 ( FIG. 10 ) which supplies twenty-four volt DC power to a power regulation circuit 116 which may be an ST Microelectronics L78M24CDT-TR regulator.
  • Power from the power regulation circuit 116 is fed to a microcontroller power regulator 118 which may be a Microchip MCP 1702T-25021/CB regulator.
  • Power from the power regulation circuit 116 is also fed to a wired or wireless sensor communications device 120 that may include, by way of example, an industry standard MMBTA92 for the signal transmitter and an industry standard LM393 comparator for the receiver.
  • the microcontroller 108 ( FIG. 10 ) interfaces with the SmartPort (Trademark) connector of the irrigation controller 12 with a combination interface/optocoupler 122 which may be provided by an industry standard 4N26S device.
  • the microcontroller 108 interfaces with the weather station illustrated in FIG. 12 .
  • An LCD display 126 is mounted in the housing 106 .
  • Three manually actuable controls in the form of push buttons 128 a - c FIG.
  • Row indicia 132 include, from top to bottom, AM, PM, 24 hr, START and END which are printed, painted, molded or otherwise applied to the outerplastic housing such as by a sticker.
  • Column indicia 130 are illustrated diagrammatically as A-E in FIG. 9 due to space constraints in the drawing.
  • A-E correspond, respectively, to TIME, TYPE, REGION, NO WATER and WATER ⁇ with associated icons which are printed, painted, molded or otherwise applied to the outer plastic housing 106 such as by a sticker.
  • FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit 16 .
  • a watering schedule typically includes inputted parameters such as start times, run times and days to water.
  • the ET unit 16 can automatically set the seasonal adjustment of the irrigation controller 12 to reduce watering time, or increase watering times, depending on the weather conditions at the time.
  • the ET unit 16 utilizes actual ET data as its basis for making the modifications to the watering schedules implemented by the irrigation controller 12 .
  • some of the ET parameters may be pre-programmed into the ET unit 16 as constants. These constants may be selected from a group of geographical areas to approximately assimilate the local conditions and estimate a maximum ET value. Other climatic factors are monitored on a daily basis and are the variables.
  • the variables may include one or more pieces of environmental data such as temperature, humidity, solar radiation, wind, and rain.
  • the measured variables are temperature and solar radiation.
  • the variables and any constants are used by the processor 108 to calculate an estimated ET value. This estimated ET value is then used by the ET unit 16 to automatically set the seasonal adjustment feature of the irrigation controller 12 .
  • the weather station 20 can also include a sensor that indicates a rain event. A rain event does not effect calculation of an estimated ET value. However, it does shut of the irrigation during, and for a period of time following, the rain event as a further conservation measure.
  • the user can modify the run and cycle times for individual stations in the usual manner in the irrigation controller 12 . As an example, if one station is watering too much, but all of the other stations are watering the correct amount, the user can easily reduce the run time of that particular station and balance the system out. Then the ET unit 16 continues modifying the watering schedules executed by the irrigation controller 12 on a global basis as a percentage of run time, based on the calculated estimated ET value. Irrigation controllers can be used to control landscape lighting and other non-irrigation devices such as decorative water fountains. The controller 12 may have features in it such that the ET unit 16 only modifies the watering schedules of the irrigation controller 12 .
  • the environmental sensors may not always be able to be placed in an optimum location on the irrigation site.
  • a solar radiation sensor may be placed in an area that receives late afternoon shade. This will result in the calculation of an abnormally low estimated ET value.
  • the entire irrigation site may receive too little water and the plant material may become stressed from too little water if the watering schedules are based on an abnormally low estimated ET.
  • a conventional ET based irrigation controller receives input from such an incorrectly located solar radiation sensor, the user can attempt to compensate by increasing the run times for each zone by modifying precipitation rates to compensate for the error. This is cumbersome and makes it difficult and frustrating for the user to adjust a conventional ET based irrigation controller for optimum watering.
  • An advantage of the present invention is the ability to globally modify the watering schedules of the stand alone irrigation controller 12 to compensate for this type of condition. If at any time the user realizes that the property is receiving too little water, the user can simply manually change an overall watering adjustment feature.
  • the overall watering adjustment feature is implemented as a simple plus or minus control via actuation of an assigned pair of the push buttons 128 a - c. This changes the reference point of the ET calculation either up or down. After this adjustment is made, the ET adjustment executed by the ET unit 16 references the new setting and then compensates for under watering that would otherwise occur. Likewise, if the overall watering is too much for the irrigation site, the user can simply adjust the overall watering adjustment feature down and create a new lower reference for the automatic ET based adjustments.
  • the overall watering adjustment feature makes it easy for the user to fine-tune the system to the particular requirements of the irrigation site.
  • the overall watering adjustment feature can be indicated by showing “global adjustment,” or “more/less, water ⁇ ,” or similar naming
  • the overall watering adjustment feature of the ET unit 16 directly alters the station run times executed by the irrigation controller 12 .
  • This adjustment modifies the estimated maximum expected ET setting, which is a constant that is used in the calculating the seasonal adjust value.
  • the microcontroller 108 in the ET unit 16 uses only select data points as variables (temperature and solar radiation) and uses other data points that may consist of pre-programmed constants, and/or data entered by the user that defines some one or more constants of the site.
  • Estimated ET is calculated using the Penman-Monteith formula, taking into account geographical data for peak estimated summer ET.
  • Another feature provided by the ET 16 is an automatic shut down feature for irrigation that overrides any scheduled run times. There are several times when this is important.
  • a rain sensor in the weather station 20 can send signals to the ET unit representing the occurrence of a rain event. The ET unit 10 will then signal the irrigation controller 12 to shut down and suspend any watering, irregardless of any scheduled irrigation running or not running at the time.
  • irrigation may produce ice that can be dangerous to people walking or vehicles diving by. Many cities therefore require that irrigation be automatically turned off in the event of a freeze condition.
  • a temperature sensor in the weather station 20 can detect a freeze or near freeze condition and the ET unit 16 will signal the irrigation controller 12 to shut down, regardless of any scheduled irrigation running or not running at the time.
  • the automatic shut down feature of the ET unit 10 is also useful in geographic areas where watering agencies and municipalities impose restrictions that limit the times when irrigation can occur.
  • the user is able to enter a no-water window into the ET unit 16 , which consists of the times when irrigation is not allowed to take place.
  • the ET unit 16 will signal the irrigation controller 12 to shut down, irregardless of any scheduled irrigation running or not running at the time.
  • the ET unit 16 will then allow the irrigation controller 12 to return to its normal run mode after the selected no-water window time has elapsed.
  • the irrigation controller 12 may have sensor input terminals, as in the case of the Pro-C irrigation controller, which can be used to shut down all watering on receipt of a shut down command from the ET unit 16 .
  • FIG. 12A is an enlarged vertical cross-section of an embodiment of the stand alone weather station 20 of the system of FIG. 1 .
  • the compact and inexpensive weather station 20 measures solar radiation, ambient air temperature, and detects a rain event.
  • the weather station 20 is a one-piece unit that readily attaches to an exterior side of a building structure, a fence, or a rain gutter.
  • the weather station 20 can be hard wired to the ET unit 16 via cable 18 , or the communications between the weather station 20 and the ET unit 16 may take place via wireless communications link 24 .
  • the basic construction of the weather station 20 is similar to that disclosed in U.S. Pat. No. 6,570,109 granted May 27, 2003 to Paul A. Klinefelter et al.
  • the weather station 20 ( FIG. 12A ) includes an outer injection molded plastic housing 134 that encloses a pair of moisture absorbing members in the form of a larger stack 136 of moisture absorbing hygroscopic discs and a smaller stack 138 of moisture absorbing hygroscopic discs. These discs are typically made of untreated wood fibers pressed together into a material that resembles cardboard in appearance.
  • hygroscopic material is Kraft Press Board which is made from cellulose pulp.
  • the stacks 136 and 138 ( FIG. 12A ) of hygroscopic discs are supported on a common pivot arm 140 for vertical reciprocal motion relative to a vertical shaft 142 that extends through the arm 140 .
  • a coil spring 144 surrounds the shaft 142 and normally pushes the stack 136 upwardly against stop 146 .
  • a torsion spring 147 ( FIG. 12B ) associated with the pivot axis of the arm 140 lifts the arm 140 and the stack 138 upward to a fixed stop (not illustrated).
  • a magnet 154 is mounted on one end of the arm 140 .
  • a stationary linear Hall effect sensor 156 mounted on a vertically mounted printed circuit board 158 generates a signal representative of the position of the magnet 154 that is proportional to the amount of rain water that has entered the weather station 20 .
  • the Hall effect sensor 156 may be provided by part number A1395SEHLT-T manufactured by Alegro.
  • the small stack 138 absorbs water quickly via funnel 148 so that a rain event will be quickly detected.
  • the large stack 136 dries out slowly so that the rain interrupt signal from the weather station 20 will not be terminated too quickly as the hydroscopic discs dry out.
  • a solar radiation sensor 160 is mounted on one end of the printed circuit board 158 and receives solar radiation through a clear plastic dome 162 snap fit over the uppermost part of the housing 134 .
  • the solar radiation sensor 160 may be an industry standard PDB-C131 photodiode with low current leakage.
  • FIG. 13 is a block diagram illustrating the electronic circuit of the stand alone weather station 20 that is mounted on the printed circuit board 158 .
  • the solar radiation sensor 160 which may comprise a PDB-C131 photodiode that is connected to a Microchip MCP6001T-I/LT transimpedance amplifier 164 that is in turn connected to a Microchip PIC-16F684-I/SL microcontroller 166 .
  • a Microchip MCP9700T-E/LT temperature sensor 168 with an A/D interface is also connected to the microcontroller 166 .
  • the microcontroller 166 also receives the output signal from the Hall effect sensor 156 .
  • the Hall effect sensor 156 may comprise a Microchip A1395SEHLT-T Hall effect sensor and interface circuit.
  • the communications interface 170 between the microcontroller 166 and the ET unit 16 may be a hard wire interface, or more preferably, a wireless interface that may comprise a Microchip Technology RFPIC675 transmitter and a Maxim MAX1473 receiver.
  • the transmitter sends signals representative of actual components of ET data across the irrigation site to the ET unit 16 .
  • Power for the hard wired weather station 20 is derived from the communications link to the ET unit 16 and is fed to an input conditioner 172 which feeds a Microchip MCP1702T-3002E/CB power regulator 174 .
  • the power regulator 174 supplies three volt DC power to the microcontroller 166 .
  • Power for a wireless weather station is supplied by a dedicated battery (not illustrated) installed within the weather station.
  • FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station 20 of FIG. 12 .
  • Firmware executed by the microcontroller 166 allows the weather station 20 to perform the logical operations illustrated in the flow diagram. These include periodic sampling of the outputs from the solar radiation sensor 162 , temperature sensor 168 and Hall effect sensor 156 , averaging readings, and responding to requests for sensor data that are periodically transmitted by the ET unit 16 .
  • the ET unit 16 of the present invention utilizes the watering program set up procedures that the users are already accustomed to. Start times, station run times, and days-to-water are manually entered into the irrigation controller 12 . The user also selects from one of a group of geographical regions in the ET unit 16 . The ET unit 16 then automatically takes over setting of the seasonal adjustment feature of the irrigation controller 12 on a regular basis. Instead of a user changing that feature several times per year, the ET unit 16 sets that seasonal adjustment daily depending on current weather conditions gathered on site. Furthermore, the ET unit 16 shuts down any scheduled watering by the irrigation controller 12 in response to a rain event or a freeze event, and when there is a scheduled no-water window. Cost savings are achieved since only a small number of the weather parameters need to be measured. These variables are then used with pre-programmed constants to calculate an estimated ET value. This approach allows for cost savings since the stand alone weather station 20 need not have more than a solar radiation sensor, a temperature sensor and a rain sensor.
  • the present invention also provides a unique method of controlling a plurality of valves on an irrigation site.
  • the method includes the steps of selecting and/or creating a watering schedule, storing the watering schedule and generating a signal representative of an environmental condition on an irrigation site.
  • the method also includes the steps of calculating an estimated ET value based at least in part on the signal and selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule.
  • the method includes the further step of automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site.
  • the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Selective Calling Equipment (AREA)
  • Spray Control Apparatus (AREA)
  • Cultivation Of Plants (AREA)

Abstract

An ET based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a stand alone weather station including at least one environmental sensor. The ET based irrigation system further includes a stand alone ET unit operatively connected to the irrigation controller and the weather station. The ET unit includes programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value to thereby conserve water while maintaining plant health.

Description

    FIELD OF THE INVENTION
  • The present invention relates to residential and commercial irrigation systems, and more particularly to irrigation controllers that use evapotranspiration (ET) data in calculating and executing watering schedules.
  • BACKGROUND OF THE INVENTION
  • Electronic irrigation controllers have long been used on residential and commercial sites to water turf and landscaping. They typically comprise a plastic housing that encloses circuitry including a processor that executes a watering program. Watering schedules are typically manually entered or selected by a user with pushbutton and/or rotary controls while observing an LCD display. The processor turns a plurality of solenoid actuated valves ON and OFF with solid state switches in accordance with the watering schedules that are carried out by the watering program. The valves deliver water to sprinklers connected by subterranean pipes.
  • There is presently a large demand for conventional irrigation controllers that are easy for users to set up in terms of entering and modifying the watering schedules. One example is the Pro C® irrigation controller commercially available from Hunter Industries, Inc., the assignee of the subject application. The user simply enters the start times for a selected watering schedule, assigns a station to one or more schedules, and sets each station to run a predetermined number of minutes to meet the irrigation needs of the site. The problem with conventional irrigation controllers is that they are often set up to provide the maximum amount of irrigation required for the hottest and driest season, and then either left that way for the whole year, or in some cases the watering schedules are modified once or twice per year by the user. The result is that large amounts of water are wasted. Water is a precious natural resource and there is an increasing need to conserve the same.
  • In one type of prior art irrigation controller the run cycles times for individual stations can be increased or decreased by pushing “more” and “less” watering buttons. Another conventional irrigation controller of the type that is used in the commercial market typically includes a seasonal adjustment feature. This feature is typically a simple global adjustment implemented by the user that adjusts the overall watering as a percentage of the originally scheduled cycle times. It is common for the seasonal adjustment to vary between a range of about ten percent to about one hundred and fifty percent of the scheduled watering. This is the simplest and most common overall watering adjustment that users of irrigation controllers can effectuate. Users can move the amount of adjustment down to ten to thirty percent in the winter, depending on their local requirements. They may run the system at fifty percent during the spring or fall seasons, and then at one hundred percent for the summer. The ability to seasonally adjust up to one hundred and fifty percent of the scheduled watering accommodates the occasional heat wave when turf and landscaping require significantly increased watering. The seasonal adjustment feature does not produce the optimum watering schedules because it does not take into consideration all of the ET factors such as soil type, plant type, slope, temperature, humidity, solar radiation, wind speed, etc. Instead, the seasonal adjustment feature simply adjusts the watering schedules globally to run a longer or shorter period of time based on the existing watering program. When the seasonal adjustment feature is re-set on a regular basis a substantial amount of water is conserved and while still providing adequate irrigation in a variety of weather conditions. The problem is that most users forget about the seasonal adjustment feature and do not re-set it on a regular basis, so a considerable amount of water is still wasted, or turf and landscaping die.
  • In the past, irrigation controllers used with turf and landscaping have used ET data to calculate watering schedules based on actual weather conditions. Irrigation controllers that utilize ET data are quite cumbersome to set up and use, and require knowledge of horticulture that is lacking with most end users. The typical ET based irrigation controller requires the user to enter the following types of information: soil type, soil infiltration rates, sprinkler precipitation rate, plant type, slope percentage, root zone depth, and plant maturity. The controller then receives information, either directly or indirectly, from a weather station that monitors weather conditions such as: amount of rainfall, humidity, hours of available sunlight, amount of solar radiation, temperature, and wind speed. The typical ET based irrigation controller then automatically calculates an appropriate watering schedule that may change daily based on the weather conditions and individual plant requirements. These changes typically include the number of minutes each irrigation station operates, the number of times it operates per day (cycles), and the number of days between watering. All of these factors are important in achieving the optimum watering schedules for maximum water conservation while maintaining the health of turf and landscaping.
  • While conventional ET based irrigation controllers help to conserve water and maintain plant health over a wide range of weather conditions they are complex and their set up is intimidating to many users. They typically require a locally mounted weather station having a complement of environmental sensors. Such locally mounted weather stations are complex, expensive and require frequent maintenance. Instead of receiving data from a locally mounted weather station, home owners and property owners can arrange for their ET based irrigation controllers to receive weather data collected by a private company on a daily basis and transmitted to the end user wirelessly, via phone lines or over an Internet connection. This reduces the user's up-front costs, and maintenance challenges, but requires an ongoing subscription expense for the life of the ET based irrigation controller. In addition, the user must still have a substantial understanding of horticulture to set up the ET based irrigation controller. For these reasons, most ET based irrigation controllers are set up by irrigation professionals for a fee. These same irrigation professionals must be called back to the property when changes need to be made, because the set up procedures are complex and not intuitive to most users. These challenges are limiting the sale and use of ET based irrigation controllers to a very small minority of irrigation sites. This impairs water conservation efforts that would otherwise occur if ET based irrigation controllers were easier to set up and adjust.
  • SUMMARY OF THE INVENTION
  • The system of the present invention may take the form of stand alone irrigation controller connected to a stand alone ET unit that is connectable to a specially configured stand alone weather station. Alternatively, the system may take the form of a stand alone irrigation controller with a removable ET module that is connectable to a specially configured stand alone weather station. In yet another embodiment, the system may take the form of a stand alone ET based irrigation controller with all the components mounted in a single box-like housing that is connectable to a specially configured stand alone weather station.
  • In accordance with one aspect of the present invention an ET based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a specially configured stand alone weather station including at least one environmental sensor. The ET based irrigation system further includes a stand alone ET unit operatively connected to the irrigation controller and the weather station. The ET unit includes programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value to thereby conserve water while maintaining plant health.
  • In accordance with another aspect of the present invention an ET based irrigation system includes an interface that enables a user to select and/or enter a watering schedule and a memory for storing the watering schedule. The system further includes at least one sensor for generating a signal representative of an environmental condition. A processor is included in the system that is capable of calculating an estimated ET value based at least in part on the signal from the sensor. The system further includes a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule. The program includes a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated ET value to thereby conserve water while maintaining plant health.
  • The present invention also provides a unique method of controlling a plurality of valves on an irrigation site using ET data. The method includes the step of calculating an estimated ET value based in part on a signal from an environmental sensor. The method further includes the step of automatically modifying a watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
  • The present invention also provides a weather station for use with an irrigation controller. The weather station includes a housing that supports a rain sensor, a solar radiation sensor and a temperature sensor. A micro-controller is also supported by the housing and is connected to the sensors. A communications interface permits communications between the micro-controller and an irrigation controller. Firmware is executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the irrigation controller.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified block diagram of an irrigation system in accordance with an embodiment of the present invention.
  • FIG. 2 is a front elevation view of the stand alone irrigation controller of the system of FIG. 1 with its front door open to reveal its removable face pack.
  • FIG. 3 is an enlarged perspective view of the back panel of the stand alone irrigation controller of FIG. 2 illustrating one base module and one station module plugged into their respective receptacles in the back panel.
  • FIG. 4 is a block diagram of the electronic portion of the stand alone irrigation controller of FIG. 2.
  • FIG. 5 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in the face pack of the controller.
  • FIG. 6 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in the base module.
  • FIG. 7 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in each of the station modules.
  • FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller of FIG. 2.
  • FIG. 9 is a perspective view of the stand alone ET unit of the system of FIG. 1.
  • FIG. 10 is a block diagram of the electronic portion of the stand alone ET unit of FIG. 9.
  • FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit of FIG. 9.
  • FIG. 12A is an enlarged vertical cross-section of the stand alone weather station of the system of FIG. 1.
  • FIG. 12B is a fragmentary perspective view illustrating the spring biased arm of the stand alone weather station of FIG. 12A.
  • FIG. 13 is a block diagram illustrating the electronic portion of the stand alone weather station of FIG. 12.
  • FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station of FIG. 12.
  • DETAILED DESCRIPTION
  • The entire disclosures of the following U.S. patents and U.S. patent applications are hereby incorporated by reference: U.S. Pat. No. 5,097,861 granted Mar. 24, 1992 of Hopkins et al. entitled IRRIGATION METHOD AND CONTROL SYSTEM; U.S. Pat. No. 5,444,611 granted Aug. 22, 1995 of Peter J. Woytowitz, et al. entitled LAWN AND GARDEN IRRIGATION CONTROLLER; U.S. Pat. No. 5,829,678 granted Nov. 3, 1998 of Richard E. Hunter et al. entitled SELF-CLEANING IRRIGATION REGULATOR VALVE APPARATUS; U.S. Pat. No. 6,088,621 granted Jul. 11, 2000 also of Peter J. Woytowitz et al. entitled PORTABLE APPARATUS FOR RAPID REPROGRAMMING OF IRRIGATION CONTROLLERS; U.S. Pat. No. 6,721,630 granted Apr. 13, 2004 also of Peter J. Woytowitz entitled EXPANDABLE IRRIGATION CONTROLLER WITH OPTIONAL HIGH-DENSITY STATION MODULE; U.S. Pat. No. 6,842,667 granted Jan. 11, 2005 of Beutler et al. entitled POSITIVE STATION MODULE LOCKING MECHANISM FOR EXPANDABLE IRRIGATION CONTROLLER; U.S. patent application Ser. No. 10/883,283 filed Jun. 30, 2004 also of Peter J. Woytowitz entitled HYBRID MODULAR/DECODER IRRIGATION CONTROLLER, now U.S. Pat. No. 7,069,115 granted Jun. 27, 2007; pending U.S. patent application Ser. No. 10/985,425 filed Nov. 9, 2004 also of Peter J. Woytowitz et al. and entitled EVAPOTRANSPIRATION UNIT CONNECTABLE TO IRRIGATION CONTROLLER; pending U.S. patent application Ser. No. 11/288,831 filed Nov. 29, 2005 of LaMonte D. Porter et al. and entitled EVAPOTRANSPIRATION UNIT FOR RE-PROGRAMMING AN IRRIGATION CONTROLLER; U.S. patent application Ser. No. 11/045,527 filed Jan. 28, 2005 also of Peter J. Woytowitz entitled DISTRIBUTED ARCHITECTURE IRRIGATION CONTROLLER, now U.S. Pat. No. 7,245,991 granted Jul. 17, 2007; U.S. Pat. No. 7,289,886 of Peter J. Woytowitz granted Oct. 30, 2007 entitled MODULAR IRRIGATION CONTROLLER WITH SEPARATE FIELD VALVE LINE WIRING TERMINALS; U.S. Pat. No. 7,225,058 of Lamonte D. Porter granted May 29, 2007 entitled MODULAR IRRIGATION CONTROLLER WITH INDIRECTLY POWERED STATION MODULES; pending U.S. patent application Ser. No. 11/458,551 filed Jul. 19, 2006 of Lamonte D. Porter et al. entitled IRRIGATION CONTROLLER WITH INTERCHANGEABLE CONTROL PANEL; and pending U.S. patent application Ser. No. 12/042,301 filed Mar. 4, 2008 of Peter J. Woytowitz et al. entitled IRRIGATION CONTROLLER WITH SELECTABLE WATERING RESTRICTIONS. The aforementioned U.S. patents and applications are all assigned to Hunter Industries, Inc., the assignee of the subject application.
  • The present invention addresses the hesitancy or inability of users to learn the horticultural factors required to set up a conventional ET based irrigation controller. The irrigation system of the present invention has a familiar manner of entering, selecting and modifying its watering schedules, and either built-in or add-on capability to automatically modify its watering schedules based on ET data in order to conserve water and effectively irrigate vegetation throughout the year as weather conditions vary. The user friendly irrigation system of the present invention is capable of achieving, for example, eighty-five percent of the maximum amount of water that can theoretically be conserved on a given irrigation site, but is still able to be used by most non-professionals. Therefore, a large percentage of users of the irrigation system of the present invention will have a much more beneficial environmental impact than a near perfect solution provided by complex prior art ET based irrigation controllers that might at best be adopted a small percentage of users. Even within the small percentage of users that adopt the full ET device, many of them may not be set up correctly because of the complexities of ET, and may therefore operate inefficiently.
  • Referring to FIG. 1, in accordance with an embodiment of the present invention, an irrigation system 10 comprises a stand alone irrigation controller 12 connected via cable 14 to a stand alone ET unit 16 that is in turn connected via cable 18 to a stand alone weather station 20. The controller 12 and ET unit 16 would typically be mounted in a garage or other protected location, although they can have a waterproof construction that allows them to be mounted out of doors. The weather station 20 is typically mounted on an exterior wall, gutter, post or fence near the garage. The cables 14 and 18 typically include copper wires so that power can be supplied to the ET 16 unit and the weather station 20 from the irrigation controller 12. Data and commands are sent on other copper wires in the cables. Fiber optic cables can also be utilized for sending data and commands. The controller 12, ET unit 16 and weather station 20 may exchange data and commands via wireless communication links 22 and 24. A transformer 25 that plugs into a standard household 110 volt AC duplex outlet supplies twenty-four volt AC power to the stand alone irrigation controller 12. In its preferred form, the irrigation system 10 employs a hard wired communication link 14 between the stand alone irrigation controller 12 and the stand alone ET unit 16 that are normally mounted adjacent one another, such as on a garage wall, and a wireless communication link 24 between the stand alone ET unit 16 and the stand alone weather station 20.
  • Referring to FIG. 2, the stand alone irrigation controller 12 may be the Pro-C modular irrigation controller commercially available from Hunter Industries, Inc. The irrigation controller 12 includes a wall-mountable plastic housing structure in the form of a generally box-shaped front door 26 hinged along one vertical edge to a generally box-shaped back panel 28 (FIG. 3). A generally rectangular face pack 30 (FIG. 2) is removably mounted over the back panel 28 and is normally concealed by the front door 26 when not being accessed for programming. The face pack 30 has an interface in the form of a plurality of manually actuable controls including a rotary knob switch 31 and push button switches 32 a-32 g as well as slide switch 34 which serves as a sensor by-pass switch. Watering schedules consisting of various run and cycle times can be entered by the user by manipulating the rotary knob switch 31 and selected ones of the push button switches 32 a-32 g in conjunction with observing numbers, words and/or graphic symbols indicated on a liquid crystal display (LCD) 36. Push buttons 32c and 32d are used to increase or decrease the seasonal adjust value. The watering schedules can be a complicated set of run time and cycle algorithms, or a portion thereof, such as a simple five minute cycle for a single station. Alternatively, existing pre-programmed watering schedules can be selected, such as selected zones every other day. Any or sub-combination of manually actuable input devices such as rotary switches, dials, push buttons, slide switches, rocker switches, toggle switches, membrane switches, track balls, conventional screens, touch screens, etc. may be used to provide an interface that enables a user to select and/or enter a watering schedule. Still another alternative involves uploading watering schedules through the SMART PORT (Trademark) feature of the irrigation controller 12, more details of which are set forth in the aforementioned U.S. Pat. No. 6,088,621.
  • The face pack 30 (FIG. 2) encloses and supports a printed circuit board (not illustrated) with a processor for executing and implementing a stored watering program. An electrical connection is made between the face pack 30 and the components in the back panel 28 through a detachable ribbon cable including a plurality of conductors 38 a-g (FIG. 4). The circuitry inside the face pack 30 can be powered by a battery to allow a person to remove the face pack 30, un-plug the ribbon cable, and walk around the lawn, garden area or golf course while entering watering schedules or altering pre-existing watering schedules.
  • A processor 40 (FIG. 5) is mounted on the printed circuit board inside the face pack 30. A watering program stored in a memory 42 is executable by the processor 40 to enable the processor to generate commands for selectively turning a plurality of solenoid actuated irrigation valves (not illustrated) ON and OFF in accordance with the selected or entered watering schedule. An example of such an irrigation valve is disclosed in U.S. Pat. No. 5,996,608 granted Dec. 7, 1999 of Richard E. Hunter et al. entitled DIAPHRAGM VALVE WITH FILTER SCREEN AND MOVEABLE WIPER ELEMENT, the entire disclosure of which is hereby incorporated by reference. Said patent is also assigned to Hunter Industries, Inc. Typically the solenoid actuated valves are mounted in subterranean plastic boxes (not illustrated) on the irrigated site.
  • The processor 40 communicates with removable modules 44 and 46 a-c (FIG. 3) each containing a circuit that includes a plurality of solid state switches, such as triacs. These switches turn twenty-four volt AC current ON and OFF to open and close corresponding solenoid actuated valves via connected to dedicated field valve wires and a common return line to screw terminals 48 on the modules 44 and 46 a-c.
  • In FIG. 3, the modules 44 and 46a are shown installed in side-by-side fashion in station module receptacles formed in the back panel 28. The module 44 serves as a base module that can turn a master valve ON and OFF in addition to a plurality of separate station valves. Each module includes an outer generally rectangular plastic housing with a slot at its forward end. A small printed circuit board (not illustrated) within the module housing supports the station module circuit that includes conductive traces that lead to the screw terminals 48 and to V-shaped spring-type electrical contacts (not illustrated) that are accessible via the slot in the forward end of the module housing. These V-shaped electrical contacts register with corresponding flat electrical contacts on the underside of a relatively large printed circuit board 49 (FIG. 4) mounted inside the back panel 28 when the module 44 is slid into its corresponding receptacle. The relatively large printed circuit board 49 is referred to as a “back plane.” The base module 44 and station modules 46 a-c and the back plane 49 are thus electrically and mechanically connected in releasable fashion through a so-called “card edge” connection scheme when the base module 44 and station modules 46 a-c are inserted or plugged into their respective receptacles.
  • An elongate locking bar 50 (FIG. 3) can be manually slid up and down in FIG. 4 between locked and unlocked positions to secure and un-secure the modules 44 and 46 a-c after they have been fully inserted into their respective receptacles. Opposing raised projections 52 formed on the locking bar 50 facilitate sliding the locking bar 50 with a thumb. A pointer 54 extends from one of the raised projections 52 and serves as a position indicator that aligns with LOCKED and UNLOCKED indicia (not illustrated) molded into the upper surface of another plastic support structure 56 mounted inside back panel 28.
  • The receptacles for the modules such as 44 and 46 a-c are partially defined by vertical walls 58 (FIG. 3) formed on the back panel 28. Vertical walls 60 also formed on the back panel 28 to provide support to the modules 44 and 46 a-c. An auxiliary terminal strip provides additional screw terminals 62 for connecting remote sensors and accessories. The term “receptacles” should be broadly construed as defined in one or more of the patents and pending applications incorporated by reference above.
  • FIGS. 4 and 5 are block diagrams of the electronic portion of the stand alone irrigation controller 12. The electronic components are mounted on printed circuit boards contained within the face pack 30, back panel 28, base module 44 and station modules 46 a-c. The processor 40 (FIG. 4) is mounted on the printed circuit board inside the face pack 30 and executes the watering program stored in the memory 42. By way of example, the processor 40 may be a Samsung S3F8289 processor that executes a program stored in the separate memory 42 which can be an industry standard designation Serial EEPROM 93AA6A non-volatile memory device. Alternatively, the processor 40 and memory 42 may be provided in the form of a micro-computer with on-chip memory. The manually actuable controls 31, 32 a-32 g and 34 and the LCD display 36 of the face pack 30 are connected to the processor 40. The processor 40 sends drive signals through buffer 64 and back plane 49 to the base module 44. By way of example the buffer 64 may be an industry standard designation 74HC125 device. The processor 40 sends data signals to the modules 46 a-c through buffer 66. The buffer 66 may be an H-bridge buffer including industry standard 2N3904/3906 discrete bipolar transistors.
  • The processor 40 (FIG. 4) controls the base module 44 and the station modules 46 a-c in accordance with one or more watering schedules. Serial or multiplexed communication is enabled via the back plane 49 to the base module 44 and to each of the output modules 46 a-c. Suitable synchronous serial data and asynchronous serial data station module circuits are disclosed in the aforementioned U.S. Pat. No. 6,721,630. The location of each module in terms of which receptacle it is plugged into is sensed using resistors on the back plane 49 and a comparator 68 (FIG. 5) which may be an industry standard LM393 device. The face pack 30 receives twenty-four volt AC power from the transformer 25 through the back plane 49 and regulates the same via a power supply circuit 70 (FIG. 5). The power supply circuit 70 includes a National Semiconductor LM7906 voltage regulator, a Microchip Technology MCP101-450 power supervisor, and a Samsung KA431 voltage regulator. A lithium battery 72 such as an industry standard CR2032 battery is included in the power supply circuit 70 and provides backup power to the micro controller to maintain the internal clock in the event of a power failure. The face pack ribbon cable 38 a-g (FIG. 4) that connects the face pack 30 and the back plane 49 can be disconnected, and a nine volt battery (FIG. 5) then supplies power to the face pack 30. This allows a user to remove the face 30 pack from the back panel 28 and enter or modify watering schedules as he or she walks around the irrigation site.
  • The modules 44 and 46 a-c have contacts 74 (FIG. 4) on the top sides of their outer plastic housings. When the modules are first plugged into their receptacles, only a communication path is established with the processor 40 via the back plane 49. At this time the locking bar 50 (FIG. 3) is in its UNLOCKED position. Thereafter, when the locking bar is slid to its LOCKED position finger-like contacts 76 (FIG. 4) on the underside of the locking bar 50 register with the contacts 74 on the tops of the modules 44 and 46 a-c to supply twenty-four volt AC power to the modules that is switched ON and OFF to the valves that are connected to the modules. The finger-like contacts 76 are connected to a common conductor 78 carried by the locking bar 50. When the locking bar 50 is slid to its LOCKED position projections and tabs that extend from the locking bar 50 and the modules are aligned to prevent withdrawal of the modules. See the aforementioned U.S. Pat. No. 7,225,058 for further details.
  • FIG. 6 is a block diagram illustrating details of the electronic circuit of the base module 44. The base module circuit includes transistor drivers 80 and triacs 82 for switching the twenty-four volt AC signal ON and OFF to different solenoid actuated valves. By way of example, the transistor drivers 80 may be industry standard 2N4403 transistors and the triacs may be ST Microelectronics (Trademark) T410 triacs. The twenty-four volt AC signal is supplied to the triacs 82 via contact 74 and line 83. The twenty-four volt AC signal from each of the triacs 82 is routed through an inductor/MOV network 84 for surge suppression to four field valve lines 86 a-d, each of which can be connected to a corresponding solenoid actuated valve. The valves are each connected to a valve common return line 88. The twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90. The unregulated DC signal from the rectifier/filter circuit 90 is supplied to a National Semiconductor LM7905 voltage regulator 92 which supplies five volt DC power to the face pack 30 via a conductor 38 c (FIG. 4) in the ribbon cable.
  • FIG. 7 is a block diagram illustrating details of the electronic circuit in each of the station modules 46 a-c. The station module circuit includes a microcontroller such as the Microchip (Trademark) PIC 12C508 processor 94. The station module circuit further includes triacs 96 for switching the twenty-four volt AC signal ON and OFF to three different solenoid actuated valves. The twenty-four volt AC signal is supplied to the triacs 96 via contact 74 and line 98. The twenty-four volt AC signal from each of the triacs 94 is routed through an inductor/MOV network 98 including Epcos Inc. S10K35 MOV's for surge suppression to three field valve lines 100 a-c, each of which can be connected to a corresponding solenoid actuated valve. The valves are each connected to the valve common return line 88. The twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90. The unregulated DC signal from the rectifier/filter circuit 102 is supplied to a National Semiconductor LM7905 voltage regulator 104 which supplies five volt DC power to the microcontroller through a conductor (not illustrated).
  • FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller 12 of FIG. 2. Those skilled in the art of designing and programming irrigation controllers for residential and commercial applications will readily understand the logical flow and algorithms that permit the processor 40 to execute the watering program stored in the memory 42. This watering program enables the processor 40 to generate commands for selectively turning the plurality of valves ON and OFF in accordance with the selected or entered watering schedules. The watering program includes a seasonal adjustment feature that provides the capability for automatically modifying the watering schedules to thereby conserve water while maintaining plant health. By actuating one of the push buttons 32 c or 32 d the user can increase or decrease the run types for all stations by a selected scaling factor, such as ten percent, to account for seasonal variations in temperature and rainfall.
  • Referring to FIG. 9, the stand alone ET unit 16 includes a rectangular outer plastic housing 106 enclosing a printed circuit board (not illustrated) which supports the electronic circuit of the ET unit 16 that is illustrated in the block diagram of FIG. 10. A microcontroller 108 such as a Microchip PIC18F65J90 processor executes firmware programming stored in a memory 110 such as an industry standard 93AA66A EEPROM memory. The microcontroller 108 can receive DC power from a lithium battery 112 such as an industry standard CR2032 battery, which allows accurate time keeping in the event of a power failure. Insulating strip 113 (FIG. 9) must be manually pulled out to establish an operative connection of the battery 112. External power for the ET unit 16 is supplied from the transformer 25 (FIG. 1) via the cable 14. The twenty-four volt AC power from the transformer 25 is supplied to a rectifier/filter circuit 114 (FIG. 10) which supplies twenty-four volt DC power to a power regulation circuit 116 which may be an ST Microelectronics L78M24CDT-TR regulator. Power from the power regulation circuit 116 is fed to a microcontroller power regulator 118 which may be a Microchip MCP 1702T-25021/CB regulator. Power from the power regulation circuit 116 is also fed to a wired or wireless sensor communications device 120 that may include, by way of example, an industry standard MMBTA92 for the signal transmitter and an industry standard LM393 comparator for the receiver.
  • The microcontroller 108 (FIG. 10) interfaces with the SmartPort (Trademark) connector of the irrigation controller 12 with a combination interface/optocoupler 122 which may be provided by an industry standard 4N26S device. The microcontroller 108 interfaces with the weather station illustrated in FIG. 12. An LCD display 126 is mounted in the housing 106. Three manually actuable controls in the form of push buttons 128 a-c (FIG. 9) are mounted in the housing 106 for enabling the user to make selections when setting up and modifying the operation of the ET unit 16 in conjunction with information indicated on the display 126 which is facilitated by column and row indicia 130 and 132, respectively, affixed to the housing 106 adjacent the horizontal and vertical margins of the display 126. Row indicia 132 include, from top to bottom, AM, PM, 24 hr, START and END which are printed, painted, molded or otherwise applied to the outerplastic housing such as by a sticker. Column indicia 130 are illustrated diagrammatically as A-E in FIG. 9 due to space constraints in the drawing. A-E correspond, respectively, to TIME, TYPE, REGION, NO WATER and WATER ± with associated icons which are printed, painted, molded or otherwise applied to the outer plastic housing 106 such as by a sticker.
  • FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit 16. A watering schedule typically includes inputted parameters such as start times, run times and days to water. The ET unit 16 can automatically set the seasonal adjustment of the irrigation controller 12 to reduce watering time, or increase watering times, depending on the weather conditions at the time. The ET unit 16 utilizes actual ET data as its basis for making the modifications to the watering schedules implemented by the irrigation controller 12. However, to simplify the system and reduce the costs, some of the ET parameters may be pre-programmed into the ET unit 16 as constants. These constants may be selected from a group of geographical areas to approximately assimilate the local conditions and estimate a maximum ET value. Other climatic factors are monitored on a daily basis and are the variables. The variables may include one or more pieces of environmental data such as temperature, humidity, solar radiation, wind, and rain. In the preferred embodiment of the present invention, the measured variables are temperature and solar radiation. The variables and any constants are used by the processor 108 to calculate an estimated ET value. This estimated ET value is then used by the ET unit 16 to automatically set the seasonal adjustment feature of the irrigation controller 12. The weather station 20 can also include a sensor that indicates a rain event. A rain event does not effect calculation of an estimated ET value. However, it does shut of the irrigation during, and for a period of time following, the rain event as a further conservation measure.
  • The user can modify the run and cycle times for individual stations in the usual manner in the irrigation controller 12. As an example, if one station is watering too much, but all of the other stations are watering the correct amount, the user can easily reduce the run time of that particular station and balance the system out. Then the ET unit 16 continues modifying the watering schedules executed by the irrigation controller 12 on a global basis as a percentage of run time, based on the calculated estimated ET value. Irrigation controllers can be used to control landscape lighting and other non-irrigation devices such as decorative water fountains. The controller 12 may have features in it such that the ET unit 16 only modifies the watering schedules of the irrigation controller 12.
  • One of the difficulties with conventional weather-based controllers is attributable to the difficulty of fine-tuning the weather data being received. The environmental sensors may not always be able to be placed in an optimum location on the irrigation site. As an example, a solar radiation sensor may be placed in an area that receives late afternoon shade. This will result in the calculation of an abnormally low estimated ET value. The entire irrigation site may receive too little water and the plant material may become stressed from too little water if the watering schedules are based on an abnormally low estimated ET. If a conventional ET based irrigation controller receives input from such an incorrectly located solar radiation sensor, the user can attempt to compensate by increasing the run times for each zone by modifying precipitation rates to compensate for the error. This is cumbersome and makes it difficult and frustrating for the user to adjust a conventional ET based irrigation controller for optimum watering.
  • An advantage of the present invention is the ability to globally modify the watering schedules of the stand alone irrigation controller 12 to compensate for this type of condition. If at any time the user realizes that the property is receiving too little water, the user can simply manually change an overall watering adjustment feature. The overall watering adjustment feature is implemented as a simple plus or minus control via actuation of an assigned pair of the push buttons 128 a-c. This changes the reference point of the ET calculation either up or down. After this adjustment is made, the ET adjustment executed by the ET unit 16 references the new setting and then compensates for under watering that would otherwise occur. Likewise, if the overall watering is too much for the irrigation site, the user can simply adjust the overall watering adjustment feature down and create a new lower reference for the automatic ET based adjustments. The overall watering adjustment feature makes it easy for the user to fine-tune the system to the particular requirements of the irrigation site. The overall watering adjustment feature can be indicated by showing “global adjustment,” or “more/less, water ±,” or similar naming conventions.
  • The overall watering adjustment feature of the ET unit 16 directly alters the station run times executed by the irrigation controller 12. This adjustment modifies the estimated maximum expected ET setting, which is a constant that is used in the calculating the seasonal adjust value. When the user makes overall watering adjustments by pressing plus or minus push buttons on the ET unit 16, this directly affects the ET value that is used to reset the seasonal adjustment in the host controller 12. In calculating the estimated ET, the microcontroller 108 in the ET unit 16 uses only select data points as variables (temperature and solar radiation) and uses other data points that may consist of pre-programmed constants, and/or data entered by the user that defines some one or more constants of the site. Estimated ET is calculated using the Penman-Monteith formula, taking into account geographical data for peak estimated summer ET.
  • Another feature provided by the ET 16 is an automatic shut down feature for irrigation that overrides any scheduled run times. There are several times when this is important. A rain sensor in the weather station 20 can send signals to the ET unit representing the occurrence of a rain event. The ET unit 10 will then signal the irrigation controller 12 to shut down and suspend any watering, irregardless of any scheduled irrigation running or not running at the time. As another example, during a freeze or near freeze condition, irrigation may produce ice that can be dangerous to people walking or vehicles diving by. Many cities therefore require that irrigation be automatically turned off in the event of a freeze condition. A temperature sensor in the weather station 20 can detect a freeze or near freeze condition and the ET unit 16 will signal the irrigation controller 12 to shut down, regardless of any scheduled irrigation running or not running at the time.
  • The automatic shut down feature of the ET unit 10 is also useful in geographic areas where watering agencies and municipalities impose restrictions that limit the times when irrigation can occur. The user is able to enter a no-water window into the ET unit 16, which consists of the times when irrigation is not allowed to take place. When a no-water window is entered by the user, the ET unit 16 will signal the irrigation controller 12 to shut down, irregardless of any scheduled irrigation running or not running at the time. The ET unit 16 will then allow the irrigation controller 12 to return to its normal run mode after the selected no-water window time has elapsed. The irrigation controller 12 may have sensor input terminals, as in the case of the Pro-C irrigation controller, which can be used to shut down all watering on receipt of a shut down command from the ET unit 16.
  • FIG. 12A is an enlarged vertical cross-section of an embodiment of the stand alone weather station 20 of the system of FIG. 1. The compact and inexpensive weather station 20 measures solar radiation, ambient air temperature, and detects a rain event. The weather station 20 is a one-piece unit that readily attaches to an exterior side of a building structure, a fence, or a rain gutter. The weather station 20 can be hard wired to the ET unit 16 via cable 18, or the communications between the weather station 20 and the ET unit 16 may take place via wireless communications link 24. The basic construction of the weather station 20 is similar to that disclosed in U.S. Pat. No. 6,570,109 granted May 27, 2003 to Paul A. Klinefelter et al. entitled QUICK SHUT-OFF EXTENDED RANGE HYDROSCOPIC RAIN SENSOR FOR IRRIGATION SYSTES, and U.S. Pat. No. 6,977,351 granted Dec. 20, 2005 to Peter J. Woytowitz entitled MOISTURE ABSORPTIVE RAIN SENSOR WITH SEALED POSITION SENSING ELEMENT FOR IRRIGATION WATERING PROGRAM INTERRUPT, the entire disclosures of both of which are incorporated herein by reference. Both of the aforementioned U.S. patents are assigned to Hunter Industries, Inc.
  • The weather station 20 (FIG. 12A) includes an outer injection molded plastic housing 134 that encloses a pair of moisture absorbing members in the form of a larger stack 136 of moisture absorbing hygroscopic discs and a smaller stack 138 of moisture absorbing hygroscopic discs. These discs are typically made of untreated wood fibers pressed together into a material that resembles cardboard in appearance. One suitable commercially available hygroscopic material is Kraft Press Board which is made from cellulose pulp.
  • The stacks 136 and 138 (FIG. 12A) of hygroscopic discs are supported on a common pivot arm 140 for vertical reciprocal motion relative to a vertical shaft 142 that extends through the arm 140. A coil spring 144 surrounds the shaft 142 and normally pushes the stack 136 upwardly against stop 146. A torsion spring 147 (FIG. 12B) associated with the pivot axis of the arm 140 lifts the arm 140 and the stack 138 upward to a fixed stop (not illustrated). When rain water enters the housing 134 (FIG. 12A) via aperture 150 and funnel 152 the hygroscopic discs of the stacks 136 and 138 absorb water and swell, pushing the arm 140 downwardly. A magnet 154 is mounted on one end of the arm 140. A stationary linear Hall effect sensor 156 mounted on a vertically mounted printed circuit board 158 generates a signal representative of the position of the magnet 154 that is proportional to the amount of rain water that has entered the weather station 20. The Hall effect sensor 156 may be provided by part number A1395SEHLT-T manufactured by Alegro. The small stack 138 absorbs water quickly via funnel 148 so that a rain event will be quickly detected. The large stack 136 dries out slowly so that the rain interrupt signal from the weather station 20 will not be terminated too quickly as the hydroscopic discs dry out. A solar radiation sensor 160 is mounted on one end of the printed circuit board 158 and receives solar radiation through a clear plastic dome 162 snap fit over the uppermost part of the housing 134. The solar radiation sensor 160 may be an industry standard PDB-C131 photodiode with low current leakage.
  • FIG. 13 is a block diagram illustrating the electronic circuit of the stand alone weather station 20 that is mounted on the printed circuit board 158. The solar radiation sensor 160 which may comprise a PDB-C131 photodiode that is connected to a Microchip MCP6001T-I/LT transimpedance amplifier 164 that is in turn connected to a Microchip PIC-16F684-I/SL microcontroller 166. A Microchip MCP9700T-E/LT temperature sensor 168 with an A/D interface is also connected to the microcontroller 166. The microcontroller 166 also receives the output signal from the Hall effect sensor 156. The Hall effect sensor 156 may comprise a Microchip A1395SEHLT-T Hall effect sensor and interface circuit. The communications interface 170 between the microcontroller 166 and the ET unit 16 may be a hard wire interface, or more preferably, a wireless interface that may comprise a Microchip Technology RFPIC675 transmitter and a Maxim MAX1473 receiver. The transmitter sends signals representative of actual components of ET data across the irrigation site to the ET unit 16. Power for the hard wired weather station 20 is derived from the communications link to the ET unit 16 and is fed to an input conditioner 172 which feeds a Microchip MCP1702T-3002E/CB power regulator 174. The power regulator 174 supplies three volt DC power to the microcontroller 166. Power for a wireless weather station is supplied by a dedicated battery (not illustrated) installed within the weather station.
  • FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station 20 of FIG. 12. Firmware executed by the microcontroller 166 allows the weather station 20 to perform the logical operations illustrated in the flow diagram. These include periodic sampling of the outputs from the solar radiation sensor 162, temperature sensor 168 and Hall effect sensor 156, averaging readings, and responding to requests for sensor data that are periodically transmitted by the ET unit 16.
  • In conclusion, the ET unit 16 of the present invention utilizes the watering program set up procedures that the users are already accustomed to. Start times, station run times, and days-to-water are manually entered into the irrigation controller 12. The user also selects from one of a group of geographical regions in the ET unit 16. The ET unit 16 then automatically takes over setting of the seasonal adjustment feature of the irrigation controller 12 on a regular basis. Instead of a user changing that feature several times per year, the ET unit 16 sets that seasonal adjustment daily depending on current weather conditions gathered on site. Furthermore, the ET unit 16 shuts down any scheduled watering by the irrigation controller 12 in response to a rain event or a freeze event, and when there is a scheduled no-water window. Cost savings are achieved since only a small number of the weather parameters need to be measured. These variables are then used with pre-programmed constants to calculate an estimated ET value. This approach allows for cost savings since the stand alone weather station 20 need not have more than a solar radiation sensor, a temperature sensor and a rain sensor.
  • The present invention also provides a unique method of controlling a plurality of valves on an irrigation site. The method includes the steps of selecting and/or creating a watering schedule, storing the watering schedule and generating a signal representative of an environmental condition on an irrigation site. The method also includes the steps of calculating an estimated ET value based at least in part on the signal and selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule. Importantly, the method includes the further step of automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
  • While an embodiment of an irrigation system comprising a stand alone ET unit connected to stand alone irrigation controller and linked to a separate stand alone weather station has been described in detail, persons skilled in the art will appreciate that the present invention can be modified in arrangement and detail. The features and functionality described could be provided by combining the irrigation controller and the ET unit into a single integrated unit in which case a single microcontroller would replace the microcontrollers 40 and 108. Alternatively, the ET unit could be packaged in an ET module designed for removable insertion into a receptacle in a stand alone irrigation controller. Therefore, the protection afforded the subject invention should only be limited in accordance with the scope of the following claims.

Claims (42)

1. An ET based irrigation system, comprising:
a stand alone irrigation controller with a seasonal adjust feature;
a stand alone weather station including at least one environmental sensor; and
a stand alone ET unit operatively in communication with the irrigation controller and the weather station including programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value.
2. The system of claim 1 wherein the programming of the ET unit provides the capability for automatically modifying the watering schedule through the seasonal adjust feature based on the estimated ET value as increased or decreased by the user through an inputted overall watering adjustment.
3. The system of claim 1 wherein the programming of the ET unit provides the capability for entering a no-water window that automatically overrides the watering schedule.
4. The system of claim 1 wherein the programming of the ET unit provides the capability for automatically shutting down any watering otherwise scheduled based on a detected event.
5. The system of claim 1 wherein the weather station includes a solar radiation sensor, a temperature sensor and a rain sensor and the estimated ET value is calculated using signals from the solar radiation sensor and the temperature sensor and a plurality of pre-programmed constants.
6. The system of claim 1 wherein the ET unit is operatively connected to the weather station through a wireless communications link.
7. The system of claim 1 wherein the ET unit is configured to receive power from the irrigation controller.
8. The system of claim 1 wherein the weather station includes a solar radiation sensor, a temperature sensor and a rain sensor and the estimated ET value is calculated using signals from the solar radiation sensor and the temperature sensor and a plurality of pre-programmed constants and where data entered by the user determines at least one constant of a given site.
9. The system of claim 1 wherein the ET unit modifies the watering schedule of the irrigation controller through a data port of the irrigation controller.
10. The system of claim 2 wherein the ET unit includes a pair of manually actuable controls configured to enable a user to input the overall watering adjustment by selectively increasing and decreasing an estimated maximum ET setting that is a constant used in calculating the estimated ET value.
11. An ET based irrigation system, comprising:
an interface that enables a user to select and/or enter a watering schedule;
a memory for storing the watering schedule;
at least one sensor for generating a signal representative of an environmental condition;
a processor capable of calculating an estimated ET value based at least in part on the signal from the sensor; and
a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule, the program including a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated ET value to thereby conserve water while maintaining plant health.
12. The system of claim 11 wherein the interface further enables a user to input an overall watering adjustment and further wherein the program provides the capability for automatically modifying the watering schedule through the seasonal adjust feature based on the estimated ET value as increased or decreased by the user through the inputted overall watering adjustment.
13. The system of claim 11 wherein the program calculates the estimated ET based on the signal from the environmental sensor and a plurality of pre-programmed constants and where data entered by the user determines at least one constant of a given site.
14. The system of claim 11 wherein the program calculates the estimated ET based on the signal from the environmental sensor and a plurality of pre-programmed constants.
15. The system of claim 11 wherein the interface includes a pair of manually actuable switches for selectively increasing and decreasing the estimated ET value.
16. A method of controlling a plurality of valves on an irrigation site, comprising the steps of:
selecting and/or creating a watering schedule;
storing the watering schedule;
generating a signal representative of an environmental condition on an irrigation site;
calculating an estimated ET value based at least in part on the signal;
selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule; and
automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site.
17. The method of claim 16 and further comprising the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
18. The method of claim 16 wherein the estimated ET value is calculated based on the signal and a plurality of predetermined constants.
19. The method of claim 16 wherein the estimated ET value is calculated based on signals generated by a solar radiation sensor and a temperature sensor located on the irrigation site, and a plurality of predetermined constants.
20. The method of claim 19 wherein data based on the signals generated by the sensors is transmitted wirelessly across the irrigation site.
21. The method of claim 16 wherein the estimated ET value is calculated based on the signal and a plurality of predetermined constants and where data entered by the user determines at least one constant of a given site.
22. The method of claim 16 wherein the estimated ET value is calculated based on signals generated by a solar radiation sensor and a temperature sensor located on the irrigation site, and a plurality of predetermined constants and where data entered by the user determines at least one constant of a given site.
23. A weather station for use with an irrigation controller, comprising:
a housing;
a rain sensor supported by the housing;
a solar radiation sensor supported by the housing;
a temperature sensor supported by the housing;
a micro-controller supported by the housing and connected to the sensors;
a communications interface for permitting communications between the micro-controller and an irrigation controller; and
firmware executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the irrigation controller.
24. The weather station of claim 23 wherein the micro-controller is connected to the solar radiation sensor through an amplifier.
25. The weather station of claim 23 wherein the micro-controller is connected to the temperature sensor through an A/D interface.
26. The weather station of claim 23 wherein the micro-controller is connected to the rain sensor through an interface circuit.
27. The weather station of claim 23 wherein the solar radiation sensor includes a photodiode.
28. The weather station of claim 23 wherein the rain sensor includes at least one moisture absorbing member made of a hygroscopic material.
29. The weather station of claim 23 wherein the rain sensor includes a Hall effect sensor.
30. The weather station of claim 23 wherein the communications interface enables hard wired communication between the micro-controller and the irrigation controller.
31. The weather station of claim 23 wherein the communications interface enables wireless communication between the micro-controller and the irrigation controller.
32. The weather station of claim 23 wherein the firmware enables the micro-controller to respond to requests sent from the irrigation controller for sensor data via the communications interface.
33. A weather station for use with an irrigation controller, comprising:
a housing;
a rain sensor supported by the housing;
a solar radiation sensor supported by the housing;
a temperature sensor supported by the housing;
a micro-controller supported by the housing and connected to the sensors;
a communications interface for permitting communications between the micro-controller and an ET interface;
a communications interface for permitting communications between the ET interface and an irrigation controller; and
firmware executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the ET interface.
34. The weather station of claim 33 wherein the micro-controller is connected to the solar radiation sensor through an amplifier.
35. The weather station of claim 33 wherein the micro-controller is connected to the temperature sensor through an A/D interface.
36. The weather station of claim 33 wherein the micro-controller is connected to the rain sensor through an interface circuit.
37. The weather station of claim 33 wherein the solar radiation sensor includes a photodiode.
38. The weather station of claim 33 wherein the rain sensor includes at least one moisture absorbing member made of a hygroscopic material.
39. The weather station of claim 33 wherein the rain sensor includes a Hall effect sensor.
40. The weather station of claim 33 wherein the communications interface enables hard wired communication between the micro-controller and the irrigation controller.
41. The weather station of claim 33 wherein the communications interface enables wireless communication between the micro-controller and the irrigation controller.
42. The weather station of claim 33 wherein the firmware enables the micro-controller to respond to requests sent from the irrigation controller for sensor data via the communications interface.
US12/181,894 2004-11-09 2008-07-29 Irrigation System with ET Based Seasonal Watering Adjustment Abandoned US20100030476A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/181,894 US20100030476A1 (en) 2008-07-29 2008-07-29 Irrigation System with ET Based Seasonal Watering Adjustment
US13/153,270 US8600569B2 (en) 2004-11-09 2011-06-03 Irrigation system with ET based seasonal watering adjustment
US14/090,281 US20140081471A1 (en) 2004-11-09 2013-11-26 Irrigation system with et based seasonal watering adjustment
US14/188,235 US9301461B2 (en) 2004-11-09 2014-02-24 Systems and methods to adjust irrigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/181,894 US20100030476A1 (en) 2008-07-29 2008-07-29 Irrigation System with ET Based Seasonal Watering Adjustment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/011,301 Continuation-In-Part US8548632B1 (en) 2004-11-09 2011-01-21 Irrigation controller with integral evapotranspiration unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/153,270 Continuation US8600569B2 (en) 2004-11-09 2011-06-03 Irrigation system with ET based seasonal watering adjustment

Publications (1)

Publication Number Publication Date
US20100030476A1 true US20100030476A1 (en) 2010-02-04

Family

ID=41609207

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/181,894 Abandoned US20100030476A1 (en) 2004-11-09 2008-07-29 Irrigation System with ET Based Seasonal Watering Adjustment
US13/153,270 Active 2025-06-25 US8600569B2 (en) 2004-11-09 2011-06-03 Irrigation system with ET based seasonal watering adjustment
US14/090,281 Abandoned US20140081471A1 (en) 2004-11-09 2013-11-26 Irrigation system with et based seasonal watering adjustment

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/153,270 Active 2025-06-25 US8600569B2 (en) 2004-11-09 2011-06-03 Irrigation system with ET based seasonal watering adjustment
US14/090,281 Abandoned US20140081471A1 (en) 2004-11-09 2013-11-26 Irrigation system with et based seasonal watering adjustment

Country Status (1)

Country Link
US (3) US20100030476A1 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131119A1 (en) * 2007-07-23 2010-05-27 Andrea Brundisini Communication system between control units for irrigation devices
US20100256827A1 (en) * 2009-04-06 2010-10-07 Bruce Allen Bragg Irrigation Controller Integrating Mandated No-Watering Days, Voluntary No-Watering Days, and an Empirically-Derived Evapotranspiration Local Characteristic Curve
US20110015793A1 (en) * 2009-07-17 2011-01-20 Rain Bird Corporation Variable Initialization Time in the Charging of Energy Reserves in an Irrigation Control System
US20110017845A1 (en) * 2009-07-27 2011-01-27 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US7962244B2 (en) 2003-04-25 2011-06-14 George Alexanian Landscape irrigation time of use scheduling
US20110190948A1 (en) * 2007-12-05 2011-08-04 Daniel Joseph Fekete System and method for wireless irrigation utilizing a centralized control server and field module matrix
US20110224836A1 (en) * 2006-06-20 2011-09-15 Rain Bird Corporation Sensor device for interrupting irrigation
US20110238229A1 (en) * 2004-11-09 2011-09-29 Hunter Industries, Inc. Irrigation System with Soil Moisture Based Seasonal Watering Adjustment
US20110270448A1 (en) * 2009-09-03 2011-11-03 Kantor Philip A Irrigation Controller and System Integrating No-Watering Restrictions and an Empirically-Derived Evapotranspiration Local Characteristic Curve
US8234014B1 (en) * 2009-11-02 2012-07-31 Eco-Precise Irrigation Controls, LLC Irrigation control system and method
USD668231S1 (en) * 2010-08-03 2012-10-02 Hunter Industries, Inc. Decoder module for irrigation controller
US8401705B2 (en) 2003-04-25 2013-03-19 George Alexanian Irrigation controller water management with temperature budgeting
US20130131874A1 (en) * 2011-11-22 2013-05-23 ZBS Technology LLC System and method for wireless irrigation control with a remote application
US8538592B2 (en) 2003-04-25 2013-09-17 George Alexanian Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions
US8600569B2 (en) 2004-11-09 2013-12-03 Hunter Industries, Inc. Irrigation system with ET based seasonal watering adjustment
US20140081469A1 (en) * 2012-09-18 2014-03-20 Carl L.C. Kah, JR. Expandable irrigation controller
US8744773B2 (en) 2010-05-19 2014-06-03 Hunter Industries, Inc. Rain sensor with variable shut off
US8793024B1 (en) 2009-02-27 2014-07-29 Hunter Industries, Inc. Irrigation system with multiple soil moisture based seasonal watering adjustment
US8793025B2 (en) 2005-09-15 2014-07-29 Rain Bird Corporation Irrigation control device for decoder-based irrigation system
US8851447B2 (en) 2005-09-15 2014-10-07 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US8862276B2 (en) * 2008-09-05 2014-10-14 Plantcare Ag Method and apparatus for the automatic regulation of the irrigation of plants
US8909381B2 (en) 2009-07-17 2014-12-09 Rain Bird Corporation Data communication in a multi-wire irrigation control system
US8924032B2 (en) 2011-01-06 2014-12-30 Hunter Industries, Inc. Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff
US8977400B1 (en) * 2008-10-01 2015-03-10 Hunter Industries, Inc. Landscape controller with feature module
US9144204B2 (en) 2006-06-20 2015-09-29 Rain Bird Corporation User interface for a sensor-based interface device for interrupting an irrigation controller
USD751423S1 (en) 2013-06-06 2016-03-15 Reliance Controls Corporation Enclosure for a timer
US9301461B2 (en) 2004-11-09 2016-04-05 Hunter Industries, Inc. Systems and methods to adjust irrigation
US9655311B1 (en) 2013-12-10 2017-05-23 Hunter Industries, Inc. Absorbent rain sensor with retention basin
US9678485B2 (en) 2008-10-01 2017-06-13 Hunter Industries, Inc. Landscape controller with control panel insertable feature module
US20170290186A1 (en) * 2016-04-01 2017-10-05 Aeon Matrix Inc. Housing for electronic sprinkler controller
US9814190B1 (en) * 2013-02-01 2017-11-14 Hunter Industries, Inc. Irrigation controller with robust ground path
WO2018045458A1 (en) * 2016-09-07 2018-03-15 Rynan Technologies Pte. Ltd. Irrigation system and method
US20180160636A1 (en) * 2015-05-18 2018-06-14 Hozelock Limited Garden watering controllers
US10015894B2 (en) 2014-08-28 2018-07-03 Hunter Industries, Inc. Communications interface system for landscape control systems
US20180248573A1 (en) * 2015-08-31 2018-08-30 Sony Corporation Reception device, receiving method, and program
US20190037787A1 (en) * 2017-08-03 2019-02-07 Lalit Kumar Smart Moisture Meter
US10206341B2 (en) 2014-07-21 2019-02-19 Rain Bird Corporation Rainfall prediction and compensation in irrigation control
US10225996B1 (en) 2011-11-10 2019-03-12 Hunter Industries, Inc. Control module for a water harvesting system
US10285344B2 (en) * 2016-09-16 2019-05-14 Hunter Industries, Inc. Irrigation controller with reversible operator controls
US10292343B2 (en) 2012-08-01 2019-05-21 Rain Bird Corporation Irrigation controller wireless network adapter and networked remote service
US10327397B2 (en) 2012-11-07 2019-06-25 Rain Bird Corporation Irrigation control systems and methods
US10444769B2 (en) 2017-04-24 2019-10-15 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US10512226B2 (en) * 2011-07-15 2019-12-24 Earthtec Solutions Llc Crop-specific automated irrigation and nutrient management
US10609878B2 (en) 2016-07-15 2020-04-07 Rain Bird Corporation Wireless remote irrigation control
US10638675B2 (en) * 2011-02-25 2020-05-05 The Toro Company Irrigation controller with weather station
US10757873B2 (en) 2017-04-24 2020-09-01 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US10918029B2 (en) * 2018-07-25 2021-02-16 The Board Of Trustees Of The University Of Arkansas Surge valve assembly
US10980120B2 (en) 2017-06-15 2021-04-13 Rain Bird Corporation Compact printed circuit board
US11006590B2 (en) 2017-08-03 2021-05-18 Lalit Kumar Moisture monitoring system with internet of things devices
US11006589B2 (en) 2017-12-29 2021-05-18 Rain Bird Corporation Weather override irrigation control systems and methods
US11061375B2 (en) * 2010-04-06 2021-07-13 Connie R. Masters Irrigation controller and system
US11395416B2 (en) 2019-09-11 2022-07-19 Hunter Industries, Inc. Control box
US11503782B2 (en) 2018-04-11 2022-11-22 Rain Bird Corporation Smart drip irrigation emitter

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301767A1 (en) * 2003-04-25 2011-12-08 George Alexanian Automated landscape watering restrictions
ITMI20051167A1 (en) * 2005-06-21 2006-12-22 Claber Spa "MULTIPLE ELECTRONIC CONTROL UNIT FOR DIFFERENT COMMAND OF SOLENOID VALVES IN IRRIGATION SYSTEMS"
US8200368B2 (en) 2008-12-10 2012-06-12 Rain Bird Corporation Automatically adjusting irrigation controller with temperature and rainfall sensor
US7805221B2 (en) * 2007-05-17 2010-09-28 Rain Bird Corporation Automatically adjusting irrigation controller
TR200805998A2 (en) 2008-08-12 2009-12-21 Kodalfa B�Lg� Ve �Let���M Teknoloj�Ler� Sanay� Ve T�Caret A.�. Remote wireless climate monitoring and control system for greenhouses
US10716269B2 (en) 2008-08-12 2020-07-21 Rain Bird Corporation Methods and systems for irrigation control
US9703275B2 (en) 2011-06-23 2017-07-11 Rain Bird Corporation Methods and systems for irrigation and climate control
US9120111B2 (en) 2012-02-24 2015-09-01 Rain Bird Corporation Arc adjustable rotary sprinkler having full-circle operation and automatic matched precipitation
US9156043B2 (en) 2012-07-13 2015-10-13 Rain Bird Corporation Arc adjustable rotary sprinkler with automatic matched precipitation
US9506785B2 (en) 2013-03-15 2016-11-29 Rain Bird Corporation Remote flow rate measuring
CN105210815A (en) * 2015-10-15 2016-01-06 合肥谢尔网络科技有限公司 A kind of booth automatic irrigation system based on agriculture Internet of Things
US10871242B2 (en) 2016-06-23 2020-12-22 Rain Bird Corporation Solenoid and method of manufacture
WO2018013857A1 (en) 2016-07-13 2018-01-18 Rain Bird Corporation Flow sensor
US10602682B1 (en) 2017-06-30 2020-03-31 Orbit Irrigation Products, Llc Irrigation controller and associated methods
US10473494B2 (en) 2017-10-24 2019-11-12 Rain Bird Corporation Flow sensor
US11662242B2 (en) 2018-12-31 2023-05-30 Rain Bird Corporation Flow sensor gauge
US11357181B2 (en) 2020-02-12 2022-06-14 Rain Bird Corporation Data modulated signal generation in a multi-wire irrigation control system
US11721465B2 (en) 2020-04-24 2023-08-08 Rain Bird Corporation Solenoid apparatus and methods of assembly
AU2022215312A1 (en) 2021-09-10 2023-03-30 Husqvarna Ab Drought adjustment techniques and apparatuses for irrigation controllers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444611A (en) * 1993-10-28 1995-08-22 Hunter Industries, Inc. Lawn and garden irrigation controller
US6298285B1 (en) * 2000-01-04 2001-10-02 Aqua Conservation Systems, Inc. Irrigation accumulation controller
US6314340B1 (en) * 1998-11-02 2001-11-06 Telsco Industries Irrigation controller
US6452499B1 (en) * 1998-10-07 2002-09-17 Thomas Henry Runge Wireless environmental sensor system
US6570109B2 (en) * 2001-10-26 2003-05-27 Hunter Industries, Inc. Quick shut-off extended range hygroscopic rain sensor for irrigation systems
US6977351B1 (en) * 2004-10-29 2005-12-20 Hunter Industries, Inc. Moisture absorptive rain sensor with sealed position sensing element for irrigation watering program interrupt
US7412303B1 (en) * 2005-11-29 2008-08-12 Hunter Industries, Inc. Evapotranspiration unit for re-programming an irrigation controller
US20090138105A1 (en) * 2007-08-19 2009-05-28 Crawford Jeffrey A Method of controlling an irrigation system

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351386A (en) * 1976-10-20 1978-05-10 Hitachi Ltd Operation of fluid transportation system
US4693419A (en) * 1981-11-02 1987-09-15 Water Sentry, Inc. Automatic control apparatus and method for sprinkling water over a predetermined area
US4646224A (en) * 1983-12-05 1987-02-24 L. R. Nelson Corporation Sprinkler controller which computes sprinkler cycles based on inputted data
US4722478A (en) * 1984-01-30 1988-02-02 L. R. Nelson Corporation Electronic water sprinkler timer
US4807664A (en) * 1986-07-28 1989-02-28 Ansan Industries Ltd. Programmable flow control valve unit
US4811221A (en) * 1986-10-28 1989-03-07 Galcon Simplified battery operated automatic and manually operable valve
US4937732A (en) * 1987-10-20 1990-06-26 James Hardie Irrigation, Inc. Irrigation controller
US4922433A (en) * 1987-12-23 1990-05-01 Arnold Mark Automatic irrigation water conservation controller
US5229937A (en) * 1988-02-01 1993-07-20 Clemar Manufacturing Corp. Irrigation control and flow management system
US5097861A (en) * 1988-09-08 1992-03-24 Hunter Industries Irrigation method and control system
US5251153A (en) * 1988-09-28 1993-10-05 Solatrol, Inc. Flexibly programmable irrigation system controller
AU4418389A (en) * 1988-10-04 1990-05-01 Solatrol, Inc. Distributed multiple irrigation controller management system
US5148985A (en) * 1990-01-11 1992-09-22 The Toro Company Irrigation control apparatus responsive to soil moisture
US5381331A (en) * 1990-07-18 1995-01-10 The Toro Company Irrigation controller
US5293554A (en) * 1990-08-10 1994-03-08 Nicholson Laurence R Program controlled irrigation system
US5148826A (en) * 1991-09-03 1992-09-22 Behrooz Bakhshaei Moisture monitoring and control system
US5208855A (en) * 1991-09-20 1993-05-04 Marian Michael B Method and apparatus for irrigation control using evapotranspiration
US6267298B1 (en) 1993-05-28 2001-07-31 Paul D. Campbell Neural networked irrigation controller
US5337957A (en) * 1993-07-01 1994-08-16 Olson Troy C Microprocessor-based irrigation system with moisture sensors in multiple zones
AU1700495A (en) * 1994-02-17 1995-09-04 Waterlink Systems, Inc. Evapotranspiration forecasting irrigation control system
US5870302A (en) * 1994-02-17 1999-02-09 Waterlink Systems, Inc. Evapotranspiration remote irrigation control system
US5546974A (en) * 1995-01-03 1996-08-20 Bireley; Richard L. Moisture monitoring system
US5694963A (en) * 1995-12-04 1997-12-09 Fredell; Paul Thomas Method and apparatus for freeze prevention of irrigation systems
US6016971A (en) * 1996-02-16 2000-01-25 Albert B. Welch Lawn watering system
US6088621A (en) * 1996-06-21 2000-07-11 Hunter Industries, Inc. Portable apparatus for rapid re-programming of irrigation controllers
US5829678A (en) * 1996-06-21 1998-11-03 Hunter Industries Incorporated Self-cleaning irrigation regulator valve apparatus
US5740038A (en) * 1996-09-26 1998-04-14 Hergert; C. David System and method for optimized control of moving irrigation systems
US5836339A (en) * 1996-12-31 1998-11-17 Klever; David L. Raindrop counter and control system for irrigation systems
US5944444A (en) * 1997-08-11 1999-08-31 Technology Licensing Corp. Control system for draining, irrigating and heating an athletic field
US6453215B1 (en) * 1998-04-14 2002-09-17 Nathan Lavoie Irrigation controller
US6227220B1 (en) * 2000-06-22 2001-05-08 John W. Addink Irrigation controller
US6453216B1 (en) * 1999-07-14 2002-09-17 Mccabe James F. Method of controlling an irrigation system
US6145755A (en) * 1999-07-23 2000-11-14 Feltz; Louis V. Supplemental irrigation programmer
ES2303371T3 (en) * 1999-11-25 2008-08-01 S-Rain Control A/S TWO-WIRE MONITORING AND CONTROL SYSTEM FOR, IN PARTICULAR, THE IRRIGATION OF LOCATED SOIL AREAS.
US20020002425A1 (en) * 1999-11-30 2002-01-03 Dossey James F. Computer controlled irrigation and environment management system
US6892114B1 (en) * 2000-09-26 2005-05-10 Aqua Conserve, Inc. Modifying irrigation schedules of existing irrigation controllers
US7048204B1 (en) * 2000-11-06 2006-05-23 Aqua Conserve, Inc. Irrigation controller using estimated solar radiation
US6947811B2 (en) * 2000-12-07 2005-09-20 John Addink Automatic adjustment of irrigation schedule according to condition of plants
US6568416B2 (en) * 2001-02-28 2003-05-27 Brian L. Andersen Fluid flow control system, fluid delivery and control system for a fluid delivery line, and method for controlling pressure oscillations within fluid of a fluid delivery line
US6823239B2 (en) * 2001-11-05 2004-11-23 Rain Master Irrigation Systems, Inc. Internet-enabled central irrigation control
US20040011880A1 (en) * 2001-11-14 2004-01-22 Addink John W Device that modifies irrigation schedules of existing irrigation controllers
WO2003041874A1 (en) * 2001-11-14 2003-05-22 Aqua Conservation Systems, Inc. Irrigation control system
US20030109964A1 (en) * 2001-12-11 2003-06-12 John Addink Irrigation controller using regression model
US20030182022A1 (en) * 2002-03-21 2003-09-25 John Addink Interactive irrigation system
US6895811B2 (en) * 2001-12-14 2005-05-24 Shawmut Corporation Detection of small holes in laminates
US20030179102A1 (en) * 2001-12-26 2003-09-25 Andrew Barnes System for controlling irrigation applications
US20040015270A1 (en) * 2002-03-21 2004-01-22 Addink John W. Interactive irrigation system
US7403840B2 (en) * 2002-04-19 2008-07-22 Irrisoft, Inc. Irrigation control system
US20060161309A1 (en) 2002-04-19 2006-07-20 Moore Steven E Irrigation control system
EP1558866A4 (en) * 2002-06-24 2010-03-03 Arichell Tech Inc Automated water delivery systems with feedback control
US20050038569A1 (en) * 2002-07-05 2005-02-17 Howard Michael L. Systems and methods for optimizing the efficiency of a watering system through use of a radio data system
US7146254B1 (en) * 2002-07-05 2006-12-05 Matsushita Electric Works, Ltd. Systems and methods for optimizing the efficiency of a watering system through use of a computer network
US6782311B2 (en) * 2002-08-10 2004-08-24 Jame E. Barlow Remotely controlled irrigation timer with fault detection
US7010394B1 (en) * 2002-10-24 2006-03-07 The Toro Company Intelligent environmental sensor for irrigation systems
WO2004046872A2 (en) 2002-11-15 2004-06-03 The Toro Company Virtual dial irrigation controller
AU2003296510A1 (en) * 2002-12-10 2004-06-30 Et Water Systems, Llc Irrigation system
US7058478B2 (en) * 2003-04-25 2006-06-06 George Alexanian Irrigation controller water management with temperature budgeting
US7844368B2 (en) 2003-04-25 2010-11-30 George Alexanian Irrigation water conservation with temperature budgeting and time of use technology
US7266428B2 (en) 2003-04-25 2007-09-04 George Alexanian Irrigation controller water management with temperature budgeting
US8620480B2 (en) 2003-04-25 2013-12-31 George Alexanian Irrigation water conservation with automated water budgeting and time of use technology
US6842667B2 (en) * 2003-05-05 2005-01-11 Hunter Industries, Inc. Positive station module locking mechanism for expandable irrigation controller
US6721630B1 (en) * 2003-06-05 2004-04-13 Hunter Industries, Inc. Expandable irrigation controller with optional high-density station module
WO2005006836A2 (en) * 2003-07-23 2005-01-27 C.I.T. Controlled Irrigation Technologies Ltd. Adaptive irrigation of vegetation
US7430458B2 (en) * 2003-10-29 2008-09-30 Hydropoint Data Systems, Inc. Calculating an ET value for an irrigation area
US20050125083A1 (en) * 2003-11-10 2005-06-09 Kiko Frederick J. Automation apparatus and methods
US7458521B2 (en) * 2004-10-30 2008-12-02 Norman Ivans Irrigation unit having a control system and a data storage unit
CA2495125C (en) * 2004-01-30 2012-11-20 Robert Miller Irrigation controller
US7203576B1 (en) * 2004-02-09 2007-04-10 Orbit Irrigation Products, Inc. Moisture sensor timer
US7133749B2 (en) 2004-02-11 2006-11-07 The Toro Company Method and apparatus for optimizing soil moisture
US7328089B2 (en) * 2004-02-11 2008-02-05 The Toro Company Satellite irrigation controller
US7165730B2 (en) 2004-03-26 2007-01-23 James Jolly Clark Water irrigation system with moisture gauge and method of controlling irrigation
US20050216128A1 (en) 2004-03-26 2005-09-29 Clark James J Water irrigation system with elevated sensing unit and method of controlling irrigation
US20050211792A1 (en) 2004-03-26 2005-09-29 Clark James J Water irrigation system and method of controlling irrigation using evapotranspiration
US20050211794A1 (en) 2004-03-26 2005-09-29 Clark James J Water irrigation system with wind sensor and method of controlling irrigation
US20050211793A1 (en) 2004-03-26 2005-09-29 Clark James J Water irrigation system and method of controlling irrigation with community irrigation instructions
US20050216129A1 (en) 2004-03-26 2005-09-29 Clark James J Water irrigation system with solar panel and method of controlling irrigation
US20050216127A1 (en) 2004-03-26 2005-09-29 Clark James J Water irrigation system with moisture collector and method of controlling irrigation
US20050216130A1 (en) 2004-03-26 2005-09-29 Clark James J Water irrigation system with wireless communication and method of controlling irrigation
US7358626B2 (en) * 2004-05-26 2008-04-15 The Toro Company Two-wire power and communications for irrigation systems
US7069115B1 (en) * 2004-06-30 2006-06-27 Hunter Industries, Inc. Hybrid modular/decoder irrigation controller
US7789321B2 (en) * 2004-09-07 2010-09-07 Digital Sun, Inc. Wireless sprinkler control
US7477950B2 (en) * 2004-09-28 2009-01-13 Dymocom, Inc. Method and system for controlling a network of water appliances
US20100030476A1 (en) 2008-07-29 2010-02-04 Woytowitz Peter J Irrigation System with ET Based Seasonal Watering Adjustment
US20100094472A1 (en) 2008-10-14 2010-04-15 Woytowitz Peter J Irrigation System With Soil Moisture Based Seasonal Watering Adjustment
US7853363B1 (en) * 2004-11-09 2010-12-14 Hunter Industries, Inc. Evapotranspiration unit connectable to an irrigation controller
US7877168B1 (en) * 2004-11-09 2011-01-25 Hunter Industries, Inc. Evapotranspiration unit for re-programming an irrigation controller
US20060116792A1 (en) 2004-12-01 2006-06-01 Addink John W Irrigation controller
US7245991B1 (en) * 2005-01-28 2007-07-17 Hunter Industries, Inc. Distributed architecture irrigation controller
US7532954B2 (en) * 2005-02-11 2009-05-12 Rain Bird Corporation System and method for weather based irrigation control
US7168632B2 (en) * 2005-06-14 2007-01-30 Lawrence Kates Multi-zone sprinkler system with moisture sensors and configurable spray pattern
US20070016334A1 (en) 2005-06-30 2007-01-18 Smith Brian J Method and system for transmitting and utilizing forecast meteorological data for irrigation controllers
US7289886B1 (en) * 2005-07-28 2007-10-30 Hunter Industries, Inc. Modular irrigation controller with separate field valve line wiring terminals
US7225058B1 (en) * 2006-01-25 2007-05-29 Hunter Industries, Inc. Modular irrigation controller with indirectly powered station modules
US7413380B2 (en) 2006-04-10 2008-08-19 Subair Systems, Llc Golf course turf conditioning control system and method
AU2007247732B2 (en) * 2006-05-08 2012-03-29 P & B Agri-Tech Innovations Inc. Method and system for monitoring growth characteristics
EP2035629A4 (en) * 2006-06-20 2012-08-29 Rain Bird Corp Sensor device for interrupting irrigation
US20080142614A1 (en) 2006-12-15 2008-06-19 Aly Elezaby Zone Pressure Management System and Method for an Irrigation System
US7805221B2 (en) * 2007-05-17 2010-09-28 Rain Bird Corporation Automatically adjusting irrigation controller
US20090094097A1 (en) 2007-10-03 2009-04-09 Seth Gardenswartz Network-based optimization of services
US20090099701A1 (en) 2007-10-12 2009-04-16 Rain Bird Corporation Remote Access to Irrigation Control Systems
WO2009082473A1 (en) 2007-12-20 2009-07-02 Kah Carl L C Jr Wireless moisture probe, receiving controller and irrigation control system
US8326440B2 (en) 2008-02-23 2012-12-04 Ranch Systems Llc System for intelligent delegation of irrigation control
US7953517B1 (en) * 2008-10-01 2011-05-31 Hunter Industries, Inc. Landscape controller with control panel insertable feature module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444611A (en) * 1993-10-28 1995-08-22 Hunter Industries, Inc. Lawn and garden irrigation controller
US6452499B1 (en) * 1998-10-07 2002-09-17 Thomas Henry Runge Wireless environmental sensor system
US6314340B1 (en) * 1998-11-02 2001-11-06 Telsco Industries Irrigation controller
US6298285B1 (en) * 2000-01-04 2001-10-02 Aqua Conservation Systems, Inc. Irrigation accumulation controller
US6570109B2 (en) * 2001-10-26 2003-05-27 Hunter Industries, Inc. Quick shut-off extended range hygroscopic rain sensor for irrigation systems
US6977351B1 (en) * 2004-10-29 2005-12-20 Hunter Industries, Inc. Moisture absorptive rain sensor with sealed position sensing element for irrigation watering program interrupt
US7412303B1 (en) * 2005-11-29 2008-08-12 Hunter Industries, Inc. Evapotranspiration unit for re-programming an irrigation controller
US20090138105A1 (en) * 2007-08-19 2009-05-28 Crawford Jeffrey A Method of controlling an irrigation system

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8401705B2 (en) 2003-04-25 2013-03-19 George Alexanian Irrigation controller water management with temperature budgeting
US8874275B2 (en) 2003-04-25 2014-10-28 George Alexanian Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions
US8738189B2 (en) 2003-04-25 2014-05-27 George Alexanian Irrigation controller water management with temperature budgeting
US7962244B2 (en) 2003-04-25 2011-06-14 George Alexanian Landscape irrigation time of use scheduling
US8620480B2 (en) 2003-04-25 2013-12-31 George Alexanian Irrigation water conservation with automated water budgeting and time of use technology
US8538592B2 (en) 2003-04-25 2013-09-17 George Alexanian Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions
US9301461B2 (en) 2004-11-09 2016-04-05 Hunter Industries, Inc. Systems and methods to adjust irrigation
US8660705B2 (en) 2004-11-09 2014-02-25 Hunter Industries, Inc. Irrigation system with soil moisture based seasonal watering adjustment
US8600569B2 (en) 2004-11-09 2013-12-03 Hunter Industries, Inc. Irrigation system with ET based seasonal watering adjustment
US20110238229A1 (en) * 2004-11-09 2011-09-29 Hunter Industries, Inc. Irrigation System with Soil Moisture Based Seasonal Watering Adjustment
US11805739B2 (en) 2005-09-15 2023-11-07 Rain Bird Corporation Integrated actuator coil and decoder module for irrigation control
US9665106B2 (en) 2005-09-15 2017-05-30 Rain Bird Corporation Integrated actuator coil and decoder module for irrigation control
US10842092B2 (en) 2005-09-15 2020-11-24 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US9681610B2 (en) 2005-09-15 2017-06-20 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US11337385B2 (en) 2005-09-15 2022-05-24 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US10390502B2 (en) 2005-09-15 2019-08-27 Rain Bird Corporation Integrated actuator coil and decoder module for irrigation control
US10070596B2 (en) 2005-09-15 2018-09-11 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US11185023B2 (en) 2005-09-15 2021-11-30 Rain Bird Corporation Integrated actuator coil and decoder module for irrigation control
US8851447B2 (en) 2005-09-15 2014-10-07 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US8793025B2 (en) 2005-09-15 2014-07-29 Rain Bird Corporation Irrigation control device for decoder-based irrigation system
US11957083B2 (en) 2006-06-20 2024-04-16 Rain Bird Corporation User interface for a sensor-based interface device for interrupting an irrigation controller
US10849287B2 (en) 2006-06-20 2020-12-01 Rain Bird Corporation User interface for a sensor-based interface device for interrupting an irrigation controller
US11297786B2 (en) 2006-06-20 2022-04-12 Rain Bird Corporation User interface for a sensor-based interface device for interrupting an irrigation controller
US10206342B2 (en) 2006-06-20 2019-02-19 Rain Bird Corporation User interface for a sensor-based interface device for interrupting an irrigation controller
US9500770B2 (en) 2006-06-20 2016-11-22 Rain Bird Corporation Sensor device for use in controlling irrigation
US10345487B2 (en) 2006-06-20 2019-07-09 Rain Bird Corporation Sensor device for use in controlling irrigation
US11822048B2 (en) 2006-06-20 2023-11-21 Rain Bird Corporation Sensor device for use in controlling irrigation
US11346981B2 (en) 2006-06-20 2022-05-31 Rain Bird Corporation Sensor device for use in controlling irrigation
US9144204B2 (en) 2006-06-20 2015-09-29 Rain Bird Corporation User interface for a sensor-based interface device for interrupting an irrigation controller
US20110224836A1 (en) * 2006-06-20 2011-09-15 Rain Bird Corporation Sensor device for interrupting irrigation
US20110238227A1 (en) * 2006-06-20 2011-09-29 Rain Bird Corporation Sensor device for interrupting irrigation
US8733165B2 (en) 2006-06-20 2014-05-27 Rain Bird Corporation Sensor device for use in controlling irrigation
US20100131119A1 (en) * 2007-07-23 2010-05-27 Andrea Brundisini Communication system between control units for irrigation devices
US9043036B2 (en) * 2007-12-05 2015-05-26 American Pipe and Fitting, Inc. System and method for wireless irrigation utilizing a centralized control server and field module matrix
US20110190948A1 (en) * 2007-12-05 2011-08-04 Daniel Joseph Fekete System and method for wireless irrigation utilizing a centralized control server and field module matrix
US9775308B2 (en) 2008-09-05 2017-10-03 Plantcare Ag Method and apparatus for the automatic regulation of the irrigation of plants
US8862276B2 (en) * 2008-09-05 2014-10-14 Plantcare Ag Method and apparatus for the automatic regulation of the irrigation of plants
US8977400B1 (en) * 2008-10-01 2015-03-10 Hunter Industries, Inc. Landscape controller with feature module
US9678485B2 (en) 2008-10-01 2017-06-13 Hunter Industries, Inc. Landscape controller with control panel insertable feature module
US8793024B1 (en) 2009-02-27 2014-07-29 Hunter Industries, Inc. Irrigation system with multiple soil moisture based seasonal watering adjustment
US9095102B2 (en) 2009-04-06 2015-08-04 Connie Ruby Masters Irrigation controller and system integrating no-watering restrictions and an empirically-derived evapotranspiration local characteristic curve
US20100256827A1 (en) * 2009-04-06 2010-10-07 Bruce Allen Bragg Irrigation Controller Integrating Mandated No-Watering Days, Voluntary No-Watering Days, and an Empirically-Derived Evapotranspiration Local Characteristic Curve
US8659183B2 (en) 2009-07-17 2014-02-25 Rain Bird Corporation Variable initialization time in the charging of energy reserves in an irrigation control system
US8909381B2 (en) 2009-07-17 2014-12-09 Rain Bird Corporation Data communication in a multi-wire irrigation control system
US20110015793A1 (en) * 2009-07-17 2011-01-20 Rain Bird Corporation Variable Initialization Time in the Charging of Energy Reserves in an Irrigation Control System
US20110017845A1 (en) * 2009-07-27 2011-01-27 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US10842091B2 (en) 2009-07-27 2020-11-24 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US11330770B2 (en) 2009-07-27 2022-05-17 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US8840084B2 (en) 2009-07-27 2014-09-23 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US10058042B2 (en) 2009-07-27 2018-08-28 Rain Bird Corporation Integrated control circuitry and coil assembly for irrigation control
US20110270448A1 (en) * 2009-09-03 2011-11-03 Kantor Philip A Irrigation Controller and System Integrating No-Watering Restrictions and an Empirically-Derived Evapotranspiration Local Characteristic Curve
US8565904B2 (en) * 2009-09-03 2013-10-22 Bruce Allen Bragg Irrigation controller and system integrating no-watering restrictions and an empirically-derived evapotranspiration local characteristic curve
US8234014B1 (en) * 2009-11-02 2012-07-31 Eco-Precise Irrigation Controls, LLC Irrigation control system and method
US11061375B2 (en) * 2010-04-06 2021-07-13 Connie R. Masters Irrigation controller and system
US10394206B2 (en) * 2010-04-06 2019-08-27 Philip Andrew Kantor Irrigation controller and system integrating no-watering restrictions and an empirically-derived evapotranspiration local characteristic curve
US8744773B2 (en) 2010-05-19 2014-06-03 Hunter Industries, Inc. Rain sensor with variable shut off
USD668231S1 (en) * 2010-08-03 2012-10-02 Hunter Industries, Inc. Decoder module for irrigation controller
US20150112494A1 (en) * 2011-01-06 2015-04-23 Hunter Industries, Inc. Irrigation system with et based seasonal watering adjustment and soil moisture sensor shutoff
US8924032B2 (en) 2011-01-06 2014-12-30 Hunter Industries, Inc. Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff
US9781887B2 (en) * 2011-01-06 2017-10-10 Hunter Industries, Inc. Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff
US10638675B2 (en) * 2011-02-25 2020-05-05 The Toro Company Irrigation controller with weather station
US10512226B2 (en) * 2011-07-15 2019-12-24 Earthtec Solutions Llc Crop-specific automated irrigation and nutrient management
US10225996B1 (en) 2011-11-10 2019-03-12 Hunter Industries, Inc. Control module for a water harvesting system
US10939626B2 (en) 2011-11-10 2021-03-09 Hunter Industries, Inc. Control module for a water harvesting system
US20130131874A1 (en) * 2011-11-22 2013-05-23 ZBS Technology LLC System and method for wireless irrigation control with a remote application
US8930032B2 (en) * 2011-11-22 2015-01-06 Zbs Technology, Llc System and method for wireless irrigation control with a remote application
US11744195B2 (en) 2012-08-01 2023-09-05 Rain Bird Corporation Irrigation controller wireless network adapter and networked remote service
US11109546B2 (en) 2012-08-01 2021-09-07 Walmart Apollo, Llc Irrigation controller wireless network adapter and networked remote service
US10292343B2 (en) 2012-08-01 2019-05-21 Rain Bird Corporation Irrigation controller wireless network adapter and networked remote service
US10368503B2 (en) * 2012-09-18 2019-08-06 Carl L. C. Kah, Jr. Expandable irrigation controller
US20140081469A1 (en) * 2012-09-18 2014-03-20 Carl L.C. Kah, JR. Expandable irrigation controller
US11570956B2 (en) 2012-11-07 2023-02-07 Rain Bird Corporation Irrigation control systems and methods
US11937557B2 (en) 2012-11-07 2024-03-26 Rain Bird Corporation Irrigation control systems and methods
US10327397B2 (en) 2012-11-07 2019-06-25 Rain Bird Corporation Irrigation control systems and methods
US10437217B2 (en) * 2013-02-01 2019-10-08 Hunter Industries, Inc. Irrigation controller with robust ground path
US9814190B1 (en) * 2013-02-01 2017-11-14 Hunter Industries, Inc. Irrigation controller with robust ground path
US10967395B2 (en) 2013-02-01 2021-04-06 Hunter Industries, Inc. Irrigation controller with robust ground path
USD751423S1 (en) 2013-06-06 2016-03-15 Reliance Controls Corporation Enclosure for a timer
US9655311B1 (en) 2013-12-10 2017-05-23 Hunter Industries, Inc. Absorbent rain sensor with retention basin
US10206341B2 (en) 2014-07-21 2019-02-19 Rain Bird Corporation Rainfall prediction and compensation in irrigation control
US10798834B2 (en) 2014-08-28 2020-10-06 Hunter Industries, Inc. Communications interface system for landscape control systems
US10015894B2 (en) 2014-08-28 2018-07-03 Hunter Industries, Inc. Communications interface system for landscape control systems
US20180160636A1 (en) * 2015-05-18 2018-06-14 Hozelock Limited Garden watering controllers
US20180248573A1 (en) * 2015-08-31 2018-08-30 Sony Corporation Reception device, receiving method, and program
US20170290186A1 (en) * 2016-04-01 2017-10-05 Aeon Matrix Inc. Housing for electronic sprinkler controller
US11089746B2 (en) 2016-07-15 2021-08-17 Rain Bird Corporation Wireless remote irrigation control
US10609878B2 (en) 2016-07-15 2020-04-07 Rain Bird Corporation Wireless remote irrigation control
US11700801B2 (en) 2016-09-07 2023-07-18 Rynan Technologies Pte. Ltd. Alternate wetting and drying (AWD) system and method
CN109862779A (en) * 2016-09-07 2019-06-07 莱南科技私人有限公司 Irrigation system and method
WO2018045458A1 (en) * 2016-09-07 2018-03-15 Rynan Technologies Pte. Ltd. Irrigation system and method
US11369067B2 (en) 2016-09-07 2022-06-28 Rynan Technologies Pte. Ltd. Irrigation system and method
US10285344B2 (en) * 2016-09-16 2019-05-14 Hunter Industries, Inc. Irrigation controller with reversible operator controls
US10561079B2 (en) 2016-09-16 2020-02-18 Hunter Industries, Inc. Irrigation controller with reversible operator controls
US11178830B2 (en) 2016-09-16 2021-11-23 Hunter Industries, Inc. Irrigation controller with reversible operator controls
US10444769B2 (en) 2017-04-24 2019-10-15 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US11119513B2 (en) 2017-04-24 2021-09-14 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US10757873B2 (en) 2017-04-24 2020-09-01 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US11803198B2 (en) 2017-04-24 2023-10-31 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US10980120B2 (en) 2017-06-15 2021-04-13 Rain Bird Corporation Compact printed circuit board
US11006590B2 (en) 2017-08-03 2021-05-18 Lalit Kumar Moisture monitoring system with internet of things devices
US20190037787A1 (en) * 2017-08-03 2019-02-07 Lalit Kumar Smart Moisture Meter
US11957084B2 (en) 2017-10-23 2024-04-16 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US11357182B2 (en) 2017-10-23 2022-06-14 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US11006589B2 (en) 2017-12-29 2021-05-18 Rain Bird Corporation Weather override irrigation control systems and methods
US11503782B2 (en) 2018-04-11 2022-11-22 Rain Bird Corporation Smart drip irrigation emitter
US11917956B2 (en) 2018-04-11 2024-03-05 Rain Bird Corporation Smart drip irrigation emitter
US10918029B2 (en) * 2018-07-25 2021-02-16 The Board Of Trustees Of The University Of Arkansas Surge valve assembly
US11395416B2 (en) 2019-09-11 2022-07-19 Hunter Industries, Inc. Control box

Also Published As

Publication number Publication date
US20140081471A1 (en) 2014-03-20
US8600569B2 (en) 2013-12-03
US20110238228A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US8600569B2 (en) Irrigation system with ET based seasonal watering adjustment
US9781887B2 (en) Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff
US9301461B2 (en) Systems and methods to adjust irrigation
US8660705B2 (en) Irrigation system with soil moisture based seasonal watering adjustment
US8793024B1 (en) Irrigation system with multiple soil moisture based seasonal watering adjustment
US10542684B2 (en) Modular irrigation controller
US7853363B1 (en) Evapotranspiration unit connectable to an irrigation controller
US9301460B2 (en) Irrigation controller with weather station
US8874275B2 (en) Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions
US7412303B1 (en) Evapotranspiration unit for re-programming an irrigation controller
US7877168B1 (en) Evapotranspiration unit for re-programming an irrigation controller
US6892114B1 (en) Modifying irrigation schedules of existing irrigation controllers
US5853122A (en) Relative humidity sensitive irrigation valve control
US20080302002A1 (en) Watering System for Watering Plants
WO2010118053A2 (en) Irrigation controller integrating mandated no-watering days, voluntary no-watering days, and an empirically-derived evapotranspiration local characteristic curve
US20100023173A1 (en) Irrigation system and method
US20100300549A1 (en) Modulated watering system
US7562832B1 (en) Two-conductor moisture activated switch
US8260466B2 (en) Modulated watering device based on watering index percentage
US20110271590A1 (en) Garden System
EP3484275B1 (en) Apparatus for watering plants
CN115712263A (en) Network-based garden management control system
JPS6041426A (en) Control of water sprinkler
TWM624238U (en) Smart Green Roof System
JPH1157549A (en) Automatic sprinkler

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUNTER INDUSTRIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOYTOWITZ, PETER J.;SHEARIN, CHRISTOPHER M.;REEL/FRAME:025222/0275

Effective date: 20100610

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION