US20110044844A1 - Hot compaction and extrusion of l12 aluminum alloys - Google Patents
Hot compaction and extrusion of l12 aluminum alloys Download PDFInfo
- Publication number
- US20110044844A1 US20110044844A1 US12/543,945 US54394509A US2011044844A1 US 20110044844 A1 US20110044844 A1 US 20110044844A1 US 54394509 A US54394509 A US 54394509A US 2011044844 A1 US2011044844 A1 US 2011044844A1
- Authority
- US
- United States
- Prior art keywords
- weight percent
- powder
- dispersoids
- aluminum alloy
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/17—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
- B22F2003/175—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
- B22F2003/208—Warm or hot extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present invention relates generally to aluminum alloys and more specifically to a method for forming high strength aluminum alloy powder having L1 2 dispersoids therein.
- L1 2 strengthened aluminum alloys have high strength and improved fatigue properties compared to commercially available aluminum alloys. Fine grain size results in improved mechanical properties of materials. Hall-Petch strengthening has been known for decades where strength increases as grain size decreases. An optimum grain size for optimum strength is in the nanometer range of about 30 to 100 nm. These alloys also have higher ductility.
- the present invention is a method for consolidating aluminum alloy powders into useful components by hot compaction and extrusion.
- powders include an aluminum alloy having coherent L1 2 Al3X dispersoids where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium, and at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
- the balance is substantially aluminum containing at least one alloying element selected from silicon, magnesium, manganese, lithium, copper, zinc, and nickel.
- the powders are classified by sieving and blended to improve homogeneity.
- the powders are then vacuum degassed in a container that is then sealed.
- the sealed container i.e. can
- the sealed container is then compacted to full density by blind die compaction and extruded into useful shapes.
- FIG. 1 is an aluminum scandium phase diagram.
- FIG. 2 is an aluminum erbium phase diagram.
- FIG. 3 is an aluminum thulium phase diagram.
- FIG. 4 is an aluminum ytterbium phase diagram.
- FIG. 5 is an aluminum lutetium phase diagram.
- FIG. 6A is a schematic diagram of a vertical gas atomizer.
- FIG. 6B is a close up view of nozzle 108 in FIG. 6A .
- FIGS. 7A and 7B are SEM photos of the inventive aluminum alloy powder.
- FIGS. 8A and 8B are optical micrographs showing the microstructure of gas atomized L12 aluminum alloy powder.
- FIG. 9 is a diagram showing the steps of the gas atomization process.
- FIG. 10 is a diagram showing the processing steps to consolidate and extrude the L1 2 aluminum alloy powder.
- FIG. 11 is a schematic diagram of blind die compaction.
- FIG. 12 is a schematic diagram of an extrusion process.
- FIG. 13 is a photograph of consolidated billet of a L1 2 aluminum alloy.
- FIG. 14 is a photograph of extruded round bars of L1 2 aluminum alloy.
- Alloy powders of this invention are formed from aluminum based alloys with high strength and fracture toughness for applications at temperatures from about ⁇ 420° F. ( ⁇ 251° C.) up to about 650° F. (343° C.).
- the aluminum alloy comprises a solid solution of aluminum and at least one element selected from silicon, magnesium, manganese, lithium, copper, zinc, and nickel strengthened by L1 2 Al 3 X coherent precipitates where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium, and at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
- the binary aluminum silicon system is a simple eutectic at 12.6 weight percent silicon and 1070.6° F. (577° C.). There is complete solubility of silicon and aluminum in the rapidly solidified inventive alloys discussed herein
- the binary aluminum manganese system is a simple eutectic at about 2 weight percent manganese and 1216.4° F. (658° C.). There is complete solubility of manganese and aluminum in the rapidly solidified inventive alloys discussed herein
- the binary aluminum lithium system is a simple eutectic at 8 weight percent lithium and 1105° (596° C.).
- the equilibrium solubility of 4 weight percent lithium can be extended significantly by rapid solidification techniques. There is complete solubility of lithium in the rapid solidified inventive alloys discussed herein.
- the binary aluminum copper system is a simple eutectic at 32 weight percent copper and 1018° F. (548° C.). There is complete solubility of copper in the rapidly solidified inventive alloys discussed herein.
- the aluminum zinc binary system is a eutectic alloy system involving a monotectoid reaction and a miscibility gap in the solid state. There is a eutectic reaction at 94 weight percent zinc and 718° F. (381° C.). Zinc has maximum solid solubility of 83.1 weight percent in aluminum at 717.8° F. (381° C.), which can be extended by rapid solidification processes. Decomposition of the supersaturated solid solution of zinc in aluminum gives rise to spherical and ellipsoidal GP zones, which are coherent with the matrix and act to strengthen the alloy.
- the aluminum nickel binary system is a simple eutectic at 5.7 weight percent nickel and 1183.8° F. (639.9° C.). There is little solubility of nickel in aluminum. However, the solubility can be extended significantly by utilizing rapid solidification processes.
- the equilibrium phase in the aluminum nickel eutectic system is L1 2 intermetallic Al 3 Ni.
- scandium, erbium, thulium, ytterbium, and lutetium are potent strengtheners that have low diffusivity and low solubility in aluminum. All these elements form equilibrium Al 3 X intermetallic dispersoids where X is at least one of scandium, erbium, thulium, ytterbium, and lutetium, that have an L1 2 structure that is an ordered face centered cubic structure with the X atoms located at the corners and aluminum atoms located on the cube faces of the unit cell.
- Al 3 Sc dispersoids forms Al 3 Sc dispersoids that are fine and coherent with the aluminum matrix.
- Lattice parameters of aluminum and Al 3 Sc are very close (0.405 nm and 0.410 nm respectively), indicating that there is minimal or no driving force for causing growth of the Al 3 Sc dispersoids.
- This low interfacial energy makes the Al 3 Sc dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.).
- Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al 3 Sc to coarsening.
- Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys.
- Al 3 Sc dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof, that enter Al 3 Sc in solution.
- suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof, that enter Al 3 Sc in solution.
- Erbium forms Al 3 Er dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix.
- the lattice parameters of aluminum and Al 3 Er are close (0.405 nm and 0.417 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Er dispersoids.
- This low interfacial energy makes the Al 3 Er dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.).
- Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al 3 Er to coarsening.
- Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys.
- Al 3 Er dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Er in solution.
- suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Er in solution.
- Thulium forms Al 3 Tm dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix.
- the lattice parameters of aluminum and Al 3 Tm are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Tm dispersoids.
- This low interfacial energy makes the Al 3 Tm dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.).
- Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al 3 Tm to coarsening.
- Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys.
- Al 3 Tm dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Tm in solution.
- suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Tm in solution.
- Ytterbium forms Al 3 Yb dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix.
- the lattice parameters of Al and Al 3 Yb are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Yb dispersoids.
- This low interfacial energy makes the Al 3 Yb dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.).
- Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al 3 Yb to coarsening.
- Al 3 Yb dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Yb in solution.
- Al 3 Lu dispersoids forms Al 3 Lu dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix.
- the lattice parameters of Al and Al 3 Lu are close (0.405 nm and 0.419 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Lu dispersoids.
- This low interfacial energy makes the Al 3 Lu dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.).
- Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al 3 Lu to coarsening.
- Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys.
- Al 3 Lu dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or mixtures thereof that enter Al 3 Lu in solution.
- suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or mixtures thereof that enter Al 3 Lu in solution.
- Gadolinium forms metastable Al 3 Gd dispersoids in the aluminum matrix that are stable up to temperatures as high as about 842° F. (450° C.) due to their low diffusivity in aluminum.
- the Al 3 Gd dispersoids have a D0 19 structure in the equilibrium condition.
- gadolinium has fairly high solubility in the Al 3 X intermetallic dispersoids (where X is scandium, erbium, thulium, ytterbium or lutetium).
- Gadolinium can substitute for the X atoms in Al 3 X intermetallic, thereby forming an ordered L1 2 phase which results in improved thermal and structural stability.
- Yttrium forms metastable Al 3 Y dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and a D0 19 structure in the equilibrium condition.
- the metastable Al 3 Y dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening.
- Yttrium has a high solubility in the Al 3 X intermetallic dispersoids allowing large amounts of yttrium to substitute for X in the Al 3 X L1 2 dispersoids, which results in improved thermal and structural stability.
- Zirconium forms Al 3 Zr dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and D0 23 structure in the equilibrium condition.
- the metastable Al 3 Zr dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening.
- Zirconium has a high solubility in the Al 3 X dispersoids allowing large amounts of zirconium to substitute for X in the Al 3 X dispersoids, which results in improved thermal and structural stability.
- Titanium forms Al 3 Ti dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and DO 22 structure in the equilibrium condition.
- the metastable Al 3 Ti despersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening.
- Titanium has a high solubility in the Al 3 X dispersoids allowing large amounts of titanium to substitute for X in the Al 3 X dispersoids, which result in improved thermal and structural stability.
- Hafnium forms metastable Al 3 Hf dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and a D0 23 structure in the equilibrium condition.
- the Al 3 Hf dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening.
- Hafnium has a high solubility in the Al 3 X dispersoids allowing large amounts of hafnium to substitute for scandium, erbium, thulium, ytterbium, and lutetium in the above-mentioned Al 3 X dispersoids, which results in stronger and more thermally stable dispersoids.
- Niobium forms metastable Al 3 Nb dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and a D0 22 structure in the equilibrium condition.
- Niobium has a lower solubility in the Al 3 X dispersoids than hafnium or yttrium, allowing relatively lower amounts of niobium than hafnium or yttrium to substitute for X in the Al 3 X dispersoids. Nonetheless, niobium can be very effective in slowing down the coarsening kinetics of the Al 3 X dispersoids because the Al 3 Nb dispersoids are thermally stable. The substitution of niobium for X in the above mentioned Al 3 X dispersoids results in stronger and more thermally stable dispersoids.
- Al 3 X L1 2 precipitates improve elevated temperature mechanical properties in aluminum alloys for two reasons.
- the precipitates are ordered intermetallic compounds. As a result, when the particles are sheared by glide dislocations during deformation, the dislocations separate into two partial dislocations separated by an anti-phase boundary on the glide plane. The energy to create the anti-phase boundary is the origin of the strengthening.
- the cubic L1 2 crystal structure and lattice parameter of the precipitates are closely matched to the aluminum solid solution matrix. This results in a lattice coherency at the precipitate/matrix boundary that resists coarsening. The lack of an interphase boundary results in a low driving force for particle growth and resulting elevated temperature stability. Alloying elements in solid solution in the dispersed strengthening particles and in the aluminum matrix that tend to decrease the lattice mismatch between the matrix and particles will tend to increase the strengthening and elevated temperature stability of the alloy.
- L1 2 phase strengthened aluminum alloys are important structural materials because of their excellent mechanical properties and the stability of these properties at elevated temperature due to the resistance of the coherent dispersoids in the microstructure to particle coarsening.
- the mechanical properties are optimized by maintaining a high volume fraction of L1 2 dispersoids in the microstructure.
- the concentration of alloying elements in solid solution in alloys cooled from the melt is directly proportional to the cooling rate.
- Exemplary aluminum alloys for this invention include, but are not limited to (in weight percent unless otherwise specified):
- the amount of magnesium present in the fine grain matrix may vary from about 1 to about 8 weight percent, more preferably from about 3 to about 7.5 weight percent, and even more preferably from about 4 to about 6.5 weight percent.
- the amount of manganese present in the fine grain matrix may vary from about 0.1 to about 3 weight percent, more preferably from about 0.2 to about 2 weight percent, and even more preferably from about 0.3 to about 1 weight percent.
- the amount of lithium present in the fine grain matrix may vary from about 0.5 to about 3 weight percent, more preferably from about 1 to about 2.5 weight percent, and even more preferably from about 1 to about 2 weight percent.
- the amount of copper present in the fine grain matrix may vary from about 0.2 to about 6 weight percent, more preferably from about 0.5 to about 5 weight percent, and even more preferably from about 2 to about 4.5 weight percent.
- the amount of zinc present in the fine grain matrix may vary from about 3 to about 12 weight percent, more preferably from about 4 to about 10 weight percent, and even more preferably from about 5 to about 9 weight percent.
- the amount of nickel present in the fine grain matrix may vary from about 1 to about 12 weight percent, more preferably from about 2 to about 10 weight percent, and even more preferably from about 4 to about 10 weight percent.
- the amount of erbium present in the fine grain matrix may vary from about 0.1 to about 20 weight percent, more preferably from about 0.3 to about 15 weight percent, and even more preferably from about 0.5 to about 10 weight percent.
- the Al—Er phase diagram shown in FIG. 2 indicates a eutectic reaction at about 6 weight percent erbium at about 1211° F. (655° C.).
- Aluminum alloys with less than about 6 weight percent erbium can be quenched from the melt to retain erbium in solid solutions that may precipitate as dispersed L1 2 intermetallic Al 3 Er following an aging treatment. Alloys with erbium in excess of the eutectic composition can only retain erbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 ° C./second.
- RSP rapid solidification processing
- the amount of thulium present in the alloys may vary from about 0.1 to about 15 weight percent, more preferably from about 0.2 to about 10 weight percent, and even more preferably from about 0.4 to about 6 weight percent.
- the Al—Tm phase diagram shown in FIG. 3 indicates a eutectic reaction at about 10 weight percent thulium at about 1193° F. (645° C.).
- Thulium forms metastable Al 3 Tm dispersoids in the aluminum matrix that have an L1 2 structure in the equilibrium condition.
- the Al 3 Tm dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening.
- Aluminum alloys with less than 10 weight percent thulium can be quenched from the melt to retain thulium in solid solution that may precipitate as dispersed metastable L1 2 intermetallic Al 3 Tm following an aging treatment. Alloys with thulium in excess of the eutectic composition can only retain Tm in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 ° C./second.
- RSP rapid solidification processing
- the amount of ytterbium present in the alloys may vary from about 0.1 to about 25 weight percent, more preferably from about 0.3 to about 20 weight percent, and even more preferably from about 0.4 to about 10 weight percent.
- the Al—Yb phase diagram shown in FIG. 4 indicates a eutectic reaction at about 21 weight percent ytterbium at about 1157° F. (625° C.).
- Aluminum alloys with less than about 21 weight percent ytterbium can be quenched from the melt to retain ytterbium in solid solution that may precipitate as dispersed L1 2 intermetallic Al 3 Yb following an aging treatment. Alloys with ytterbium in excess of the eutectic composition can only retain ytterbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 ° C./second.
- RSP rapid solidification processing
- the amount of lutetium present in the alloys may vary from about 0.1 to about 25 weight percent, more preferably from about 0.3 to about 20 weight percent, and even more preferably from about 0.4 to about 10 weight percent.
- the Al—Lu phase diagram shown in FIG. 5 indicates a eutectic reaction at about 11.7 weight percent Lu at about 1202° F. (650° C.).
- Aluminum alloys with less than about 11.7 weight percent lutetium can be quenched from the melt to retain Lu in solid solution that may precipitate as dispersed L1 2 intermetallic Al 3 Lu following an aging treatment. Alloys with Lu in excess of the eutectic composition can only retain Lu in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 ° C./second.
- RSP rapid solidification processing
- the amount of gadolinium present in the alloys may vary from about 0.1 to about 20 weight percent, more preferably from about 0.3 to about 15 weight percent, and even more preferably from about 0.5 to about 10 weight percent.
- the amount of yttrium present in the alloys may vary from about 0.1 to about 20 weight percent, more preferably from about 0.3 to about 15 weight percent, and even more preferably from about 0.5 to about 10 weight percent.
- the amount of zirconium present in the alloys may vary from about 0.05 to about 4 weight percent, more preferably from about 0.1 to about 3 weight percent, and even more preferably from about 0.3 to about 2 weight percent.
- the amount of titanium present in the alloys may vary from about 0.05 to about 10 weight percent, more preferably from about 0.2 to about 8 weight percent, and even more preferably from about 0.4 to about 4 weight percent.
- the amount of hafnium present in the alloys may vary from about 0.05 to about 10 weight percent, more preferably from about 0.2 to about 8 weight percent, and even more preferably from about 0.4 to about 5 weight percent.
- the amount of niobium present in the alloys may vary from about 0.05 to about 5 weight percent, more preferably from about 0.1 to about 3 weight percent, and even more preferably from about 0.2 to about 2 weight percent.
- Gas atomization is a two fluid process wherein a stream of molten metal is disintegrated by a high velocity gas stream. The end result is that the particles of molten metal eventually become spherical due to surface tension and finely solidify in powder form. Heat from the liquid droplets is transferred to the atomization gas primarily by convection.
- the solidification rates depending on the gas and the surrounding environment, can be very high and can exceed 10 6 ° C./second. Cooling rates greater than 10 3 ° C./second are typically specified to ensure supersaturation of alloying elements in gas atomized L1 2 aluminum alloy powder in the inventive process described herein.
- inert gases such as helium, argon, and nitrogen.
- Helium is preferred for rapid solidification because the high heat transfer coefficient of the gas leads to high quenching rates and high supersaturation of alloying elements.
- the particle size of gas atomized melts typically has a log normal distribution.
- ultra fine particles can form that may reenter the gas expansion zone.
- These solidified fine particles can be carried into the flight path of molten larger droplets resulting in agglomeration of small satellite particles on the surfaces of larger particles.
- An example of small satellite particles attached to inventive spherical L1 2 aluminum alloy powder is shown in the scanning electron microscopy (SEM) micrographs of FIGS. 7A and 7B at two magnifications. The spherical shape of gas atomized aluminum powder is evident.
- the powder is classified according to size by sieving.
- To prepare the powder for sieving if the powder has zero percent oxygen content, the powder may be exposed to nitrogen gas which passivates the powder surface and prevents agglomeration. Finer powder sizes result in improved mechanical properties of the end product. While minus 325 mesh (about 45 microns) powder can be used, minus 450 mesh (about 30 microns) powder is a preferred size in order to provide good mechanical properties in the end product.
- powder is collected in collection chambers in order to prevent oxidation of the powder. Collection chambers are used at the bottom of atomization chamber 104 as well as at the bottom of cyclone collector 116 . The powder is transported and stored in the collection chambers also. Collection chambers are maintained under positive pressure with nitrogen gas which prevents oxidation of the powder.
- FIG. 9 A schematic of the L1 2 aluminum powder manufacturing process is shown in FIG. 9 .
- aluminum 200 and L1 2 forming (and other) alloying elements 210 are melted in furnace 220 to a predetermined superheat temperature under vacuum or inert atmosphere.
- Preferred charge for furnace 220 is prealloyed aluminum 200 and L1 2 and other alloying elements before charging furnace 220 .
- Melt 230 is then passed through nozzle 240 where it is impacted by pressurized gas stream 250 .
- Gas stream 250 is an inert gas such as nitrogen, argon or helium, preferably helium.
- Melt 230 can flow through nozzle 240 under gravity or under pressure. Gravity flow is preferred for the inventive process disclosed herein.
- Preferred pressures for pressurized gas stream 250 are about 50 psi (10.35 MPa) to about 750 psi (5.17 MPa) for the present inventive alloy compositions.
- the atomization process creates molten droplets 260 which rapidly solidify as they travel through agglomeration chamber 270 forming spherical powder particles 280 .
- the molten droplets transfer heat to the atomizing gas by convection.
- the role of the atomizing gas is two fold: one is to disintegrate the molten metal stream into fine droplets by transferring kinetic energy from the gas to the melt stream and the other is to extract heat from the molten droplets to rapidly solidify them into spherical powder.
- the solidification time and cooling rate vary with droplet size. Larger droplets take longer to solidify and their resulting cooling rate is lower.
- the atomizing gas will extract heat efficiently from smaller droplets resulting in a higher cooling rate.
- Finer powder size is therefore preferred as higher cooling rates provide finer microstructures and higher mechanical properties in the end product. Higher cooling rates lead to finer cellular microstructures which are preferred for higher mechanical properties. Finer cellular microstructures result in finer grain sizes in consolidated product. Finer grain size provides higher yield strength of the material through the Hall-Petch strengthening model.
- Key process variables for gas atomization include superheat temperature, nozzle diameter, helium content and dew point of the gas, and metal flow rate.
- Superheat temperatures of from about 150° F. (66° C.) to 200° F. (93° C.) are preferred.
- Nozzle diameters of about 0.07 in. (1.8 mm) to 0.12 in. (3.0 mm) are preferred depending on the alloy.
- the gas stream used herein was a helium nitrogen mixture containing 74 to 87 vol. % helium.
- the metal flow rate ranged from about 0.8 lb/min (0.36 kg/min) to 4.0 lb/min (1.81 kg/min).
- the oxygen content of the L1 2 aluminum alloy powders was observed to consistently decrease as a run progressed.
- the powder is then classified by sieving process 290 to create classified powder 300 .
- Sieving of powder is performed under an inert environment to minimize oxygen and hydrogen pickup from the environment. While the yield of minus 450 mesh powder is extremely high (95%), there are always larger particle sizes, flakes and ligaments that are removed by the sieving. Sieving also ensures a narrow size distribution and provides a more uniform powder size. Sieving also ensures that flaw sizes cannot be greater than minus 450 mesh which will be required for nondestructive inspection of the final product.
- Powder quality is extremely important to produce material with higher strength and ductility. Powder quality is determined by powder size, shape, size distribution, oxygen content, hydrogen content, and alloy chemistry. Over fifty gas atomization runs were performed to produce the inventive powder with finer powder size, finer size distribution, spherical shape, and lower oxygen and hydrogen contents. Processing parameters of some exemplary gas atomization runs are listed in Table 1. It is suggested that the observed decrease in oxygen content is attributed to oxygen gettering by the powder as the runs progressed.
- Inventive L1 2 aluminum alloy powder was produced with over 95% yield of minus 450 mesh (30 microns) which includes powder from about 1 micron to about 30 microns.
- the average powder size was about 10 microns to about 15 microns.
- finer powder size is preferred for higher mechanical properties. Finer powders have finer cellular microstructures which is key for producing higher mechanical properties. As a result, finer cell sizes lead to finer grain size by fragmentation and coalescence of cells during powder consolidation. Finer grain sizes produce higher yield strength through the Hall-Petch strengthening model where yield strength varies inversely as the square root of the grain size. It is preferred to use powder with an average particle size of 10-15 microns.
- Powders with narrow size distributions are preferred. Narrower powder size distributings produce product microstructures with more uniform grain size. Spherical powder was produced to provide higher apparent and tap densities which help in achieving 100% density in the consolidated product. Spherical shape is also an indication of cleaner and lower oxygen content powder. Lower oxygen and lower hydrogen contents are important in producing material with high ductility and fracture toughness. Although it is beneficial to maintain low oxygen and hydrogen content in powder to achieve good mechanical properties, lower oxygen may interfere with sieving due to self sintering. An oxygen content of about 25 ppm to about 500 ppm is preferred to provide good ductility and fracture toughness without any sieving issue. Lower hydrogen is also preferred for improving ductility and fracture toughness.
- FIG. 10 is a diagram showing the processing steps to consolidate the sieved and classified L1 2 aluminum alloy powders.
- the powders (step 310 ) are first blended.
- Blending (step 320 ) is a preferred step in the consolidation process because it results in improved uniformity of particle size distribution.
- Gas atomized L1 2 aluminum alloy powder generally exhibits a bimodal particle size distribution and cross blending of separate powder batches tends to homogenize the particle size distribution.
- Blending (step 320 ) is also preferred when separate metal and/or ceramic powders are added to the L1 2 base powder to form bimodal or trimodal consolidated alloy microstructures.
- the powders are transferred to a can (step 330 ) where the powder is vacuum degassed (step 340 ) at elevated temperatures.
- the can (step 330 ) is an aluminum container having a cylindrical, rectangular or other configuration with a central axis. Vacuum degassing times can range from about 0.5 hours to about 8 days. A temperature range of about 300° F. (149° C.) to about 900° F. (482° C.) is preferred. Dynamic degassing of large amounts of powder is preferred to static degassing. In dynamic degassing, the can is preferably rotated or vibrated during degassing to expose all of the powder to a uniform temperature. Degassing removes oxygen and hydrogen from the powder. In static degassing, the powder container remains static, does not rotate or vibrate and therefore it takes longer for all the powder to achieve set temperatures especially when large quantities of powder are degassed in a container.
- Vacuum degassing is one of the most critical steps for achieving good properties in the L1 2 aluminum alloys.
- Low hydrogen content preferably less than 1 ppm is desired for higher ductility and fracture toughness.
- Hydrogen content in the range of 1-3 ppm is achieved with static degassing process. Degassing at higher temperature and higher vacuum level results in lower hydrogen. Shorter exposure at elevated temperature is beneficial for higher strength in the material. In order to achieve the best combination of strength, ductility and fracture toughness, process parameters have been optimized in the present invention.
- Degassing is continued until vacuum levels of 1 ⁇ 10 ⁇ 6 torr to 1 ⁇ 10 ⁇ 5 torr are achieved in the canned powder.
- Leak up rate was also used as a measure of degassing. Leak up rate for 0.001 micron per minute to 1 micron per minute was used as a measure for good degassing.
- FIGS. 11A and 11B A schematic showing blind die compaction (process 400 ) is shown in FIGS. 11A and 11B .
- the equipment comprises base 410 , die 420 , ram 430 and means to apply pressure to ram 430 , indicated by arrow 450 .
- billet 440 does not fill die cavity 460 .
- billet 445 completely fills the die cavity and has taken the shape of die cavity 460 .
- the die cavities can have any shape providing they have a centrosymmetrical axis parallel to arrow 450 . Cylindrical shapes adapt well for extrusion billets and rectangular cross sections are useful as rolling preforms. Canned L1 2 aluminum alloy powder preforms are easily densified, due to the large capacity of modern hydraulic presses.
- Blind die compaction parameters include compaction time, temperature and load required to achieve 100 percent density. Higher temperatures and longer times provide higher densities but result in coarser microstructures with inferior mechanical properties. Lower temperatures and shorter times may not result in complete densification and also result in forgings with inferior mechanical properties.
- the compaction temperature can vary from 400° F. (204° C.) to 1200° F. (649° C.).
- Compaction time can vary from 30 minutes to 8 hours.
- Compaction stress can vary from 10 ksi (69 MPa) to 100 ksi (690 MPa) at the compaction temperature.
- Ratio ipm tons ksi ksi % in Area % 1 500 500 600 1.5 600 10 0.9 662 115.4 102.4 4 4.3 2 550 550 600 1.5 600 6 0.75 601 113.2 100.8 4 5.3 3 600 600 650 1.5 650 10 0.5 648 116.4 107.7 4 10 4 650 700 700 1.5 650 10 0.5 655 115.4 103.2 9.5 11 5 700 700 700 1.5 650 10 0.5 634 113.3 102.9 10 17 6 700 700 600 1.5 600 10 0.5 621 100.4 90.8 9.5 18 7 750 700 1.5 650 10 0.5 550 107.5 96.1 15 20 8 500 700 600 1.5 600 6 0.75 657 116 105 5 15 9 600 700 650 1.5 650 10 0.5 687 115.9 101.7 4 8.5
- the billets following removal of the aluminum can, can be directly extruded.
- FIG. 12 is a perspective view of a direct extrusion process.
- a billet of, in this case, L1 2 aluminum alloy is extruded through a die having a cavity with a shape necessary to produce a required cross-sectional profile of the extrusion.
- the components of extrusion process 500 are illustrated on the FIG. and comprise container 510 , container liner 520 , and ram 540 with dummy block 550 .
- Dummy block 550 isolates billet 530 from direct contact with ram 540 during extrusion.
- billet 530 is forced through opening(s) in die 560 by pressure on ram 540 .
- Ram 540 can be mechanically or hydraulically actuated. Hydraulic extrusion presses are preferred for higher pressure operation.
- extrusion die 560 is held in place against the ram pressure by die backer 570 .
- Other forms of extrusion are indirect extrusion, hydrostatic extrusion, lateral extrusion, and others known to those in the art.
- Extrusion parameters include temperature, piston velocity, die lubricant and other parameters known to those in the art.
- Strain rate is defined by piston speed and the ratio of the initial and final areas of billet 540 and extrusion 580 is known as the extrusion ratio. Increasing the extrusion ratio at a given piston speed generally leads to a finer microstructure and improved mechanical properties of the extrusion.
- FIG. 13 is a photo of a consolidated billet of an L1 2 aluminum alloy. The billet is 10 inches in diameter and 20 inches long.
- FIG. 14 is a photo of 3 inch diameter L1 2 aluminum alloy bars extruded from a 10 inch diameter consolidated billet.
- Billet soaking time was kept constant at 1.5 hours for these billets.
- a lower extrusion temperature of 500° F. (260° C.) an extrusion at ratio of 10:1 and ram speed of 3 inch (7.62 cm) per minute resulted in 106.6 ksi (735 MPa) tensile strength, 6.5% elongation and 14.7% reduction in area.
- a higher extrusion temperature of 700° F. (371° C.) at an extrusion ratio of 9.5:1 and ram speed of 0.5 inch (1.27 cm) per minute resulted in 113.2 ksi (780 MPa) tensile strength, 7% elongation and 15% reduction in area.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
A method and apparatus produces high strength aluminum alloys from a powder containing L12 intermetallic dispersoids. The powder is degassed, sealed under vacuum in a container, consolidated by vacuum hot pressing, and extruded into useful shapes.
Description
- The present invention relates generally to aluminum alloys and more specifically to a method for forming high strength aluminum alloy powder having L12 dispersoids therein.
- The combination of high strength, ductility, and fracture toughness, as well as low density, make aluminum alloys natural candidates for aerospace and space applications. However, their use is typically limited to temperatures below about 300° F. (149° C.) since most aluminum alloys start to lose strength in that temperature range as a result of coarsening of strengthening precipitates.
- The development of aluminum alloys with improved elevated temperature mechanical properties is a continuing process. Some attempts have included aluminum-iron and aluminum-chromium based alloys such as Al—Fe—Ce, Al—Fe—V—Si, Al—Fe—Ce—W, and Al—Cr—Zr—Mn that contain incoherent dispersoids. These alloys, however, also lose strength at elevated temperatures due to particle coarsening. In addition, these alloys exhibit ductility and fracture toughness values lower than other commercially available aluminum alloys.
- Other attempts have included the development of mechanically alloyed Al—Mg and Al—Ti alloys containing ceramic dispersoids. These alloys exhibit improved high temperature strength due to the particle dispersion, but the ductility and fracture toughness are not improved.
- U.S. Pat. No. 6,248,453 owned by the assignee of the present invention discloses aluminum alloys strengthened by dispersed Al3X L12 intermetallic phases where X is selected from the group consisting of Sc, Er, Lu, Yb, Tm, and Lu. The Al3X particles are coherent with the aluminum alloy matrix and are resistant to coarsening at elevated temperatures. The improved mechanical properties of the disclosed dispersion strengthened L12 aluminum alloys are stable up to 572° F. (300° C.). U.S. Patent Application Publication No. 2006/0269437 A1 also commonly owned discloses a high strength aluminum alloy that contains scandium and other elements that is strengthened by L12 dispersoids.
- L12 strengthened aluminum alloys have high strength and improved fatigue properties compared to commercially available aluminum alloys. Fine grain size results in improved mechanical properties of materials. Hall-Petch strengthening has been known for decades where strength increases as grain size decreases. An optimum grain size for optimum strength is in the nanometer range of about 30 to 100 nm. These alloys also have higher ductility.
- The present invention is a method for consolidating aluminum alloy powders into useful components by hot compaction and extrusion. In embodiments, powders include an aluminum alloy having coherent L12 Al3X dispersoids where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium, and at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. The balance is substantially aluminum containing at least one alloying element selected from silicon, magnesium, manganese, lithium, copper, zinc, and nickel.
- The powders are classified by sieving and blended to improve homogeneity. The powders are then vacuum degassed in a container that is then sealed. The sealed container (i.e. can) is then compacted to full density by blind die compaction and extruded into useful shapes.
-
FIG. 1 is an aluminum scandium phase diagram. -
FIG. 2 is an aluminum erbium phase diagram. -
FIG. 3 is an aluminum thulium phase diagram. -
FIG. 4 is an aluminum ytterbium phase diagram. -
FIG. 5 is an aluminum lutetium phase diagram. -
FIG. 6A is a schematic diagram of a vertical gas atomizer. -
FIG. 6B is a close up view ofnozzle 108 inFIG. 6A . -
FIGS. 7A and 7B are SEM photos of the inventive aluminum alloy powder. -
FIGS. 8A and 8B are optical micrographs showing the microstructure of gas atomized L12 aluminum alloy powder. -
FIG. 9 is a diagram showing the steps of the gas atomization process. -
FIG. 10 is a diagram showing the processing steps to consolidate and extrude the L12 aluminum alloy powder. -
FIG. 11 is a schematic diagram of blind die compaction. -
FIG. 12 is a schematic diagram of an extrusion process. -
FIG. 13 is a photograph of consolidated billet of a L12 aluminum alloy. -
FIG. 14 is a photograph of extruded round bars of L12 aluminum alloy. - Alloy powders of this invention are formed from aluminum based alloys with high strength and fracture toughness for applications at temperatures from about −420° F. (−251° C.) up to about 650° F. (343° C.). The aluminum alloy comprises a solid solution of aluminum and at least one element selected from silicon, magnesium, manganese, lithium, copper, zinc, and nickel strengthened by L12 Al3X coherent precipitates where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium, and at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
- The binary aluminum silicon system is a simple eutectic at 12.6 weight percent silicon and 1070.6° F. (577° C.). There is complete solubility of silicon and aluminum in the rapidly solidified inventive alloys discussed herein
- The binary aluminum magnesium system is a simple eutectic at 36 weight percent magnesium and 842° F. (450° C.). There is complete solubility of magnesium and aluminum in the rapidly solidified inventive alloys discussed herein
- The binary aluminum manganese system is a simple eutectic at about 2 weight percent manganese and 1216.4° F. (658° C.). There is complete solubility of manganese and aluminum in the rapidly solidified inventive alloys discussed herein
- The binary aluminum lithium system is a simple eutectic at 8 weight percent lithium and 1105° (596° C.). The equilibrium solubility of 4 weight percent lithium can be extended significantly by rapid solidification techniques. There is complete solubility of lithium in the rapid solidified inventive alloys discussed herein.
- The binary aluminum copper system is a simple eutectic at 32 weight percent copper and 1018° F. (548° C.). There is complete solubility of copper in the rapidly solidified inventive alloys discussed herein.
- The aluminum zinc binary system is a eutectic alloy system involving a monotectoid reaction and a miscibility gap in the solid state. There is a eutectic reaction at 94 weight percent zinc and 718° F. (381° C.). Zinc has maximum solid solubility of 83.1 weight percent in aluminum at 717.8° F. (381° C.), which can be extended by rapid solidification processes. Decomposition of the supersaturated solid solution of zinc in aluminum gives rise to spherical and ellipsoidal GP zones, which are coherent with the matrix and act to strengthen the alloy.
- The aluminum nickel binary system is a simple eutectic at 5.7 weight percent nickel and 1183.8° F. (639.9° C.). There is little solubility of nickel in aluminum. However, the solubility can be extended significantly by utilizing rapid solidification processes. The equilibrium phase in the aluminum nickel eutectic system is L12 intermetallic Al3Ni.
- In the aluminum based alloys disclosed herein, scandium, erbium, thulium, ytterbium, and lutetium are potent strengtheners that have low diffusivity and low solubility in aluminum. All these elements form equilibrium Al3X intermetallic dispersoids where X is at least one of scandium, erbium, thulium, ytterbium, and lutetium, that have an L12 structure that is an ordered face centered cubic structure with the X atoms located at the corners and aluminum atoms located on the cube faces of the unit cell.
- Scandium forms Al3Sc dispersoids that are fine and coherent with the aluminum matrix. Lattice parameters of aluminum and Al3Sc are very close (0.405 nm and 0.410 nm respectively), indicating that there is minimal or no driving force for causing growth of the Al3Sc dispersoids. This low interfacial energy makes the Al3Sc dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.). Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al3Sc to coarsening. Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys. These Al3Sc dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof, that enter Al3Sc in solution.
- Erbium forms Al3Er dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of aluminum and Al3Er are close (0.405 nm and 0.417 nm respectively), indicating there is minimal driving force for causing growth of the Al3Er dispersoids. This low interfacial energy makes the Al3Er dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.). Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al3Er to coarsening. Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys. These Al3Er dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al3Er in solution.
- Thulium forms Al3Tm dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of aluminum and Al3Tm are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al3Tm dispersoids. This low interfacial energy makes the Al3Tm dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.). Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al3Tm to coarsening. Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys. These Al3Tm dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al3Tm in solution.
- Ytterbium forms Al3Yb dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of Al and Al3Yb are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al3Yb dispersoids. This low interfacial energy makes the Al3Yb dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.). Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al3Yb to coarsening. Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys. These Al3Yb dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al3Yb in solution.
- Lutetium forms Al3Lu dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of Al and Al3Lu are close (0.405 nm and 0.419 nm respectively), indicating there is minimal driving force for causing growth of the Al3Lu dispersoids. This low interfacial energy makes the Al3Lu dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842° F. (450° C.). Additions of magnesium in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al3Lu to coarsening. Additions of zinc, copper, lithium, silicon, and nickel provide solid solution and precipitation strengthening in the aluminum alloys. These Al3Lu dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or mixtures thereof that enter Al3Lu in solution.
- Gadolinium forms metastable Al3Gd dispersoids in the aluminum matrix that are stable up to temperatures as high as about 842° F. (450° C.) due to their low diffusivity in aluminum. The Al3Gd dispersoids have a D019 structure in the equilibrium condition. Despite its large atomic size, gadolinium has fairly high solubility in the Al3X intermetallic dispersoids (where X is scandium, erbium, thulium, ytterbium or lutetium). Gadolinium can substitute for the X atoms in Al3X intermetallic, thereby forming an ordered L12 phase which results in improved thermal and structural stability.
- Yttrium forms metastable Al3Y dispersoids in the aluminum matrix that have an L12 structure in the metastable condition and a D019 structure in the equilibrium condition. The metastable Al3Y dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening. Yttrium has a high solubility in the Al3X intermetallic dispersoids allowing large amounts of yttrium to substitute for X in the Al3X L12 dispersoids, which results in improved thermal and structural stability.
- Zirconium forms Al3Zr dispersoids in the aluminum matrix that have an L12 structure in the metastable condition and D023 structure in the equilibrium condition. The metastable Al3Zr dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening. Zirconium has a high solubility in the Al3X dispersoids allowing large amounts of zirconium to substitute for X in the Al3X dispersoids, which results in improved thermal and structural stability.
- Titanium forms Al3Ti dispersoids in the aluminum matrix that have an L12 structure in the metastable condition and DO22 structure in the equilibrium condition. The metastable Al3Ti despersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening. Titanium has a high solubility in the Al3X dispersoids allowing large amounts of titanium to substitute for X in the Al3X dispersoids, which result in improved thermal and structural stability.
- Hafnium forms metastable Al3Hf dispersoids in the aluminum matrix that have an L12 structure in the metastable condition and a D023 structure in the equilibrium condition. The Al3Hf dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening. Hafnium has a high solubility in the Al3X dispersoids allowing large amounts of hafnium to substitute for scandium, erbium, thulium, ytterbium, and lutetium in the above-mentioned Al3X dispersoids, which results in stronger and more thermally stable dispersoids.
- Niobium forms metastable Al3Nb dispersoids in the aluminum matrix that have an L12 structure in the metastable condition and a D022 structure in the equilibrium condition. Niobium has a lower solubility in the Al3X dispersoids than hafnium or yttrium, allowing relatively lower amounts of niobium than hafnium or yttrium to substitute for X in the Al3X dispersoids. Nonetheless, niobium can be very effective in slowing down the coarsening kinetics of the Al3X dispersoids because the Al3Nb dispersoids are thermally stable. The substitution of niobium for X in the above mentioned Al3X dispersoids results in stronger and more thermally stable dispersoids.
- Al3X L12 precipitates improve elevated temperature mechanical properties in aluminum alloys for two reasons. First, the precipitates are ordered intermetallic compounds. As a result, when the particles are sheared by glide dislocations during deformation, the dislocations separate into two partial dislocations separated by an anti-phase boundary on the glide plane. The energy to create the anti-phase boundary is the origin of the strengthening. Second, the cubic L12 crystal structure and lattice parameter of the precipitates are closely matched to the aluminum solid solution matrix. This results in a lattice coherency at the precipitate/matrix boundary that resists coarsening. The lack of an interphase boundary results in a low driving force for particle growth and resulting elevated temperature stability. Alloying elements in solid solution in the dispersed strengthening particles and in the aluminum matrix that tend to decrease the lattice mismatch between the matrix and particles will tend to increase the strengthening and elevated temperature stability of the alloy.
- L12 phase strengthened aluminum alloys are important structural materials because of their excellent mechanical properties and the stability of these properties at elevated temperature due to the resistance of the coherent dispersoids in the microstructure to particle coarsening. The mechanical properties are optimized by maintaining a high volume fraction of L12 dispersoids in the microstructure. The L12 dispersoid concentration following aging scales as the amount of L12 phase forming elements in solid solution in the aluminum alloy following quenching. Examples of L12 phase forming elements include but are not limited to Sc, Er, Th, Yb, and Lu. The concentration of alloying elements in solid solution in alloys cooled from the melt is directly proportional to the cooling rate.
- Exemplary aluminum alloys for this invention include, but are not limited to (in weight percent unless otherwise specified):
- about Al-M-(0.1-4)Sc-(0.1-20)Gd;
- about Al-M-(0.1-20)Er-(0.1-20)Gd;
- about Al-M-(0.1-15)Tm-(0.1-20)Gd;
- about Al-M-(0.1-25)Yb-(0.1-20)Gd;
- about Al-M-(0.1-25)Lu-(0.1-20)Gd;
- about Al-M-(0.1-4)Sc-(0.1-20)Y;
- about Al-M-(0.1-20)Er-(0.1-20)Y;
- about Al-M-(0.1-15)Tm-(0.1-20)Y;
- about Al-M-(0.1-25)Yb-(0.1-20)Y;
- about Al-M-(0.1-25)Lu-(0.1-20)Y;
- about Al-M-(0.1-4)Sc-(0.05-4)Zr;
- about Al-M-(0.1-20)Er-(0.05-4)Zr;
- about Al-M-(0.1-15)Tm-(0.05-4)Zr;
- about Al-M-(0.1-25)Yb-(0.05-4)Zr;
- about Al-M-(0.1-25)Lu-(0.05-4)Zr;
- about Al-M-(0.1-4)Sc-(0.05-10)Ti;
- about Al-M-(0.1-20)Er-(0.05-10)Ti;
- about Al-M-(0.1-15)Tm-(0.05-10)Ti;
- about Al-M-(0.1-25)Yb-(0.05-10)Ti;
- about Al-M-(0.1-25)Lu-(0.05-10)Ti;
- about Al-M-(0.1-4)Sc-(0.05-10)Hf;
- about Al-M-(0.1-20)Er-(0.05-10)Hf;
- about Al-M-(0.1-15)Tm-(0.05-10)Hf;
- about Al-M-(0.1-25)Yb-(0.05-10)Hf;
- about Al-M-(0.1-25)Lu-(0.05-10)Hf;
- about Al-M-(0.1-4)Sc-(0.05-5)Nb;
- about Al-M-(0.1-20)Er-(0.05-5)Nb;
- about Al-M-(0.1-15)Tm-(0.05-5)Nb;
- about Al-M-(0.1-25)Yb-(0.05-5)Nb; and
- about Al-M-(0.1-25)Lu-(0.05-5)Nb.
- M is at least one of about (4-25) weight percent silicon, (1-8) weight percent magnesium, (0.1-3) weight percent manganese, (0.5-3) weight percent lithium, (0.2-6) weight percent copper, (3-12) weight percent zinc, and (1-12) weight percent nickel.
- The amount of silicon present in the fine grain matrix, if any, may vary from about 4 to about 25 weight percent, more preferably from about 5 to about 20 weight percent, and even more preferably from about 6 to about 14 weight percent.
- The amount of magnesium present in the fine grain matrix, if any, may vary from about 1 to about 8 weight percent, more preferably from about 3 to about 7.5 weight percent, and even more preferably from about 4 to about 6.5 weight percent.
- The amount of manganese present in the fine grain matrix, if any, may vary from about 0.1 to about 3 weight percent, more preferably from about 0.2 to about 2 weight percent, and even more preferably from about 0.3 to about 1 weight percent.
- The amount of lithium present in the fine grain matrix, if any, may vary from about 0.5 to about 3 weight percent, more preferably from about 1 to about 2.5 weight percent, and even more preferably from about 1 to about 2 weight percent.
- The amount of copper present in the fine grain matrix, if any, may vary from about 0.2 to about 6 weight percent, more preferably from about 0.5 to about 5 weight percent, and even more preferably from about 2 to about 4.5 weight percent.
- The amount of zinc present in the fine grain matrix, if any, may vary from about 3 to about 12 weight percent, more preferably from about 4 to about 10 weight percent, and even more preferably from about 5 to about 9 weight percent.
- The amount of nickel present in the fine grain matrix, if any, may vary from about 1 to about 12 weight percent, more preferably from about 2 to about 10 weight percent, and even more preferably from about 4 to about 10 weight percent.
- The amount of scandium present in the fine grain matrix, if any, may vary from 0.1 to about 4 weight percent, more preferably from about 0.1 to about 3 weight percent, and even more preferably from about 0.2 to about 2.5 weight percent. The Al—Sc phase diagram shown in
FIG. 1 indicates a eutectic reaction at about 0.5 weight percent scandium at about 1219° F. (659° C.) resulting in a solid solution of scandium and aluminum and Al3Sc dispersoids. Aluminum alloys with less than 0.5 weight percent scandium can be quenched from the melt to retain scandium in solid solution that may precipitate as dispersed L12 intermetallic Al3Sc following an aging treatment. Alloys with scandium in excess of the eutectic composition (hypereutectic alloys) can only retain scandium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 103° C./second. - The amount of erbium present in the fine grain matrix, if any, may vary from about 0.1 to about 20 weight percent, more preferably from about 0.3 to about 15 weight percent, and even more preferably from about 0.5 to about 10 weight percent. The Al—Er phase diagram shown in
FIG. 2 indicates a eutectic reaction at about 6 weight percent erbium at about 1211° F. (655° C.). Aluminum alloys with less than about 6 weight percent erbium can be quenched from the melt to retain erbium in solid solutions that may precipitate as dispersed L12 intermetallic Al3Er following an aging treatment. Alloys with erbium in excess of the eutectic composition can only retain erbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 103° C./second. - The amount of thulium present in the alloys, if any, may vary from about 0.1 to about 15 weight percent, more preferably from about 0.2 to about 10 weight percent, and even more preferably from about 0.4 to about 6 weight percent. The Al—Tm phase diagram shown in
FIG. 3 indicates a eutectic reaction at about 10 weight percent thulium at about 1193° F. (645° C.). Thulium forms metastable Al3Tm dispersoids in the aluminum matrix that have an L12 structure in the equilibrium condition. The Al3Tm dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening. Aluminum alloys with less than 10 weight percent thulium can be quenched from the melt to retain thulium in solid solution that may precipitate as dispersed metastable L12 intermetallic Al3Tm following an aging treatment. Alloys with thulium in excess of the eutectic composition can only retain Tm in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 103° C./second. - The amount of ytterbium present in the alloys, if any, may vary from about 0.1 to about 25 weight percent, more preferably from about 0.3 to about 20 weight percent, and even more preferably from about 0.4 to about 10 weight percent. The Al—Yb phase diagram shown in
FIG. 4 indicates a eutectic reaction at about 21 weight percent ytterbium at about 1157° F. (625° C.). Aluminum alloys with less than about 21 weight percent ytterbium can be quenched from the melt to retain ytterbium in solid solution that may precipitate as dispersed L12 intermetallic Al3Yb following an aging treatment. Alloys with ytterbium in excess of the eutectic composition can only retain ytterbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 103° C./second. - The amount of lutetium present in the alloys, if any, may vary from about 0.1 to about 25 weight percent, more preferably from about 0.3 to about 20 weight percent, and even more preferably from about 0.4 to about 10 weight percent. The Al—Lu phase diagram shown in
FIG. 5 indicates a eutectic reaction at about 11.7 weight percent Lu at about 1202° F. (650° C.). Aluminum alloys with less than about 11.7 weight percent lutetium can be quenched from the melt to retain Lu in solid solution that may precipitate as dispersed L12 intermetallic Al3Lu following an aging treatment. Alloys with Lu in excess of the eutectic composition can only retain Lu in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 103° C./second. - The amount of gadolinium present in the alloys, if any, may vary from about 0.1 to about 20 weight percent, more preferably from about 0.3 to about 15 weight percent, and even more preferably from about 0.5 to about 10 weight percent.
- The amount of yttrium present in the alloys, if any, may vary from about 0.1 to about 20 weight percent, more preferably from about 0.3 to about 15 weight percent, and even more preferably from about 0.5 to about 10 weight percent.
- The amount of zirconium present in the alloys, if any, may vary from about 0.05 to about 4 weight percent, more preferably from about 0.1 to about 3 weight percent, and even more preferably from about 0.3 to about 2 weight percent.
- The amount of titanium present in the alloys, if any, may vary from about 0.05 to about 10 weight percent, more preferably from about 0.2 to about 8 weight percent, and even more preferably from about 0.4 to about 4 weight percent.
- The amount of hafnium present in the alloys, if any, may vary from about 0.05 to about 10 weight percent, more preferably from about 0.2 to about 8 weight percent, and even more preferably from about 0.4 to about 5 weight percent.
- The amount of niobium present in the alloys, if any, may vary from about 0.05 to about 5 weight percent, more preferably from about 0.1 to about 3 weight percent, and even more preferably from about 0.2 to about 2 weight percent.
- In order to have the best properties for the fine grain matrix, it is desirable to limit the amount of other elements. Specific elements that should be reduced or eliminated include no more than about 0.1 weight percent iron, 0.1 weight percent chromium, 0.1 weight percent vanadium, and 0.1 weight percent cobalt. The total quantity of additional elements should not exceed about 1% by weight, including the above listed impurities and other elements.
- The highest cooling rates observed in commercially viable processes are achieved by gas atomization of molten metals to produce powder. Gas atomization is a two fluid process wherein a stream of molten metal is disintegrated by a high velocity gas stream. The end result is that the particles of molten metal eventually become spherical due to surface tension and finely solidify in powder form. Heat from the liquid droplets is transferred to the atomization gas primarily by convection. The solidification rates, depending on the gas and the surrounding environment, can be very high and can exceed 106° C./second. Cooling rates greater than 103° C./second are typically specified to ensure supersaturation of alloying elements in gas atomized L12 aluminum alloy powder in the inventive process described herein.
- A schematic of typical
vertical gas atomizer 100 is shown inFIG. 6A .FIG. 6A is taken from R. Germain, Powder Metallurgy Science Second Edition MPIF (1994) (chapter 3, p. 101) and is included herein for reference. Vacuum or inertgas induction melter 102 is positioned at the top offree flight chamber 104.Vacuum induction melter 102 containsmelt 106 which flows by gravity or gas overpressure throughnozzle 108. A close up view ofnozzle 108 is shown inFIG. 6B .Melt 106 entersnozzle 108 and flows downward till it meets the high pressure gas stream fromgas source 110 where it is transformed into a spray of droplets. The droplets eventually become spherical due to surface tension and rapidly solidify intospherical powder 112 which collects incollection chamber 114. The gas recirculates throughcyclone collector 116 which collectsfine powder 118 before returning to the input gas stream. As can be seen fromFIG. 6A , the surroundings to which the melt and eventual powder are exposed are completely controlled. - There are many effective nozzle designs known in the art to produce spherical metal powder. Designs with short gas-to-melt separation distances produce finer powders. Confined nozzle designs where gas meets the molten stream at a short distance just after it leaves the atomization nozzle are preferred for the production of the inventive L12 aluminum alloy powders disclosed herein. Higher superheat temperatures cause lower melt viscosity and more efficient disintegration of molten metal stream. Both result in smaller spherical particles.
- A large number of processing parameters are associated with gas atomization that affect the final product. Examples include melt superheat, gas pressure, metal flow rate, gas type, and gas purity. In gas atomization, the particle size is related to the energy input to the molten metal stream. Higher gas pressures, higher superheat temperatures and lower metal flow rates result in smaller particle sizes. Higher gas pressures provide higher gas velocities for a given atomization nozzle design.
- To maintain purity, inert gases are used, such as helium, argon, and nitrogen. Helium is preferred for rapid solidification because the high heat transfer coefficient of the gas leads to high quenching rates and high supersaturation of alloying elements.
- Lower metal flow rates and higher gas flow ratios favor production of finer powders. The particle size of gas atomized melts typically has a log normal distribution. In the turbulent conditions existing at the gas/metal interface during atomization, ultra fine particles can form that may reenter the gas expansion zone. These solidified fine particles can be carried into the flight path of molten larger droplets resulting in agglomeration of small satellite particles on the surfaces of larger particles. An example of small satellite particles attached to inventive spherical L12 aluminum alloy powder is shown in the scanning electron microscopy (SEM) micrographs of
FIGS. 7A and 7B at two magnifications. The spherical shape of gas atomized aluminum powder is evident. The spherical shape of the powder is suggestive of clean powder without excessive oxidation. Higher oxygen in the powder results in irregular powder shape. Spherical powder helps in improving the flowability of powder which results in higher apparent density and tap density of the powder. The satellite particles can be minimized by adjusting processing parameters to reduce or even eliminate turbulence in the gas atomization process. The microstructure of gas atomized aluminum alloy powder is predominantly cellular as shown in the optical micrographs of cross-sections of the inventive alloy inFIGS. 8A and 8B at two magnifications which is key for providing higher mechanical properties in the alloys. The rapid cooling rate suppresses dendritic solidification common at slower cooling rates resulting in a finer microstructure with minimum alloy segregation. - Oxygen and hydrogen in the powder can degrade the mechanical properties of the final part. It is preferred to limit the oxygen in the L12 alloy powder to about 1 ppm to 2000 ppm. Oxygen is intentionally introduced as a component of the helium gas during atomization. An oxide coating on the L12 aluminum powder is beneficial for two reasons. First, the coating prevents agglomeration by contact sintering and secondly, the coating inhibits the chance of explosion of the powder. A controlled amount of oxygen is important in order to provide good ductility and fracture toughness in the final consolidated material. Hydrogen content in the powder is controlled by ensuring the dew point of the helium gas is low. A dew point of about minus 50° F. (minus 45.5° C.) to minus 100° F. (minus 73.3° C.) is preferred.
- In preparation for final processing, the powder is classified according to size by sieving. To prepare the powder for sieving, if the powder has zero percent oxygen content, the powder may be exposed to nitrogen gas which passivates the powder surface and prevents agglomeration. Finer powder sizes result in improved mechanical properties of the end product. While minus 325 mesh (about 45 microns) powder can be used, minus 450 mesh (about 30 microns) powder is a preferred size in order to provide good mechanical properties in the end product. During the atomization process, powder is collected in collection chambers in order to prevent oxidation of the powder. Collection chambers are used at the bottom of
atomization chamber 104 as well as at the bottom ofcyclone collector 116. The powder is transported and stored in the collection chambers also. Collection chambers are maintained under positive pressure with nitrogen gas which prevents oxidation of the powder. - A schematic of the L12 aluminum powder manufacturing process is shown in
FIG. 9 . In theprocess aluminum 200 and L12 forming (and other) alloyingelements 210 are melted infurnace 220 to a predetermined superheat temperature under vacuum or inert atmosphere. Preferred charge forfurnace 220 isprealloyed aluminum 200 and L12 and other alloying elements before chargingfurnace 220. Melt 230 is then passed throughnozzle 240 where it is impacted bypressurized gas stream 250.Gas stream 250 is an inert gas such as nitrogen, argon or helium, preferably helium. Melt 230 can flow throughnozzle 240 under gravity or under pressure. Gravity flow is preferred for the inventive process disclosed herein. Preferred pressures forpressurized gas stream 250 are about 50 psi (10.35 MPa) to about 750 psi (5.17 MPa) for the present inventive alloy compositions. - The atomization process creates molten droplets 260 which rapidly solidify as they travel through
agglomeration chamber 270 formingspherical powder particles 280. The molten droplets transfer heat to the atomizing gas by convection. The role of the atomizing gas is two fold: one is to disintegrate the molten metal stream into fine droplets by transferring kinetic energy from the gas to the melt stream and the other is to extract heat from the molten droplets to rapidly solidify them into spherical powder. The solidification time and cooling rate vary with droplet size. Larger droplets take longer to solidify and their resulting cooling rate is lower. On the other hand, the atomizing gas will extract heat efficiently from smaller droplets resulting in a higher cooling rate. Finer powder size is therefore preferred as higher cooling rates provide finer microstructures and higher mechanical properties in the end product. Higher cooling rates lead to finer cellular microstructures which are preferred for higher mechanical properties. Finer cellular microstructures result in finer grain sizes in consolidated product. Finer grain size provides higher yield strength of the material through the Hall-Petch strengthening model. - Key process variables for gas atomization include superheat temperature, nozzle diameter, helium content and dew point of the gas, and metal flow rate. Superheat temperatures of from about 150° F. (66° C.) to 200° F. (93° C.) are preferred. Nozzle diameters of about 0.07 in. (1.8 mm) to 0.12 in. (3.0 mm) are preferred depending on the alloy. The gas stream used herein was a helium nitrogen mixture containing 74 to 87 vol. % helium. The metal flow rate ranged from about 0.8 lb/min (0.36 kg/min) to 4.0 lb/min (1.81 kg/min). The oxygen content of the L12 aluminum alloy powders was observed to consistently decrease as a run progressed. This is suggested to be the result of the oxygen gettering capability of the aluminum powder in a closed system. The dew point of the gas was controlled to minimize hydrogen content of the powder. Dew points in the gases used in the examples ranged from −10° F. (−23° C.) to −110° F. (−79° C.).
- The powder is then classified by sieving
process 290 to createclassified powder 300. Sieving of powder is performed under an inert environment to minimize oxygen and hydrogen pickup from the environment. While the yield ofminus 450 mesh powder is extremely high (95%), there are always larger particle sizes, flakes and ligaments that are removed by the sieving. Sieving also ensures a narrow size distribution and provides a more uniform powder size. Sieving also ensures that flaw sizes cannot be greater than minus 450 mesh which will be required for nondestructive inspection of the final product. - Processing parameters of exemplary gas atomization runs are listed in Table 1.
-
TABLE 1 Gas atomization parameters used for producing powder Average Nozzle He Gas Dew Charge Metal Flow Oxygen Oxygen Diameter Content Pressure Point Temperature Rate Content Content Run (in) (vol %) (psi) (° F.) (° F.) (lbs/min) (ppm) Start (ppm) End 1 0.10 79 190 <−58 2200 2.8 340 35 2 0.10 83 192 −35 1635 0.8 772 27 3 0.09 78 190 −10 2230 1.4 297 <0.01 4 0.09 85 160 −38 1845 2.2 22 4.1 5 0.10 86 207 −88 1885 3.3 286 208 6 0.09 86 207 −92 1915 2.6 145 88 - The role of powder quality is extremely important to produce material with higher strength and ductility. Powder quality is determined by powder size, shape, size distribution, oxygen content, hydrogen content, and alloy chemistry. Over fifty gas atomization runs were performed to produce the inventive powder with finer powder size, finer size distribution, spherical shape, and lower oxygen and hydrogen contents. Processing parameters of some exemplary gas atomization runs are listed in Table 1. It is suggested that the observed decrease in oxygen content is attributed to oxygen gettering by the powder as the runs progressed.
- Inventive L12 aluminum alloy powder was produced with over 95% yield of
minus 450 mesh (30 microns) which includes powder from about 1 micron to about 30 microns. The average powder size was about 10 microns to about 15 microns. As noted above, finer powder size is preferred for higher mechanical properties. Finer powders have finer cellular microstructures which is key for producing higher mechanical properties. As a result, finer cell sizes lead to finer grain size by fragmentation and coalescence of cells during powder consolidation. Finer grain sizes produce higher yield strength through the Hall-Petch strengthening model where yield strength varies inversely as the square root of the grain size. It is preferred to use powder with an average particle size of 10-15 microns. Powders with a powder size less than 10-15 microns can be more challenging to handle due to the larger surface area of the powder. Powders with sizes larger than 10-15 microns will result in larger cell sizes in the consolidated product which, in turn, will lead to larger grain sizes and lower yield strengths. - Powders with narrow size distributions are preferred. Narrower powder size distributings produce product microstructures with more uniform grain size. Spherical powder was produced to provide higher apparent and tap densities which help in achieving 100% density in the consolidated product. Spherical shape is also an indication of cleaner and lower oxygen content powder. Lower oxygen and lower hydrogen contents are important in producing material with high ductility and fracture toughness. Although it is beneficial to maintain low oxygen and hydrogen content in powder to achieve good mechanical properties, lower oxygen may interfere with sieving due to self sintering. An oxygen content of about 25 ppm to about 500 ppm is preferred to provide good ductility and fracture toughness without any sieving issue. Lower hydrogen is also preferred for improving ductility and fracture toughness. It is preferred to have about 25-200 ppm of hydrogen in atomized powder by controlling the dew point in the atomization chamber. Hydrogen in the powder is further reduced by heating the powder in vacuum. Lower hydrogen in final product is preferred to achieve good ductility and fracture toughness.
-
FIG. 10 is a diagram showing the processing steps to consolidate the sieved and classified L12 aluminum alloy powders. The powders (step 310) are first blended. Blending (step 320) is a preferred step in the consolidation process because it results in improved uniformity of particle size distribution. Gas atomized L12 aluminum alloy powder generally exhibits a bimodal particle size distribution and cross blending of separate powder batches tends to homogenize the particle size distribution. Blending (step 320) is also preferred when separate metal and/or ceramic powders are added to the L12 base powder to form bimodal or trimodal consolidated alloy microstructures. - Following blending (step 320), the powders are transferred to a can (step 330) where the powder is vacuum degassed (step 340) at elevated temperatures. The can (step 330) is an aluminum container having a cylindrical, rectangular or other configuration with a central axis. Vacuum degassing times can range from about 0.5 hours to about 8 days. A temperature range of about 300° F. (149° C.) to about 900° F. (482° C.) is preferred. Dynamic degassing of large amounts of powder is preferred to static degassing. In dynamic degassing, the can is preferably rotated or vibrated during degassing to expose all of the powder to a uniform temperature. Degassing removes oxygen and hydrogen from the powder. In static degassing, the powder container remains static, does not rotate or vibrate and therefore it takes longer for all the powder to achieve set temperatures especially when large quantities of powder are degassed in a container.
- Vacuum degassing is one of the most critical steps for achieving good properties in the L12 aluminum alloys. Low hydrogen content preferably less than 1 ppm is desired for higher ductility and fracture toughness. Hydrogen content in the range of 1-3 ppm is achieved with static degassing process. Degassing at higher temperature and higher vacuum level results in lower hydrogen. Shorter exposure at elevated temperature is beneficial for higher strength in the material. In order to achieve the best combination of strength, ductility and fracture toughness, process parameters have been optimized in the present invention.
- Degassing is continued until vacuum levels of 1×10−6 torr to 1×10−5 torr are achieved in the canned powder. Leak up rate was also used as a measure of degassing. Leak up rate for 0.001 micron per minute to 1 micron per minute was used as a measure for good degassing.
- Following vacuum degassing (step 340), the vacuum line is crimped and welded shut (step 350). The powder is then fully densified by blind die compaction or closed die forging as the process is sometimes called (step 360). A schematic showing blind die compaction (process 400) is shown in
FIGS. 11A and 11B . The equipment comprisesbase 410, die 420,ram 430 and means to apply pressure to ram 430, indicated byarrow 450. Prior to compaction,billet 440 does not filldie cavity 460. After compaction,billet 445 completely fills the die cavity and has taken the shape ofdie cavity 460. The die cavities can have any shape providing they have a centrosymmetrical axis parallel toarrow 450. Cylindrical shapes adapt well for extrusion billets and rectangular cross sections are useful as rolling preforms. Canned L12 aluminum alloy powder preforms are easily densified, due to the large capacity of modern hydraulic presses. - Blind die compaction parameters include compaction time, temperature and load required to achieve 100 percent density. Higher temperatures and longer times provide higher densities but result in coarser microstructures with inferior mechanical properties. Lower temperatures and shorter times may not result in complete densification and also result in forgings with inferior mechanical properties.
- Blind die compaction parameters resulting in complete consolidation of L12 aluminum alloy powders have been developed and are discussed here. The compaction temperature can vary from 400° F. (204° C.) to 1200° F. (649° C.). Compaction time can vary from 30 minutes to 8 hours. Compaction stress can vary from 10 ksi (69 MPa) to 100 ksi (690 MPa) at the compaction temperature.
- Processing parameters of exemplary degassing and blind die compaction of L12 aluminum alloy powder are listed in Table 2.
-
TABLE 2 Degassing and compaction parameters used for L12 aluminum alloy powder Consol- Billet Extrusion Ex- Extru- Extru- Ultimate 0.2% Degassing idation Billet Soaking Die tru- sion sion Tensile Yield Billet Temperature, Temperature, Temperature, Period, Temperature, sion Speed, Load, Strength, Strength, Elongation, Reduction ID F. F. F. hrs F. Ratio ipm tons ksi ksi % in Area, % 1 500 500 600 1.5 600 10 0.9 662 115.4 102.4 4 4.3 2 550 550 600 1.5 600 6 0.75 601 113.2 100.8 4 5.3 3 600 600 650 1.5 650 10 0.5 648 116.4 107.7 4 10 4 650 700 700 1.5 650 10 0.5 655 115.4 103.2 9.5 11 5 700 700 700 1.5 650 10 0.5 634 113.3 102.9 10 17 6 700 700 600 1.5 600 10 0.5 621 100.4 90.8 9.5 18 7 750 700 700 1.5 650 10 0.5 550 107.5 96.1 15 20 8 500 700 600 1.5 600 6 0.75 657 116 105 5 15 9 600 700 650 1.5 650 10 0.5 687 115.9 101.7 4 8.5 - Higher degassing temperature showed higher ductility in the form of elongation and reduction in area. One of the examples demonstrate that degassing at 750° F. (399° C.) and compaction at 700° F. (371° C.) resulted in a tensile strength of 107.5 ksi (741 MPa), 15% elongation and 20% reduction in area. Another example illustrates that degassing at 650° F. (343° C.) and compaction at 700° F. (371° C.) results in a tensile strength of 115.4 ksi (794 MPa) elongation of 9.5% and reduction in area of 11%.
- Following the inventive blind die compaction schedules discussed above, the billets, following removal of the aluminum can, can be directly extruded.
-
FIG. 12 is a perspective view of a direct extrusion process. In the process, a billet of, in this case, L12 aluminum alloy is extruded through a die having a cavity with a shape necessary to produce a required cross-sectional profile of the extrusion. The components ofextrusion process 500 are illustrated on the FIG. and comprisecontainer 510,container liner 520, and ram 540 withdummy block 550.Dummy block 550 isolatesbillet 530 from direct contact withram 540 during extrusion. During extrusion,billet 530 is forced through opening(s) indie 560 by pressure onram 540.Ram 540 can be mechanically or hydraulically actuated. Hydraulic extrusion presses are preferred for higher pressure operation. During extrusion, die 560 is held in place against the ram pressure bydie backer 570. Other forms of extrusion are indirect extrusion, hydrostatic extrusion, lateral extrusion, and others known to those in the art. Extrusion parameters include temperature, piston velocity, die lubricant and other parameters known to those in the art. Strain rate is defined by piston speed and the ratio of the initial and final areas ofbillet 540 andextrusion 580 is known as the extrusion ratio. Increasing the extrusion ratio at a given piston speed generally leads to a finer microstructure and improved mechanical properties of the extrusion. -
FIG. 13 is a photo of a consolidated billet of an L12 aluminum alloy. The billet is 10 inches in diameter and 20 inches long.FIG. 14 is a photo of 3 inch diameter L12 aluminum alloy bars extruded from a 10 inch diameter consolidated billet. - The following table lists extrusion parameters and resulting properties of extruded L12 aluminum alloy billets.
-
Ultimate Billet Degassing Extrusion Extrusion Extrusion Extrusion Tensile 0.2% Yield Elongation, Reduction ID Temperature, F. Temperature, F. Ratio Speed, ipm Load, tons Strength, ksi Strength, ksi % in Area, % 1 700 700 9.5:1 0.5 644 113.2 103.2 7.0 15.0 2 700 650 9.5:1 0.5 634.6 113.5 102.1 6.5 12.0 3 700 650 5.6:1 0.5 506.7 116.3 106.6 5.9 9.1 4 700 650 9.5:1 3 496.7 104.5 95.3 6.5 13.3 5 700 600 10:01 3 589.98 109.6 100.2 6.5 12.7 6 700 700 15:01 3 646.9 101.6 94.4 6.5 14.0 7 700 550 10:01 3 610 112.6 102.3 6.5 10.0 8 700 500 10:01 3 655 116.6 106.6 6.5 14.7
Extrusion parameters including extrusion temperature, billet soaking time, extrusion ratio and extrusion speed have significant influence on the mechanical properties of L12 aluminum alloys. Billet soaking time was kept constant at 1.5 hours for these billets. A lower extrusion temperature of 500° F. (260° C.) an extrusion at ratio of 10:1 and ram speed of 3 inch (7.62 cm) per minute resulted in 106.6 ksi (735 MPa) tensile strength, 6.5% elongation and 14.7% reduction in area. A higher extrusion temperature of 700° F. (371° C.) at an extrusion ratio of 9.5:1 and ram speed of 0.5 inch (1.27 cm) per minute resulted in 113.2 ksi (780 MPa) tensile strength, 7% elongation and 15% reduction in area. In another example, an extrusion temperature of 650° F. (343° C.) and an extrusion ratio of 5.6:1 and ram speed of 0.5 inch (1.27 cm) per minute resulted in 116.3 ksi (802 MPa) tensile strength, about 6% elongation and 9% reduction in area. These examples suggest that a unique combination of extrusion parameters that have been developed in the present invention can lead to a good combination of tensile strength and ductility for L12 aluminum alloys. - Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Claims (20)
1. A method for forming a high strength aluminum alloy billet containing L12 dispersoids, comprising the steps of:
placing in a container a quantity of an aluminum alloy powder containing L12 dispersoids comprising Al3X dispersoids wherein X is at least one first element selected from the group comprising: about 0.1 to about 4.0 weight percent scandium, about 0.1 to about 20.0 weight percent erbium, about 0.1 to about 15.0 weight percent thulium, about 0.1 to about 25.0 weight percent ytterbium, and about 0.1 to about 25.0 weight percent lutetium;
at least one second element selected from the group comprising about 0.1 to about 20.0 weight percent gadolinium, about 0.1 to about 20.0 weight percent yttrium, about 0.05 to about 4.0 weight percent zirconium, about 0.05 to about 10.0 weight percent titanium, about 0.05 to about 10.0 weight percent hafnium, and about 0.05 to about 5.0 weight percent niobium; and
the balance substantially aluminum;
the alloy powder having a mesh size of less than 450 mesh in a container, vacuum degassing the powder at a temperature of about 300° F. (148.9° C.) to about 900° F. (482.2° C.), for about 0.5 hours to about 8 days;
sealing the degassed powder in the container under vacuum;
heating the sealed container at about 300° F. (148.9° C.) to about 900° F. (482.2° C.), for about 15 minutes to eight hours;
vacuum hot pressing the heated container to form a billet;
removing the container from the formed billet; and
extruding the billet into a useful part.
2. The method of claim 1 , wherein the degassing includes rotating or vibrating the aluminum alloy powder to heat and expose all the powder to vacuum.
3. The method of claim 1 , wherein the vacuum hot pressing comprises blind die forging or blind die compaction.
4. The method of claim 3 , wherein the blind die forging or blind die compaction is carried out at a temperature of from about 400° F. (204.4° C.) to about 1100° F. (593.3° C.).
5. The method of claim 1 , wherein the extruding is carried out at a temperature of from about 300° F. (148.9° C.) to about 900° F. (482.2° C.), at a speed of from about 0.1 inch per minute to about 20 inch per minute, and at a stress of about 10 ksi to about 100 ksi at the temperature.
6. The method of claim 1 , wherein the aluminum alloy powder contains at least one third element selected from the group consisting of silicon, magnesium, manganese, lithium, copper, zinc, and nickel.
7. The method of claim 6 , wherein the third element comprises at least one of about 4 to about 25 weight percent silicon, about 1 to about 8 weight percent magnesium, about 0.1 to about 3 weight percent manganese, about 0.5 to about 3 weight percent lithium, about 0.2 to about 6 weight percent copper, about 3 to about 12 weight percent zinc, about 1 to about 12 weight percent nickel.
8. A high strength aluminum alloy billet formed by the method of claim 1 .
9. Apparatus for forming a high strength aluminum alloy billet containing L12 dispersoids, comprising:
a container for holding a quantity of an aluminum alloy powder containing L12 dispersoids comprising Al3X dispersoids wherein X is at least one first element selected from the group comprising:
about 0.1 to about 4.0 weight percent scandium, about 0.1 to about 20.0 weight percent erbium, about 0.1 to about 15.0 weight percent thulium, about 0.1 to about 25.0 weight percent ytterbium, and about 0.1 to about 25.0 weight percent lutetium;
at least one second element selected from the group comprising about 0.1 to about 20.0 weight percent gadolinium, about 0.1 to about 20.0 weight percent yttrium, about 0.05 to about 4.0 weight percent zirconium, about 0.05 to about 10.0 weight percent titanium, about 0.05 to about 10.0 weight percent hafnium, and about 0.05 to about 5.0 weight percent niobium; and
the balance substantially aluminum, the alloy powder having a mesh size of less than 450 mesh;
a vacuum and heat source for degassing the powder at a temperature of about 300° F. (149° C.) to about 900° F. (482° C.) for about 0.5 hours to about 8 days;
sealing means for sealing the degassed powder in the container under vacuum;
a heater for heating the sealed container at about 300° F. (149° C.) to about 900° F. (482° C.) for about 15 minutes to eight hours;
a hydraulic forge or extrusion machine for blind die forging or blind die compacting the container into a billet; and
means for extruding the billet into a useful part.
10. The apparatus of claim 9 , wherein the blind die forging or blind die compaction is carried out at a temperature of from about 400° F. (204.4° C.) to about 1100° F. (593.3° C.) and a strain rate of about 0.1 inch per minute to about 20 inch per minute.
11. The apparatus of claim 9 , wherein the extruding means operates to form the useful part at a temperature of from about 300° F. (148.9° C.) to about 900° F. (482.2° C.), at a speed from about 0.1 inch per minute to about 20 inch per minute, and at a stress of about 10 ksi to about 100 ksi at extrusion temperature.
12. The apparatus of claim 9 , wherein the degassing includes rotating the aluminum alloy powder to heat and exposing to vacuum all the powder.
13. The apparatus of claim 9 , wherein the extruded part is heat treated following forming.
14. The apparatus of claim 9 , wherein the heat treat is a solution heat, quench and age.
15. The apparatus of claim 9 , wherein the aluminum alloy powder contains at least one third element selected from the group consisting of silicon, magnesium, manganese, lithium, copper, zinc, and nickel.
16. The apparatus of claim 15 , wherein the third element comprises at least one of about 4 to about 25 weight percent silicon, about 1 to about 8 weight percent magnesium, about 0.1 to about 3 weight percent manganese, about 0.5 to about 3 weight percent lithium, about 0.2 to about 6 weight percent copper, about 3 to about 12 weight percent zinc, about 1 to about 12 weight percent nickel.
17. A high strength aluminum alloy billet containing L12 dispersoids formed into a useful part using the apparatus of claim 9 by extrusion.
18. A method for forming a high strength aluminum alloy billet containing L12 dispersoids, comprising the steps of:
placing in a container a quantity of an aluminum alloy powder containing L12 dispersoids comprising Al3X dispersoids wherein X is at least one first element selected from the group comprising:
about 0.1 to about 4.0 weight percent scandium, about 0.1 to about 20.0 weight percent erbium, about 0.1 to about 15.0 weight percent thulium, about 0.1 to about 25.0 weight percent ytterbium, and about 0.1 to about 25.0 weight percent lutetium;
at least one second element selected from the group comprising about 0.1 to about 20.0 weight percent gadolinium, about 0.1 to about 20.0 weight percent yttrium, about 0.05 to about 4.0 weight percent zirconium, about 0.05 to about 10.0 weight percent titanium, about 0.05 to about 10.0 weight percent hafnium, and about 0.05 to about 5.0 weight percent niobium; and
the balance substantially aluminum;
the alloy powder having a mesh size of less than 450 mesh in a container, vacuum degassing the powder at a temperature of about 300° F. (148.9° C.) to about 900° F. (482.2° C.), for about 0.5 hours to about 8 days while rotating or vibrating the powder to expose all the powder to the vacuum;
sealing the degassed powder in the container under vacuum;
heating the sealed container at about 300° F. (148.9° C.) to about 900° F. (482.2° C.), for about 15 minutes to eight hours;
vacuum hot pressing the heated container by blind die forging or blind die compaction at a temperature of from about 400° F. (204.4° C.) to about 1100° F. (593.3° C.) to form a billet;
removing the container from the formed billet; and
extruding the billet into a useful part at a temperature of from about 300° F. (148.9° C.) to about 900° F. (482.2° C.), at a speed of from about 0.1 inch per minute to about 20 inch per minute, and at a stress of about 10 ksi to about 100 ksi at the temperature.
19. The method of claim 18 , wherein the aluminum alloy powder contains at least one third element selected from the group consisting of silicon, magnesium, manganese, lithium, copper, zinc, and nickel.
20. The method of claim 19 , wherein the third element comprises at least one of about 4 to about 25 weight percent silicon, about 1 to about 8 weight percent magnesium, about 0.1 to about 3 weight percent manganese, about 0.5 to about 3 weight percent lithium, about 0.2 to about 6 weight percent copper, about 3 to about 12 weight percent zinc, about 1 to about 12 weight percent nickel.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/543,945 US20110044844A1 (en) | 2009-08-19 | 2009-08-19 | Hot compaction and extrusion of l12 aluminum alloys |
EP10251433A EP2325342B1 (en) | 2009-08-19 | 2010-08-11 | Hot compaction and extrusion of L12 aluminum alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/543,945 US20110044844A1 (en) | 2009-08-19 | 2009-08-19 | Hot compaction and extrusion of l12 aluminum alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110044844A1 true US20110044844A1 (en) | 2011-02-24 |
Family
ID=43605520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/543,945 Abandoned US20110044844A1 (en) | 2009-08-19 | 2009-08-19 | Hot compaction and extrusion of l12 aluminum alloys |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110044844A1 (en) |
EP (1) | EP2325342B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130143070A1 (en) * | 2010-07-29 | 2013-06-06 | Airbus Operations Gmbh | Aluminium Material Which Can Be Exposed To High Temperatures, Is Alloyed With Scandium And Has Improved Extrudability |
WO2014152183A2 (en) * | 2013-03-15 | 2014-09-25 | United Technologies Corporation | Powder metallurgy alloy forging |
WO2014152172A1 (en) * | 2013-03-15 | 2014-09-25 | United Technologies Corporation | Powder metallurgy alloy extrusion |
WO2015077527A3 (en) * | 2013-11-23 | 2018-08-16 | Almex USA, Inc. | Alloy melting and holding furnace |
CN111074106A (en) * | 2019-12-20 | 2020-04-28 | 山东南山铝业股份有限公司 | High-efficiency low-consumption rolling rare earth aluminum alloy and preparation method thereof |
CN113061789A (en) * | 2021-02-02 | 2021-07-02 | 重庆材料研究院有限公司 | Light ultra-wide copper-containing aluminum net for lightning protection and preparation method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102400135B (en) * | 2011-11-05 | 2013-03-20 | 太原理工大学 | Coating hot-pressing reinforcement method of magnesium-aluminum alloy plate |
CN106239164A (en) * | 2016-08-31 | 2016-12-21 | 重庆鼎发铝加工有限责任公司 | A kind of automatic extrusion formation equipment of aluminium alloy |
JP6432619B2 (en) * | 2017-03-02 | 2018-12-05 | 日立金属株式会社 | Aluminum alloy conductor, insulated wire using the conductor, and method for producing the insulated wire |
Citations (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3619181A (en) * | 1968-10-29 | 1971-11-09 | Aluminum Co Of America | Aluminum scandium alloy |
US3816080A (en) * | 1971-07-06 | 1974-06-11 | Int Nickel Co | Mechanically-alloyed aluminum-aluminum oxide |
US4041123A (en) * | 1971-04-20 | 1977-08-09 | Westinghouse Electric Corporation | Method of compacting shaped powdered objects |
US4259112A (en) * | 1979-04-05 | 1981-03-31 | Dwa Composite Specialties, Inc. | Process for manufacture of reinforced composites |
US4463058A (en) * | 1981-06-16 | 1984-07-31 | Atlantic Richfield Company | Silicon carbide whisker composites |
US4469537A (en) * | 1983-06-27 | 1984-09-04 | Reynolds Metals Company | Aluminum armor plate system |
US4499048A (en) * | 1983-02-23 | 1985-02-12 | Metal Alloys, Inc. | Method of consolidating a metallic body |
US4597792A (en) * | 1985-06-10 | 1986-07-01 | Kaiser Aluminum & Chemical Corporation | Aluminum-based composite product of high strength and toughness |
US4626294A (en) * | 1985-05-28 | 1986-12-02 | Aluminum Company Of America | Lightweight armor plate and method |
US4647321A (en) * | 1980-11-24 | 1987-03-03 | United Technologies Corporation | Dispersion strengthened aluminum alloys |
US4661172A (en) * | 1984-02-29 | 1987-04-28 | Allied Corporation | Low density aluminum alloys and method |
US4667497A (en) * | 1985-10-08 | 1987-05-26 | Metals, Ltd. | Forming of workpiece using flowable particulate |
US4689090A (en) * | 1986-03-20 | 1987-08-25 | Aluminum Company Of America | Superplastic aluminum alloys containing scandium |
US4710246A (en) * | 1982-07-06 | 1987-12-01 | Centre National De La Recherche Scientifique "Cnrs" | Amorphous aluminum-based alloys |
US4713216A (en) * | 1985-04-27 | 1987-12-15 | Showa Aluminum Kabushiki Kaisha | Aluminum alloys having high strength and resistance to stress and corrosion |
US4755221A (en) * | 1986-03-24 | 1988-07-05 | Gte Products Corporation | Aluminum based composite powders and process for producing same |
US4832741A (en) * | 1986-08-12 | 1989-05-23 | Bbc Brown Boveri Ag | Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat-resistant aluminum alloy |
US4834942A (en) * | 1988-01-29 | 1989-05-30 | The United States Of America As Represented By The Secretary Of The Navy | Elevated temperature aluminum-titanium alloy by powder metallurgy process |
US4834810A (en) * | 1988-05-06 | 1989-05-30 | Inco Alloys International, Inc. | High modulus A1 alloys |
US4853178A (en) * | 1988-11-17 | 1989-08-01 | Ceracon, Inc. | Electrical heating of graphite grain employed in consolidation of objects |
US4865806A (en) * | 1986-05-01 | 1989-09-12 | Dural Aluminum Composites Corp. | Process for preparation of composite materials containing nonmetallic particles in a metallic matrix |
US4874440A (en) * | 1986-03-20 | 1989-10-17 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US4915605A (en) * | 1989-05-11 | 1990-04-10 | Ceracon, Inc. | Method of consolidation of powder aluminum and aluminum alloys |
US4923532A (en) * | 1988-09-12 | 1990-05-08 | Allied-Signal Inc. | Heat treatment for aluminum-lithium based metal matrix composites |
US4927470A (en) * | 1988-10-12 | 1990-05-22 | Aluminum Company Of America | Thin gauge aluminum plate product by isothermal treatment and ramp anneal |
US4933140A (en) * | 1988-11-17 | 1990-06-12 | Ceracon, Inc. | Electrical heating of graphite grain employed in consolidation of objects |
US4946517A (en) * | 1988-10-12 | 1990-08-07 | Aluminum Company Of America | Unrecrystallized aluminum plate product by ramp annealing |
US4964927A (en) * | 1989-03-31 | 1990-10-23 | University Of Virginia Alumini Patents | Aluminum-based metallic glass alloys |
US4988464A (en) * | 1989-06-01 | 1991-01-29 | Union Carbide Corporation | Method for producing powder by gas atomization |
US5032352A (en) * | 1990-09-21 | 1991-07-16 | Ceracon, Inc. | Composite body formation of consolidated powder metal part |
US5039476A (en) * | 1989-07-28 | 1991-08-13 | Ube Industries, Ltd. | Method for production of powder metallurgy alloy |
US5053084A (en) * | 1987-08-12 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat resistant aluminum alloys and method of preparing wrought article therefrom |
US5055257A (en) * | 1986-03-20 | 1991-10-08 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US5059390A (en) * | 1989-06-14 | 1991-10-22 | Aluminum Company Of America | Dual-phase, magnesium-based alloy having improved properties |
US5066342A (en) * | 1988-01-28 | 1991-11-19 | Aluminum Company Of America | Aluminum-lithium alloys and method of making the same |
US5076865A (en) * | 1988-10-15 | 1991-12-31 | Yoshida Kogyo K. K. | Amorphous aluminum alloys |
US5076340A (en) * | 1989-08-07 | 1991-12-31 | Dural Aluminum Composites Corp. | Cast composite material having a matrix containing a stable oxide-forming element |
US5130209A (en) * | 1989-11-09 | 1992-07-14 | Allied-Signal Inc. | Arc sprayed continuously reinforced aluminum base composites and method |
US5133931A (en) * | 1990-08-28 | 1992-07-28 | Reynolds Metals Company | Lithium aluminum alloy system |
US5198045A (en) * | 1991-05-14 | 1993-03-30 | Reynolds Metals Company | Low density high strength al-li alloy |
US5211910A (en) * | 1990-01-26 | 1993-05-18 | Martin Marietta Corporation | Ultra high strength aluminum-base alloys |
US5226983A (en) * | 1985-07-08 | 1993-07-13 | Allied-Signal Inc. | High strength, ductile, low density aluminum alloys and process for making same |
US5256215A (en) * | 1990-10-16 | 1993-10-26 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing high strength and high toughness aluminum alloy, and alloy material |
US5308410A (en) * | 1990-12-18 | 1994-05-03 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing high strength and high toughness aluminum alloy |
US5312494A (en) * | 1992-05-06 | 1994-05-17 | Honda Giken Kogyo Kabushiki Kaisha | High strength and high toughness aluminum alloy |
US5318641A (en) * | 1990-06-08 | 1994-06-07 | Tsuyoshi Masumoto | Particle-dispersion type amorphous aluminum-alloy having high strength |
US5397403A (en) * | 1989-12-29 | 1995-03-14 | Honda Giken Kogyo Kabushiki Kaisha | High strength amorphous aluminum-based alloy member |
US5458700A (en) * | 1992-03-18 | 1995-10-17 | Tsuyoshi Masumoto | High-strength aluminum alloy |
US5462712A (en) * | 1988-08-18 | 1995-10-31 | Martin Marietta Corporation | High strength Al-Cu-Li-Zn-Mg alloys |
US5480470A (en) * | 1992-10-16 | 1996-01-02 | General Electric Company | Atomization with low atomizing gas pressure |
US5532069A (en) * | 1993-12-24 | 1996-07-02 | Tsuyoshi Masumoto | Aluminum alloy and method of preparing the same |
US5597529A (en) * | 1994-05-25 | 1997-01-28 | Ashurst Technology Corporation (Ireland Limited) | Aluminum-scandium alloys |
US5624632A (en) * | 1995-01-31 | 1997-04-29 | Aluminum Company Of America | Aluminum magnesium alloy product containing dispersoids |
US5882449A (en) * | 1997-07-11 | 1999-03-16 | Mcdonnell Douglas Corporation | Process for preparing aluminum/lithium/scandium rolled sheet products |
US6139653A (en) * | 1999-08-12 | 2000-10-31 | Kaiser Aluminum & Chemical Corporation | Aluminum-magnesium-scandium alloys with zinc and copper |
US6149737A (en) * | 1996-09-09 | 2000-11-21 | Sumitomo Electric Industries Ltd. | High strength high-toughness aluminum alloy and method of preparing the same |
US6248453B1 (en) * | 1999-12-22 | 2001-06-19 | United Technologies Corporation | High strength aluminum alloy |
US6254704B1 (en) * | 1998-05-28 | 2001-07-03 | Sulzer Metco (Us) Inc. | Method for preparing a thermal spray powder of chromium carbide and nickel chromium |
US6258318B1 (en) * | 1998-08-21 | 2001-07-10 | Eads Deutschland Gmbh | Weldable, corrosion-resistant AIMG alloys, especially for manufacturing means of transportation |
US6309594B1 (en) * | 1999-06-24 | 2001-10-30 | Ceracon, Inc. | Metal consolidation process employing microwave heated pressure transmitting particulate |
US6312643B1 (en) * | 1997-10-24 | 2001-11-06 | The United States Of America As Represented By The Secretary Of The Air Force | Synthesis of nanoscale aluminum alloy powders and devices therefrom |
US6315948B1 (en) * | 1998-08-21 | 2001-11-13 | Daimler Chrysler Ag | Weldable anti-corrosive aluminum-magnesium alloy containing a high amount of magnesium, especially for use in automobiles |
US6331218B1 (en) * | 1994-11-02 | 2001-12-18 | Tsuyoshi Masumoto | High strength and high rigidity aluminum-based alloy and production method therefor |
US20010054247A1 (en) * | 2000-05-18 | 2001-12-27 | Stall Thomas C. | Scandium containing aluminum alloy firearm |
US6355209B1 (en) * | 1999-11-16 | 2002-03-12 | Ceracon, Inc. | Metal consolidation process applicable to functionally gradient material (FGM) compositons of tungsten, nickel, iron, and cobalt |
US6368427B1 (en) * | 1999-09-10 | 2002-04-09 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US6506503B1 (en) * | 1998-07-29 | 2003-01-14 | Miba Gleitlager Aktiengesellschaft | Friction bearing having an intermediate layer, notably binding layer, made of an alloy on aluminium basis |
US6517954B1 (en) * | 1998-07-29 | 2003-02-11 | Miba Gleitlager Aktiengesellschaft | Aluminium alloy, notably for a layer |
US6524410B1 (en) * | 2001-08-10 | 2003-02-25 | Tri-Kor Alloys, Llc | Method for producing high strength aluminum alloy welded structures |
US6531004B1 (en) * | 1998-08-21 | 2003-03-11 | Eads Deutschland Gmbh | Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation |
US6562154B1 (en) * | 2000-06-12 | 2003-05-13 | Aloca Inc. | Aluminum sheet products having improved fatigue crack growth resistance and methods of making same |
US6630008B1 (en) * | 2000-09-18 | 2003-10-07 | Ceracon, Inc. | Nanocrystalline aluminum metal matrix composites, and production methods |
US20030192627A1 (en) * | 2002-04-10 | 2003-10-16 | Lee Jonathan A. | High strength aluminum alloy for high temperature applications |
US6702982B1 (en) * | 1995-02-28 | 2004-03-09 | The United States Of America As Represented By The Secretary Of The Army | Aluminum-lithium alloy |
US20040046402A1 (en) * | 2002-09-05 | 2004-03-11 | Michael Winardi | Drive-in latch with rotational adjustment |
US20040055671A1 (en) * | 2002-04-24 | 2004-03-25 | Questek Innovations Llc | Nanophase precipitation strengthened Al alloys processed through the amorphous state |
US20040089382A1 (en) * | 2002-11-08 | 2004-05-13 | Senkov Oleg N. | Method of making a high strength aluminum alloy composition |
US20040170522A1 (en) * | 2003-02-28 | 2004-09-02 | Watson Thomas J. | Aluminum base alloys |
US20040191111A1 (en) * | 2003-03-14 | 2004-09-30 | Beijing University Of Technology | Er strengthening aluminum alloy |
US20050013725A1 (en) * | 2003-07-14 | 2005-01-20 | Chung-Chih Hsiao | Aluminum based material having high conductivity |
US6902699B2 (en) * | 2002-10-02 | 2005-06-07 | The Boeing Company | Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom |
US20050147520A1 (en) * | 2003-12-31 | 2005-07-07 | Guido Canzona | Method for improving the ductility of high-strength nanophase alloys |
US20060011272A1 (en) * | 2004-07-15 | 2006-01-19 | Lin Jen C | 2000 Series alloys with enhanced damage tolerance performance for aerospace applications |
US20060093512A1 (en) * | 2003-01-15 | 2006-05-04 | Pandey Awadh B | Aluminum based alloy |
US20060172073A1 (en) * | 2005-02-01 | 2006-08-03 | Groza Joanna R | Methods for production of FGM net shaped body for various applications |
US20060269437A1 (en) * | 2005-05-31 | 2006-11-30 | Pandey Awadh B | High temperature aluminum alloys |
US20070048167A1 (en) * | 2005-08-25 | 2007-03-01 | Yutaka Yano | Metal particles, process for manufacturing the same, and process for manufacturing vehicle components therefrom |
US20070062669A1 (en) * | 2005-09-21 | 2007-03-22 | Song Shihong G | Method of producing a castable high temperature aluminum alloy by controlled solidification |
US7241328B2 (en) * | 2003-11-25 | 2007-07-10 | The Boeing Company | Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby |
US7344675B2 (en) * | 2003-03-12 | 2008-03-18 | The Boeing Company | Method for preparing nanostructured metal alloys having increased nitride content |
US20080066833A1 (en) * | 2006-09-19 | 2008-03-20 | Lin Jen C | HIGH STRENGTH, HIGH STRESS CORROSION CRACKING RESISTANT AND CASTABLE Al-Zn-Mg-Cu-Zr ALLOY FOR SHAPE CAST PRODUCTS |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5310520A (en) * | 1993-01-29 | 1994-05-10 | Texas Instruments Incorporated | Circuit system, a composite material for use therein, and a method of making the material |
-
2009
- 2009-08-19 US US12/543,945 patent/US20110044844A1/en not_active Abandoned
-
2010
- 2010-08-11 EP EP10251433A patent/EP2325342B1/en active Active
Patent Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3619181A (en) * | 1968-10-29 | 1971-11-09 | Aluminum Co Of America | Aluminum scandium alloy |
US4041123A (en) * | 1971-04-20 | 1977-08-09 | Westinghouse Electric Corporation | Method of compacting shaped powdered objects |
US3816080A (en) * | 1971-07-06 | 1974-06-11 | Int Nickel Co | Mechanically-alloyed aluminum-aluminum oxide |
US4259112A (en) * | 1979-04-05 | 1981-03-31 | Dwa Composite Specialties, Inc. | Process for manufacture of reinforced composites |
US4647321A (en) * | 1980-11-24 | 1987-03-03 | United Technologies Corporation | Dispersion strengthened aluminum alloys |
US4463058A (en) * | 1981-06-16 | 1984-07-31 | Atlantic Richfield Company | Silicon carbide whisker composites |
US4710246A (en) * | 1982-07-06 | 1987-12-01 | Centre National De La Recherche Scientifique "Cnrs" | Amorphous aluminum-based alloys |
US4499048A (en) * | 1983-02-23 | 1985-02-12 | Metal Alloys, Inc. | Method of consolidating a metallic body |
US4469537A (en) * | 1983-06-27 | 1984-09-04 | Reynolds Metals Company | Aluminum armor plate system |
US4661172A (en) * | 1984-02-29 | 1987-04-28 | Allied Corporation | Low density aluminum alloys and method |
US4713216A (en) * | 1985-04-27 | 1987-12-15 | Showa Aluminum Kabushiki Kaisha | Aluminum alloys having high strength and resistance to stress and corrosion |
US4626294A (en) * | 1985-05-28 | 1986-12-02 | Aluminum Company Of America | Lightweight armor plate and method |
US4597792A (en) * | 1985-06-10 | 1986-07-01 | Kaiser Aluminum & Chemical Corporation | Aluminum-based composite product of high strength and toughness |
US5226983A (en) * | 1985-07-08 | 1993-07-13 | Allied-Signal Inc. | High strength, ductile, low density aluminum alloys and process for making same |
US4667497A (en) * | 1985-10-08 | 1987-05-26 | Metals, Ltd. | Forming of workpiece using flowable particulate |
US4689090A (en) * | 1986-03-20 | 1987-08-25 | Aluminum Company Of America | Superplastic aluminum alloys containing scandium |
US5055257A (en) * | 1986-03-20 | 1991-10-08 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US4874440A (en) * | 1986-03-20 | 1989-10-17 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US4755221A (en) * | 1986-03-24 | 1988-07-05 | Gte Products Corporation | Aluminum based composite powders and process for producing same |
US4865806A (en) * | 1986-05-01 | 1989-09-12 | Dural Aluminum Composites Corp. | Process for preparation of composite materials containing nonmetallic particles in a metallic matrix |
US4832741A (en) * | 1986-08-12 | 1989-05-23 | Bbc Brown Boveri Ag | Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat-resistant aluminum alloy |
US5053084A (en) * | 1987-08-12 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat resistant aluminum alloys and method of preparing wrought article therefrom |
US5066342A (en) * | 1988-01-28 | 1991-11-19 | Aluminum Company Of America | Aluminum-lithium alloys and method of making the same |
US4834942A (en) * | 1988-01-29 | 1989-05-30 | The United States Of America As Represented By The Secretary Of The Navy | Elevated temperature aluminum-titanium alloy by powder metallurgy process |
US4834810A (en) * | 1988-05-06 | 1989-05-30 | Inco Alloys International, Inc. | High modulus A1 alloys |
US5462712A (en) * | 1988-08-18 | 1995-10-31 | Martin Marietta Corporation | High strength Al-Cu-Li-Zn-Mg alloys |
US4923532A (en) * | 1988-09-12 | 1990-05-08 | Allied-Signal Inc. | Heat treatment for aluminum-lithium based metal matrix composites |
US4927470A (en) * | 1988-10-12 | 1990-05-22 | Aluminum Company Of America | Thin gauge aluminum plate product by isothermal treatment and ramp anneal |
US4946517A (en) * | 1988-10-12 | 1990-08-07 | Aluminum Company Of America | Unrecrystallized aluminum plate product by ramp annealing |
US5076865A (en) * | 1988-10-15 | 1991-12-31 | Yoshida Kogyo K. K. | Amorphous aluminum alloys |
US4853178A (en) * | 1988-11-17 | 1989-08-01 | Ceracon, Inc. | Electrical heating of graphite grain employed in consolidation of objects |
US4933140A (en) * | 1988-11-17 | 1990-06-12 | Ceracon, Inc. | Electrical heating of graphite grain employed in consolidation of objects |
US4964927A (en) * | 1989-03-31 | 1990-10-23 | University Of Virginia Alumini Patents | Aluminum-based metallic glass alloys |
US4915605A (en) * | 1989-05-11 | 1990-04-10 | Ceracon, Inc. | Method of consolidation of powder aluminum and aluminum alloys |
US4988464A (en) * | 1989-06-01 | 1991-01-29 | Union Carbide Corporation | Method for producing powder by gas atomization |
US5059390A (en) * | 1989-06-14 | 1991-10-22 | Aluminum Company Of America | Dual-phase, magnesium-based alloy having improved properties |
US5039476A (en) * | 1989-07-28 | 1991-08-13 | Ube Industries, Ltd. | Method for production of powder metallurgy alloy |
US5076340A (en) * | 1989-08-07 | 1991-12-31 | Dural Aluminum Composites Corp. | Cast composite material having a matrix containing a stable oxide-forming element |
US5130209A (en) * | 1989-11-09 | 1992-07-14 | Allied-Signal Inc. | Arc sprayed continuously reinforced aluminum base composites and method |
US5397403A (en) * | 1989-12-29 | 1995-03-14 | Honda Giken Kogyo Kabushiki Kaisha | High strength amorphous aluminum-based alloy member |
US5211910A (en) * | 1990-01-26 | 1993-05-18 | Martin Marietta Corporation | Ultra high strength aluminum-base alloys |
US5318641A (en) * | 1990-06-08 | 1994-06-07 | Tsuyoshi Masumoto | Particle-dispersion type amorphous aluminum-alloy having high strength |
US5133931A (en) * | 1990-08-28 | 1992-07-28 | Reynolds Metals Company | Lithium aluminum alloy system |
US5032352A (en) * | 1990-09-21 | 1991-07-16 | Ceracon, Inc. | Composite body formation of consolidated powder metal part |
US5256215A (en) * | 1990-10-16 | 1993-10-26 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing high strength and high toughness aluminum alloy, and alloy material |
US5308410A (en) * | 1990-12-18 | 1994-05-03 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing high strength and high toughness aluminum alloy |
US5198045A (en) * | 1991-05-14 | 1993-03-30 | Reynolds Metals Company | Low density high strength al-li alloy |
US5458700A (en) * | 1992-03-18 | 1995-10-17 | Tsuyoshi Masumoto | High-strength aluminum alloy |
US5312494A (en) * | 1992-05-06 | 1994-05-17 | Honda Giken Kogyo Kabushiki Kaisha | High strength and high toughness aluminum alloy |
US5480470A (en) * | 1992-10-16 | 1996-01-02 | General Electric Company | Atomization with low atomizing gas pressure |
US5532069A (en) * | 1993-12-24 | 1996-07-02 | Tsuyoshi Masumoto | Aluminum alloy and method of preparing the same |
US5620652A (en) * | 1994-05-25 | 1997-04-15 | Ashurst Technology Corporation (Ireland) Limited | Aluminum alloys containing scandium with zirconium additions |
US5597529A (en) * | 1994-05-25 | 1997-01-28 | Ashurst Technology Corporation (Ireland Limited) | Aluminum-scandium alloys |
US6331218B1 (en) * | 1994-11-02 | 2001-12-18 | Tsuyoshi Masumoto | High strength and high rigidity aluminum-based alloy and production method therefor |
US5624632A (en) * | 1995-01-31 | 1997-04-29 | Aluminum Company Of America | Aluminum magnesium alloy product containing dispersoids |
US6702982B1 (en) * | 1995-02-28 | 2004-03-09 | The United States Of America As Represented By The Secretary Of The Army | Aluminum-lithium alloy |
US6149737A (en) * | 1996-09-09 | 2000-11-21 | Sumitomo Electric Industries Ltd. | High strength high-toughness aluminum alloy and method of preparing the same |
US5882449A (en) * | 1997-07-11 | 1999-03-16 | Mcdonnell Douglas Corporation | Process for preparing aluminum/lithium/scandium rolled sheet products |
US6312643B1 (en) * | 1997-10-24 | 2001-11-06 | The United States Of America As Represented By The Secretary Of The Air Force | Synthesis of nanoscale aluminum alloy powders and devices therefrom |
US6254704B1 (en) * | 1998-05-28 | 2001-07-03 | Sulzer Metco (Us) Inc. | Method for preparing a thermal spray powder of chromium carbide and nickel chromium |
US6506503B1 (en) * | 1998-07-29 | 2003-01-14 | Miba Gleitlager Aktiengesellschaft | Friction bearing having an intermediate layer, notably binding layer, made of an alloy on aluminium basis |
US6517954B1 (en) * | 1998-07-29 | 2003-02-11 | Miba Gleitlager Aktiengesellschaft | Aluminium alloy, notably for a layer |
US6258318B1 (en) * | 1998-08-21 | 2001-07-10 | Eads Deutschland Gmbh | Weldable, corrosion-resistant AIMG alloys, especially for manufacturing means of transportation |
US6315948B1 (en) * | 1998-08-21 | 2001-11-13 | Daimler Chrysler Ag | Weldable anti-corrosive aluminum-magnesium alloy containing a high amount of magnesium, especially for use in automobiles |
US6531004B1 (en) * | 1998-08-21 | 2003-03-11 | Eads Deutschland Gmbh | Weldable anti-corrosive aluminium-magnesium alloy containing a high amount of magnesium, especially for use in aviation |
US6309594B1 (en) * | 1999-06-24 | 2001-10-30 | Ceracon, Inc. | Metal consolidation process employing microwave heated pressure transmitting particulate |
US6139653A (en) * | 1999-08-12 | 2000-10-31 | Kaiser Aluminum & Chemical Corporation | Aluminum-magnesium-scandium alloys with zinc and copper |
US6368427B1 (en) * | 1999-09-10 | 2002-04-09 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US6355209B1 (en) * | 1999-11-16 | 2002-03-12 | Ceracon, Inc. | Metal consolidation process applicable to functionally gradient material (FGM) compositons of tungsten, nickel, iron, and cobalt |
US6248453B1 (en) * | 1999-12-22 | 2001-06-19 | United Technologies Corporation | High strength aluminum alloy |
US20010054247A1 (en) * | 2000-05-18 | 2001-12-27 | Stall Thomas C. | Scandium containing aluminum alloy firearm |
US6562154B1 (en) * | 2000-06-12 | 2003-05-13 | Aloca Inc. | Aluminum sheet products having improved fatigue crack growth resistance and methods of making same |
US6630008B1 (en) * | 2000-09-18 | 2003-10-07 | Ceracon, Inc. | Nanocrystalline aluminum metal matrix composites, and production methods |
US7097807B1 (en) * | 2000-09-18 | 2006-08-29 | Ceracon, Inc. | Nanocrystalline aluminum alloy metal matrix composites, and production methods |
US6524410B1 (en) * | 2001-08-10 | 2003-02-25 | Tri-Kor Alloys, Llc | Method for producing high strength aluminum alloy welded structures |
US6918970B2 (en) * | 2002-04-10 | 2005-07-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High strength aluminum alloy for high temperature applications |
US20030192627A1 (en) * | 2002-04-10 | 2003-10-16 | Lee Jonathan A. | High strength aluminum alloy for high temperature applications |
US20040055671A1 (en) * | 2002-04-24 | 2004-03-25 | Questek Innovations Llc | Nanophase precipitation strengthened Al alloys processed through the amorphous state |
US20040046402A1 (en) * | 2002-09-05 | 2004-03-11 | Michael Winardi | Drive-in latch with rotational adjustment |
US6902699B2 (en) * | 2002-10-02 | 2005-06-07 | The Boeing Company | Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom |
US20040089382A1 (en) * | 2002-11-08 | 2004-05-13 | Senkov Oleg N. | Method of making a high strength aluminum alloy composition |
US7048815B2 (en) * | 2002-11-08 | 2006-05-23 | Ues, Inc. | Method of making a high strength aluminum alloy composition |
US20060093512A1 (en) * | 2003-01-15 | 2006-05-04 | Pandey Awadh B | Aluminum based alloy |
US20040170522A1 (en) * | 2003-02-28 | 2004-09-02 | Watson Thomas J. | Aluminum base alloys |
US6974510B2 (en) * | 2003-02-28 | 2005-12-13 | United Technologies Corporation | Aluminum base alloys |
US7344675B2 (en) * | 2003-03-12 | 2008-03-18 | The Boeing Company | Method for preparing nanostructured metal alloys having increased nitride content |
US20040191111A1 (en) * | 2003-03-14 | 2004-09-30 | Beijing University Of Technology | Er strengthening aluminum alloy |
US20050013725A1 (en) * | 2003-07-14 | 2005-01-20 | Chung-Chih Hsiao | Aluminum based material having high conductivity |
US7241328B2 (en) * | 2003-11-25 | 2007-07-10 | The Boeing Company | Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby |
US20050147520A1 (en) * | 2003-12-31 | 2005-07-07 | Guido Canzona | Method for improving the ductility of high-strength nanophase alloys |
US20060011272A1 (en) * | 2004-07-15 | 2006-01-19 | Lin Jen C | 2000 Series alloys with enhanced damage tolerance performance for aerospace applications |
US20060172073A1 (en) * | 2005-02-01 | 2006-08-03 | Groza Joanna R | Methods for production of FGM net shaped body for various applications |
US20060269437A1 (en) * | 2005-05-31 | 2006-11-30 | Pandey Awadh B | High temperature aluminum alloys |
US20070048167A1 (en) * | 2005-08-25 | 2007-03-01 | Yutaka Yano | Metal particles, process for manufacturing the same, and process for manufacturing vehicle components therefrom |
US20070062669A1 (en) * | 2005-09-21 | 2007-03-22 | Song Shihong G | Method of producing a castable high temperature aluminum alloy by controlled solidification |
US20080066833A1 (en) * | 2006-09-19 | 2008-03-20 | Lin Jen C | HIGH STRENGTH, HIGH STRESS CORROSION CRACKING RESISTANT AND CASTABLE Al-Zn-Mg-Cu-Zr ALLOY FOR SHAPE CAST PRODUCTS |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130143070A1 (en) * | 2010-07-29 | 2013-06-06 | Airbus Operations Gmbh | Aluminium Material Which Can Be Exposed To High Temperatures, Is Alloyed With Scandium And Has Improved Extrudability |
WO2014152183A2 (en) * | 2013-03-15 | 2014-09-25 | United Technologies Corporation | Powder metallurgy alloy forging |
WO2014152172A1 (en) * | 2013-03-15 | 2014-09-25 | United Technologies Corporation | Powder metallurgy alloy extrusion |
WO2014152183A3 (en) * | 2013-03-15 | 2014-11-13 | United Technologies Corporation | Powder metallurgy alloy forging |
US20160031012A1 (en) * | 2013-03-15 | 2016-02-04 | United Technologies Corporation | Powder Metallurgy Alloy Forging |
WO2015077527A3 (en) * | 2013-11-23 | 2018-08-16 | Almex USA, Inc. | Alloy melting and holding furnace |
CN111074106A (en) * | 2019-12-20 | 2020-04-28 | 山东南山铝业股份有限公司 | High-efficiency low-consumption rolling rare earth aluminum alloy and preparation method thereof |
CN113061789A (en) * | 2021-02-02 | 2021-07-02 | 重庆材料研究院有限公司 | Light ultra-wide copper-containing aluminum net for lightning protection and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2325342B1 (en) | 2013-01-23 |
EP2325342A2 (en) | 2011-05-25 |
EP2325342A3 (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8778099B2 (en) | Conversion process for heat treatable L12 aluminum alloys | |
EP2325342B1 (en) | Hot compaction and extrusion of L12 aluminum alloys | |
US20140010700A1 (en) | Direct extrusion of shapes with l12 aluminum alloys | |
US8409497B2 (en) | Hot and cold rolling high strength L12 aluminum alloys | |
US8778098B2 (en) | Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids | |
US20100143177A1 (en) | Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids | |
US8323373B2 (en) | Atomized picoscale composite aluminum alloy and method thereof | |
EP2343387B1 (en) | Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding | |
US9194027B2 (en) | Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling | |
EP2325343B1 (en) | Forging deformation of L12 aluminum alloys | |
US20100226817A1 (en) | High strength l12 aluminum alloys produced by cryomilling | |
US9127334B2 (en) | Direct forging and rolling of L12 aluminum alloys for armor applications | |
EP2239071A2 (en) | Ceracon forging of L12 aluminum alloys | |
US20110091345A1 (en) | Method for fabrication of tubes using rolling and extrusion | |
US8409496B2 (en) | Superplastic forming high strength L12 aluminum alloys | |
Verlinden et al. | Aluminium Powder Metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |