US20100030476A1 - Irrigation System with ET Based Seasonal Watering Adjustment - Google Patents
Irrigation System with ET Based Seasonal Watering Adjustment Download PDFInfo
- Publication number
- US20100030476A1 US20100030476A1 US12/181,894 US18189408A US2010030476A1 US 20100030476 A1 US20100030476 A1 US 20100030476A1 US 18189408 A US18189408 A US 18189408A US 2010030476 A1 US2010030476 A1 US 2010030476A1
- Authority
- US
- United States
- Prior art keywords
- controller
- irrigation
- sensor
- weather station
- estimated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002262 irrigation Effects 0.000 title claims abstract description 163
- 238000003973 irrigation Methods 0.000 title claims abstract description 163
- 230000001932 seasonal effect Effects 0.000 title claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 230000007613 environmental effect Effects 0.000 claims abstract description 17
- 230000036541 health Effects 0.000 claims abstract description 10
- 238000004891 communication Methods 0.000 claims description 30
- 230000005855 radiation Effects 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 19
- 230000005355 Hall effect Effects 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 19
- 239000004033 plastic Substances 0.000 description 9
- 239000004020 conductor Substances 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003898 horticulture Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 206010046542 Urinary hesitation Diseases 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- IDOWTHOLJBTAFI-UHFFFAOYSA-N phenmedipham Chemical compound COC(=O)NC1=CC=CC(OC(=O)NC=2C=C(C)C=CC=2)=C1 IDOWTHOLJBTAFI-UHFFFAOYSA-N 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 239000010876 untreated wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
Definitions
- the present invention relates to residential and commercial irrigation systems, and more particularly to irrigation controllers that use evapotranspiration (ET) data in calculating and executing watering schedules.
- ET evapotranspiration
- Electronic irrigation controllers have long been used on residential and commercial sites to water turf and landscaping. They typically comprise a plastic housing that encloses circuitry including a processor that executes a watering program. Watering schedules are typically manually entered or selected by a user with pushbutton and/or rotary controls while observing an LCD display. The processor turns a plurality of solenoid actuated valves ON and OFF with solid state switches in accordance with the watering schedules that are carried out by the watering program. The valves deliver water to sprinklers connected by subterranean pipes.
- the run cycles times for individual stations can be increased or decreased by pushing “more” and “less” watering buttons.
- Another conventional irrigation controller of the type that is used in the commercial market typically includes a seasonal adjustment feature. This feature is typically a simple global adjustment implemented by the user that adjusts the overall watering as a percentage of the originally scheduled cycle times. It is common for the seasonal adjustment to vary between a range of about ten percent to about one hundred and fifty percent of the scheduled watering. This is the simplest and most common overall watering adjustment that users of irrigation controllers can effectuate. Users can move the amount of adjustment down to ten to thirty percent in the winter, depending on their local requirements. They may run the system at fifty percent during the spring or fall seasons, and then at one hundred percent for the summer.
- the ability to seasonally adjust up to one hundred and fifty percent of the scheduled watering accommodates the occasional heat wave when turf and landscaping require significantly increased watering.
- the seasonal adjustment feature does not produce the optimum watering schedules because it does not take into consideration all of the ET factors such as soil type, plant type, slope, temperature, humidity, solar radiation, wind speed, etc. Instead, the seasonal adjustment feature simply adjusts the watering schedules globally to run a longer or shorter period of time based on the existing watering program.
- the seasonal adjustment feature is re-set on a regular basis a substantial amount of water is conserved and while still providing adequate irrigation in a variety of weather conditions. The problem is that most users forget about the seasonal adjustment feature and do not re-set it on a regular basis, so a considerable amount of water is still wasted, or turf and landscaping die.
- irrigation controllers used with turf and landscaping have used ET data to calculate watering schedules based on actual weather conditions.
- Irrigation controllers that utilize ET data are quite cumbersome to set up and use, and require knowledge of horticulture that is lacking with most end users.
- the typical ET based irrigation controller requires the user to enter the following types of information: soil type, soil infiltration rates, sprinkler precipitation rate, plant type, slope percentage, root zone depth, and plant maturity.
- the controller receives information, either directly or indirectly, from a weather station that monitors weather conditions such as: amount of rainfall, humidity, hours of available sunlight, amount of solar radiation, temperature, and wind speed.
- the typical ET based irrigation controller then automatically calculates an appropriate watering schedule that may change daily based on the weather conditions and individual plant requirements. These changes typically include the number of minutes each irrigation station operates, the number of times it operates per day (cycles), and the number of days between watering. All of these factors are important in achieving the optimum watering schedules for maximum water conservation while maintaining the health of turf and
- ET based irrigation controllers help to conserve water and maintain plant health over a wide range of weather conditions they are complex and their set up is intimidating to many users. They typically require a locally mounted weather station having a complement of environmental sensors. Such locally mounted weather stations are complex, expensive and require frequent maintenance. Instead of receiving data from a locally mounted weather station, home owners and property owners can arrange for their ET based irrigation controllers to receive weather data collected by a private company on a daily basis and transmitted to the end user wirelessly, via phone lines or over an Internet connection. This reduces the user's up-front costs, and maintenance challenges, but requires an ongoing subscription expense for the life of the ET based irrigation controller. In addition, the user must still have a substantial understanding of horticulture to set up the ET based irrigation controller.
- ET based irrigation controllers are set up by irrigation professionals for a fee. These same irrigation professionals must be called back to the property when changes need to be made, because the set up procedures are complex and not intuitive to most users. These challenges are limiting the sale and use of ET based irrigation controllers to a very small minority of irrigation sites. This impairs water conservation efforts that would otherwise occur if ET based irrigation controllers were easier to set up and adjust.
- the system of the present invention may take the form of stand alone irrigation controller connected to a stand alone ET unit that is connectable to a specially configured stand alone weather station.
- the system may take the form of a stand alone irrigation controller with a removable ET module that is connectable to a specially configured stand alone weather station.
- the system may take the form of a stand alone ET based irrigation controller with all the components mounted in a single box-like housing that is connectable to a specially configured stand alone weather station.
- an ET based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a specially configured stand alone weather station including at least one environmental sensor.
- the ET based irrigation system further includes a stand alone ET unit operatively connected to the irrigation controller and the weather station.
- the ET unit includes programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value to thereby conserve water while maintaining plant health.
- an ET based irrigation system includes an interface that enables a user to select and/or enter a watering schedule and a memory for storing the watering schedule.
- the system further includes at least one sensor for generating a signal representative of an environmental condition.
- a processor is included in the system that is capable of calculating an estimated ET value based at least in part on the signal from the sensor.
- the system further includes a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule.
- the program includes a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated ET value to thereby conserve water while maintaining plant health.
- the present invention also provides a unique method of controlling a plurality of valves on an irrigation site using ET data.
- the method includes the step of calculating an estimated ET value based in part on a signal from an environmental sensor.
- the method further includes the step of automatically modifying a watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site.
- the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
- the present invention also provides a weather station for use with an irrigation controller.
- the weather station includes a housing that supports a rain sensor, a solar radiation sensor and a temperature sensor.
- a micro-controller is also supported by the housing and is connected to the sensors.
- a communications interface permits communications between the micro-controller and an irrigation controller.
- Firmware is executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the irrigation controller.
- FIG. 1 is a simplified block diagram of an irrigation system in accordance with an embodiment of the present invention.
- FIG. 2 is a front elevation view of the stand alone irrigation controller of the system of FIG. 1 with its front door open to reveal its removable face pack.
- FIG. 3 is an enlarged perspective view of the back panel of the stand alone irrigation controller of FIG. 2 illustrating one base module and one station module plugged into their respective receptacles in the back panel.
- FIG. 4 is a block diagram of the electronic portion of the stand alone irrigation controller of FIG. 2 .
- FIG. 5 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in the face pack of the controller.
- FIG. 6 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in the base module.
- FIG. 7 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller of FIG. 2 that resides in each of the station modules.
- FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller of FIG. 2 .
- FIG. 9 is a perspective view of the stand alone ET unit of the system of FIG. 1 .
- FIG. 10 is a block diagram of the electronic portion of the stand alone ET unit of FIG. 9 .
- FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit of FIG. 9 .
- FIG. 12A is an enlarged vertical cross-section of the stand alone weather station of the system of FIG. 1 .
- FIG. 12B is a fragmentary perspective view illustrating the spring biased arm of the stand alone weather station of FIG. 12A .
- FIG. 13 is a block diagram illustrating the electronic portion of the stand alone weather station of FIG. 12 .
- FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station of FIG. 12 .
- the present invention addresses the hesitancy or inability of users to learn the horticultural factors required to set up a conventional ET based irrigation controller.
- the irrigation system of the present invention has a familiar manner of entering, selecting and modifying its watering schedules, and either built-in or add-on capability to automatically modify its watering schedules based on ET data in order to conserve water and effectively irrigate vegetation throughout the year as weather conditions vary.
- the user friendly irrigation system of the present invention is capable of achieving, for example, eighty-five percent of the maximum amount of water that can theoretically be conserved on a given irrigation site, but is still able to be used by most non-professionals.
- an irrigation system 10 comprises a stand alone irrigation controller 12 connected via cable 14 to a stand alone ET unit 16 that is in turn connected via cable 18 to a stand alone weather station 20 .
- the controller 12 and ET unit 16 would typically be mounted in a garage or other protected location, although they can have a waterproof construction that allows them to be mounted out of doors.
- the weather station 20 is typically mounted on an exterior wall, gutter, post or fence near the garage.
- the cables 14 and 18 typically include copper wires so that power can be supplied to the ET 16 unit and the weather station 20 from the irrigation controller 12 . Data and commands are sent on other copper wires in the cables. Fiber optic cables can also be utilized for sending data and commands.
- the controller 12 , ET unit 16 and weather station 20 may exchange data and commands via wireless communication links 22 and 24 .
- a transformer 25 that plugs into a standard household 110 volt AC duplex outlet supplies twenty-four volt AC power to the stand alone irrigation controller 12 .
- the irrigation system 10 employs a hard wired communication link 14 between the stand alone irrigation controller 12 and the stand alone ET unit 16 that are normally mounted adjacent one another, such as on a garage wall, and a wireless communication link 24 between the stand alone ET unit 16 and the stand alone weather station 20 .
- the stand alone irrigation controller 12 may be the Pro-C modular irrigation controller commercially available from Hunter Industries, Inc.
- the irrigation controller 12 includes a wall-mountable plastic housing structure in the form of a generally box-shaped front door 26 hinged along one vertical edge to a generally box-shaped back panel 28 ( FIG. 3 ).
- a generally rectangular face pack 30 ( FIG. 2 ) is removably mounted over the back panel 28 and is normally concealed by the front door 26 when not being accessed for programming.
- the face pack 30 has an interface in the form of a plurality of manually actuable controls including a rotary knob switch 31 and push button switches 32 a - 32 g as well as slide switch 34 which serves as a sensor by-pass switch.
- Watering schedules consisting of various run and cycle times can be entered by the user by manipulating the rotary knob switch 31 and selected ones of the push button switches 32 a - 32 g in conjunction with observing numbers, words and/or graphic symbols indicated on a liquid crystal display (LCD) 36 .
- Push buttons 32 c and 32 d are used to increase or decrease the seasonal adjust value.
- the watering schedules can be a complicated set of run time and cycle algorithms, or a portion thereof, such as a simple five minute cycle for a single station. Alternatively, existing pre-programmed watering schedules can be selected, such as selected zones every other day.
- Any or sub-combination of manually actuable input devices such as rotary switches, dials, push buttons, slide switches, rocker switches, toggle switches, membrane switches, track balls, conventional screens, touch screens, etc. may be used to provide an interface that enables a user to select and/or enter a watering schedule.
- Still another alternative involves uploading watering schedules through the SMART PORT (Trademark) feature of the irrigation controller 12 , more details of which are set forth in the aforementioned U.S. Pat. No. 6,088,621.
- the face pack 30 ( FIG. 2 ) encloses and supports a printed circuit board (not illustrated) with a processor for executing and implementing a stored watering program.
- An electrical connection is made between the face pack 30 and the components in the back panel 28 through a detachable ribbon cable including a plurality of conductors 38 a - g ( FIG. 4 ).
- the circuitry inside the face pack 30 can be powered by a battery to allow a person to remove the face pack 30 , un-plug the ribbon cable, and walk around the lawn, garden area or golf course while entering watering schedules or altering pre-existing watering schedules.
- a processor 40 ( FIG. 5 ) is mounted on the printed circuit board inside the face pack 30 .
- a watering program stored in a memory 42 is executable by the processor 40 to enable the processor to generate commands for selectively turning a plurality of solenoid actuated irrigation valves (not illustrated) ON and OFF in accordance with the selected or entered watering schedule.
- An example of such an irrigation valve is disclosed in U.S. Pat. No. 5,996,608 granted Dec. 7, 1999 of Richard E. Hunter et al. entitled DIAPHRAGM VALVE WITH FILTER SCREEN AND MOVEABLE WIPER ELEMENT, the entire disclosure of which is hereby incorporated by reference. Said patent is also assigned to Hunter Industries, Inc.
- the solenoid actuated valves are mounted in subterranean plastic boxes (not illustrated) on the irrigated site.
- the processor 40 communicates with removable modules 44 and 46 a - c ( FIG. 3 ) each containing a circuit that includes a plurality of solid state switches, such as triacs. These switches turn twenty-four volt AC current ON and OFF to open and close corresponding solenoid actuated valves via connected to dedicated field valve wires and a common return line to screw terminals 48 on the modules 44 and 46 a - c.
- removable modules 44 and 46 a - c FIG. 3
- These switches turn twenty-four volt AC current ON and OFF to open and close corresponding solenoid actuated valves via connected to dedicated field valve wires and a common return line to screw terminals 48 on the modules 44 and 46 a - c.
- the modules 44 and 46 a are shown installed in side-by-side fashion in station module receptacles formed in the back panel 28 .
- the module 44 serves as a base module that can turn a master valve ON and OFF in addition to a plurality of separate station valves.
- Each module includes an outer generally rectangular plastic housing with a slot at its forward end.
- a small printed circuit board (not illustrated) within the module housing supports the station module circuit that includes conductive traces that lead to the screw terminals 48 and to V-shaped spring-type electrical contacts (not illustrated) that are accessible via the slot in the forward end of the module housing.
- These V-shaped electrical contacts register with corresponding flat electrical contacts on the underside of a relatively large printed circuit board 49 ( FIG.
- the relatively large printed circuit board 49 is referred to as a “back plane.”
- the base module 44 and station modules 46 a - c and the back plane 49 are thus electrically and mechanically connected in releasable fashion through a so-called “card edge” connection scheme when the base module 44 and station modules 46 a - c are inserted or plugged into their respective receptacles.
- An elongate locking bar 50 ( FIG. 3 ) can be manually slid up and down in FIG. 4 between locked and unlocked positions to secure and un-secure the modules 44 and 46 a - c after they have been fully inserted into their respective receptacles.
- Opposing raised projections 52 formed on the locking bar 50 facilitate sliding the locking bar 50 with a thumb.
- a pointer 54 extends from one of the raised projections 52 and serves as a position indicator that aligns with LOCKED and UNLOCKED indicia (not illustrated) molded into the upper surface of another plastic support structure 56 mounted inside back panel 28 .
- the receptacles for the modules such as 44 and 46 a - c are partially defined by vertical walls 58 ( FIG. 3 ) formed on the back panel 28 .
- Vertical walls 60 also formed on the back panel 28 to provide support to the modules 44 and 46 a - c.
- An auxiliary terminal strip provides additional screw terminals 62 for connecting remote sensors and accessories.
- the term “receptacles” should be broadly construed as defined in one or more of the patents and pending applications incorporated by reference above.
- FIGS. 4 and 5 are block diagrams of the electronic portion of the stand alone irrigation controller 12 .
- the electronic components are mounted on printed circuit boards contained within the face pack 30 , back panel 28 , base module 44 and station modules 46 a - c.
- the processor 40 ( FIG. 4 ) is mounted on the printed circuit board inside the face pack 30 and executes the watering program stored in the memory 42 .
- the processor 40 may be a Samsung S3F8289 processor that executes a program stored in the separate memory 42 which can be an industry standard designation Serial EEPROM 93AA6A non-volatile memory device.
- the processor 40 and memory 42 may be provided in the form of a micro-computer with on-chip memory.
- the manually actuable controls 31 , 32 a - 32 g and 34 and the LCD display 36 of the face pack 30 are connected to the processor 40 .
- the processor 40 sends drive signals through buffer 64 and back plane 49 to the base module 44 .
- the buffer 64 may be an industry standard designation 74HC125 device.
- the processor 40 sends data signals to the modules 46 a - c through buffer 66 .
- the buffer 66 may be an H-bridge buffer including industry standard 2N3904/3906 discrete bipolar transistors.
- the processor 40 controls the base module 44 and the station modules 46 a - c in accordance with one or more watering schedules. Serial or multiplexed communication is enabled via the back plane 49 to the base module 44 and to each of the output modules 46 a - c. Suitable synchronous serial data and asynchronous serial data station module circuits are disclosed in the aforementioned U.S. Pat. No. 6,721,630. The location of each module in terms of which receptacle it is plugged into is sensed using resistors on the back plane 49 and a comparator 68 ( FIG. 5 ) which may be an industry standard LM393 device.
- the face pack 30 receives twenty-four volt AC power from the transformer 25 through the back plane 49 and regulates the same via a power supply circuit 70 ( FIG. 5 ).
- the power supply circuit 70 includes a National Semiconductor LM7906 voltage regulator, a Microchip Technology MCP101-450 power supervisor, and a Samsung KA431 voltage regulator.
- a lithium battery 72 such as an industry standard CR2032 battery is included in the power supply circuit 70 and provides backup power to the micro controller to maintain the internal clock in the event of a power failure.
- the face pack ribbon cable 38 a - g ( FIG. 4 ) that connects the face pack 30 and the back plane 49 can be disconnected, and a nine volt battery ( FIG. 5 ) then supplies power to the face pack 30 . This allows a user to remove the face 30 pack from the back panel 28 and enter or modify watering schedules as he or she walks around the irrigation site.
- the modules 44 and 46 a - c have contacts 74 ( FIG. 4 ) on the top sides of their outer plastic housings.
- contacts 74 FIG. 4
- the modules When the modules are first plugged into their receptacles, only a communication path is established with the processor 40 via the back plane 49 .
- the locking bar 50 FIG. 3
- finger-like contacts 76 FIG. 4
- finger-like contacts 76 FIG. 4
- the finger-like contacts 76 are connected to a common conductor 78 carried by the locking bar 50 .
- a common conductor 78 carried by the locking bar 50 .
- FIG. 6 is a block diagram illustrating details of the electronic circuit of the base module 44 .
- the base module circuit includes transistor drivers 80 and triacs 82 for switching the twenty-four volt AC signal ON and OFF to different solenoid actuated valves.
- the transistor drivers 80 may be industry standard 2N4403 transistors and the triacs may be ST Microelectronics (Trademark) T410 triacs.
- the twenty-four volt AC signal is supplied to the triacs 82 via contact 74 and line 83 .
- the twenty-four volt AC signal from each of the triacs 82 is routed through an inductor/MOV network 84 for surge suppression to four field valve lines 86 a - d, each of which can be connected to a corresponding solenoid actuated valve.
- the valves are each connected to a valve common return line 88 .
- the twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90 .
- the unregulated DC signal from the rectifier/filter circuit 90 is supplied to a National Semiconductor LM7905 voltage regulator 92 which supplies five volt DC power to the face pack 30 via a conductor 38 c ( FIG. 4 ) in the ribbon cable.
- FIG. 7 is a block diagram illustrating details of the electronic circuit in each of the station modules 46 a - c.
- the station module circuit includes a microcontroller such as the Microchip (Trademark) PIC 12C508 processor 94 .
- the station module circuit further includes triacs 96 for switching the twenty-four volt AC signal ON and OFF to three different solenoid actuated valves.
- the twenty-four volt AC signal is supplied to the triacs 96 via contact 74 and line 98 .
- the twenty-four volt AC signal from each of the triacs 94 is routed through an inductor/MOV network 98 including Epcos Inc.
- S10K35 MOV's for surge suppression to three field valve lines 100 a - c, each of which can be connected to a corresponding solenoid actuated valve.
- the valves are each connected to the valve common return line 88 .
- the twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90 .
- the unregulated DC signal from the rectifier/filter circuit 102 is supplied to a National Semiconductor LM7905 voltage regulator 104 which supplies five volt DC power to the microcontroller through a conductor (not illustrated).
- FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller 12 of FIG. 2 .
- This watering program enables the processor 40 to generate commands for selectively turning the plurality of valves ON and OFF in accordance with the selected or entered watering schedules.
- the watering program includes a seasonal adjustment feature that provides the capability for automatically modifying the watering schedules to thereby conserve water while maintaining plant health. By actuating one of the push buttons 32 c or 32 d the user can increase or decrease the run types for all stations by a selected scaling factor, such as ten percent, to account for seasonal variations in temperature and rainfall.
- the stand alone ET unit 16 includes a rectangular outer plastic housing 106 enclosing a printed circuit board (not illustrated) which supports the electronic circuit of the ET unit 16 that is illustrated in the block diagram of FIG. 10 .
- a microcontroller 108 such as a Microchip PIC18F65J90 processor executes firmware programming stored in a memory 110 such as an industry standard 93AA66A EEPROM memory.
- the microcontroller 108 can receive DC power from a lithium battery 112 such as an industry standard CR2032 battery, which allows accurate time keeping in the event of a power failure. Insulating strip 113 ( FIG. 9 ) must be manually pulled out to establish an operative connection of the battery 112 .
- External power for the ET unit 16 is supplied from the transformer 25 ( FIG.
- the twenty-four volt AC power from the transformer 25 is supplied to a rectifier/filter circuit 114 ( FIG. 10 ) which supplies twenty-four volt DC power to a power regulation circuit 116 which may be an ST Microelectronics L78M24CDT-TR regulator.
- Power from the power regulation circuit 116 is fed to a microcontroller power regulator 118 which may be a Microchip MCP 1702T-25021/CB regulator.
- Power from the power regulation circuit 116 is also fed to a wired or wireless sensor communications device 120 that may include, by way of example, an industry standard MMBTA92 for the signal transmitter and an industry standard LM393 comparator for the receiver.
- the microcontroller 108 ( FIG. 10 ) interfaces with the SmartPort (Trademark) connector of the irrigation controller 12 with a combination interface/optocoupler 122 which may be provided by an industry standard 4N26S device.
- the microcontroller 108 interfaces with the weather station illustrated in FIG. 12 .
- An LCD display 126 is mounted in the housing 106 .
- Three manually actuable controls in the form of push buttons 128 a - c FIG.
- Row indicia 132 include, from top to bottom, AM, PM, 24 hr, START and END which are printed, painted, molded or otherwise applied to the outerplastic housing such as by a sticker.
- Column indicia 130 are illustrated diagrammatically as A-E in FIG. 9 due to space constraints in the drawing.
- A-E correspond, respectively, to TIME, TYPE, REGION, NO WATER and WATER ⁇ with associated icons which are printed, painted, molded or otherwise applied to the outer plastic housing 106 such as by a sticker.
- FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit 16 .
- a watering schedule typically includes inputted parameters such as start times, run times and days to water.
- the ET unit 16 can automatically set the seasonal adjustment of the irrigation controller 12 to reduce watering time, or increase watering times, depending on the weather conditions at the time.
- the ET unit 16 utilizes actual ET data as its basis for making the modifications to the watering schedules implemented by the irrigation controller 12 .
- some of the ET parameters may be pre-programmed into the ET unit 16 as constants. These constants may be selected from a group of geographical areas to approximately assimilate the local conditions and estimate a maximum ET value. Other climatic factors are monitored on a daily basis and are the variables.
- the variables may include one or more pieces of environmental data such as temperature, humidity, solar radiation, wind, and rain.
- the measured variables are temperature and solar radiation.
- the variables and any constants are used by the processor 108 to calculate an estimated ET value. This estimated ET value is then used by the ET unit 16 to automatically set the seasonal adjustment feature of the irrigation controller 12 .
- the weather station 20 can also include a sensor that indicates a rain event. A rain event does not effect calculation of an estimated ET value. However, it does shut of the irrigation during, and for a period of time following, the rain event as a further conservation measure.
- the user can modify the run and cycle times for individual stations in the usual manner in the irrigation controller 12 . As an example, if one station is watering too much, but all of the other stations are watering the correct amount, the user can easily reduce the run time of that particular station and balance the system out. Then the ET unit 16 continues modifying the watering schedules executed by the irrigation controller 12 on a global basis as a percentage of run time, based on the calculated estimated ET value. Irrigation controllers can be used to control landscape lighting and other non-irrigation devices such as decorative water fountains. The controller 12 may have features in it such that the ET unit 16 only modifies the watering schedules of the irrigation controller 12 .
- the environmental sensors may not always be able to be placed in an optimum location on the irrigation site.
- a solar radiation sensor may be placed in an area that receives late afternoon shade. This will result in the calculation of an abnormally low estimated ET value.
- the entire irrigation site may receive too little water and the plant material may become stressed from too little water if the watering schedules are based on an abnormally low estimated ET.
- a conventional ET based irrigation controller receives input from such an incorrectly located solar radiation sensor, the user can attempt to compensate by increasing the run times for each zone by modifying precipitation rates to compensate for the error. This is cumbersome and makes it difficult and frustrating for the user to adjust a conventional ET based irrigation controller for optimum watering.
- An advantage of the present invention is the ability to globally modify the watering schedules of the stand alone irrigation controller 12 to compensate for this type of condition. If at any time the user realizes that the property is receiving too little water, the user can simply manually change an overall watering adjustment feature.
- the overall watering adjustment feature is implemented as a simple plus or minus control via actuation of an assigned pair of the push buttons 128 a - c. This changes the reference point of the ET calculation either up or down. After this adjustment is made, the ET adjustment executed by the ET unit 16 references the new setting and then compensates for under watering that would otherwise occur. Likewise, if the overall watering is too much for the irrigation site, the user can simply adjust the overall watering adjustment feature down and create a new lower reference for the automatic ET based adjustments.
- the overall watering adjustment feature makes it easy for the user to fine-tune the system to the particular requirements of the irrigation site.
- the overall watering adjustment feature can be indicated by showing “global adjustment,” or “more/less, water ⁇ ,” or similar naming
- the overall watering adjustment feature of the ET unit 16 directly alters the station run times executed by the irrigation controller 12 .
- This adjustment modifies the estimated maximum expected ET setting, which is a constant that is used in the calculating the seasonal adjust value.
- the microcontroller 108 in the ET unit 16 uses only select data points as variables (temperature and solar radiation) and uses other data points that may consist of pre-programmed constants, and/or data entered by the user that defines some one or more constants of the site.
- Estimated ET is calculated using the Penman-Monteith formula, taking into account geographical data for peak estimated summer ET.
- Another feature provided by the ET 16 is an automatic shut down feature for irrigation that overrides any scheduled run times. There are several times when this is important.
- a rain sensor in the weather station 20 can send signals to the ET unit representing the occurrence of a rain event. The ET unit 10 will then signal the irrigation controller 12 to shut down and suspend any watering, irregardless of any scheduled irrigation running or not running at the time.
- irrigation may produce ice that can be dangerous to people walking or vehicles diving by. Many cities therefore require that irrigation be automatically turned off in the event of a freeze condition.
- a temperature sensor in the weather station 20 can detect a freeze or near freeze condition and the ET unit 16 will signal the irrigation controller 12 to shut down, regardless of any scheduled irrigation running or not running at the time.
- the automatic shut down feature of the ET unit 10 is also useful in geographic areas where watering agencies and municipalities impose restrictions that limit the times when irrigation can occur.
- the user is able to enter a no-water window into the ET unit 16 , which consists of the times when irrigation is not allowed to take place.
- the ET unit 16 will signal the irrigation controller 12 to shut down, irregardless of any scheduled irrigation running or not running at the time.
- the ET unit 16 will then allow the irrigation controller 12 to return to its normal run mode after the selected no-water window time has elapsed.
- the irrigation controller 12 may have sensor input terminals, as in the case of the Pro-C irrigation controller, which can be used to shut down all watering on receipt of a shut down command from the ET unit 16 .
- FIG. 12A is an enlarged vertical cross-section of an embodiment of the stand alone weather station 20 of the system of FIG. 1 .
- the compact and inexpensive weather station 20 measures solar radiation, ambient air temperature, and detects a rain event.
- the weather station 20 is a one-piece unit that readily attaches to an exterior side of a building structure, a fence, or a rain gutter.
- the weather station 20 can be hard wired to the ET unit 16 via cable 18 , or the communications between the weather station 20 and the ET unit 16 may take place via wireless communications link 24 .
- the basic construction of the weather station 20 is similar to that disclosed in U.S. Pat. No. 6,570,109 granted May 27, 2003 to Paul A. Klinefelter et al.
- the weather station 20 ( FIG. 12A ) includes an outer injection molded plastic housing 134 that encloses a pair of moisture absorbing members in the form of a larger stack 136 of moisture absorbing hygroscopic discs and a smaller stack 138 of moisture absorbing hygroscopic discs. These discs are typically made of untreated wood fibers pressed together into a material that resembles cardboard in appearance.
- hygroscopic material is Kraft Press Board which is made from cellulose pulp.
- the stacks 136 and 138 ( FIG. 12A ) of hygroscopic discs are supported on a common pivot arm 140 for vertical reciprocal motion relative to a vertical shaft 142 that extends through the arm 140 .
- a coil spring 144 surrounds the shaft 142 and normally pushes the stack 136 upwardly against stop 146 .
- a torsion spring 147 ( FIG. 12B ) associated with the pivot axis of the arm 140 lifts the arm 140 and the stack 138 upward to a fixed stop (not illustrated).
- a magnet 154 is mounted on one end of the arm 140 .
- a stationary linear Hall effect sensor 156 mounted on a vertically mounted printed circuit board 158 generates a signal representative of the position of the magnet 154 that is proportional to the amount of rain water that has entered the weather station 20 .
- the Hall effect sensor 156 may be provided by part number A1395SEHLT-T manufactured by Alegro.
- the small stack 138 absorbs water quickly via funnel 148 so that a rain event will be quickly detected.
- the large stack 136 dries out slowly so that the rain interrupt signal from the weather station 20 will not be terminated too quickly as the hydroscopic discs dry out.
- a solar radiation sensor 160 is mounted on one end of the printed circuit board 158 and receives solar radiation through a clear plastic dome 162 snap fit over the uppermost part of the housing 134 .
- the solar radiation sensor 160 may be an industry standard PDB-C131 photodiode with low current leakage.
- FIG. 13 is a block diagram illustrating the electronic circuit of the stand alone weather station 20 that is mounted on the printed circuit board 158 .
- the solar radiation sensor 160 which may comprise a PDB-C131 photodiode that is connected to a Microchip MCP6001T-I/LT transimpedance amplifier 164 that is in turn connected to a Microchip PIC-16F684-I/SL microcontroller 166 .
- a Microchip MCP9700T-E/LT temperature sensor 168 with an A/D interface is also connected to the microcontroller 166 .
- the microcontroller 166 also receives the output signal from the Hall effect sensor 156 .
- the Hall effect sensor 156 may comprise a Microchip A1395SEHLT-T Hall effect sensor and interface circuit.
- the communications interface 170 between the microcontroller 166 and the ET unit 16 may be a hard wire interface, or more preferably, a wireless interface that may comprise a Microchip Technology RFPIC675 transmitter and a Maxim MAX1473 receiver.
- the transmitter sends signals representative of actual components of ET data across the irrigation site to the ET unit 16 .
- Power for the hard wired weather station 20 is derived from the communications link to the ET unit 16 and is fed to an input conditioner 172 which feeds a Microchip MCP1702T-3002E/CB power regulator 174 .
- the power regulator 174 supplies three volt DC power to the microcontroller 166 .
- Power for a wireless weather station is supplied by a dedicated battery (not illustrated) installed within the weather station.
- FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station 20 of FIG. 12 .
- Firmware executed by the microcontroller 166 allows the weather station 20 to perform the logical operations illustrated in the flow diagram. These include periodic sampling of the outputs from the solar radiation sensor 162 , temperature sensor 168 and Hall effect sensor 156 , averaging readings, and responding to requests for sensor data that are periodically transmitted by the ET unit 16 .
- the ET unit 16 of the present invention utilizes the watering program set up procedures that the users are already accustomed to. Start times, station run times, and days-to-water are manually entered into the irrigation controller 12 . The user also selects from one of a group of geographical regions in the ET unit 16 . The ET unit 16 then automatically takes over setting of the seasonal adjustment feature of the irrigation controller 12 on a regular basis. Instead of a user changing that feature several times per year, the ET unit 16 sets that seasonal adjustment daily depending on current weather conditions gathered on site. Furthermore, the ET unit 16 shuts down any scheduled watering by the irrigation controller 12 in response to a rain event or a freeze event, and when there is a scheduled no-water window. Cost savings are achieved since only a small number of the weather parameters need to be measured. These variables are then used with pre-programmed constants to calculate an estimated ET value. This approach allows for cost savings since the stand alone weather station 20 need not have more than a solar radiation sensor, a temperature sensor and a rain sensor.
- the present invention also provides a unique method of controlling a plurality of valves on an irrigation site.
- the method includes the steps of selecting and/or creating a watering schedule, storing the watering schedule and generating a signal representative of an environmental condition on an irrigation site.
- the method also includes the steps of calculating an estimated ET value based at least in part on the signal and selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule.
- the method includes the further step of automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site.
- the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Selective Calling Equipment (AREA)
- Spray Control Apparatus (AREA)
- Cultivation Of Plants (AREA)
Abstract
An ET based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a stand alone weather station including at least one environmental sensor. The ET based irrigation system further includes a stand alone ET unit operatively connected to the irrigation controller and the weather station. The ET unit includes programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value to thereby conserve water while maintaining plant health.
Description
- The present invention relates to residential and commercial irrigation systems, and more particularly to irrigation controllers that use evapotranspiration (ET) data in calculating and executing watering schedules.
- Electronic irrigation controllers have long been used on residential and commercial sites to water turf and landscaping. They typically comprise a plastic housing that encloses circuitry including a processor that executes a watering program. Watering schedules are typically manually entered or selected by a user with pushbutton and/or rotary controls while observing an LCD display. The processor turns a plurality of solenoid actuated valves ON and OFF with solid state switches in accordance with the watering schedules that are carried out by the watering program. The valves deliver water to sprinklers connected by subterranean pipes.
- There is presently a large demand for conventional irrigation controllers that are easy for users to set up in terms of entering and modifying the watering schedules. One example is the Pro C® irrigation controller commercially available from Hunter Industries, Inc., the assignee of the subject application. The user simply enters the start times for a selected watering schedule, assigns a station to one or more schedules, and sets each station to run a predetermined number of minutes to meet the irrigation needs of the site. The problem with conventional irrigation controllers is that they are often set up to provide the maximum amount of irrigation required for the hottest and driest season, and then either left that way for the whole year, or in some cases the watering schedules are modified once or twice per year by the user. The result is that large amounts of water are wasted. Water is a precious natural resource and there is an increasing need to conserve the same.
- In one type of prior art irrigation controller the run cycles times for individual stations can be increased or decreased by pushing “more” and “less” watering buttons. Another conventional irrigation controller of the type that is used in the commercial market typically includes a seasonal adjustment feature. This feature is typically a simple global adjustment implemented by the user that adjusts the overall watering as a percentage of the originally scheduled cycle times. It is common for the seasonal adjustment to vary between a range of about ten percent to about one hundred and fifty percent of the scheduled watering. This is the simplest and most common overall watering adjustment that users of irrigation controllers can effectuate. Users can move the amount of adjustment down to ten to thirty percent in the winter, depending on their local requirements. They may run the system at fifty percent during the spring or fall seasons, and then at one hundred percent for the summer. The ability to seasonally adjust up to one hundred and fifty percent of the scheduled watering accommodates the occasional heat wave when turf and landscaping require significantly increased watering. The seasonal adjustment feature does not produce the optimum watering schedules because it does not take into consideration all of the ET factors such as soil type, plant type, slope, temperature, humidity, solar radiation, wind speed, etc. Instead, the seasonal adjustment feature simply adjusts the watering schedules globally to run a longer or shorter period of time based on the existing watering program. When the seasonal adjustment feature is re-set on a regular basis a substantial amount of water is conserved and while still providing adequate irrigation in a variety of weather conditions. The problem is that most users forget about the seasonal adjustment feature and do not re-set it on a regular basis, so a considerable amount of water is still wasted, or turf and landscaping die.
- In the past, irrigation controllers used with turf and landscaping have used ET data to calculate watering schedules based on actual weather conditions. Irrigation controllers that utilize ET data are quite cumbersome to set up and use, and require knowledge of horticulture that is lacking with most end users. The typical ET based irrigation controller requires the user to enter the following types of information: soil type, soil infiltration rates, sprinkler precipitation rate, plant type, slope percentage, root zone depth, and plant maturity. The controller then receives information, either directly or indirectly, from a weather station that monitors weather conditions such as: amount of rainfall, humidity, hours of available sunlight, amount of solar radiation, temperature, and wind speed. The typical ET based irrigation controller then automatically calculates an appropriate watering schedule that may change daily based on the weather conditions and individual plant requirements. These changes typically include the number of minutes each irrigation station operates, the number of times it operates per day (cycles), and the number of days between watering. All of these factors are important in achieving the optimum watering schedules for maximum water conservation while maintaining the health of turf and landscaping.
- While conventional ET based irrigation controllers help to conserve water and maintain plant health over a wide range of weather conditions they are complex and their set up is intimidating to many users. They typically require a locally mounted weather station having a complement of environmental sensors. Such locally mounted weather stations are complex, expensive and require frequent maintenance. Instead of receiving data from a locally mounted weather station, home owners and property owners can arrange for their ET based irrigation controllers to receive weather data collected by a private company on a daily basis and transmitted to the end user wirelessly, via phone lines or over an Internet connection. This reduces the user's up-front costs, and maintenance challenges, but requires an ongoing subscription expense for the life of the ET based irrigation controller. In addition, the user must still have a substantial understanding of horticulture to set up the ET based irrigation controller. For these reasons, most ET based irrigation controllers are set up by irrigation professionals for a fee. These same irrigation professionals must be called back to the property when changes need to be made, because the set up procedures are complex and not intuitive to most users. These challenges are limiting the sale and use of ET based irrigation controllers to a very small minority of irrigation sites. This impairs water conservation efforts that would otherwise occur if ET based irrigation controllers were easier to set up and adjust.
- The system of the present invention may take the form of stand alone irrigation controller connected to a stand alone ET unit that is connectable to a specially configured stand alone weather station. Alternatively, the system may take the form of a stand alone irrigation controller with a removable ET module that is connectable to a specially configured stand alone weather station. In yet another embodiment, the system may take the form of a stand alone ET based irrigation controller with all the components mounted in a single box-like housing that is connectable to a specially configured stand alone weather station.
- In accordance with one aspect of the present invention an ET based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a specially configured stand alone weather station including at least one environmental sensor. The ET based irrigation system further includes a stand alone ET unit operatively connected to the irrigation controller and the weather station. The ET unit includes programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value to thereby conserve water while maintaining plant health.
- In accordance with another aspect of the present invention an ET based irrigation system includes an interface that enables a user to select and/or enter a watering schedule and a memory for storing the watering schedule. The system further includes at least one sensor for generating a signal representative of an environmental condition. A processor is included in the system that is capable of calculating an estimated ET value based at least in part on the signal from the sensor. The system further includes a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule. The program includes a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated ET value to thereby conserve water while maintaining plant health.
- The present invention also provides a unique method of controlling a plurality of valves on an irrigation site using ET data. The method includes the step of calculating an estimated ET value based in part on a signal from an environmental sensor. The method further includes the step of automatically modifying a watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
- The present invention also provides a weather station for use with an irrigation controller. The weather station includes a housing that supports a rain sensor, a solar radiation sensor and a temperature sensor. A micro-controller is also supported by the housing and is connected to the sensors. A communications interface permits communications between the micro-controller and an irrigation controller. Firmware is executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the irrigation controller.
-
FIG. 1 is a simplified block diagram of an irrigation system in accordance with an embodiment of the present invention. -
FIG. 2 is a front elevation view of the stand alone irrigation controller of the system ofFIG. 1 with its front door open to reveal its removable face pack. -
FIG. 3 is an enlarged perspective view of the back panel of the stand alone irrigation controller ofFIG. 2 illustrating one base module and one station module plugged into their respective receptacles in the back panel. -
FIG. 4 is a block diagram of the electronic portion of the stand alone irrigation controller ofFIG. 2 . -
FIG. 5 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller ofFIG. 2 that resides in the face pack of the controller. -
FIG. 6 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller ofFIG. 2 that resides in the base module. -
FIG. 7 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller ofFIG. 2 that resides in each of the station modules. -
FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller ofFIG. 2 . -
FIG. 9 is a perspective view of the stand alone ET unit of the system ofFIG. 1 . -
FIG. 10 is a block diagram of the electronic portion of the stand alone ET unit ofFIG. 9 . -
FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit ofFIG. 9 . -
FIG. 12A is an enlarged vertical cross-section of the stand alone weather station of the system ofFIG. 1 . -
FIG. 12B is a fragmentary perspective view illustrating the spring biased arm of the stand alone weather station ofFIG. 12A . -
FIG. 13 is a block diagram illustrating the electronic portion of the stand alone weather station ofFIG. 12 . -
FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station ofFIG. 12 . - The entire disclosures of the following U.S. patents and U.S. patent applications are hereby incorporated by reference: U.S. Pat. No. 5,097,861 granted Mar. 24, 1992 of Hopkins et al. entitled
IRRIGATION METHOD AND CONTROL SYSTEM; U.S. Pat. No. 5,444,611 granted Aug. 22, 1995 of Peter J. Woytowitz, et al. entitledLAWN AND GARDEN IRRIGATION CONTROLLER; U.S. Pat. No. 5,829,678 granted Nov. 3, 1998 of Richard E. Hunter et al. entitled SELF -CLEANING IRRIGATION REGULATOR VALVE APPARATUS; U.S. Pat. No. 6,088,621 granted Jul. 11, 2000 also of Peter J. Woytowitz et al. entitledPORTABLE APPARATUS FOR RAPID REPROGRAMMING OF IRRIGATION CONTROLLERS; U.S. Pat. No. 6,721,630 granted Apr. 13, 2004 also of Peter J. Woytowitz entitledEXPANDABLE IRRIGATION CONTROLLER WITH OPTIONAL HIGH -DENSITY STATION MODULE; U.S. Pat. No. 6,842,667 granted Jan. 11, 2005 of Beutler et al. entitledPOSITIVE STATION MODULE LOCKING MECHANISM FOR EXPANDABLE IRRIGATION CONTROLLER; U.S. patent application Ser. No. 10/883,283 filed Jun. 30, 2004 also of Peter J. Woytowitz entitledHYBRID MODULAR/DECODER IRRIGATION CONTROLLER, now U.S. Pat. No. 7,069,115 granted Jun. 27, 2007; pending U.S. patent application Ser. No. 10/985,425 filed Nov. 9, 2004 also of Peter J. Woytowitz et al. and entitledEVAPOTRANSPIRATION UNIT CONNECTABLE TO IRRIGATION CONTROLLER; pending U.S. patent application Ser. No. 11/288,831 filed Nov. 29, 2005 of LaMonte D. Porter et al. and entitledEVAPOTRANSPIRATION UNIT FOR RE -PROGRAMMING AN IRRIGATION CONTROLLER; U.S. patent application Ser. No. 11/045,527 filed Jan. 28, 2005 also of Peter J. Woytowitz entitledDISTRIBUTED ARCHITECTURE IRRIGATION CONTROLLER, now U.S. Pat. No. 7,245,991 granted Jul. 17, 2007; U.S. Pat. No. 7,289,886 of Peter J. Woytowitz granted Oct. 30, 2007 entitledMODULAR IRRIGATION CONTROLLER WITH SEPARATE FIELD VALVE LINE WIRING TERMINALS; U.S. Pat. No. 7,225,058 of Lamonte D. Porter granted May 29, 2007 entitledMODULAR IRRIGATION CONTROLLER WITH INDIRECTLY POWERED STATION MODULES; pending U.S. patent application Ser. No. 11/458,551 filed Jul. 19, 2006 of Lamonte D. Porter et al. entitledIRRIGATION CONTROLLER WITH INTERCHANGEABLE CONTROL PANEL; and pending U.S. patent application Ser. No. 12/042,301 filed Mar. 4, 2008 of Peter J. Woytowitz et al. entitledIRRIGATION CONTROLLER WITH SELECTABLE WATERING RESTRICTIONS. The aforementioned U.S. patents and applications are all assigned to Hunter Industries, Inc., the assignee of the subject application. - The present invention addresses the hesitancy or inability of users to learn the horticultural factors required to set up a conventional ET based irrigation controller. The irrigation system of the present invention has a familiar manner of entering, selecting and modifying its watering schedules, and either built-in or add-on capability to automatically modify its watering schedules based on ET data in order to conserve water and effectively irrigate vegetation throughout the year as weather conditions vary. The user friendly irrigation system of the present invention is capable of achieving, for example, eighty-five percent of the maximum amount of water that can theoretically be conserved on a given irrigation site, but is still able to be used by most non-professionals. Therefore, a large percentage of users of the irrigation system of the present invention will have a much more beneficial environmental impact than a near perfect solution provided by complex prior art ET based irrigation controllers that might at best be adopted a small percentage of users. Even within the small percentage of users that adopt the full ET device, many of them may not be set up correctly because of the complexities of ET, and may therefore operate inefficiently.
- Referring to
FIG. 1 , in accordance with an embodiment of the present invention, anirrigation system 10 comprises a standalone irrigation controller 12 connected viacable 14 to a standalone ET unit 16 that is in turn connected viacable 18 to a standalone weather station 20. Thecontroller 12 andET unit 16 would typically be mounted in a garage or other protected location, although they can have a waterproof construction that allows them to be mounted out of doors. Theweather station 20 is typically mounted on an exterior wall, gutter, post or fence near the garage. Thecables ET 16 unit and theweather station 20 from theirrigation controller 12. Data and commands are sent on other copper wires in the cables. Fiber optic cables can also be utilized for sending data and commands. Thecontroller 12,ET unit 16 andweather station 20 may exchange data and commands viawireless communication links transformer 25 that plugs into astandard household 110 volt AC duplex outlet supplies twenty-four volt AC power to the standalone irrigation controller 12. In its preferred form, theirrigation system 10 employs a hard wiredcommunication link 14 between the standalone irrigation controller 12 and the standalone ET unit 16 that are normally mounted adjacent one another, such as on a garage wall, and awireless communication link 24 between the standalone ET unit 16 and the standalone weather station 20. - Referring to
FIG. 2 , the standalone irrigation controller 12 may be the Pro-C modular irrigation controller commercially available from Hunter Industries, Inc. Theirrigation controller 12 includes a wall-mountable plastic housing structure in the form of a generally box-shapedfront door 26 hinged along one vertical edge to a generally box-shaped back panel 28 (FIG. 3 ). A generally rectangular face pack 30 (FIG. 2 ) is removably mounted over theback panel 28 and is normally concealed by thefront door 26 when not being accessed for programming. Theface pack 30 has an interface in the form of a plurality of manually actuable controls including arotary knob switch 31 and push button switches 32 a-32 g as well as slide switch 34 which serves as a sensor by-pass switch. Watering schedules consisting of various run and cycle times can be entered by the user by manipulating therotary knob switch 31 and selected ones of the push button switches 32 a-32 g in conjunction with observing numbers, words and/or graphic symbols indicated on a liquid crystal display (LCD) 36. Pushbuttons irrigation controller 12, more details of which are set forth in the aforementioned U.S. Pat. No. 6,088,621. - The face pack 30 (
FIG. 2 ) encloses and supports a printed circuit board (not illustrated) with a processor for executing and implementing a stored watering program. An electrical connection is made between theface pack 30 and the components in theback panel 28 through a detachable ribbon cable including a plurality of conductors 38 a-g (FIG. 4 ). The circuitry inside theface pack 30 can be powered by a battery to allow a person to remove theface pack 30, un-plug the ribbon cable, and walk around the lawn, garden area or golf course while entering watering schedules or altering pre-existing watering schedules. - A processor 40 (
FIG. 5 ) is mounted on the printed circuit board inside theface pack 30. A watering program stored in amemory 42 is executable by theprocessor 40 to enable the processor to generate commands for selectively turning a plurality of solenoid actuated irrigation valves (not illustrated) ON and OFF in accordance with the selected or entered watering schedule. An example of such an irrigation valve is disclosed in U.S. Pat. No. 5,996,608 granted Dec. 7, 1999 of Richard E. Hunter et al. entitledDIAPHRAGM VALVE WITH FILTER SCREEN AND MOVEABLE WIPER ELEMENT, the entire disclosure of which is hereby incorporated by reference. Said patent is also assigned to Hunter Industries, Inc. Typically the solenoid actuated valves are mounted in subterranean plastic boxes (not illustrated) on the irrigated site. - The
processor 40 communicates withremovable modules 44 and 46 a-c (FIG. 3 ) each containing a circuit that includes a plurality of solid state switches, such as triacs. These switches turn twenty-four volt AC current ON and OFF to open and close corresponding solenoid actuated valves via connected to dedicated field valve wires and a common return line to screwterminals 48 on themodules 44 and 46 a-c. - In
FIG. 3 , themodules back panel 28. Themodule 44 serves as a base module that can turn a master valve ON and OFF in addition to a plurality of separate station valves. Each module includes an outer generally rectangular plastic housing with a slot at its forward end. A small printed circuit board (not illustrated) within the module housing supports the station module circuit that includes conductive traces that lead to thescrew terminals 48 and to V-shaped spring-type electrical contacts (not illustrated) that are accessible via the slot in the forward end of the module housing. These V-shaped electrical contacts register with corresponding flat electrical contacts on the underside of a relatively large printed circuit board 49 (FIG. 4 ) mounted inside theback panel 28 when themodule 44 is slid into its corresponding receptacle. The relatively large printedcircuit board 49 is referred to as a “back plane.” Thebase module 44 and station modules 46 a-c and theback plane 49 are thus electrically and mechanically connected in releasable fashion through a so-called “card edge” connection scheme when thebase module 44 and station modules 46 a-c are inserted or plugged into their respective receptacles. - An elongate locking bar 50 (
FIG. 3 ) can be manually slid up and down inFIG. 4 between locked and unlocked positions to secure and un-secure themodules 44 and 46 a-c after they have been fully inserted into their respective receptacles. Opposing raisedprojections 52 formed on the lockingbar 50 facilitate sliding the lockingbar 50 with a thumb. Apointer 54 extends from one of the raisedprojections 52 and serves as a position indicator that aligns with LOCKED and UNLOCKED indicia (not illustrated) molded into the upper surface of anotherplastic support structure 56 mounted insideback panel 28. - The receptacles for the modules such as 44 and 46 a-c are partially defined by vertical walls 58 (
FIG. 3 ) formed on theback panel 28.Vertical walls 60 also formed on theback panel 28 to provide support to themodules 44 and 46 a-c. An auxiliary terminal strip providesadditional screw terminals 62 for connecting remote sensors and accessories. The term “receptacles” should be broadly construed as defined in one or more of the patents and pending applications incorporated by reference above. -
FIGS. 4 and 5 are block diagrams of the electronic portion of the standalone irrigation controller 12. The electronic components are mounted on printed circuit boards contained within theface pack 30, backpanel 28,base module 44 and station modules 46 a-c. The processor 40 (FIG. 4 ) is mounted on the printed circuit board inside theface pack 30 and executes the watering program stored in thememory 42. By way of example, theprocessor 40 may be a Samsung S3F8289 processor that executes a program stored in theseparate memory 42 which can be an industry standard designation Serial EEPROM 93AA6A non-volatile memory device. Alternatively, theprocessor 40 andmemory 42 may be provided in the form of a micro-computer with on-chip memory. The manually actuable controls 31, 32 a-32 g and 34 and theLCD display 36 of theface pack 30 are connected to theprocessor 40. Theprocessor 40 sends drive signals throughbuffer 64 and backplane 49 to thebase module 44. By way of example thebuffer 64 may be an industry standard designation 74HC125 device. Theprocessor 40 sends data signals to the modules 46 a-c throughbuffer 66. Thebuffer 66 may be an H-bridge buffer including industry standard 2N3904/3906 discrete bipolar transistors. - The processor 40 (
FIG. 4 ) controls thebase module 44 and the station modules 46 a-c in accordance with one or more watering schedules. Serial or multiplexed communication is enabled via theback plane 49 to thebase module 44 and to each of the output modules 46 a-c. Suitable synchronous serial data and asynchronous serial data station module circuits are disclosed in the aforementioned U.S. Pat. No. 6,721,630. The location of each module in terms of which receptacle it is plugged into is sensed using resistors on theback plane 49 and a comparator 68 (FIG. 5 ) which may be an industry standard LM393 device. Theface pack 30 receives twenty-four volt AC power from thetransformer 25 through theback plane 49 and regulates the same via a power supply circuit 70 (FIG. 5 ). Thepower supply circuit 70 includes a National Semiconductor LM7906 voltage regulator, a Microchip Technology MCP101-450 power supervisor, and a Samsung KA431 voltage regulator. Alithium battery 72 such as an industry standard CR2032 battery is included in thepower supply circuit 70 and provides backup power to the micro controller to maintain the internal clock in the event of a power failure. The face pack ribbon cable 38 a-g (FIG. 4 ) that connects theface pack 30 and theback plane 49 can be disconnected, and a nine volt battery (FIG. 5 ) then supplies power to theface pack 30. This allows a user to remove theface 30 pack from theback panel 28 and enter or modify watering schedules as he or she walks around the irrigation site. - The
modules 44 and 46 a-c have contacts 74 (FIG. 4 ) on the top sides of their outer plastic housings. When the modules are first plugged into their receptacles, only a communication path is established with theprocessor 40 via theback plane 49. At this time the locking bar 50 (FIG. 3 ) is in its UNLOCKED position. Thereafter, when the locking bar is slid to its LOCKED position finger-like contacts 76 (FIG. 4 ) on the underside of the lockingbar 50 register with thecontacts 74 on the tops of themodules 44 and 46 a-c to supply twenty-four volt AC power to the modules that is switched ON and OFF to the valves that are connected to the modules. The finger-like contacts 76 are connected to acommon conductor 78 carried by the lockingbar 50. When the lockingbar 50 is slid to its LOCKED position projections and tabs that extend from the lockingbar 50 and the modules are aligned to prevent withdrawal of the modules. See the aforementioned U.S. Pat. No. 7,225,058 for further details. -
FIG. 6 is a block diagram illustrating details of the electronic circuit of thebase module 44. The base module circuit includestransistor drivers 80 andtriacs 82 for switching the twenty-four volt AC signal ON and OFF to different solenoid actuated valves. By way of example, thetransistor drivers 80 may be industry standard 2N4403 transistors and the triacs may be ST Microelectronics (Trademark) T410 triacs. The twenty-four volt AC signal is supplied to thetriacs 82 viacontact 74 andline 83. The twenty-four volt AC signal from each of thetriacs 82 is routed through an inductor/MOV network 84 for surge suppression to four field valve lines 86 a-d, each of which can be connected to a corresponding solenoid actuated valve. The valves are each connected to a valvecommon return line 88. The twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90. The unregulated DC signal from the rectifier/filter circuit 90 is supplied to a National Semiconductor LM7905 voltage regulator 92 which supplies five volt DC power to theface pack 30 via aconductor 38 c (FIG. 4 ) in the ribbon cable. -
FIG. 7 is a block diagram illustrating details of the electronic circuit in each of the station modules 46 a-c. The station module circuit includes a microcontroller such as the Microchip (Trademark)PIC 12C508 processor 94. The station module circuit further includestriacs 96 for switching the twenty-four volt AC signal ON and OFF to three different solenoid actuated valves. The twenty-four volt AC signal is supplied to thetriacs 96 viacontact 74 andline 98. The twenty-four volt AC signal from each of thetriacs 94 is routed through an inductor/MOV network 98 including Epcos Inc. S10K35 MOV's for surge suppression to three field valve lines 100 a-c, each of which can be connected to a corresponding solenoid actuated valve. The valves are each connected to the valvecommon return line 88. The twenty-four volt AC signal is also supplied to a rectifier/filter circuit 90. The unregulated DC signal from the rectifier/filter circuit 102 is supplied to a National SemiconductorLM7905 voltage regulator 104 which supplies five volt DC power to the microcontroller through a conductor (not illustrated). -
FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the standalone irrigation controller 12 ofFIG. 2 . Those skilled in the art of designing and programming irrigation controllers for residential and commercial applications will readily understand the logical flow and algorithms that permit theprocessor 40 to execute the watering program stored in thememory 42. This watering program enables theprocessor 40 to generate commands for selectively turning the plurality of valves ON and OFF in accordance with the selected or entered watering schedules. The watering program includes a seasonal adjustment feature that provides the capability for automatically modifying the watering schedules to thereby conserve water while maintaining plant health. By actuating one of thepush buttons - Referring to
FIG. 9 , the standalone ET unit 16 includes a rectangular outerplastic housing 106 enclosing a printed circuit board (not illustrated) which supports the electronic circuit of theET unit 16 that is illustrated in the block diagram ofFIG. 10 . Amicrocontroller 108 such as a Microchip PIC18F65J90 processor executes firmware programming stored in amemory 110 such as an industry standard 93AA66A EEPROM memory. Themicrocontroller 108 can receive DC power from alithium battery 112 such as an industry standard CR2032 battery, which allows accurate time keeping in the event of a power failure. Insulating strip 113 (FIG. 9 ) must be manually pulled out to establish an operative connection of thebattery 112. External power for theET unit 16 is supplied from the transformer 25 (FIG. 1 ) via thecable 14. The twenty-four volt AC power from thetransformer 25 is supplied to a rectifier/filter circuit 114 (FIG. 10 ) which supplies twenty-four volt DC power to apower regulation circuit 116 which may be an ST Microelectronics L78M24CDT-TR regulator. Power from thepower regulation circuit 116 is fed to amicrocontroller power regulator 118 which may be a Microchip MCP 1702T-25021/CB regulator. Power from thepower regulation circuit 116 is also fed to a wired or wirelesssensor communications device 120 that may include, by way of example, an industry standard MMBTA92 for the signal transmitter and an industry standard LM393 comparator for the receiver. - The microcontroller 108 (
FIG. 10 ) interfaces with the SmartPort (Trademark) connector of theirrigation controller 12 with a combination interface/optocoupler 122 which may be provided by an industry standard 4N26S device. Themicrocontroller 108 interfaces with the weather station illustrated inFIG. 12 . AnLCD display 126 is mounted in thehousing 106. Three manually actuable controls in the form ofpush buttons 128 a-c (FIG. 9 ) are mounted in thehousing 106 for enabling the user to make selections when setting up and modifying the operation of theET unit 16 in conjunction with information indicated on thedisplay 126 which is facilitated by column and rowindicia housing 106 adjacent the horizontal and vertical margins of thedisplay 126. Rowindicia 132 include, from top to bottom, AM, PM, 24 hr, START and END which are printed, painted, molded or otherwise applied to the outerplastic housing such as by a sticker.Column indicia 130 are illustrated diagrammatically as A-E inFIG. 9 due to space constraints in the drawing. A-E correspond, respectively, to TIME, TYPE, REGION, NO WATER and WATER ± with associated icons which are printed, painted, molded or otherwise applied to the outerplastic housing 106 such as by a sticker. -
FIGS. 11A-11D are flow diagrams illustrating the operation of the standalone ET unit 16. A watering schedule typically includes inputted parameters such as start times, run times and days to water. TheET unit 16 can automatically set the seasonal adjustment of theirrigation controller 12 to reduce watering time, or increase watering times, depending on the weather conditions at the time. TheET unit 16 utilizes actual ET data as its basis for making the modifications to the watering schedules implemented by theirrigation controller 12. However, to simplify the system and reduce the costs, some of the ET parameters may be pre-programmed into theET unit 16 as constants. These constants may be selected from a group of geographical areas to approximately assimilate the local conditions and estimate a maximum ET value. Other climatic factors are monitored on a daily basis and are the variables. The variables may include one or more pieces of environmental data such as temperature, humidity, solar radiation, wind, and rain. In the preferred embodiment of the present invention, the measured variables are temperature and solar radiation. The variables and any constants are used by theprocessor 108 to calculate an estimated ET value. This estimated ET value is then used by theET unit 16 to automatically set the seasonal adjustment feature of theirrigation controller 12. Theweather station 20 can also include a sensor that indicates a rain event. A rain event does not effect calculation of an estimated ET value. However, it does shut of the irrigation during, and for a period of time following, the rain event as a further conservation measure. - The user can modify the run and cycle times for individual stations in the usual manner in the
irrigation controller 12. As an example, if one station is watering too much, but all of the other stations are watering the correct amount, the user can easily reduce the run time of that particular station and balance the system out. Then theET unit 16 continues modifying the watering schedules executed by theirrigation controller 12 on a global basis as a percentage of run time, based on the calculated estimated ET value. Irrigation controllers can be used to control landscape lighting and other non-irrigation devices such as decorative water fountains. Thecontroller 12 may have features in it such that theET unit 16 only modifies the watering schedules of theirrigation controller 12. - One of the difficulties with conventional weather-based controllers is attributable to the difficulty of fine-tuning the weather data being received. The environmental sensors may not always be able to be placed in an optimum location on the irrigation site. As an example, a solar radiation sensor may be placed in an area that receives late afternoon shade. This will result in the calculation of an abnormally low estimated ET value. The entire irrigation site may receive too little water and the plant material may become stressed from too little water if the watering schedules are based on an abnormally low estimated ET. If a conventional ET based irrigation controller receives input from such an incorrectly located solar radiation sensor, the user can attempt to compensate by increasing the run times for each zone by modifying precipitation rates to compensate for the error. This is cumbersome and makes it difficult and frustrating for the user to adjust a conventional ET based irrigation controller for optimum watering.
- An advantage of the present invention is the ability to globally modify the watering schedules of the stand
alone irrigation controller 12 to compensate for this type of condition. If at any time the user realizes that the property is receiving too little water, the user can simply manually change an overall watering adjustment feature. The overall watering adjustment feature is implemented as a simple plus or minus control via actuation of an assigned pair of thepush buttons 128 a-c. This changes the reference point of the ET calculation either up or down. After this adjustment is made, the ET adjustment executed by theET unit 16 references the new setting and then compensates for under watering that would otherwise occur. Likewise, if the overall watering is too much for the irrigation site, the user can simply adjust the overall watering adjustment feature down and create a new lower reference for the automatic ET based adjustments. The overall watering adjustment feature makes it easy for the user to fine-tune the system to the particular requirements of the irrigation site. The overall watering adjustment feature can be indicated by showing “global adjustment,” or “more/less, water ±,” or similar naming conventions. - The overall watering adjustment feature of the
ET unit 16 directly alters the station run times executed by theirrigation controller 12. This adjustment modifies the estimated maximum expected ET setting, which is a constant that is used in the calculating the seasonal adjust value. When the user makes overall watering adjustments by pressing plus or minus push buttons on theET unit 16, this directly affects the ET value that is used to reset the seasonal adjustment in thehost controller 12. In calculating the estimated ET, themicrocontroller 108 in theET unit 16 uses only select data points as variables (temperature and solar radiation) and uses other data points that may consist of pre-programmed constants, and/or data entered by the user that defines some one or more constants of the site. Estimated ET is calculated using the Penman-Monteith formula, taking into account geographical data for peak estimated summer ET. - Another feature provided by the
ET 16 is an automatic shut down feature for irrigation that overrides any scheduled run times. There are several times when this is important. A rain sensor in theweather station 20 can send signals to the ET unit representing the occurrence of a rain event. TheET unit 10 will then signal theirrigation controller 12 to shut down and suspend any watering, irregardless of any scheduled irrigation running or not running at the time. As another example, during a freeze or near freeze condition, irrigation may produce ice that can be dangerous to people walking or vehicles diving by. Many cities therefore require that irrigation be automatically turned off in the event of a freeze condition. A temperature sensor in theweather station 20 can detect a freeze or near freeze condition and theET unit 16 will signal theirrigation controller 12 to shut down, regardless of any scheduled irrigation running or not running at the time. - The automatic shut down feature of the
ET unit 10 is also useful in geographic areas where watering agencies and municipalities impose restrictions that limit the times when irrigation can occur. The user is able to enter a no-water window into theET unit 16, which consists of the times when irrigation is not allowed to take place. When a no-water window is entered by the user, theET unit 16 will signal theirrigation controller 12 to shut down, irregardless of any scheduled irrigation running or not running at the time. TheET unit 16 will then allow theirrigation controller 12 to return to its normal run mode after the selected no-water window time has elapsed. Theirrigation controller 12 may have sensor input terminals, as in the case of the Pro-C irrigation controller, which can be used to shut down all watering on receipt of a shut down command from theET unit 16. -
FIG. 12A is an enlarged vertical cross-section of an embodiment of the standalone weather station 20 of the system ofFIG. 1 . The compact andinexpensive weather station 20 measures solar radiation, ambient air temperature, and detects a rain event. Theweather station 20 is a one-piece unit that readily attaches to an exterior side of a building structure, a fence, or a rain gutter. Theweather station 20 can be hard wired to theET unit 16 viacable 18, or the communications between theweather station 20 and theET unit 16 may take place via wireless communications link 24. The basic construction of theweather station 20 is similar to that disclosed in U.S. Pat. No. 6,570,109 granted May 27, 2003 to Paul A. Klinefelter et al. entitledQUICK SHUT -OFF EXTENDED RANGE HYDROSCOPIC RAIN SENSOR FOR IRRIGATION SYSTES, and U.S. Pat. No. 6,977,351 granted Dec. 20, 2005 to Peter J. Woytowitz entitledMOISTURE ABSORPTIVE RAIN SENSOR WITH SEALED POSITION SENSING ELEMENT FOR IRRIGATION WATERING PROGRAM INTERRUPT, the entire disclosures of both of which are incorporated herein by reference. Both of the aforementioned U.S. patents are assigned to Hunter Industries, Inc. - The weather station 20 (
FIG. 12A ) includes an outer injection moldedplastic housing 134 that encloses a pair of moisture absorbing members in the form of alarger stack 136 of moisture absorbing hygroscopic discs and asmaller stack 138 of moisture absorbing hygroscopic discs. These discs are typically made of untreated wood fibers pressed together into a material that resembles cardboard in appearance. One suitable commercially available hygroscopic material is Kraft Press Board which is made from cellulose pulp. - The
stacks 136 and 138 (FIG. 12A ) of hygroscopic discs are supported on acommon pivot arm 140 for vertical reciprocal motion relative to avertical shaft 142 that extends through thearm 140. Acoil spring 144 surrounds theshaft 142 and normally pushes thestack 136 upwardly againststop 146. A torsion spring 147 (FIG. 12B ) associated with the pivot axis of thearm 140 lifts thearm 140 and thestack 138 upward to a fixed stop (not illustrated). When rain water enters the housing 134 (FIG. 12A ) viaaperture 150 and funnel 152 the hygroscopic discs of thestacks arm 140 downwardly. Amagnet 154 is mounted on one end of thearm 140. A stationary linearHall effect sensor 156 mounted on a vertically mounted printedcircuit board 158 generates a signal representative of the position of themagnet 154 that is proportional to the amount of rain water that has entered theweather station 20. TheHall effect sensor 156 may be provided by part number A1395SEHLT-T manufactured by Alegro. Thesmall stack 138 absorbs water quickly viafunnel 148 so that a rain event will be quickly detected. Thelarge stack 136 dries out slowly so that the rain interrupt signal from theweather station 20 will not be terminated too quickly as the hydroscopic discs dry out. Asolar radiation sensor 160 is mounted on one end of the printedcircuit board 158 and receives solar radiation through a clearplastic dome 162 snap fit over the uppermost part of thehousing 134. Thesolar radiation sensor 160 may be an industry standard PDB-C131 photodiode with low current leakage. -
FIG. 13 is a block diagram illustrating the electronic circuit of the standalone weather station 20 that is mounted on the printedcircuit board 158. Thesolar radiation sensor 160 which may comprise a PDB-C131 photodiode that is connected to a Microchip MCP6001T-I/LT transimpedance amplifier 164 that is in turn connected to a Microchip PIC-16F684-I/SL microcontroller 166. A Microchip MCP9700T-E/LT temperature sensor 168 with an A/D interface is also connected to themicrocontroller 166. Themicrocontroller 166 also receives the output signal from theHall effect sensor 156. TheHall effect sensor 156 may comprise a Microchip A1395SEHLT-T Hall effect sensor and interface circuit. Thecommunications interface 170 between themicrocontroller 166 and theET unit 16 may be a hard wire interface, or more preferably, a wireless interface that may comprise a Microchip Technology RFPIC675 transmitter and a Maxim MAX1473 receiver. The transmitter sends signals representative of actual components of ET data across the irrigation site to theET unit 16. Power for the hardwired weather station 20 is derived from the communications link to theET unit 16 and is fed to aninput conditioner 172 which feeds a Microchip MCP1702T-3002E/CB power regulator 174. Thepower regulator 174 supplies three volt DC power to themicrocontroller 166. Power for a wireless weather station is supplied by a dedicated battery (not illustrated) installed within the weather station. -
FIG. 14 is a flow diagram illustrating the operation of the standalone weather station 20 ofFIG. 12 . Firmware executed by themicrocontroller 166 allows theweather station 20 to perform the logical operations illustrated in the flow diagram. These include periodic sampling of the outputs from thesolar radiation sensor 162,temperature sensor 168 andHall effect sensor 156, averaging readings, and responding to requests for sensor data that are periodically transmitted by theET unit 16. - In conclusion, the
ET unit 16 of the present invention utilizes the watering program set up procedures that the users are already accustomed to. Start times, station run times, and days-to-water are manually entered into theirrigation controller 12. The user also selects from one of a group of geographical regions in theET unit 16. TheET unit 16 then automatically takes over setting of the seasonal adjustment feature of theirrigation controller 12 on a regular basis. Instead of a user changing that feature several times per year, theET unit 16 sets that seasonal adjustment daily depending on current weather conditions gathered on site. Furthermore, theET unit 16 shuts down any scheduled watering by theirrigation controller 12 in response to a rain event or a freeze event, and when there is a scheduled no-water window. Cost savings are achieved since only a small number of the weather parameters need to be measured. These variables are then used with pre-programmed constants to calculate an estimated ET value. This approach allows for cost savings since the standalone weather station 20 need not have more than a solar radiation sensor, a temperature sensor and a rain sensor. - The present invention also provides a unique method of controlling a plurality of valves on an irrigation site. The method includes the steps of selecting and/or creating a watering schedule, storing the watering schedule and generating a signal representative of an environmental condition on an irrigation site. The method also includes the steps of calculating an estimated ET value based at least in part on the signal and selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule. Importantly, the method includes the further step of automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
- While an embodiment of an irrigation system comprising a stand alone ET unit connected to stand alone irrigation controller and linked to a separate stand alone weather station has been described in detail, persons skilled in the art will appreciate that the present invention can be modified in arrangement and detail. The features and functionality described could be provided by combining the irrigation controller and the ET unit into a single integrated unit in which case a single microcontroller would replace the
microcontrollers
Claims (42)
1. An ET based irrigation system, comprising:
a stand alone irrigation controller with a seasonal adjust feature;
a stand alone weather station including at least one environmental sensor; and
a stand alone ET unit operatively in communication with the irrigation controller and the weather station including programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value.
2. The system of claim 1 wherein the programming of the ET unit provides the capability for automatically modifying the watering schedule through the seasonal adjust feature based on the estimated ET value as increased or decreased by the user through an inputted overall watering adjustment.
3. The system of claim 1 wherein the programming of the ET unit provides the capability for entering a no-water window that automatically overrides the watering schedule.
4. The system of claim 1 wherein the programming of the ET unit provides the capability for automatically shutting down any watering otherwise scheduled based on a detected event.
5. The system of claim 1 wherein the weather station includes a solar radiation sensor, a temperature sensor and a rain sensor and the estimated ET value is calculated using signals from the solar radiation sensor and the temperature sensor and a plurality of pre-programmed constants.
6. The system of claim 1 wherein the ET unit is operatively connected to the weather station through a wireless communications link.
7. The system of claim 1 wherein the ET unit is configured to receive power from the irrigation controller.
8. The system of claim 1 wherein the weather station includes a solar radiation sensor, a temperature sensor and a rain sensor and the estimated ET value is calculated using signals from the solar radiation sensor and the temperature sensor and a plurality of pre-programmed constants and where data entered by the user determines at least one constant of a given site.
9. The system of claim 1 wherein the ET unit modifies the watering schedule of the irrigation controller through a data port of the irrigation controller.
10. The system of claim 2 wherein the ET unit includes a pair of manually actuable controls configured to enable a user to input the overall watering adjustment by selectively increasing and decreasing an estimated maximum ET setting that is a constant used in calculating the estimated ET value.
11. An ET based irrigation system, comprising:
an interface that enables a user to select and/or enter a watering schedule;
a memory for storing the watering schedule;
at least one sensor for generating a signal representative of an environmental condition;
a processor capable of calculating an estimated ET value based at least in part on the signal from the sensor; and
a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule, the program including a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated ET value to thereby conserve water while maintaining plant health.
12. The system of claim 11 wherein the interface further enables a user to input an overall watering adjustment and further wherein the program provides the capability for automatically modifying the watering schedule through the seasonal adjust feature based on the estimated ET value as increased or decreased by the user through the inputted overall watering adjustment.
13. The system of claim 11 wherein the program calculates the estimated ET based on the signal from the environmental sensor and a plurality of pre-programmed constants and where data entered by the user determines at least one constant of a given site.
14. The system of claim 11 wherein the program calculates the estimated ET based on the signal from the environmental sensor and a plurality of pre-programmed constants.
15. The system of claim 11 wherein the interface includes a pair of manually actuable switches for selectively increasing and decreasing the estimated ET value.
16. A method of controlling a plurality of valves on an irrigation site, comprising the steps of:
selecting and/or creating a watering schedule;
storing the watering schedule;
generating a signal representative of an environmental condition on an irrigation site;
calculating an estimated ET value based at least in part on the signal;
selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule; and
automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site.
17. The method of claim 16 and further comprising the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
18. The method of claim 16 wherein the estimated ET value is calculated based on the signal and a plurality of predetermined constants.
19. The method of claim 16 wherein the estimated ET value is calculated based on signals generated by a solar radiation sensor and a temperature sensor located on the irrigation site, and a plurality of predetermined constants.
20. The method of claim 19 wherein data based on the signals generated by the sensors is transmitted wirelessly across the irrigation site.
21. The method of claim 16 wherein the estimated ET value is calculated based on the signal and a plurality of predetermined constants and where data entered by the user determines at least one constant of a given site.
22. The method of claim 16 wherein the estimated ET value is calculated based on signals generated by a solar radiation sensor and a temperature sensor located on the irrigation site, and a plurality of predetermined constants and where data entered by the user determines at least one constant of a given site.
23. A weather station for use with an irrigation controller, comprising:
a housing;
a rain sensor supported by the housing;
a solar radiation sensor supported by the housing;
a temperature sensor supported by the housing;
a micro-controller supported by the housing and connected to the sensors;
a communications interface for permitting communications between the micro-controller and an irrigation controller; and
firmware executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the irrigation controller.
24. The weather station of claim 23 wherein the micro-controller is connected to the solar radiation sensor through an amplifier.
25. The weather station of claim 23 wherein the micro-controller is connected to the temperature sensor through an A/D interface.
26. The weather station of claim 23 wherein the micro-controller is connected to the rain sensor through an interface circuit.
27. The weather station of claim 23 wherein the solar radiation sensor includes a photodiode.
28. The weather station of claim 23 wherein the rain sensor includes at least one moisture absorbing member made of a hygroscopic material.
29. The weather station of claim 23 wherein the rain sensor includes a Hall effect sensor.
30. The weather station of claim 23 wherein the communications interface enables hard wired communication between the micro-controller and the irrigation controller.
31. The weather station of claim 23 wherein the communications interface enables wireless communication between the micro-controller and the irrigation controller.
32. The weather station of claim 23 wherein the firmware enables the micro-controller to respond to requests sent from the irrigation controller for sensor data via the communications interface.
33. A weather station for use with an irrigation controller, comprising:
a housing;
a rain sensor supported by the housing;
a solar radiation sensor supported by the housing;
a temperature sensor supported by the housing;
a micro-controller supported by the housing and connected to the sensors;
a communications interface for permitting communications between the micro-controller and an ET interface;
a communications interface for permitting communications between the ET interface and an irrigation controller; and
firmware executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the ET interface.
34. The weather station of claim 33 wherein the micro-controller is connected to the solar radiation sensor through an amplifier.
35. The weather station of claim 33 wherein the micro-controller is connected to the temperature sensor through an A/D interface.
36. The weather station of claim 33 wherein the micro-controller is connected to the rain sensor through an interface circuit.
37. The weather station of claim 33 wherein the solar radiation sensor includes a photodiode.
38. The weather station of claim 33 wherein the rain sensor includes at least one moisture absorbing member made of a hygroscopic material.
39. The weather station of claim 33 wherein the rain sensor includes a Hall effect sensor.
40. The weather station of claim 33 wherein the communications interface enables hard wired communication between the micro-controller and the irrigation controller.
41. The weather station of claim 33 wherein the communications interface enables wireless communication between the micro-controller and the irrigation controller.
42. The weather station of claim 33 wherein the firmware enables the micro-controller to respond to requests sent from the irrigation controller for sensor data via the communications interface.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/181,894 US20100030476A1 (en) | 2008-07-29 | 2008-07-29 | Irrigation System with ET Based Seasonal Watering Adjustment |
US13/153,270 US8600569B2 (en) | 2004-11-09 | 2011-06-03 | Irrigation system with ET based seasonal watering adjustment |
US14/090,281 US20140081471A1 (en) | 2004-11-09 | 2013-11-26 | Irrigation system with et based seasonal watering adjustment |
US14/188,235 US9301461B2 (en) | 2004-11-09 | 2014-02-24 | Systems and methods to adjust irrigation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/181,894 US20100030476A1 (en) | 2008-07-29 | 2008-07-29 | Irrigation System with ET Based Seasonal Watering Adjustment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/011,301 Continuation-In-Part US8548632B1 (en) | 2004-11-09 | 2011-01-21 | Irrigation controller with integral evapotranspiration unit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/153,270 Continuation US8600569B2 (en) | 2004-11-09 | 2011-06-03 | Irrigation system with ET based seasonal watering adjustment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100030476A1 true US20100030476A1 (en) | 2010-02-04 |
Family
ID=41609207
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/181,894 Abandoned US20100030476A1 (en) | 2004-11-09 | 2008-07-29 | Irrigation System with ET Based Seasonal Watering Adjustment |
US13/153,270 Active 2025-06-25 US8600569B2 (en) | 2004-11-09 | 2011-06-03 | Irrigation system with ET based seasonal watering adjustment |
US14/090,281 Abandoned US20140081471A1 (en) | 2004-11-09 | 2013-11-26 | Irrigation system with et based seasonal watering adjustment |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/153,270 Active 2025-06-25 US8600569B2 (en) | 2004-11-09 | 2011-06-03 | Irrigation system with ET based seasonal watering adjustment |
US14/090,281 Abandoned US20140081471A1 (en) | 2004-11-09 | 2013-11-26 | Irrigation system with et based seasonal watering adjustment |
Country Status (1)
Country | Link |
---|---|
US (3) | US20100030476A1 (en) |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100131119A1 (en) * | 2007-07-23 | 2010-05-27 | Andrea Brundisini | Communication system between control units for irrigation devices |
US20100256827A1 (en) * | 2009-04-06 | 2010-10-07 | Bruce Allen Bragg | Irrigation Controller Integrating Mandated No-Watering Days, Voluntary No-Watering Days, and an Empirically-Derived Evapotranspiration Local Characteristic Curve |
US20110015793A1 (en) * | 2009-07-17 | 2011-01-20 | Rain Bird Corporation | Variable Initialization Time in the Charging of Energy Reserves in an Irrigation Control System |
US20110017845A1 (en) * | 2009-07-27 | 2011-01-27 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US7962244B2 (en) | 2003-04-25 | 2011-06-14 | George Alexanian | Landscape irrigation time of use scheduling |
US20110190948A1 (en) * | 2007-12-05 | 2011-08-04 | Daniel Joseph Fekete | System and method for wireless irrigation utilizing a centralized control server and field module matrix |
US20110224836A1 (en) * | 2006-06-20 | 2011-09-15 | Rain Bird Corporation | Sensor device for interrupting irrigation |
US20110238229A1 (en) * | 2004-11-09 | 2011-09-29 | Hunter Industries, Inc. | Irrigation System with Soil Moisture Based Seasonal Watering Adjustment |
US20110270448A1 (en) * | 2009-09-03 | 2011-11-03 | Kantor Philip A | Irrigation Controller and System Integrating No-Watering Restrictions and an Empirically-Derived Evapotranspiration Local Characteristic Curve |
US8234014B1 (en) * | 2009-11-02 | 2012-07-31 | Eco-Precise Irrigation Controls, LLC | Irrigation control system and method |
USD668231S1 (en) * | 2010-08-03 | 2012-10-02 | Hunter Industries, Inc. | Decoder module for irrigation controller |
US8401705B2 (en) | 2003-04-25 | 2013-03-19 | George Alexanian | Irrigation controller water management with temperature budgeting |
US20130131874A1 (en) * | 2011-11-22 | 2013-05-23 | ZBS Technology LLC | System and method for wireless irrigation control with a remote application |
US8538592B2 (en) | 2003-04-25 | 2013-09-17 | George Alexanian | Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions |
US8600569B2 (en) | 2004-11-09 | 2013-12-03 | Hunter Industries, Inc. | Irrigation system with ET based seasonal watering adjustment |
US20140081469A1 (en) * | 2012-09-18 | 2014-03-20 | Carl L.C. Kah, JR. | Expandable irrigation controller |
US8744773B2 (en) | 2010-05-19 | 2014-06-03 | Hunter Industries, Inc. | Rain sensor with variable shut off |
US8793024B1 (en) | 2009-02-27 | 2014-07-29 | Hunter Industries, Inc. | Irrigation system with multiple soil moisture based seasonal watering adjustment |
US8793025B2 (en) | 2005-09-15 | 2014-07-29 | Rain Bird Corporation | Irrigation control device for decoder-based irrigation system |
US8851447B2 (en) | 2005-09-15 | 2014-10-07 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US8862276B2 (en) * | 2008-09-05 | 2014-10-14 | Plantcare Ag | Method and apparatus for the automatic regulation of the irrigation of plants |
US8909381B2 (en) | 2009-07-17 | 2014-12-09 | Rain Bird Corporation | Data communication in a multi-wire irrigation control system |
US8924032B2 (en) | 2011-01-06 | 2014-12-30 | Hunter Industries, Inc. | Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff |
US8977400B1 (en) * | 2008-10-01 | 2015-03-10 | Hunter Industries, Inc. | Landscape controller with feature module |
US9144204B2 (en) | 2006-06-20 | 2015-09-29 | Rain Bird Corporation | User interface for a sensor-based interface device for interrupting an irrigation controller |
USD751423S1 (en) | 2013-06-06 | 2016-03-15 | Reliance Controls Corporation | Enclosure for a timer |
US9301461B2 (en) | 2004-11-09 | 2016-04-05 | Hunter Industries, Inc. | Systems and methods to adjust irrigation |
US9655311B1 (en) | 2013-12-10 | 2017-05-23 | Hunter Industries, Inc. | Absorbent rain sensor with retention basin |
US9678485B2 (en) | 2008-10-01 | 2017-06-13 | Hunter Industries, Inc. | Landscape controller with control panel insertable feature module |
US20170290186A1 (en) * | 2016-04-01 | 2017-10-05 | Aeon Matrix Inc. | Housing for electronic sprinkler controller |
US9814190B1 (en) * | 2013-02-01 | 2017-11-14 | Hunter Industries, Inc. | Irrigation controller with robust ground path |
WO2018045458A1 (en) * | 2016-09-07 | 2018-03-15 | Rynan Technologies Pte. Ltd. | Irrigation system and method |
US20180160636A1 (en) * | 2015-05-18 | 2018-06-14 | Hozelock Limited | Garden watering controllers |
US10015894B2 (en) | 2014-08-28 | 2018-07-03 | Hunter Industries, Inc. | Communications interface system for landscape control systems |
US20180248573A1 (en) * | 2015-08-31 | 2018-08-30 | Sony Corporation | Reception device, receiving method, and program |
US20190037787A1 (en) * | 2017-08-03 | 2019-02-07 | Lalit Kumar | Smart Moisture Meter |
US10206341B2 (en) | 2014-07-21 | 2019-02-19 | Rain Bird Corporation | Rainfall prediction and compensation in irrigation control |
US10225996B1 (en) | 2011-11-10 | 2019-03-12 | Hunter Industries, Inc. | Control module for a water harvesting system |
US10285344B2 (en) * | 2016-09-16 | 2019-05-14 | Hunter Industries, Inc. | Irrigation controller with reversible operator controls |
US10292343B2 (en) | 2012-08-01 | 2019-05-21 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US10327397B2 (en) | 2012-11-07 | 2019-06-25 | Rain Bird Corporation | Irrigation control systems and methods |
US10444769B2 (en) | 2017-04-24 | 2019-10-15 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US10512226B2 (en) * | 2011-07-15 | 2019-12-24 | Earthtec Solutions Llc | Crop-specific automated irrigation and nutrient management |
US10609878B2 (en) | 2016-07-15 | 2020-04-07 | Rain Bird Corporation | Wireless remote irrigation control |
US10638675B2 (en) * | 2011-02-25 | 2020-05-05 | The Toro Company | Irrigation controller with weather station |
US10757873B2 (en) | 2017-04-24 | 2020-09-01 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US10918029B2 (en) * | 2018-07-25 | 2021-02-16 | The Board Of Trustees Of The University Of Arkansas | Surge valve assembly |
US10980120B2 (en) | 2017-06-15 | 2021-04-13 | Rain Bird Corporation | Compact printed circuit board |
US11006590B2 (en) | 2017-08-03 | 2021-05-18 | Lalit Kumar | Moisture monitoring system with internet of things devices |
US11006589B2 (en) | 2017-12-29 | 2021-05-18 | Rain Bird Corporation | Weather override irrigation control systems and methods |
US11061375B2 (en) * | 2010-04-06 | 2021-07-13 | Connie R. Masters | Irrigation controller and system |
US11395416B2 (en) | 2019-09-11 | 2022-07-19 | Hunter Industries, Inc. | Control box |
US11503782B2 (en) | 2018-04-11 | 2022-11-22 | Rain Bird Corporation | Smart drip irrigation emitter |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110301767A1 (en) * | 2003-04-25 | 2011-12-08 | George Alexanian | Automated landscape watering restrictions |
ITMI20051167A1 (en) * | 2005-06-21 | 2006-12-22 | Claber Spa | "MULTIPLE ELECTRONIC CONTROL UNIT FOR DIFFERENT COMMAND OF SOLENOID VALVES IN IRRIGATION SYSTEMS" |
US8200368B2 (en) | 2008-12-10 | 2012-06-12 | Rain Bird Corporation | Automatically adjusting irrigation controller with temperature and rainfall sensor |
US7805221B2 (en) * | 2007-05-17 | 2010-09-28 | Rain Bird Corporation | Automatically adjusting irrigation controller |
TR200805998A2 (en) | 2008-08-12 | 2009-12-21 | Kodalfa B�Lg� Ve �Let���M Teknoloj�Ler� Sanay� Ve T�Caret A.�. | Remote wireless climate monitoring and control system for greenhouses |
US10716269B2 (en) | 2008-08-12 | 2020-07-21 | Rain Bird Corporation | Methods and systems for irrigation control |
US9703275B2 (en) | 2011-06-23 | 2017-07-11 | Rain Bird Corporation | Methods and systems for irrigation and climate control |
US9120111B2 (en) | 2012-02-24 | 2015-09-01 | Rain Bird Corporation | Arc adjustable rotary sprinkler having full-circle operation and automatic matched precipitation |
US9156043B2 (en) | 2012-07-13 | 2015-10-13 | Rain Bird Corporation | Arc adjustable rotary sprinkler with automatic matched precipitation |
US9506785B2 (en) | 2013-03-15 | 2016-11-29 | Rain Bird Corporation | Remote flow rate measuring |
CN105210815A (en) * | 2015-10-15 | 2016-01-06 | 合肥谢尔网络科技有限公司 | A kind of booth automatic irrigation system based on agriculture Internet of Things |
US10871242B2 (en) | 2016-06-23 | 2020-12-22 | Rain Bird Corporation | Solenoid and method of manufacture |
WO2018013857A1 (en) | 2016-07-13 | 2018-01-18 | Rain Bird Corporation | Flow sensor |
US10602682B1 (en) | 2017-06-30 | 2020-03-31 | Orbit Irrigation Products, Llc | Irrigation controller and associated methods |
US10473494B2 (en) | 2017-10-24 | 2019-11-12 | Rain Bird Corporation | Flow sensor |
US11662242B2 (en) | 2018-12-31 | 2023-05-30 | Rain Bird Corporation | Flow sensor gauge |
US11357181B2 (en) | 2020-02-12 | 2022-06-14 | Rain Bird Corporation | Data modulated signal generation in a multi-wire irrigation control system |
US11721465B2 (en) | 2020-04-24 | 2023-08-08 | Rain Bird Corporation | Solenoid apparatus and methods of assembly |
AU2022215312A1 (en) | 2021-09-10 | 2023-03-30 | Husqvarna Ab | Drought adjustment techniques and apparatuses for irrigation controllers |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444611A (en) * | 1993-10-28 | 1995-08-22 | Hunter Industries, Inc. | Lawn and garden irrigation controller |
US6298285B1 (en) * | 2000-01-04 | 2001-10-02 | Aqua Conservation Systems, Inc. | Irrigation accumulation controller |
US6314340B1 (en) * | 1998-11-02 | 2001-11-06 | Telsco Industries | Irrigation controller |
US6452499B1 (en) * | 1998-10-07 | 2002-09-17 | Thomas Henry Runge | Wireless environmental sensor system |
US6570109B2 (en) * | 2001-10-26 | 2003-05-27 | Hunter Industries, Inc. | Quick shut-off extended range hygroscopic rain sensor for irrigation systems |
US6977351B1 (en) * | 2004-10-29 | 2005-12-20 | Hunter Industries, Inc. | Moisture absorptive rain sensor with sealed position sensing element for irrigation watering program interrupt |
US7412303B1 (en) * | 2005-11-29 | 2008-08-12 | Hunter Industries, Inc. | Evapotranspiration unit for re-programming an irrigation controller |
US20090138105A1 (en) * | 2007-08-19 | 2009-05-28 | Crawford Jeffrey A | Method of controlling an irrigation system |
Family Cites Families (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5351386A (en) * | 1976-10-20 | 1978-05-10 | Hitachi Ltd | Operation of fluid transportation system |
US4693419A (en) * | 1981-11-02 | 1987-09-15 | Water Sentry, Inc. | Automatic control apparatus and method for sprinkling water over a predetermined area |
US4646224A (en) * | 1983-12-05 | 1987-02-24 | L. R. Nelson Corporation | Sprinkler controller which computes sprinkler cycles based on inputted data |
US4722478A (en) * | 1984-01-30 | 1988-02-02 | L. R. Nelson Corporation | Electronic water sprinkler timer |
US4807664A (en) * | 1986-07-28 | 1989-02-28 | Ansan Industries Ltd. | Programmable flow control valve unit |
US4811221A (en) * | 1986-10-28 | 1989-03-07 | Galcon | Simplified battery operated automatic and manually operable valve |
US4937732A (en) * | 1987-10-20 | 1990-06-26 | James Hardie Irrigation, Inc. | Irrigation controller |
US4922433A (en) * | 1987-12-23 | 1990-05-01 | Arnold Mark | Automatic irrigation water conservation controller |
US5229937A (en) * | 1988-02-01 | 1993-07-20 | Clemar Manufacturing Corp. | Irrigation control and flow management system |
US5097861A (en) * | 1988-09-08 | 1992-03-24 | Hunter Industries | Irrigation method and control system |
US5251153A (en) * | 1988-09-28 | 1993-10-05 | Solatrol, Inc. | Flexibly programmable irrigation system controller |
AU4418389A (en) * | 1988-10-04 | 1990-05-01 | Solatrol, Inc. | Distributed multiple irrigation controller management system |
US5148985A (en) * | 1990-01-11 | 1992-09-22 | The Toro Company | Irrigation control apparatus responsive to soil moisture |
US5381331A (en) * | 1990-07-18 | 1995-01-10 | The Toro Company | Irrigation controller |
US5293554A (en) * | 1990-08-10 | 1994-03-08 | Nicholson Laurence R | Program controlled irrigation system |
US5148826A (en) * | 1991-09-03 | 1992-09-22 | Behrooz Bakhshaei | Moisture monitoring and control system |
US5208855A (en) * | 1991-09-20 | 1993-05-04 | Marian Michael B | Method and apparatus for irrigation control using evapotranspiration |
US6267298B1 (en) | 1993-05-28 | 2001-07-31 | Paul D. Campbell | Neural networked irrigation controller |
US5337957A (en) * | 1993-07-01 | 1994-08-16 | Olson Troy C | Microprocessor-based irrigation system with moisture sensors in multiple zones |
AU1700495A (en) * | 1994-02-17 | 1995-09-04 | Waterlink Systems, Inc. | Evapotranspiration forecasting irrigation control system |
US5870302A (en) * | 1994-02-17 | 1999-02-09 | Waterlink Systems, Inc. | Evapotranspiration remote irrigation control system |
US5546974A (en) * | 1995-01-03 | 1996-08-20 | Bireley; Richard L. | Moisture monitoring system |
US5694963A (en) * | 1995-12-04 | 1997-12-09 | Fredell; Paul Thomas | Method and apparatus for freeze prevention of irrigation systems |
US6016971A (en) * | 1996-02-16 | 2000-01-25 | Albert B. Welch | Lawn watering system |
US6088621A (en) * | 1996-06-21 | 2000-07-11 | Hunter Industries, Inc. | Portable apparatus for rapid re-programming of irrigation controllers |
US5829678A (en) * | 1996-06-21 | 1998-11-03 | Hunter Industries Incorporated | Self-cleaning irrigation regulator valve apparatus |
US5740038A (en) * | 1996-09-26 | 1998-04-14 | Hergert; C. David | System and method for optimized control of moving irrigation systems |
US5836339A (en) * | 1996-12-31 | 1998-11-17 | Klever; David L. | Raindrop counter and control system for irrigation systems |
US5944444A (en) * | 1997-08-11 | 1999-08-31 | Technology Licensing Corp. | Control system for draining, irrigating and heating an athletic field |
US6453215B1 (en) * | 1998-04-14 | 2002-09-17 | Nathan Lavoie | Irrigation controller |
US6227220B1 (en) * | 2000-06-22 | 2001-05-08 | John W. Addink | Irrigation controller |
US6453216B1 (en) * | 1999-07-14 | 2002-09-17 | Mccabe James F. | Method of controlling an irrigation system |
US6145755A (en) * | 1999-07-23 | 2000-11-14 | Feltz; Louis V. | Supplemental irrigation programmer |
ES2303371T3 (en) * | 1999-11-25 | 2008-08-01 | S-Rain Control A/S | TWO-WIRE MONITORING AND CONTROL SYSTEM FOR, IN PARTICULAR, THE IRRIGATION OF LOCATED SOIL AREAS. |
US20020002425A1 (en) * | 1999-11-30 | 2002-01-03 | Dossey James F. | Computer controlled irrigation and environment management system |
US6892114B1 (en) * | 2000-09-26 | 2005-05-10 | Aqua Conserve, Inc. | Modifying irrigation schedules of existing irrigation controllers |
US7048204B1 (en) * | 2000-11-06 | 2006-05-23 | Aqua Conserve, Inc. | Irrigation controller using estimated solar radiation |
US6947811B2 (en) * | 2000-12-07 | 2005-09-20 | John Addink | Automatic adjustment of irrigation schedule according to condition of plants |
US6568416B2 (en) * | 2001-02-28 | 2003-05-27 | Brian L. Andersen | Fluid flow control system, fluid delivery and control system for a fluid delivery line, and method for controlling pressure oscillations within fluid of a fluid delivery line |
US6823239B2 (en) * | 2001-11-05 | 2004-11-23 | Rain Master Irrigation Systems, Inc. | Internet-enabled central irrigation control |
US20040011880A1 (en) * | 2001-11-14 | 2004-01-22 | Addink John W | Device that modifies irrigation schedules of existing irrigation controllers |
WO2003041874A1 (en) * | 2001-11-14 | 2003-05-22 | Aqua Conservation Systems, Inc. | Irrigation control system |
US20030109964A1 (en) * | 2001-12-11 | 2003-06-12 | John Addink | Irrigation controller using regression model |
US20030182022A1 (en) * | 2002-03-21 | 2003-09-25 | John Addink | Interactive irrigation system |
US6895811B2 (en) * | 2001-12-14 | 2005-05-24 | Shawmut Corporation | Detection of small holes in laminates |
US20030179102A1 (en) * | 2001-12-26 | 2003-09-25 | Andrew Barnes | System for controlling irrigation applications |
US20040015270A1 (en) * | 2002-03-21 | 2004-01-22 | Addink John W. | Interactive irrigation system |
US7403840B2 (en) * | 2002-04-19 | 2008-07-22 | Irrisoft, Inc. | Irrigation control system |
US20060161309A1 (en) | 2002-04-19 | 2006-07-20 | Moore Steven E | Irrigation control system |
EP1558866A4 (en) * | 2002-06-24 | 2010-03-03 | Arichell Tech Inc | Automated water delivery systems with feedback control |
US20050038569A1 (en) * | 2002-07-05 | 2005-02-17 | Howard Michael L. | Systems and methods for optimizing the efficiency of a watering system through use of a radio data system |
US7146254B1 (en) * | 2002-07-05 | 2006-12-05 | Matsushita Electric Works, Ltd. | Systems and methods for optimizing the efficiency of a watering system through use of a computer network |
US6782311B2 (en) * | 2002-08-10 | 2004-08-24 | Jame E. Barlow | Remotely controlled irrigation timer with fault detection |
US7010394B1 (en) * | 2002-10-24 | 2006-03-07 | The Toro Company | Intelligent environmental sensor for irrigation systems |
WO2004046872A2 (en) | 2002-11-15 | 2004-06-03 | The Toro Company | Virtual dial irrigation controller |
AU2003296510A1 (en) * | 2002-12-10 | 2004-06-30 | Et Water Systems, Llc | Irrigation system |
US7058478B2 (en) * | 2003-04-25 | 2006-06-06 | George Alexanian | Irrigation controller water management with temperature budgeting |
US7844368B2 (en) | 2003-04-25 | 2010-11-30 | George Alexanian | Irrigation water conservation with temperature budgeting and time of use technology |
US7266428B2 (en) | 2003-04-25 | 2007-09-04 | George Alexanian | Irrigation controller water management with temperature budgeting |
US8620480B2 (en) | 2003-04-25 | 2013-12-31 | George Alexanian | Irrigation water conservation with automated water budgeting and time of use technology |
US6842667B2 (en) * | 2003-05-05 | 2005-01-11 | Hunter Industries, Inc. | Positive station module locking mechanism for expandable irrigation controller |
US6721630B1 (en) * | 2003-06-05 | 2004-04-13 | Hunter Industries, Inc. | Expandable irrigation controller with optional high-density station module |
WO2005006836A2 (en) * | 2003-07-23 | 2005-01-27 | C.I.T. Controlled Irrigation Technologies Ltd. | Adaptive irrigation of vegetation |
US7430458B2 (en) * | 2003-10-29 | 2008-09-30 | Hydropoint Data Systems, Inc. | Calculating an ET value for an irrigation area |
US20050125083A1 (en) * | 2003-11-10 | 2005-06-09 | Kiko Frederick J. | Automation apparatus and methods |
US7458521B2 (en) * | 2004-10-30 | 2008-12-02 | Norman Ivans | Irrigation unit having a control system and a data storage unit |
CA2495125C (en) * | 2004-01-30 | 2012-11-20 | Robert Miller | Irrigation controller |
US7203576B1 (en) * | 2004-02-09 | 2007-04-10 | Orbit Irrigation Products, Inc. | Moisture sensor timer |
US7133749B2 (en) | 2004-02-11 | 2006-11-07 | The Toro Company | Method and apparatus for optimizing soil moisture |
US7328089B2 (en) * | 2004-02-11 | 2008-02-05 | The Toro Company | Satellite irrigation controller |
US7165730B2 (en) | 2004-03-26 | 2007-01-23 | James Jolly Clark | Water irrigation system with moisture gauge and method of controlling irrigation |
US20050216128A1 (en) | 2004-03-26 | 2005-09-29 | Clark James J | Water irrigation system with elevated sensing unit and method of controlling irrigation |
US20050211792A1 (en) | 2004-03-26 | 2005-09-29 | Clark James J | Water irrigation system and method of controlling irrigation using evapotranspiration |
US20050211794A1 (en) | 2004-03-26 | 2005-09-29 | Clark James J | Water irrigation system with wind sensor and method of controlling irrigation |
US20050211793A1 (en) | 2004-03-26 | 2005-09-29 | Clark James J | Water irrigation system and method of controlling irrigation with community irrigation instructions |
US20050216129A1 (en) | 2004-03-26 | 2005-09-29 | Clark James J | Water irrigation system with solar panel and method of controlling irrigation |
US20050216127A1 (en) | 2004-03-26 | 2005-09-29 | Clark James J | Water irrigation system with moisture collector and method of controlling irrigation |
US20050216130A1 (en) | 2004-03-26 | 2005-09-29 | Clark James J | Water irrigation system with wireless communication and method of controlling irrigation |
US7358626B2 (en) * | 2004-05-26 | 2008-04-15 | The Toro Company | Two-wire power and communications for irrigation systems |
US7069115B1 (en) * | 2004-06-30 | 2006-06-27 | Hunter Industries, Inc. | Hybrid modular/decoder irrigation controller |
US7789321B2 (en) * | 2004-09-07 | 2010-09-07 | Digital Sun, Inc. | Wireless sprinkler control |
US7477950B2 (en) * | 2004-09-28 | 2009-01-13 | Dymocom, Inc. | Method and system for controlling a network of water appliances |
US20100030476A1 (en) | 2008-07-29 | 2010-02-04 | Woytowitz Peter J | Irrigation System with ET Based Seasonal Watering Adjustment |
US20100094472A1 (en) | 2008-10-14 | 2010-04-15 | Woytowitz Peter J | Irrigation System With Soil Moisture Based Seasonal Watering Adjustment |
US7853363B1 (en) * | 2004-11-09 | 2010-12-14 | Hunter Industries, Inc. | Evapotranspiration unit connectable to an irrigation controller |
US7877168B1 (en) * | 2004-11-09 | 2011-01-25 | Hunter Industries, Inc. | Evapotranspiration unit for re-programming an irrigation controller |
US20060116792A1 (en) | 2004-12-01 | 2006-06-01 | Addink John W | Irrigation controller |
US7245991B1 (en) * | 2005-01-28 | 2007-07-17 | Hunter Industries, Inc. | Distributed architecture irrigation controller |
US7532954B2 (en) * | 2005-02-11 | 2009-05-12 | Rain Bird Corporation | System and method for weather based irrigation control |
US7168632B2 (en) * | 2005-06-14 | 2007-01-30 | Lawrence Kates | Multi-zone sprinkler system with moisture sensors and configurable spray pattern |
US20070016334A1 (en) | 2005-06-30 | 2007-01-18 | Smith Brian J | Method and system for transmitting and utilizing forecast meteorological data for irrigation controllers |
US7289886B1 (en) * | 2005-07-28 | 2007-10-30 | Hunter Industries, Inc. | Modular irrigation controller with separate field valve line wiring terminals |
US7225058B1 (en) * | 2006-01-25 | 2007-05-29 | Hunter Industries, Inc. | Modular irrigation controller with indirectly powered station modules |
US7413380B2 (en) | 2006-04-10 | 2008-08-19 | Subair Systems, Llc | Golf course turf conditioning control system and method |
AU2007247732B2 (en) * | 2006-05-08 | 2012-03-29 | P & B Agri-Tech Innovations Inc. | Method and system for monitoring growth characteristics |
EP2035629A4 (en) * | 2006-06-20 | 2012-08-29 | Rain Bird Corp | Sensor device for interrupting irrigation |
US20080142614A1 (en) | 2006-12-15 | 2008-06-19 | Aly Elezaby | Zone Pressure Management System and Method for an Irrigation System |
US7805221B2 (en) * | 2007-05-17 | 2010-09-28 | Rain Bird Corporation | Automatically adjusting irrigation controller |
US20090094097A1 (en) | 2007-10-03 | 2009-04-09 | Seth Gardenswartz | Network-based optimization of services |
US20090099701A1 (en) | 2007-10-12 | 2009-04-16 | Rain Bird Corporation | Remote Access to Irrigation Control Systems |
WO2009082473A1 (en) | 2007-12-20 | 2009-07-02 | Kah Carl L C Jr | Wireless moisture probe, receiving controller and irrigation control system |
US8326440B2 (en) | 2008-02-23 | 2012-12-04 | Ranch Systems Llc | System for intelligent delegation of irrigation control |
US7953517B1 (en) * | 2008-10-01 | 2011-05-31 | Hunter Industries, Inc. | Landscape controller with control panel insertable feature module |
-
2008
- 2008-07-29 US US12/181,894 patent/US20100030476A1/en not_active Abandoned
-
2011
- 2011-06-03 US US13/153,270 patent/US8600569B2/en active Active
-
2013
- 2013-11-26 US US14/090,281 patent/US20140081471A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444611A (en) * | 1993-10-28 | 1995-08-22 | Hunter Industries, Inc. | Lawn and garden irrigation controller |
US6452499B1 (en) * | 1998-10-07 | 2002-09-17 | Thomas Henry Runge | Wireless environmental sensor system |
US6314340B1 (en) * | 1998-11-02 | 2001-11-06 | Telsco Industries | Irrigation controller |
US6298285B1 (en) * | 2000-01-04 | 2001-10-02 | Aqua Conservation Systems, Inc. | Irrigation accumulation controller |
US6570109B2 (en) * | 2001-10-26 | 2003-05-27 | Hunter Industries, Inc. | Quick shut-off extended range hygroscopic rain sensor for irrigation systems |
US6977351B1 (en) * | 2004-10-29 | 2005-12-20 | Hunter Industries, Inc. | Moisture absorptive rain sensor with sealed position sensing element for irrigation watering program interrupt |
US7412303B1 (en) * | 2005-11-29 | 2008-08-12 | Hunter Industries, Inc. | Evapotranspiration unit for re-programming an irrigation controller |
US20090138105A1 (en) * | 2007-08-19 | 2009-05-28 | Crawford Jeffrey A | Method of controlling an irrigation system |
Cited By (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8401705B2 (en) | 2003-04-25 | 2013-03-19 | George Alexanian | Irrigation controller water management with temperature budgeting |
US8874275B2 (en) | 2003-04-25 | 2014-10-28 | George Alexanian | Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions |
US8738189B2 (en) | 2003-04-25 | 2014-05-27 | George Alexanian | Irrigation controller water management with temperature budgeting |
US7962244B2 (en) | 2003-04-25 | 2011-06-14 | George Alexanian | Landscape irrigation time of use scheduling |
US8620480B2 (en) | 2003-04-25 | 2013-12-31 | George Alexanian | Irrigation water conservation with automated water budgeting and time of use technology |
US8538592B2 (en) | 2003-04-25 | 2013-09-17 | George Alexanian | Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions |
US9301461B2 (en) | 2004-11-09 | 2016-04-05 | Hunter Industries, Inc. | Systems and methods to adjust irrigation |
US8660705B2 (en) | 2004-11-09 | 2014-02-25 | Hunter Industries, Inc. | Irrigation system with soil moisture based seasonal watering adjustment |
US8600569B2 (en) | 2004-11-09 | 2013-12-03 | Hunter Industries, Inc. | Irrigation system with ET based seasonal watering adjustment |
US20110238229A1 (en) * | 2004-11-09 | 2011-09-29 | Hunter Industries, Inc. | Irrigation System with Soil Moisture Based Seasonal Watering Adjustment |
US11805739B2 (en) | 2005-09-15 | 2023-11-07 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US9665106B2 (en) | 2005-09-15 | 2017-05-30 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US10842092B2 (en) | 2005-09-15 | 2020-11-24 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US9681610B2 (en) | 2005-09-15 | 2017-06-20 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US11337385B2 (en) | 2005-09-15 | 2022-05-24 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US10390502B2 (en) | 2005-09-15 | 2019-08-27 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US10070596B2 (en) | 2005-09-15 | 2018-09-11 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US11185023B2 (en) | 2005-09-15 | 2021-11-30 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
US8851447B2 (en) | 2005-09-15 | 2014-10-07 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US8793025B2 (en) | 2005-09-15 | 2014-07-29 | Rain Bird Corporation | Irrigation control device for decoder-based irrigation system |
US11957083B2 (en) | 2006-06-20 | 2024-04-16 | Rain Bird Corporation | User interface for a sensor-based interface device for interrupting an irrigation controller |
US10849287B2 (en) | 2006-06-20 | 2020-12-01 | Rain Bird Corporation | User interface for a sensor-based interface device for interrupting an irrigation controller |
US11297786B2 (en) | 2006-06-20 | 2022-04-12 | Rain Bird Corporation | User interface for a sensor-based interface device for interrupting an irrigation controller |
US10206342B2 (en) | 2006-06-20 | 2019-02-19 | Rain Bird Corporation | User interface for a sensor-based interface device for interrupting an irrigation controller |
US9500770B2 (en) | 2006-06-20 | 2016-11-22 | Rain Bird Corporation | Sensor device for use in controlling irrigation |
US10345487B2 (en) | 2006-06-20 | 2019-07-09 | Rain Bird Corporation | Sensor device for use in controlling irrigation |
US11822048B2 (en) | 2006-06-20 | 2023-11-21 | Rain Bird Corporation | Sensor device for use in controlling irrigation |
US11346981B2 (en) | 2006-06-20 | 2022-05-31 | Rain Bird Corporation | Sensor device for use in controlling irrigation |
US9144204B2 (en) | 2006-06-20 | 2015-09-29 | Rain Bird Corporation | User interface for a sensor-based interface device for interrupting an irrigation controller |
US20110224836A1 (en) * | 2006-06-20 | 2011-09-15 | Rain Bird Corporation | Sensor device for interrupting irrigation |
US20110238227A1 (en) * | 2006-06-20 | 2011-09-29 | Rain Bird Corporation | Sensor device for interrupting irrigation |
US8733165B2 (en) | 2006-06-20 | 2014-05-27 | Rain Bird Corporation | Sensor device for use in controlling irrigation |
US20100131119A1 (en) * | 2007-07-23 | 2010-05-27 | Andrea Brundisini | Communication system between control units for irrigation devices |
US9043036B2 (en) * | 2007-12-05 | 2015-05-26 | American Pipe and Fitting, Inc. | System and method for wireless irrigation utilizing a centralized control server and field module matrix |
US20110190948A1 (en) * | 2007-12-05 | 2011-08-04 | Daniel Joseph Fekete | System and method for wireless irrigation utilizing a centralized control server and field module matrix |
US9775308B2 (en) | 2008-09-05 | 2017-10-03 | Plantcare Ag | Method and apparatus for the automatic regulation of the irrigation of plants |
US8862276B2 (en) * | 2008-09-05 | 2014-10-14 | Plantcare Ag | Method and apparatus for the automatic regulation of the irrigation of plants |
US8977400B1 (en) * | 2008-10-01 | 2015-03-10 | Hunter Industries, Inc. | Landscape controller with feature module |
US9678485B2 (en) | 2008-10-01 | 2017-06-13 | Hunter Industries, Inc. | Landscape controller with control panel insertable feature module |
US8793024B1 (en) | 2009-02-27 | 2014-07-29 | Hunter Industries, Inc. | Irrigation system with multiple soil moisture based seasonal watering adjustment |
US9095102B2 (en) | 2009-04-06 | 2015-08-04 | Connie Ruby Masters | Irrigation controller and system integrating no-watering restrictions and an empirically-derived evapotranspiration local characteristic curve |
US20100256827A1 (en) * | 2009-04-06 | 2010-10-07 | Bruce Allen Bragg | Irrigation Controller Integrating Mandated No-Watering Days, Voluntary No-Watering Days, and an Empirically-Derived Evapotranspiration Local Characteristic Curve |
US8659183B2 (en) | 2009-07-17 | 2014-02-25 | Rain Bird Corporation | Variable initialization time in the charging of energy reserves in an irrigation control system |
US8909381B2 (en) | 2009-07-17 | 2014-12-09 | Rain Bird Corporation | Data communication in a multi-wire irrigation control system |
US20110015793A1 (en) * | 2009-07-17 | 2011-01-20 | Rain Bird Corporation | Variable Initialization Time in the Charging of Energy Reserves in an Irrigation Control System |
US20110017845A1 (en) * | 2009-07-27 | 2011-01-27 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US10842091B2 (en) | 2009-07-27 | 2020-11-24 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US11330770B2 (en) | 2009-07-27 | 2022-05-17 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US8840084B2 (en) | 2009-07-27 | 2014-09-23 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US10058042B2 (en) | 2009-07-27 | 2018-08-28 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
US20110270448A1 (en) * | 2009-09-03 | 2011-11-03 | Kantor Philip A | Irrigation Controller and System Integrating No-Watering Restrictions and an Empirically-Derived Evapotranspiration Local Characteristic Curve |
US8565904B2 (en) * | 2009-09-03 | 2013-10-22 | Bruce Allen Bragg | Irrigation controller and system integrating no-watering restrictions and an empirically-derived evapotranspiration local characteristic curve |
US8234014B1 (en) * | 2009-11-02 | 2012-07-31 | Eco-Precise Irrigation Controls, LLC | Irrigation control system and method |
US11061375B2 (en) * | 2010-04-06 | 2021-07-13 | Connie R. Masters | Irrigation controller and system |
US10394206B2 (en) * | 2010-04-06 | 2019-08-27 | Philip Andrew Kantor | Irrigation controller and system integrating no-watering restrictions and an empirically-derived evapotranspiration local characteristic curve |
US8744773B2 (en) | 2010-05-19 | 2014-06-03 | Hunter Industries, Inc. | Rain sensor with variable shut off |
USD668231S1 (en) * | 2010-08-03 | 2012-10-02 | Hunter Industries, Inc. | Decoder module for irrigation controller |
US20150112494A1 (en) * | 2011-01-06 | 2015-04-23 | Hunter Industries, Inc. | Irrigation system with et based seasonal watering adjustment and soil moisture sensor shutoff |
US8924032B2 (en) | 2011-01-06 | 2014-12-30 | Hunter Industries, Inc. | Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff |
US9781887B2 (en) * | 2011-01-06 | 2017-10-10 | Hunter Industries, Inc. | Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff |
US10638675B2 (en) * | 2011-02-25 | 2020-05-05 | The Toro Company | Irrigation controller with weather station |
US10512226B2 (en) * | 2011-07-15 | 2019-12-24 | Earthtec Solutions Llc | Crop-specific automated irrigation and nutrient management |
US10225996B1 (en) | 2011-11-10 | 2019-03-12 | Hunter Industries, Inc. | Control module for a water harvesting system |
US10939626B2 (en) | 2011-11-10 | 2021-03-09 | Hunter Industries, Inc. | Control module for a water harvesting system |
US20130131874A1 (en) * | 2011-11-22 | 2013-05-23 | ZBS Technology LLC | System and method for wireless irrigation control with a remote application |
US8930032B2 (en) * | 2011-11-22 | 2015-01-06 | Zbs Technology, Llc | System and method for wireless irrigation control with a remote application |
US11744195B2 (en) | 2012-08-01 | 2023-09-05 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US11109546B2 (en) | 2012-08-01 | 2021-09-07 | Walmart Apollo, Llc | Irrigation controller wireless network adapter and networked remote service |
US10292343B2 (en) | 2012-08-01 | 2019-05-21 | Rain Bird Corporation | Irrigation controller wireless network adapter and networked remote service |
US10368503B2 (en) * | 2012-09-18 | 2019-08-06 | Carl L. C. Kah, Jr. | Expandable irrigation controller |
US20140081469A1 (en) * | 2012-09-18 | 2014-03-20 | Carl L.C. Kah, JR. | Expandable irrigation controller |
US11570956B2 (en) | 2012-11-07 | 2023-02-07 | Rain Bird Corporation | Irrigation control systems and methods |
US11937557B2 (en) | 2012-11-07 | 2024-03-26 | Rain Bird Corporation | Irrigation control systems and methods |
US10327397B2 (en) | 2012-11-07 | 2019-06-25 | Rain Bird Corporation | Irrigation control systems and methods |
US10437217B2 (en) * | 2013-02-01 | 2019-10-08 | Hunter Industries, Inc. | Irrigation controller with robust ground path |
US9814190B1 (en) * | 2013-02-01 | 2017-11-14 | Hunter Industries, Inc. | Irrigation controller with robust ground path |
US10967395B2 (en) | 2013-02-01 | 2021-04-06 | Hunter Industries, Inc. | Irrigation controller with robust ground path |
USD751423S1 (en) | 2013-06-06 | 2016-03-15 | Reliance Controls Corporation | Enclosure for a timer |
US9655311B1 (en) | 2013-12-10 | 2017-05-23 | Hunter Industries, Inc. | Absorbent rain sensor with retention basin |
US10206341B2 (en) | 2014-07-21 | 2019-02-19 | Rain Bird Corporation | Rainfall prediction and compensation in irrigation control |
US10798834B2 (en) | 2014-08-28 | 2020-10-06 | Hunter Industries, Inc. | Communications interface system for landscape control systems |
US10015894B2 (en) | 2014-08-28 | 2018-07-03 | Hunter Industries, Inc. | Communications interface system for landscape control systems |
US20180160636A1 (en) * | 2015-05-18 | 2018-06-14 | Hozelock Limited | Garden watering controllers |
US20180248573A1 (en) * | 2015-08-31 | 2018-08-30 | Sony Corporation | Reception device, receiving method, and program |
US20170290186A1 (en) * | 2016-04-01 | 2017-10-05 | Aeon Matrix Inc. | Housing for electronic sprinkler controller |
US11089746B2 (en) | 2016-07-15 | 2021-08-17 | Rain Bird Corporation | Wireless remote irrigation control |
US10609878B2 (en) | 2016-07-15 | 2020-04-07 | Rain Bird Corporation | Wireless remote irrigation control |
US11700801B2 (en) | 2016-09-07 | 2023-07-18 | Rynan Technologies Pte. Ltd. | Alternate wetting and drying (AWD) system and method |
CN109862779A (en) * | 2016-09-07 | 2019-06-07 | 莱南科技私人有限公司 | Irrigation system and method |
WO2018045458A1 (en) * | 2016-09-07 | 2018-03-15 | Rynan Technologies Pte. Ltd. | Irrigation system and method |
US11369067B2 (en) | 2016-09-07 | 2022-06-28 | Rynan Technologies Pte. Ltd. | Irrigation system and method |
US10285344B2 (en) * | 2016-09-16 | 2019-05-14 | Hunter Industries, Inc. | Irrigation controller with reversible operator controls |
US10561079B2 (en) | 2016-09-16 | 2020-02-18 | Hunter Industries, Inc. | Irrigation controller with reversible operator controls |
US11178830B2 (en) | 2016-09-16 | 2021-11-23 | Hunter Industries, Inc. | Irrigation controller with reversible operator controls |
US10444769B2 (en) | 2017-04-24 | 2019-10-15 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US11119513B2 (en) | 2017-04-24 | 2021-09-14 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US10757873B2 (en) | 2017-04-24 | 2020-09-01 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US11803198B2 (en) | 2017-04-24 | 2023-10-31 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US10980120B2 (en) | 2017-06-15 | 2021-04-13 | Rain Bird Corporation | Compact printed circuit board |
US11006590B2 (en) | 2017-08-03 | 2021-05-18 | Lalit Kumar | Moisture monitoring system with internet of things devices |
US20190037787A1 (en) * | 2017-08-03 | 2019-02-07 | Lalit Kumar | Smart Moisture Meter |
US11957084B2 (en) | 2017-10-23 | 2024-04-16 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US11357182B2 (en) | 2017-10-23 | 2022-06-14 | Rain Bird Corporation | Sensor-based interruption of an irrigation controller |
US11006589B2 (en) | 2017-12-29 | 2021-05-18 | Rain Bird Corporation | Weather override irrigation control systems and methods |
US11503782B2 (en) | 2018-04-11 | 2022-11-22 | Rain Bird Corporation | Smart drip irrigation emitter |
US11917956B2 (en) | 2018-04-11 | 2024-03-05 | Rain Bird Corporation | Smart drip irrigation emitter |
US10918029B2 (en) * | 2018-07-25 | 2021-02-16 | The Board Of Trustees Of The University Of Arkansas | Surge valve assembly |
US11395416B2 (en) | 2019-09-11 | 2022-07-19 | Hunter Industries, Inc. | Control box |
Also Published As
Publication number | Publication date |
---|---|
US20140081471A1 (en) | 2014-03-20 |
US8600569B2 (en) | 2013-12-03 |
US20110238228A1 (en) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8600569B2 (en) | Irrigation system with ET based seasonal watering adjustment | |
US9781887B2 (en) | Irrigation system with ET based seasonal watering adjustment and soil moisture sensor shutoff | |
US9301461B2 (en) | Systems and methods to adjust irrigation | |
US8660705B2 (en) | Irrigation system with soil moisture based seasonal watering adjustment | |
US8793024B1 (en) | Irrigation system with multiple soil moisture based seasonal watering adjustment | |
US10542684B2 (en) | Modular irrigation controller | |
US7853363B1 (en) | Evapotranspiration unit connectable to an irrigation controller | |
US9301460B2 (en) | Irrigation controller with weather station | |
US8874275B2 (en) | Landscape irrigation management with automated water budget and seasonal adjust, and automated implementation of watering restrictions | |
US7412303B1 (en) | Evapotranspiration unit for re-programming an irrigation controller | |
US7877168B1 (en) | Evapotranspiration unit for re-programming an irrigation controller | |
US6892114B1 (en) | Modifying irrigation schedules of existing irrigation controllers | |
US5853122A (en) | Relative humidity sensitive irrigation valve control | |
US20080302002A1 (en) | Watering System for Watering Plants | |
WO2010118053A2 (en) | Irrigation controller integrating mandated no-watering days, voluntary no-watering days, and an empirically-derived evapotranspiration local characteristic curve | |
US20100023173A1 (en) | Irrigation system and method | |
US20100300549A1 (en) | Modulated watering system | |
US7562832B1 (en) | Two-conductor moisture activated switch | |
US8260466B2 (en) | Modulated watering device based on watering index percentage | |
US20110271590A1 (en) | Garden System | |
EP3484275B1 (en) | Apparatus for watering plants | |
CN115712263A (en) | Network-based garden management control system | |
JPS6041426A (en) | Control of water sprinkler | |
TWM624238U (en) | Smart Green Roof System | |
JPH1157549A (en) | Automatic sprinkler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HUNTER INDUSTRIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOYTOWITZ, PETER J.;SHEARIN, CHRISTOPHER M.;REEL/FRAME:025222/0275 Effective date: 20100610 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |