US20100185161A1 - Systems and methods for navigating an instrument through bone - Google Patents
Systems and methods for navigating an instrument through bone Download PDFInfo
- Publication number
- US20100185161A1 US20100185161A1 US12/683,555 US68355510A US2010185161A1 US 20100185161 A1 US20100185161 A1 US 20100185161A1 US 68355510 A US68355510 A US 68355510A US 2010185161 A1 US2010185161 A1 US 2010185161A1
- Authority
- US
- United States
- Prior art keywords
- trocar
- cannula
- curved
- bone
- curveable cannula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 138
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000000523 sample Substances 0.000 claims abstract description 68
- 230000005465 channeling Effects 0.000 claims abstract description 32
- 238000011282 treatment Methods 0.000 claims description 106
- 230000001054 cortical effect Effects 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 14
- 230000001225 therapeutic effect Effects 0.000 claims description 14
- 230000013011 mating Effects 0.000 claims description 13
- 238000013519 translation Methods 0.000 claims description 11
- 238000002560 therapeutic procedure Methods 0.000 claims description 5
- 210000001519 tissue Anatomy 0.000 description 24
- 210000005036 nerve Anatomy 0.000 description 23
- 239000000463 material Substances 0.000 description 13
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 12
- 229910001000 nickel titanium Inorganic materials 0.000 description 12
- 241001631457 Cannula Species 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 210000004872 soft tissue Anatomy 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000002638 denervation Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 210000003484 anatomy Anatomy 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000002679 ablation Methods 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- 230000037182 bone density Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 230000007830 nerve conduction Effects 0.000 description 2
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007435 diagnostic evaluation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1487—Trocar-like, i.e. devices producing an enlarged transcutaneous opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1642—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for producing a curved bore
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1662—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
- A61B17/1671—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3468—Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3472—Trocars; Puncturing needles for bones, e.g. intraosseus injections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/148—Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8802—Equipment for handling bone cement or other fluid fillers
- A61B17/8805—Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/16—Indifferent or passive electrodes for grounding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00292—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
- A61B2017/003—Steerable
- A61B2017/00318—Steering mechanisms
- A61B2017/00331—Steering mechanisms with preformed bends
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
- A61B2017/3405—Needle locating or guiding means using mechanical guide means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B2017/3454—Details of tips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00017—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids with gas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00339—Spine, e.g. intervertebral disc
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00434—Neural system
- A61B2018/0044—Spinal cord
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00565—Bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1475—Electrodes retractable in or deployable from a housing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
Definitions
- This invention pertains generally to generating passageways through tissue, and more particularly to creating curved paths in bone.
- a probe preferably needs to be capable of navigating to the posterior section of the S1 vertebral body as well as the same target area within a lumbar vertebral segment.
- spinal segments in the cervical and thoracic spine may also be targeted.
- the device or probe In order to accurately and predictably place a treatment device in the posterior midline section of a lumbar vertebral body or S1 vertebral body, the device or probe needs to navigate to said area through varying densities of bone. However due to the varying densities of bone, it is difficult to navigate a probe in bone and ensure its positioning will be in the posterior midline section of the vertebral body.
- the guide needle has a side hole 1 cm from the distal tip.
- the smaller needle is deflected by a ramp inside the guide, causing the smaller needle to exit through the side hole.
- this side exiting needle is able to deflect a bone aspiration needle, it does not guarantee that the needle exits the side hole in a linear direction into the tissue site. Once the tissue aspiration needle exits the needle, it will deviate from a linear path depending on the density of the tissue and inherent material strength of the needle. This is an inherent problem the device is unable to overcome.
- an object of the present invention is a system and method for generating a path in bone that predictably follows a predetermined curved path.
- the present invention is directed to systems and methods to deploy and navigate a flexible treatment instrument, such as an RF bipolar probe, within bone.
- a flexible treatment instrument such as an RF bipolar probe
- the systems and methods described below are primarily directed to navigating bone through a vertebral member of the spine, and particularly to treat the BVN of a vertebral member, it is appreciated that the novel aspects of the present invention may be applied to any tissue segment of the body.
- the first novel principle of this invention is the ability to navigate a curve or angle within varying densities of cancellous bone and create a straight channel at the end of the navigated curve or angle.
- One aspect is a method of therapeutically treating a vertebral body having an outer cortical bone region and an inner cancellous bone region, and a BVN having a trunk extending from the outer cortical bone region into the inner cancellous region and a branches extending from the trunk to define a BVN junction, comprising the steps of: a) inserting an energy device into the vertebral body, and b) exclusively depositing energy within the inner cancellous bone region of the vertebral body between, but exclusive of the BVN junction and the outer cortical bone region, to denervate the BVN.
- a tube-within-tube embodiment has a deployable curved Nitinol tube that deploys from a straight cannula.
- the Nitinol tube is pre-curved to create an angular range of approximately 0° to approximately 180°, but more specifically from approximately 45° to approximately 110°, when fully deployed from the straight cannula.
- the design of the curve is such that the flexible element (carrying the treatment device) can navigate through the angular range of deployment of the nitinol tube.
- the curved nitinol tube allows the flexible element to navigate through a curve within bone without veering off towards an unintended direction. Cancellous bone density varies from person to person.
- the flexible element is deployed into the bone through the curved Nitinol tube, which supports the element as it traverses through the curve. When it departs from the tube, it will do so in a linear direction towards the target zone.
- This design allows the user to predictably and accurately deploy the flexible element towards the target zone regardless of the density of the cancellous bone.
- An aspect of the invention is a system for channeling a path into bone.
- the system comprises a trocar having a central channel and opening at its distal tip, and a cannula sized to be received in said central channel and delivered to the distal opening.
- the cannula has a deflectable tip with a preformed curve such that the tip straightens while being delivered through the trocar and regains its preformed curve upon exiting and extending past the distal opening of the trocar to generate a curved path in the bone corresponding to the preformed curve of the deflectable tip.
- the cannula comprises a central passageway having a diameter configured allow a treatment device to be delivered through the central passageway to a location beyond the curved path.
- the system further includes a straight stylet configured to be installed in the trocar, wherein the straight stylet comprises a sharp distal tip that is configured to extend beyond the distal opening of the trocar to pierce the bone as the trocar is being delivered to a treatment location within the bone.
- the system may further include a straightening stylet configured to be installed in the cannula, wherein the straightening stylet comprising a rigid construction configured to straighten the distal tip of the cannula when positioned in the trocar.
- the straightening stylet further comprises a sharp distal end to pierce the bone, and the straightening stylet and cannula are installed in the trocar in place of the straight stylet as the trocar is delivered into the bone.
- the system further includes a curved stylet having an outer radius sized to fit within the central passageway of the curved cannula.
- the curved stylet is configured to be installed in the curved cannula while the curved cannula is extended past the distal opening of the trocar, the curved stylet configured to block the distal opening of the curved cannula while being delivered into the bone.
- the curved stylet has a curved distal end corresponding to the curve of the curved cannula.
- the curved stylet also has a sharp distal tip configured to extend past the curved cannula to pierce the bone as the cannula is delivered past the distal opening of the trocar.
- the curved stylet also preferably comprises an angled distal tip configured to further support and maintain the curved stylet radius as it is delivered past the distal opening of the trocar and into bone.
- the curved stylet and the curved cannula have mating proximal ends that align the curve of the curved stylet with the curve of the curved cannula.
- the system further includes a straight channeling stylet configured to be installed in the cannula after removing the curved stylet, wherein the straight channeling stylet is flexibly deformable to navigate the curved cannula yet retain a straight form upon exiting the curve cannula, and wherein straight channeling stylet has a length longer than the curved cannula such that it creates a linear path beyond the distal end of the curved cannula when fully extended.
- Another aspect is a method for channeling a path into bone to a treatment location in the body of a patient.
- the method includes the steps of inserting a trocar having a central channel and opening at its distal tip into a region of bone at or near the treatment location, and delivering a cannula through said central channel and to said distal opening, wherein the cannula comprises a deflectable tip with a preformed curve such that the tip straightens while being delivered through the trocar and regains its preformed curve upon exiting the trocar, and extending the cannula past the distal opening of the trocar to generate a curved path in the bone corresponding to the preformed curve of the deflectable tip.
- a treatment device is delivered through a central passageway in said cannula having to the treatment location beyond the curved path.
- inserting a trocar into a region of bone comprises inserting a stylet into the trocar such that the stylet extends beyond the distal opening of the trocar, and inserting the stylet and trocar simultaneously into the region of bone such that the stylet pierces the bone as the trocar is being delivered to a treatment location.
- delivering a cannula through the central channel comprises inserting a straightening stylet into the central passageway of the cannula, wherein the straightening stylet comprises a rigid construction configured to straighten the curved distal tip of the cannula, and inserting the straightening stylet and straightened cannula simultaneously into the trocar.
- the straightening stylet further comprises a sharp distal end to pierce the bone, wherein the straightening stylet and cannula are installed simultaneously along with the trocar as the trocar is delivered into the bone.
- extending the cannula past the distal opening is done by inserting a curved stylet into the central passageway of the curved cannula such that a distal tip of the curved stylet extends to at least the distal opening of the curved cannula, and simultaneously extending the curved cannula and curved stylet from the distal end of the trocar such that the curved stylet blocks the distal opening of the curved cannula while being delivered into the bone.
- the curved stylet has a curved distal end corresponding to the curve of the curved cannula, and wherein the curved stylet reinforces the curved shape of the curved cannula as the curved cannula is extended past the distal opening of the trocar.
- the curved stylet has a sharp distal tip such that it is advanced within the central passageway so that the curved stylet extends past the distal opening of the curved cannula such that the curved stylet pierces the bone as the cannula is delivered past the distal opening of the trocar.
- the curved stylet is removed from the curved cannula, and a straight channeling stylet is inserted into the curved distal end of the cannula.
- the straight channeling stylet is flexibly deformable to navigate the curved cannula, yet retain a straight form upon exiting the curved cannula.
- the straight channeling stylet is longer than the curved cannula to create a linear channel beyond the distal tip of the curved cannula.
- the trocar is inserted through a cortical bone region and into a cancellous bone region of a vertebrae, and the curved cannula is extended though at least a portion of the cancellous bone region to a location at or near the treatment location.
- a preferred treatment location comprises a BVN of the vertebrae, and treatment is delivered to the treatment location to denervate at least a portion of the BVN.
- a portion of the BVN is denervated by delivering focused, therapeutic heating to an isolated region of the BVN.
- a portion of the BVN comprises is denervated delivering an agent to the treatment region to isolate treatment to that region.
- the treatment is focused on a location of the BVN that is downstream of one or more branches of the BVN.
- kits for channeling a path into bone includes a trocar having a central channel and opening at its distal tip, and a cannula selected from a set of cannulas sized to be received in said central channel and delivered to said distal opening.
- the cannula has a deflectable distal tip with a preformed curve such that the tip straightens while being delivered through the trocar and regains its preformed curve upon exiting and extending past the distal opening of the trocar to generate a curved path in the bone corresponding to the preformed curve of the deflectable tip.
- the cannula comprises a central passageway having a diameter configured allow a treatment device to be delivered through the central passageway to a location beyond the curved path, wherein the set of cannulas comprises one or more cannulas that have varying preformed curvatures at the distal tip.
- the one or more cannulas have a varying preformed radius at the distal tip.
- the one or more cannulas each have distal tips that terminate at varying angles with respect to the central channel of the trocar.
- the length of the distal tips may also be varied.
- the angle of the distal with respect to the central channel of the trocar may vary from 0 degrees to 180 degrees.
- the kit may further include a straight stylet configured to be installed in the trocar, the straight stylet comprising a sharp distal tip that is configured to extend beyond the distal opening of the trocar to pierce the bone as the trocar is being delivered to a treatment location within the bone.
- the kit includes a set of curved stylets having an outer radius sized to fit within the central passageway of the curved cannula, wherein each curved stylet is configured to be installed in the curved cannula while the curved cannula is extended past the distal opening of the trocar.
- the curved stylet is configured to block the distal opening of the curved cannula while being delivered into the bone.
- Each curved stylet has a varying curved distal end corresponding to the curve of a matching curved cannula in the set of curved cannulas.
- the curved stylet has a sharp distal tip configured to extend past the curved cannula to pierce the bone as the cannula is delivered past the distal opening of the trocar.
- the kit in another embodiment, includes a set of straight channeling stylets wherein one of the set of stylets is configured to be installed in the cannula after removing the curved stylet.
- the straight channeling stylet is flexibly deformable to navigate the curved cannula yet retain a straight form upon exiting the curve cannula.
- Each of the straight channeling stylets has a varying length longer than the curved cannula such that the straight channeling stylet creates a predetermined-length linear path beyond the distal end of the curved cannula when fully extended.
- Another aspect is a system for channeling a path into bone, having a trocar with a proximal end, distal end and a central channel disposed along a central axis of the trocar and extending from the proximal end toward the distal end.
- the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel.
- the system includes a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening.
- the curveable cannula comprises a curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar, and a central passageway having a diameter configured allow a probe to be delivered through the central passageway to a location beyond the curved path.
- a further aspect is a spine therapy system, comprising: a trocar having a proximal end, distal end and a central channel; wherein the central channel is disposed along a central axis of the trocar and extends from the proximal end toward the distal end; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; wherein the trocar is configured to be deployed through a cortical bone region and into a cancellous bone region of a vertebral body; a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening; the curveable cannula comprising a central passageway and curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar; wherein the curved path is generated though at least a portion of the cancellous bone region of the vertebral body; and a
- Another aspect is a method for channeling a path into bone to a treatment location in the body of a patient, comprising the steps of inserting a trocar into a region of bone near the treatment location; the trocar having a having a proximal end, distal end and a central channel disposed therebetween; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; delivering a curveable cannula through said central channel and to said radial opening; and deploying the curveable cannula laterally outward from the radial opening in a curved path extending away from the trocar
- FIG. 1 is a system for generating a curved path in bone according to the present invention.
- FIG. 2 is a sectional view of the system of FIG. 1
- FIG. 3 illustrates a sectioned view of a vertebral body with a path bored through the cortical shell.
- FIGS. 4A-F illustrate a method for accessing the BVN with the system of the present invention.
- FIG. 5 shows an alternative system for generating a curved path in bone according to the present invention.
- FIG. 6 shows the system of FIG. 5 being installed in a vertebral body.
- FIGS. 7A-7B show a curved stylet in accordance with the present invention.
- FIG. 8 illustrates a perspective view of a system for generating a curved path in bone according to the present invention.
- FIG. 9 is an exploded view of the system of FIG. 8 .
- FIG. 10A-10E show schematic diagrams of the system of FIG. 8 at various stages of deployment during a procedure.
- FIG. 11 is a section view of the proximal end of the system of FIG. 8 during introduction of the system into the body.
- FIG. 12 is a side view of the distal end of the system of FIG. 8 during introduction of the system into the body.
- FIG. 13 is a section view of the proximal end of the system of FIG. 8 after deploying the curveable cannula into the body.
- FIG. 14 is a side view of the distal end of the system of FIG. 8 after deploying the curveable cannula into the body.
- FIG. 15 is a section view of the proximal end of the system of FIG. 8 with the drive nut retracted.
- FIG. 16 is a section view of the proximal end of the system of FIG. 8 after deploying the probe into the body.
- FIG. 17 is a side view of the distal end of the system of FIG. 8 after deploying the probe into the body.
- FIGS. 18A and 18B are side views of the distal end of the system of FIG. 8 with the curveable cannula in a stowed and deployed position respectively.
- FIG. 19A illustrates a perspective view of an alternative system for generating a curved path in bone according to the present invention.
- FIG. 19B illustrates the system of FIG. 19A in a deployed configuration.
- FIG. 1 through FIG. 19B the apparatus generally shown in FIG. 1 through FIG. 19B .
- the apparatus may vary as to configuration and as to details of the parts, and that the method may vary as to the specific steps and sequence, without departing from the basic concepts as disclosed herein.
- FIGS. 1 and 2 illustrate a first embodiment of the present invention comprising a system or kit 10 for forming a path through bone.
- the system comprises a having a needle trocar 20 (the main body of the instrument set).
- the trocar 20 comprises an elongate shaft 28 having a handle 24 at its proximal end 32 and a central lumen 36 passing through to the distal end 22 of the trocar 20 .
- the central lumen 36 is generally sized to allow the other instruments in the system 10 to be slideably introduced into the patient to a treatment region.
- System 10 further comprises a straight stylet 80 having a sharp-tipped needle 84 at its distal end that is used with the needle trocar 20 to create the initial path through the soft tissue and cortical shell to allow access to the cancellous bone, a curved cannula 50 that is used to create/maintain the curved path within the bone/tissue.
- a straightening stylet 40 is used to straighten out the curve and load the curved cannula 50 into the needle trocar 20 .
- a curved stylet 60 is used in conjunction with the curved cannula 50 to create the curved path within the bone/tissue, and a channeling stylet 90 is used to create a working channel for a treatment device (such as RF probe 100 ) beyond the end of the curved path created by the curved cannula 50 .
- a treatment device such as RF probe 100
- the surgical devices and surgical systems described may be used to deliver numerous types of treatment devices to varying regions of the body. Although the devices and systems of the present invention are particularly useful in navigating through bone, it is appreciated that they may also be used to navigate through soft tissue, or through channels or lumens in the body, particularly where one lumen may branch from another lumen.
- the following examples illustrate the system 10 applied to generating a curve bone path in the vertebral body, and more particularly for creating a bone path via a transpedicular approach to access targeted regions in the spine.
- the system 10 may be used to deliver a treatment device to treat or ablate intraosseous nerves, and in particular that basivertebral nerve (BVN).
- BVN basivertebral nerve
- the system and methods provide significant benefit in accessing the BVN, it is appreciated that the system 10 of the present invention may similarly be used to create a bone path in any part of the body.
- FIG. 3 illustrates a cross-sectional view of a vertebra 120 .
- the nerve basivertebral 122 has at least one exit 142 point at a location along the nerve 122 where the nerve 122 exits the vertebral body 126 into the vertebral foramen 132 .
- the basivertebral nerves are at, or in close proximity to, the exit point 142 .
- the target region of the BVN 122 is located within the cancellous portion 124 of the bone (i.e., to the interior of the outer cortical bone region 128 ), and proximal to the junction J of the BVN 122 having a plurality of branches 130 (e.g. between points A and B along nerve 122 ). Treatment in this region is advantageous because only a single portion of the BVN 122 need be effectively treated to denervate or affect the entire system.
- treatment in accordance with this embodiment can be effectuated by focusing in the region of the vertebral body located between 60% (point A) and 90% (point B) of the distance between the anterior and posterior ends of the vertebral body.
- treatment of the BVN 122 in locations more downstream than the junction J requires the denervation of each branch 130 .
- a transpedicular approach is used for penetrating the vertebral cortex to access the BVN 122 .
- a passageway 140 is created between the transverse process 134 and spinous process 136 through the pedicle 138 into the cancellous bone region 124 of the vertebral body 126 to access a region at or near the base of the nerve 122 .
- a postereolateral approach may also be used for accessing the nerve.
- FIGS. 4A-F illustrate a preferred method for accessing the BVN with the system 10 of the present invention.
- the straight stylet 80 is inserted in aperture 26 at the proximal end 32 of needle trocar 20 .
- the straight stylet 80 is advanced down the central lumen 36 (see FIG. 2 ) of the trocar 20 until the proximal stop 82 abuts against handle 24 of the trocar 20 , at which point the distal tip 84 of straight stylet protrudes out of the distal end 22 of the trocar 20 .
- the tip 84 of the straight stylet 80 preferably comprises a sharp tip for piercing soft tissue and bone.
- the assembly (trocar 20 and straight stylus 80 ) is advanced through soft tissue to the surface of the bone. Once the proper alignment is determined, the assembly is advanced through the cortical shell of pedicle 138 and into the cancellous interior 124 of the bone.
- the straight stylet 80 is removed from the trocar 20 , while the trocar 20 remains stationary within the vertebrae 120 .
- the straightening stylet 40 is inserted into proximal aperture 52 (see FIG. 2 ) of the curved cannula 50 and advanced along the central lumen of the curved cannula 50 until the stop 42 of the stylet 40 abuts up to the proximal end of the curved cannula. This forces the distal tip of the straight stylet through the curved section 56 of the curved cannula 50 to straighten out the curve 56 .
- the straight stylet comprise a hard, non-compliant material and the distal end 56 of the curved cannula 50 a compliant, yet memory retaining material (e.g. Nitinol, formed PEEK, etc.) such that the curved 56 section yields to the rigidity of the straightening stylet 40 when installed, yet retains its original curved shape when the stylet 40 is removed.
- a compliant, yet memory retaining material e.g. Nitinol, formed PEEK, etc.
- the straightening stylet 40 is secure and the curved cannula 50 is straight, they are inserted into the needle trocar 20 and secured. Proper alignment (e.g. prevent rotation, orient curve direction during deployment) is maintained by aligning a flat on the upper portion 58 of the curved cannula 50 to an alignment pin secured perpendicularly into the needle trocar 20 handle 24 . Once the curved cannula 50 is secure, the straightening stylet 40 is removed, while the curved cannula 50 remains stationary within the trocar 20 .
- Proper alignment e.g. prevent rotation, orient curve direction during deployment
- the curved stylet 60 is then straightened out by sliding the small tube 68 proximally to distally on its shaft towards the distal tip 64 or from the distal tip 64 proximally on its shaft towards the proximal end 62 .
- the curved distal tip 66 is straightened out and fully retracted inside the small tube 68
- the curved stylet 60 is inserted into the proximal aperture 52 of the curved cannula 50 , which still resides inside the needle trocar 20 .
- the small tube 68 is met by a stop 55 (see FIG. 4C ).
- the small tube 68 is held inside the handle of the curved cannula 50 .
- the curve of the two parts ( 50 & 60 ) must be aligned.
- the cap on the curved stylet 60 has an alignment pin 70 which engages with alignment notch 52 on the proximal end of the curved cannula 50 .
- the tip of the curved stylet 60 will protrude from the tip of the curved cannula 50 by about 1/16 to 3/16 inches. This protrusion will help to drive the curve in the direction of its orientation during deployment.
- the locking nut 58 at the top of the curved cannula 50 is rotated counter clockwise to allow the cannula 50 and stylet 60 to be advanced with relation to the needle trocar 20 such that the proximal end 52 about against 58 , advancing the curved cannula 50 and stylet 60 beyond the distal opening of trocar 20 to generate a curved path in the cancellous bone region 124 .
- the curved cannula 50 and stylet 60 will preferably curve at a radius of 0.4 to 1.0 inches through cancellous bone and arc to an angle between 5 and 110 degrees.
- FIGS. 7A-7B illustrate the tip of the curvet stylet 60 , which has been formed with two angles.
- the curve 66 of the curved stylet 60 is shaped in a predetermined orientation.
- the angle on the inside of the curve 72 is less than the angle on the outside of the curve 74 . This disparity in angle helps the stylet cannula assembly 50 & 60 curve in the bone as bone pushes against outside curve face 74 ensuring the curve radius is maintained during deployment.
- the curved stylet 60 is then removed and replaced by the channeling stylet 90 .
- the tip 94 of the channeling stylet 90 is advanced beyond the end 54 of the curved cannula 50 towards the intended target treatment zone.
- Channel 140 will generally have a first section 142 that crosses the cortical bone of the pedicle 138 , followed by a curved path 144 . These sections are occupied by curved cannula 50 such that a treatment device fed through the cannula 50 will have to follow the curve of the cannula 50 and not veer off in another direction.
- the channel may further comprise the linear extension 146 in the cancellous bone 124 to further advance the treatment device toward the treatment site T.
- a treatment device e.g. treatment probe 100 shown in FIG. 2 , with an active element 102 on the distal end 104 of elongate flexible catheter 110 is delivered to the target treatment location T to perform a localized treatment.
- the active element 102 is delivered to the treatment site and activated to delivery therapeutic treatment energy.
- the treatment probe may comprise an RF delivery probe having bipolar electrodes 106 and 108 that deliver a therapeutic level of heating to stimulate or ablate the nerve 122 .
- treatment may be affected by monopolar or tripolar RF, ultrasound, radiation, steam, microwave, laser, or other heating means.
- the treatment device may comprise a fluid delivery catheter that deposits an agent, e.g. bone cement, or other therapeutic agent, to the treatment site T.
- agent e.g. bone cement, or other therapeutic agent
- cryogenic cooling may be delivered for localized treatment of the BVN.
- treatment may be affected by any mechanical destruction and or removal means capable of severing or denervating the BVN.
- a cutting blade, bur or mechanically actuated cutter typically used in the art of orthoscopic surgery may be used to affect denervation of the BVN.
- a sensor may be delivered to the region to preoperatively or postoperatively measure nerve conduction at the treatment region.
- the sensor may be delivered on a distal tip of a flexible probe that may or may not have treatment elements as well.
- the goal of the treatment may be ablation, or necrosis of the target nerve or tissue, or some lesser degree of treatment to denervate the BVN.
- the treatment energy or frequency may be just sufficient to stimulate the nerve to block the nerve from transmitting signal (e.g. signals indicating pain).
- the probe 100 is withdrawn.
- the curved cannula 50 is then withdrawn into the needle trocar 20 .
- the needle trocar 20 with the curved cannula 50 is then removed and the access site is closed as prescribed by the physician.
- the design of the curves 56 and 66 of the curved cannula 50 and curved stylet 60 is such that the flexible element (e.g. carrying the treatment device) can navigate through the angular range of deployment of the Nitinol tube of the curved cannula 50 .
- the curved nitinol tube 50 allows the flexible element to navigate through a curve within bone without veering off towards an unintended direction.
- Cancellous bone density varies from person to person. Therefore, creating a curved channel within varying density cancellous bone 124 will generally not predictably or accurately support and contain the treatment device as it tries to navigate the curved channel.
- the treatment device 100 is deployed into the bone through the curved Nitinol tube of the curved cannula 50 , which supports the element as it traverses through the curve. When it departs from the tube, it will do so in a linear direction along path 146 towards the target zone. This allows the user to predictably and accurately deploy the treatment device towards the target zone T regardless of the density of the cancellous bone.
- the curved tube of the curved cannula 50 may take one of several forms.
- the tube 50 is formed from a rigid polymer that can be heat set in a particular curve. If the polymer was unable to hold the desired curve, an additional stylet (e.g. curved stylet 60 ) of Nitinol, or other appropriate material, may also be used in conjunction with the polymer tube to achieve the desired curve.
- This proposed combination of material may encompass and number or variety of materials in multiple different diameters to achieve the desired curve. These combinations only need to ensure that the final outside element (e.g. trocar 20 ) be “disengageable” from the internal elements and have an inner diameter sufficient to allow the desired treatment device 100 to pass to the treatment region T.
- the curved cannula 50 may comprise a Nitinol tube having a pattern of reliefs or cuts (not shown) in the wall of the tube (particularly on the outer radius of the bend).
- the pattern of cuts or reliefs would allow the tube to bend into a radius tighter than a solid tube could without compromising the integrity of the tubing wall.
- FIG. 5 illustrates a second embodiment of the system or kit 200 of the present invention that may be used to reduce the number of steps required for the procedure.
- the second embodiment includes a needle trocar 20 , straightening stylet 40 , used with the needle trocar 20 and the curved cannula 50 to create the initial path through the soft tissue and cortical shell to allow access to the cancellous bone, curved stylet 60 used in conjunction with the curved cannula 50 to create the curved path within the bone/tissue, and channeling stylet 90 used to create a working channel for the probe beyond the end of the curved path created by the curved stylet.
- the straightening stylet 40 is inserted into the curved cannula 50 and secured.
- the straightening stylet 40 has a sharp tip 46 designed to penetrate bone.
- the straightening stylet 40 is secure and the curved cannula 50 is straight, they are inserted into the needle trocar 20 and secured.
- the curved cannula 50 and straightening stylet 40 are inserted into the shaft 28 of the trocar 20 only as far as to have sharp tip 46 of the straightening stylet 40 protrude from the distal end 22 of the trocar 20 .
- Proper alignment is maintained by aligning a flat on the upper portion of the curved cannula 50 with a pin secured perpendicularly into the needle trocar 20 handle.
- the assembly (trocar 20 , curved cannula 50 , and straightening stylet 40 ) is advanced through soft tissue to the surface of the bone. After finding the proper alignment at the pedicle 138 of vertebrae 120 , the assembly (trocar 20 , curved cannula 50 , and straightening stylet 40 ) is advanced through the cortical shell 128 and into the cancellous interior 124 of the bone.
- the straightening stylet 40 is removed.
- the curved stylet 60 is then straightened out by sliding the small tube 68 on its shaft towards the distal tip 64 .
- the curved distal tip 66 is straightened out and fully retracted inside the small tube 68 , and then the curved stylet 60 is inserted into the curved cannula 50 which still resides inside the needle trocar 20 .
- the small tube 68 is met by a stop 55 (see FIG. 4C ).
- the small tube 68 is held inside the handle of the curved cannula 50 . This allows the curve of the stylet 60 to be exposed inside the curved cannula 50 .
- the curves of the two parts are aligned.
- the cap on the curved stylet 60 has an alignment pin, which engages with a notch on the top of the curved cannula 50 .
- the tip of the curved stylet 60 will protrude from the tip of the curved cannula 50 by about 1/16 to 3/16 inches. This protrusion will help to drive the curved cannula 50 in the direction of its orientation during deployment.
- the lock nut at the top of the curved cannula 50 is rotated counter clockwise to allow the cannula 50 and stylet 60 to be advanced with relation to the needle trocar 20 (as shown in FIG. 4D ).
- the curved cannula and stylet are advanced they generate a curved path toward the treatment location T.
- the lock nut at the top of the curved cannula 50 is engaged with the needle trocar 20 to stop any additional advancement of the curved stylet cannula assembly.
- the curved stylet 60 is then removed and replaced by the channeling stylet 90 .
- the channeling stylet 90 is advanced beyond the end of the curved cannula 50 (see FIG. 4E ) towards the intended target treatment zone creating a working channel for the active element to be inserted.
- the channeling stylet 80 Once the channeling stylet 80 reached the target treatment zone it is removed and replaced by the treatment device 100 , which is delivered to the treatment site T and activated.
- the treatment device 100 is withdrawn.
- the curved cannula 50 is then withdrawn into the needle trocar 20 .
- the needle trocar 20 with the curved cannula 50 is then removed and the access site is closed as prescribed by the physician.
- FIGS. 7A and 7B illustrate detail views of a Nitinol wire for the curved stylet 60 (proximal end not shown).
- the wire comprises a shaft 78 having constant diameter D and a length L s that may vary according to the application and desired depth to the treatment location.
- the wire has a preformed distal tip that is curved to have a radius r that redirects the distal tip 64 at an angle ⁇ with the shaft. As shown in FIG. 7A , angle ⁇ is shown to be approximately 110°. However, it is appreciated that the preformed tip may have an angle ranging from a few degrees (slight deflection off axis), to up to 180° (e.g. directing back toward the proximal end).
- the tip may have a distal extension L T that extends away from the shaft 78 .
- the distal tip 64 is configured with dual-plane bevels 74 and 72 . Plane 74 is offset at angle ⁇ , and plane 72 is offset at angle ⁇ . This configuration of the leading-allows for the stylet and/or curved cannula to travel through bone in a path correlating to the specified curve in the stylet and/or cannula.
- kits of instruments may be provided as a kit of instruments to treat different regions of the body.
- the location, orientation and angle of the treatment device with respect to the trocar 20 may be varied by providing a set of instruments at varying increments. This may be achieved by varying the curvature ( 56 , 66 ) in the curved cannula 50 and curved stylet 60 .
- the curvature may be varied by varying the radius of curvature r, the insertion depth (shaft length L s and tip length L T , and/or the final exit angle ⁇ with respect to the trocar 20 central bore.
- the physician may select a different kit for treating a lumber spine segment as opposed to a cervical spine segment, as the anatomy will dictate the path that needs to be channeled.
- a set out of the kit may be selected to match the vertebra (or other region being treated). For example, delivering the treatment device at or near the BVN junction for a lumbar vertebra may have a different angle than for a cervical vertebra, and may vary from patient to patient.
- the set may be selected from the kit intra-operatively, or from a pre-surgery diagnostic evaluation (e.g. radiographic imaging of the target region).
- FIGS. 8-18B illustrate a system 201 for generating a curved path in bone according to the present invention.
- FIG. 8 shows a perspective view of system 201 in a configuration ready for deployment within a patient's body.
- System 201 comprises an introducer/trocar 210 having a proximal end housing 202 coupled to an elongate delivery tube 204 .
- the distal end tip 208 has a sharpened and/or beveled tip to facilitate entry into and delivery through at least a portion of a bony mass such as the vertebral body.
- the proximal end of the assembly may comprise a hard, rigid material to allow the trocar 210 to be tapped into place with a mallet or the like.
- the tube body 204 comprises a laterally positioned radial opening or window 212 disposed just proximal or at the distal tip 208 .
- the window 212 provides radial access from the central channel 218 of tube 204 so that an instrument or probe (e.g. probe 250 distal end) may be delivered at an angle (e.g. non-axial) with respect to the tube axis or central channel 218 .
- FIG. 9 illustrates an exploded view of system 201 prior to delivery within a patient. While it is preferred that the trocar 210 is introduced to a location near the target treatment site as a whole assembly shown in FIG. 8 , it is also appreciated that the trocar may be introduced to the location by itself, with the additional components being positioned once the trocar 210 is in place. In such a configuration, a stylet (not shown) may be positioned down the central channel 218 of the trocar 204 so as to block the aperture 212 from bone fragments or other tissue matter entering in channel 218 . The stylet may have a hard, widened proximal end to allow the trocar 210 to be tapped into place.
- the proximal end 206 of trocar housing 202 comprises a centrally-located, counter-bore or recess 216 that is in communication with trocar channel 218 .
- Trocar recess 216 allows placement and reciprocation of curveable cannula 230 within the trocar recess 216 and trocar central channel 218 .
- the curveable cannula 230 may be held in place at a specified location within the trocar recess 216 via a stop nut 240 that is threaded about proximal body 246 of the curveable cannula 230 .
- the curveable cannula 230 also comprises a central recess 268 within proximal body 246 that is centrally aligned with cannula channel 245 .
- Central recess 268 and cannula channel 245 are configured to receive and allow reciprocation of probe 250 , which is threaded into drive nut 270 .
- FIGS. 10A-10E schematically illustrate the system 201 in various stages of deployment in accordance with the present invention.
- FIGS. 11 , 13 , 15 and 16 illustrate section views of the proximal end of system 201 through the various stages embodied in FIGS. 10A-E .
- FIGS. 12 , 14 illustrate close-up views of the distal end of system 201 through various the stages embodied in FIGS. 10A-E .
- FIG. 11 illustrates a sectional view of the proximal end of system 201 in an un-deployed state prior to or during insertion of the trocar 210 to the desired treatment location in the patient.
- the trocar 210 may be delivered through pedicle 138 via channel 140 (as shown in FIG. 3 ).
- Channel 140 may be a pre-drilled hole, or may be generated by insertion of the sharpened tip 208 into the bone.
- the proximal surface 292 of cap 290 of the drive nut 270 may comprise a rigid material (e.g. stainless steel or the like) so that a mallet or similar device may strike surface 292 to tap the trocar body 204 into place.
- the stop nut 240 is threaded distally along external threads 248 of the proximal body 246 of the curveable cannula 230 to restrict motion of the cannula 230 distally down trocar recess 216 .
- This restrained motion keeps the distal end 232 of the cannula 230 from prematurely deploying while the trocar 210 is being delivered.
- the distal tip 233 of the curveable cannula 230 comprises a series of tubular mating links 234 each having a central bore to provide a continuous cannula channel 245 along with cannula tube 244 .
- Cannula channel 245 extends from central cannula recess 268 of the proximal body 246 to the distal link 232 at tip 233 .
- Distal link 232 comprises a beveled tip 233 to facilitate the curveable cannula 230 generating a path through bone as detailed below.
- Distal link 232 may also comprise a hard material, e.g. stainless steel or the like to provide a rigid leading edge for the curveable cannula 230 .
- the mating links 234 are held together with a cord 242 that runs from the proximal body 246 of the curveable cannula 230 , and terminates at an aperture 236 in the distal link 232 .
- the distal end of cord 242 terminates at a ball 238 that is disposed in a counter-bore, countersink, or like retaining surface of the aperture 236 to retain the cord within the distal link 232 .
- stop nut 240 is threaded proximally along external threads 248 of the proximal end 246 of the curveable cannula 230 to allow motion of the cannula 230 distally downward in recess 214 .
- the proximal body 246 of curveable cannula 230 may then be deployed downward within trocar recess 216 , as shown in section view in FIG. 13 .
- the cannula 230 may be tapped downward by striking the proximal surface of cap 290 (e.g. with a mallet or the like) while holding the trocar at housing 202 .
- the motion of proximal body 246 pushes tube 244 distally within channel 218 of the trocar body 204 .
- the distal end of opening or window 212 comprises a ramp 209 to facilitate the leading edge 232 out the window 212 at the proper angle with respect to the trocar tube 204 central axis, and without catching or getting stuck at the distal end of the trocar.
- the curved path of the distal tip 233 is facilitated by tension provided by cord 242 , which forces the mating links 232 , 234 to arch upon the applied tension.
- the cord 242 is coupled to male-threaded dial 212 (see FIG. 8 ) to act as a pull cord to apply said tension.
- the dial 212 may be turned clockwise or counterclockwise within internal-threaded arm 214 to increase or relieve the tension on the cord 242 , thereby providing steering of the distal tip 233 while the curved cannula 230 is advanced down trocar body 204 and out window 212 (e.g. increased tension provides a sharper radius, decreased tension provides a more relaxed or no radius.)
- cord 242 may comprise a memory material such as a Nitinol wire that fastens the tube 244 and links 232 , 234 in a preformed curved-shape.
- the cord 246 in this configuration stretches to allow the curveable cannula 230 to be delivered into and stowed in a linear form within channel 218 , and retracts when not restrained in channel 218 to drive a curved path when exiting window 212 .
- the curveable cannula 230 is fully deployed, with the proximal end 246 disposed at the bottom of recess 216 , and the distal tip 233 in a deployed orientation forming a curved path (along with trailing links 234 ) through the bone at the treatment site.
- the probe 250 is restrained from axial motion (in the distal direction) with respect to the curved cannula 230 , because it is threaded inside drive nut 270 , which is restrained from distal motion by stop 258 in the proximal end 246 .
- the drive nut 270 may be raised (proximally advanced out of cavity 268 ) with respect to the curveable annula 230 and probe proximal body 254 by rotating the drive nut.
- the proximal body 254 of the probe 250 comprises a male thread 256 that mates with the female internal threads 262 in a distal recess of the drive nut 270 .
- the thread pattern 256 / 262 may preferably be opposite of the thread pattern between the stop nut 240 and proximal end 246 of the curveable cannula 230 (e.g. right-handed thread vs. left-handed thread), so that rotation of the drive nut 270 does not result in rotation of the curveable cannula 230 .
- the proximal end 254 of the probe 250 comprises a plurality of vertical groves 264 , at least one of which interfaces with key 266 of the curveable cannula 230 .
- This interface only allows axial motion of the proximal body 264 with the curveable cannula 230 , and restricts rotation of the proximal body 264 with the curveable cannula 230 .
- rotation of the drive nut 270 only results in proximal translation of the drive nut 270 .
- the probe proximal body 254 is now free to move downward in cavity 268 .
- the system 201 is shown in a fully deployed state, with the probe 250 distal shaft advanced beyond distal end 233 of the curveable cannula central channel 245 .
- This is achieved by advancing the proximal body 254 within the cavity 268 of the curveable cannula 230 .
- the proximal body 254 and drive nut 270 are advanced as a unit within cavity 268 , preferably by tapping the cap 290 , thereby providing an impact force to advance the probe tip 274 out of the cannula 230 and through tissue/bone to reach the desired treatment or diagnostic location within the body.
- a channeling stylet (such as stylet 90 shown in kit 10 of FIG. 1 ) may also be used to create a working channel beyond the end of the curved path created by the curveable cannula 230 prior to deploying a probe for treatment or diagnostic device.
- probe distal end 274 may comprise a first electrode 274 configured to deliver a therapeutic amount of RF energy to the target location.
- the probe preferably comprises a bipolar probe with return electrode 276 , however it is appreciated that the probe 250 may comprise any treatment instrument described herein.
- Cap 290 may further be configured to include (e.g. a self contained unit) a power source (e.g. battery) and receptacles (not shown) to couple to the probe 250 , thereby supplying the energy to deliver a therapeutic level of energy to the tissue.
- the cap 290 may have sufficient power to deliver one or more metered doses of energy specifically measured to denervate the BVN of a vertebral body in accordance with the present invention.
- the cap 290 is preferably treaded (or otherwise releasable coupled) into drive nut 270 to be interchangeable depending on the application or step the procedure of the present invention.
- a cap 290 having a reinforced/hardened surface 292 used for driving the system 201 into the bone may be replaced by another cap having couplings (not shown) for probe 250 , an internal power supply (not shown), or couplings for an external power supply/controller (not shown) for delivering energy for treatment and/or diagnosis of a region of tissue.
- the cap 290 may be configured to facilitate delivery of the fluid through a probe having one or more fluid delivery channels.
- FIGS. 18A and 18B are side views of the distal end of the system 201 with the curveable cannula 230 in a stowed and deployed position respectively.
- the distal link 232 and trailing links 234 are configured to have mating/interlocking surfaces that allow the distal end of the cannula to curve in one direction.
- the more distal link of a mating pair will have an extension 235 that mates with a correspond depression 237 in the link proximal to it. This allows the links to rotate with respect to each other to create a curved distal end as shown in FIG. 18B .
- FIGS. 19A and 19B illustrate an alternative system 300 for generating a curved channel through bone.
- System 300 comprises a tubular trocar body 302 , the proximal end (not shown) of which may comprise a portion or all of any of the previously described proximal ends for devices 10 , 200 , or 201 disclosed herein.
- the distal tip 334 comprises a leading edge surface for advancing through bone, and a radial or lateral window 304 allowing access to the central channel of the trocar body 302 .
- the window 304 is positioned a short distance proximal to the distal tip 334 .
- a curveable cannula 322 is positioned in the trocar 302 , the curveable cannula 322 having a distal end 324 coupled via linkage 326 to a pivotable arm 310 .
- the proximal end (not shown) of the curveable cannula may comprise a portion or all of any of the previously described proximal ends for devices 10 , 200 , or 201 disclosed herein.
- the pivotable arm 310 has a first end pivotable coupled at joint 314 at a location at or near the distal tip 334 of the trocar 334 . In a stowed configuration (illustrated in FIG.
- the pivotable arm is configured to lay axially in the trocar 302 within slot 306 that runs from pivot 314 proximally to the radial opening or window 304 .
- the proximal (when stowed) end 312 of the arm 310 is coupled to the linkage 326 .
- the cannula 322 may be advanced laterally outward from window 304 by simply advancing the cannula 322 distally down the trocar 302 .
- the pivotable arm 310 constrains the motion of the curveable end 320 of the cannula to a curved path of specified radius (determined by the length of arm 310 .
- the pivotable arm has reached full rotation (shown approximately 90 degrees in FIG. 19B , however such angle may be specified to be any desired amount), the cannula end 320 has created a curved path outward from the trocar toward the desired treatment site.
- a probe, stylet or similar device such as curved stylet 60 , channeling stylet 90 , or probe 100 of FIG.
- the probe, treatment/diagnostic device may then be routed through the cannula end 320 to a region of tissue/bone that is off-axis from the trocar body 302 .
- the above systems 201 , 300 may be provided as a kit of instruments to treat different regions of the body.
- the location, orientation and angle of the treatment device with respect to the trocar may be varied by providing a set of instruments at varying increments. This may be achieved by varying the curvature in the curveable cannula ( 230 , 320 ).
- the curvature may be varied by varying the radius of curvature, the insertion depth (shaft length and tip length, and/or the final exit angle with respect to the trocar central bore.
- the physician may select a different kit for treating a lumber spine segment as opposed to a cervical spine segment, as the anatomy will dictate the path that needs to be channeled.
- each of the instruments in the systems 10 , 200 , 201 , and 300 detailed above may have any length, shape, or diameter desired or required to provide access to the treatment/diagnostic region (e.g. intraosseous nerve trunk) thereby facilitating effective treatment/diagnostic of the target region.
- the size of the intraosseous nerve to be treated, the size of the passageway in the bone (e.g. pedicle 138 ) for accessing the intraosseous nerve, and the location of the bone, and thus the intraosseous nerve are factors that that may assist in determining the desired size and shape of the individual instruments.
- the systems 10 , 200 , 201 and 300 described above may be used with a number of different treatment modalities for therapeutic treatment of the target region.
- the treatment device is configured to deliver therapeutic treatment that is targeted to block nerve conduction without ablating the nerve, i.e. thermal treatment is delivered to the nerve (e.g. via thermal therapy, agent or the like) that results in denervation of the BVN without necrosis of tissue.
- thermal treatment is delivered to the nerve (e.g. via thermal therapy, agent or the like) that results in denervation of the BVN without necrosis of tissue.
- This may be achieved via delivery of a lesser amount of energy or agent to the tissue site (either in the form of less exposure time, concentration, intensity, etc.) than is required for ablation, but an amount sufficient to achieve some amount of temporary or permanent denervation.
- the probed described herein may comprise non-therapy devices, such as diagnostic devises (e.g. ultrasound, cameras, or the like) to diagnose a region of tissue independent of or in connection with treatment of the region of tissue.
- diagnostic devises e.g. ultrasound, cameras, or the like
- any of the systems 10 200 , 201 , and 300 detailed above may be used interchangeably where applicable.
- the curved stylet 60 shown in systems 10 and 200 may be temporarily implemented in place of the probe of systems 201 and 300 to provide additional curving bias to the curveable cannula ( 230 , 320 ) while the cannula is being driven into the bone.
- the channeling stylet 90 may be used to further generate a channel beyond the curved path provided by the curveable cannula ( 230 , 320 )
- the present invention includes the following inventive embodiments among others:
- a system for channeling a path into bone comprising: a trocar having a proximal end, distal end and a central channel; wherein the central channel is disposed along a central axis of the trocar and extends from the proximal end toward the distal end; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; and a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening; the curveable cannula comprising a curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar; wherein the curveable cannula comprises a central passageway having a diameter configured allow a probe to be delivered through the central passageway to a location beyond the curved path.
- trocar further comprises a sharp distal tip configured to pierce through bone to generate a linear path through bone.
- curveable cannula comprises a sharpened distal tip configured to pierce through bone to generate a curved path extending from a linear path generated by the trocar.
- a system according to embodiment 5, wherein the tensile force applied to the distal tip of the curveable cannula may be controlled from the proximal end of the trocar to steer the curveable cannula along a desired path.
- a distal end of the curveable cannula comprises a plurality of mating links, the links configured to articulate into a curved shape.
- the curveable cannula comprises a proximal end comprising a proximal body
- the proximal end of the trocar comprises a housing: said housing having a proximal recess configured to allow reciprocation of the proximal body of the curveable cannula; wherein the proximal recess is in communication with the central channel.
- a proximal body of the curveable cannula is configured to be releasably restrained with respect to translation within the trocar housing.
- proximal surface of the drive nut comprises an interchangeable cap; said interchangeable cap configured to provide access to the probe for providing a therapeutic energy.
- a method for channeling a path into bone to a treatment location in the body of a patient comprising: inserting a trocar into a region of bone near the treatment location; the trocar having a having a proximal end, distal end and a central channel disposed therebetween; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; delivering a curveable cannula through said central channel and to said radial opening; and deploying the curveable cannula laterally outward from the radial opening in a curved path extending away from the trocar.
- inserting a trocar into a region of bone comprises: deploying the trocar through a cortical bone region and into a cancellous bone region of a vertebral body; wherein the curved path is generated though at least a portion of the cancellous bone region of the vertebral body.
- a spine therapy system comprising: a trocar having a proximal end, distal end and a central channel; wherein the central channel is disposed along a central axis of the trocar and extends from the proximal end toward the distal end; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; wherein the trocar is configured to be deployed through a cortical bone region and into a cancellous bone region of a vertebral body; a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening; the curveable cannula comprising a central passageway and curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar; wherein the curved path is generated though at least a portion of the cancellous bone region of the vertebral body; and a treatment probe configured to
- the trocar further comprises a sharp distal tip configured to pierce through bone to generate a linear path through bone.
- curveable cannula comprises a sharpened distal tip configured to pierce through bone to generate a curved path extending from a linear path generated by the trocar.
- the curveable cannula comprises a proximal end comprising a proximal body
- the proximal end of the trocar comprises a housing: said housing having a proximal recess configured to allow reciprocation of the proximal body of the curveable cannula; and wherein the proximal recess is in communication with the central channel.
- a proximal body of the curveable cannula is configured to be releasably restrained with respect to translation within the trocar housing.
- proximal surface of the drive nut comprises an interchangeable cap; said interchangeable cap configured to provide access to the probe for providing a therapeutic energy.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Otolaryngology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Vascular Medicine (AREA)
- Surgical Instruments (AREA)
- Cardiology (AREA)
- Radiology & Medical Imaging (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. application Ser. No. 12/566,895 filed on Sep. 25, 2009, incorporated herein by reference in its entirety, which claims priority from U.S. provisional application Ser. No. 61/100,553 filed on Sep. 26, 2008, incorporated herein by reference in its entirety.
- Not Applicable
- Not Applicable
- A portion of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The owner of the copyright rights has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office publicly available file or records, but otherwise reserves all copyright rights whatsoever. The copyright owner does not hereby waive any of its rights to have this patent document maintained in secrecy, including without limitation its rights pursuant to 37 C.F.R. §1.14.
- 1. Field of the Invention
- This invention pertains generally to generating passageways through tissue, and more particularly to creating curved paths in bone.
- 2. Description of Related Art
- Recently, the technique of accessing the vertebral body through minimally invasive means has been developed through the surgical techniques used in vertebroplasty and kyphoplasty. Although accessing the vertebral segments of the spine through the pedicle and into the lateral/anterior section of the body of the vertebra is the primary method of placing a treatment device (e.g. a bone cement delivery device and/or an RF probe) into the vertebra, it is difficult to place a probe in the posterior midline section of the vertebra. Furthermore, accessing the posterior midline section of the S1 segment of the spine is difficult with a straight linear access route. A probe preferably needs to be capable of navigating to the posterior section of the S1 vertebral body as well as the same target area within a lumbar vertebral segment. In addition, it is contemplated that spinal segments in the cervical and thoracic spine may also be targeted.
- In order to accurately and predictably place a treatment device in the posterior midline section of a lumbar vertebral body or S1 vertebral body, the device or probe needs to navigate to said area through varying densities of bone. However due to the varying densities of bone, it is difficult to navigate a probe in bone and ensure its positioning will be in the posterior midline section of the vertebral body.
- Current techniques for tissue aspirations require a coaxial needle system that allows taking several aspirates through a guide needle without repositioning the guide needle. However the problem with this system is that after the first pass of the inner needle in to the lesion, subsequent passes tend of follow the same path within the mass, yielding only blood not diagnostic cells.
- A scientific paper written by Kopecky et al., entitled “Side-Exiting Coaxial Needle for Aspiration Biopsy,” describes the use of a side exiting coaxial needle to allow for several aspiration biopsies. The guide needle has a
side hole 1 cm from the distal tip. When a smaller needle is advanced through this new guide needle, the smaller needle is deflected by a ramp inside the guide, causing the smaller needle to exit through the side hole. Although this side exiting needle is able to deflect a bone aspiration needle, it does not guarantee that the needle exits the side hole in a linear direction into the tissue site. Once the tissue aspiration needle exits the needle, it will deviate from a linear path depending on the density of the tissue and inherent material strength of the needle. This is an inherent problem the device is unable to overcome. - Accordingly, an object of the present invention is a system and method for generating a path in bone that predictably follows a predetermined curved path.
- The present invention is directed to systems and methods to deploy and navigate a flexible treatment instrument, such as an RF bipolar probe, within bone. Although the systems and methods described below are primarily directed to navigating bone through a vertebral member of the spine, and particularly to treat the BVN of a vertebral member, it is appreciated that the novel aspects of the present invention may be applied to any tissue segment of the body.
- The first novel principle of this invention is the ability to navigate a curve or angle within varying densities of cancellous bone and create a straight channel at the end of the navigated curve or angle. Several systems are described.
- One aspect is a method of therapeutically treating a vertebral body having an outer cortical bone region and an inner cancellous bone region, and a BVN having a trunk extending from the outer cortical bone region into the inner cancellous region and a branches extending from the trunk to define a BVN junction, comprising the steps of: a) inserting an energy device into the vertebral body, and b) exclusively depositing energy within the inner cancellous bone region of the vertebral body between, but exclusive of the BVN junction and the outer cortical bone region, to denervate the BVN.
- In another aspect of the present invention, a tube-within-tube embodiment has a deployable curved Nitinol tube that deploys from a straight cannula. The Nitinol tube is pre-curved to create an angular range of approximately 0° to approximately 180°, but more specifically from approximately 45° to approximately 110°, when fully deployed from the straight cannula. The design of the curve is such that the flexible element (carrying the treatment device) can navigate through the angular range of deployment of the nitinol tube. The curved nitinol tube allows the flexible element to navigate through a curve within bone without veering off towards an unintended direction. Cancellous bone density varies from person to person. Therefore, creating a curved channel within varying density cancellous bone will generally not predictably or accurately support and contain the treatment device as it tries to navigate the curved channel. With the present invention, the flexible element is deployed into the bone through the curved Nitinol tube, which supports the element as it traverses through the curve. When it departs from the tube, it will do so in a linear direction towards the target zone. This design allows the user to predictably and accurately deploy the flexible element towards the target zone regardless of the density of the cancellous bone.
- An aspect of the invention is a system for channeling a path into bone. The system comprises a trocar having a central channel and opening at its distal tip, and a cannula sized to be received in said central channel and delivered to the distal opening. The cannula has a deflectable tip with a preformed curve such that the tip straightens while being delivered through the trocar and regains its preformed curve upon exiting and extending past the distal opening of the trocar to generate a curved path in the bone corresponding to the preformed curve of the deflectable tip. The cannula comprises a central passageway having a diameter configured allow a treatment device to be delivered through the central passageway to a location beyond the curved path.
- In one embodiment, the system further includes a straight stylet configured to be installed in the trocar, wherein the straight stylet comprises a sharp distal tip that is configured to extend beyond the distal opening of the trocar to pierce the bone as the trocar is being delivered to a treatment location within the bone.
- The system may further include a straightening stylet configured to be installed in the cannula, wherein the straightening stylet comprising a rigid construction configured to straighten the distal tip of the cannula when positioned in the trocar.
- In an alternative embodiment, the straightening stylet further comprises a sharp distal end to pierce the bone, and the straightening stylet and cannula are installed in the trocar in place of the straight stylet as the trocar is delivered into the bone.
- In a preferred embodiment, the system further includes a curved stylet having an outer radius sized to fit within the central passageway of the curved cannula. The curved stylet is configured to be installed in the curved cannula while the curved cannula is extended past the distal opening of the trocar, the curved stylet configured to block the distal opening of the curved cannula while being delivered into the bone. Preferably, the curved stylet has a curved distal end corresponding to the curve of the curved cannula.
- The curved stylet also has a sharp distal tip configured to extend past the curved cannula to pierce the bone as the cannula is delivered past the distal opening of the trocar. The curved stylet also preferably comprises an angled distal tip configured to further support and maintain the curved stylet radius as it is delivered past the distal opening of the trocar and into bone.
- Preferably, the curved stylet and the curved cannula have mating proximal ends that align the curve of the curved stylet with the curve of the curved cannula.
- In one embodiment, the system further includes a straight channeling stylet configured to be installed in the cannula after removing the curved stylet, wherein the straight channeling stylet is flexibly deformable to navigate the curved cannula yet retain a straight form upon exiting the curve cannula, and wherein straight channeling stylet has a length longer than the curved cannula such that it creates a linear path beyond the distal end of the curved cannula when fully extended.
- Another aspect is method for channeling a path into bone to a treatment location in the body of a patient. The method includes the steps of inserting a trocar having a central channel and opening at its distal tip into a region of bone at or near the treatment location, and delivering a cannula through said central channel and to said distal opening, wherein the cannula comprises a deflectable tip with a preformed curve such that the tip straightens while being delivered through the trocar and regains its preformed curve upon exiting the trocar, and extending the cannula past the distal opening of the trocar to generate a curved path in the bone corresponding to the preformed curve of the deflectable tip. Finally, a treatment device is delivered through a central passageway in said cannula having to the treatment location beyond the curved path.
- In one embodiment, inserting a trocar into a region of bone comprises inserting a stylet into the trocar such that the stylet extends beyond the distal opening of the trocar, and inserting the stylet and trocar simultaneously into the region of bone such that the stylet pierces the bone as the trocar is being delivered to a treatment location.
- In another embodiment, delivering a cannula through the central channel comprises inserting a straightening stylet into the central passageway of the cannula, wherein the straightening stylet comprises a rigid construction configured to straighten the curved distal tip of the cannula, and inserting the straightening stylet and straightened cannula simultaneously into the trocar.
- In an alternative embodiment, the straightening stylet further comprises a sharp distal end to pierce the bone, wherein the straightening stylet and cannula are installed simultaneously along with the trocar as the trocar is delivered into the bone.
- In yet another embodiment, extending the cannula past the distal opening is done by inserting a curved stylet into the central passageway of the curved cannula such that a distal tip of the curved stylet extends to at least the distal opening of the curved cannula, and simultaneously extending the curved cannula and curved stylet from the distal end of the trocar such that the curved stylet blocks the distal opening of the curved cannula while being delivered into the bone.
- In a preferred embodiment, the curved stylet has a curved distal end corresponding to the curve of the curved cannula, and wherein the curved stylet reinforces the curved shape of the curved cannula as the curved cannula is extended past the distal opening of the trocar. The curved stylet has a sharp distal tip such that it is advanced within the central passageway so that the curved stylet extends past the distal opening of the curved cannula such that the curved stylet pierces the bone as the cannula is delivered past the distal opening of the trocar.
- In a further step, the curved stylet is removed from the curved cannula, and a straight channeling stylet is inserted into the curved distal end of the cannula. The straight channeling stylet is flexibly deformable to navigate the curved cannula, yet retain a straight form upon exiting the curved cannula. The straight channeling stylet is longer than the curved cannula to create a linear channel beyond the distal tip of the curved cannula.
- In a preferred embodiment, the trocar is inserted through a cortical bone region and into a cancellous bone region of a vertebrae, and the curved cannula is extended though at least a portion of the cancellous bone region to a location at or near the treatment location. A preferred treatment location comprises a BVN of the vertebrae, and treatment is delivered to the treatment location to denervate at least a portion of the BVN. In one embodiment, a portion of the BVN is denervated by delivering focused, therapeutic heating to an isolated region of the BVN. In another embodiment, a portion of the BVN comprises is denervated delivering an agent to the treatment region to isolate treatment to that region. Preferably, the treatment is focused on a location of the BVN that is downstream of one or more branches of the BVN.
- Another aspect is a kit for channeling a path into bone. The kit includes a trocar having a central channel and opening at its distal tip, and a cannula selected from a set of cannulas sized to be received in said central channel and delivered to said distal opening. The cannula has a deflectable distal tip with a preformed curve such that the tip straightens while being delivered through the trocar and regains its preformed curve upon exiting and extending past the distal opening of the trocar to generate a curved path in the bone corresponding to the preformed curve of the deflectable tip. The cannula comprises a central passageway having a diameter configured allow a treatment device to be delivered through the central passageway to a location beyond the curved path, wherein the set of cannulas comprises one or more cannulas that have varying preformed curvatures at the distal tip.
- In a preferred embodiment, the one or more cannulas have a varying preformed radius at the distal tip. In addition, the one or more cannulas each have distal tips that terminate at varying angles with respect to the central channel of the trocar. The length of the distal tips may also be varied. The angle of the distal with respect to the central channel of the trocar may vary from 0 degrees to 180 degrees.
- The kit may further include a straight stylet configured to be installed in the trocar, the straight stylet comprising a sharp distal tip that is configured to extend beyond the distal opening of the trocar to pierce the bone as the trocar is being delivered to a treatment location within the bone.
- In a preferred embodiment, the kit includes a set of curved stylets having an outer radius sized to fit within the central passageway of the curved cannula, wherein each curved stylet is configured to be installed in the curved cannula while the curved cannula is extended past the distal opening of the trocar. The curved stylet is configured to block the distal opening of the curved cannula while being delivered into the bone. Each curved stylet has a varying curved distal end corresponding to the curve of a matching curved cannula in the set of curved cannulas. The curved stylet has a sharp distal tip configured to extend past the curved cannula to pierce the bone as the cannula is delivered past the distal opening of the trocar.
- In another embodiment, the kit includes a set of straight channeling stylets wherein one of the set of stylets is configured to be installed in the cannula after removing the curved stylet. The straight channeling stylet is flexibly deformable to navigate the curved cannula yet retain a straight form upon exiting the curve cannula. Each of the straight channeling stylets has a varying length longer than the curved cannula such that the straight channeling stylet creates a predetermined-length linear path beyond the distal end of the curved cannula when fully extended.
- Another aspect is a system for channeling a path into bone, having a trocar with a proximal end, distal end and a central channel disposed along a central axis of the trocar and extending from the proximal end toward the distal end. The trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel. The system includes a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening. The curveable cannula comprises a curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar, and a central passageway having a diameter configured allow a probe to be delivered through the central passageway to a location beyond the curved path.
- A further aspect is a spine therapy system, comprising: a trocar having a proximal end, distal end and a central channel; wherein the central channel is disposed along a central axis of the trocar and extends from the proximal end toward the distal end; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; wherein the trocar is configured to be deployed through a cortical bone region and into a cancellous bone region of a vertebral body; a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening; the curveable cannula comprising a central passageway and curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar; wherein the curved path is generated though at least a portion of the cancellous bone region of the vertebral body; and a treatment probe configured to be delivered through the central passageway to a location beyond the curved path.
- Another aspect is a method for channeling a path into bone to a treatment location in the body of a patient, comprising the steps of inserting a trocar into a region of bone near the treatment location; the trocar having a having a proximal end, distal end and a central channel disposed therebetween; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; delivering a curveable cannula through said central channel and to said radial opening; and deploying the curveable cannula laterally outward from the radial opening in a curved path extending away from the trocar
- Further aspects of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.
- The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:
-
FIG. 1 is a system for generating a curved path in bone according to the present invention. -
FIG. 2 is a sectional view of the system ofFIG. 1 -
FIG. 3 illustrates a sectioned view of a vertebral body with a path bored through the cortical shell. -
FIGS. 4A-F illustrate a method for accessing the BVN with the system of the present invention. -
FIG. 5 shows an alternative system for generating a curved path in bone according to the present invention. -
FIG. 6 shows the system ofFIG. 5 being installed in a vertebral body. -
FIGS. 7A-7B show a curved stylet in accordance with the present invention. -
FIG. 8 illustrates a perspective view of a system for generating a curved path in bone according to the present invention. -
FIG. 9 is an exploded view of the system ofFIG. 8 . -
FIG. 10A-10E show schematic diagrams of the system ofFIG. 8 at various stages of deployment during a procedure. -
FIG. 11 is a section view of the proximal end of the system ofFIG. 8 during introduction of the system into the body. -
FIG. 12 is a side view of the distal end of the system ofFIG. 8 during introduction of the system into the body. -
FIG. 13 is a section view of the proximal end of the system ofFIG. 8 after deploying the curveable cannula into the body. -
FIG. 14 is a side view of the distal end of the system ofFIG. 8 after deploying the curveable cannula into the body. -
FIG. 15 is a section view of the proximal end of the system ofFIG. 8 with the drive nut retracted. -
FIG. 16 is a section view of the proximal end of the system ofFIG. 8 after deploying the probe into the body. -
FIG. 17 is a side view of the distal end of the system ofFIG. 8 after deploying the probe into the body. -
FIGS. 18A and 18B are side views of the distal end of the system ofFIG. 8 with the curveable cannula in a stowed and deployed position respectively. -
FIG. 19A illustrates a perspective view of an alternative system for generating a curved path in bone according to the present invention. -
FIG. 19B illustrates the system ofFIG. 19A in a deployed configuration. - Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in the apparatus generally shown in
FIG. 1 throughFIG. 19B . It will be appreciated that the apparatus may vary as to configuration and as to details of the parts, and that the method may vary as to the specific steps and sequence, without departing from the basic concepts as disclosed herein. - Tube-In-Tube
-
FIGS. 1 and 2 illustrate a first embodiment of the present invention comprising a system orkit 10 for forming a path through bone. The system comprises a having a needle trocar 20 (the main body of the instrument set). Thetrocar 20 comprises anelongate shaft 28 having ahandle 24 at itsproximal end 32 and acentral lumen 36 passing through to thedistal end 22 of thetrocar 20. Thecentral lumen 36 is generally sized to allow the other instruments in thesystem 10 to be slideably introduced into the patient to a treatment region.System 10 further comprises astraight stylet 80 having a sharp-tippedneedle 84 at its distal end that is used with theneedle trocar 20 to create the initial path through the soft tissue and cortical shell to allow access to the cancellous bone, acurved cannula 50 that is used to create/maintain the curved path within the bone/tissue. A straighteningstylet 40 is used to straighten out the curve and load thecurved cannula 50 into theneedle trocar 20. Acurved stylet 60 is used in conjunction with thecurved cannula 50 to create the curved path within the bone/tissue, and a channelingstylet 90 is used to create a working channel for a treatment device (such as RF probe 100) beyond the end of the curved path created by thecurved cannula 50. - The surgical devices and surgical systems described may be used to deliver numerous types of treatment devices to varying regions of the body. Although the devices and systems of the present invention are particularly useful in navigating through bone, it is appreciated that they may also be used to navigate through soft tissue, or through channels or lumens in the body, particularly where one lumen may branch from another lumen.
- The following examples illustrate the
system 10 applied to generating a curve bone path in the vertebral body, and more particularly for creating a bone path via a transpedicular approach to access targeted regions in the spine. In particular, thesystem 10 may be used to deliver a treatment device to treat or ablate intraosseous nerves, and in particular that basivertebral nerve (BVN). Although the system and methods provide significant benefit in accessing the BVN, it is appreciated that thesystem 10 of the present invention may similarly be used to create a bone path in any part of the body. -
FIG. 3 illustrates a cross-sectional view of avertebra 120. Recently, the existence of substantialintraosseous nerves 122 andnerve branches 130 within human vertebral bodies (“basivertebral nerves”) has been identified. The nerve basivertebral 122 has at least oneexit 142 point at a location along thenerve 122 where thenerve 122 exits thevertebral body 126 into thevertebral foramen 132. - Preferably, the basivertebral nerves are at, or in close proximity to, the
exit point 142. Thus, the target region of theBVN 122 is located within thecancellous portion 124 of the bone (i.e., to the interior of the outer cortical bone region 128), and proximal to the junction J of theBVN 122 having a plurality of branches 130 (e.g. between points A and B along nerve 122). Treatment in this region is advantageous because only a single portion of theBVN 122 need be effectively treated to denervate or affect the entire system. Typically, treatment in accordance with this embodiment can be effectuated by focusing in the region of the vertebral body located between 60% (point A) and 90% (point B) of the distance between the anterior and posterior ends of the vertebral body. In contrast, treatment of theBVN 122 in locations more downstream than the junction J requires the denervation of eachbranch 130. - In one approach for accessing the BVN, the patient's skin is penetrated with a surgical instrument which is then used to access the desired basivertebral nerves, i.e., percutaneously. In one embodiment, a transpedicular approach is used for penetrating the vertebral cortex to access the
BVN 122. Apassageway 140 is created between thetransverse process 134 andspinous process 136 through thepedicle 138 into thecancellous bone region 124 of thevertebral body 126 to access a region at or near the base of thenerve 122. It is appreciated that a postereolateral approach (not shown) may also be used for accessing the nerve. -
FIGS. 4A-F illustrate a preferred method for accessing the BVN with thesystem 10 of the present invention. First, thestraight stylet 80 is inserted inaperture 26 at theproximal end 32 ofneedle trocar 20. Thestraight stylet 80 is advanced down the central lumen 36 (seeFIG. 2 ) of thetrocar 20 until theproximal stop 82 abuts againsthandle 24 of thetrocar 20, at which point thedistal tip 84 of straight stylet protrudes out of thedistal end 22 of thetrocar 20. Thetip 84 of thestraight stylet 80 preferably comprises a sharp tip for piercing soft tissue and bone. - Referring now to
FIG. 4A , the assembly (trocar 20 and straight stylus 80) is advanced through soft tissue to the surface of the bone. Once the proper alignment is determined, the assembly is advanced through the cortical shell ofpedicle 138 and into thecancellous interior 124 of the bone. - After the proper depth is achieved, the
straight stylet 80 is removed from thetrocar 20, while thetrocar 20 remains stationary within thevertebrae 120. The straighteningstylet 40 is inserted into proximal aperture 52 (seeFIG. 2 )of thecurved cannula 50 and advanced along the central lumen of thecurved cannula 50 until thestop 42 of thestylet 40 abuts up to the proximal end of the curved cannula. This forces the distal tip of the straight stylet through thecurved section 56 of thecurved cannula 50 to straighten out thecurve 56. It is contemplated that the straight stylet comprise a hard, non-compliant material and thedistal end 56 of the curved cannula 50 a compliant, yet memory retaining material (e.g. Nitinol, formed PEEK, etc.) such that the curved 56 section yields to the rigidity of the straighteningstylet 40 when installed, yet retains its original curved shape when thestylet 40 is removed. - As shown in
FIG. 4B , once the straighteningstylet 40 is secure and thecurved cannula 50 is straight, they are inserted into theneedle trocar 20 and secured. Proper alignment (e.g. prevent rotation, orient curve direction during deployment) is maintained by aligning a flat on theupper portion 58 of thecurved cannula 50 to an alignment pin secured perpendicularly into theneedle trocar 20handle 24. Once thecurved cannula 50 is secure, the straighteningstylet 40 is removed, while thecurved cannula 50 remains stationary within thetrocar 20. - Referring to
FIG. 4C , thecurved stylet 60 is then straightened out by sliding thesmall tube 68 proximally to distally on its shaft towards thedistal tip 64 or from thedistal tip 64 proximally on its shaft towards theproximal end 62. Once the curveddistal tip 66 is straightened out and fully retracted inside thesmall tube 68, thecurved stylet 60 is inserted into theproximal aperture 52 of thecurved cannula 50, which still resides inside theneedle trocar 20. As thecurved stylet 60 is advanced into thecurved cannula 50, thesmall tube 68 is met by a stop 55 (seeFIG. 4C ). As thecurved stylet 60 continues to advance thesmall tube 68 is held inside the handle of thecurved cannula 50. This allows the curve of thestylet 60 to be exposed inside thecurved cannula 50. To create the maximum force the curve of the two parts (50 & 60) must be aligned. To ensure alignment the cap on thecurved stylet 60 has analignment pin 70 which engages withalignment notch 52 on the proximal end of thecurved cannula 50. - Once the
stylet 60 is fully seated and aligned with thecurved cannula 50 the tip of thecurved stylet 60 will protrude from the tip of thecurved cannula 50 by about 1/16 to 3/16 inches. This protrusion will help to drive the curve in the direction of its orientation during deployment. - Referring now to
FIG. 4D , with thecurved stylet 60 and thecurved cannula 50 engaged, the lockingnut 58 at the top of thecurved cannula 50 is rotated counter clockwise to allow thecannula 50 andstylet 60 to be advanced with relation to theneedle trocar 20 such that theproximal end 52 about against 58, advancing thecurved cannula 50 andstylet 60 beyond the distal opening oftrocar 20 to generate a curved path in thecancellous bone region 124. As thecurved cannula 50 andstylet 60 are advanced they will preferably curve at a radius of 0.4 to 1.0 inches through cancellous bone and arc to an angle between 5 and 110 degrees. Once thecurved cannula 50 andstylet 60 are deployed to the intended angle, the locking nut at the top of thecurved cannula 50 is engaged with theneedle trocar 20 to stop any additional advancement of the curved stylet cannula assembly. - Referring to
FIGS. 7A-7B illustrate the tip of thecurvet stylet 60, which has been formed with two angles. To help the curve deployment in the proper direction thecurve 66 of thecurved stylet 60 is shaped in a predetermined orientation. The angle on the inside of thecurve 72 is less than the angle on the outside of the curve 74. This disparity in angle helps thestylet cannula assembly 50 & 60 curve in the bone as bone pushes against outside curve face 74 ensuring the curve radius is maintained during deployment. - Referring now to
FIG. 4E , thecurved stylet 60 is then removed and replaced by the channelingstylet 90. Thetip 94 of the channelingstylet 90 is advanced beyond theend 54 of thecurved cannula 50 towards the intended target treatment zone. - Referring now to
FIG. 4F , once the channelingstylet 90 reaches the target treatment zone, it is removed creating a workingchannel 146.Channel 140 will generally have afirst section 142 that crosses the cortical bone of thepedicle 138, followed by a curved path 144. These sections are occupied bycurved cannula 50 such that a treatment device fed through thecannula 50 will have to follow the curve of thecannula 50 and not veer off in another direction. The channel may further comprise thelinear extension 146 in thecancellous bone 124 to further advance the treatment device toward the treatment site T. - With the
trocar 20 andcurved cannula 50 still in place, a treatment device (e.g. treatment probe 100 shown inFIG. 2 , with anactive element 102 on thedistal end 104 of elongateflexible catheter 110 is delivered to the target treatment location T to perform a localized treatment. - In a preferred embodiment, the
active element 102 is delivered to the treatment site and activated to delivery therapeutic treatment energy. The treatment probe may comprise an RF delivery probe havingbipolar electrodes 106 and 108 that deliver a therapeutic level of heating to stimulate or ablate thenerve 122. - It is appreciated that any number of treatment modalities may be delivered to the treatment site for therapeutic treatment. For example, treatment may be affected by monopolar or tripolar RF, ultrasound, radiation, steam, microwave, laser, or other heating means. Additionally, the treatment device may comprise a fluid delivery catheter that deposits an agent, e.g. bone cement, or other therapeutic agent, to the treatment site T. Alternatively, cryogenic cooling may be delivered for localized treatment of the BVN. Furthermore, treatment may be affected by any mechanical destruction and or removal means capable of severing or denervating the BVN. For example, a cutting blade, bur or mechanically actuated cutter typically used in the art of orthoscopic surgery may be used to affect denervation of the BVN.
- In addition to or separate from treating the BVN, a sensor may be delivered to the region to preoperatively or postoperatively measure nerve conduction at the treatment region. In this configuration, the sensor may be delivered on a distal tip of a flexible probe that may or may not have treatment elements as well.
- The goal of the treatment may be ablation, or necrosis of the target nerve or tissue, or some lesser degree of treatment to denervate the BVN. For example, the treatment energy or frequency may be just sufficient to stimulate the nerve to block the nerve from transmitting signal (e.g. signals indicating pain).
- Once the treatment is complete, the
probe 100 is withdrawn. Thecurved cannula 50 is then withdrawn into theneedle trocar 20. Theneedle trocar 20 with thecurved cannula 50 is then removed and the access site is closed as prescribed by the physician. - In the
above system 10, the design of thecurves curved cannula 50 andcurved stylet 60 is such that the flexible element (e.g. carrying the treatment device) can navigate through the angular range of deployment of the Nitinol tube of thecurved cannula 50. Thecurved nitinol tube 50 allows the flexible element to navigate through a curve within bone without veering off towards an unintended direction. Cancellous bone density varies from person to person. Therefore, creating a curved channel within varying densitycancellous bone 124 will generally not predictably or accurately support and contain the treatment device as it tries to navigate the curved channel. - With the
system 10 of the present invention, thetreatment device 100 is deployed into the bone through the curved Nitinol tube of thecurved cannula 50, which supports the element as it traverses through the curve. When it departs from the tube, it will do so in a linear direction alongpath 146 towards the target zone. This allows the user to predictably and accurately deploy the treatment device towards the target zone T regardless of the density of the cancellous bone. - In some embodiments, a radius of curvature that is smaller than that which can be achieved with a large diameter Nitinol tube may be advantageous. To achieve this, the curved tube of the
curved cannula 50 may take one of several forms. In one embodiment, thetube 50 is formed from a rigid polymer that can be heat set in a particular curve. If the polymer was unable to hold the desired curve, an additional stylet (e.g. curved stylet 60) of Nitinol, or other appropriate material, may also be used in conjunction with the polymer tube to achieve the desired curve. This proposed combination of material may encompass and number or variety of materials in multiple different diameters to achieve the desired curve. These combinations only need to ensure that the final outside element (e.g. trocar 20) be “disengageable” from the internal elements and have an inner diameter sufficient to allow the desiredtreatment device 100 to pass to the treatment region T. - In an alternative embodiment, of the
curved cannula 50 may comprise a Nitinol tube having a pattern of reliefs or cuts (not shown) in the wall of the tube (particularly on the outer radius of the bend). The pattern of cuts or reliefs would allow the tube to bend into a radius tighter than a solid tube could without compromising the integrity of the tubing wall. -
FIG. 5 illustrates a second embodiment of the system or kit 200 of the present invention that may be used to reduce the number of steps required for the procedure. The second embodiment includes aneedle trocar 20, straighteningstylet 40, used with theneedle trocar 20 and thecurved cannula 50 to create the initial path through the soft tissue and cortical shell to allow access to the cancellous bone,curved stylet 60 used in conjunction with thecurved cannula 50 to create the curved path within the bone/tissue, and channelingstylet 90 used to create a working channel for the probe beyond the end of the curved path created by the curved stylet. - In one method according to the present invention, the straightening
stylet 40 is inserted into thecurved cannula 50 and secured. In this embodiment, the straighteningstylet 40 has asharp tip 46 designed to penetrate bone. Once the straighteningstylet 40 is secure and thecurved cannula 50 is straight, they are inserted into theneedle trocar 20 and secured. In this embodiment, thecurved cannula 50 and straighteningstylet 40 are inserted into theshaft 28 of thetrocar 20 only as far as to havesharp tip 46 of the straighteningstylet 40 protrude from thedistal end 22 of thetrocar 20. Proper alignment is maintained by aligning a flat on the upper portion of thecurved cannula 50 with a pin secured perpendicularly into theneedle trocar 20 handle. - Referring now to
FIG. 6 , once thecurved cannula 50 is secure, the assembly (trocar 20,curved cannula 50, and straightening stylet 40) is advanced through soft tissue to the surface of the bone. After finding the proper alignment at thepedicle 138 ofvertebrae 120, the assembly (trocar 20,curved cannula 50, and straightening stylet 40) is advanced through thecortical shell 128 and into thecancellous interior 124 of the bone. - After the proper depth is achieved, the straightening
stylet 40 is removed. Thecurved stylet 60 is then straightened out by sliding thesmall tube 68 on its shaft towards thedistal tip 64. The curveddistal tip 66 is straightened out and fully retracted inside thesmall tube 68, and then thecurved stylet 60 is inserted into thecurved cannula 50 which still resides inside theneedle trocar 20. Once thecurved stylet 60 is inserted into thecurved cannula 50, thesmall tube 68 is met by a stop 55 (seeFIG. 4C ). As thecurved stylet 60 continues to advance, thesmall tube 68 is held inside the handle of thecurved cannula 50. This allows the curve of thestylet 60 to be exposed inside thecurved cannula 50. - To create the maximum force, it is preferred that the curves of the two parts (50 & 60) are aligned. To ensure alignment the cap on the
curved stylet 60 has an alignment pin, which engages with a notch on the top of thecurved cannula 50. - When the
stylet 60 is fully seated and aligned with thecurved cannula 50, the tip of thecurved stylet 60 will protrude from the tip of thecurved cannula 50 by about 1/16 to 3/16 inches. This protrusion will help to drive thecurved cannula 50 in the direction of its orientation during deployment. Once thecurved stylet 60 and thecurved cannula 50 are engaged, the lock nut at the top of thecurved cannula 50 is rotated counter clockwise to allow thecannula 50 andstylet 60 to be advanced with relation to the needle trocar 20 (as shown inFIG. 4D ). As the curved cannula and stylet are advanced they generate a curved path toward the treatment location T. Once thecurved cannula 50 andstylet 60 are deployed to the intended angle, the lock nut at the top of thecurved cannula 50 is engaged with theneedle trocar 20 to stop any additional advancement of the curved stylet cannula assembly. - The
curved stylet 60 is then removed and replaced by the channelingstylet 90. The channelingstylet 90 is advanced beyond the end of the curved cannula 50 (seeFIG. 4E ) towards the intended target treatment zone creating a working channel for the active element to be inserted. Once the channelingstylet 80 reached the target treatment zone it is removed and replaced by thetreatment device 100, which is delivered to the treatment site T and activated. - Once the treatment is complete, the
treatment device 100 is withdrawn. Thecurved cannula 50 is then withdrawn into theneedle trocar 20. Theneedle trocar 20 with thecurved cannula 50 is then removed and the access site is closed as prescribed by the physician. -
FIGS. 7A and 7B illustrate detail views of a Nitinol wire for the curved stylet 60 (proximal end not shown). The wire comprises ashaft 78 having constant diameter D and a length Ls that may vary according to the application and desired depth to the treatment location. The wire has a preformed distal tip that is curved to have a radius r that redirects thedistal tip 64 at an angle Θ with the shaft. As shown inFIG. 7A , angle Θ is shown to be approximately 110°. However, it is appreciated that the preformed tip may have an angle ranging from a few degrees (slight deflection off axis), to up to 180° (e.g. directing back toward the proximal end). - As shown in
FIG. 7B detailing thedistal tip 64, the tip may have a distal extension LT that extends away from theshaft 78. To promote channeling along a path that follows radius r, thedistal tip 64 is configured with dual-plane bevels 74 and 72. Plane 74 is offset at angle β, andplane 72 is offset at angle α. This configuration of the leading-allows for the stylet and/or curved cannula to travel through bone in a path correlating to the specified curve in the stylet and/or cannula. - In the example illustrated in
FIGS. 7A and 7B , thecurved stylet 60 has a shaft length Ls of approximately 3.6 in., diameter D of approximately 0.040 in., and a distal tip length LT of 0.125 in., radius r of 0.40 in., and angle β=35° and angle α=31°. It should be noted that the above dimensions are for illustration only, and may vary depending on the anatomy an tissue type. - It is appreciated that all the above embodiments may be provided as a kit of instruments to treat different regions of the body. For example, the location, orientation and angle of the treatment device with respect to the
trocar 20 may be varied by providing a set of instruments at varying increments. This may be achieved by varying the curvature (56, 66) in thecurved cannula 50 andcurved stylet 60. The curvature may be varied by varying the radius of curvature r, the insertion depth (shaft length Ls and tip length LT, and/or the final exit angle Θ with respect to thetrocar 20 central bore. Thus, the physician may select a different kit for treating a lumber spine segment as opposed to a cervical spine segment, as the anatomy will dictate the path that needs to be channeled. - Thus, when treating different spine segments, a set out of the kit may be selected to match the vertebra (or other region being treated). For example, delivering the treatment device at or near the BVN junction for a lumbar vertebra may have a different angle than for a cervical vertebra, and may vary from patient to patient. The set may be selected from the kit intra-operatively, or from a pre-surgery diagnostic evaluation (e.g. radiographic imaging of the target region).
- Tube in Windowed Tube
-
FIGS. 8-18B illustrate asystem 201 for generating a curved path in bone according to the present invention.FIG. 8 shows a perspective view ofsystem 201 in a configuration ready for deployment within a patient's body.System 201 comprises an introducer/trocar 210 having aproximal end housing 202 coupled to anelongate delivery tube 204. Thedistal end tip 208 has a sharpened and/or beveled tip to facilitate entry into and delivery through at least a portion of a bony mass such as the vertebral body. - The proximal end of the assembly (drive nut 270), may comprise a hard, rigid material to allow the
trocar 210 to be tapped into place with a mallet or the like. - The
tube body 204 comprises a laterally positioned radial opening orwindow 212 disposed just proximal or at thedistal tip 208. Thewindow 212 provides radial access from thecentral channel 218 oftube 204 so that an instrument or probe (e.g. probe 250 distal end) may be delivered at an angle (e.g. non-axial) with respect to the tube axis orcentral channel 218. -
FIG. 9 illustrates an exploded view ofsystem 201 prior to delivery within a patient. While it is preferred that thetrocar 210 is introduced to a location near the target treatment site as a whole assembly shown inFIG. 8 , it is also appreciated that the trocar may be introduced to the location by itself, with the additional components being positioned once thetrocar 210 is in place. In such a configuration, a stylet (not shown) may be positioned down thecentral channel 218 of thetrocar 204 so as to block theaperture 212 from bone fragments or other tissue matter entering inchannel 218. The stylet may have a hard, widened proximal end to allow thetrocar 210 to be tapped into place. - The
proximal end 206 oftrocar housing 202 comprises a centrally-located, counter-bore orrecess 216 that is in communication withtrocar channel 218.Trocar recess 216 allows placement and reciprocation ofcurveable cannula 230 within thetrocar recess 216 and trocarcentral channel 218. Thecurveable cannula 230 may be held in place at a specified location within thetrocar recess 216 via astop nut 240 that is threaded aboutproximal body 246 of thecurveable cannula 230. Thecurveable cannula 230 also comprises acentral recess 268 withinproximal body 246 that is centrally aligned withcannula channel 245.Central recess 268 andcannula channel 245 are configured to receive and allow reciprocation ofprobe 250, which is threaded intodrive nut 270. -
FIGS. 10A-10E schematically illustrate thesystem 201 in various stages of deployment in accordance with the present invention.FIGS. 11 , 13, 15 and 16 illustrate section views of the proximal end ofsystem 201 through the various stages embodied inFIGS. 10A-E . Correspondingly,FIGS. 12 , 14, illustrate close-up views of the distal end ofsystem 201 through various the stages embodied inFIGS. 10A-E . -
FIG. 11 illustrates a sectional view of the proximal end ofsystem 201 in an un-deployed state prior to or during insertion of thetrocar 210 to the desired treatment location in the patient. For delivery into a vertebral body 120 (e.g. to access the BVN), thetrocar 210 may be delivered throughpedicle 138 via channel 140 (as shown inFIG. 3 ).Channel 140 may be a pre-drilled hole, or may be generated by insertion of the sharpenedtip 208 into the bone. To facilitate insertion, theproximal surface 292 ofcap 290 of thedrive nut 270 may comprise a rigid material (e.g. stainless steel or the like) so that a mallet or similar device may strikesurface 292 to tap thetrocar body 204 into place. - During insertion of the
trocar 210, thestop nut 240 is threaded distally alongexternal threads 248 of theproximal body 246 of thecurveable cannula 230 to restrict motion of thecannula 230 distally downtrocar recess 216. This restrained motion keeps thedistal end 232 of thecannula 230 from prematurely deploying while thetrocar 210 is being delivered. - As shown in
FIG. 12 , thedistal tip 233 of thecurveable cannula 230 comprises a series oftubular mating links 234 each having a central bore to provide acontinuous cannula channel 245 along withcannula tube 244.Cannula channel 245 extends fromcentral cannula recess 268 of theproximal body 246 to thedistal link 232 attip 233.Distal link 232 comprises abeveled tip 233 to facilitate thecurveable cannula 230 generating a path through bone as detailed below.Distal link 232 may also comprise a hard material, e.g. stainless steel or the like to provide a rigid leading edge for thecurveable cannula 230. - The mating links 234 are held together with a
cord 242 that runs from theproximal body 246 of thecurveable cannula 230, and terminates at an aperture 236 in thedistal link 232. The distal end ofcord 242 terminates at aball 238 that is disposed in a counter-bore, countersink, or like retaining surface of the aperture 236 to retain the cord within thedistal link 232. - Referring now to
FIG. 10B , once thetrocar 210 is in place, stopnut 240 is threaded proximally alongexternal threads 248 of theproximal end 246 of thecurveable cannula 230 to allow motion of thecannula 230 distally downward inrecess 214. - The
proximal body 246 ofcurveable cannula 230 may then be deployed downward withintrocar recess 216, as shown in section view inFIG. 13 . As there may be resistance from the bony mass of the vertebral body (or other bony mass), thecannula 230 may be tapped downward by striking the proximal surface of cap 290 (e.g. with a mallet or the like) while holding the trocar athousing 202. The motion ofproximal body 246 pushestube 244 distally withinchannel 218 of thetrocar body 204. This forces theleading edge 232 and trailingmating links 234 out of theradial window 212 intube 204, as shown inFIG. 14 . The distal end of opening orwindow 212 comprises aramp 209 to facilitate theleading edge 232 out thewindow 212 at the proper angle with respect to thetrocar tube 204 central axis, and without catching or getting stuck at the distal end of the trocar. - In addition to the
ramp 209, the curved path of thedistal tip 233 is facilitated by tension provided bycord 242, which forces the mating links 232, 234 to arch upon the applied tension. Thecord 242 is coupled to male-threaded dial 212 (seeFIG. 8 ) to act as a pull cord to apply said tension. Thedial 212 may be turned clockwise or counterclockwise within internal-threadedarm 214 to increase or relieve the tension on thecord 242, thereby providing steering of thedistal tip 233 while thecurved cannula 230 is advanced downtrocar body 204 and out window 212 (e.g. increased tension provides a sharper radius, decreased tension provides a more relaxed or no radius.) - Alternatively,
cord 242 may comprise a memory material such as a Nitinol wire that fastens thetube 244 andlinks cord 246 in this configuration stretches to allow thecurveable cannula 230 to be delivered into and stowed in a linear form withinchannel 218, and retracts when not restrained inchannel 218 to drive a curved path when exitingwindow 212. - As shown in
FIGS. 13 and 14 , thecurveable cannula 230 is fully deployed, with theproximal end 246 disposed at the bottom ofrecess 216, and thedistal tip 233 in a deployed orientation forming a curved path (along with trailing links 234) through the bone at the treatment site. In this configuration, theprobe 250 is restrained from axial motion (in the distal direction) with respect to thecurved cannula 230, because it is threaded insidedrive nut 270, which is restrained from distal motion bystop 258 in theproximal end 246. - As shown in
FIG. 15 , thedrive nut 270 may be raised (proximally advanced out of cavity 268) with respect to the curveable annula 230 and probeproximal body 254 by rotating the drive nut. Theproximal body 254 of theprobe 250 comprises amale thread 256 that mates with the femaleinternal threads 262 in a distal recess of thedrive nut 270. Thethread pattern 256/262 may preferably be opposite of the thread pattern between thestop nut 240 andproximal end 246 of the curveable cannula 230 (e.g. right-handed thread vs. left-handed thread), so that rotation of thedrive nut 270 does not result in rotation of thecurveable cannula 230. - Furthermore, the
proximal end 254 of theprobe 250 comprises a plurality ofvertical groves 264, at least one of which interfaces withkey 266 of thecurveable cannula 230. This interface only allows axial motion of theproximal body 264 with thecurveable cannula 230, and restricts rotation of theproximal body 264 with thecurveable cannula 230. Thus, rotation of thedrive nut 270 only results in proximal translation of thedrive nut 270. As seen inFIG. 15 , the probeproximal body 254 is now free to move downward incavity 268. - Referring now to
FIGS. 16 and 17 , thesystem 201 is shown in a fully deployed state, with theprobe 250 distal shaft advanced beyonddistal end 233 of the curveable cannulacentral channel 245. This is achieved by advancing theproximal body 254 within thecavity 268 of thecurveable cannula 230. Theproximal body 254 and drivenut 270 are advanced as a unit withincavity 268, preferably by tapping thecap 290, thereby providing an impact force to advance theprobe tip 274 out of thecannula 230 and through tissue/bone to reach the desired treatment or diagnostic location within the body. - In an alternative embodiment, a channeling stylet (such as
stylet 90 shown inkit 10 ofFIG. 1 ) may also be used to create a working channel beyond the end of the curved path created by thecurveable cannula 230 prior to deploying a probe for treatment or diagnostic device. - Once the
distal tip 274 of theprobe 250 is positioned at the desired location, treatment of the target tissue may be performed. As shown inFIG. 17 , probedistal end 274 may comprise afirst electrode 274 configured to deliver a therapeutic amount of RF energy to the target location. In the configuration shown inFIG. 17 , the probe preferably comprises a bipolar probe withreturn electrode 276, however it is appreciated that theprobe 250 may comprise any treatment instrument described herein. -
Cap 290 may further be configured to include (e.g. a self contained unit) a power source (e.g. battery) and receptacles (not shown) to couple to theprobe 250, thereby supplying the energy to deliver a therapeutic level of energy to the tissue. In this configuration, thecap 290 may have sufficient power to deliver one or more metered doses of energy specifically measured to denervate the BVN of a vertebral body in accordance with the present invention. - The
cap 290 is preferably treaded (or otherwise releasable coupled) intodrive nut 270 to be interchangeable depending on the application or step the procedure of the present invention. For example, acap 290 having a reinforced/hardened surface 292 used for driving thesystem 201 into the bone may be replaced by another cap having couplings (not shown) forprobe 250, an internal power supply (not shown), or couplings for an external power supply/controller (not shown) for delivering energy for treatment and/or diagnosis of a region of tissue. For embodiments wherein a fluid and/or agent is delivered to the target tissue, thecap 290 may be configured to facilitate delivery of the fluid through a probe having one or more fluid delivery channels. -
FIGS. 18A and 18B are side views of the distal end of thesystem 201 with thecurveable cannula 230 in a stowed and deployed position respectively. Thedistal link 232 and trailinglinks 234 are configured to have mating/interlocking surfaces that allow the distal end of the cannula to curve in one direction. The more distal link of a mating pair will have an extension 235 that mates with a correspond depression 237 in the link proximal to it. This allows the links to rotate with respect to each other to create a curved distal end as shown inFIG. 18B . -
FIGS. 19A and 19B illustrate analternative system 300 for generating a curved channel through bone.System 300 comprises atubular trocar body 302, the proximal end (not shown) of which may comprise a portion or all of any of the previously described proximal ends fordevices distal tip 334 comprises a leading edge surface for advancing through bone, and a radial orlateral window 304 allowing access to the central channel of thetrocar body 302. Thewindow 304 is positioned a short distance proximal to thedistal tip 334. - A
curveable cannula 322 is positioned in thetrocar 302, thecurveable cannula 322 having adistal end 324 coupled vialinkage 326 to apivotable arm 310. The proximal end (not shown) of the curveable cannula may comprise a portion or all of any of the previously described proximal ends fordevices pivotable arm 310 has a first end pivotable coupled at joint 314 at a location at or near thedistal tip 334 of thetrocar 334. In a stowed configuration (illustrated inFIG. 19A ), the pivotable arm is configured to lay axially in thetrocar 302 withinslot 306 that runs frompivot 314 proximally to the radial opening orwindow 304. The proximal (when stowed) end 312 of thearm 310 is coupled to thelinkage 326. - As shown in
FIG. 19B , thecannula 322 may be advanced laterally outward fromwindow 304 by simply advancing thecannula 322 distally down thetrocar 302. Thepivotable arm 310 constrains the motion of thecurveable end 320 of the cannula to a curved path of specified radius (determined by the length ofarm 310. Once the pivotable arm has reached full rotation (shown approximately 90 degrees inFIG. 19B , however such angle may be specified to be any desired amount), thecannula end 320 has created a curved path outward from the trocar toward the desired treatment site. A probe, stylet or similar device (such ascurved stylet 60, channelingstylet 90, or probe 100 ofFIG. 1 ) may be positioned at the opening of thedistal end 320 to facilitate generating the curved bore without allowing tissue or bone to enter the cannula. The probe, treatment/diagnostic device may then be routed through thecannula end 320 to a region of tissue/bone that is off-axis from thetrocar body 302. - It is appreciated that the
above systems - It is appreciated that each of the instruments in the
systems - The
systems systems - In another embodiment, the treatment device is configured to deliver therapeutic treatment that is targeted to block nerve conduction without ablating the nerve, i.e. thermal treatment is delivered to the nerve (e.g. via thermal therapy, agent or the like) that results in denervation of the BVN without necrosis of tissue. This may be achieved via delivery of a lesser amount of energy or agent to the tissue site (either in the form of less exposure time, concentration, intensity, etc.) than is required for ablation, but an amount sufficient to achieve some amount of temporary or permanent denervation.
- It is further envisioned that the probed described herein may comprise non-therapy devices, such as diagnostic devises (e.g. ultrasound, cameras, or the like) to diagnose a region of tissue independent of or in connection with treatment of the region of tissue.
- It is also appreciated that individual elements of any of the
systems 10 200, 201, and 300 detailed above may be used interchangeably where applicable. For example, thecurved stylet 60 shown insystems systems stylet 90 may be used to further generate a channel beyond the curved path provided by the curveable cannula (230, 320) - As can be seen, therefore, the present invention includes the following inventive embodiments among others:
- 1. A system for channeling a path into bone, comprising: a trocar having a proximal end, distal end and a central channel; wherein the central channel is disposed along a central axis of the trocar and extends from the proximal end toward the distal end; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; and a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening; the curveable cannula comprising a curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar; wherein the curveable cannula comprises a central passageway having a diameter configured allow a probe to be delivered through the central passageway to a location beyond the curved path.
- 2. A system according to
embodiment 1, wherein the trocar further comprises a sharp distal tip configured to pierce through bone to generate a linear path through bone. - 3. A system according to
embodiment 2, wherein the curveable cannula comprises a sharpened distal tip configured to pierce through bone to generate a curved path extending from a linear path generated by the trocar. - 4. A system according to
embodiment 1, wherein the distal end of the curveable cannula is deformable so as to be delivered in a straight configuration through the trocar and deployed in a curved configuration outward from the radial opening at an angle with respect to the central axis. - 5. A system according to
embodiment 4, further comprising: a pull cord coupled to the distal tip of the curveable cannula, the pull cord extending to the proximal end of the trocar; wherein the pull cord is configured to apply a tensile force to the distal end of the curveable cannula to bias the curveable cannula into a curved configuration. - 6. A system according to
embodiment 5, wherein the tensile force applied to the distal tip of the curveable cannula may be controlled from the proximal end of the trocar to steer the curveable cannula along a desired path. - 7. A system according to
embodiment 4, wherein a distal end of the curveable cannula comprises a plurality of mating links, the links configured to articulate into a curved shape. - 8. A system according to
embodiment 4, wherein the central channel of the trocar terminates at a ramp leading to the radial window, said ramp facilitating deployment of said curveable cannula outward from said window. - 9. A system according to
embodiment 1, wherein: the curveable cannula comprises a proximal end comprising a proximal body wherein the proximal end of the trocar comprises a housing: said housing having a proximal recess configured to allow reciprocation of the proximal body of the curveable cannula; wherein the proximal recess is in communication with the central channel. - 10. A system according to
embodiment 9, wherein a proximal body of the curveable cannula is configured to be releasably restrained with respect to translation within the trocar housing. - 11. A system according to
embodiment 10, further comprising a probe sized to fit within the central channel of the cannula; the probe comprising a proximal end configured to be releasably restrained with respect to translation within the cannula proximal body. - 12. A system according to
embodiment 11, further comprising a drive nut coupled to the curveable cannula; wherein the drive nut comprises a hardened proximal surface suitable for applying an impact force to advance one or more of the trocar, curveable cannula, or probe through bone. - 13. A system according to
embodiment 12, wherein the drive nut comprises a threaded distal recess configured to house the proximal end of the probe. - 14. A system according to
embodiment 12, wherein the proximal surface of the drive nut comprises an interchangeable cap; said interchangeable cap configured to provide access to the probe for providing a therapeutic energy. - 15. A method for channeling a path into bone to a treatment location in the body of a patient, comprising: inserting a trocar into a region of bone near the treatment location; the trocar having a having a proximal end, distal end and a central channel disposed therebetween; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; delivering a curveable cannula through said central channel and to said radial opening; and deploying the curveable cannula laterally outward from the radial opening in a curved path extending away from the trocar.
- 16. A method according to
embodiment 15, further comprising: delivering a treatment device through a central passageway in the curveable cannula to a treatment location beyond the curved path. - 17. A method according to
embodiment 16, further comprising: delivering a therapeutic amount of thermal energy to the treatment location. - 18. A method according to
embodiment 17, wherein inserting a trocar into a region of bone comprises: deploying the trocar through a cortical bone region and into a cancellous bone region of a vertebral body; wherein the curved path is generated though at least a portion of the cancellous bone region of the vertebral body. - 19. A method according to
embodiment 16, further comprising: steering the curveable cannula via a pull cord coupled to the distal tip of the curveable cannula to bias the curveable cannula in the curved path. - 20. A method according to embodiment 18, wherein the treatment location comprises a BVN associated with the vertebral body, the method further comprising: delivering the thermal energy to the treatment location to denervate at least a portion of the BVN.
- 21. A spine therapy system, comprising: a trocar having a proximal end, distal end and a central channel; wherein the central channel is disposed along a central axis of the trocar and extends from the proximal end toward the distal end; wherein the trocar comprises a radial opening at or near the distal end of the trocar, the radial opening being in communication with the central channel; wherein the trocar is configured to be deployed through a cortical bone region and into a cancellous bone region of a vertebral body; a curveable cannula sized to be received in said central channel and delivered from the proximal end toward said radial opening; the curveable cannula comprising a central passageway and curveable distal end configured to be extended laterally outward from the radial opening in a curved path extending away from the trocar; wherein the curved path is generated though at least a portion of the cancellous bone region of the vertebral body; and a treatment probe configured to be delivered through the central passageway to a location beyond the curved path.
- 22. A system according to embodiment 21, wherein the trocar further comprises a sharp distal tip configured to pierce through bone to generate a linear path through bone.
- 23. A system according to
embodiment 22, wherein the curveable cannula comprises a sharpened distal tip configured to pierce through bone to generate a curved path extending from a linear path generated by the trocar. - 24. A system according to embodiment 21, wherein the distal end of the curveable cannula is deformable so as to be delivered in a straight configuration through the trocar and deployed in a curved configuration outward from the radial opening at an angle with respect to the central axis.
- 25. A system according to
embodiment 24, further comprising: a pull cord coupled to the distal tip of the curveable cannula, the pull cord extending to the proximal end of the trocar; wherein the pull cord is configured to apply a tensile force to the distal end of the curveable cannula to bias the curveable cannula into a curved configuration. - 26. A system according to
embodiment 24, wherein a distal end of the curveable cannula comprises a plurality of mating links, the links configured to articulate into a curved shape. - 27. A system according to embodiment 21, wherein: the curveable cannula comprises a proximal end comprising a proximal body wherein the proximal end of the trocar comprises a housing: said housing having a proximal recess configured to allow reciprocation of the proximal body of the curveable cannula; and wherein the proximal recess is in communication with the central channel.
- 28. A system according to embodiment 27, wherein a proximal body of the curveable cannula is configured to be releasably restrained with respect to translation within the trocar housing.
- 29. A system according to
embodiment 28, wherein the probe comprises a proximal end configured to be releasably restrained with respect to translation within the cannula proximal body. - 30. A system according to embodiment 29, further comprising: a drive nut coupled to the curveable cannula; wherein the drive nut comprises a hardened proximal surface suitable for applying an impact force to advance one or more of the trocar, curveable cannula, or probe through bone; wherein the drive nut comprises a threaded distal recess configured to house the proximal end of the probe; wherein the probe comprises mating threads with the distal recess so as to allow controlled translation of the probe with respect to the drive nut.
- 31. A system according to
embodiment 30, wherein the proximal surface of the drive nut comprises an interchangeable cap; said interchangeable cap configured to provide access to the probe for providing a therapeutic energy. - Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
Claims (31)
Priority Applications (38)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/683,555 US8613744B2 (en) | 2002-09-30 | 2010-01-07 | Systems and methods for navigating an instrument through bone |
US12/868,818 US8808284B2 (en) | 2008-09-26 | 2010-08-26 | Systems for navigating an instrument through bone |
AU2011204278A AU2011204278B2 (en) | 2010-01-07 | 2011-01-07 | Systems and methods for navigating an instrument through bone |
PCT/US2011/020535 WO2011085212A2 (en) | 2010-01-07 | 2011-01-07 | Systems and methods for navigating an instrument through bone |
EP11732213.1A EP2521501B1 (en) | 2010-01-07 | 2011-01-07 | Systems for navigating an instrument through bone |
CA2785207A CA2785207C (en) | 2010-01-07 | 2011-01-07 | Systems and methods for navigating an instrument through bone |
JP2012548169A JP5179682B1 (en) | 2010-01-07 | 2011-01-07 | System and method for guiding an instrument through bone |
IL220747A IL220747A (en) | 2010-01-07 | 2012-07-03 | Systems for navigating an instrument through bone |
US13/543,712 US8535309B2 (en) | 2010-01-07 | 2012-07-06 | Vertebral bone channeling systems |
US13/543,723 US8414571B2 (en) | 2010-01-07 | 2012-07-06 | Vertebral bone navigation systems |
US13/543,721 US20120330300A1 (en) | 2002-09-30 | 2012-07-06 | Intraosseous nerve denervation methods |
US13/612,541 US8361067B2 (en) | 2002-09-30 | 2012-09-12 | Methods of therapeutically heating a vertebral body to treat back pain |
US13/612,561 US8425507B2 (en) | 2002-09-30 | 2012-09-12 | Basivertebral nerve denervation |
US13/615,300 US20130012936A1 (en) | 2002-09-30 | 2012-09-13 | System for heating a vertebral body to treat back pain |
US13/615,001 US8419731B2 (en) | 2002-09-30 | 2012-09-13 | Methods of treating back pain |
US13/617,470 US8623014B2 (en) | 2002-09-30 | 2012-09-14 | Systems for denervation of basivertebral nerves |
JP2013001951A JP2013059688A (en) | 2010-01-07 | 2013-01-09 | System and method for navigating instrument through bone |
US13/862,317 US8992522B2 (en) | 2002-09-30 | 2013-04-12 | Back pain treatment methods |
US13/862,306 US8628528B2 (en) | 2002-09-30 | 2013-04-12 | Vertebral denervation |
US13/923,798 US8992523B2 (en) | 2002-09-30 | 2013-06-21 | Vertebral treatment |
US14/136,763 US9023038B2 (en) | 2002-09-30 | 2013-12-20 | Denervation methods |
US14/147,024 US9017325B2 (en) | 2002-09-30 | 2014-01-03 | Nerve modulation systems |
US14/153,922 US9173676B2 (en) | 2002-09-30 | 2014-01-13 | Nerve modulation methods |
US14/462,371 US9265522B2 (en) | 2008-09-26 | 2014-08-18 | Methods for navigating an instrument through bone |
US14/673,172 US9486279B2 (en) | 2002-09-30 | 2015-03-30 | Intraosseous nerve treatment |
US14/695,330 US9421064B2 (en) | 2002-09-30 | 2015-04-24 | Nerve modulation systems |
US14/701,908 US20150335382A1 (en) | 2002-09-30 | 2015-05-01 | Denervation methods |
US14/928,037 US10028753B2 (en) | 2008-09-26 | 2015-10-30 | Spine treatment kits |
IL245665A IL245665A (en) | 2010-01-07 | 2016-05-16 | Systems and kits for generating a path to a target region within bone |
US15/241,528 US9724107B2 (en) | 2008-09-26 | 2016-08-19 | Nerve modulation systems |
US15/344,284 US10111704B2 (en) | 2002-09-30 | 2016-11-04 | Intraosseous nerve treatment |
US15/669,399 US10905440B2 (en) | 2008-09-26 | 2017-08-04 | Nerve modulation systems |
US16/152,834 US11471171B2 (en) | 2008-09-26 | 2018-10-05 | Bipolar radiofrequency ablation systems for treatment within bone |
US16/153,234 US10478246B2 (en) | 2002-09-30 | 2018-10-05 | Ablation of tissue within vertebral body involving internal cooling |
US16/156,850 US20190038296A1 (en) | 2008-09-26 | 2018-10-10 | Systems for treating nerves within bone using steam |
US16/160,155 US11596468B2 (en) | 2002-09-30 | 2018-10-15 | Intraosseous nerve treatment |
US16/747,830 US20210205009A9 (en) | 2002-09-30 | 2020-01-21 | Denervation methods |
US18/451,539 US20240115274A1 (en) | 2008-09-26 | 2023-08-17 | Systems for treating nerves within bone |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/260,879 US6907884B2 (en) | 2002-09-30 | 2002-09-30 | Method of straddling an intraosseous nerve |
US11/123,766 US7749218B2 (en) | 2002-09-30 | 2005-05-06 | Method of straddling an intraosseous nerve |
US10055308P | 2008-09-26 | 2008-09-26 | |
US12/566,895 US8419730B2 (en) | 2008-09-26 | 2009-09-25 | Systems and methods for navigating an instrument through bone |
US12/683,555 US8613744B2 (en) | 2002-09-30 | 2010-01-07 | Systems and methods for navigating an instrument through bone |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/123,766 Continuation-In-Part US7749218B2 (en) | 2002-09-30 | 2005-05-06 | Method of straddling an intraosseous nerve |
US12/566,895 Continuation-In-Part US8419730B2 (en) | 2002-09-30 | 2009-09-25 | Systems and methods for navigating an instrument through bone |
US12/566,895 Division US8419730B2 (en) | 2002-09-30 | 2009-09-25 | Systems and methods for navigating an instrument through bone |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/868,818 Continuation US8808284B2 (en) | 2002-09-30 | 2010-08-26 | Systems for navigating an instrument through bone |
US13/612,561 Continuation US8425507B2 (en) | 2002-09-30 | 2012-09-12 | Basivertebral nerve denervation |
US13/612,541 Continuation-In-Part US8361067B2 (en) | 2002-09-30 | 2012-09-12 | Methods of therapeutically heating a vertebral body to treat back pain |
US14/136,763 Continuation US9023038B2 (en) | 2002-09-30 | 2013-12-20 | Denervation methods |
Publications (3)
Publication Number | Publication Date |
---|---|
US20100185161A1 true US20100185161A1 (en) | 2010-07-22 |
US20110034884A9 US20110034884A9 (en) | 2011-02-10 |
US8613744B2 US8613744B2 (en) | 2013-12-24 |
Family
ID=42337523
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/683,555 Active 2025-01-27 US8613744B2 (en) | 2002-09-30 | 2010-01-07 | Systems and methods for navigating an instrument through bone |
US13/612,561 Expired - Lifetime US8425507B2 (en) | 2002-09-30 | 2012-09-12 | Basivertebral nerve denervation |
US13/617,470 Expired - Lifetime US8623014B2 (en) | 2002-09-30 | 2012-09-14 | Systems for denervation of basivertebral nerves |
US13/862,306 Active US8628528B2 (en) | 2002-09-30 | 2013-04-12 | Vertebral denervation |
US14/136,763 Expired - Fee Related US9023038B2 (en) | 2002-09-30 | 2013-12-20 | Denervation methods |
US14/147,024 Expired - Lifetime US9017325B2 (en) | 2002-09-30 | 2014-01-03 | Nerve modulation systems |
US14/153,922 Expired - Fee Related US9173676B2 (en) | 2002-09-30 | 2014-01-13 | Nerve modulation methods |
US14/695,330 Expired - Lifetime US9421064B2 (en) | 2002-09-30 | 2015-04-24 | Nerve modulation systems |
US14/701,908 Abandoned US20150335382A1 (en) | 2002-09-30 | 2015-05-01 | Denervation methods |
US16/747,830 Abandoned US20210205009A9 (en) | 2002-09-30 | 2020-01-21 | Denervation methods |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/612,561 Expired - Lifetime US8425507B2 (en) | 2002-09-30 | 2012-09-12 | Basivertebral nerve denervation |
US13/617,470 Expired - Lifetime US8623014B2 (en) | 2002-09-30 | 2012-09-14 | Systems for denervation of basivertebral nerves |
US13/862,306 Active US8628528B2 (en) | 2002-09-30 | 2013-04-12 | Vertebral denervation |
US14/136,763 Expired - Fee Related US9023038B2 (en) | 2002-09-30 | 2013-12-20 | Denervation methods |
US14/147,024 Expired - Lifetime US9017325B2 (en) | 2002-09-30 | 2014-01-03 | Nerve modulation systems |
US14/153,922 Expired - Fee Related US9173676B2 (en) | 2002-09-30 | 2014-01-13 | Nerve modulation methods |
US14/695,330 Expired - Lifetime US9421064B2 (en) | 2002-09-30 | 2015-04-24 | Nerve modulation systems |
US14/701,908 Abandoned US20150335382A1 (en) | 2002-09-30 | 2015-05-01 | Denervation methods |
US16/747,830 Abandoned US20210205009A9 (en) | 2002-09-30 | 2020-01-21 | Denervation methods |
Country Status (1)
Country | Link |
---|---|
US (10) | US8613744B2 (en) |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120220894A1 (en) * | 2009-11-17 | 2012-08-30 | Melsheimer Jeffry S | Deflectable biopsy device |
US8361067B2 (en) | 2002-09-30 | 2013-01-29 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US8414571B2 (en) | 2010-01-07 | 2013-04-09 | Relievant Medsystems, Inc. | Vertebral bone navigation systems |
US8419730B2 (en) | 2008-09-26 | 2013-04-16 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US8425507B2 (en) | 2002-09-30 | 2013-04-23 | Relievant Medsystems, Inc. | Basivertebral nerve denervation |
US20130116556A1 (en) * | 2011-11-05 | 2013-05-09 | Custom Medical Applications | Neural safety injection system and related methods |
US20130218164A1 (en) * | 2012-02-17 | 2013-08-22 | Synthes Usa, Llc | Adjustable balloon including bone access tip |
WO2014022567A1 (en) * | 2012-07-31 | 2014-02-06 | Safe Wire Holdings, Llc | Depth controlled jamshidi needle |
US20140094799A1 (en) * | 2012-10-02 | 2014-04-03 | Covidien Lp | Selectively deformable ablation device |
WO2014071161A1 (en) | 2012-11-05 | 2014-05-08 | Relievant Medsystems, Inc. | System and methods for creating curved paths through bone and modulating nerves within the bone |
US20140324064A1 (en) * | 2011-11-10 | 2014-10-30 | Medtronic, Inc. | Introduction and anchoring tool for an implantable medical device element |
US8882764B2 (en) | 2003-03-28 | 2014-11-11 | Relievant Medsystems, Inc. | Thermal denervation devices |
US20150100052A1 (en) * | 2013-10-06 | 2015-04-09 | Jinsheng Wang | Spinal disk herniation repositioning and radiofrequency ablation (rfa) device and method for treating vertebral disc herniation |
CN105105797A (en) * | 2015-09-28 | 2015-12-02 | 成都漫程科技有限公司 | Puncture biopsy guide device |
US9308001B2 (en) | 2011-03-18 | 2016-04-12 | Carlos Andres Rodriguez | Vertebral cavitation surgical tool |
US9381010B2 (en) | 2011-06-27 | 2016-07-05 | Covidien Lp | Surgical instrument with adapter for facilitating multi-direction end effector articulation |
US20160310210A1 (en) * | 2013-12-12 | 2016-10-27 | Holaira, Inc. | Catheter and handle assembly, systems, and methods |
USRE46356E1 (en) | 2002-09-30 | 2017-04-04 | Relievant Medsystems, Inc. | Method of treating an intraosseous nerve |
US9636244B2 (en) | 2015-04-09 | 2017-05-02 | Mubin I. Syed | Apparatus and method for proximal to distal stent deployment |
US20170216092A1 (en) * | 2014-07-30 | 2017-08-03 | University Of Kansas | Cannula for external drainage of subretinal fluid |
US9724151B2 (en) | 2013-08-08 | 2017-08-08 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
US9724107B2 (en) | 2008-09-26 | 2017-08-08 | Relievant Medsystems, Inc. | Nerve modulation systems |
WO2018007914A1 (en) * | 2016-07-05 | 2018-01-11 | Mainstay Medical Limited | Systems and methods for enhanced implantation of electrode leads between tissue layers |
US20180116701A1 (en) * | 2015-03-25 | 2018-05-03 | Coracoid Solutions, Llc | Joint repair system |
US9981122B2 (en) | 2012-06-13 | 2018-05-29 | Mainstay Medical Limited | Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator |
US9980838B2 (en) | 2015-10-30 | 2018-05-29 | Ram Medical Innovations Llc | Apparatus and method for a bifurcated catheter for use in hostile aortic arches |
US9999763B2 (en) | 2012-06-13 | 2018-06-19 | Mainstay Medical Limited | Apparatus and methods for anchoring electrode leads adjacent to nervous tissue |
US9999444B2 (en) | 2011-03-01 | 2018-06-19 | Orthovita, Inc. | Depth controlled Jamshidi needle |
EP3148453A4 (en) * | 2014-05-28 | 2018-06-20 | Kyphon SÀRL | Multi-tine cutting device |
JP2018102551A (en) * | 2016-12-26 | 2018-07-05 | HOYA Technosurgical株式会社 | Syringe and treatment set |
US10053693B2 (en) | 2016-01-19 | 2018-08-21 | Mubin I. Syed | Method for controlling obesity using minimally invasive means |
US20180263648A1 (en) * | 2015-09-16 | 2018-09-20 | Vexim | Control mechanism for steerable rod |
US20180303512A1 (en) * | 2015-11-25 | 2018-10-25 | Ohio State Innovation Foundation | Devices, systems, and methods for delivering a therapy to a target tissue |
US10173031B2 (en) | 2016-06-20 | 2019-01-08 | Mubin I. Syed | Interchangeable flush/selective catheter |
US10195419B2 (en) | 2012-06-13 | 2019-02-05 | Mainstay Medical Limited | Electrode leads for use with implantable neuromuscular electrical stimulator |
US10213187B1 (en) * | 2012-01-25 | 2019-02-26 | Mubin I. Syed | Method and apparatus for percutaneous superficial temporal artery access for carotid artery stenting |
US10327929B2 (en) | 2015-10-30 | 2019-06-25 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10390877B2 (en) | 2011-12-30 | 2019-08-27 | Relievant Medsystems, Inc. | Systems and methods for treating back pain |
US20190282217A1 (en) * | 2018-03-14 | 2019-09-19 | SPIRATION, INC., d/b/a OLYMPUS RESPIRATORY AMERICA | Catheter Assembly With Offset Device For Tissue Sampling |
CN110269645A (en) * | 2018-03-14 | 2019-09-24 | 斯波瑞申有限公司(以奥林巴斯呼吸美国名义) | For organizing the conduit tube component with offset assembly of sampling |
US10449355B2 (en) | 2012-06-13 | 2019-10-22 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same |
US10471268B2 (en) | 2014-10-16 | 2019-11-12 | Mainstay Medical Limited | Systems and methods for monitoring muscle rehabilitation |
US10492936B2 (en) | 2015-10-30 | 2019-12-03 | Ram Medical Innovations, Llc | Apparatus and method for improved access of procedural catheter in tortuous vessels |
US10588691B2 (en) | 2012-09-12 | 2020-03-17 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
US10588766B2 (en) | 2012-11-21 | 2020-03-17 | Ram Medical Innovations, Llc | Steerable intravascular anchor and method of operation |
US10631915B1 (en) * | 2014-10-21 | 2020-04-28 | Cosman Instruments, Llc | Electrosurgical system |
US10661078B2 (en) | 2010-03-11 | 2020-05-26 | Mainstay Medical Limited | Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use |
US10779976B2 (en) | 2015-10-30 | 2020-09-22 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10828490B2 (en) | 2007-03-09 | 2020-11-10 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine |
US10857014B2 (en) | 2018-02-18 | 2020-12-08 | Ram Medical Innovations, Llc | Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions |
US10925637B2 (en) | 2010-03-11 | 2021-02-23 | Mainstay Medical Limited | Methods of implanting electrode leads for use with implantable neuromuscular electrical stimulator |
US11007010B2 (en) | 2019-09-12 | 2021-05-18 | Relevant Medsysterns, Inc. | Curved bone access systems |
US11020256B2 (en) | 2015-10-30 | 2021-06-01 | Ram Medical Innovations, Inc. | Bifurcated “Y” anchor support for coronary interventions |
CN113288390A (en) * | 2021-05-21 | 2021-08-24 | 山东威高骨科材料股份有限公司 | Detachable opening puncture tool |
US11103706B2 (en) | 2007-03-09 | 2021-08-31 | Mainstay Medical Limited | Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention |
US20210267637A1 (en) * | 2020-02-28 | 2021-09-02 | Bard Access Systems, Inc. | Flexible Intraosseous Obturator |
US11129728B1 (en) | 2018-10-03 | 2021-09-28 | Guillermo Molina | Surgically implantable joint spacer |
US11331488B2 (en) | 2007-03-09 | 2022-05-17 | Mainstay Medical Limited | Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention |
US11679261B2 (en) | 2007-03-09 | 2023-06-20 | Mainstay Medical Limited | Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention |
US11679262B2 (en) | 2007-03-09 | 2023-06-20 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine |
US11684774B2 (en) | 2010-03-11 | 2023-06-27 | Mainstay Medical Limited | Electrical stimulator for treatment of back pain and methods of use |
US11684485B1 (en) | 2020-02-04 | 2023-06-27 | Guillermo Molina | Surgically implantable joint spacer |
US11786725B2 (en) | 2012-06-13 | 2023-10-17 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same |
WO2024116100A1 (en) * | 2022-11-30 | 2024-06-06 | Medtronic Holding Company Sàrl | Basivertebral nerve access tool, system, and method |
US12039731B2 (en) | 2020-12-22 | 2024-07-16 | Relievant Medsystems, Inc. | Prediction of candidates for spinal neuromodulation |
US12082876B1 (en) | 2020-09-28 | 2024-09-10 | Relievant Medsystems, Inc. | Introducer drill |
US12097365B2 (en) | 2010-03-11 | 2024-09-24 | Mainstay Medical Limited | Electrical stimulator for the treatment of back pain and methods of use |
US12121674B2 (en) | 2022-02-03 | 2024-10-22 | Mubin I. Syed | Interchangeable flush/selective catheter |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150359586A1 (en) | 2000-02-03 | 2015-12-17 | Michael Heggeness | Device and method for alleviation of pain |
US20090088789A1 (en) * | 2007-09-28 | 2009-04-02 | O'neil Michael J | Balloon With Shape Control For Spinal Procedures |
WO2009065061A1 (en) | 2007-11-14 | 2009-05-22 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US8758349B2 (en) | 2008-10-13 | 2014-06-24 | Dfine, Inc. | Systems for treating a vertebral body |
WO2010039894A1 (en) | 2008-09-30 | 2010-04-08 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US20100298832A1 (en) | 2009-05-20 | 2010-11-25 | Osseon Therapeutics, Inc. | Steerable curvable vertebroplasty drill |
US10058336B2 (en) | 2010-04-08 | 2018-08-28 | Dfine, Inc. | System for use in treatment of vertebral fractures |
CN102985015B (en) | 2010-04-29 | 2016-08-03 | Dfine有限公司 | For treating the system of vertebral fracture |
WO2011137377A1 (en) | 2010-04-29 | 2011-11-03 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9526507B2 (en) | 2010-04-29 | 2016-12-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
EP2642931B1 (en) | 2010-11-22 | 2017-03-15 | Dfine, Inc. | System for use in treatment of vertebral fractures |
BR112014024028B1 (en) | 2012-03-27 | 2022-05-31 | Dfine, Inc | Medical device for creating heated tissue regions using temperature to monitor a desired profile of the regions |
EP3593740B1 (en) | 2012-06-20 | 2021-10-06 | Stryker Corporation | System for off-axis tissue manipulation |
US9918766B2 (en) | 2012-12-12 | 2018-03-20 | Dfine, Inc. | Devices, methods and systems for affixing an access device to a vertebral body for the insertion of bone cement |
US9402602B2 (en) * | 2013-01-25 | 2016-08-02 | Choon Kee Lee | Tissue sampling apparatus |
US9282988B2 (en) | 2013-03-14 | 2016-03-15 | Kyphon SÀRL | Formed deployable superelastic blade and method of use |
US9936997B2 (en) | 2014-05-28 | 2018-04-10 | Kyphon SÀRL | Cryogenic kyphoplasty instrument and methods of use |
US10952771B2 (en) | 2015-03-14 | 2021-03-23 | K2M, Inc. | Vertebral ablation system |
US12035961B2 (en) * | 2015-04-13 | 2024-07-16 | Carlos Fernando Bazoberry | Radiofrequency denervation needle and method |
HUE052729T2 (en) * | 2015-04-13 | 2021-05-28 | Carlos Fernando Bazoberry | Radiofrequency denervation needle |
US9901392B2 (en) | 2015-05-11 | 2018-02-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US10493247B2 (en) | 2016-03-15 | 2019-12-03 | Medtronic Holding Company Sàrl | Devices for delivering a chemical denervation agent and methods of use |
JP2019534130A (en) | 2016-10-27 | 2019-11-28 | ディーファイン,インコーポレイティド | Articulated osteotome with cement delivery channel |
US10543927B2 (en) * | 2016-11-18 | 2020-01-28 | Rohr, Inc. | Lockable track system for a translating nacelle structure |
WO2018097992A2 (en) | 2016-11-22 | 2018-05-31 | Dfine, Inc. | Swivel hub |
US11026744B2 (en) | 2016-11-28 | 2021-06-08 | Dfine, Inc. | Tumor ablation devices and related methods |
WO2018107036A1 (en) | 2016-12-09 | 2018-06-14 | Dfine, Inc. | Medical devices for treating hard tissues and related methods |
WO2018129180A1 (en) | 2017-01-06 | 2018-07-12 | Dfine, Inc. | Osteotome with a distal portion for simultaneous advancement and articulation |
US10268102B2 (en) * | 2017-08-16 | 2019-04-23 | Cary Allen Decker | Universal protective cap for camera lenses and other tubular-shaped objects |
US11937864B2 (en) | 2018-11-08 | 2024-03-26 | Dfine, Inc. | Ablation systems with parameter-based modulation and related devices and methods |
US11065461B2 (en) | 2019-07-08 | 2021-07-20 | Bioness Inc. | Implantable power adapter |
WO2021055617A1 (en) | 2019-09-18 | 2021-03-25 | Merit Medical Systems, Inc. | Osteotome with inflatable portion and multiwire articulation |
Citations (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3845771A (en) * | 1973-04-24 | 1974-11-05 | W Vise | Electrosurgical glove |
US4754757A (en) * | 1985-12-16 | 1988-07-05 | Peter Feucht | Method and apparatus for monitoring the surface contact of a neutral electrode of a HF-surgical apparatus |
US5098431A (en) * | 1989-04-13 | 1992-03-24 | Everest Medical Corporation | RF ablation catheter |
US5106376A (en) * | 1989-07-07 | 1992-04-21 | B. Braun Melsungen Ag | Anaesthesia set |
US5161533A (en) * | 1991-09-19 | 1992-11-10 | Xomed-Treace Inc. | Break-apart needle electrode system for monitoring facial EMG |
US5273026A (en) * | 1992-03-06 | 1993-12-28 | Wilk Peter J | Retractor and associated method for use in laparoscopic surgery |
US5433739A (en) * | 1993-11-02 | 1995-07-18 | Sluijter; Menno E. | Method and apparatus for heating an intervertebral disc for relief of back pain |
US5441499A (en) * | 1993-07-14 | 1995-08-15 | Dekna Elektro-U. Medizinische Apparatebau Gesellschaft Mbh | Bipolar radio-frequency surgical instrument |
US5443463A (en) * | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
US5540684A (en) * | 1994-07-28 | 1996-07-30 | Hassler, Jr.; William L. | Method and apparatus for electrosurgically treating tissue |
US5630426A (en) * | 1995-03-03 | 1997-05-20 | Neovision Corporation | Apparatus and method for characterization and treatment of tumors |
US5647871A (en) * | 1995-03-10 | 1997-07-15 | Microsurge, Inc. | Electrosurgery with cooled electrodes |
US5672173A (en) * | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5697281A (en) * | 1991-10-09 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US5725494A (en) * | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5728062A (en) * | 1995-11-30 | 1998-03-17 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US5733280A (en) * | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US5735811A (en) * | 1995-11-30 | 1998-04-07 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced fluid delivery |
US5762616A (en) * | 1996-03-15 | 1998-06-09 | Exogen, Inc. | Apparatus for ultrasonic treatment of sites corresponding to the torso |
US5846218A (en) * | 1996-09-05 | 1998-12-08 | Pharmasonics, Inc. | Balloon catheters having ultrasonically driven interface surfaces and methods for their use |
US5871470A (en) * | 1997-04-18 | 1999-02-16 | Becton Dickinson And Company | Combined spinal epidural needle set |
US5931805A (en) * | 1997-06-02 | 1999-08-03 | Pharmasonics, Inc. | Catheters comprising bending transducers and methods for their use |
US5935123A (en) * | 1993-11-08 | 1999-08-10 | Rita Medical Systems, Inc. | RF treatment apparatus |
US5997497A (en) * | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
US6012457A (en) * | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6073051A (en) * | 1996-08-13 | 2000-06-06 | Oratec Interventions, Inc. | Apparatus for treating intervertebal discs with electromagnetic energy |
US6099514A (en) * | 1996-08-13 | 2000-08-08 | Oratec Interventions, Inc. | Method and apparatus for delivering or removing material from the interior of an intervertebral disc |
US6117101A (en) * | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6139545A (en) * | 1998-09-09 | 2000-10-31 | Vidaderm | Systems and methods for ablating discrete motor nerve regions |
US6146380A (en) * | 1998-01-09 | 2000-11-14 | Radionics, Inc. | Bent tip electrical surgical probe |
US6149620A (en) * | 1995-11-22 | 2000-11-21 | Arthrocare Corporation | System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US6161048A (en) * | 1997-06-26 | 2000-12-12 | Radionics, Inc. | Method and system for neural tissue modification |
US6164283A (en) * | 1997-07-08 | 2000-12-26 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6210393B1 (en) * | 1997-12-31 | 2001-04-03 | Pharmasonics, Inc. | Methods and systems for the inhibition of vascular hyperplasia |
US6221038B1 (en) * | 1996-11-27 | 2001-04-24 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US20010001811A1 (en) * | 1996-02-09 | 2001-05-24 | Burney Bryan T. | Surgical and pharmaceutical site access guide and methods |
US6241725B1 (en) * | 1993-12-15 | 2001-06-05 | Sherwood Services Ag | High frequency thermal ablation of cancerous tumors and functional targets with image data assistance |
US6245064B1 (en) * | 1997-07-08 | 2001-06-12 | Atrionix, Inc. | Circumferential ablation device assembly |
US6254599B1 (en) * | 1997-05-09 | 2001-07-03 | Atrionix, Inc. | Circumferential ablation device assembly |
US6254553B1 (en) * | 1997-04-18 | 2001-07-03 | Scandimed International Ab | Method for ultrasonic treatment of disc disease |
US6264651B1 (en) * | 1996-07-16 | 2001-07-24 | Arthrocare Corporation | Method for electrosurgical spine surgery |
US6264659B1 (en) * | 1999-02-22 | 2001-07-24 | Anthony C. Ross | Method of treating an intervertebral disk |
US6287304B1 (en) * | 1999-10-15 | 2001-09-11 | Neothermia Corporation | Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes |
US6296619B1 (en) * | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US20010029370A1 (en) * | 1995-06-07 | 2001-10-11 | Arthrocare Corporation | Method for electrosurgical treatment of intervertebral discs |
US6312426B1 (en) * | 1997-05-30 | 2001-11-06 | Sherwood Services Ag | Method and system for performing plate type radiofrequency ablation |
US20010047167A1 (en) * | 2000-02-03 | 2001-11-29 | Heggeness Michael H. | Methods and devices for intraosseous nerve ablation |
US20020016600A1 (en) * | 1995-01-31 | 2002-02-07 | Cosman Eric R. | Repositioner for head, neck, and body |
US20020026186A1 (en) * | 1995-06-07 | 2002-02-28 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
US6423059B1 (en) * | 1999-11-16 | 2002-07-23 | Sulzer Medica Usa Inc. | Radio frequency ablation apparatus with remotely articulating and self-locking electrode wand |
US20020147444A1 (en) * | 2001-04-09 | 2002-10-10 | Krishan Shah | Intradiscal lesioning apparatus |
US6468274B1 (en) * | 1996-07-16 | 2002-10-22 | Arthrocare Corporation | Systems and methods for treating spinal pain |
US6478793B1 (en) * | 1999-06-11 | 2002-11-12 | Sherwood Services Ag | Ablation treatment of bone metastases |
US6726684B1 (en) * | 1996-07-16 | 2004-04-27 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US6736835B2 (en) * | 2002-03-21 | 2004-05-18 | Depuy Acromed, Inc. | Early intervention spinal treatment methods and devices for use therein |
US20040193151A1 (en) * | 2001-06-06 | 2004-09-30 | Oratec Interventions, Inc. | Intervertebral disc device employing looped probe |
US20040220577A1 (en) * | 2000-02-16 | 2004-11-04 | Cragg Andrew H. | Methods and apparatus for forming shaped axial bores through spinal vertebrae |
US6907884B2 (en) * | 2002-09-30 | 2005-06-21 | Depay Acromed, Inc. | Method of straddling an intraosseous nerve |
US20050283148A1 (en) * | 2004-06-17 | 2005-12-22 | Janssen William M | Ablation apparatus and system to limit nerve conduction |
US20060004369A1 (en) * | 2004-06-17 | 2006-01-05 | Scimed Life Systems, Inc. | Slidable sheaths for tissue removal devices |
US20060178670A1 (en) * | 2003-07-16 | 2006-08-10 | Arthro Care Corporation | Rotary electrosurgical apparatus and methods thereof |
US20060276749A1 (en) * | 1998-01-13 | 2006-12-07 | Selmon Matthew R | Catheter systems for crossing total occlusions in vasculature |
US7201731B1 (en) * | 1992-08-12 | 2007-04-10 | Lundquist Ingemar H | Treatment device with guidable needle |
US20080058707A1 (en) * | 1996-10-23 | 2008-03-06 | Oratec Interventions, Inc. | Catheter for delivery of energy to a surgical site |
US20080114364A1 (en) * | 2006-11-15 | 2008-05-15 | Aoi Medical, Inc. | Tissue cavitation device and method |
US20080161804A1 (en) * | 2006-12-27 | 2008-07-03 | Boston Scientific Scimed, Inc. | Rf ablation probe array advancing device |
US20090030308A1 (en) * | 2005-09-21 | 2009-01-29 | The Regents Of The University Of California | Systems, compositions, and methods for local imaging and treatment of pain |
US20090105775A1 (en) * | 2007-10-19 | 2009-04-23 | David Mitchell | Cannula with lateral access and directional exit port |
US7819826B2 (en) * | 2002-01-23 | 2010-10-26 | The Regents Of The University Of California | Implantable thermal treatment method and apparatus |
US20110022133A1 (en) * | 2002-01-15 | 2011-01-27 | The Regents Of The University Of California | Method for providing directional therapy to skeletal joints |
US20110077628A1 (en) * | 2006-01-10 | 2011-03-31 | Tsunami Medtech, Llc | Medical system and method of use |
US20110319765A1 (en) * | 2009-10-12 | 2011-12-29 | Kona Medical, Inc. | Energetic modulation of nerves |
US8192424B2 (en) * | 2007-01-05 | 2012-06-05 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US20120197344A1 (en) * | 2011-02-02 | 2012-08-02 | Taft Richard J | Electrosurgical system and method for treating hard body tissue |
US20120196251A1 (en) * | 2011-02-02 | 2012-08-02 | Taft Richard J | Electrosurgical system and method for treating hard body tissue |
US20120203219A1 (en) * | 2011-02-09 | 2012-08-09 | Doug Evans | Fine dissection electrosurgical device |
US20120226273A1 (en) * | 2011-03-02 | 2012-09-06 | Arthrocare Corporation | Electrosurgical device with internal digestor electrode |
US8265747B2 (en) * | 2005-08-02 | 2012-09-11 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US8282628B2 (en) * | 2009-10-26 | 2012-10-09 | Globus Medical, Inc. | Vertebral body nerve and vein cauterizing system and method |
US8292887B2 (en) * | 2006-03-02 | 2012-10-23 | Arthrocare Corporation | Internally located return electrode electrosurgical apparatus, system and method |
US8323279B2 (en) * | 2009-09-25 | 2012-12-04 | Arthocare Corporation | System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath |
US20120330300A1 (en) * | 2002-09-30 | 2012-12-27 | Relievant Medsystems, Inc. | Intraosseous nerve denervation methods |
US20130006232A1 (en) * | 2002-09-30 | 2013-01-03 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US20130006233A1 (en) * | 2002-09-30 | 2013-01-03 | Relievant Medsystems, Inc. | Basivertebral nerve denervation |
US8355791B2 (en) * | 2006-11-07 | 2013-01-15 | Boston Scientific Neuromodulation Corporation | System and method for computationally determining migration of neurostimulation leads |
US8419730B2 (en) * | 2008-09-26 | 2013-04-16 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US20130103022A1 (en) * | 2003-03-28 | 2013-04-25 | Relievant Medsystems, Inc. | Thermal denervation devices and methods |
Family Cites Families (276)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2324658B2 (en) | 1973-05-16 | 1977-06-30 | Richard Wolf Gmbh, 7134 Knittlingen | PROBE FOR COAGULATING BODY TISSUE |
DE2521719C2 (en) | 1975-05-15 | 1985-06-20 | Delma, Elektro- Und Medizinische Apparatebaugesellschaft Mbh, 7200 Tuttlingen | Electrosurgical device |
US4044774A (en) | 1976-02-23 | 1977-08-30 | Medtronic, Inc. | Percutaneously inserted spinal cord stimulation lead |
FR2421628A1 (en) | 1977-04-08 | 1979-11-02 | Cgr Mev | LOCALIZED HEATING DEVICE USING VERY HIGH FREQUENCY ELECTROMAGNETIC WAVES, FOR MEDICAL APPLICATIONS |
US4448198A (en) | 1979-06-19 | 1984-05-15 | Bsd Medical Corporation | Invasive hyperthermia apparatus and method |
EP0040658A3 (en) | 1980-05-28 | 1981-12-09 | Drg (Uk) Limited | Patient plate for diathermy apparatus, and diathermy apparatus fitted with it |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5421819A (en) | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
US5385544A (en) | 1992-08-12 | 1995-01-31 | Vidamed, Inc. | BPH ablation method and apparatus |
US5435805A (en) | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US4573448A (en) | 1983-10-05 | 1986-03-04 | Pilling Co. | Method for decompressing herniated intervertebral discs |
US5190546A (en) | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
GB2158723B (en) | 1983-12-01 | 1987-06-17 | Kh Nii Obschei Neotlozh | Electrosurgical instrument |
JPH0647058B2 (en) | 1985-03-13 | 1994-06-22 | 旭化成工業株式会社 | Gas selective permeable membrane |
US4679561A (en) | 1985-05-20 | 1987-07-14 | The United States Of America As Represented By The United States Department Of Energy | Implantable apparatus for localized heating of tissue |
US5137530A (en) | 1985-09-27 | 1992-08-11 | Sand Bruce J | Collagen treatment apparatus |
US5484432A (en) | 1985-09-27 | 1996-01-16 | Laser Biotech, Inc. | Collagen treatment apparatus |
JPH0647058Y2 (en) | 1986-12-22 | 1994-11-30 | 松下電工株式会社 | Ceiling material structure |
IL82830A (en) | 1987-06-09 | 1992-03-29 | Simeone Rochkind | Apparatus for inducing functional regeneration of nerve fibres at an injured site of the spinal cord |
JPH01139081A (en) | 1987-11-27 | 1989-05-31 | Olympus Optical Co Ltd | Apparatus for radiating laser beam |
US5061266A (en) | 1988-03-30 | 1991-10-29 | Hakky Said I | Laser resectoscope and method |
US4907589A (en) | 1988-04-29 | 1990-03-13 | Cosman Eric R | Automatic over-temperature control apparatus for a therapeutic heating device |
US4959063A (en) | 1988-05-12 | 1990-09-25 | Osada Research Institute, Ltd. | Spinal needle with optical fiber means for radiating a laser beam |
US4963142A (en) | 1988-10-28 | 1990-10-16 | Hanspeter Loertscher | Apparatus for endolaser microsurgery |
US4969888A (en) | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
JP2882814B2 (en) | 1989-08-24 | 1999-04-12 | 株式会社エス・エル・ティ・ジャパン | Laser irradiation equipment |
US5242439A (en) | 1990-01-12 | 1993-09-07 | Laserscope | Means for inserting instrumentation for a percutaneous diskectomy using a laser |
US5201729A (en) | 1990-01-12 | 1993-04-13 | Laserscope | Method for performing percutaneous diskectomy using a laser |
US5084043A (en) | 1990-01-12 | 1992-01-28 | Laserscope | Method for performing a percutaneous diskectomy using a laser |
US5080660A (en) | 1990-05-11 | 1992-01-14 | Applied Urology, Inc. | Electrosurgical electrode |
US5222953A (en) | 1991-10-02 | 1993-06-29 | Kambiz Dowlatshahi | Apparatus for interstitial laser therapy having an improved temperature sensor for tissue being treated |
US5697909A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | Methods and apparatus for surgical cutting |
US5697882A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US6142992A (en) | 1993-05-10 | 2000-11-07 | Arthrocare Corporation | Power supply for limiting power in electrosurgery |
US6109268A (en) | 1995-06-07 | 2000-08-29 | Arthrocare Corporation | Systems and methods for electrosurgical endoscopic sinus surgery |
US6210402B1 (en) | 1995-11-22 | 2001-04-03 | Arthrocare Corporation | Methods for electrosurgical dermatological treatment |
US5681282A (en) | 1992-01-07 | 1997-10-28 | Arthrocare Corporation | Methods and apparatus for ablation of luminal tissues |
US5891095A (en) | 1993-05-10 | 1999-04-06 | Arthrocare Corporation | Electrosurgical treatment of tissue in electrically conductive fluid |
US6355032B1 (en) | 1995-06-07 | 2002-03-12 | Arthrocare Corporation | Systems and methods for selective electrosurgical treatment of body structures |
US6296638B1 (en) | 1993-05-10 | 2001-10-02 | Arthrocare Corporation | Systems for tissue ablation and aspiration |
US5902272A (en) | 1992-01-07 | 1999-05-11 | Arthrocare Corporation | Planar ablation probe and method for electrosurgical cutting and ablation |
US5366443A (en) | 1992-01-07 | 1994-11-22 | Thapliyal And Eggers Partners | Method and apparatus for advancing catheters through occluded body lumens |
US6063079A (en) | 1995-06-07 | 2000-05-16 | Arthrocare Corporation | Methods for electrosurgical treatment of turbinates |
US6102046A (en) | 1995-11-22 | 2000-08-15 | Arthrocare Corporation | Systems and methods for electrosurgical tissue revascularization |
US6179824B1 (en) | 1993-05-10 | 2001-01-30 | Arthrocare Corporation | System and methods for electrosurgical restenosis of body lumens |
US6053172A (en) | 1995-06-07 | 2000-04-25 | Arthrocare Corporation | Systems and methods for electrosurgical sinus surgery |
US6190381B1 (en) | 1995-06-07 | 2001-02-20 | Arthrocare Corporation | Methods for tissue resection, ablation and aspiration |
US6086585A (en) | 1995-06-07 | 2000-07-11 | Arthrocare Corporation | System and methods for electrosurgical treatment of sleep obstructive disorders |
US5683366A (en) | 1992-01-07 | 1997-11-04 | Arthrocare Corporation | System and method for electrosurgical tissue canalization |
US6159194A (en) | 1992-01-07 | 2000-12-12 | Arthrocare Corporation | System and method for electrosurgical tissue contraction |
US6024733A (en) | 1995-06-07 | 2000-02-15 | Arthrocare Corporation | System and method for epidermal tissue ablation |
US6183469B1 (en) | 1997-08-27 | 2001-02-06 | Arthrocare Corporation | Electrosurgical systems and methods for the removal of pacemaker leads |
US5843019A (en) | 1992-01-07 | 1998-12-01 | Arthrocare Corporation | Shaped electrodes and methods for electrosurgical cutting and ablation |
US5419767A (en) | 1992-01-07 | 1995-05-30 | Thapliyal And Eggers Partners | Methods and apparatus for advancing catheters through severely occluded body lumens |
US6500173B2 (en) | 1992-01-07 | 2002-12-31 | Ronald A. Underwood | Methods for electrosurgical spine surgery |
US6974453B2 (en) | 1993-05-10 | 2005-12-13 | Arthrocare Corporation | Dual mode electrosurgical clamping probe and related methods |
US7429262B2 (en) | 1992-01-07 | 2008-09-30 | Arthrocare Corporation | Apparatus and methods for electrosurgical ablation and resection of target tissue |
US6770071B2 (en) | 1995-06-07 | 2004-08-03 | Arthrocare Corporation | Bladed electrosurgical probe |
US7297145B2 (en) | 1997-10-23 | 2007-11-20 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
AU3727993A (en) | 1992-02-21 | 1993-09-13 | Diasonics Inc. | Ultrasound intracavity system for imaging therapy planning and treatment of focal disease |
US5281213A (en) | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Catheter for ice mapping and ablation |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5281197A (en) | 1992-07-27 | 1994-01-25 | Symbiosis Corporation | Endoscopic hemostatic agent delivery system |
CA2437777C (en) | 1992-09-21 | 2006-11-28 | United States Surgical Corporation | Device for applying a meniscal staple |
WO1995022283A1 (en) | 1992-10-26 | 1995-08-24 | Ultrasonic Sensing & Monitoring Systems, Inc. | Catheter using optical fibers to transmit laser and ultrasonic energy |
US5350377A (en) | 1992-10-26 | 1994-09-27 | Ultrasonic Sensing & Monitoring Systems, Inc. | Medical catheter using optical fibers that transmit both laser energy and ultrasonic imaging signals |
US5391197A (en) | 1992-11-13 | 1995-02-21 | Dornier Medical Systems, Inc. | Ultrasound thermotherapy probe |
US5620479A (en) | 1992-11-13 | 1997-04-15 | The Regents Of The University Of California | Method and apparatus for thermal therapy of tumors |
US5733315A (en) | 1992-11-13 | 1998-03-31 | Burdette; Everette C. | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
EP0597463A3 (en) | 1992-11-13 | 1996-11-06 | Dornier Med Systems Inc | Thermotherapiesonde. |
US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5817021A (en) | 1993-04-15 | 1998-10-06 | Siemens Aktiengesellschaft | Therapy apparatus for treating conditions of the heart and heart-proximate vessels |
US6117109A (en) | 1995-11-22 | 2000-09-12 | Arthrocare Corporation | Systems and methods for electrosurgical incisions on external skin surfaces |
US6254600B1 (en) | 1993-05-10 | 2001-07-03 | Arthrocare Corporation | Systems for tissue ablation and aspiration |
US6235020B1 (en) | 1993-05-10 | 2001-05-22 | Arthrocare Corporation | Power supply and methods for fluid delivery in electrosurgery |
US6749604B1 (en) | 1993-05-10 | 2004-06-15 | Arthrocare Corporation | Electrosurgical instrument with axially-spaced electrodes |
US6391025B1 (en) | 1993-05-10 | 2002-05-21 | Arthrocare Corporation | Electrosurgical scalpel and methods for tissue cutting |
US6896674B1 (en) | 1993-05-10 | 2005-05-24 | Arthrocare Corporation | Electrosurgical apparatus having digestion electrode and methods related thereto |
US6915806B2 (en) | 1993-05-10 | 2005-07-12 | Arthrocare Corporation | Method for harvesting graft vessel |
FR2706309B1 (en) | 1993-06-17 | 1995-10-06 | Sofamor | Instrument for surgical treatment of an intervertebral disc by the anterior route. |
US5320617A (en) | 1993-06-25 | 1994-06-14 | Leach Gary E | Method of laser-assisted prostatectomy and apparatus for carrying out the method |
EP0706418A1 (en) | 1993-06-30 | 1996-04-17 | Diametrics Medical Ltd. | Biphasic material |
US5630837A (en) | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
CA2167917C (en) | 1993-07-26 | 2002-11-19 | Jacques Dory | Therapy and imaging probe and therapeutic treatment apparatus utilizing it |
US5368031A (en) | 1993-08-29 | 1994-11-29 | General Electric Company | Magnetic resonance surgery using heat waves produced with a laser fiber |
US5571147A (en) | 1993-11-02 | 1996-11-05 | Sluijter; Menno E. | Thermal denervation of an intervertebral disc for relief of back pain |
US5458597A (en) | 1993-11-08 | 1995-10-17 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US5472441A (en) | 1993-11-08 | 1995-12-05 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US5437661A (en) | 1994-03-23 | 1995-08-01 | Rieser; Bernhard | Method for removal of prolapsed nucleus pulposus material on an intervertebral disc using a laser |
EP0688536B1 (en) | 1994-03-23 | 2000-08-02 | Erbe Elektromedizin GmbH | Multifunctional instrument for ultrasonic surgery |
US5458596A (en) | 1994-05-06 | 1995-10-17 | Dorsal Orthopedic Corporation | Method and apparatus for controlled contraction of soft tissue |
US5843021A (en) | 1994-05-09 | 1998-12-01 | Somnus Medical Technologies, Inc. | Cell necrosis apparatus |
US5785705A (en) | 1994-10-11 | 1998-07-28 | Oratec Interventions, Inc. | RF method for controlled depth ablation of soft tissue |
US5514130A (en) | 1994-10-11 | 1996-05-07 | Dorsal Med International | RF apparatus for controlled depth ablation of soft tissue |
US5611798A (en) | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
US6176842B1 (en) | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US5868740A (en) | 1995-03-24 | 1999-02-09 | Board Of Regents-Univ Of Nebraska | Method for volumetric tissue ablation |
US6159208A (en) | 1995-06-07 | 2000-12-12 | Arthocare Corporation | System and methods for electrosurgical treatment of obstructive sleep disorders |
US6602248B1 (en) | 1995-06-07 | 2003-08-05 | Arthro Care Corp. | Methods for repairing damaged intervertebral discs |
US6203542B1 (en) | 1995-06-07 | 2001-03-20 | Arthrocare Corporation | Method for electrosurgical treatment of submucosal tissue |
US5735280A (en) | 1995-05-02 | 1998-04-07 | Heart Rhythm Technologies, Inc. | Ultrasound energy delivery system and method |
US5697949A (en) | 1995-05-18 | 1997-12-16 | Symbiosis Corporation | Small diameter endoscopic instruments |
US5733861A (en) | 1995-05-23 | 1998-03-31 | Basf Corporation | Hydrophilic copolymers for reducing the viscosity of detergent slurries |
US6837887B2 (en) | 1995-06-07 | 2005-01-04 | Arthrocare Corporation | Articulated electrosurgical probe and methods |
US7179255B2 (en) | 1995-06-07 | 2007-02-20 | Arthrocare Corporation | Methods for targeted electrosurgery on contained herniated discs |
US7090672B2 (en) | 1995-06-07 | 2006-08-15 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from the base of tongue |
US20050004634A1 (en) | 1995-06-07 | 2005-01-06 | Arthrocare Corporation | Methods for electrosurgical treatment of spinal tissue |
US6837888B2 (en) | 1995-06-07 | 2005-01-04 | Arthrocare Corporation | Electrosurgical probe with movable return electrode and methods related thereto |
WO2003024506A2 (en) | 2001-09-14 | 2003-03-27 | Arthrocare Corporation | Methods and apparatus for treating intervertebral discs |
US6363937B1 (en) | 1995-06-07 | 2002-04-02 | Arthrocare Corporation | System and methods for electrosurgical treatment of the digestive system |
US7393351B2 (en) | 1995-06-07 | 2008-07-01 | Arthrocare Corporation | Apparatus and methods for treating cervical inter-vertebral discs |
US5746737A (en) | 1995-06-07 | 1998-05-05 | Trimedyne, Inc. | Enclosure for a lasing device |
US6772012B2 (en) | 1995-06-07 | 2004-08-03 | Arthrocare Corporation | Methods for electrosurgical treatment of spinal tissue |
US6632193B1 (en) | 1995-06-07 | 2003-10-14 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US6238391B1 (en) | 1995-06-07 | 2001-05-29 | Arthrocare Corporation | Systems for tissue resection, ablation and aspiration |
US5849011A (en) | 1995-06-19 | 1998-12-15 | Vidamed, Inc. | Medical device with trigger actuation assembly |
US6090105A (en) | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US5735847A (en) | 1995-08-15 | 1998-04-07 | Zomed International, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US5824005A (en) | 1995-08-22 | 1998-10-20 | Board Of Regents, The University Of Texas System | Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias |
US5693052A (en) | 1995-09-01 | 1997-12-02 | Megadyne Medical Products, Inc. | Coated bipolar electrocautery |
US5700262A (en) | 1995-10-16 | 1997-12-23 | Neuro Navigational, L.L.C. | Bipolar electrode with fluid channels for less invasive neurosurgery |
US6007570A (en) | 1996-08-13 | 1999-12-28 | Oratec Interventions, Inc. | Apparatus with functional element for performing function upon intervertebral discs |
US6805130B2 (en) | 1995-11-22 | 2004-10-19 | Arthrocare Corporation | Methods for electrosurgical tendon vascularization |
US6228078B1 (en) | 1995-11-22 | 2001-05-08 | Arthrocare Corporation | Methods for electrosurgical dermatological treatment |
US6461350B1 (en) | 1995-11-22 | 2002-10-08 | Arthrocare Corporation | Systems and methods for electrosurgical-assisted lipectomy |
US6228082B1 (en) | 1995-11-22 | 2001-05-08 | Arthrocare Corporation | Systems and methods for electrosurgical treatment of vascular disorders |
US7270661B2 (en) | 1995-11-22 | 2007-09-18 | Arthocare Corporation | Electrosurgical apparatus and methods for treatment and removal of tissue |
US5948008A (en) | 1995-12-28 | 1999-09-07 | S.L.T. Japan Co., Ltd. | Apparatus for treatment of lumbar disc herniation |
US5695513A (en) | 1996-03-01 | 1997-12-09 | Metagen, Llc | Flexible cutting tool and methods for its use |
US5941876A (en) | 1996-03-11 | 1999-08-24 | Medical Scientific, Inc. | Electrosurgical rotating cutting device |
US6016452A (en) | 1996-03-19 | 2000-01-18 | Kasevich; Raymond S. | Dynamic heating method and radio frequency thermal treatment |
US5738680A (en) | 1996-04-05 | 1998-04-14 | Eclipse Surgical Technologies, Inc. | Laser device with piercing tip for transmyocardial revascularization procedures |
US5743904A (en) | 1996-05-06 | 1998-04-28 | Somnus Medical Technologies, Inc. | Precision placement of ablation apparatus |
GB2314274A (en) | 1996-06-20 | 1997-12-24 | Gyrus Medical Ltd | Electrode construction for an electrosurgical instrument |
US6246912B1 (en) | 1996-06-27 | 2001-06-12 | Sherwood Services Ag | Modulated high frequency tissue modification |
US5983141A (en) | 1996-06-27 | 1999-11-09 | Radionics, Inc. | Method and apparatus for altering neural tissue function |
US7069087B2 (en) | 2000-02-25 | 2006-06-27 | Oratec Interventions, Inc. | Apparatus and method for accessing and performing a function within an intervertebral disc |
US6035238A (en) | 1997-08-13 | 2000-03-07 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
US5913867A (en) | 1996-12-23 | 1999-06-22 | Smith & Nephew, Inc. | Surgical instrument |
TW345334U (en) | 1997-01-21 | 1998-11-11 | Hon Hai Prec Ind Co Ltd | Apparatus for electric connector |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5904681A (en) | 1997-02-10 | 1999-05-18 | Hugh S. West, Jr. | Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy |
EP0964650A1 (en) | 1997-02-12 | 1999-12-22 | Oratec Interventions, Inc. | Electrode for electrosurgical ablation of tissue and method of manufacturing the same |
US5954716A (en) | 1997-02-19 | 1999-09-21 | Oratec Interventions, Inc | Method for modifying the length of a ligament |
US5807237A (en) | 1997-03-31 | 1998-09-15 | Tindel; Nathaniel L. | Endoscopic device |
US5871481A (en) | 1997-04-11 | 1999-02-16 | Vidamed, Inc. | Tissue ablation apparatus and method |
US5873877A (en) | 1997-04-11 | 1999-02-23 | Vidamed, Inc. | Medical probe device with transparent distal extremity |
KR20010006564A (en) | 1997-04-18 | 2001-01-26 | 텔리쉬, 로저 제이. | Submersible system for ultrasonic treatment |
US5948007A (en) | 1997-04-30 | 1999-09-07 | Medtronic, Inc. | Dual channel implantation neurostimulation techniques |
US6117128A (en) | 1997-04-30 | 2000-09-12 | Kenton W. Gregory | Energy delivery catheter and method for the use thereof |
US5993463A (en) | 1997-05-15 | 1999-11-30 | Regents Of The University Of Minnesota | Remote actuation of trajectory guide |
US6228046B1 (en) | 1997-06-02 | 2001-05-08 | Pharmasonics, Inc. | Catheters comprising a plurality of oscillators and methods for their use |
US6855143B2 (en) | 1997-06-13 | 2005-02-15 | Arthrocare Corporation | Electrosurgical systems and methods for recanalization of occluded body lumens |
US6582423B1 (en) | 1997-06-13 | 2003-06-24 | Arthrocare Corporation | Electrosurgical systems and methods for recanalization of occluded body lumens |
US5782900A (en) | 1997-06-23 | 1998-07-21 | Irvine Biomedical, Inc. | Catheter system having safety means |
US6652515B1 (en) | 1997-07-08 | 2003-11-25 | Atrionix, Inc. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6200312B1 (en) | 1997-09-11 | 2001-03-13 | Vnus Medical Technologies, Inc. | Expandable vein ligator catheter having multiple electrode leads |
US6017356A (en) | 1997-09-19 | 2000-01-25 | Ethicon Endo-Surgery Inc. | Method for using a trocar for penetration and skin incision |
US6007533A (en) | 1997-09-19 | 1999-12-28 | Oratec Interventions, Inc. | Electrocauterizing tip for orthopedic shave devices |
DE69826501T2 (en) | 1997-10-09 | 2005-09-29 | Exogen, Inc., Memphis | ULTRASOUND DISPENSER |
US6309420B1 (en) | 1997-10-14 | 2001-10-30 | Parallax Medical, Inc. | Enhanced visibility materials for implantation in hard tissue |
US6019776A (en) | 1997-10-14 | 2000-02-01 | Parallax Medical, Inc. | Precision depth guided instruments for use in vertebroplasty |
US6033411A (en) | 1997-10-14 | 2000-03-07 | Parallax Medical Inc. | Precision depth guided instruments for use in vertebroplasty |
US6176857B1 (en) | 1997-10-22 | 2001-01-23 | Oratec Interventions, Inc. | Method and apparatus for applying thermal energy to tissue asymmetrically |
US6280441B1 (en) | 1997-12-15 | 2001-08-28 | Sherwood Services Ag | Apparatus and method for RF lesioning |
US6045532A (en) | 1998-02-20 | 2000-04-04 | Arthrocare Corporation | Systems and methods for electrosurgical treatment of tissue in the brain and spinal cord |
AU745659B2 (en) | 1998-03-02 | 2002-03-28 | Atrionix, Inc. | Tissue ablation system and method for forming long linear lesion |
US6454727B1 (en) | 1998-03-03 | 2002-09-24 | Senorx, Inc. | Tissue acquisition system and method of use |
AU3208299A (en) | 1998-03-26 | 1999-10-18 | Exogen, Inc. | Arrays made from flexible transducer elements |
US6053909A (en) | 1998-03-27 | 2000-04-25 | Shadduck; John H. | Ionothermal delivery system and technique for medical procedures |
WO1999049819A1 (en) | 1998-04-01 | 1999-10-07 | Parallax Medical, Inc. | Pressure applicator for hard tissue implant placement |
US6440138B1 (en) | 1998-04-06 | 2002-08-27 | Kyphon Inc. | Structures and methods for creating cavities in interior body regions |
US6030402A (en) | 1998-04-23 | 2000-02-29 | Thompson; Ronald J. | Apparatus and methods for the penetration of tissue, and the creation of an opening therein |
US6120467A (en) | 1998-04-30 | 2000-09-19 | Medtronic Inc. | Spinal cord simulation systems with patient activity monitoring and therapy adjustments |
US6763836B2 (en) | 1998-06-02 | 2004-07-20 | Arthrocare Corporation | Methods for electrosurgical tendon vascularization |
JP3919947B2 (en) | 1998-07-09 | 2007-05-30 | アルフレッサファーマ株式会社 | Microwave surgical electrode device |
US7276063B2 (en) | 1998-08-11 | 2007-10-02 | Arthrocare Corporation | Instrument for electrosurgical tissue treatment |
US7435247B2 (en) | 1998-08-11 | 2008-10-14 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US6104957A (en) | 1998-08-21 | 2000-08-15 | Alo; Kenneth M. | Epidural nerve root stimulation with lead placement method |
US6050995A (en) | 1998-09-24 | 2000-04-18 | Scimed Lifesystems, Inc. | Polypectomy snare with multiple bipolar electrodes |
JP4142173B2 (en) | 1998-10-09 | 2008-08-27 | アルフレッサファーマ株式会社 | Disposable medical device and medical device incorporating the same |
US6190383B1 (en) | 1998-10-21 | 2001-02-20 | Sherwood Services Ag | Rotatable electrode device |
US6241665B1 (en) | 1998-10-21 | 2001-06-05 | Plc Medical System, Inc. | Percutaneous mapping system |
US6607502B1 (en) | 1998-11-25 | 2003-08-19 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
AU736964B2 (en) | 1998-12-09 | 2001-08-09 | Cook Medical Technologies Llc | Hollow, curved, superelastic medical needle |
AU3498300A (en) | 1999-02-22 | 2000-09-14 | Peter A. Guagliano | Method of treating an intervertebral disk |
US6193715B1 (en) | 1999-03-19 | 2001-02-27 | Medical Scientific, Inc. | Device for converting a mechanical cutting device to an electrosurgical cutting device |
WO2000056254A1 (en) | 1999-03-24 | 2000-09-28 | Parallax Medical, Inc. | Non-compliant system for delivery of implant material |
US6231571B1 (en) | 1999-05-03 | 2001-05-15 | Alan G. Ellman | Electrosurgical handpiece for treating tissue |
EP1059087A1 (en) | 1999-06-08 | 2000-12-13 | Peter Prof. Dr. Prehm | Antigens from rheumatoid autoimmune diseases |
US6287114B1 (en) | 1999-06-09 | 2001-09-11 | X-Tip Technologies, Llc | Disposable anesthesia delivery system with shortened outer sleeve and inner solid drill |
US6235024B1 (en) | 1999-06-21 | 2001-05-22 | Hosheng Tu | Catheters system having dual ablation capability |
US6461356B1 (en) | 1999-07-01 | 2002-10-08 | C.R. Bard, Inc. | Medical device having an incrementally displaceable electrode |
JP2001037760A (en) | 1999-07-27 | 2001-02-13 | Aloka Co Ltd | Ultrasonic wave probe |
US6783515B1 (en) | 1999-09-30 | 2004-08-31 | Arthrocare Corporation | High pressure delivery system |
US7346391B1 (en) | 1999-10-12 | 2008-03-18 | Flint Hills Scientific Llc | Cerebral or organ interface system |
US6560486B1 (en) | 1999-10-12 | 2003-05-06 | Ivan Osorio | Bi-directional cerebral interface system |
US6277122B1 (en) | 1999-10-15 | 2001-08-21 | Sdgi Holdings, Inc. | Distraction instrument with fins for maintaining insertion location |
EP1239787B1 (en) | 1999-12-21 | 2010-12-15 | Covidien AG | Apparatus for thermal treatment of an intervertebral disc |
US6451013B1 (en) | 2000-01-19 | 2002-09-17 | Medtronic Xomed, Inc. | Methods of tonsil reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6361500B1 (en) | 2000-02-07 | 2002-03-26 | Scimed Life Systems, Inc. | Three transducer catheter |
US6758846B2 (en) | 2000-02-08 | 2004-07-06 | Gyrus Medical Limited | Electrosurgical instrument and an electrosurgery system including such an instrument |
US20030191474A1 (en) | 2000-02-16 | 2003-10-09 | Cragg Andrew H. | Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine |
US6558390B2 (en) * | 2000-02-16 | 2003-05-06 | Axiamed, Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
US6210415B1 (en) | 2000-02-18 | 2001-04-03 | Lab Engineering & Manufacturing, Inc. | Surgical drill guide |
US6558385B1 (en) | 2000-09-22 | 2003-05-06 | Tissuelink Medical, Inc. | Fluid-assisted medical device |
AU2001273475A1 (en) | 2000-07-14 | 2002-01-30 | Transurgical, Inc. | Coagulator and spinal disk surgery |
SE518764C2 (en) | 2000-07-17 | 2002-11-19 | Ultrazonix Dnt Ab | Device for mini-invasive ultrasound treatment of disk disease |
US20030158545A1 (en) | 2000-09-28 | 2003-08-21 | Arthrocare Corporation | Methods and apparatus for treating back pain |
US6673063B2 (en) | 2000-10-06 | 2004-01-06 | Expanding Concepts, Llc. | Epidural thermal posterior annuloplasty |
US6613044B2 (en) | 2000-10-30 | 2003-09-02 | Allen Carl | Selective delivery of cryogenic energy to intervertebral disc tissue and related methods of intradiscal hypothermia therapy |
CA2434151C (en) | 2001-01-11 | 2009-12-22 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US7422586B2 (en) | 2001-02-28 | 2008-09-09 | Angiodynamics, Inc. | Tissue surface treatment apparatus and method |
US20030032898A1 (en) | 2001-05-29 | 2003-02-13 | Inder Raj. S. Makin | Method for aiming ultrasound for medical treatment |
US6638276B2 (en) | 2001-06-06 | 2003-10-28 | Oratec Interventions, Inc. | Intervertebral disc device employing prebent sheath |
EP1435867B1 (en) | 2001-09-05 | 2010-11-17 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices and systems |
AU2002336575A1 (en) | 2001-09-14 | 2003-04-01 | Arthrocare Corporation | Electrosurgical apparatus and methods for tissue treatment and removal |
WO2003028542A2 (en) | 2001-10-02 | 2003-04-10 | Arthrocare Corporation | Apparatus and methods for electrosurgical removal and digestion of tissue |
US7001342B2 (en) | 2001-10-30 | 2006-02-21 | Movdice Holding, Inc. | Biopsy/access tool with integrated biopsy device and access cannula and use thereof |
WO2003068055A2 (en) | 2002-02-11 | 2003-08-21 | Arthrocare Corporation | Electrosurgical apparatus and methods for laparoscopy |
US7819869B2 (en) | 2004-11-15 | 2010-10-26 | Kimberly-Clark Inc. | Methods of treating the sacroilac region of a patient's body |
US7294127B2 (en) | 2002-03-05 | 2007-11-13 | Baylis Medical Company Inc. | Electrosurgical tissue treatment method |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
JP4808961B2 (en) * | 2002-06-04 | 2011-11-02 | オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ | Device for rapidly aspirating and collecting body tissue from an encapsulated body space |
US7326203B2 (en) | 2002-09-30 | 2008-02-05 | Depuy Acromed, Inc. | Device for advancing a functional element through tissue |
US6827716B2 (en) | 2002-09-30 | 2004-12-07 | Depuy Spine, Inc. | Method of identifying and treating a pathologic region of an intervertebral disc |
US6922579B2 (en) | 2002-12-12 | 2005-07-26 | Scimed Life Systems, Inc. | La placian electrode |
US20040133124A1 (en) | 2003-01-06 | 2004-07-08 | Cook Incorporated. | Flexible biopsy needle |
US6947842B2 (en) * | 2003-01-06 | 2005-09-20 | User-Centric Enterprises, Inc. | Normalized and animated inundation maps |
US6875219B2 (en) | 2003-02-14 | 2005-04-05 | Yves P. Arramon | Bone access system |
EP1663029A4 (en) | 2003-09-03 | 2010-06-09 | Kyphon Sarl | Devices for creating voids in interior body regions and related methods |
JP2005169012A (en) | 2003-12-15 | 2005-06-30 | Terumo Corp | Catheter and catheter assembly |
WO2005070494A1 (en) | 2004-01-22 | 2005-08-04 | Rehabtronics Inc. | Method of routing electrical current to bodily tissues via implanted passive conductors |
US20100016929A1 (en) | 2004-01-22 | 2010-01-21 | Arthur Prochazka | Method and system for controlled nerve ablation |
US20060064101A1 (en) | 2004-02-12 | 2006-03-23 | Arthrocare Corporation | Bone access system |
US7641664B2 (en) | 2004-02-12 | 2010-01-05 | Warsaw Orthopedic, Inc. | Surgical instrumentation and method for treatment of a spinal structure |
US8535809B2 (en) | 2004-04-28 | 2013-09-17 | Nhk Spring Co., Ltd. | Electrical insulating resin composition, and laminate for circuit board |
US20100145424A1 (en) | 2004-09-21 | 2010-06-10 | Covidien Ag | Method for Treatment of an Intervertebral Disc |
US20060064145A1 (en) | 2004-09-21 | 2006-03-23 | Podhajsky Ronald J | Method for treatment of an intervertebral disc |
US7553307B2 (en) | 2004-10-15 | 2009-06-30 | Baxano, Inc. | Devices and methods for tissue modification |
US8257356B2 (en) | 2004-10-15 | 2012-09-04 | Baxano, Inc. | Guidewire exchange systems to treat spinal stenosis |
US20060122458A1 (en) | 2004-10-15 | 2006-06-08 | Baxano, Inc. | Devices and methods for tissue access |
US7857813B2 (en) | 2006-08-29 | 2010-12-28 | Baxano, Inc. | Tissue access guidewire system and method |
EP1799129B1 (en) | 2004-10-15 | 2020-11-25 | Baxano, Inc. | Devices for tissue removal |
US7682378B2 (en) | 2004-11-10 | 2010-03-23 | Dfine, Inc. | Bone treatment systems and methods for introducing an abrading structure to abrade bone |
US7945331B2 (en) | 2005-01-11 | 2011-05-17 | Bradley D. Vilims | Combination electrical stimulating and infusion medical device and method |
US8066702B2 (en) | 2005-01-11 | 2011-11-29 | Rittman Iii William J | Combination electrical stimulating and infusion medical device and method |
US7386350B2 (en) | 2005-01-11 | 2008-06-10 | Vilims Bradley D | Combination electrical stimulating and infusion medical device |
WO2007031264A1 (en) | 2005-09-16 | 2007-03-22 | Siegfried Riek | Medical instrument |
US7713273B2 (en) | 2005-11-18 | 2010-05-11 | Carefusion 2200, Inc. | Device, system and method for delivering a curable material into bone |
US8690884B2 (en) | 2005-11-18 | 2014-04-08 | Carefusion 2200, Inc. | Multistate-curvature device and method for delivering a curable material into bone |
WO2007106079A2 (en) * | 2006-03-10 | 2007-09-20 | The Board Of Trustees Of The Leland Stanford Junior University | Percutaneous access and visualization of the spine |
EP2032191B1 (en) | 2006-06-29 | 2015-08-12 | Depuy Spine Inc. | Integrated bone biopsy and therapy apparatus |
US8666506B2 (en) | 2006-06-30 | 2014-03-04 | Medtronic, Inc. | Selecting electrode combinations for stimulation therapy |
US8579903B2 (en) | 2006-07-13 | 2013-11-12 | K2M, Inc. | Devices and methods for stabilizing a spinal region |
US8986312B2 (en) | 2006-07-21 | 2015-03-24 | Bassem Georgy | Device and method for introducing flowable material into a body cavity |
US20080119846A1 (en) | 2006-10-11 | 2008-05-22 | Rioux Robert F | Methods and apparatus for percutaneous patient access and subcutaneous tissue tunneling |
US7917292B1 (en) * | 2006-10-17 | 2011-03-29 | Jpmorgan Chase Bank, N.A. | Systems and methods for flood risk assessment |
US20080255624A1 (en) | 2007-03-30 | 2008-10-16 | Gregory Arcenio | Methods and devices for multipoint access of a body part |
US8597301B2 (en) | 2007-10-19 | 2013-12-03 | David Mitchell | Cannula with lateral access and directional exit port |
CA2704421A1 (en) | 2007-11-03 | 2009-05-07 | Boston Scientific Scimed, Inc. | Bipolar electrosurgical probe having insulated overlapping conductive elements |
US20090131867A1 (en) | 2007-11-16 | 2009-05-21 | Liu Y King | Steerable vertebroplasty system with cavity creation element |
US20090131886A1 (en) | 2007-11-16 | 2009-05-21 | Liu Y King | Steerable vertebroplasty system |
US20090312764A1 (en) | 2008-06-11 | 2009-12-17 | Marino James F | Intraosseous transpedicular methods and devices |
US20100023006A1 (en) | 2008-07-23 | 2010-01-28 | Ellman Alan G | RF intervertebral disc surgical system |
US8758349B2 (en) | 2008-10-13 | 2014-06-24 | Dfine, Inc. | Systems for treating a vertebral body |
WO2010039894A1 (en) | 2008-09-30 | 2010-04-08 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US8355799B2 (en) | 2008-12-12 | 2013-01-15 | Arthrocare Corporation | Systems and methods for limiting joint temperature |
US20100298832A1 (en) | 2009-05-20 | 2010-11-25 | Osseon Therapeutics, Inc. | Steerable curvable vertebroplasty drill |
US9113950B2 (en) | 2009-11-04 | 2015-08-25 | Regenerative Sciences, Llc | Therapeutic delivery device |
US20110264098A1 (en) | 2010-02-26 | 2011-10-27 | Cobbs Charles S | Minimally invasive systems, devices, and surgical methods for performing arthrodesis in the spine |
WO2013101772A1 (en) | 2011-12-30 | 2013-07-04 | Relievant Medsystems, Inc. | Systems and methods for treating back pain |
CA2889478C (en) | 2012-11-05 | 2020-11-24 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
WO2014137342A1 (en) | 2013-03-07 | 2014-09-12 | Arthrocare Corporation | Electrosurgical systems and methods |
US9724151B2 (en) | 2013-08-08 | 2017-08-08 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
-
2010
- 2010-01-07 US US12/683,555 patent/US8613744B2/en active Active
-
2012
- 2012-09-12 US US13/612,561 patent/US8425507B2/en not_active Expired - Lifetime
- 2012-09-14 US US13/617,470 patent/US8623014B2/en not_active Expired - Lifetime
-
2013
- 2013-04-12 US US13/862,306 patent/US8628528B2/en active Active
- 2013-12-20 US US14/136,763 patent/US9023038B2/en not_active Expired - Fee Related
-
2014
- 2014-01-03 US US14/147,024 patent/US9017325B2/en not_active Expired - Lifetime
- 2014-01-13 US US14/153,922 patent/US9173676B2/en not_active Expired - Fee Related
-
2015
- 2015-04-24 US US14/695,330 patent/US9421064B2/en not_active Expired - Lifetime
- 2015-05-01 US US14/701,908 patent/US20150335382A1/en not_active Abandoned
-
2020
- 2020-01-21 US US16/747,830 patent/US20210205009A9/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3845771A (en) * | 1973-04-24 | 1974-11-05 | W Vise | Electrosurgical glove |
US4754757A (en) * | 1985-12-16 | 1988-07-05 | Peter Feucht | Method and apparatus for monitoring the surface contact of a neutral electrode of a HF-surgical apparatus |
US5098431A (en) * | 1989-04-13 | 1992-03-24 | Everest Medical Corporation | RF ablation catheter |
US5106376A (en) * | 1989-07-07 | 1992-04-21 | B. Braun Melsungen Ag | Anaesthesia set |
US5997497A (en) * | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
US5161533A (en) * | 1991-09-19 | 1992-11-10 | Xomed-Treace Inc. | Break-apart needle electrode system for monitoring facial EMG |
US5697281A (en) * | 1991-10-09 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US5273026A (en) * | 1992-03-06 | 1993-12-28 | Wilk Peter J | Retractor and associated method for use in laparoscopic surgery |
US5443463A (en) * | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
US7201731B1 (en) * | 1992-08-12 | 2007-04-10 | Lundquist Ingemar H | Treatment device with guidable needle |
US5441499A (en) * | 1993-07-14 | 1995-08-15 | Dekna Elektro-U. Medizinische Apparatebau Gesellschaft Mbh | Bipolar radio-frequency surgical instrument |
US5433739A (en) * | 1993-11-02 | 1995-07-18 | Sluijter; Menno E. | Method and apparatus for heating an intervertebral disc for relief of back pain |
US5935123A (en) * | 1993-11-08 | 1999-08-10 | Rita Medical Systems, Inc. | RF treatment apparatus |
US6241725B1 (en) * | 1993-12-15 | 2001-06-05 | Sherwood Services Ag | High frequency thermal ablation of cancerous tumors and functional targets with image data assistance |
US5540684A (en) * | 1994-07-28 | 1996-07-30 | Hassler, Jr.; William L. | Method and apparatus for electrosurgically treating tissue |
US20020016600A1 (en) * | 1995-01-31 | 2002-02-07 | Cosman Eric R. | Repositioner for head, neck, and body |
US5630426A (en) * | 1995-03-03 | 1997-05-20 | Neovision Corporation | Apparatus and method for characterization and treatment of tumors |
US5647871A (en) * | 1995-03-10 | 1997-07-15 | Microsurge, Inc. | Electrosurgery with cooled electrodes |
US20010029370A1 (en) * | 1995-06-07 | 2001-10-11 | Arthrocare Corporation | Method for electrosurgical treatment of intervertebral discs |
US20020026186A1 (en) * | 1995-06-07 | 2002-02-28 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
US5672173A (en) * | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5733280A (en) * | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US6149620A (en) * | 1995-11-22 | 2000-11-21 | Arthrocare Corporation | System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US5735811A (en) * | 1995-11-30 | 1998-04-07 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced fluid delivery |
US5725494A (en) * | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5728062A (en) * | 1995-11-30 | 1998-03-17 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US20010001811A1 (en) * | 1996-02-09 | 2001-05-24 | Burney Bryan T. | Surgical and pharmaceutical site access guide and methods |
US5762616A (en) * | 1996-03-15 | 1998-06-09 | Exogen, Inc. | Apparatus for ultrasonic treatment of sites corresponding to the torso |
US6277112B1 (en) * | 1996-07-16 | 2001-08-21 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US6468274B1 (en) * | 1996-07-16 | 2002-10-22 | Arthrocare Corporation | Systems and methods for treating spinal pain |
US6726684B1 (en) * | 1996-07-16 | 2004-04-27 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US6283961B1 (en) * | 1996-07-16 | 2001-09-04 | Arthrocare Corporation | Apparatus for electrosurgical spine surgery |
US6264651B1 (en) * | 1996-07-16 | 2001-07-24 | Arthrocare Corporation | Method for electrosurgical spine surgery |
US6099514A (en) * | 1996-08-13 | 2000-08-08 | Oratec Interventions, Inc. | Method and apparatus for delivering or removing material from the interior of an intervertebral disc |
US6073051A (en) * | 1996-08-13 | 2000-06-06 | Oratec Interventions, Inc. | Apparatus for treating intervertebal discs with electromagnetic energy |
US6287272B1 (en) * | 1996-09-05 | 2001-09-11 | Pharmasonics, Inc. | Balloon catheters having ultrasonically driven interface surfaces and methods for their use |
US5846218A (en) * | 1996-09-05 | 1998-12-08 | Pharmasonics, Inc. | Balloon catheters having ultrasonically driven interface surfaces and methods for their use |
US20080058707A1 (en) * | 1996-10-23 | 2008-03-06 | Oratec Interventions, Inc. | Catheter for delivery of energy to a surgical site |
US6221038B1 (en) * | 1996-11-27 | 2001-04-24 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US6254553B1 (en) * | 1997-04-18 | 2001-07-03 | Scandimed International Ab | Method for ultrasonic treatment of disc disease |
US5871470A (en) * | 1997-04-18 | 1999-02-16 | Becton Dickinson And Company | Combined spinal epidural needle set |
US6254599B1 (en) * | 1997-05-09 | 2001-07-03 | Atrionix, Inc. | Circumferential ablation device assembly |
US6312426B1 (en) * | 1997-05-30 | 2001-11-06 | Sherwood Services Ag | Method and system for performing plate type radiofrequency ablation |
US5931805A (en) * | 1997-06-02 | 1999-08-03 | Pharmasonics, Inc. | Catheters comprising bending transducers and methods for their use |
US6161048A (en) * | 1997-06-26 | 2000-12-12 | Radionics, Inc. | Method and system for neural tissue modification |
US6117101A (en) * | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6012457A (en) * | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6305378B1 (en) * | 1997-07-08 | 2001-10-23 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6164283A (en) * | 1997-07-08 | 2000-12-26 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6245064B1 (en) * | 1997-07-08 | 2001-06-12 | Atrionix, Inc. | Circumferential ablation device assembly |
US6210393B1 (en) * | 1997-12-31 | 2001-04-03 | Pharmasonics, Inc. | Methods and systems for the inhibition of vascular hyperplasia |
US6146380A (en) * | 1998-01-09 | 2000-11-14 | Radionics, Inc. | Bent tip electrical surgical probe |
US20060276749A1 (en) * | 1998-01-13 | 2006-12-07 | Selmon Matthew R | Catheter systems for crossing total occlusions in vasculature |
US6139545A (en) * | 1998-09-09 | 2000-10-31 | Vidaderm | Systems and methods for ablating discrete motor nerve regions |
US6296619B1 (en) * | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US6264659B1 (en) * | 1999-02-22 | 2001-07-24 | Anthony C. Ross | Method of treating an intervertebral disk |
US6478793B1 (en) * | 1999-06-11 | 2002-11-12 | Sherwood Services Ag | Ablation treatment of bone metastases |
US6287304B1 (en) * | 1999-10-15 | 2001-09-11 | Neothermia Corporation | Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes |
US6423059B1 (en) * | 1999-11-16 | 2002-07-23 | Sulzer Medica Usa Inc. | Radio frequency ablation apparatus with remotely articulating and self-locking electrode wand |
US20010047167A1 (en) * | 2000-02-03 | 2001-11-29 | Heggeness Michael H. | Methods and devices for intraosseous nerve ablation |
US6699242B2 (en) * | 2000-02-03 | 2004-03-02 | Baylor College Of Medicine | Methods and devices for intraosseous nerve ablation |
US20040220577A1 (en) * | 2000-02-16 | 2004-11-04 | Cragg Andrew H. | Methods and apparatus for forming shaped axial bores through spinal vertebrae |
US20020147444A1 (en) * | 2001-04-09 | 2002-10-10 | Krishan Shah | Intradiscal lesioning apparatus |
US20040193151A1 (en) * | 2001-06-06 | 2004-09-30 | Oratec Interventions, Inc. | Intervertebral disc device employing looped probe |
US20110022133A1 (en) * | 2002-01-15 | 2011-01-27 | The Regents Of The University Of California | Method for providing directional therapy to skeletal joints |
US7819826B2 (en) * | 2002-01-23 | 2010-10-26 | The Regents Of The University Of California | Implantable thermal treatment method and apparatus |
US20110087314A1 (en) * | 2002-01-23 | 2011-04-14 | The Regents Of The University Of California | Implantable thermal treatment method and apparatus |
US8414509B2 (en) * | 2002-01-23 | 2013-04-09 | The Regents Of The University Of California | Implantable thermal treatment method and apparatus |
US6736835B2 (en) * | 2002-03-21 | 2004-05-18 | Depuy Acromed, Inc. | Early intervention spinal treatment methods and devices for use therein |
US8361067B2 (en) * | 2002-09-30 | 2013-01-29 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US20130006232A1 (en) * | 2002-09-30 | 2013-01-03 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US6907884B2 (en) * | 2002-09-30 | 2005-06-21 | Depay Acromed, Inc. | Method of straddling an intraosseous nerve |
US8419731B2 (en) * | 2002-09-30 | 2013-04-16 | Relievant Medsystems, Inc. | Methods of treating back pain |
US20130006233A1 (en) * | 2002-09-30 | 2013-01-03 | Relievant Medsystems, Inc. | Basivertebral nerve denervation |
US20120330300A1 (en) * | 2002-09-30 | 2012-12-27 | Relievant Medsystems, Inc. | Intraosseous nerve denervation methods |
US8425507B2 (en) * | 2002-09-30 | 2013-04-23 | Relievant Medsystems, Inc. | Basivertebral nerve denervation |
US20130103022A1 (en) * | 2003-03-28 | 2013-04-25 | Relievant Medsystems, Inc. | Thermal denervation devices and methods |
US20060178670A1 (en) * | 2003-07-16 | 2006-08-10 | Arthro Care Corporation | Rotary electrosurgical apparatus and methods thereof |
US20050283148A1 (en) * | 2004-06-17 | 2005-12-22 | Janssen William M | Ablation apparatus and system to limit nerve conduction |
US20060004369A1 (en) * | 2004-06-17 | 2006-01-05 | Scimed Life Systems, Inc. | Slidable sheaths for tissue removal devices |
US8265747B2 (en) * | 2005-08-02 | 2012-09-11 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US20090030308A1 (en) * | 2005-09-21 | 2009-01-29 | The Regents Of The University Of California | Systems, compositions, and methods for local imaging and treatment of pain |
US20110077628A1 (en) * | 2006-01-10 | 2011-03-31 | Tsunami Medtech, Llc | Medical system and method of use |
US8292887B2 (en) * | 2006-03-02 | 2012-10-23 | Arthrocare Corporation | Internally located return electrode electrosurgical apparatus, system and method |
US8355791B2 (en) * | 2006-11-07 | 2013-01-15 | Boston Scientific Neuromodulation Corporation | System and method for computationally determining migration of neurostimulation leads |
US20080114364A1 (en) * | 2006-11-15 | 2008-05-15 | Aoi Medical, Inc. | Tissue cavitation device and method |
US20080161804A1 (en) * | 2006-12-27 | 2008-07-03 | Boston Scientific Scimed, Inc. | Rf ablation probe array advancing device |
US8192424B2 (en) * | 2007-01-05 | 2012-06-05 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US20090105775A1 (en) * | 2007-10-19 | 2009-04-23 | David Mitchell | Cannula with lateral access and directional exit port |
US8419730B2 (en) * | 2008-09-26 | 2013-04-16 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US8323279B2 (en) * | 2009-09-25 | 2012-12-04 | Arthocare Corporation | System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath |
US20110319765A1 (en) * | 2009-10-12 | 2011-12-29 | Kona Medical, Inc. | Energetic modulation of nerves |
US8282628B2 (en) * | 2009-10-26 | 2012-10-09 | Globus Medical, Inc. | Vertebral body nerve and vein cauterizing system and method |
US20120330180A1 (en) * | 2010-01-07 | 2012-12-27 | Relievant Medsystems, Inc. | Vertebral bone channeling systems |
US8414571B2 (en) * | 2010-01-07 | 2013-04-09 | Relievant Medsystems, Inc. | Vertebral bone navigation systems |
US20120196251A1 (en) * | 2011-02-02 | 2012-08-02 | Taft Richard J | Electrosurgical system and method for treating hard body tissue |
US20120197344A1 (en) * | 2011-02-02 | 2012-08-02 | Taft Richard J | Electrosurgical system and method for treating hard body tissue |
US20120203219A1 (en) * | 2011-02-09 | 2012-08-09 | Doug Evans | Fine dissection electrosurgical device |
US20120226273A1 (en) * | 2011-03-02 | 2012-09-06 | Arthrocare Corporation | Electrosurgical device with internal digestor electrode |
Cited By (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE46356E1 (en) | 2002-09-30 | 2017-04-04 | Relievant Medsystems, Inc. | Method of treating an intraosseous nerve |
US10111704B2 (en) | 2002-09-30 | 2018-10-30 | Relievant Medsystems, Inc. | Intraosseous nerve treatment |
US8628528B2 (en) | 2002-09-30 | 2014-01-14 | Relievant Medsystems, Inc. | Vertebral denervation |
US8419731B2 (en) | 2002-09-30 | 2013-04-16 | Relievant Medsystems, Inc. | Methods of treating back pain |
US9486279B2 (en) | 2002-09-30 | 2016-11-08 | Relievant Medsystems, Inc. | Intraosseous nerve treatment |
US8425507B2 (en) | 2002-09-30 | 2013-04-23 | Relievant Medsystems, Inc. | Basivertebral nerve denervation |
US8992523B2 (en) | 2002-09-30 | 2015-03-31 | Relievant Medsystems, Inc. | Vertebral treatment |
US10478246B2 (en) | 2002-09-30 | 2019-11-19 | Relievant Medsystems, Inc. | Ablation of tissue within vertebral body involving internal cooling |
US9848944B2 (en) | 2002-09-30 | 2017-12-26 | Relievant Medsystems, Inc. | Thermal denervation devices and methods |
US8613744B2 (en) | 2002-09-30 | 2013-12-24 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US8623014B2 (en) | 2002-09-30 | 2014-01-07 | Relievant Medsystems, Inc. | Systems for denervation of basivertebral nerves |
US9421064B2 (en) | 2002-09-30 | 2016-08-23 | Relievant Medsystems, Inc. | Nerve modulation systems |
USRE48460E1 (en) | 2002-09-30 | 2021-03-09 | Relievant Medsystems, Inc. | Method of treating an intraosseous nerve |
US8361067B2 (en) | 2002-09-30 | 2013-01-29 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US11596468B2 (en) | 2002-09-30 | 2023-03-07 | Relievant Medsystems, Inc. | Intraosseous nerve treatment |
US9173676B2 (en) | 2002-09-30 | 2015-11-03 | Relievant Medsystems, Inc. | Nerve modulation methods |
US9017325B2 (en) | 2002-09-30 | 2015-04-28 | Relievant Medsystems, Inc. | Nerve modulation systems |
US8992522B2 (en) | 2002-09-30 | 2015-03-31 | Relievant Medsystems, Inc. | Back pain treatment methods |
US9023038B2 (en) | 2002-09-30 | 2015-05-05 | Relievant Medsystems, Inc. | Denervation methods |
US8882764B2 (en) | 2003-03-28 | 2014-11-11 | Relievant Medsystems, Inc. | Thermal denervation devices |
US10463423B2 (en) | 2003-03-28 | 2019-11-05 | Relievant Medsystems, Inc. | Thermal denervation devices and methods |
US11679261B2 (en) | 2007-03-09 | 2023-06-20 | Mainstay Medical Limited | Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention |
US10828490B2 (en) | 2007-03-09 | 2020-11-10 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine |
US11331488B2 (en) | 2007-03-09 | 2022-05-17 | Mainstay Medical Limited | Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention |
US11679262B2 (en) | 2007-03-09 | 2023-06-20 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine |
US11951310B2 (en) | 2007-03-09 | 2024-04-09 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine |
US11103706B2 (en) | 2007-03-09 | 2021-08-31 | Mainstay Medical Limited | Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention |
US9265522B2 (en) | 2008-09-26 | 2016-02-23 | Relievant Medsystems, Inc. | Methods for navigating an instrument through bone |
US8419730B2 (en) | 2008-09-26 | 2013-04-16 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US9259241B2 (en) | 2008-09-26 | 2016-02-16 | Relievant Medsystems, Inc. | Methods of treating nerves within bone using fluid |
US10905440B2 (en) | 2008-09-26 | 2021-02-02 | Relievant Medsystems, Inc. | Nerve modulation systems |
US11471171B2 (en) | 2008-09-26 | 2022-10-18 | Relievant Medsystems, Inc. | Bipolar radiofrequency ablation systems for treatment within bone |
US10028753B2 (en) | 2008-09-26 | 2018-07-24 | Relievant Medsystems, Inc. | Spine treatment kits |
US8808284B2 (en) | 2008-09-26 | 2014-08-19 | Relievant Medsystems, Inc. | Systems for navigating an instrument through bone |
US9724107B2 (en) | 2008-09-26 | 2017-08-08 | Relievant Medsystems, Inc. | Nerve modulation systems |
US9039701B2 (en) | 2008-09-26 | 2015-05-26 | Relievant Medsystems, Inc. | Channeling paths into bone |
US10265099B2 (en) | 2008-09-26 | 2019-04-23 | Relievant Medsystems, Inc. | Systems for accessing nerves within bone |
US9247929B2 (en) * | 2009-11-17 | 2016-02-02 | Cook Medical Technologies Llc | Deflectable biopsy device |
US20120220894A1 (en) * | 2009-11-17 | 2012-08-30 | Melsheimer Jeffry S | Deflectable biopsy device |
US8414571B2 (en) | 2010-01-07 | 2013-04-09 | Relievant Medsystems, Inc. | Vertebral bone navigation systems |
US8535309B2 (en) | 2010-01-07 | 2013-09-17 | Relievant Medsystems, Inc. | Vertebral bone channeling systems |
US10926083B2 (en) | 2010-03-11 | 2021-02-23 | Mainstay Medical Limited | Stimulator for treatment of back pain utilizing feedback |
US12048844B2 (en) | 2010-03-11 | 2024-07-30 | Mainstay Medical Limited | Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use |
US12097365B2 (en) | 2010-03-11 | 2024-09-24 | Mainstay Medical Limited | Electrical stimulator for the treatment of back pain and methods of use |
US10925637B2 (en) | 2010-03-11 | 2021-02-23 | Mainstay Medical Limited | Methods of implanting electrode leads for use with implantable neuromuscular electrical stimulator |
US11684774B2 (en) | 2010-03-11 | 2023-06-27 | Mainstay Medical Limited | Electrical stimulator for treatment of back pain and methods of use |
US11471670B2 (en) | 2010-03-11 | 2022-10-18 | Mainstay Medical Limited | Electrical stimulator for treatment of back pain and methods of use |
US10661078B2 (en) | 2010-03-11 | 2020-05-26 | Mainstay Medical Limited | Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use |
US9999444B2 (en) | 2011-03-01 | 2018-06-19 | Orthovita, Inc. | Depth controlled Jamshidi needle |
US9308001B2 (en) | 2011-03-18 | 2016-04-12 | Carlos Andres Rodriguez | Vertebral cavitation surgical tool |
US10413283B2 (en) | 2011-06-27 | 2019-09-17 | Covidien Lp | Surgical instrument with adapter for facilitating multi-direction end effector articulation |
US9968344B2 (en) | 2011-06-27 | 2018-05-15 | Covidien Lp | Surgical instrument with adapter for facilitating multi-direction end effector articulation |
US9381010B2 (en) | 2011-06-27 | 2016-07-05 | Covidien Lp | Surgical instrument with adapter for facilitating multi-direction end effector articulation |
US20130116556A1 (en) * | 2011-11-05 | 2013-05-09 | Custom Medical Applications | Neural safety injection system and related methods |
US10206710B2 (en) * | 2011-11-10 | 2019-02-19 | Medtronic, Inc. | Introduction and anchoring tool for an implantable medical device element |
US20140324064A1 (en) * | 2011-11-10 | 2014-10-30 | Medtronic, Inc. | Introduction and anchoring tool for an implantable medical device element |
US10987134B2 (en) | 2011-11-10 | 2021-04-27 | Medtronic, Inc. | Introduction and anchoring tool for an implantable medical device element |
US10390877B2 (en) | 2011-12-30 | 2019-08-27 | Relievant Medsystems, Inc. | Systems and methods for treating back pain |
US11471210B2 (en) * | 2011-12-30 | 2022-10-18 | Relievant Medsystems, Inc. | Methods of denervating vertebral body using external energy source |
US12059193B2 (en) * | 2011-12-30 | 2024-08-13 | Relievant Medsystems, Inc. | Methods of denervating vertebral body using external energy source |
US10213187B1 (en) * | 2012-01-25 | 2019-02-26 | Mubin I. Syed | Method and apparatus for percutaneous superficial temporal artery access for carotid artery stenting |
US10034700B2 (en) * | 2012-02-17 | 2018-07-31 | DePuy Synthes Products, Inc. | Adjustable balloon including bone access tip |
US11033313B2 (en) * | 2012-02-17 | 2021-06-15 | DePuy Synthes Products, Inc. | Adjustable balloon including bone access tip |
US20190059966A1 (en) * | 2012-02-17 | 2019-02-28 | DePuy Synthes Products, Inc. | Adjustable balloon including bone access tip |
US20130218164A1 (en) * | 2012-02-17 | 2013-08-22 | Synthes Usa, Llc | Adjustable balloon including bone access tip |
US9999763B2 (en) | 2012-06-13 | 2018-06-19 | Mainstay Medical Limited | Apparatus and methods for anchoring electrode leads adjacent to nervous tissue |
US10195419B2 (en) | 2012-06-13 | 2019-02-05 | Mainstay Medical Limited | Electrode leads for use with implantable neuromuscular electrical stimulator |
US11786725B2 (en) | 2012-06-13 | 2023-10-17 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same |
US9981122B2 (en) | 2012-06-13 | 2018-05-29 | Mainstay Medical Limited | Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator |
US11376427B2 (en) | 2012-06-13 | 2022-07-05 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same |
US10449355B2 (en) | 2012-06-13 | 2019-10-22 | Mainstay Medical Limited | Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same |
AU2013296509B2 (en) * | 2012-07-31 | 2017-12-21 | Orthovita Inc. | Depth controlled Jamshidi needle |
CN104540455A (en) * | 2012-07-31 | 2015-04-22 | 安全电线控股有限责任公司 | Depth controlled jamshidi needle |
WO2014022567A1 (en) * | 2012-07-31 | 2014-02-06 | Safe Wire Holdings, Llc | Depth controlled jamshidi needle |
US11701168B2 (en) | 2012-09-12 | 2023-07-18 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
US20240099766A1 (en) * | 2012-09-12 | 2024-03-28 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
US10588691B2 (en) | 2012-09-12 | 2020-03-17 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
US11737814B2 (en) | 2012-09-12 | 2023-08-29 | Relievant Medsystems, Inc. | Cryotherapy treatment for back pain |
US11690667B2 (en) | 2012-09-12 | 2023-07-04 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
EP2903547A4 (en) * | 2012-10-02 | 2016-10-12 | Covidien Lp | Selectively deformable ablation device |
US20140094799A1 (en) * | 2012-10-02 | 2014-04-03 | Covidien Lp | Selectively deformable ablation device |
US9993283B2 (en) * | 2012-10-02 | 2018-06-12 | Covidien Lp | Selectively deformable ablation device |
AU2013327705B2 (en) * | 2012-10-02 | 2017-08-24 | Covidien Lp | Selectively deformable ablation device |
CN104411264A (en) * | 2012-10-02 | 2015-03-11 | 柯惠有限合伙公司 | Selectively deformable ablation device |
WO2014071161A1 (en) | 2012-11-05 | 2014-05-08 | Relievant Medsystems, Inc. | System and methods for creating curved paths through bone and modulating nerves within the bone |
AU2019206037B2 (en) * | 2012-11-05 | 2020-10-22 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
US9775627B2 (en) | 2012-11-05 | 2017-10-03 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
US10357258B2 (en) | 2012-11-05 | 2019-07-23 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone |
US11974759B2 (en) | 2012-11-05 | 2024-05-07 | Relievant Medsystems, Inc. | Methods of navigation and treatment within a vertebral body |
US11160563B2 (en) | 2012-11-05 | 2021-11-02 | Relievant Medsystems, Inc. | Systems for navigation and treatment within a vertebral body |
US10517611B2 (en) | 2012-11-05 | 2019-12-31 | Relievant Medsystems, Inc. | Systems for navigation and treatment within a vertebral body |
JP2017213428A (en) * | 2012-11-05 | 2017-12-07 | リリーバント メドシステムズ、インコーポレイテッド | Systems and methods for creating curved paths through bone and modulating nerves within bone |
EP2914186A4 (en) * | 2012-11-05 | 2016-07-20 | Relievant Medsystems Inc | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
EP3598952A3 (en) * | 2012-11-05 | 2020-04-15 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
US11234764B1 (en) | 2012-11-05 | 2022-02-01 | Relievant Medsystems, Inc. | Systems for navigation and treatment within a vertebral body |
US11291502B2 (en) | 2012-11-05 | 2022-04-05 | Relievant Medsystems, Inc. | Methods of navigation and treatment within a vertebral body |
IL238516B (en) * | 2012-11-05 | 2022-08-01 | Relievant Medsystems Inc | System and methods for creating curved paths through bone and modulating nerves within the bone |
AU2013337680B2 (en) * | 2012-11-05 | 2019-04-18 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
US10639179B2 (en) | 2012-11-21 | 2020-05-05 | Ram Medical Innovations, Llc | System for the intravascular placement of a medical device |
US10588766B2 (en) | 2012-11-21 | 2020-03-17 | Ram Medical Innovations, Llc | Steerable intravascular anchor and method of operation |
US10456187B2 (en) | 2013-08-08 | 2019-10-29 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
US11065046B2 (en) | 2013-08-08 | 2021-07-20 | Relievant Medsystems, Inc. | Modulating nerves within bone |
US9724151B2 (en) | 2013-08-08 | 2017-08-08 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
US20150100052A1 (en) * | 2013-10-06 | 2015-04-09 | Jinsheng Wang | Spinal disk herniation repositioning and radiofrequency ablation (rfa) device and method for treating vertebral disc herniation |
US9918786B2 (en) * | 2013-10-06 | 2018-03-20 | Hongkui WANG | Spinal disk herniation repositioning and radiofrequency ablation (RFA) device and method for treating vertebral disc herniation |
US20160310210A1 (en) * | 2013-12-12 | 2016-10-27 | Holaira, Inc. | Catheter and handle assembly, systems, and methods |
US12114916B2 (en) * | 2013-12-12 | 2024-10-15 | Nuvaira, Inc. | Catheter and handle assembly, systems, and methods |
EP3148453A4 (en) * | 2014-05-28 | 2018-06-20 | Kyphon SÀRL | Multi-tine cutting device |
US10639057B2 (en) | 2014-05-28 | 2020-05-05 | Medtronic Holding Company Sàrl | Multi-tine cutting device |
US10391206B2 (en) * | 2014-07-30 | 2019-08-27 | University Of Kansas | Cannula for external drainage of subretinal fluid |
US20170216092A1 (en) * | 2014-07-30 | 2017-08-03 | University Of Kansas | Cannula for external drainage of subretinal fluid |
US10471268B2 (en) | 2014-10-16 | 2019-11-12 | Mainstay Medical Limited | Systems and methods for monitoring muscle rehabilitation |
US10631915B1 (en) * | 2014-10-21 | 2020-04-28 | Cosman Instruments, Llc | Electrosurgical system |
US10433890B2 (en) | 2015-03-25 | 2019-10-08 | Coracoid Solutions, Llc | Joint repair system |
US11564722B2 (en) | 2015-03-25 | 2023-01-31 | Coracoid Solutions, Llc | Joint repair system |
US20180116701A1 (en) * | 2015-03-25 | 2018-05-03 | Coracoid Solutions, Llc | Joint repair system |
US10470808B2 (en) * | 2015-03-25 | 2019-11-12 | Coracoid Solutions, Llc | Joint repair system |
US9636244B2 (en) | 2015-04-09 | 2017-05-02 | Mubin I. Syed | Apparatus and method for proximal to distal stent deployment |
US10478325B2 (en) | 2015-04-09 | 2019-11-19 | Mubin I. Syed | Apparatus and method for proximal to distal stent deployment |
US11389181B2 (en) * | 2015-09-16 | 2022-07-19 | Stryker European Operations Limited | Steerable systems and methods for accessing bone |
US20180263648A1 (en) * | 2015-09-16 | 2018-09-20 | Vexim | Control mechanism for steerable rod |
US10660659B2 (en) * | 2015-09-16 | 2020-05-26 | Vexim | Control mechanism for steerable rod |
CN105105797A (en) * | 2015-09-28 | 2015-12-02 | 成都漫程科技有限公司 | Puncture biopsy guide device |
US11337837B2 (en) | 2015-10-30 | 2022-05-24 | Ram Medical Innovations, Inc. | Apparatus and method for improved access of procedural catheter in tortuous vessels |
US10327929B2 (en) | 2015-10-30 | 2019-06-25 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US11020256B2 (en) | 2015-10-30 | 2021-06-01 | Ram Medical Innovations, Inc. | Bifurcated “Y” anchor support for coronary interventions |
US10492936B2 (en) | 2015-10-30 | 2019-12-03 | Ram Medical Innovations, Llc | Apparatus and method for improved access of procedural catheter in tortuous vessels |
US10779976B2 (en) | 2015-10-30 | 2020-09-22 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10888445B2 (en) | 2015-10-30 | 2021-01-12 | Ram Medical Innovations, Inc. | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US9980838B2 (en) | 2015-10-30 | 2018-05-29 | Ram Medical Innovations Llc | Apparatus and method for a bifurcated catheter for use in hostile aortic arches |
US20180303512A1 (en) * | 2015-11-25 | 2018-10-25 | Ohio State Innovation Foundation | Devices, systems, and methods for delivering a therapy to a target tissue |
US10053693B2 (en) | 2016-01-19 | 2018-08-21 | Mubin I. Syed | Method for controlling obesity using minimally invasive means |
US10173031B2 (en) | 2016-06-20 | 2019-01-08 | Mubin I. Syed | Interchangeable flush/selective catheter |
US11724063B2 (en) | 2016-06-20 | 2023-08-15 | Mubin I. Syed | Interchangeable flush/selective catheter |
US11937847B2 (en) | 2016-07-05 | 2024-03-26 | Mainstay Medical Limited | Systems and methods for enhanced implantation of electrode leads between tissue layers |
AU2017293442B2 (en) * | 2016-07-05 | 2022-07-14 | Mainstay Medical Limited | Systems and methods for enhanced implantation of electrode leads between tissue layers |
US10327810B2 (en) | 2016-07-05 | 2019-06-25 | Mainstay Medical Limited | Systems and methods for enhanced implantation of electrode leads between tissue layers |
US11406421B2 (en) | 2016-07-05 | 2022-08-09 | Mainstay Medical Limited | Systems and methods for enhanced implantation of electrode leads between tissue layers |
WO2018007914A1 (en) * | 2016-07-05 | 2018-01-11 | Mainstay Medical Limited | Systems and methods for enhanced implantation of electrode leads between tissue layers |
JP2018102551A (en) * | 2016-12-26 | 2018-07-05 | HOYA Technosurgical株式会社 | Syringe and treatment set |
US11877940B2 (en) | 2018-02-18 | 2024-01-23 | Ram Medical Innovations, Inc. | Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions |
US11007075B2 (en) | 2018-02-18 | 2021-05-18 | Ram Medical Innovations, Inc. | Vascular access devices and methods for lower limb interventions |
US12011379B2 (en) | 2018-02-18 | 2024-06-18 | Ram Medical Innovations, Inc. | Vascular access devices and methods for lower limb interventions |
US10857014B2 (en) | 2018-02-18 | 2020-12-08 | Ram Medical Innovations, Llc | Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions |
CN110269646A (en) * | 2018-03-14 | 2019-09-24 | 斯波瑞申有限公司(以奥林巴斯呼吸美国名义) | For organizing the conduit tube component with offset assembly of sampling |
GB2572860B (en) * | 2018-03-14 | 2022-12-07 | Gyrus Acmi Inc | Catheter assembly with offset device for tissue sampling |
US20190282217A1 (en) * | 2018-03-14 | 2019-09-19 | SPIRATION, INC., d/b/a OLYMPUS RESPIRATORY AMERICA | Catheter Assembly With Offset Device For Tissue Sampling |
CN110269645A (en) * | 2018-03-14 | 2019-09-24 | 斯波瑞申有限公司(以奥林巴斯呼吸美国名义) | For organizing the conduit tube component with offset assembly of sampling |
US10912542B2 (en) * | 2018-03-14 | 2021-02-09 | Spiration, Inc. | Catheter assembly with offset device for tissue sampling |
US11129728B1 (en) | 2018-10-03 | 2021-09-28 | Guillermo Molina | Surgically implantable joint spacer |
US11202655B2 (en) | 2019-09-12 | 2021-12-21 | Relievant Medsystems, Inc. | Accessing and treating tissue within a vertebral body |
US11123103B2 (en) | 2019-09-12 | 2021-09-21 | Relievant Medsystems, Inc. | Introducer systems for bone access |
US11007010B2 (en) | 2019-09-12 | 2021-05-18 | Relevant Medsysterns, Inc. | Curved bone access systems |
US11207100B2 (en) | 2019-09-12 | 2021-12-28 | Relievant Medsystems, Inc. | Methods of detecting and treating back pain |
US11426199B2 (en) | 2019-09-12 | 2022-08-30 | Relievant Medsystems, Inc. | Methods of treating a vertebral body |
US11684485B1 (en) | 2020-02-04 | 2023-06-27 | Guillermo Molina | Surgically implantable joint spacer |
US20210267637A1 (en) * | 2020-02-28 | 2021-09-02 | Bard Access Systems, Inc. | Flexible Intraosseous Obturator |
US12082876B1 (en) | 2020-09-28 | 2024-09-10 | Relievant Medsystems, Inc. | Introducer drill |
US12039731B2 (en) | 2020-12-22 | 2024-07-16 | Relievant Medsystems, Inc. | Prediction of candidates for spinal neuromodulation |
CN113288390A (en) * | 2021-05-21 | 2021-08-24 | 山东威高骨科材料股份有限公司 | Detachable opening puncture tool |
US12121674B2 (en) | 2022-02-03 | 2024-10-22 | Mubin I. Syed | Interchangeable flush/selective catheter |
WO2024116100A1 (en) * | 2022-11-30 | 2024-06-06 | Medtronic Holding Company Sàrl | Basivertebral nerve access tool, system, and method |
US12121728B2 (en) | 2023-06-12 | 2024-10-22 | Mainstay Medical Limited | Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention |
Also Published As
Publication number | Publication date |
---|---|
US20110034884A9 (en) | 2011-02-10 |
US20130325001A1 (en) | 2013-12-05 |
US9421064B2 (en) | 2016-08-23 |
US20150335382A1 (en) | 2015-11-26 |
US8425507B2 (en) | 2013-04-23 |
US20150335349A1 (en) | 2015-11-26 |
US9173676B2 (en) | 2015-11-03 |
US20130012933A1 (en) | 2013-01-10 |
US9017325B2 (en) | 2015-04-28 |
US20130006233A1 (en) | 2013-01-03 |
US20140316405A1 (en) | 2014-10-23 |
US9023038B2 (en) | 2015-05-05 |
US8623014B2 (en) | 2014-01-07 |
US8613744B2 (en) | 2013-12-24 |
US20210205009A9 (en) | 2021-07-08 |
US20140336667A1 (en) | 2014-11-13 |
US20200214762A1 (en) | 2020-07-09 |
US8628528B2 (en) | 2014-01-14 |
US20140324051A1 (en) | 2014-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200214762A1 (en) | Denervation methods | |
US20240115274A1 (en) | Systems for treating nerves within bone | |
US9265522B2 (en) | Methods for navigating an instrument through bone | |
US20190282268A1 (en) | Systems for accessing nerves within bone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RELIEVANT MEDSYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PELLEGRINO, RICHARD;PATEL, SAMIT;CARRISON, HAROLD;SIGNING DATES FROM 20100121 TO 20100202;REEL/FRAME:023896/0294 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: RELIEVANT MEDSYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAPINEAU, PAULA;CROMBIE, JOHN S.;RYAN, THOMAS;SIGNING DATES FROM 20120817 TO 20120827;REEL/FRAME:031011/0313 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |