US20110207758A1 - Methods for Therapeutic Renal Denervation - Google Patents
Methods for Therapeutic Renal Denervation Download PDFInfo
- Publication number
- US20110207758A1 US20110207758A1 US13/034,595 US201113034595A US2011207758A1 US 20110207758 A1 US20110207758 A1 US 20110207758A1 US 201113034595 A US201113034595 A US 201113034595A US 2011207758 A1 US2011207758 A1 US 2011207758A1
- Authority
- US
- United States
- Prior art keywords
- patient
- renal
- sympathetic
- patients
- blood pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 113
- 230000008660 renal denervation Effects 0.000 title claims abstract description 41
- 230000001225 therapeutic effect Effects 0.000 title abstract description 52
- 230000002889 sympathetic effect Effects 0.000 claims abstract description 100
- 230000009467 reduction Effects 0.000 claims abstract description 36
- 230000036772 blood pressure Effects 0.000 claims description 78
- 238000011282 treatment Methods 0.000 claims description 77
- 210000003734 kidney Anatomy 0.000 claims description 57
- 210000005036 nerve Anatomy 0.000 claims description 56
- 206010020772 Hypertension Diseases 0.000 claims description 46
- 210000002254 renal artery Anatomy 0.000 claims description 43
- 239000003814 drug Substances 0.000 claims description 41
- 229940079593 drug Drugs 0.000 claims description 38
- 208000020832 chronic kidney disease Diseases 0.000 claims description 35
- 229940127088 antihypertensive drug Drugs 0.000 claims description 27
- 230000007423 decrease Effects 0.000 claims description 20
- 210000000056 organ Anatomy 0.000 claims description 20
- 230000001603 reducing effect Effects 0.000 claims description 20
- 206010007559 Cardiac failure congestive Diseases 0.000 claims description 17
- 230000001537 neural effect Effects 0.000 claims description 17
- 206010019280 Heart failures Diseases 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 14
- 239000000219 Sympatholytic Substances 0.000 claims description 11
- 230000024924 glomerular filtration Effects 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 8
- 230000000144 pharmacologic effect Effects 0.000 claims description 7
- 208000015658 resistant hypertension Diseases 0.000 claims description 7
- 230000000948 sympatholitic effect Effects 0.000 claims description 7
- 208000022831 chronic renal failure syndrome Diseases 0.000 claims description 6
- WPNJAUFVNXKLIM-UHFFFAOYSA-N Moxonidine Chemical compound COC1=NC(C)=NC(Cl)=C1NC1=NCCN1 WPNJAUFVNXKLIM-UHFFFAOYSA-N 0.000 claims description 5
- 230000008753 endothelial function Effects 0.000 claims description 5
- 208000013403 hyperactivity Diseases 0.000 claims description 5
- 229960003938 moxonidine Drugs 0.000 claims description 5
- 230000002861 ventricular Effects 0.000 claims description 5
- 208000007177 Left Ventricular Hypertrophy Diseases 0.000 claims description 4
- 238000011458 pharmacological treatment Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 230000001631 hypertensive effect Effects 0.000 claims description 3
- 208000003037 Diastolic Heart Failure Diseases 0.000 claims description 2
- 230000003227 neuromodulating effect Effects 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims 10
- 230000000903 blocking effect Effects 0.000 claims 7
- 230000004797 therapeutic response Effects 0.000 claims 3
- 229940123749 Imidazoline receptor agonist Drugs 0.000 claims 2
- 239000000384 adrenergic alpha-2 receptor agonist Substances 0.000 claims 2
- YKFCISHFRZHKHY-NGQGLHOPSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;trihydrate Chemical compound O.O.O.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 YKFCISHFRZHKHY-NGQGLHOPSA-N 0.000 claims 1
- INJOMKTZOLKMBF-UHFFFAOYSA-N Guanfacine Chemical compound NC(=N)NC(=O)CC1=C(Cl)C=CC=C1Cl INJOMKTZOLKMBF-UHFFFAOYSA-N 0.000 claims 1
- 229940083181 centrally acting adntiadrenergic agent methyldopa Drugs 0.000 claims 1
- 229960002048 guanfacine Drugs 0.000 claims 1
- 230000002956 necrotizing effect Effects 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 11
- 201000010099 disease Diseases 0.000 abstract description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 6
- 230000008035 nerve activity Effects 0.000 abstract description 6
- 210000003626 afferent pathway Anatomy 0.000 abstract 1
- 210000002049 efferent pathway Anatomy 0.000 abstract 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 69
- 239000008103 glucose Substances 0.000 description 69
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 68
- 230000004007 neuromodulation Effects 0.000 description 60
- 210000002820 sympathetic nervous system Anatomy 0.000 description 52
- 206010012601 diabetes mellitus Diseases 0.000 description 35
- 230000000694 effects Effects 0.000 description 35
- 102000004877 Insulin Human genes 0.000 description 34
- 108090001061 Insulin Proteins 0.000 description 34
- 230000001965 increasing effect Effects 0.000 description 34
- 229940125396 insulin Drugs 0.000 description 34
- 230000035488 systolic blood pressure Effects 0.000 description 34
- 206010022489 Insulin Resistance Diseases 0.000 description 33
- 210000002216 heart Anatomy 0.000 description 31
- 239000008280 blood Substances 0.000 description 29
- 210000004369 blood Anatomy 0.000 description 29
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 25
- 229960002748 norepinephrine Drugs 0.000 description 25
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 25
- 238000007410 oral glucose tolerance test Methods 0.000 description 25
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 24
- 210000002569 neuron Anatomy 0.000 description 20
- 210000004556 brain Anatomy 0.000 description 17
- 230000001684 chronic effect Effects 0.000 description 17
- 230000035487 diastolic blood pressure Effects 0.000 description 17
- 208000007530 Essential hypertension Diseases 0.000 description 16
- 201000002859 sleep apnea Diseases 0.000 description 16
- 230000008859 change Effects 0.000 description 15
- 230000003907 kidney function Effects 0.000 description 15
- 230000036454 renin-angiotensin system Effects 0.000 description 15
- VOUAQYXWVJDEQY-QENPJCQMSA-N 33017-11-7 Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)NCC(=O)NCC(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)CCC1 VOUAQYXWVJDEQY-QENPJCQMSA-N 0.000 description 14
- 108010075254 C-Peptide Proteins 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 238000002483 medication Methods 0.000 description 13
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 12
- 230000002638 denervation Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 208000008589 Obesity Diseases 0.000 description 10
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 10
- 230000006378 damage Effects 0.000 description 10
- 239000002934 diuretic Substances 0.000 description 10
- 230000009250 muscle sympathetic nerve activity Effects 0.000 description 10
- 235000020824 obesity Nutrition 0.000 description 10
- 230000005574 cross-species transmission Effects 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000011664 signaling Effects 0.000 description 9
- 208000002705 Glucose Intolerance Diseases 0.000 description 8
- 206010037211 Psychomotor hyperactivity Diseases 0.000 description 8
- 208000001647 Renal Insufficiency Diseases 0.000 description 8
- 238000002679 ablation Methods 0.000 description 8
- 230000005856 abnormality Effects 0.000 description 8
- 230000004913 activation Effects 0.000 description 8
- 239000002220 antihypertensive agent Substances 0.000 description 8
- 210000003050 axon Anatomy 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 201000000523 end stage renal failure Diseases 0.000 description 8
- 230000001771 impaired effect Effects 0.000 description 8
- 201000006370 kidney failure Diseases 0.000 description 8
- 239000002858 neurotransmitter agent Substances 0.000 description 8
- 208000001797 obstructive sleep apnea Diseases 0.000 description 8
- 210000001002 parasympathetic nervous system Anatomy 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 230000000638 stimulation Effects 0.000 description 8
- 230000008700 sympathetic activation Effects 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 239000005541 ACE inhibitor Substances 0.000 description 7
- 208000001145 Metabolic Syndrome Diseases 0.000 description 7
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 7
- 238000002583 angiography Methods 0.000 description 7
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 7
- 208000028208 end stage renal disease Diseases 0.000 description 7
- 210000000609 ganglia Anatomy 0.000 description 7
- 230000013632 homeostatic process Effects 0.000 description 7
- 210000003205 muscle Anatomy 0.000 description 7
- 201000009104 prediabetes syndrome Diseases 0.000 description 7
- 210000002700 urine Anatomy 0.000 description 7
- 208000003098 Ganglion Cysts Diseases 0.000 description 6
- 208000031481 Pathologic Constriction Diseases 0.000 description 6
- 208000004531 Renal Artery Obstruction Diseases 0.000 description 6
- 206010038378 Renal artery stenosis Diseases 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 239000002876 beta blocker Substances 0.000 description 6
- 229940097320 beta blocking agent Drugs 0.000 description 6
- 229940109239 creatinine Drugs 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000003730 sympathetic denervation Effects 0.000 description 6
- 102100028255 Renin Human genes 0.000 description 5
- 108090000783 Renin Proteins 0.000 description 5
- 208000005400 Synovial Cyst Diseases 0.000 description 5
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 5
- 229960004373 acetylcholine Drugs 0.000 description 5
- 229940125364 angiotensin receptor blocker Drugs 0.000 description 5
- 210000003403 autonomic nervous system Anatomy 0.000 description 5
- 238000009530 blood pressure measurement Methods 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- 210000005056 cell body Anatomy 0.000 description 5
- 210000003169 central nervous system Anatomy 0.000 description 5
- 230000001882 diuretic effect Effects 0.000 description 5
- 229940030606 diuretics Drugs 0.000 description 5
- 230000004153 glucose metabolism Effects 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 230000000414 obstructive effect Effects 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000001084 renoprotective effect Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 230000036262 stenosis Effects 0.000 description 5
- 208000037804 stenosis Diseases 0.000 description 5
- 210000000225 synapse Anatomy 0.000 description 5
- 210000005166 vasculature Anatomy 0.000 description 5
- 102000005862 Angiotensin II Human genes 0.000 description 4
- 101800000733 Angiotensin-2 Proteins 0.000 description 4
- 208000003417 Central Sleep Apnea Diseases 0.000 description 4
- 206010021143 Hypoxia Diseases 0.000 description 4
- CZGUSIXMZVURDU-JZXHSEFVSA-N Ile(5)-angiotensin II Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 CZGUSIXMZVURDU-JZXHSEFVSA-N 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 229950006323 angiotensin ii Drugs 0.000 description 4
- 239000003472 antidiabetic agent Substances 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000006854 communication Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000010968 computed tomography angiography Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000007954 hypoxia Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000003914 insulin secretion Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- 238000007427 paired t-test Methods 0.000 description 4
- 230000035479 physiological effects, processes and functions Effects 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 210000000278 spinal cord Anatomy 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 3
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 3
- 108010054147 Hemoglobins Proteins 0.000 description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 3
- 230000003187 abdominal effect Effects 0.000 description 3
- 210000004100 adrenal gland Anatomy 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000003178 anti-diabetic effect Effects 0.000 description 3
- 108091008698 baroreceptors Proteins 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 3
- 230000008662 bilateral renal denervation Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 210000001105 femoral artery Anatomy 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000003054 hormonal effect Effects 0.000 description 3
- 208000017169 kidney disease Diseases 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 208000030159 metabolic disease Diseases 0.000 description 3
- 238000000491 multivariate analysis Methods 0.000 description 3
- 230000007372 neural signaling Effects 0.000 description 3
- 230000008816 organ damage Effects 0.000 description 3
- 210000005259 peripheral blood Anatomy 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 210000001774 pressoreceptor Anatomy 0.000 description 3
- 238000007674 radiofrequency ablation Methods 0.000 description 3
- 230000029865 regulation of blood pressure Effects 0.000 description 3
- 238000007634 remodeling Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 210000002027 skeletal muscle Anatomy 0.000 description 3
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 2
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 2
- 102100030988 Angiotensin-converting enzyme Human genes 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 229940127291 Calcium channel antagonist Drugs 0.000 description 2
- 102000012192 Cystatin C Human genes 0.000 description 2
- 108010061642 Cystatin C Proteins 0.000 description 2
- 208000009087 False Aneurysm Diseases 0.000 description 2
- 208000002513 Flank pain Diseases 0.000 description 2
- 229920002527 Glycogen Polymers 0.000 description 2
- 208000001953 Hypotension Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 102000016267 Leptin Human genes 0.000 description 2
- 108010092277 Leptin Proteins 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 206010033307 Overweight Diseases 0.000 description 2
- 206010041277 Sodium retention Diseases 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 206010048975 Vascular pseudoaneurysm Diseases 0.000 description 2
- 230000036982 action potential Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- UCTWMZQNUQWSLP-UHFFFAOYSA-N adrenaline Chemical compound CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 2
- 210000004079 adrenergic fiber Anatomy 0.000 description 2
- 229960002478 aldosterone Drugs 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 239000002333 angiotensin II receptor antagonist Substances 0.000 description 2
- 230000003276 anti-hypertensive effect Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000480 calcium channel blocker Substances 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 238000009556 duplex ultrasonography Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229940096919 glycogen Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000009532 heart rate measurement Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003451 hyperinsulinaemic effect Effects 0.000 description 2
- 230000036543 hypotension Effects 0.000 description 2
- 201000001881 impotence Diseases 0.000 description 2
- 230000030214 innervation Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 2
- 229940039781 leptin Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 2
- 229960003105 metformin Drugs 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 230000004768 organ dysfunction Effects 0.000 description 2
- 230000001734 parasympathetic effect Effects 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000001242 postsynaptic effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 230000008327 renal blood flow Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229960002256 spironolactone Drugs 0.000 description 2
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 210000000331 sympathetic ganglia Anatomy 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 230000009278 visceral effect Effects 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- BOVGTQGAOIONJV-BETUJISGSA-N 1-[(3ar,6as)-3,3a,4,5,6,6a-hexahydro-1h-cyclopenta[c]pyrrol-2-yl]-3-(4-methylphenyl)sulfonylurea Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1C[C@H]2CCC[C@H]2C1 BOVGTQGAOIONJV-BETUJISGSA-N 0.000 description 1
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 description 1
- 208000004611 Abdominal Obesity Diseases 0.000 description 1
- 102000011690 Adiponectin Human genes 0.000 description 1
- 108010076365 Adiponectin Proteins 0.000 description 1
- 108060003345 Adrenergic Receptor Proteins 0.000 description 1
- 102000017910 Adrenergic receptor Human genes 0.000 description 1
- 102000008873 Angiotensin II receptor Human genes 0.000 description 1
- 108050000824 Angiotensin II receptor Proteins 0.000 description 1
- 101710129690 Angiotensin-converting enzyme inhibitor Proteins 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 229930003347 Atropine Natural products 0.000 description 1
- 206010069632 Bladder dysfunction Diseases 0.000 description 1
- 101710086378 Bradykinin-potentiating and C-type natriuretic peptides Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010065941 Central obesity Diseases 0.000 description 1
- 206010008190 Cerebrovascular accident Diseases 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 1
- 208000032368 Device malfunction Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 206010016803 Fluid overload Diseases 0.000 description 1
- 208000014540 Functional gastrointestinal disease Diseases 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 208000029422 Hypernatremia Diseases 0.000 description 1
- 206010021079 Hypopnoea Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000031773 Insulin resistance syndrome Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 101100276989 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dbp-10 gene Proteins 0.000 description 1
- 206010031127 Orthostatic hypotension Diseases 0.000 description 1
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 1
- 206010038366 Renal aneurysm Diseases 0.000 description 1
- 206010049942 Renal artery dissection Diseases 0.000 description 1
- 206010038490 Renal pain Diseases 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 208000007814 Unstable Angina Diseases 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000037328 acute stress Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000951 adrenergic alpha-1 receptor antagonist Substances 0.000 description 1
- 239000002170 aldosterone antagonist Substances 0.000 description 1
- 229940083712 aldosterone antagonist Drugs 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940127003 anti-diabetic drug Drugs 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 229940005530 anxiolytics Drugs 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 1
- 229960000396 atropine Drugs 0.000 description 1
- 230000035581 baroreflex Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000004531 blood pressure lowering effect Effects 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 201000007637 bowel dysfunction Diseases 0.000 description 1
- 230000036471 bradycardia Effects 0.000 description 1
- 208000006218 bradycardia Diseases 0.000 description 1
- 230000005978 brain dysfunction Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000005792 cardiovascular activity Effects 0.000 description 1
- 230000007211 cardiovascular event Effects 0.000 description 1
- 230000009084 cardiovascular function Effects 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229960002896 clonidine Drugs 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007435 diagnostic evaluation Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009547 dual-energy X-ray absorptiometry Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 201000005206 focal segmental glomerulosclerosis Diseases 0.000 description 1
- 231100000854 focal segmental glomerulosclerosis Toxicity 0.000 description 1
- 230000000574 ganglionic effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229960000346 gliclazide Drugs 0.000 description 1
- 230000005182 global health Effects 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008798 inflammatory stress Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000013152 interventional procedure Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 230000004066 metabolic change Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- 230000027939 micturition Effects 0.000 description 1
- 229960003632 minoxidil Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 239000004081 narcotic agent Substances 0.000 description 1
- 210000000885 nephron Anatomy 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 230000007604 neuronal communication Effects 0.000 description 1
- 230000008062 neuronal firing Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 235000015816 nutrient absorption Nutrition 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008050 pain signaling Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 210000002970 posterior hypothalamus Anatomy 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 210000005215 presynaptic neuron Anatomy 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 201000001474 proteinuria Diseases 0.000 description 1
- 230000035485 pulse pressure Effects 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 239000003087 receptor blocking agent Substances 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008085 renal dysfunction Effects 0.000 description 1
- 238000012959 renal replacement therapy Methods 0.000 description 1
- 210000002796 renal vein Anatomy 0.000 description 1
- 239000002461 renin inhibitor Substances 0.000 description 1
- 229940086526 renin-inhibitors Drugs 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000021317 sensory perception Effects 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000021023 sodium intake Nutrition 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003451 thiazide diuretic agent Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4168—1,3-Diazoles having a nitrogen attached in position 2, e.g. clonidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/327—Applying electric currents by contact electrodes alternating or intermittent currents for enhancing the absorption properties of tissue, e.g. by electroporation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36057—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for stimulating afferent nerves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36114—Cardiac control, e.g. by vagal stimulation
- A61N1/36117—Cardiac control, e.g. by vagal stimulation for treating hypertension
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00434—Neural system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0212—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/326—Applying electric currents by contact electrodes alternating or intermittent currents for promoting growth of cells, e.g. bone cells
Definitions
- the technology disclosed in the present application generally relates to methods for therapeutic renal neuromodulation.
- Hypertension, heart failure, chronic kidney disease, renal failure (end stage renal disease), diabetes, insulin resistance, metabolic disorder, and other conditions associated with hyperactivity of the sympathetic nervous system represent a significant and growing global health issue.
- Current therapies for these conditions include non-pharmacological, pharmacological, and device-based approaches.
- the rates of control of blood pressure and the therapeutic efforts to prevent progression of heart failure and chronic kidney disease and their sequelae remain unsatisfactory.
- the reasons for this situation are manifold and include issues of non-compliance with prescribed therapy, heterogeneity in responses both in terms of efficacy and adverse event profile, and others, it is evident that alternative options are required to supplement the current therapeutic treatment regimes for these conditions.
- Reduction of sympathetic nerve activity via renal neuromodulation can reverse these processes.
- an energy field including and comprising an electric field, can initiate renal neuromodulation via denervation caused by irreversible electroporation, electrofusion, apoptosis, necrosis, ablation, thermal alteration, alteration of gene expression, or another suitable modality.
- FIG. 1 is a schematic illustration of a human neuron.
- FIG. 2 is a conceptual illustration of a human sympathetic nervous system (SNS).
- SNS human sympathetic nervous system
- FIG. 3 is an enlarged anatomic view of nerves innervating a left kidney to form a renal plexus surrounding the left renal artery.
- FIG. 4 is a conceptual illustration of a human body depicting neural efferent and afferent communication between the brain and kidneys.
- FIG. 5 is a conceptual illustration of a human renin-angiotensin-aldosterone system (RAAS).
- RAAS renin-angiotensin-aldosterone system
- FIG. 6 is a detailed anatomic view of a catheter-based treatment device positioned within a renal artery and configured for therapeutic renal neuromodulation.
- FIG. 7 is a diagram illustrating changes in blood pressure for patients with resistant essential hypertension who underwent therapeutic renal neuromodulation.
- FIG. 8 is a diagram illustrating changes in blood pressure for patients with resistant essential hypertension who underwent therapeutic renal neuromodulation compared to a control group.
- FIG. 9 is a graph illustrating changes in blood pressure and a renoprotective element for patients who underwent therapeutic renal neuromodulation.
- FIG. 10A is a graph illustrating changes in blood pressure for a patient who underwent therapeutic renal neuromodulation.
- FIG. 10B is a graph illustrating baseline MSNA for the patient of FIG. 10A .
- FIG. 100 is a graph illustrating 3-month MSNA for the patient of FIG. 10A .
- FIG. 10D is a graph illustrating 12-month MSNA for the patient of FIG. 10A .
- FIG. 11 is a diagram illustrating changes in fasting glucose, insulin, and C-peptide for selected patients after undergoing therapeutic renal neuromodulation.
- FIG. 12 is a diagram illustrating changes in HgA1c in a number of diabetic patients after undergoing therapeutic renal neuromodulation.
- FIG. 13 is a graph illustrating changes in blood pressure for patients who underwent therapeutic renal neuromodulation versus a control group.
- FIG. 14 is a diagram illustrating change in glucose tolerance for the patients and control group of FIG. 13 .
- FIG. 15 is a graph illustrating changes in blood pressure for patients who underwent therapeutic renal neuromodulation versus a control group.
- FIGS. 16A-16D show changes in fasting glucose ( FIG. 16A ), fasting insulin ( FIG. 16B ), fasting C-peptide ( FIG. 16C ) and HOMA-IR ( FIG. 16D ) for the patients and control group of FIG. 15 .
- FIG. 17 shows changes in clinical designation for the patients and control group of FIG. 15 .
- FIG. 18 is a diagram illustrating change in sleep apnea events/hour for 10 patients at baseline, 3 months and 6 months
- FIG. 19 is a graph showing changes in mean sitting office systolic blood pressure after 5 minutes of rest for patients who underwent therapeutic renal neuromodulation.
- FIG. 20 is a graph showing mean of 3 sitting office diastolic blood pressure measurements after 5 minutes of rest for patients who underwent therapeutic renal neuromodulation.
- FIG. 21 is a graph showing changes in a mean of 3 sitting office heart rate measurements after 5 minutes of rest for patients who underwent therapeutic renal neuromodulation.
- FIG. 22 is a graph showing effects on MSNA as assessed by microneurography for patients who underwent therapeutic renal neuromodulation.
- FIG. 23 is a graph showing the effects of bilateral renal denervation on body weight for patients who underwent therapeutic renal neuromodulation.
- FIG. 24 is a graph showing the effects on fasting plasma glucose for patients who underwent therapeutic renal neuromodulation.
- FIG. 25 is a graph of changes in insulin sensitivity for patients who underwent therapeutic renal neuromodulation.
- FIG. 26 is a graph of changes in measured cystatin C for patients who underwent therapeutic renal neuromodulation.
- FIG. 27 shows the changes at 12 weeks post-treatment in creatinine clearance over a 24 hour urine sampling for patients who underwent therapeutic renal neuromodulation.
- FIG. 28 shows changes in UACR for patients who underwent therapeutic renal neuromodulation.
- FIG. 29 shows changes in endothelial function for patients who underwent therapeutic renal neuromodulation.
- FIG. 30 shows a breakdown of the raw data related to endothelial function for each patient for patients who underwent therapeutic renal neuromodulation.
- FIG. 31A is a graph showing the office BP data for patients who underwent therapeutic renal neuromodulation out to 24 months.
- FIG. 31B is a graph showing the office BP for the patients of FIG. 31A with censored data for patients with increased hypertension pharmaceutical therapy.
- the present disclosure describes methods for therapeutic renal neuromodulation and associated systems and methods. Many specific details of certain embodiments of the disclosure are set forth in the following description and in FIGS. 1-28 to provide a thorough understanding of these embodiments. Well-known structures, systems, and methods often associated with the disclosed technologies have not been shown or described in detail to avoid unnecessarily obscuring the description of the various embodiments of the disclosure. In addition, those of ordinary skill in the relevant art will understand that additional embodiments may be practiced without several of the details described below.
- Section 1 focuses on the pertinent anatomy and physiology.
- Section 2 focuses on measuring sympathetic activity and associated techniques.
- Section 3 focuses on chronic sympathetic activation and its relationship to essential hypertension, congestive heart failure, chronic kidney disease, renal failure, insulin resistance, diabetes, metabolic disorder, obesity, and sleep apnea.
- Section 4 focuses on therapeutic renal neuromodulation to reduce central sympathetic drive and sympathetic neural activity in a manner that treats a patient for at least one of the aforementioned diseases.
- Each of the following sections describes several embodiments of the corresponding methods, structures, and techniques that are the focus of that particular section. Overall methods and systems in accordance with other embodiments of the disclosure can include any of a wide variety of combinations and variations of the following embodiments.
- the autonomic nervous system is comprised of the parasympathetic and sympathetic nervous systems. These systems work together to regulate visceral body functions including heart rate, blood pressure, respiration, digestion, body temperature, and urination.
- the ANS is always active at a basal level, primarily acting in an involuntary, reflexive manner to maintain homeostasis.
- the sympathetic and parasympathetic nervous systems involve networks of nerves connecting the brain, the spinal cord and the peripheral organs. These two systems regulate visceral body functions including respiration, cardiovascular activity, and energy balance.
- SNS sympathetic nervous system
- Activation of the sympathetic nervous system is typically associated with a “fight or flight” quick alarm or stress response that enables the body to perform strenuous physical activity, such as when fleeing from danger.
- the heart pumps more forcefully, the heart rate increases, blood is shunted from the GI tract to active muscles and the brain, and blood glucose increases to provide energy for increased cellular metabolism.
- Sympathetic drive is also a key regulator of the body's blood pressure and fluid balance, ensuring adequate blood supply for vital organs such as the brain when the body is fleeing from danger.
- the sympathetic nervous system is balanced by the functions of the “rest and digest” parasympathetic nervous system (PNS), which promotes nutrient absorption from the GI tract and energy storage. While the SNS responds within seconds to environmental triggers, some effects of the parasympathetic nervous system may not be seen for hours. Most visceral organs have both sympathetic and parasympathetic innervation, though one system can dominate control of a given organ.
- the response to activation of the SNS and PNS is both neuronally and hormonally mediated. The hormonal contribution comes from the adrenal gland, which is activated by the SNS and PNS to release hormones such as epinephrine (adrenaline) into the bloodstream that can amplify the body's response to the neural stimulation. Together, the functions of the sympathetic and parasympathetic nervous systems enable the body to respond to environmental stimuli in a graded fashion instead of simply on or off.
- the SNS is composed primarily of neurons.
- neurons 100 are composed of three parts: the cell body 102 where information is integrated, specialized projections 104 (i.e., dendrites) that bring information into the cell body 102 , and a single projection 106 (i.e., axon) that takes information away from the cell body.
- Information is passed between neurons electrochemically across synapses, small gaps between axons 106 and dendrites 104 .
- neurotransmitters 108 are released, cross the synapse, and bind to cell surface receptors at a post-synaptic neuron (not shown).
- An electric potential is generated in the post-synaptic dendrite and spreads to the cell body, where the signal is integrated.
- the signal is relayed to the next neuron (not shown) by generating an electrical potential that travels down the corresponding axon, activating release of neurotransmitters at the distal end of the axon into the next synapse.
- Axons are typically bundled together like the ropes of a cable; a large bundle can be visible to the naked eye and is often called a nerve fiber.
- a cluster of neurons and synapses is called a ganglion.
- Ganglions provide key relay points throughout the sympathetic nervous system. Although nerve signals may travel from one ganglia to another, many signals pass through only one ganglion.
- post-ganglionic neurons are those neurons that have their cell bodies in the ganglia and send axons directly out to the peripheral organs. All other neurons are termed pre-ganglionic neurons.
- FIG. 2 is a conceptual illustration of a human SNS illustrating how the brain communicates with the body via the SNA.
- the nerves comprising the SNS enable bidirectional signal communication between the brain, spinal cord, and nearly every organ system.
- signals from the periphery to the brain termed afferent signals, travel within one neuron and carry information primarily about temperature or pain.
- efferent signals are primarily transmitted by a two neuron system; the first neuron originates in the brain and spinal cord, exits at the mid-lower back at spinal levels T1-L2 (the sympathetic thoracolumbar outflow) and synapses in a ganglia.
- ganglia The most prominent ganglia are those found parallel to the vertebral column at spinal levels T1-L2. These are grouped together as the sympathetic trunk. Post-ganglionic nerves from the sympathetic trunk primarily regulate the abdominal and thoracic visceral organs. Other important ganglia of the SNS include the cervical ganglion (regulates organs in the head and thorax), the celiac ganglion, and the mesenteric ganglia (regulates abdominal organs). Post-ganglionic nerves then transmit the signal directly to the peripheral organs.
- Efferent neuronal signaling in the SNS is carried by two primary small molecule neurotransmitters: acetylcholine and norepinephrine. All preganglionic signals are mediated by acetylcholine, a chemical messenger that binds and activates cholinergic receptors on postganglionic neurons. Acetylcholine is primarily an activating neurotransmitter. In the brain, for example, acetylcholine improves attention, enhances sensory perceptions, and enhances memory and learning. Preganglionic release of acetylcholine stimulates postganglionic neurons, thereby promoting generation of electric potentials in the postganglionic neurons.
- noradrenaline noradrenaline
- Norepinephrine binds to adrenergic receptors to directly stimulate peripheral organs.
- SNS stimulation causes norepinephrine release into the blood, heightening the body's arousal and enhancing the SNS response.
- FIG. 3 is an enlarged anatomic view of nerves innervating a left kidney to form a renal plexus surrounding the left renal artery.
- Sympathetic communication between the CNS and the kidney is achieved via many neurons that travel from the sympathetic chain to innervate the kidney.
- Many of these nerves arise primarily from the celiac ganglion, the superior mesenteric ganglion, and the aorticorenal ganglion. From the ganglia, these fibers join together into a plexus of nerves that surround the renal artery. This is typically termed the renal plexus or renal nerve.
- the renal plexus or nerve is embedded within the adventitia (i.e., the outer wall) of the renal artery extending along the renal artery until it arrives at the substance of the kidney.
- adventitia i.e., the outer wall
- kidney vasculature and of the tubular structures nephrons
- the renal plexus carries both afferent and efferent signals.
- afferent signals increase with temperature, pain, decreased renal blood flow, and intra-renal pathologies such as kidney hypoxia or ischemia. They are also influenced by the chemical composition of the urine; small signaling molecules such as adenosine are released into the urine when the kidneys are hemodynamically (i.e. too much or too little blood flow) or metabolically stressed.
- Afferent signals are carried by several different neurotransmitters including substance P, a molecule well known to participate in pain signaling. Signals from one kidney impact the renal sympathetic outflow and the functioning of both that kidney and the opposite (contralateral) kidney and also affect the brain. Central integration of the afferent signals in the posterior hypothalamus of the brain and in the spinal cord causes increased central sympathetic outflow.
- Efferent renal nerve activity is stimulated by numerous inputs.
- afferent signals from one kidney can cause increased efferent activity in that kidney as well as the contralateral kidney. This latter effect is known as the renorenal reflex.
- most stimuli of central sympathetic outflow also increase efferent renal nerve activity. These stimuli include infection, inflammation, and acute stress, which release chemical mediators that can act directly on the brain to increase central sympathetic outflow.
- feedback mechanisms such as the baroreceptor reflex can increase central sympathetic outflow.
- Baroreceptor sensors in the carotid arteries of the neck are sensitive to blood pressure. A fall in blood pressure causes a corresponding fall in baroreceptor activity, which stimulates increased sympathetic outflow.
- the SNS plays a central role in blood pressure regulation. Blood pressure is a function of three main factors: (a) cardiac output (i.e., determined by the volume of blood pumped out of the heart per beat and the heart rate), (b) total blood volume, and (c) the resistance to flow in the blood vessels (i.e., how constricted or widened and stiff or flexible they are). Blood pressure can be simply conceptualized as analogous to the pressure in a garden hose; narrow hoses connected to a fire hydrant pumping large fluid volumes have high pressure.
- the SNS regulates all three of the factors that contribute to blood pressure, and can promote an acute state of elevated blood pressure that would be helpful in reacting to situations of high stress and/or danger.
- FIG. 4 is a conceptual illustration of a human body depicting neural efferent and afferent communication between the brain and kidneys.
- the sympathetic neural communication between the central nervous system and the heart, peripheral vasculature, and kidneys contribute to high blood pressure.
- heart muscle is innervated by sympathetic fibers
- activation of the SNS stimulation of the heart can increase contractility, including the rate and force of pumping, thereby increasing cardiac output.
- the smooth muscle that lies in the wall of peripheral blood vessels is also innervated by sympathetic fibers.
- Sympathetic activation causes contraction of smooth muscle, resulting in constriction of the peripheral vessels. This constriction effectively narrows the diameter of these peripheral blood vessels, thereby increasing their resistance to flow and raising blood pressure.
- neural stimulation of the kidney activates the renin-angiotensin-aldosterone system, a hormonal system that can increase fluid retention and further constrict blood vessel diameter.
- FIG. 5 is a conceptual illustration of a human renin-angiotensin-aldosterone system (RAAS).
- RAAS renin-angiotensin-aldosterone system
- the RAAS increases blood pressure and promotes fluid retention via the activity of multiple hormones and proteins.
- sympathetic neural signaling to the kidney and/or chemical signaling from specialized cells in the kidney induces the release of renin from the kidney.
- renin stimulates production of angiotensin II, a small protein released into the blood that directly causes blood vessels to constrict, thereby raising blood pressure.
- Angiotensin II also stimulates the adrenal glands to secrete aldosterone, a hormone that acts on the kidney to increase sodium and water retention. This fluid retention expands the blood volume, secondarily increasing blood pressure. As the blood pressure rises, efferent signaling to the RAAS falls, providing negative feed back to the system and preventing runaway high blood pressure levels.
- SNS activity is often measured using methods including microneurography or norepinephrine spillover.
- Microneurography is the more direct method of the two to measure the level of sympathetic activity. It involves insertion of an electrode into the nerve to measure directly the action potentials from axons of sympathetic nerves. The electrode picks up signals from all neurons in the nerve bundle. An increased number and frequency of action potentials correlates with higher sympathetic outflow in that nerve bundle. Because this method requires a macroscopic nerve bundle into which the electrode can be placed, it cannot be used to represent the sympathetic stimulation to whole organs, which are often innervated by multiple nerves arranged in a meshlike plexus. Nevertheless, this method is well suited for measurement of sympathetic stimulation to peripheral muscles, which are often innervated by a single identifiable nerve. When microneurography is used in this case, the technique and measurable quantity is often termed “muscle sympathetic nerve activity,” or MSNA.
- Measurement of norepinephrine spillover is a less direct method of estimating SNS activity, but can be used to aggregate SNS outflow to whole organs and in the body as a whole.
- This method involves measuring the levels of the neurotransmitter norepinephrine released at a target organ. Increased neuronal firing corresponds with increased release of the neurotransmitter norepinephrine, which then can be measured via arterial and venous sampling of norepinephrine (a radioisotope of norepinephrine is also commonly used).
- samples of blood from the renal artery can be measured for norepinephrine content and compared to the norepinephrine content in samples taken from the renal vein. Higher norepinephrine levels in the venous sample represent increased efferent sympathetic signaling to the kidney.
- Essential hypertension is commonly initiated and sustained by sympathetic nervous system overactivity. Indeed, it is thought that nearly 50% of all cases of essential hypertension have a neurogenic cause. Patients diagnosed with essential hypertension also have elevated heart rate, cardiac output and renovascular resistance (due to constriction of the vessels leading up to and within the kidney), all of which are consistent with elevated sympathetic drive. It is thought that both tonic overstimulation and impaired negative feedback contribute to chronic SNS overactivity. However, the mechanisms for these factors is not yet fully understood, though the actions of hormones and proteins such as angiotensin II, insulin, and leptin are thought to be major players. Deranged levels of these hormones are likely caused by a combination of genetic factors, metabolic stressors such as diet or toxin exposure, environmental factors such as stress and anxiety, and organ damage or dysfunction.
- Efferent renal sympathetic signaling as measured by norepinephrine spillover, is 2-3 times greater in patients with essential hypertension compared to normal patients. Persistent efferent signaling worsens hypertension, as it increases renal vascular resistance, reduces renal blood flow, and activates the RAAS. These effects would all contribute to further increasing SNS activity, exacerbating and perpetuating hypertension.
- anti-hypertension pharmacologic treatment is to break the cycle of sympathetic drive, hypertension and end organ damage.
- drugs include ACE inhibitors and angiotensin receptor blockers (ARBs) that block the RAAS, beta blockers that reduce renin release and heart contractility, diuretics that promote urine production to reduce the total fluid load on the heart, and less commonly, centrally acting sympatholytics such as clonidine and moxonidine.
- ARBs angiotensin receptor blockers
- beta blockers that reduce renin release and heart contractility
- diuretics that promote urine production to reduce the total fluid load on the heart
- centrally acting sympatholytics such as clonidine and moxonidine.
- These anti-hypertensive drugs have been shown to lower blood pressure, reduce patient hospitalizations, and improve patient mortality. Many of these drugs have also been shown to be renoprotective, limiting the progressive loss of renal function that commonly occurs with chronic hypertension.
- Resistant or refractory hypertension is defined as blood pressure that remains above goal in spite of the concurrent use of three antihypertensive agents of different classes or patients whose blood pressure is controlled but requires four or more medications to do so.
- kidney and backs up from the heart leading to the common symptoms seen with CHF including swelling of the legs, shortness of breath due to backup of blood into the lungs, and reduced ability to exercise as the heart fails to pump sufficient blood during periods of activity.
- Heart failure is often treated with therapies similar to those described above used to treat essential hypertension.
- ACE inhibitors, beta blockers, and diuretics are first line agents that have been shown to reduce mortality and hospitalizations.
- Chronic hypertension may also lead to chronic kidney disease, which can lead to renal failure.
- An initial insult such as high blood pressure can directly damage the kidney. The insult can initially cause impaired filtration from the kidney, and may ultimately lead to irreparable damage to the kidney.
- Initial kidney damage increases renal afferent signaling through accumulation of adenosine in the kidney.
- increased afferent activity can increase central sympathetic drive, thereby increasing efferent sympathetic signaling to the kidneys.
- fluid retention combined with persistent hypertension places higher filtration and reabsorption demands on both the remaining healthy kidney and the damaged kidney, thus exposing the damaged kidney to further damage and placing the remaining healthy kidney at high risk for damage.
- the progression of chronic kidney disease may lead to renal failure, also known as end stage renal disease (ESRD), which is characterized as the complete failure of the kidney to remove wastes or concentrate urine.
- ESRD end stage renal disease
- GFR Glomerular filtration rate
- Sympathetic overactivity is a hallmark of patients with chronic kidney disease and contributes to the development of ESRD, increasing with worsening kidney function. Without being bound by theory, it is believed that organ dysfunction, such as a failing or diseased kidney, may result in increased afferent neural signaling to the central nervous system which triggers and/or perpetuates activation of the SNS and increased central sympathetic drive. In support of this belief, studies have demonstrated that MSNA is higher in patients with ESRD compared to normal patients.
- the treatment of chronic kidney disease primarily involves preventing or slowing the progression of renal dysfunction and treatment of any other conditions such as hypertension or diabetes that may contribute to the worsening of kidney function.
- blood pressure control below 130/80 is the most effective single intervention to limit the progression of chronic kidney disease.
- Drugs such as ACE inhibitors and beta blockers have been shown to slow the progression of kidney damage while also controlling blood pressure.
- Central sympatholytic drugs such as moxonidine have also been investigated. In one such study, for example, moxonidine used as an add-on therapy in chronic renal failure patients was shown to stop the progression of renal failure, but to have limited effect on blood pressure. Data accordingly remains limited as to the efficacy of central sympatholytic drugs in chronic kidney disease and renal failure.
- sleep apnea is associated with increased central sympathetic drive and impaired baroreflex sensitivity.
- Sleep apneas are generally categorized as obstructive or central in origin.
- Central sleep apnea occurs when the brain's respiratory control centers are imbalanced during sleep and the brain, consequently, temporarily stops sending signals to the muscles that control breathing, thereby causing moments of stopped breathing during sleep.
- Obstructive sleep apnea is characterized by obstruction of the patient's airway caused by collapsing walls of soft tissue. Airway narrowing leading to obstructive sleep apnea is often seen in overweight or obese patients, who tend to have excess mass in their neck regions.
- the oxygen deprivation (hypoxia) resulting from sleep apnea can cause severe conditions associated with respiratory and cardiovascular function.
- obstructive sleep apnea is considered to be much more common than central sleep apnea
- many apneic episodes display both central and obstructive features.
- the hypoxia resulting from repetitive apneic episodes may cause activation of the SNS.
- the CNS responds to this hypoxia by elevating central sympathetic tone to increase perfusion to key organs, thereby causing elevations in blood pressure.
- elevated central sympathetic drive can result from sleep apnea, it may also contribute to the obesity and brain dysfunction that precipitate obstructive sleep apnea and central sleep apnea, respectively.
- SNS overactivity correlates with derangements in the metabolic homeostasis of the body, and can lead to metabolic syndrome, a combination of conditions that increases a person's risk for heart disease, stroke, and diabetes.
- the conditions that make up the metabolic syndrome include increased blood pressure, elevated insulin levels, central obesity, and abnormal cholesterol levels.
- Patients with diabetes mellitus have higher levels of total body norepinephrine spillover, suggesting that insulin resistance and central SNS overactivity are correlated.
- chronic sympathetic activity may be the driver of insulin resistance and metabolic syndrome.
- Vasoconstriction accompanying elevated circulating norepinephrine levels may deprive skeletal muscle from access to both glucose and insulin.
- skeletal muscle is responsible for a large percentage of total body glucose consumption and storage (in the form of glycogen).
- Sympathetic activity promotes release of glucose and fats into the blood, which then trigger higher insulin release in the blood.
- sympathetic drive promotes changes in the metabolic state of the peripheral muscles such that higher levels of glucose and insulin are required in order to achieve appropriate muscle response.
- renal neuromodulation e.g., via denervation of tissue containing renal nerves, may be valuable in the treatment of these diseases. More specifically, neuromodulation of afferent sensory nerves can reduce the systemic sympathetic drive through direct effect on the brain, thus reducing the sympathetic outflow to other organs such as the heart and the vasculature. Further, neuromodulation of efferent sympathetic nerves is expected to reduce inappropriate renin release, salt and water retention, and limit the progression of the aforementioned conditions.
- a method has been recently developed to selectively modulate the renal afferent and efferent sympathetic nerves that lie within and alongside the adventitia (i.e., outer wall) of the renal arteries. Modulation of such nerves may be achieved using a variety of techniques. For example, an energy field including and comprising an electric field can initiate renal neuromodulation via denervation caused by irreversible electroporation, electrofusion, apoptosis, necrosis, ablation, thermal alteration, alteration of gene expression, or another suitable modality.
- FIG. 6 is a detailed anatomic view of a catheter-based treatment device 200 positioned within a renal artery of a patient and configured for renal neuromodulation in accordance with one embodiment of the disclosure.
- the device 200 can be deployed using a conventional guide catheter or pre-curved renal guide catheter 202 .
- the device 200 can be introduced via the guide catheter 202 through the common femoral artery or, alternatively, through a brachial/radial approach, and advanced to the renal artery under guidance (e.g., fluoroscopic imaging guidance).
- a flexible, controllable elongated shaft 210 of the treatment device 200 carries a thermal heating element 220 , and thermal energy can be applied via the thermal heating element 220 to one or more target treatment sites along a length of the renal artery.
- the target treatment sites can be spaced longitudinally and rotationally along the length of the renal artery.
- Individual treatments can include, for example, ramped low power RF energy delivery (e.g., about 5 to 8 watts) for a selected period of time (e.g., two minutes). Blood flow through the renal artery can help minimize surface and/or endothelial injury to the target treatment sites. Further, focal ablations spaced apart from each other along the vessel allow for rapid healing.
- up to six treatments are applied along the length of the renal artery beginning from where the renal artery branches off the aorta and ending at the kidney itself. In other embodiments, however, a different number of treatments may be applied and the treatment sites may have a different arrangement relative to each other. After all the treatments are completed, the treatment device 200 is removed from the patient.
- Various embodiments of methods, apparatuses, and systems for performing renal neuromodulation are described in greater detail in U.S. patent application Ser. No. 12/545,648, filed Aug. 21, 2009, and Patent Cooperation Treaty (PCT) Application No. PCT/US09/69334, filed Dec. 22, 2009, both of which are incorporated herein by reference in their entireties.
- renal neuromodulation can be achieved via a pulsed electric field or intravascular electroporation.
- U.S. Pat. No. 6,978,174 describes neuromodulation via delivery of neuromodulatory agents.
- U.S. Pat. No. 7,620,451 describes neuromodulation via an intra-to-extravascular approach.
- therapeutic renal neuromodulation was performed on 70 patients diagnosed with resistant essential hypertension, wherein each patient had systolic blood pressure of at least 160 mm Hg despite taking at least three anti-hypertensive medications.
- the therapy was found to decrease blood pressure and central sympathetic drive in a significant majority of the patients.
- renal neuromodulation was found to lower systolic blood pressure by 18 mm Hg one month after treatment, and by 27 mm Hg at 12 months after treatment. This result is comparable in scale and more effective than what patients typically experience with the most common anti-hypertension pharmacologic drugs, which typically only lower systolic blood pressure by about 10 mm Hg when used alone. In the present study, 89% of the patients responded to therapy with more than a 10 mm Hg reduction of systolic blood pressure.
- renal neuromodulation or denervation is an effective method to reduce central sympathetic drive, renal sympathetic drive, and blood pressure to treat hypertension, particularly in patients that are resistant or refractory to pharmacological treatment.
- the data also suggests that the effectiveness of renal denervation is comparable and potentially superior to that of typical anti-hypertension pharmaceuticals when used alone to reduce systolic blood pressure levels.
- renal denervation had a durable effect on blood pressure as a significant decrease in blood pressure for more than 12 months after treatment was observed in most patients.
- anti-hypertensive medications are typically only effective when the medications are continued.
- therapeutic renal neuromodulation was assessed in a multicenter, prospective, randomized, controlled, clinical trial to demonstrate the effectiveness of catheter-based renal denervation for reducing blood pressure in patients with uncontrolled hypertension.
- Each patient had systolic blood pressure of at least 160 mm Hg (or ⁇ 150 with type II diabetes mellitus) despite taking at least three anti-hypertensive medications.
- the treatment group was found to have a significant reduction in blood pressure compared to the control group.
- FIG. 8 for example, at 6 months after treatment renal neuromodulation was found to reduce blood pressure by 32/12 mm Hg (SD 23/11) from 178/96 mm Hg (SD 18/16) at baseline (p ⁇ 0.0001 for systolic and diastolic blood pressure).
- the treatment group obtained a 33/11 mm Hg reduction in blood pressure compared to the control group (p ⁇ 0.0001) during the 6 month follow-up.
- catheter-based renal denervation is an effective method to reduce blood pressure in patients that are resistant or refractory to pharmacological treatment.
- LVMI left ventricular mass index
- the measured reduction in left ventricular mass indicates that renal neuromodulation/denervation therapy may assist in LVH regression, thereby providing a potential treatment for patients suffering from or at risk of diastolic heart failure.
- FIG. 9 provides a graphical depiction of the increased rate of decline in kidney function associated with increases in blood pressure. More specifically, FIG. 9 plots regression line 800 showing that as systolic blood pressure (SBP) increases, a patient's glomerular filtration rate reduces at a higher rate.
- SBP systolic blood pressure
- Reference points 802 indicate previous individual studies that have measured the relationship between blood pressure and rate of GFR decline.
- a treatment group of 42 patients with declining kidney function and an average systolic blood pressure of 177 mm Hg were treated with renal denervation.
- the regression line 800 predicted for this patient group a substantial rate of GFR decline (about ⁇ 12 mL/min annually), as indicated by reference point 804 at the lower right portion of the graph.
- a patient with mild chronic kidney disease (Stage 2) and also having the group's average systolic blood pressure of 177 mm Hg would likely be in kidney failure (Stage 5) within a few years.
- the treatment group exhibited a 26 mm Hg reduction in systolic blood pressure twelve months following renal denervation. Based on regression line 800 , this average reduction in blood pressure was expected to have reduced the average decline in kidney function from about ⁇ 12 mL/min to about ⁇ 8 mL/min. However, as shown by line 810 , the patients exhibited an average reduction in GFR of about ⁇ 2.7 mL/min, which represents a substantial improvement in kidney function. This improvement was well beyond what was to be expected based solely on the change in blood pressure.
- FIG. 10A shows a decrease in systolic and diastolic blood pressure for the patient at 3 months post-treatment.
- FIG. 10B-10D show MSNA for the same patient at baseline ( FIG. 10B ), 3 months ( FIG. 10C ), and 12 months ( FIG. 10D ) post-treatment.
- therapeutic renal neuromodulation may have a positive impact on the progression of insulin resistance and diabetes.
- the following provides a brief overview of the physiology associated with insulin resistance, and the results of a study conducted on several patients after undergoing renal neuromodulation showing significant improvements in insulin resistance and diabetic control.
- the simplest method to measure insulin resistance is by measuring blood glucose and blood insulin levels after an overnight fast. C-peptide, a byproduct of insulin production, is also measured as an indicator of insulin synthesis. Patients with more insulin resistance tend to have higher insulin levels even at normal fasting glucose levels.
- the homeostasis model assessment (HOMA) index was developed to linearly correlate with the level of insulin resistance. It is defined as the product of the fasting glucose and fasting insulin levels multiplied by a normalization constant. Patients with normal insulin sensitivity have a HOMA level of 1. Because the HOMA index is measured at a static timepoint when the patient is fasting, it reflects insulin sensitivity but provides little information about the rate of insulin secretion in response to a glucose load. Such a situation is more similar to physiologic normal insulin secretion.
- Insulin secretion in response to a glucose load is typically measured using the oral glucose tolerance test (OGTT).
- OGTT oral glucose tolerance test
- the patient drinks a sugary glucose solution and blood insulin and glucose levels are monitored over 2 hours.
- Normal patients are able to efficiently store blood glucose, while patients with diabetes or the metabolic syndrome commonly continue to have high blood glucose levels 2 hours after the glucose load.
- the level of insulin resistance can be estimated.
- FIG. 11 in one particular example it has been shown that therapeutic renal neuromodulation in three pre-diabetic patients caused the levels of fasting blood glucose to fall from the pre-diabetic range (i.e., 100-125 mg/dl) back into the normal range (i.e., 70-100 mg/dl).
- insulin and C-peptide levels for the three patients also fell at least 50% three months after the renal denervation procedure. These results suggest improved insulin sensitivity.
- HgA1c a form of the protein hemoglobin to which glucose molecules are chemically attached.
- Hemoglobin is a ubiquitous protein found in the bloodstream. Exposure to elevated levels of glucose (such as is typically found in diabetes patients) results in a chemical reaction where the glucose molecules attach to the hemoglobin.
- Levels of HgA1c represent a patient's glucose control over the last 2-3 months. Levels above 7%, for example, indicate poorly controlled diabetes. Patients who take metformin, a common anti-diabetic medication, to control their diabetes are typically able to decrease their HgA1c level by about 1%.
- FIG. 12 illustrates data from seven diabetic patients with baseline HgA1c greater than 6%. After undergoing renal denervation, the patients experienced a 0.6% decrease in HgA1c one month after the procedure, followed by a 1.4% decrease in HgA1c three months after the procedure.
- HgA1c renal neuromodulation or denervation is expected to improve insulin resistance and diabetic control, and limit the long term progression of diabetes.
- a comparable improvement in HgA1c is not typically observed with anti-hypertensive medications, including sympatholytics such as moxonidine.
- Reduction in HgA1c is correlated with reduced progression of diabetes and the metabolic syndrome.
- Lower HgA1c levels are also directly associated with reduced risk of kidney failure and cardiovascular events and death.
- FIGS. 13 and 14 and Tables 1-3 show results from a 36 patient study, including 25 patients who underwent therapeutic renal denervation and 11 control patients. These patients were followed at 1, 3, and 6 months after the procedure for indicators related to diabetes, insulin resistance and impaired glucose tolerance. In particular, patients selected for the study had office blood pressure ⁇ 60 mmHg despite ⁇ 3 anti-hypertensive medications and eGFR (MDRD formula) ⁇ 45 mL/min/1.73 m 2 . Key exclusion criteria were known secondary cause of hypertension, Type I diabetes mellitus or renovascular abnormalities, e.g., significant renal artery stenosis, prior renal stenting or angioplasty, dual renal arteries.
- Type I diabetes mellitus or renovascular abnormalities e.g., significant renal artery stenosis, prior renal stenting or angioplasty, dual renal arteries.
- FIGS. 15-17 and Tables 4-5 show results from a study of 50 patients with therapy-resistant hypertension.
- the study investigated the effect of catheter-based renal sympathetic denervation on glucose metabolism and blood pressure control in patients with drug-resistant hypertension.
- Eligible patients were older than 18 years and had an office blood pressure of 160 mmHg (150 mmHg for type 2 diabetics) or more, despite being treated with at least 3 antihypertensive drugs (including one diuretic), with no changes in medication for a minimum of 2 weeks prior to enrolment. Patients were included if they were not pregnant and had a glomerular filtration rate ⁇ 45 mL/min/1.73 m 2 (using the MDRD formula).
- renal artery anatomy ineligible for treatment main renal arteries ⁇ 4 mm in diameter or ⁇ 20 mm in length, haemodynamically or anatomically significant renal artery, abnormality or stenosis in either renal artery, a history of prior renal artery intervention including balloon angioplasty or stenting, multiple main renal arteries in either kidney), type 1 diabetes, myocardial infarction, unstable angina pectoris, cerebrovascular accident within the last 6 months, or haemodynamically significant valvular disease were excluded from the study.
- Renal angiograms were performed via femoral access to confirm anatomic eligibility.
- the treatment catheter (Symplicity® by Ardian, Mountain View, Calif., USA) was introduced into each renal artery using a guiding catheter. Up to 6 ablations at 8 watts for 2 minutes each were performed in both renal arteries. Treatments were delivered from the first distal main renal artery bifurcation to the ostium proximally and were spaced longitudinally and rotationally under fluoroscopic guidance. Catheter tip impedance and temperature were constantly monitored, and radio frequency energy delivery was regulated according to a predetermined algorithm.
- the glucose values are expressed in milligrams per deciliter, insulin as international microunits per milliliter, C-peptide as nanograms per milliliter, and HbA1c as %.
- FPG and FPI are fasting glucose plasma glucose and fasting plasma insulin, respectively.
- Patients were interviewed as to whether they had taken their complete medication. Office blood pressure readings were taken in a seated position after 5 minutes of rest according to the standard joint national committee VII guidelines. Averages of the triplicate measures were used. Physicians were instructed not to change medications except when medically required. Patients were instructed to remain adherent to their prescribed drugs and defined doses at each visit.
- SBP systolic blood pressure
- DBP diastolic blood pressure
- HR heart rate
- OGTT oral glucose tolerance test (performed at baseline and 3 months).
- HOMA-IR Homeostasis model assessment.
- IS QUCIKI Quantitative Insulin Sensitivity Check Index.
- SBP serum sitting office systolic blood pressure
- DBP mean sitting office diastolic blood pressure
- the results of the OGTT were graded into 3 categories: normal (fasting glucose ⁇ 110 mg/dl, 120-min glucose ⁇ 140 mg/dl), impaired fasting glycaemia (fasting glucose ⁇ 110 mg/dl, 120-min glucose ⁇ 140 mg/dl), impaired glucose tolerance (fasting glucose ⁇ 126 mg/dl, 120-min glucose ⁇ 140 mg/dl), and diabetes mellitus (fasting glucose ⁇ 126 mg/dl, 120-min glucose ⁇ 200 mg/dl).
- HbA1c haemoglobin
- Renal denervation leading to a reduction of central sympathetic drive is believed to counteract some of the deleterious effects of obesity-related increase in central sympathetic drive. It is also believed that renal denervation can improve an individual's ability to process glucose. Such a result could positively impact obesity itself.
- Renal denervation may also be a viable treatment option for sleep apnea. Since obstructive sleep apnea is related to obesity, reductions in central sympathetic tone via renal denervation may be able to treat obesity-mediated obstructive sleep apnea as well as the downstream consequences involving the RAAS. Additionally, modulation of the SNS via renal denervation might also modulate aspects of the central nervous system responsible for central sleep apnea.
- results from a study of 10 patients, selected from a population of 13 patients, with defined resistant hypertension and taking stable anti-hypertensive medication regimes Changes in the apnea hypopnea index (AHI) after therapeutic renal denervation were observed, and these findings were associated with changes in ambulatory blood pressure monitoring.
- eGFR estimated glomerular filtration rate
- Baseline measurements consisted of vital signs, physical examination, review of medications, basic blood chemistries (including serum creatinine), ambulatory blood pressure measurements (ABPM), full night attended polysomnography (Phillips-Respironics Inc., Alice 5 System, Murrysville, Pa.).
- the patients were assessed at a 3-month and 6-month follow-up, which consisted of office blood-pressure measurement, physical examination, surveillance for adverse events, blood chemistries (including serum creatinine), other vital signs, ABPM and full night attended polysomnography.
- the mean systolic blood pressure was reduced at 3 months by 22 mm Hg (SD 15) and at 6 months by 32 mm Hg (SD 10) compared to baseline (p ⁇ 0.01 for 3 and 6 months).
- FIG. 18 In 7 of 10 patients an improvement in AHI was observed at 3 months after renal denervation, with an improvement in an additional case at 6 months. It should be noted that in all 3 patients with severe OSA before denervation (2 were receiving CPAP treatment), an improvement in sleep apnea indices was observed.
- Renal denervation leading to a reduction of central sympathetic drive may improve and/or alter a number of physiological parameters, including sympathetic, metabolic, and renal parameters.
- FIGS. 19-30 show a variety of physiological parameters for three patients at baseline and 12 weeks post-denervation treatment.
- FIG. 19 shows changes in mean sitting office systolic blood pressure after 5 minutes of rest.
- FIG. 20 shows changes in a mean of 3 sitting office diastolic blood pressure measurements after 5 minutes of rest.
- FIG. 21 shows changes in a mean of 3 sitting office heart rate measurements after 5 minutes of rest.
- FIG. 22 shows effects on MSNA as assessed by microneurography.
- FIG. 23 shows the effects of bilateral renal denervation of body weight
- FIG. 24 shows the effects on fasting plasma glucose.
- FIG. 25 is a graph of changes in insulin sensitivity.
- FIG. 26 is a graph of changes in measured cystatin C.
- FIG. 27 shows the changes at 12 weeks post-treatment in creatinine clearance over a 24 hour urine sampling.
- FIG. 28 shows changes in UACR.
- FIG. 29 shows changes in endothelial function
- FIG. 30 shows a breakdown of the raw data related to endothelial function for each patient.
- Table 7 is a summary of results for a euglycaemic hyperinsulinaemic clamp test for the three patients at 3 months post-treatment. This test provides indices of insulin sensitivity
- renal neuromodulation is expected to be a safe, effective, and durable method to reduce blood pressure, promote insulin sensitivity, and promote kidney function.
- the safety of renal neuromodulation was studied by imaging of the renal arteries in 38 patients by CT or MR angiography, a standard visualization technique which can identify changes in the vessel geometry.
- embodiments of the disclosed renal neuromodulation procedures disabled the renal nerves through the blood vessel wall, no significant changes were noted in the affected blood vessel walls within 6 months of the procedures.
- Such anatomical abnormalities included multiple main renal arteries, short length main renal artery and hemodynamically significant renal artery stenosis. Patients had to be over 18 years of age.
- the primary efficacy endpoint of the study was change in office blood pressure. Patients had office blood pressure measurements performed in accordance with Joint National Committee (JNC) VII guidelines. Measurements were performed sitting, in triplicate, and then averaged.
- the primary safety assessments were based on physical examination, basic blood chemistries and anatomical assessment of the renal vasculature. Renal evaluations were performed via angiography in initial patients (at 14-30 days post procedure) and via renal MR angiography, CT angiography, or duplex scan at 6 months. Physicians could alter background blood pressure-lowering medication at any time for clinical reasons but were encouraged not to do so unless considered absolutely necessary, in order to carefully assess the effect of the procedure per se.
- the denervation procedure itself involved an endovascular catheter-based approach to disrupt renal sympathetic nerves using radiofrequency (RF) ablation applied via an electrode at the catheter tip.
- RF radiofrequency
- the central arterial tree was accessed via the femoral artery.
- the lumen of the main renal artery was catheterized.
- the Symplicity® Catheter (Ardian, Inc., Mountain View, Calif., USA) was connected to a RF generator and multiple RF treatments were applied in a manner devised to maximize renal sympathetic nerve disruption within the individual artery.
- the first RF treatment was applied in the distal renal artery, the catheter was then retracted by 5 mm and rotated circumferentially before the energy was re-applied.
- anti-HTN medications 5.0 ⁇ 1.4 Diuretic 95% Aldosterone blocker 25% ACE inhibitor or ARB 90% Direct renin inhibitor 14% ⁇ -blocker 81% Calcium-channel blocker 75% Centrally acting sympatholytic 35% Vasodilator 18% Alpha-1 blocker 20% CAD: coronary artery disease; eGFR: estimated glomerular filtration rate; ACE: angiotensin converting enzyme; ARB: angiotensin receptor blocker.
- the procedure was without complication in 97% (149/153) of patients.
- One patient experienced the renal artery dissection upon placement of the treatment catheter before RF energy delivery was delivered in that artery.
- the dissection was treated with renal artery stenting without any subsequent complication or delay in hospital discharge.
- Three other patients developed a pseudo-aneurysm/haematoma in the femoral access site, all were treated without any subsequent complication.
- the procedure was performed with standard techniques for femoral artery access using commercially available introducers.
- follow-up renal artery imaging was performed to evaluate structural abnormalities that may have occurred post-procedure in the treated renal arteries. Some minor focal renal artery irregularities due to minor spasm and/or edema were noted immediately following RF energy delivery. None were considered flow limiting at procedure termination. Of the short-term follow-up angiography performed in the first 20 patients no evidence of renal artery stenosis or abnormalities were noted in treated arteries. In the 81 patients with 6-month MRA, CTA, or duplex evaluation, no irregularities or stenoses at any treatment site were identified that were not present on pre-treatment angiography.
- One patient had a 6-month post-procedure CTA that identified progression of a pre-existing renal artery stenosis in the proximal portion of the renal artery. This stenosis was successfully stented; the location of the stenosis was quite proximal and well away from sites of RF energy application.
- Bilateral flank pain was reported by a single patient. Extensive diagnostic evaluation did not identify a specific cause for this pain. It did respond to ibuprofen over a number of months, but eventually completely resolved. Three other patients reported intermittent or transient flank or kidney pain; all resolved with or without analgesic intervention.
- the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the words “herein,” “above,” and “below” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Radiology & Medical Imaging (AREA)
- Neurology (AREA)
- Cardiology (AREA)
- Neurosurgery (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Pathology (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Urology & Nephrology (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- The present application claims the benefit of U.S. Provisional Application No. 61/385,879, filed on Sep. 23, 2010, and U.S. Provisional Application No. 61/307,633, filed on Feb. 24, 2010. The present application is also a Continuation-in-Part application of U.S. patent application Ser. No. 11/145,122, filed on Jun. 3, 2005, which is a Continuation application of U.S. patent application Ser. No. 10/408,665, filed on Apr. 8, 2003, now U.S. Pat. No. 7,162,303, which claims the benefit of U.S. Provisional Application Nos. (a) 60/370,190, filed on Apr. 8, 2002, (b) 60/415,575, filed on Oct. 3, 2002, and (c) 60/442,970, filed on Jan. 29, 2003.
- All publications, including issued patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- The technology disclosed in the present application generally relates to methods for therapeutic renal neuromodulation.
- Hypertension, heart failure, chronic kidney disease, renal failure (end stage renal disease), diabetes, insulin resistance, metabolic disorder, and other conditions associated with hyperactivity of the sympathetic nervous system represent a significant and growing global health issue. Current therapies for these conditions include non-pharmacological, pharmacological, and device-based approaches. Despite this variety of treatment options the rates of control of blood pressure and the therapeutic efforts to prevent progression of heart failure and chronic kidney disease and their sequelae remain unsatisfactory. Although the reasons for this situation are manifold and include issues of non-compliance with prescribed therapy, heterogeneity in responses both in terms of efficacy and adverse event profile, and others, it is evident that alternative options are required to supplement the current therapeutic treatment regimes for these conditions.
- Reduction of sympathetic nerve activity via renal neuromodulation can reverse these processes. Ardian of Mountain View, Calif., has discovered that an energy field, including and comprising an electric field, can initiate renal neuromodulation via denervation caused by irreversible electroporation, electrofusion, apoptosis, necrosis, ablation, thermal alteration, alteration of gene expression, or another suitable modality.
- In the drawings, the sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
-
FIG. 1 is a schematic illustration of a human neuron. -
FIG. 2 is a conceptual illustration of a human sympathetic nervous system (SNS). -
FIG. 3 is an enlarged anatomic view of nerves innervating a left kidney to form a renal plexus surrounding the left renal artery. -
FIG. 4 is a conceptual illustration of a human body depicting neural efferent and afferent communication between the brain and kidneys. -
FIG. 5 is a conceptual illustration of a human renin-angiotensin-aldosterone system (RAAS). -
FIG. 6 is a detailed anatomic view of a catheter-based treatment device positioned within a renal artery and configured for therapeutic renal neuromodulation. -
FIG. 7 is a diagram illustrating changes in blood pressure for patients with resistant essential hypertension who underwent therapeutic renal neuromodulation. -
FIG. 8 is a diagram illustrating changes in blood pressure for patients with resistant essential hypertension who underwent therapeutic renal neuromodulation compared to a control group. -
FIG. 9 is a graph illustrating changes in blood pressure and a renoprotective element for patients who underwent therapeutic renal neuromodulation. -
FIG. 10A is a graph illustrating changes in blood pressure for a patient who underwent therapeutic renal neuromodulation. -
FIG. 10B is a graph illustrating baseline MSNA for the patient ofFIG. 10A . -
FIG. 100 is a graph illustrating 3-month MSNA for the patient ofFIG. 10A . -
FIG. 10D is a graph illustrating 12-month MSNA for the patient ofFIG. 10A . -
FIG. 11 is a diagram illustrating changes in fasting glucose, insulin, and C-peptide for selected patients after undergoing therapeutic renal neuromodulation. -
FIG. 12 is a diagram illustrating changes in HgA1c in a number of diabetic patients after undergoing therapeutic renal neuromodulation. -
FIG. 13 is a graph illustrating changes in blood pressure for patients who underwent therapeutic renal neuromodulation versus a control group. -
FIG. 14 is a diagram illustrating change in glucose tolerance for the patients and control group ofFIG. 13 . -
FIG. 15 is a graph illustrating changes in blood pressure for patients who underwent therapeutic renal neuromodulation versus a control group. -
FIGS. 16A-16D show changes in fasting glucose (FIG. 16A ), fasting insulin (FIG. 16B ), fasting C-peptide (FIG. 16C ) and HOMA-IR (FIG. 16D ) for the patients and control group ofFIG. 15 . -
FIG. 17 shows changes in clinical designation for the patients and control group ofFIG. 15 . -
FIG. 18 is a diagram illustrating change in sleep apnea events/hour for 10 patients at baseline, 3 months and 6 months -
FIG. 19 is a graph showing changes in mean sitting office systolic blood pressure after 5 minutes of rest for patients who underwent therapeutic renal neuromodulation. -
FIG. 20 is a graph showing mean of 3 sitting office diastolic blood pressure measurements after 5 minutes of rest for patients who underwent therapeutic renal neuromodulation. -
FIG. 21 is a graph showing changes in a mean of 3 sitting office heart rate measurements after 5 minutes of rest for patients who underwent therapeutic renal neuromodulation. -
FIG. 22 is a graph showing effects on MSNA as assessed by microneurography for patients who underwent therapeutic renal neuromodulation. -
FIG. 23 is a graph showing the effects of bilateral renal denervation on body weight for patients who underwent therapeutic renal neuromodulation. -
FIG. 24 is a graph showing the effects on fasting plasma glucose for patients who underwent therapeutic renal neuromodulation. -
FIG. 25 is a graph of changes in insulin sensitivity for patients who underwent therapeutic renal neuromodulation. -
FIG. 26 is a graph of changes in measured cystatin C for patients who underwent therapeutic renal neuromodulation. -
FIG. 27 shows the changes at 12 weeks post-treatment in creatinine clearance over a 24 hour urine sampling for patients who underwent therapeutic renal neuromodulation. -
FIG. 28 shows changes in UACR for patients who underwent therapeutic renal neuromodulation. -
FIG. 29 shows changes in endothelial function for patients who underwent therapeutic renal neuromodulation. -
FIG. 30 shows a breakdown of the raw data related to endothelial function for each patient for patients who underwent therapeutic renal neuromodulation. -
FIG. 31A is a graph showing the office BP data for patients who underwent therapeutic renal neuromodulation out to 24 months. -
FIG. 31B is a graph showing the office BP for the patients ofFIG. 31A with censored data for patients with increased hypertension pharmaceutical therapy. - The present disclosure describes methods for therapeutic renal neuromodulation and associated systems and methods. Many specific details of certain embodiments of the disclosure are set forth in the following description and in
FIGS. 1-28 to provide a thorough understanding of these embodiments. Well-known structures, systems, and methods often associated with the disclosed technologies have not been shown or described in detail to avoid unnecessarily obscuring the description of the various embodiments of the disclosure. In addition, those of ordinary skill in the relevant art will understand that additional embodiments may be practiced without several of the details described below. - The following description includes four sections, each focused on a particular aspect of methods for therapeutic renal neuromodulation.
Section 1 focuses on the pertinent anatomy and physiology.Section 2 focuses on measuring sympathetic activity and associated techniques.Section 3 focuses on chronic sympathetic activation and its relationship to essential hypertension, congestive heart failure, chronic kidney disease, renal failure, insulin resistance, diabetes, metabolic disorder, obesity, and sleep apnea.Section 4 focuses on therapeutic renal neuromodulation to reduce central sympathetic drive and sympathetic neural activity in a manner that treats a patient for at least one of the aforementioned diseases. Each of the following sections describes several embodiments of the corresponding methods, structures, and techniques that are the focus of that particular section. Overall methods and systems in accordance with other embodiments of the disclosure can include any of a wide variety of combinations and variations of the following embodiments. - A. Autonomic Nervous System
- The autonomic nervous system (ANS) is comprised of the parasympathetic and sympathetic nervous systems. These systems work together to regulate visceral body functions including heart rate, blood pressure, respiration, digestion, body temperature, and urination. The ANS is always active at a basal level, primarily acting in an involuntary, reflexive manner to maintain homeostasis. The sympathetic and parasympathetic nervous systems involve networks of nerves connecting the brain, the spinal cord and the peripheral organs. These two systems regulate visceral body functions including respiration, cardiovascular activity, and energy balance.
- B. Sympathetic Nervous System
- Activation of the sympathetic nervous system (SNS) is typically associated with a “fight or flight” quick alarm or stress response that enables the body to perform strenuous physical activity, such as when fleeing from danger. Within seconds, the heart pumps more forcefully, the heart rate increases, blood is shunted from the GI tract to active muscles and the brain, and blood glucose increases to provide energy for increased cellular metabolism. Sympathetic drive is also a key regulator of the body's blood pressure and fluid balance, ensuring adequate blood supply for vital organs such as the brain when the body is fleeing from danger.
- The sympathetic nervous system is balanced by the functions of the “rest and digest” parasympathetic nervous system (PNS), which promotes nutrient absorption from the GI tract and energy storage. While the SNS responds within seconds to environmental triggers, some effects of the parasympathetic nervous system may not be seen for hours. Most visceral organs have both sympathetic and parasympathetic innervation, though one system can dominate control of a given organ. The response to activation of the SNS and PNS is both neuronally and hormonally mediated. The hormonal contribution comes from the adrenal gland, which is activated by the SNS and PNS to release hormones such as epinephrine (adrenaline) into the bloodstream that can amplify the body's response to the neural stimulation. Together, the functions of the sympathetic and parasympathetic nervous systems enable the body to respond to environmental stimuli in a graded fashion instead of simply on or off.
- The SNS is composed primarily of neurons. As shown in
FIG. 1 , for example,neurons 100 are composed of three parts: thecell body 102 where information is integrated, specialized projections 104 (i.e., dendrites) that bring information into thecell body 102, and a single projection 106 (i.e., axon) that takes information away from the cell body. Information is passed between neurons electrochemically across synapses, small gaps betweenaxons 106 anddendrites 104. At a distal end of the pre-synaptic neuron'saxon 106, chemicals termedneurotransmitters 108 are released, cross the synapse, and bind to cell surface receptors at a post-synaptic neuron (not shown). An electric potential is generated in the post-synaptic dendrite and spreads to the cell body, where the signal is integrated. The signal is relayed to the next neuron (not shown) by generating an electrical potential that travels down the corresponding axon, activating release of neurotransmitters at the distal end of the axon into the next synapse. - Axons are typically bundled together like the ropes of a cable; a large bundle can be visible to the naked eye and is often called a nerve fiber. A cluster of neurons and synapses is called a ganglion. Ganglions provide key relay points throughout the sympathetic nervous system. Although nerve signals may travel from one ganglia to another, many signals pass through only one ganglion. When considering the general ANS architecture, post-ganglionic neurons are those neurons that have their cell bodies in the ganglia and send axons directly out to the peripheral organs. All other neurons are termed pre-ganglionic neurons.
-
FIG. 2 is a conceptual illustration of a human SNS illustrating how the brain communicates with the body via the SNA. The nerves comprising the SNS enable bidirectional signal communication between the brain, spinal cord, and nearly every organ system. For example, signals from the periphery to the brain, termed afferent signals, travel within one neuron and carry information primarily about temperature or pain. In the opposite direction, efferent signals are primarily transmitted by a two neuron system; the first neuron originates in the brain and spinal cord, exits at the mid-lower back at spinal levels T1-L2 (the sympathetic thoracolumbar outflow) and synapses in a ganglia. The most prominent ganglia are those found parallel to the vertebral column at spinal levels T1-L2. These are grouped together as the sympathetic trunk. Post-ganglionic nerves from the sympathetic trunk primarily regulate the abdominal and thoracic visceral organs. Other important ganglia of the SNS include the cervical ganglion (regulates organs in the head and thorax), the celiac ganglion, and the mesenteric ganglia (regulates abdominal organs). Post-ganglionic nerves then transmit the signal directly to the peripheral organs. - Efferent neuronal signaling in the SNS is carried by two primary small molecule neurotransmitters: acetylcholine and norepinephrine. All preganglionic signals are mediated by acetylcholine, a chemical messenger that binds and activates cholinergic receptors on postganglionic neurons. Acetylcholine is primarily an activating neurotransmitter. In the brain, for example, acetylcholine improves attention, enhances sensory perceptions, and enhances memory and learning. Preganglionic release of acetylcholine stimulates postganglionic neurons, thereby promoting generation of electric potentials in the postganglionic neurons. Once stimulated, postganglionic neurons primarily use the neurotransmitter noradrenaline (norepinephrine). Norepinephrine binds to adrenergic receptors to directly stimulate peripheral organs. In the adrenal gland, SNS stimulation causes norepinephrine release into the blood, heightening the body's arousal and enhancing the SNS response.
-
FIG. 3 is an enlarged anatomic view of nerves innervating a left kidney to form a renal plexus surrounding the left renal artery. Sympathetic communication between the CNS and the kidney is achieved via many neurons that travel from the sympathetic chain to innervate the kidney. Many of these nerves arise primarily from the celiac ganglion, the superior mesenteric ganglion, and the aorticorenal ganglion. From the ganglia, these fibers join together into a plexus of nerves that surround the renal artery. This is typically termed the renal plexus or renal nerve. The renal plexus or nerve is embedded within the adventitia (i.e., the outer wall) of the renal artery extending along the renal artery until it arrives at the substance of the kidney. There is also rich innervation of the kidney vasculature and of the tubular structures (nephrons) that comprise the filtering and concentrating functions of the kidney. - The renal plexus carries both afferent and efferent signals. As mentioned previously, afferent signals increase with temperature, pain, decreased renal blood flow, and intra-renal pathologies such as kidney hypoxia or ischemia. They are also influenced by the chemical composition of the urine; small signaling molecules such as adenosine are released into the urine when the kidneys are hemodynamically (i.e. too much or too little blood flow) or metabolically stressed. Afferent signals are carried by several different neurotransmitters including substance P, a molecule well known to participate in pain signaling. Signals from one kidney impact the renal sympathetic outflow and the functioning of both that kidney and the opposite (contralateral) kidney and also affect the brain. Central integration of the afferent signals in the posterior hypothalamus of the brain and in the spinal cord causes increased central sympathetic outflow.
- Efferent renal nerve activity is stimulated by numerous inputs. As mentioned above, afferent signals from one kidney can cause increased efferent activity in that kidney as well as the contralateral kidney. This latter effect is known as the renorenal reflex. In addition, most stimuli of central sympathetic outflow also increase efferent renal nerve activity. These stimuli include infection, inflammation, and acute stress, which release chemical mediators that can act directly on the brain to increase central sympathetic outflow. In addition, feedback mechanisms such as the baroreceptor reflex can increase central sympathetic outflow. Baroreceptor sensors in the carotid arteries of the neck are sensitive to blood pressure. A fall in blood pressure causes a corresponding fall in baroreceptor activity, which stimulates increased sympathetic outflow.
- C. SNS and Blood Pressure Regulation
- The SNS plays a central role in blood pressure regulation. Blood pressure is a function of three main factors: (a) cardiac output (i.e., determined by the volume of blood pumped out of the heart per beat and the heart rate), (b) total blood volume, and (c) the resistance to flow in the blood vessels (i.e., how constricted or widened and stiff or flexible they are). Blood pressure can be simply conceptualized as analogous to the pressure in a garden hose; narrow hoses connected to a fire hydrant pumping large fluid volumes have high pressure. The SNS regulates all three of the factors that contribute to blood pressure, and can promote an acute state of elevated blood pressure that would be helpful in reacting to situations of high stress and/or danger.
-
FIG. 4 is a conceptual illustration of a human body depicting neural efferent and afferent communication between the brain and kidneys. As shown inFIG. 4 , the sympathetic neural communication between the central nervous system and the heart, peripheral vasculature, and kidneys contribute to high blood pressure. For example, since heart muscle is innervated by sympathetic fibers, activation of the SNS stimulation of the heart can increase contractility, including the rate and force of pumping, thereby increasing cardiac output. The smooth muscle that lies in the wall of peripheral blood vessels is also innervated by sympathetic fibers. Sympathetic activation causes contraction of smooth muscle, resulting in constriction of the peripheral vessels. This constriction effectively narrows the diameter of these peripheral blood vessels, thereby increasing their resistance to flow and raising blood pressure. As described below, neural stimulation of the kidney activates the renin-angiotensin-aldosterone system, a hormonal system that can increase fluid retention and further constrict blood vessel diameter. - Efferent renal sympathetic outflow activates the renin-angiotensin-aldosterone system.
FIG. 5 , for example, is a conceptual illustration of a human renin-angiotensin-aldosterone system (RAAS). The RAAS increases blood pressure and promotes fluid retention via the activity of multiple hormones and proteins. First, sympathetic neural signaling to the kidney and/or chemical signaling from specialized cells in the kidney induces the release of renin from the kidney. In turn, renin stimulates production of angiotensin II, a small protein released into the blood that directly causes blood vessels to constrict, thereby raising blood pressure. Angiotensin II also stimulates the adrenal glands to secrete aldosterone, a hormone that acts on the kidney to increase sodium and water retention. This fluid retention expands the blood volume, secondarily increasing blood pressure. As the blood pressure rises, efferent signaling to the RAAS falls, providing negative feed back to the system and preventing runaway high blood pressure levels. - SNS activity is often measured using methods including microneurography or norepinephrine spillover. Microneurography is the more direct method of the two to measure the level of sympathetic activity. It involves insertion of an electrode into the nerve to measure directly the action potentials from axons of sympathetic nerves. The electrode picks up signals from all neurons in the nerve bundle. An increased number and frequency of action potentials correlates with higher sympathetic outflow in that nerve bundle. Because this method requires a macroscopic nerve bundle into which the electrode can be placed, it cannot be used to represent the sympathetic stimulation to whole organs, which are often innervated by multiple nerves arranged in a meshlike plexus. Nevertheless, this method is well suited for measurement of sympathetic stimulation to peripheral muscles, which are often innervated by a single identifiable nerve. When microneurography is used in this case, the technique and measurable quantity is often termed “muscle sympathetic nerve activity,” or MSNA.
- Measurement of norepinephrine spillover is a less direct method of estimating SNS activity, but can be used to aggregate SNS outflow to whole organs and in the body as a whole. This method involves measuring the levels of the neurotransmitter norepinephrine released at a target organ. Increased neuronal firing corresponds with increased release of the neurotransmitter norepinephrine, which then can be measured via arterial and venous sampling of norepinephrine (a radioisotope of norepinephrine is also commonly used). For example, samples of blood from the renal artery can be measured for norepinephrine content and compared to the norepinephrine content in samples taken from the renal vein. Higher norepinephrine levels in the venous sample represent increased efferent sympathetic signaling to the kidney.
- Overall sympathetic activity is estimated by measuring norepinephrine levels in the central veins draining from the body into the heart, termed “whole body norepinephrine levels.” It can be especially useful to measure norepinephrine spillover in specific organs as sympathetic outflow is non-uniform and can vary significantly to different organs.
- While acute activation of the SNS is an appropriate response to maintaining survival, chronic sympathetic activation is a maladaptive response. Without being bound by theory, it is thought that sensory afferent signals originating from the kidneys are often major contributors to initiate and sustain elevated central sympathetic outflow. With chronic stimulation, the body sets a new homeostasis where higher SNS outflow is the norm. This new homeostasis, however, is harmful to the body. Malfunction of the renal sympathetic nervous system and chronic sympathetic activation play a key role in the development and progression of diseases such as essential hypertension, chronic kidney disease, heart failure, insulin resistance and diabetes, among others. As described below in greater detail, derangement of end organs drives further SNS overactivity, contributing to a vicious cycle of SNS overactivity, hypertension, and end organ damage.
- A. Chronic SNS Activity in Essential Hypertension
- Essential hypertension is commonly initiated and sustained by sympathetic nervous system overactivity. Indeed, it is thought that nearly 50% of all cases of essential hypertension have a neurogenic cause. Patients diagnosed with essential hypertension also have elevated heart rate, cardiac output and renovascular resistance (due to constriction of the vessels leading up to and within the kidney), all of which are consistent with elevated sympathetic drive. It is thought that both tonic overstimulation and impaired negative feedback contribute to chronic SNS overactivity. However, the mechanisms for these factors is not yet fully understood, though the actions of hormones and proteins such as angiotensin II, insulin, and leptin are thought to be major players. Deranged levels of these hormones are likely caused by a combination of genetic factors, metabolic stressors such as diet or toxin exposure, environmental factors such as stress and anxiety, and organ damage or dysfunction.
- In addition to increased central sympathetic drive, the renal sympathetic nerves specifically play a disproportionately larger role in the pathogenesis of essential hypertension. Efferent renal sympathetic signaling, as measured by norepinephrine spillover, is 2-3 times greater in patients with essential hypertension compared to normal patients. Persistent efferent signaling worsens hypertension, as it increases renal vascular resistance, reduces renal blood flow, and activates the RAAS. These effects would all contribute to further increasing SNS activity, exacerbating and perpetuating hypertension.
- The cornerstone of anti-hypertension pharmacologic treatment is to break the cycle of sympathetic drive, hypertension and end organ damage. These drugs include ACE inhibitors and angiotensin receptor blockers (ARBs) that block the RAAS, beta blockers that reduce renin release and heart contractility, diuretics that promote urine production to reduce the total fluid load on the heart, and less commonly, centrally acting sympatholytics such as clonidine and moxonidine. These anti-hypertensive drugs have been shown to lower blood pressure, reduce patient hospitalizations, and improve patient mortality. Many of these drugs have also been shown to be renoprotective, limiting the progressive loss of renal function that commonly occurs with chronic hypertension. Despite the efficacy of pharmacological treatment, significant limitations exist with even the most current strategies. Some of these drawbacks, for example, include adverse effects, poor compliance, and the cost and complexity of ongoing follow up care.
- The drawbacks of pharmaceutical intervention have created a classification of patients who are obtaining treatment, but are not able to manage their blood pressure to target. It is estimated that 40% of the patients on hypertensive medications are “treated but uncontrolled,” with blood pressure levels in excess of 140 systolic and 90 diastolic. Failure to control high blood pressure is attributed to several factors, including poor adherence to the therapeutic plan, being overweight, volume overload due to high sodium intake, and undiscovered secondary causes of hypertension. For example, poor adherence to the therapeutic plan may be due to a patient's lack of discipline, frustration with medication side effects (e.g., impotence), or both. Additional challenges faced in addressing this epidemic are lack of access to regular health care and a disproportionate incidence of hypertension among racial and ethnic minorities.
- Patients who are unable to achieve an adequate blood pressure reduction from lifestyle change and are resistant to drug therapy have no other means within modern medicine for bringing their blood pressure within control. Resistant or refractory hypertension is defined as blood pressure that remains above goal in spite of the concurrent use of three antihypertensive agents of different classes or patients whose blood pressure is controlled but requires four or more medications to do so.
- Given the challenges faced by many patients in treating their hypertension with pharmacology, some have sought treatment via surgical intervention. More radical surgical methods to cut the thoracic, abdominal or pelvic sympathetic nerves at the level of the sympathetic chain has also been shown to be effective in reducing levels of essential hypertension. Such procedures, however, are highly invasive and associated with high perioperative morbidity and mortality, including bowel, bladder and erectile dysfunction and severe hypotension when patients stood up abruptly. Given the considerable collateral damage mentioned above, such surgical procedures are no longer performed.
- B. Chronic SNS Activity in Congestive Heart Failure (CHF)
- Many patients with essential hypertension progress to congestive heart failure, a condition where the heart's efficiency decreases as the heart fails to pump sufficient blood out to the body's other organs. As with hypertension, SNS overdrive contributes to the development and progression of CHF. Norepinephrine spillover from the kidney and heart to the venous plasma is even higher in CHF patients compared to those with essential hypertension. Chronic SNS stimulation overworks the heart, both directly as the heart increases its output and indirectly as a constricted vasculature presents a higher resistance for the heart to pump against. As the heart strains to pump more blood, left ventricular mass increases and cardiac remodeling occurs. Cardiac remodeling results in a heterogenous sympathetic activation of the heart which further disrupts the synchrony of the heart contraction. Thus, remodeling initially helps increase the pumping of the heart but ultimately diminishes the efficiency of the heart. Decrease in function of the left ventricle further activates the SNS and the RAAS, driving the vicious cycle that leads from hypertension to CHF.
- Further, renal sympathetic activation worsens the progression of CHF. As CHF worsens, fluid is retained by the kidney and backs up from the heart, leading to the common symptoms seen with CHF including swelling of the legs, shortness of breath due to backup of blood into the lungs, and reduced ability to exercise as the heart fails to pump sufficient blood during periods of activity.
- Heart failure is often treated with therapies similar to those described above used to treat essential hypertension. For example, ACE inhibitors, beta blockers, and diuretics are first line agents that have been shown to reduce mortality and hospitalizations.
- C. Chronic SNS Activity in Chronic Kidney Disease and Renal Failure
- Chronic hypertension may also lead to chronic kidney disease, which can lead to renal failure. An initial insult such as high blood pressure can directly damage the kidney. The insult can initially cause impaired filtration from the kidney, and may ultimately lead to irreparable damage to the kidney. Initial kidney damage increases renal afferent signaling through accumulation of adenosine in the kidney. As mentioned above, increased afferent activity can increase central sympathetic drive, thereby increasing efferent sympathetic signaling to the kidneys. This generally leads to activation of the RAAS and sodium and fluid retention. However, fluid retention combined with persistent hypertension places higher filtration and reabsorption demands on both the remaining healthy kidney and the damaged kidney, thus exposing the damaged kidney to further damage and placing the remaining healthy kidney at high risk for damage. The progression of chronic kidney disease may lead to renal failure, also known as end stage renal disease (ESRD), which is characterized as the complete failure of the kidney to remove wastes or concentrate urine.
- Glomerular filtration rate (GFR), the rate at which the kidney filters blood, is commonly used to quantify kidney function and, consequently, the extent of kidney disease in a patient. Individuals with normal kidney function exhibit a GFR of at least 90 mL/min with no evidence of kidney damage. The severity of chronic kidney disease is generally characterized by several stages. For example, patients with
stage 1 chronic kidney disease (CKD1) have a GFR of 90 mL/min or higher and also show evidence of kidney damage such as proteinuria (i.e., protein in the urine). Stage 2 (CKD2) is characterized by a GFR of 60 to 89 mL/min. In patients with moderate kidney disease, or Stage 3 (CKD3), the GFR is usually around 30 to 59 mL/min. Stage 4 (CKD4) is considered severe, with GFR between 15 and 20 mL/min. A GFR below 15 mL/min indicates that the patient has ESRD and is in complete kidney failure (CKD5). - Sympathetic overactivity is a hallmark of patients with chronic kidney disease and contributes to the development of ESRD, increasing with worsening kidney function. Without being bound by theory, it is believed that organ dysfunction, such as a failing or diseased kidney, may result in increased afferent neural signaling to the central nervous system which triggers and/or perpetuates activation of the SNS and increased central sympathetic drive. In support of this belief, studies have demonstrated that MSNA is higher in patients with ESRD compared to normal patients.
- The treatment of chronic kidney disease primarily involves preventing or slowing the progression of renal dysfunction and treatment of any other conditions such as hypertension or diabetes that may contribute to the worsening of kidney function. In patients with hypertension, blood pressure control below 130/80 is the most effective single intervention to limit the progression of chronic kidney disease. Drugs such as ACE inhibitors and beta blockers have been shown to slow the progression of kidney damage while also controlling blood pressure. Central sympatholytic drugs such as moxonidine have also been investigated. In one such study, for example, moxonidine used as an add-on therapy in chronic renal failure patients was shown to stop the progression of renal failure, but to have limited effect on blood pressure. Data accordingly remains limited as to the efficacy of central sympatholytic drugs in chronic kidney disease and renal failure.
- D. Chronic SNS Activity in Obesity and Sleep Apnea
- It has been generally shown that obese individuals are more sympathetically activated. Without being bound by theory, it is believed that sympathetic activation in obesity is at least partially mediated by increased levels of insulin, leptin, and angiotensin II, and decreased levels of adiponectin. Sleep apnea also frequently accompanies obesity and has been shown to increase sympathetic and renal sympathetic activity. A state of sympathetic overactivity can also be accompanied by altered perfusion of skeletal muscle and the liver, both of which are important in glucose handling and glycogen storage.
- Without being bound by theory, it is also generally believed that sleep apnea is associated with increased central sympathetic drive and impaired baroreflex sensitivity. Sleep apneas are generally categorized as obstructive or central in origin. Central sleep apnea occurs when the brain's respiratory control centers are imbalanced during sleep and the brain, consequently, temporarily stops sending signals to the muscles that control breathing, thereby causing moments of stopped breathing during sleep. Obstructive sleep apnea is characterized by obstruction of the patient's airway caused by collapsing walls of soft tissue. Airway narrowing leading to obstructive sleep apnea is often seen in overweight or obese patients, who tend to have excess mass in their neck regions. The oxygen deprivation (hypoxia) resulting from sleep apnea can cause severe conditions associated with respiratory and cardiovascular function.
- Although obstructive sleep apnea is considered to be much more common than central sleep apnea, many apneic episodes display both central and obstructive features. The hypoxia resulting from repetitive apneic episodes may cause activation of the SNS. More specifically, the CNS responds to this hypoxia by elevating central sympathetic tone to increase perfusion to key organs, thereby causing elevations in blood pressure. Although elevated central sympathetic drive can result from sleep apnea, it may also contribute to the obesity and brain dysfunction that precipitate obstructive sleep apnea and central sleep apnea, respectively.
- E. Chronic SNS Activity in Insulin Resistance, Diabetes, and Metabolic Disorder
- SNS overactivity correlates with derangements in the metabolic homeostasis of the body, and can lead to metabolic syndrome, a combination of conditions that increases a person's risk for heart disease, stroke, and diabetes. The conditions that make up the metabolic syndrome include increased blood pressure, elevated insulin levels, central obesity, and abnormal cholesterol levels. Patients with diabetes mellitus have higher levels of total body norepinephrine spillover, suggesting that insulin resistance and central SNS overactivity are correlated.
- A vicious cycle exists whereby insulin resistance promotes increased SNS activity, which in turn promotes increased insulin levels and further insulin resistance. It is not fully understood, however, which initiates the progression of disease. Infusion of insulin to acutely elevate insulin levels results in an increase in overall sympathetic outflow, as measured directly in muscle sympathetic nerves. This is thought to occur by several mechanisms. First, insulin acts directly on the brain to increase sympathetic drive. Insulin also decreases the breakdown of norepinephrine, increasing signaling by the sympathetic nervous system. Further, insulin dilates the peripheral blood vessels, causing an initial drop in central blood pressure. This is then compensated for by an increase in sympathetic outflow to increase the central blood pressure.
- Alternatively, chronic sympathetic activity may be the driver of insulin resistance and metabolic syndrome. Vasoconstriction accompanying elevated circulating norepinephrine levels may deprive skeletal muscle from access to both glucose and insulin. Under normal conditions, skeletal muscle is responsible for a large percentage of total body glucose consumption and storage (in the form of glycogen). Sympathetic activity, however, promotes release of glucose and fats into the blood, which then trigger higher insulin release in the blood. Further, sympathetic drive promotes changes in the metabolic state of the peripheral muscles such that higher levels of glucose and insulin are required in order to achieve appropriate muscle response.
- The physiology described above suggests an integral role between central sympathetic activity and the renal nerves in the development of several clinical conditions, including hypertension, metabolic syndrome, diabetes, insulin resistance, left ventricular hypertrophy, chronic and end stage renal disease, and/or heart failure. It is accordingly expected that renal neuromodulation e.g., via denervation of tissue containing renal nerves, may be valuable in the treatment of these diseases. More specifically, neuromodulation of afferent sensory nerves can reduce the systemic sympathetic drive through direct effect on the brain, thus reducing the sympathetic outflow to other organs such as the heart and the vasculature. Further, neuromodulation of efferent sympathetic nerves is expected to reduce inappropriate renin release, salt and water retention, and limit the progression of the aforementioned conditions.
- A method has been recently developed to selectively modulate the renal afferent and efferent sympathetic nerves that lie within and alongside the adventitia (i.e., outer wall) of the renal arteries. Modulation of such nerves may be achieved using a variety of techniques. For example, an energy field including and comprising an electric field can initiate renal neuromodulation via denervation caused by irreversible electroporation, electrofusion, apoptosis, necrosis, ablation, thermal alteration, alteration of gene expression, or another suitable modality.
- Several embodiments of this procedure involve discrete low-dose radiofrequency ablation of the target nerves via a radiofrequency (RF) emitting catheter placed on the inside wall of the renal artery.
FIG. 6 , for example, is a detailed anatomic view of a catheter-basedtreatment device 200 positioned within a renal artery of a patient and configured for renal neuromodulation in accordance with one embodiment of the disclosure. Thedevice 200 can be deployed using a conventional guide catheter or pre-curvedrenal guide catheter 202. Thedevice 200 can be introduced via theguide catheter 202 through the common femoral artery or, alternatively, through a brachial/radial approach, and advanced to the renal artery under guidance (e.g., fluoroscopic imaging guidance). - A flexible, controllable
elongated shaft 210 of thetreatment device 200 carries athermal heating element 220, and thermal energy can be applied via thethermal heating element 220 to one or more target treatment sites along a length of the renal artery. The target treatment sites can be spaced longitudinally and rotationally along the length of the renal artery. Individual treatments can include, for example, ramped low power RF energy delivery (e.g., about 5 to 8 watts) for a selected period of time (e.g., two minutes). Blood flow through the renal artery can help minimize surface and/or endothelial injury to the target treatment sites. Further, focal ablations spaced apart from each other along the vessel allow for rapid healing. In one embodiment, up to six treatments are applied along the length of the renal artery beginning from where the renal artery branches off the aorta and ending at the kidney itself. In other embodiments, however, a different number of treatments may be applied and the treatment sites may have a different arrangement relative to each other. After all the treatments are completed, thetreatment device 200 is removed from the patient. Various embodiments of methods, apparatuses, and systems for performing renal neuromodulation are described in greater detail in U.S. patent application Ser. No. 12/545,648, filed Aug. 21, 2009, and Patent Cooperation Treaty (PCT) Application No. PCT/US09/69334, filed Dec. 22, 2009, both of which are incorporated herein by reference in their entireties. - Other techniques or approaches for renal neuromodulation may also be administered to achieve the therapeutic benefits described herein. For example renal neuromodulation can be achieved via a pulsed electric field or intravascular electroporation. In still another example, U.S. Pat. No. 6,978,174 describes neuromodulation via delivery of neuromodulatory agents. In yet another example, U.S. Pat. No. 7,620,451 describes neuromodulation via an intra-to-extravascular approach. These patent references are incorporated herein by reference in their entireties.
- A. Therapeutic Renal Neuromodulation in the Treatment of Hypertension
- In one particular example, therapeutic renal neuromodulation was performed on 70 patients diagnosed with resistant essential hypertension, wherein each patient had systolic blood pressure of at least 160 mm Hg despite taking at least three anti-hypertensive medications. Without being bound by theory, the therapy was found to decrease blood pressure and central sympathetic drive in a significant majority of the patients. Referring to
FIG. 7 , for example, renal neuromodulation was found to lower systolic blood pressure by 18 mm Hg one month after treatment, and by 27 mm Hg at 12 months after treatment. This result is comparable in scale and more effective than what patients typically experience with the most common anti-hypertension pharmacologic drugs, which typically only lower systolic blood pressure by about 10 mm Hg when used alone. In the present study, 89% of the patients responded to therapy with more than a 10 mm Hg reduction of systolic blood pressure. - Measurements of norepinephrine spillover, as described above, taken in a subset of these patients confirmed a decrease in renal norepinephrine spillover from the kidney by 47%, indicating decreased sympathetic drive in the kidney. Whole-body norepinephrine levels (i.e., a measure of “total” sympathetic activity), fell by nearly 50% after renal nerve ablation. Measurement of muscle sympathetic nerve activity showed a drop of 66% over 6 months, further supporting the conclusion that total sympathetic drive was reduced by the renal denervation procedure.
- These initial measurements suggest that renal neuromodulation or denervation is an effective method to reduce central sympathetic drive, renal sympathetic drive, and blood pressure to treat hypertension, particularly in patients that are resistant or refractory to pharmacological treatment. The data also suggests that the effectiveness of renal denervation is comparable and potentially superior to that of typical anti-hypertension pharmaceuticals when used alone to reduce systolic blood pressure levels. As further illustrated in
FIG. 7 , renal denervation had a durable effect on blood pressure as a significant decrease in blood pressure for more than 12 months after treatment was observed in most patients. In contrast with these results associated with renal neuromodulation, anti-hypertensive medications are typically only effective when the medications are continued. Further, initial animal studies suggested that ablated nerves would regenerate and re-innervate the ablated region, and possibly limit the effect and durability of the renal denervation procedure on central hypertension. Such re-innervation, however, was not observed in humans. As illustrated inFIG. 7 , the treatment has exhibited significant durability, with measured blood pressures for many of the patients remaining below initial levels at 12 months following procedure. - In another example, therapeutic renal neuromodulation was assessed in a multicenter, prospective, randomized, controlled, clinical trial to demonstrate the effectiveness of catheter-based renal denervation for reducing blood pressure in patients with uncontrolled hypertension. 100 patients were randomized to a treatment with renal denervation (n=49) vs. control (n=51). Each patient had systolic blood pressure of at least 160 mm Hg (or ≧150 with type II diabetes mellitus) despite taking at least three anti-hypertensive medications.
- Without being bound by theory, the treatment group was found to have a significant reduction in blood pressure compared to the control group. Referring to
FIG. 8 , for example, at 6 months after treatment renal neuromodulation was found to reduce blood pressure by 32/12 mm Hg (SD 23/11) from 178/96 mm Hg (SD 18/16) at baseline (p<0.0001 for systolic and diastolic blood pressure). In comparison, the control group changed by 1/0 mm Hg (SD 21/10) from 178/97 mm Hg (SD 17/16) at baseline (p=0.77 for systolic blood pressure, p=0.83 for diastolic blood pressure). Therefore, the treatment group obtained a 33/11 mm Hg reduction in blood pressure compared to the control group (p<0.0001) during the 6 month follow-up. This larger, randomized, controlled trial supports the conclusions of the previous study that catheter-based renal denervation is an effective method to reduce blood pressure in patients that are resistant or refractory to pharmacological treatment. - B. Therapeutic Renal Neuromodulation in the Treatment of Congestive Heart Failure (CHF)
- As previously described, congestive heart failure may be associated with elevated SNS and hypertension. The present inventors have discovered that therapeutic renal denervation may attenuate elevated central sympathetic tone, reduce hypertension, and have a beneficial effect on the heart which may reduce or stop the progression to CHF. Twelve patients diagnosed with resistant essential hypertension were treated with therapeutic renal denervation and their hearts were imaged with MRI to assess left ventricular mass index (LVMI). LVMI is a method of quantifying Left Ventricular Hypertrophy, or the enlargement of the left ventricle, which is an indication of the progression toward CHF. In this study LVMI was reduced after six months from 78.4 to 62.1 g/m2 (−21%, p=0.044). This indicates that the wall thickness of the muscle of the left ventricle decreased, likely due to decreased pumping effort resulting from lower blood pressure and improved central sympathetic tone. The measured reduction in left ventricular mass indicates that renal neuromodulation/denervation therapy may assist in LVH regression, thereby providing a potential treatment for patients suffering from or at risk of diastolic heart failure.
- C. Therapeutic Renal Neuromodulation in the Treatment of Chronic Kidney Disease and Renal Failure
- As described previously, it is well known that chronic high blood pressure precipitates declining kidney function. It is also understood that worsening hypertension will increase the rate of decline of kidney function.
FIG. 9 provides a graphical depiction of the increased rate of decline in kidney function associated with increases in blood pressure. More specifically,FIG. 9 plots regression line 800 showing that as systolic blood pressure (SBP) increases, a patient's glomerular filtration rate reduces at a higher rate. - Referring to
FIG. 9 , the present inventors have discovered that therapeutic renal denervation also resulted in a renoprotective benefit beyond that which is accountable for by the decrease in blood pressure.Reference points 802 indicate previous individual studies that have measured the relationship between blood pressure and rate of GFR decline. In the present study, a treatment group of 42 patients with declining kidney function and an average systolic blood pressure of 177 mm Hg were treated with renal denervation. Theregression line 800 predicted for this patient group a substantial rate of GFR decline (about −12 mL/min annually), as indicated byreference point 804 at the lower right portion of the graph. To put this in context, a patient with mild chronic kidney disease (Stage 2) and also having the group's average systolic blood pressure of 177 mm Hg would likely be in kidney failure (Stage 5) within a few years. - The treatment group exhibited a 26 mm Hg reduction in systolic blood pressure twelve months following renal denervation. Based on
regression line 800, this average reduction in blood pressure was expected to have reduced the average decline in kidney function from about −12 mL/min to about −8 mL/min. However, as shown byline 810, the patients exhibited an average reduction in GFR of about −2.7 mL/min, which represents a substantial improvement in kidney function. This improvement was well beyond what was to be expected based solely on the change in blood pressure. - This somewhat surprising renoprotective benefit can be partially explained by the effect of renal denervation on the RAAS system. In particular, norepinepherine spillover studies have shown that blood renin levels are approximately halved after renal denervation. This can be thought of as a result of the direct reduction of efferent nerve activity, which influences activation of the RAAS system. Use of anti-hypertensive pharmaceuticals such as ACE inhibitors can sometimes present a similar benefit due to their impact on the RAAS system. The cause of this renoprotective effect is not well understood but is thought to be related to metabolic changes in the RAAS induced by the ACE inhibitors direct effect on this hormonal system.
- Additional results from an ESRD patient show improvements in blood pressure and other physiological parameters after renal denervation. In particular, a 37-year-old male with ESRD due to focal segmental glomerulosclerosis underwent bilateral renal denervation. The patient was on renal replacement therapy in addition to 5 anti-hypertension drugs.
FIG. 10A shows a decrease in systolic and diastolic blood pressure for the patient at 3 months post-treatment.FIG. 10B-10D show MSNA for the same patient at baseline (FIG. 10B ), 3 months (FIG. 10C ), and 12 months (FIG. 10D ) post-treatment. - D. Therapeutic Renal Neuromodulation in the Treatment of Insulin Resistance, Diabetes, and Metabolic Syndrome
- The present inventors have also further discovered that therapeutic renal neuromodulation may have a positive impact on the progression of insulin resistance and diabetes. The following provides a brief overview of the physiology associated with insulin resistance, and the results of a study conducted on several patients after undergoing renal neuromodulation showing significant improvements in insulin resistance and diabetic control.
- The simplest method to measure insulin resistance is by measuring blood glucose and blood insulin levels after an overnight fast. C-peptide, a byproduct of insulin production, is also measured as an indicator of insulin synthesis. Patients with more insulin resistance tend to have higher insulin levels even at normal fasting glucose levels. The homeostasis model assessment (HOMA) index was developed to linearly correlate with the level of insulin resistance. It is defined as the product of the fasting glucose and fasting insulin levels multiplied by a normalization constant. Patients with normal insulin sensitivity have a HOMA level of 1. Because the HOMA index is measured at a static timepoint when the patient is fasting, it reflects insulin sensitivity but provides little information about the rate of insulin secretion in response to a glucose load. Such a situation is more similar to physiologic normal insulin secretion.
- Insulin secretion in response to a glucose load is typically measured using the oral glucose tolerance test (OGTT). In this test, the patient drinks a sugary glucose solution and blood insulin and glucose levels are monitored over 2 hours. Normal patients are able to efficiently store blood glucose, while patients with diabetes or the metabolic syndrome commonly continue to have high
blood glucose levels 2 hours after the glucose load. Using the data from the OGTT, the level of insulin resistance can be estimated. - Referring to
FIG. 11 , in one particular example it has been shown that therapeutic renal neuromodulation in three pre-diabetic patients caused the levels of fasting blood glucose to fall from the pre-diabetic range (i.e., 100-125 mg/dl) back into the normal range (i.e., 70-100 mg/dl). As further shown inFIG. 11 , insulin and C-peptide levels for the three patients also fell at least 50% three months after the renal denervation procedure. These results suggest improved insulin sensitivity. In addition, the patients' blood glucose levels measured two hours after OGTT fell about 20-54 mg/d, indicating reduced glucose tolerance. - Diabetes control is typically quantified by measurement of HgA1c, a form of the protein hemoglobin to which glucose molecules are chemically attached. Hemoglobin is a ubiquitous protein found in the bloodstream. Exposure to elevated levels of glucose (such as is typically found in diabetes patients) results in a chemical reaction where the glucose molecules attach to the hemoglobin. Levels of HgA1c represent a patient's glucose control over the last 2-3 months. Levels above 7%, for example, indicate poorly controlled diabetes. Patients who take metformin, a common anti-diabetic medication, to control their diabetes are typically able to decrease their HgA1c level by about 1%.
- As shown in
FIG. 12 , however, patients who underwent therapeutic renal neuromodulation presented significant reductions in levels of HgA1c. In particular,FIG. 12 illustrates data from seven diabetic patients with baseline HgA1c greater than 6%. After undergoing renal denervation, the patients experienced a 0.6% decrease in HgA1c one month after the procedure, followed by a 1.4% decrease in HgA1c three months after the procedure. - The studies disclosed herein indicate that renal neuromodulation or denervation is expected to improve insulin resistance and diabetic control, and limit the long term progression of diabetes. A comparable improvement in HgA1c is not typically observed with anti-hypertensive medications, including sympatholytics such as moxonidine. Reduction in HgA1c is correlated with reduced progression of diabetes and the metabolic syndrome. Lower HgA1c levels are also directly associated with reduced risk of kidney failure and cardiovascular events and death.
-
FIGS. 13 and 14 and Tables 1-3 show results from a 36 patient study, including 25 patients who underwent therapeutic renal denervation and 11 control patients. These patients were followed at 1, 3, and 6 months after the procedure for indicators related to diabetes, insulin resistance and impaired glucose tolerance. In particular, patients selected for the study had office blood pressure ≧60 mmHg despite ≧3 anti-hypertensive medications and eGFR (MDRD formula) ≧45 mL/min/1.73 m2. Key exclusion criteria were known secondary cause of hypertension, Type I diabetes mellitus or renovascular abnormalities, e.g., significant renal artery stenosis, prior renal stenting or angioplasty, dual renal arteries. Patient characteristics were as follows: n=36 (11 control), age 56.9±10 years, 5.6±1.4 antihypertensive medications, RR 178/94±16/13 mmHg, HR 71±14 bpm, BMI 31.4±5.5 kg/m2,Type 2 diabetes on medication, n=15. Renal denervation was performed via catheter-based RF ablation in the renal artery. Median procedure time was 46 minutes and the procedure included ≦6 RF ablations of up to 2 minutes/ablation at 8 W. No detectable vascular complications were found after 3 and 6 months post-procedure. Of the patients in thetreatment group 0 of 25 (0%) exhibited a progression of diabetic status (i.e. either progression from glucose intolerance to diabetic or from normal to glucose intolerant), while 2 of 11 (18%) patients in the control group demonstrated a progression of diabetic status in 6 months. Conversely, 4 of 25 (16%) of patients in the treatment group exhibited a reversal of diabetic status (i.e. from glucose intolerant to normal, or from diabetic to glucose intolerant) while 0 of 11 (0%) of the control group demonstrated a reversal. -
TABLE 1 Blood pressure reduction after renal denervation. Treatment group SBP (mmHg) DBP (mmHg) Baseline (25) 180 ± 14 97 ± 5 1 month (25) 157 ± 14* 87 ± 11* 3 months (25) 155 ± 20* 86 ± 11* *significant reduction (p < 0.05) compared to baseline -
TABLE 2 Renal denervation reduces fasting glucose. Treatment group Control group Glucose (mg/dl) Glucose (mg/dl) Baseline (25/11) 118 ± 20 120 ± 22 1 month (25/11) 110 ± 14* 132 ± 43 3 months (25/11) 106 ± 12* 121 ± 21 6 months (25/11) 105 ± 18* 119 ± 25 *significant reduction (p < 0.05) compared to baseline -
TABLE 3 Renal denervation improves glucose metabolism Glucose C-peptide Treatment group (mg/dl) Insulin (mU/l) (μg/l) HOMA-IR Baseline (25) 118 ± 20 20.7 ± 11.8 6.1 ± 3.6 6.1 ± 4.3 1 month (25) 110 ± 14* 12.9 ± 7.3* 3.3 ± 1.5* 3.5 ± 1.8* 3 months (25) 106 ± 12* 11.1 ± 4.8* 3.1 ± 1.1* 2.9 ± 1.3* 6 months (25) 105 ± 18* 10.5 ± 4.6 3.2 ± 1.1 2.7 ± 1.4 *significant reduction (p < 0.05) compared to baseline HOmeostasisModelAssessment-InsulinResistance (HOMA-IR) = (FPI × FPG)/405 -
FIGS. 15-17 and Tables 4-5 show results from a study of 50 patients with therapy-resistant hypertension. The study investigated the effect of catheter-based renal sympathetic denervation on glucose metabolism and blood pressure control in patients with drug-resistant hypertension. - Eligible patients were older than 18 years and had an office blood pressure of 160 mmHg (150 mmHg for
type 2 diabetics) or more, despite being treated with at least 3 antihypertensive drugs (including one diuretic), with no changes in medication for a minimum of 2 weeks prior to enrolment. Patients were included if they were not pregnant and had a glomerular filtration rate ≧45 mL/min/1.73 m2 (using the MDRD formula). Patients with renal artery anatomy ineligible for treatment (main renal arteries <4 mm in diameter or <20 mm in length, haemodynamically or anatomically significant renal artery, abnormality or stenosis in either renal artery, a history of prior renal artery intervention including balloon angioplasty or stenting, multiple main renal arteries in either kidney),type 1 diabetes, myocardial infarction, unstable angina pectoris, cerebrovascular accident within the last 6 months, or haemodynamically significant valvular disease were excluded from the study. - Renal angiograms were performed via femoral access to confirm anatomic eligibility. The treatment catheter (Symplicity® by Ardian, Mountain View, Calif., USA) was introduced into each renal artery using a guiding catheter. Up to 6 ablations at 8 watts for 2 minutes each were performed in both renal arteries. Treatments were delivered from the first distal main renal artery bifurcation to the ostium proximally and were spaced longitudinally and rotationally under fluoroscopic guidance. Catheter tip impedance and temperature were constantly monitored, and radio frequency energy delivery was regulated according to a predetermined algorithm. All patients underwent a complete history and physical examination, assessment of vital signs, review of medication, blood chemistries (including serum creatinine), as well as fasting glucose, insulin, C-peptide, and HbA1c at baseline and at each follow-up visit, performed at 1 and 3 months. An OGTT was performed at baseline and after 3 months. The patients were instructed to fast for at least 8-12 hours prior to the OGTT and blood sampling. The OGTT consisted of fasting, 60-, and 120-min glucose measures. Plasma glucose concentration was assessed using the glucose-oxidase method. Plasma insulin and C-peptide concentrations were measured by a chemiluminescent assay. HbA1c was determined using a high-performance liquid chromatography method. The glucose values are expressed in milligrams per deciliter, insulin as international microunits per milliliter, C-peptide as nanograms per milliliter, and HbA1c as %. The insulin sensitivity index was calculated from fasting glucose and insulin values as described: HOMA-IR=(FPG×FPI)/405. FPG and FPI are fasting glucose plasma glucose and fasting plasma insulin, respectively. The Quantitative Insulin Sensitivity Check Index (ISQUICKI) was calculated by: ISQUICKI=1/[log(FPI)+log(FPG)]. Patients were interviewed as to whether they had taken their complete medication. Office blood pressure readings were taken in a seated position after 5 minutes of rest according to the standard joint national committee VII guidelines. Averages of the triplicate measures were used. Physicians were instructed not to change medications except when medically required. Patients were instructed to remain adherent to their prescribed drugs and defined doses at each visit.
- Changes in fasting, 60-min and 120-min glucose as well as insulin, C-peptide, HbA1c, HOMA-IR, ISQUICKI and office blood pressures were analysed from baseline to 1 and 3 months by repeated measures analysis of variance with pair-wise comparison of significant values. A two-tailed p value of less than 0.05 was regarded as statistically significant. Glucose levels during OGTT were analysed with a paired t-test to compare baseline with 3-months results. The Bonferoni correction for multiple comparisons was applied. Simple associations were assessed with Pearson's tests for two independent proportions. Data are presented as mean±standard error of the mean (SEM). All statistical analyses were performed with SPSS statistical software (version 17.0, SPSS Inc., Chicago, Ill., USA).
- Fifty patients were enrolled of whom 35 were assigned to treatment group following protocols of ongoing therapeutic renal denervation trials (NCT00664638 and NCT00888433) and 15 patients were assigned to the control group. The treatment and control group were well matched concerning their baseline characteristics (Table 4). All patients were maintained on baseline antihypertensive medication and followed for 3 months. Table 4 shows the demographic indicators and clinical characteristics. Most patients were male (n=34, 68%). The mean age was 59.3±1.4 years. On average, patients were taking 5.5±0.2 antihypertensive drugs with 47 (94%) receiving an angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, or both, 44 (88%) beta blockers, 36 (72%) calcium-channel blockers, and 34 (68%) centrally acting sympatholytics. All patients received diuretics, with 14 (28%) taking aldosterone antagonists. Patients with
type 2 diabetes (n=20, 40%) were diagnosed at least 12 months ago. Diagnosis was confirmed as recommended by the American Diabetes Association. Sixteen patients received antidiabetic drugs: metformin (n=15), gliclazide (n=5) or combined therapy. None of the patients changed the antidiabetic treatment during follow-up. -
TABLE 4 Baseline patient characteristics. Renal All patients denervation Control group (n = 50) (n = 35) (n = 15) p Age 59.3 ± 1.4 57.9 ± 1.6 62.7 ± 2.6 0.11 Sex (female) 16 (32%) 9 (26%) 7 (47%) 0.19 Type 2 diabetes mellitus 20 (40%) 13 (37%) 7 (47%) 0.55 on medication 16 (32%) 12 (34%) 4 (27%) 0.41 eGFR (ml/min/1.72 m2) 65.0 ± 4.4 68.3 ± 4.6 59.5 ± 9.2 0.36 Heart rate (bpm) 71.6 ± 2.0 71.1 ± 2.1 72.8 ± 4.8 0.75 Blood pressure (mmHg) 179/97 ± 3/2 178/97 ± 3/3 183/97 ± 6/4 0.42 Number of antihypertensive 5.5 ± 0.2 5.9 ± 0.2 4.8 ± 0.3 0.12 drugs Fasting glucose (mg/dl) 125 ± 4 127 ± 4.5 119 ± 5.3 0.16 Glucose level 60-min, 218 ± 9 226 ± 11 197 ± 13 0.11 OGTT (mg/dl) Glucose level 120-min, 178 ± 11 184 ± 14 170 ± 16 0.42 OGTT (mg/dl) Impaired fasting glycaemia, 9 (18%) 5 (14%) 4 (27%) 0.42 OGTT (n) Impaired glucose tolerance, 17 (34%) 14 (40%) 3 (20%) 0.20 OGTT (n) Diabetes mellitus, 8 (16%) 5 (14%) 3 (20%) 0.24 OGTT (n) HbA1c (%) 6.0 ± 0.1 5.9 ± 0.1 6.1 ± 0.3 0.41 Insulin (μIU/ml) 19.0 ± 2.3 19.9 ± 2.6 17.4 ± 5.0 0.33 C-peptide (ng/ml) 4.5 ± 0.5 5.2 ± 0.5 4.2 ± 0.4 0.10 HOMA-IR 5.9 ± 0.7 6.4 ± 0.9 5.2 ± 1.2 0.23 ISQUICKI 0.32 ± 0.01 0.31 ± 0.01 0.33 ± 0.01 0.17 p for renal denervation vs. control group. Data are mean ± SEM or number (n, %). eGFR = estimated glomerular filtration rate. OGTT = oral glucose tolerance test. HOMA-IR = Homeostasis model assessment. ISQUICKI = Quantitative Insulin Sensitivity Check Index. -
TABLE 5 Change in blood pressure and glucose metabolism at 1 and 3 months. Treatment group Control group 1 month 3 months 1 month 3 months (n = 35) p* (n = 35) p** (n = 15) p* (n = 15) p** SBP −29 ± 2 <0.001 −33 ± 4 0.001 −5 ± 7 0.452 −3 ± 6 0.552 (mmHg) (−16%) (−18%) (−3%) (−2%) DBP −10 ± 2 <0.001 −11 ± 2 0.002 −3 ± 4 0.503 −3 ± 4 0.488 (mmHg) (−10%) (−11%) (−3%) (−3%) HR −3.8 ± 1 5 0.057 −3.7 ± 1.6 0.091 −2.5 ± 4.3 0.203 −2.1 ± 4.1 0.481 (bpm) (−5%) (5%) (−3%) (−3%) Fasting glucose −9.7 ± 3.2 0.007 −12.0 ± 3.4 0.004 +4.6 ± 8.2 0.589 +5.1 ± 4.3 0.177 (mg/dl) (−8%) (−9%) (+4%) (+4%) HbA1c −0.1 ± 0.1 0.185 −0.1 ± 0.3 0.721 +0.1 ± 0.1 0.627 +0.1 ± 0.1 0.539 (%) (−2%) (−2%) (+2%) (+2%) Insulin −8.7 ± 3.0 0.042 −9.2 ± 3.3 0.003 +7.9 ± 7.7 0.343 +1.1 ± 2.1 0.927 (μIU/ml) (−44%) (−46%) (+45%) (+6%) C-peptide −2.2 ± 0.8 0.022 −2.4 ± 0.7 0.005 +1.1 ± 0.9 0.356 +0.2 ± 0.5 0.815 (ng/ml) (−49%) (−46%) (+27%) (+5%) HOMA-IR −3.0 ± 1.1 0.023 −3.1 ± 0.9 0.001 +2.1 ± 1.7 0.246 +0.3 ± 0.6 0.962 (−47%) (−48%) (+40%) (6%) ISQUICKI +0.02 ± 0.01 0.034 +0.04 ± 0.01 0.006 +0.01 ± 0.02 0.811 +0.01 ± 0.06 0.916 (+6%) (+13%) (+3%) (+3%) Glucose — — −18 ± 12 0.052 — — +9.7 ± 13 0.474 level 60- (−8%) (+5%) min, OGTT (mg/dl) Glucose — — −27 ± 11 0.029 — — +15.3 ± 9 0.124 level 120- (−15%) (+9%) min, OGTT (mg/dl) Impaired — — −1 — — — ±0 — fasting glycaemia, OGTT (n) Impaired — — −3 — — — +2 — glucose tolerance, OGTT (n) Diabetes — — −3 — — — +1 — mellitus, OGTT (n) p* = 1 month vs. baseline. p** = 3 months vs. baseline. Data are mean ± SEM and relative changes (%) compared to baseline values or number (n). SBP: systolic blood pressure. DBP: diastolic blood pressure. HR: heart rate. OGTT: oral glucose tolerance test (performed at baseline and 3 months). HOMA-IR = Homeostasis model assessment. ISQUCIKI = Quantitative Insulin Sensitivity Check Index. - At baseline, overall mean sitting office systolic blood pressure (SBP) was 179÷2.7 mmHg and mean sitting office diastolic blood pressure (DBP) was 97±2.2 mmHg with a heart rate of 71.6±2.0 beats per minute. Renal denervation significantly reduced systolic (−29±2 mmHg, p<0.001) and diastolic blood pressure (−10±2 mmHg, p=0.001) at 1 month after the procedure and persisted to 3 months follow-up (−33/−11±4/2 mmHg, p=0.001/0.002,
FIG. 15 ). Control patients had a slight, but not significant change in blood pressure of −5/−3 mmHg at 1 month (p=0.452/0.503) and −3/−3 mmHg at 3 months (p=0.552/0.488), respectively. Three of the treated patients (9%) were non-responders with a systolic blood pressure reduction of less than 10 mmHg. On average, patients received 5.5 antihypertensive drugs at baseline and were instructed not to change their medications, unless adverse effects occurred. However, in 16 of 50 patients (13 out of the treatment group and 3 out of the control group) a change in antihypertensive medication was necessary after 3 months follow-up. In 13 treated patients antihypertensive medication had to be reduced due to hypotension associated with symptoms. There were no changes in beta blocker or thiazide diuretics. In two control and one treatment patient antihypertensive medication had to be further increased following the development of symptoms or signs felt to be a consequence of hypertension. In order to exclude post-procedural renovascular abnormalities, renal duplex ultrasound was performed at 3 months follow-up and found no detectable abnormalities of the renal arteries. One patient developed a pseudoaneurysm at the femoral access site, which was treated without further sequelae. No other complications were observed. - Three months after denervation, fasting glucose was reduced significantly from 127±4.5 mg/dl to 115±3.8 mg/dl (p=0.004,
FIG. 16A ) while there were no significant changes in the control group. Insulin levels decreased from 19.9±2.6 μIU/ml to 10.7±3.3 μIU/ml (p=0.003,FIG. 16B ), which was associated with a reduction of C-peptide levels from 5.2±0.5 ng/ml to 2.8±0.8 ng/ml (p=0.005,FIG. 16C ). At baseline, 11 patients in the treatment group had insulin levels ≧20 μIU/ml. Treatment decreased this number by 73% (n=8), without changes in the control group. Changes in fasting glucose and insulin levels did not correlate to office systolic (r=0.144, p=0.424 and r=−0.222, p=0.238) or diastolic blood pressure reduction (r=0.05, p=0.805 and r=−0.188, p=0.320). Insulin sensitivity, measured by using HOMA-IR and ISQUICKI, increased significantly after renal denervation (FIG. 16D ). The HOMA-IR decreased from 6.4±0.9 to 3.3±0.6 (p=0.001) and the ISQUICKI increased from 0.31±0.01 to 0.35±0.01 (p=0.006). HbA1c levels remained nearly at baseline values (5.8±0.2%) and did not change significantly during 3 months of follow-up. Only 4 patients had HbA1c level ≧7.5%. Mean reductions in glucose levels during OGTT after 3 months were −18±12.0 mg/dl (p=0.052) at 60-min and −27±11.2 mg/dl (p=0.029) at 120-min in the treatment group but not in the control group. According to the World Health Organization the results of the OGTT were graded into 3 categories: normal (fasting glucose <110 mg/dl, 120-min glucose <140 mg/dl), impaired fasting glycaemia (fasting glucose ≧110 mg/dl, 120-min glucose <140 mg/dl), impaired glucose tolerance (fasting glucose <126 mg/dl, 120-min glucose ≧140 mg/dl), and diabetes mellitus (fasting glucose ≧126 mg/dl, 120-min glucose ≧200 mg/dl). In 34 patients (treatment group: n=24, control group: n=10) the OGTT at baseline revealed pathological glucose metabolism, divided into 9 patients with impaired fasting glycaemia (IFG), 17 patients with impaired glucose tolerance (IGT), and 8 patients with diabetes mellitus (DM). After the procedure, 7 of 24 patients improved their glucose metabolism during OGTT: IFG, IGT or both regressed by 17% (n=4), DM regressed by 13% (n=3) and the number of patients with normal glucose tolerance (NGT) increased by 17% (n=4). Patients from the control group had no significant changes in glucose or insulin metabolism during follow-up, despite an increase in IFG, IGT or both by n=2 and an increase in DM by n=1 (Table 5,FIG. 17 ). - Drug treatment was not changed during the 3 months follow-up period, and drugs were homogeneously distributed among the two groups. During the normal 120-day life span of the red blood cell, glucose molecules react with haemoglobin, forming glycated haemoglobin (HbA1c) and indicating long-term serum glucose regulation. All patients, particularly the diabetics, were adequately controlled with their antidiabetic treatment (mean HbA1c 5.9%). Accordingly, no significant changes in HbA1c levels during follow-up of 3 months were detected, while insulin, C-peptide, fasting glucose and insulin sensitivity were significantly changed by renal denervation.
- E. Therapeutic Renal Neuromodulation in the Treatment of Obesity and Sleep Apnea
- Renal denervation leading to a reduction of central sympathetic drive is believed to counteract some of the deleterious effects of obesity-related increase in central sympathetic drive. It is also believed that renal denervation can improve an individual's ability to process glucose. Such a result could positively impact obesity itself.
- Renal denervation may also be a viable treatment option for sleep apnea. Since obstructive sleep apnea is related to obesity, reductions in central sympathetic tone via renal denervation may be able to treat obesity-mediated obstructive sleep apnea as well as the downstream consequences involving the RAAS. Additionally, modulation of the SNS via renal denervation might also modulate aspects of the central nervous system responsible for central sleep apnea.
- Provided herein are results from a study of 10 patients, selected from a population of 13 patients, with defined resistant hypertension and taking stable anti-hypertensive medication regimes. Changes in the apnea hypopnea index (AHI) after therapeutic renal denervation were observed, and these findings were associated with changes in ambulatory blood pressure monitoring. Inclusion criteria included: age ≧18 years, systolic blood pressure of 160 mmHg or greater (an average of 3 office/clinic blood pressure readings), receiving and adhering to full doses of a ≧3 medication antihypertensive drug regimen for a minimum of two weeks prior to screening, an estimated glomerular filtration rate (eGFR) of ≧45 mL/min, using the MDRD calculation.
- All patients in the study underwent simultaneous bilateral renal artery treatment without follow-up angiogram. Baseline measurements consisted of vital signs, physical examination, review of medications, basic blood chemistries (including serum creatinine), ambulatory blood pressure measurements (ABPM), full night attended polysomnography (Phillips-Respironics Inc.,
Alice 5 System, Murrysville, Pa.). The patients were assessed at a 3-month and 6-month follow-up, which consisted of office blood-pressure measurement, physical examination, surveillance for adverse events, blood chemistries (including serum creatinine), other vital signs, ABPM and full night attended polysomnography. - From the group of 13 patients included in this study, 10 patients were diagnosed with sleep apnea (8 obstructive and 2 mixed obstructive/central, AHI >5 events/hour prior to treatment). These patients completed a 3-month and 6-month follow-up evaluation. All included patients were characterized by normal ejection fraction on echocardiography and no clinical signs and symptoms of heart failure. In all patients, estimated glomerular filtration rate was above 60 ml/min/1.73 m2 at baseline, 3-months, and 6-months after the procedure. Anti-hypertensive medication regimes were not changed during the 6-months of follow-up. The 3 excluded patients all had normal AHI at baseline.
- The mean systolic blood pressure was reduced at 3 months by 22 mm Hg (SD 15) and at 6 months by 32 mm Hg (SD 10) compared to baseline (p<0.01 for 3 and 6 months). The mean diastolic blood pressure was reduced at 3 months by 6 mm Hg (
SD 13, p=0.17) and at 6 months by 16 mm Hg (SD 12, p<0.01). As shown inFIG. 18 In 7 of 10 patients an improvement in AHI was observed at 3 months after renal denervation, with an improvement in an additional case at 6 months. It should be noted that in all 3 patients with severe OSA before denervation (2 were receiving CPAP treatment), an improvement in sleep apnea indices was observed. There were 2 patients with mixed (obstructive and central) sleep apnea. In 1 of them a reduction in sleep apnea indices was also observed with a change in AHI −30.5 events/hour at 6 months. Mean AHI at 3 and 6 months after treatment was 20.0 (SD 26.5, p=0.11) events/hour and 16.1 (SD 22.2, p=0.059) events/hour compared to 30.7 (SD 26.5) events/hour at baseline. Catheter-based renal sympathetic denervation lowered blood pressure in patients with refractory hypertension and obstructive sleep apnea which was accompanied by improvement of sleep apnea severity. Accordingly, renal sympathetic denervation may be a potentially useful option for patients with refractory hypertension and obstructive sleep apnea. - F. Therapeutic Renal Neuromodulation and Effects on Physiological Parameters
- Renal denervation leading to a reduction of central sympathetic drive may improve and/or alter a number of physiological parameters, including sympathetic, metabolic, and renal parameters.
FIGS. 19-30 show a variety of physiological parameters for three patients at baseline and 12 weeks post-denervation treatment. - In particular,
FIG. 19 shows changes in mean sitting office systolic blood pressure after 5 minutes of rest.FIG. 20 shows changes in a mean of 3 sitting office diastolic blood pressure measurements after 5 minutes of rest.FIG. 21 shows changes in a mean of 3 sitting office heart rate measurements after 5 minutes of rest.FIG. 22 shows effects on MSNA as assessed by microneurography.FIG. 23 shows the effects of bilateral renal denervation of body weight, andFIG. 24 shows the effects on fasting plasma glucose.FIG. 25 is a graph of changes in insulin sensitivity.FIG. 26 is a graph of changes in measured cystatin C.FIG. 27 shows the changes at 12 weeks post-treatment in creatinine clearance over a 24 hour urine sampling.FIG. 28 shows changes in UACR.FIG. 29 shows changes in endothelial function, andFIG. 30 shows a breakdown of the raw data related to endothelial function for each patient. - As shown below, Table 7 is a summary of results for a euglycaemic hyperinsulinaemic clamp test for the three patients at 3 months post-treatment. This test provides indices of insulin sensitivity
-
TABLE 6 Euglycaemic hyperinsulinaemic clamp data at baseline and 12 weeks following renal sympathetic denervation (n = 3). Baseline Week 12 Time 0Steady state Time 0 Steady State Glucose 6.3 ± 0.6 5.0 ± 0.1 5.3 ± 0.7 5.0 ± 0.1 (mmol/L) C-Peptide 1359 ± 274 883 ± 234 1469 ± 375 1142 ± 310 (pmol/L) M (mg/kg/ 3.10 ± 0.88 3.84 ± 0.90* min) M (mg/kg 5.51 ± 1.70 6.85 ± 2.07 FFM/min) *P = 0.03 versus Baseline by paired t-test, FFM = fat free mass as determined by DEXA Note: the higher the M value the better insulin sensitivity - G. Safety, Efficacy, and Durability
- As disclosed herein, renal neuromodulation is expected to be a safe, effective, and durable method to reduce blood pressure, promote insulin sensitivity, and promote kidney function. In one particular example, the safety of renal neuromodulation was studied by imaging of the renal arteries in 38 patients by CT or MR angiography, a standard visualization technique which can identify changes in the vessel geometry. Although embodiments of the disclosed renal neuromodulation procedures disabled the renal nerves through the blood vessel wall, no significant changes were noted in the affected blood vessel walls within 6 months of the procedures.
- An additional study on the durability of renal denervation followed patients up to 24 months post-treatment. Patients were enrolled based on having an elevated office systolic blood pressure (≧160 mmHg) despite taking at least three anti-hypertensive drug classes, one of which was a diuretic, at target or maximal tolerated dose. Patients were excluded if they had an estimated glomerular filtration rate (eGFR) of <45 mL/min/1.73 m2,
type 1 diabetes, or a known secondary cause of hypertension other than sleep apnea or chronic kidney disease. Patients with significant renovascular abnormalities were not permitted to undergo the intervention. This was assessed by various methods including angiography, MR angiography, CT angiography and duplex ultrasound. Such anatomical abnormalities included multiple main renal arteries, short length main renal artery and hemodynamically significant renal artery stenosis. Patients had to be over 18 years of age. - The primary efficacy endpoint of the study was change in office blood pressure. Patients had office blood pressure measurements performed in accordance with Joint National Committee (JNC) VII guidelines. Measurements were performed sitting, in triplicate, and then averaged. The primary safety assessments were based on physical examination, basic blood chemistries and anatomical assessment of the renal vasculature. Renal evaluations were performed via angiography in initial patients (at 14-30 days post procedure) and via renal MR angiography, CT angiography, or duplex scan at 6 months. Physicians could alter background blood pressure-lowering medication at any time for clinical reasons but were encouraged not to do so unless considered absolutely necessary, in order to carefully assess the effect of the procedure per se. This was more strictly applied during the initial 12 months of the follow-up study, less so after this time. Baseline measurements included physical examination, vital signs, basic blood chemistries and pregnancy testing as appropriate. Follow-up assessments occurred at 1, 3, 6, 12, 18 and 24 months. Assessment of routine biochemistry, including estimated glomerular filtration rate (eGFR, using the Modification of Diet in Renal Disease (MDRD) formula), was performed within the individual laboratories of participating hospitals.
- The denervation procedure itself involved an endovascular catheter-based approach to disrupt renal sympathetic nerves using radiofrequency (RF) ablation applied via an electrode at the catheter tip. The central arterial tree was accessed via the femoral artery. The lumen of the main renal artery was catheterized. The Symplicity® Catheter (Ardian, Inc., Mountain View, Calif., USA) was connected to a RF generator and multiple RF treatments were applied in a manner devised to maximize renal sympathetic nerve disruption within the individual artery. Specifically, the first RF treatment was applied in the distal renal artery, the catheter was then retracted by 5 mm and rotated circumferentially before the energy was re-applied. This was continued until 4-6 treatments were applied within each renal artery and across the full circumference of the vessel. Each low-power treatment lasted up to two minutes. The first 10 patients underwent staged sequential procedures involving a single renal artery followed by the contralateral artery one month later. Subsequent patients underwent bilateral procedures in one session.
- Blood pressure levels from baseline to the above time-points were evaluated to calculate mean change as well as 95% confidence intervals. This was assessed by repeated measures analysis of variance with pair-wise comparison of significant values. A two-tailed paired t-test of p<0.05 was regarded as statistically significant. Multivariate stepwise backward regression analysis of key demographic and procedural characteristics that may predict increased SBP response were performed. Baseline variables entered into the model were: age, gender, race, body mass index, SBP, DBP, pulse pressure, heart rate, drug class, number of antihypertensive medications, eGFR, hypercholesterolemia and coronary artery disease. Change in eGFR was evaluated in comparison to baseline at various time-points using paired t-test. All statistical analysis was performed using SPSS version 15.0.
- One-hundred fifty-three patients were treated in this open-label proof-of-concept study. Baseline characteristics of the study subjects including demographics and background medication are listed in Table 8. Mean baseline blood pressure values were 176/98±17/14 mmHg. Patients were taking an average of 5.0±1.4 antihypertensive drug classes. The median time from first to last RF energy delivery was 38 minutes, with an average of 4 ablations in each renal artery. There were no device malfunctions. Conscious sedation using IV narcotics and anxiolytics were commonly used to prevent and manage expected pain during the procedure. Episodes of bradycardia observed during the procedure were managed with administration of atropine in 10% (15/153) patients.
-
TABLE 7 Demographics of Treated Patients. Age ± SD 57 ± 11 Sex (female) 39% Ethnic origin (non-white) 5 % Type 2 diabetes 31% CAD 22% Hyperlipidemia 68% eGFR (mL/min/1.73 m2) 83 ± 20 Heart Rate (bpm) 73 ± 13 Blood Pressure (mmHg) 176/98 ± 17/15 No. anti-HTN medications 5.0 ± 1.4 Diuretic 95 % Aldosterone blocker 25% ACE inhibitor or ARB 90% Direct renin inhibitor 14% β- blocker 81% Calcium- channel blocker 75% Centrally acting sympatholytic 35 % Vasodilator 18% Alpha-1 blocker 20% CAD: coronary artery disease; eGFR: estimated glomerular filtration rate; ACE: angiotensin converting enzyme; ARB: angiotensin receptor blocker. - Ninety-two percent of patients had an office blood pressure reduction of at least 10 mmHg. Within patient changes in both systolic and diastolic blood pressure were highly significant (p<0.001) at all time-points post-procedure with BPs reduced on average by 20/10, 24/11, 25/11, 23/11, 26/14, and 32/14 mmHg at 1, 3, 6, 12, 18, and 24 months respectively (
FIG. 31A ). Mean systolic and diastolic blood pressure change following renal sympathetic denervation procedure over 24-months follow-up. - Significant independent predictors of greater SBP response on multivariate analysis were higher baseline SBP (P<0.0001) and use of central sympatholytic agents (P=0.018). All other baseline parameters fell out as non-significant on multivariate analysis.
- The number of anti-hypertensive medications at last available follow-up was unchanged as compared to baseline (4.9 vs. 5.0; p=0.10). Twenty-seven patients were on a reduced number of medications at last follow-up compared with baseline; eighteen were on increased medications. Of the eighteen patients with medication increases, ten had their medications increased following drops in blood pressure, presumably in an attempt to achieve additional reductions in blood pressure. In order to ascertain the BP lowering effect of renal denervation in the absence of increased medications, office BP data censored following an increase in the number of medications is presented in
FIG. 31B . Mean systolic and diastolic blood pressure change following renal sympathetic denervation procedure over 24-months following censoring for medication increases post-procedure. The magnitude of the mean blood pressure reduction in response to the procedure was unchanged when data from patients with increased anti-hypertension medications were censored. - The procedure was without complication in 97% (149/153) of patients. One patient experienced the renal artery dissection upon placement of the treatment catheter before RF energy delivery was delivered in that artery. The dissection was treated with renal artery stenting without any subsequent complication or delay in hospital discharge. Three other patients developed a pseudo-aneurysm/haematoma in the femoral access site, all were treated without any subsequent complication. In all cases, the procedure was performed with standard techniques for femoral artery access using commercially available introducers.
- As mentioned, follow-up renal artery imaging was performed to evaluate structural abnormalities that may have occurred post-procedure in the treated renal arteries. Some minor focal renal artery irregularities due to minor spasm and/or edema were noted immediately following RF energy delivery. None were considered flow limiting at procedure termination. Of the short-term follow-up angiography performed in the first 20 patients no evidence of renal artery stenosis or abnormalities were noted in treated arteries. In the 81 patients with 6-month MRA, CTA, or duplex evaluation, no irregularities or stenoses at any treatment site were identified that were not present on pre-treatment angiography. One patient had a 6-month post-procedure CTA that identified progression of a pre-existing renal artery stenosis in the proximal portion of the renal artery. This stenosis was successfully stented; the location of the stenosis was quite proximal and well away from sites of RF energy application.
- During the first year of follow-up, eGFR remained stable with a change at 1, 3, 6 and 12 months of +0.1 mL/min (95% CI: −2.8 to 3.0; N=112), −1.6 mL/min (95% CI: −4.3 to 1.1; N=102), −0.1 mL/min (95% CI: −2.9 to 2.8; N=87), and −2.9 mL/min (95% CI: −6.2 to +0.3; N=64), respectively. Estimated GFR data was only available on 10 patients at 2 years. In these 10 patients, eGFR changed by −16.0 mL/min/1.73 m2 at 24 months post-procedure. Five of these 10 patients had spironolactone or other diuretic added after the first year of follow-up. In patients without newly added spironolactone or other diuretic, eGFR changed −7.8 mL/min/1.73 m2 for an annualized change of −3.9 mL/min/1.73 m2. In no cases did serum creatinine double, the patient develop Class IV chronic kidney disease, or require dialysis.
- No patients reported symptomatic orthostatic hypotension. Six patients reported transient dizziness; no patients had any loss of consciousness. Three patients reported pitting oedema which was felt to be related to medication adjustment. This responded to conservative care, use of diuretics and/or reduction in minoxidil dose.
- Bilateral flank pain was reported by a single patient. Extensive diagnostic evaluation did not identify a specific cause for this pain. It did respond to ibuprofen over a number of months, but eventually completely resolved. Three other patients reported intermittent or transient flank or kidney pain; all resolved with or without analgesic intervention.
- The blood pressure reductions occurred in patients who, by definition, were refractory to standard medical therapies. Amongst this cohort, 92% of patients had a reduction in systolic BP. Multivariate analysis was able to discern two groups of patients likely to benefit from the denervation procedure: patients with the highest SBP at baseline and those using central sympatholytic agents (e.g., clonodine).
- The persistence of overall blood pressure lowering out to two years is of clinical and patho-physiological relevance. In particular, sympathetic nerves which have been denervated via surgical approaches (most commonly in the organ transplantation setting) do appear to anatomically re-innervate, over a period of months. The findings of the study indicate that the initial blood pressure reduction observed out to 12 months persist to at least 24 months. Further, the magnitude of blood pressure lowering post-procedure at 24 months is no less than and appears to be numerically greater than that observed at 12 months.
- The decline in renal function observed in this 24-month follow-up analysis is less than would be predicted based on the blood pressure response achieved, especially so over the first 12 months post-procedure prior to the introduction of diuretics which may worsen renal function. Accordingly, there may be an intrinsic beneficial effect of the procedure on the kidney to maintain renal function which is greater than that achieved via blood pressure reduction alone.
- Another observation from this extended follow-up of renal denervation patients was the ongoing safety observed within the study. In this report a larger cohort of patients is exposed to a longer period of post-procedure follow-up without any major safety signals emerging. In particular, in the cohort of 81 patients with 6-month follow-up imaging, no cases of major de novo renal artery stenosis had occurred, and only one case of progression of an existing stenosis is described. Even with that single case, it cannot be determined whether this was specifically related to the interventional procedure or natural progression of a baseline stenosis. No cases of renal artery aneurysm, nor of cholesterol emboli were documented in this series. Furthermore, no late clinical sequelae (out to two years) could be attributed to development of renal artery stenosis.
- Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the words “herein,” “above,” and “below” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application.
- The description of embodiments of the disclosure is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. While specific embodiments of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while process steps or functions are presented in a given order, alternative embodiments may perform functions in a different order, or functions may be performed substantially concurrently. The teachings of the disclosure provided herein can be applied to other systems, not only the systems described herein. Furthermore, the various embodiments described herein can be combined to provide further embodiments.
- All of the references cited herein are incorporated by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions and concepts of the above references and applications to provide yet further embodiments of the disclosure. These and other changes can be made to the disclosure in light of the detailed description.
- Specific elements of any of the foregoing embodiments can be combined or substituted for elements in other embodiments. Furthermore, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure. The following examples provide additional representative embodiments.
Claims (33)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/034,595 US20110207758A1 (en) | 2003-04-08 | 2011-02-24 | Methods for Therapeutic Renal Denervation |
US14/297,970 US9629679B2 (en) | 2002-04-08 | 2014-06-06 | Methods for therapeutic renal denervation |
US15/458,496 US9867663B2 (en) | 2002-04-08 | 2017-03-14 | Methods for therapeutic renal denervation |
US15/837,488 US10194983B2 (en) | 2002-04-08 | 2017-12-11 | Methods for therapeutic renal denervation |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/408,665 US7162303B2 (en) | 2002-04-08 | 2003-04-08 | Renal nerve stimulation method and apparatus for treatment of patients |
US11/145,122 US8150518B2 (en) | 2002-04-08 | 2005-06-03 | Renal nerve stimulation method and apparatus for treatment of patients |
US30763310P | 2010-02-24 | 2010-02-24 | |
US38587910P | 2010-09-23 | 2010-09-23 | |
US13/034,595 US20110207758A1 (en) | 2003-04-08 | 2011-02-24 | Methods for Therapeutic Renal Denervation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/145,122 Continuation-In-Part US8150518B2 (en) | 2002-04-08 | 2005-06-03 | Renal nerve stimulation method and apparatus for treatment of patients |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/297,970 Continuation US9629679B2 (en) | 2002-04-08 | 2014-06-06 | Methods for therapeutic renal denervation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110207758A1 true US20110207758A1 (en) | 2011-08-25 |
Family
ID=44477016
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/034,595 Abandoned US20110207758A1 (en) | 2002-04-08 | 2011-02-24 | Methods for Therapeutic Renal Denervation |
US14/297,970 Expired - Lifetime US9629679B2 (en) | 2002-04-08 | 2014-06-06 | Methods for therapeutic renal denervation |
US15/458,496 Expired - Lifetime US9867663B2 (en) | 2002-04-08 | 2017-03-14 | Methods for therapeutic renal denervation |
US15/837,488 Expired - Lifetime US10194983B2 (en) | 2002-04-08 | 2017-12-11 | Methods for therapeutic renal denervation |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/297,970 Expired - Lifetime US9629679B2 (en) | 2002-04-08 | 2014-06-06 | Methods for therapeutic renal denervation |
US15/458,496 Expired - Lifetime US9867663B2 (en) | 2002-04-08 | 2017-03-14 | Methods for therapeutic renal denervation |
US15/837,488 Expired - Lifetime US10194983B2 (en) | 2002-04-08 | 2017-12-11 | Methods for therapeutic renal denervation |
Country Status (1)
Country | Link |
---|---|
US (4) | US20110207758A1 (en) |
Cited By (141)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110208173A1 (en) * | 2010-02-24 | 2011-08-25 | Medtronic Vascular, Inc. | Methods for Treating sleep apnea via renal Denervation |
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
EP2594193A3 (en) * | 2011-09-29 | 2013-05-29 | Pacesetter, Inc. | System and method for performing renal denervation verification |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
WO2013134472A1 (en) * | 2012-03-08 | 2013-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation methods and systems for treatment of hyperaldosteronism |
WO2013134479A1 (en) * | 2012-03-08 | 2013-09-12 | Medtronic Ardian Luxembourg Sarl | Neuromodulation and associated systems and methods for the management of pain |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US8568399B2 (en) | 2011-12-09 | 2013-10-29 | Metavention, Inc. | Methods for thermally-induced hepatic neuromodulation |
WO2013169741A1 (en) * | 2012-05-08 | 2013-11-14 | Stein Emily A | Agents and devices for affecting nerve function |
US8768469B2 (en) | 2008-08-08 | 2014-07-01 | Enteromedics Inc. | Systems for regulation of blood pressure and heart rate |
US8880185B2 (en) | 2010-06-11 | 2014-11-04 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US8974445B2 (en) | 2009-01-09 | 2015-03-10 | Recor Medical, Inc. | Methods and apparatus for treatment of cardiac valve insufficiency |
US8975233B2 (en) | 2010-01-26 | 2015-03-10 | Northwind Medical, Inc. | Methods for renal denervation |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9005100B2 (en) | 2011-12-15 | 2015-04-14 | The Board Of Trustees Of The Leland Stanford Jr. University | Apparatus and methods for treating pulmonary hypertension |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9028472B2 (en) | 2011-12-23 | 2015-05-12 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9131983B2 (en) | 2011-04-22 | 2015-09-15 | Ablative Solutions, Inc. | Methods ablating tissue using a catheter-based injection system |
WO2015153775A1 (en) * | 2014-04-01 | 2015-10-08 | Mayo Foundation For Medical Education And Research | Methods and materials for treating elevated sympathetic nerve activity conditions |
WO2015153767A1 (en) * | 2014-04-01 | 2015-10-08 | Mayo Foundation For Medical Education And Research | Methods and materials for treating hypertension |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US9179962B2 (en) | 2012-10-29 | 2015-11-10 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9237925B2 (en) | 2011-04-22 | 2016-01-19 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US9254360B2 (en) | 2012-10-29 | 2016-02-09 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with deflection surface support structures |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9278196B2 (en) | 2011-08-24 | 2016-03-08 | Ablative Solutions, Inc. | Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9439598B2 (en) | 2012-04-12 | 2016-09-13 | NeuroMedic, Inc. | Mapping and ablation of nerves within arteries and tissues |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9554849B2 (en) | 2012-10-29 | 2017-01-31 | Ablative Solutions, Inc. | Transvascular method of treating hypertension |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9629679B2 (en) | 2002-04-08 | 2017-04-25 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal denervation |
US9649156B2 (en) | 2010-12-15 | 2017-05-16 | Boston Scientific Scimed, Inc. | Bipolar off-wall electrode device for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9700372B2 (en) | 2002-07-01 | 2017-07-11 | Recor Medical, Inc. | Intraluminal methods of ablating nerve tissue |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US9757196B2 (en) | 2011-09-28 | 2017-09-12 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9808300B2 (en) | 2006-05-02 | 2017-11-07 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20170325733A1 (en) * | 2014-12-17 | 2017-11-16 | Medtronic Ardian Luxembourg S.A.R.L. | Systems and methods for assessing sympathetic nervous system tone for neuromodulation therapy |
US9820800B2 (en) | 2012-11-13 | 2017-11-21 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US9827039B2 (en) | 2013-03-15 | 2017-11-28 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US9888956B2 (en) | 2013-01-22 | 2018-02-13 | Angiodynamics, Inc. | Integrated pump and generator device and method of use |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US9931046B2 (en) | 2013-10-25 | 2018-04-03 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
US9949652B2 (en) | 2013-10-25 | 2018-04-24 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US9980766B1 (en) | 2014-03-28 | 2018-05-29 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and systems for renal neuromodulation |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US10076384B2 (en) | 2013-03-08 | 2018-09-18 | Symple Surgical, Inc. | Balloon catheter apparatus with microwave emitter |
US10085799B2 (en) | 2011-10-11 | 2018-10-02 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US10118004B2 (en) | 2011-08-24 | 2018-11-06 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
GB2563649A (en) * | 2017-06-22 | 2018-12-26 | Galvani Bioelectronics Ltd | Nerve activity monitoring |
US10194979B1 (en) * | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US10194980B1 (en) * | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US10226278B2 (en) | 2012-10-29 | 2019-03-12 | Ablative Solutions, Inc. | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
US10300281B2 (en) | 2012-03-09 | 2019-05-28 | Mayo Foundation For Medical Education And Research | Modulating afferent signals to treat medical conditions |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10383685B2 (en) | 2015-05-07 | 2019-08-20 | Pythagoras Medical Ltd. | Techniques for use with nerve tissue |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US10478249B2 (en) | 2014-05-07 | 2019-11-19 | Pythagoras Medical Ltd. | Controlled tissue ablation techniques |
US10485951B2 (en) | 2011-08-24 | 2019-11-26 | Ablative Solutions, Inc. | Catheter systems and packaged kits for dual layer guide tubes |
US10499937B2 (en) | 2006-05-19 | 2019-12-10 | Recor Medical, Inc. | Ablation device with optimized input power profile and method of using the same |
US10517666B2 (en) | 2013-10-25 | 2019-12-31 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US10524859B2 (en) | 2016-06-07 | 2020-01-07 | Metavention, Inc. | Therapeutic tissue modulation devices and methods |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US10660698B2 (en) | 2013-07-11 | 2020-05-26 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US10722300B2 (en) | 2013-08-22 | 2020-07-28 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US10736656B2 (en) | 2012-10-29 | 2020-08-11 | Ablative Solutions | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
US10736692B2 (en) * | 2016-04-28 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation and associated systems and methods for the treatment of cancer |
US10835305B2 (en) | 2012-10-10 | 2020-11-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US10849685B2 (en) | 2018-07-18 | 2020-12-01 | Ablative Solutions, Inc. | Peri-vascular tissue access catheter with locking handle |
US10874454B2 (en) | 2012-11-13 | 2020-12-29 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US10881458B2 (en) | 2012-10-29 | 2021-01-05 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US10945787B2 (en) | 2012-10-29 | 2021-03-16 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US10945786B2 (en) | 2013-10-18 | 2021-03-16 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
US10952790B2 (en) | 2013-09-13 | 2021-03-23 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
US20220023627A1 (en) * | 2014-08-28 | 2022-01-27 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for assessing efficacy of renal neuromodulation and associated systems and devices |
US11241267B2 (en) | 2012-11-13 | 2022-02-08 | Pulnovo Medical (Wuxi) Co., Ltd | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US11284934B2 (en) * | 2017-07-05 | 2022-03-29 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating sleep disorders in patients via renal neuromodulation |
US11457977B2 (en) * | 2019-02-08 | 2022-10-04 | Shanghai Golden Leaf Medtech Co., Ltd. | Method for treating diabetes, diabetes-associated condition or disorder, or symptoms thereof |
US11678932B2 (en) | 2016-05-18 | 2023-06-20 | Symap Medical (Suzhou) Limited | Electrode catheter with incremental advancement |
US11707629B2 (en) | 2009-05-28 | 2023-07-25 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
AU2018204842B2 (en) * | 2017-07-05 | 2023-07-27 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating depression in patients via renal neuromodulation |
US11717346B2 (en) | 2021-06-24 | 2023-08-08 | Gradient Denervation Technologies Sas | Systems and methods for monitoring energy application to denervate a pulmonary artery |
AU2018204841B2 (en) * | 2017-07-05 | 2023-08-10 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating post-traumatic stress disorder in patients via renal neuromodulation |
US11723710B2 (en) | 2016-11-17 | 2023-08-15 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
US11931096B2 (en) | 2010-10-13 | 2024-03-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
US12011212B2 (en) | 2013-06-05 | 2024-06-18 | Medtronic Ireland Manufacturing Unlimited Company | Modulation of targeted nerve fibers |
US12082868B2 (en) | 2012-11-13 | 2024-09-10 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US12102376B2 (en) | 2012-02-08 | 2024-10-01 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US911930A (en) * | 1906-07-16 | 1909-02-09 | Harry F Anderson | Printing-press. |
US2276996A (en) * | 1940-11-30 | 1942-03-17 | A J Ginsberg | Non-radio-interfering therapeutic apparatus |
US2276995A (en) * | 1938-01-22 | 1942-03-17 | A J Ginsberg | Electrotherapy |
US3563246A (en) * | 1967-04-24 | 1971-02-16 | Intelectron Corp | Method and apparatus for improving neural performance in human subjects by electrotherapy |
US3650277A (en) * | 1969-02-24 | 1972-03-21 | Lkb Medical Ab | Apparatus for influencing the systemic blood pressure in a patient by carotid sinus nerve stimulation |
US3794022A (en) * | 1972-06-30 | 1974-02-26 | E Nawracaj | Dual oscillator, variable pulse duration electrotherapeutic device |
US4011861A (en) * | 1974-04-03 | 1977-03-15 | Case Western Reserve University | Implantable electric terminal for organic tissue |
US4071033A (en) * | 1976-12-20 | 1978-01-31 | Nawracaj Edward P | Electrotherapeutic device with modulated dual signals |
US4141365A (en) * | 1977-02-24 | 1979-02-27 | The Johns Hopkins University | Epidural lead electrode and insertion needle |
US4315503A (en) * | 1976-11-17 | 1982-02-16 | Electro-Biology, Inc. | Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment |
US4649936A (en) * | 1984-10-11 | 1987-03-17 | Case Western Reserve University | Asymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking |
US4816016A (en) * | 1984-03-16 | 1989-03-28 | Pudenz-Schulte Medical Research Corp. | Subcutaneous infusion reservoir and pump system |
US4981146A (en) * | 1988-04-21 | 1991-01-01 | Maven Labs, Inc. | Nausea control device |
US4998532A (en) * | 1986-05-23 | 1991-03-12 | Lti Biomedical, Inc. | Portable electro-therapy system |
US5094242A (en) * | 1988-11-07 | 1992-03-10 | Regents Of The University Of California | Implantable nerve stimulation device |
US5096636A (en) * | 1986-11-04 | 1992-03-17 | Maschinenfabrik J. Dieffenbacher Gmbh & Co. | High-speed hydraulic press |
US5188837A (en) * | 1989-11-13 | 1993-02-23 | Nova Pharmaceutical Corporation | Lipsopheres for controlled delivery of substances |
US5193048A (en) * | 1990-04-27 | 1993-03-09 | Kaufman Dennis R | Stun gun with low battery indicator and shutoff timer |
US5193540A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5193539A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5282785A (en) * | 1990-06-15 | 1994-02-01 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5282468A (en) * | 1990-06-07 | 1994-02-01 | Medtronic, Inc. | Implantable neural electrode |
US5389069A (en) * | 1988-01-21 | 1995-02-14 | Massachusetts Institute Of Technology | Method and apparatus for in vivo electroporation of remote cells and tissue |
US5397338A (en) * | 1993-03-29 | 1995-03-14 | Maven Labs, Inc. | Electrotherapy device |
US5397308A (en) * | 1993-10-22 | 1995-03-14 | Scimed Life Systems, Inc. | Balloon inflation measurement apparatus |
US5400784A (en) * | 1993-10-15 | 1995-03-28 | Case Western Reserve University | Slowly penetrating inter-fascicular nerve cuff electrode and method of using |
US5484400A (en) * | 1992-08-12 | 1996-01-16 | Vidamed, Inc. | Dual channel RF delivery system |
US5494822A (en) * | 1992-09-21 | 1996-02-27 | Bio-Preserve Medical Corporation | Organ perfusion device |
US5498238A (en) * | 1990-06-15 | 1996-03-12 | Cortrak Medical, Inc. | Simultaneous angioplasty and phoretic drug delivery |
US5499971A (en) * | 1990-06-15 | 1996-03-19 | Cortrak Medical, Inc. | Method for iontophoretically delivering drug adjacent to a heart |
US5599345A (en) * | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment apparatus |
US5704908A (en) * | 1996-10-10 | 1998-01-06 | Genetronics, Inc. | Electroporation and iontophoresis catheter with porous balloon |
US5707400A (en) * | 1995-09-19 | 1998-01-13 | Cyberonics, Inc. | Treating refractory hypertension by nerve stimulation |
US5711326A (en) * | 1995-08-25 | 1998-01-27 | Whirlpool Corporation | Dishwasher accumulator soil removal grating for a filter system |
US5713847A (en) * | 1994-02-09 | 1998-02-03 | The University Of Iowa Research Foundation | Human drug delivery device for tinnitus |
US5722401A (en) * | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
US5723001A (en) * | 1994-06-09 | 1998-03-03 | Electropharmacology, Inc. | Apparatus and method for therapeutically treating human body tissue with electromagnetic radiation |
US5861021A (en) * | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US5865787A (en) * | 1992-10-06 | 1999-02-02 | Cortrak Medical, Inc. | Simultaneous cardiac pacing and local drug delivery |
US6010613A (en) * | 1995-12-08 | 2000-01-04 | Cyto Pulse Sciences, Inc. | Method of treating materials with pulsed electrical fields |
US6009877A (en) * | 1994-06-24 | 2000-01-04 | Edwards; Stuart D. | Method for treating a sphincter |
US6026326A (en) * | 1997-01-13 | 2000-02-15 | Medtronic, Inc. | Apparatus and method for treating chronic constipation |
US6171306B1 (en) * | 1993-10-14 | 2001-01-09 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US6178349B1 (en) * | 1999-04-15 | 2001-01-23 | Medtronic, Inc. | Drug delivery neural stimulation device for treatment of cardiovascular disorders |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6192889B1 (en) * | 1998-05-05 | 2001-02-27 | Woodside Biomedical, Inc. | Method of suppression and prevention of the gag reflex |
US20020002329A1 (en) * | 1993-12-03 | 2002-01-03 | Boaz Avitall | Mapping and ablation catheter system |
US6347247B1 (en) * | 1998-05-08 | 2002-02-12 | Genetronics Inc. | Electrically induced vessel vasodilation |
US20020026228A1 (en) * | 1999-11-30 | 2002-02-28 | Patrick Schauerte | Electrode for intravascular stimulation, cardioversion and/or defibrillation |
US20020026222A1 (en) * | 1999-11-30 | 2002-02-28 | Biotronik Mess- Und Therapiegeraete Gmbh & Co | Device for regulating heart rate and heart pumping force |
US20030004549A1 (en) * | 2000-10-26 | 2003-01-02 | Medtronic, Inc. | Method and apparatus to minimize the effects of a cardiac insult |
US20030009145A1 (en) * | 2001-03-23 | 2003-01-09 | Struijker-Boudier Harry A.J. | Delivery of drugs from sustained release devices implanted in myocardial tissue or in the pericardial space |
US6506189B1 (en) * | 1995-05-04 | 2003-01-14 | Sherwood Services Ag | Cool-tip electrode thermosurgery system |
US6508774B1 (en) * | 1999-03-09 | 2003-01-21 | Transurgical, Inc. | Hifu applications with feedback control |
US20030018367A1 (en) * | 2001-07-23 | 2003-01-23 | Dilorenzo Daniel John | Method and apparatus for neuromodulation and phsyiologic modulation for the treatment of metabolic and neuropsychiatric disease |
US6514226B1 (en) * | 2000-02-10 | 2003-02-04 | Chf Solutions, Inc. | Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney |
US6516211B1 (en) * | 1997-05-23 | 2003-02-04 | Transurgical, Inc. | MRI-guided therapeutic unit and methods |
US6517811B2 (en) * | 1993-05-06 | 2003-02-11 | Research Corporation Technologies, Inc. | Compounds for cancer imaging and therapy |
US6522926B1 (en) * | 2000-09-27 | 2003-02-18 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control |
US6522932B1 (en) * | 1998-02-10 | 2003-02-18 | Advanced Bionics Corporation | Implantable, expandable, multicontact electrodes and tools for use therewith |
US6524607B1 (en) * | 1995-06-09 | 2003-02-25 | Euro-Celtique, S.A. | Formulations and methods for providing prolonged local anesthesia |
US20030040774A1 (en) * | 2001-08-21 | 2003-02-27 | Terry Reese S. | Treatment of congestive heart failure and autonomic cardiovascular drive disorders |
US6672312B2 (en) * | 2001-01-31 | 2004-01-06 | Transurgical, Inc. | Pulmonary vein ablation with myocardial tissue locating |
US6676657B2 (en) * | 2000-12-07 | 2004-01-13 | The United States Of America As Represented By The Department Of Health And Human Services | Endoluminal radiofrequency cauterization system |
US20040010303A1 (en) * | 2001-09-26 | 2004-01-15 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US20040010289A1 (en) * | 2000-10-17 | 2004-01-15 | Broncus Technologies, Inc. | Control system and process for application of energy to airway walls and other mediums |
US6681136B2 (en) * | 2000-12-04 | 2004-01-20 | Science Medicus, Inc. | Device and method to modulate blood pressure by electrical waveforms |
US6684105B2 (en) * | 2001-08-31 | 2004-01-27 | Biocontrol Medical, Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US20040019364A1 (en) * | 2000-09-27 | 2004-01-29 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control via coupled electrodes |
US20040019371A1 (en) * | 2001-02-08 | 2004-01-29 | Ali Jaafar | Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation |
US6692738B2 (en) * | 2000-01-27 | 2004-02-17 | The General Hospital Corporation | Delivery of therapeutic biologicals from implantable tissue matrices |
US6697670B2 (en) * | 2001-08-17 | 2004-02-24 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients |
US20050010263A1 (en) * | 2001-07-27 | 2005-01-13 | Patrick Schauerte | Neurostimulation unit for immobilizing the heart during cardiosurgical operations |
US6845267B2 (en) * | 2000-09-28 | 2005-01-18 | Advanced Bionics Corporation | Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation |
US20050021092A1 (en) * | 2003-06-09 | 2005-01-27 | Yun Anthony Joonkyoo | Treatment of conditions through modulation of the autonomic nervous system |
US6850801B2 (en) * | 2001-09-26 | 2005-02-01 | Cvrx, Inc. | Mapping methods for cardiovascular reflex control devices |
US20050038409A1 (en) * | 2001-11-29 | 2005-02-17 | Jerome Segal | Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment |
US20060004430A1 (en) * | 2004-06-30 | 2006-01-05 | Cvrx, Inc. | Connection structures for extra-vascular electrode lead body |
US20060004417A1 (en) * | 2004-06-30 | 2006-01-05 | Cvrx, Inc. | Baroreflex activation for arrhythmia treatment |
US6985774B2 (en) * | 2000-09-27 | 2006-01-10 | Cvrx, Inc. | Stimulus regimens for cardiovascular reflex control |
US20060025821A1 (en) * | 2002-04-08 | 2006-02-02 | Mark Gelfand | Methods and devices for renal nerve blocking |
US6994706B2 (en) * | 2001-08-13 | 2006-02-07 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of benign prostatic hyperplasia |
US6994700B2 (en) * | 2002-09-20 | 2006-02-07 | Flowmedica, Inc. | Apparatus and method for inserting an intra-aorta catheter through a delivery sheath |
US20060030814A1 (en) * | 2002-09-20 | 2006-02-09 | Flowmedica, Inc. | Method and apparatus for selective drug infusion via an intra-aortic flow diverter delivery catheter |
US20060036218A1 (en) * | 2002-09-20 | 2006-02-16 | Flowmedica, Inc. | Method and apparatus for selective material delivery via an intra-renal catheter |
US20060041283A1 (en) * | 2004-08-19 | 2006-02-23 | Mark Gelfand | Implantable device and method for treatment of hypertension |
US20060041277A1 (en) * | 2002-04-08 | 2006-02-23 | Mark Deem | Methods and apparatus for renal neuromodulation |
US7004911B1 (en) * | 2003-02-24 | 2006-02-28 | Hosheng Tu | Optical thermal mapping for detecting vulnerable plaque |
US7162303B2 (en) * | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US20080004673A1 (en) * | 2006-04-03 | 2008-01-03 | Cvrx, Inc. | Implantable extravascular electrostimulation system having a resilient cuff |
US20080015659A1 (en) * | 2003-12-24 | 2008-01-17 | Yi Zhang | Neurostimulation systems and methods for cardiac conditions |
US20080039904A1 (en) * | 2006-08-08 | 2008-02-14 | Cherik Bulkes | Intravascular implant system |
US20090024195A1 (en) * | 2005-09-12 | 2009-01-22 | The Cleveland Clinic Foundation | Method and apparatus for renal neuromodulation |
US20100010567A1 (en) * | 2005-07-22 | 2010-01-14 | The Foundry, Llc | Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction |
US7653438B2 (en) * | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4618600A (en) | 1984-04-19 | 1986-10-21 | Biotechnology Research Associates, J.V. | Novel polypeptide diuretic/vasodilators |
US4602624A (en) | 1984-10-11 | 1986-07-29 | Case Western Reserve University | Implantable cuff, method of manufacture, and method of installation |
US4709698A (en) | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
US4890623A (en) | 1988-03-14 | 1990-01-02 | C. R. Bard, Inc. | Biopotential sensing device and method for making |
US4955377A (en) | 1988-10-28 | 1990-09-11 | Lennox Charles D | Device and method for heating tissue in a patient's body |
AU4945490A (en) | 1989-01-06 | 1990-08-01 | Angioplasty Systems Inc. | Electrosurgical catheter for resolving atherosclerotic plaque |
US5779698A (en) | 1989-01-18 | 1998-07-14 | Applied Medical Resources Corporation | Angioplasty catheter system and method for making same |
US4976711A (en) | 1989-04-13 | 1990-12-11 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5425364A (en) | 1991-02-15 | 1995-06-20 | Cardiac Pathways Corporation | Flexible strip assembly without feedthrough holes and device utilizing the same |
AU3067292A (en) | 1991-11-08 | 1993-06-07 | Ep Technologies Inc | Ablation electrode with insulated temperature sensing elements |
US5358514A (en) | 1991-12-18 | 1994-10-25 | Alfred E. Mann Foundation For Scientific Research | Implantable microdevice with self-attaching electrodes |
US5697882A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5772590A (en) | 1992-06-30 | 1998-06-30 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
WO1994007446A1 (en) | 1992-10-05 | 1994-04-14 | Boston Scientific Corporation | Device and method for heating tissue |
CA2109980A1 (en) | 1992-12-01 | 1994-06-02 | Mir A. Imran | Steerable catheter with adjustable bend location and/or radius and method |
US5256141A (en) | 1992-12-22 | 1993-10-26 | Nelson Gencheff | Biological material deployment method and apparatus |
US5860974A (en) | 1993-07-01 | 1999-01-19 | Boston Scientific Corporation | Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft |
EP0706345B1 (en) | 1993-07-01 | 2003-02-19 | Boston Scientific Limited | Imaging, electrical potential sensing, and ablation catheters |
US5571147A (en) | 1993-11-02 | 1996-11-05 | Sluijter; Menno E. | Thermal denervation of an intervertebral disc for relief of back pain |
US6099524A (en) | 1994-01-28 | 2000-08-08 | Cardiac Pacemakers, Inc. | Electrophysiological mapping and ablation catheter and method |
US6405732B1 (en) | 1994-06-24 | 2002-06-18 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US6149620A (en) | 1995-11-22 | 2000-11-21 | Arthrocare Corporation | System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US6322558B1 (en) | 1995-06-09 | 2001-11-27 | Engineering & Research Associates, Inc. | Apparatus and method for predicting ablation depth |
US5672174A (en) | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US6283951B1 (en) | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US5700282A (en) | 1995-10-13 | 1997-12-23 | Zabara; Jacob | Heart rhythm stabilization using a neurocybernetic prosthesis |
US6036687A (en) | 1996-03-05 | 2000-03-14 | Vnus Medical Technologies, Inc. | Method and apparatus for treating venous insufficiency |
US5944710A (en) | 1996-06-24 | 1999-08-31 | Genetronics, Inc. | Electroporation-mediated intravascular delivery |
US5983141A (en) | 1996-06-27 | 1999-11-09 | Radionics, Inc. | Method and apparatus for altering neural tissue function |
US6246912B1 (en) | 1996-06-27 | 2001-06-12 | Sherwood Services Ag | Modulated high frequency tissue modification |
US5893885A (en) | 1996-11-01 | 1999-04-13 | Cordis Webster, Inc. | Multi-electrode ablation catheter |
US6091995A (en) | 1996-11-08 | 2000-07-18 | Surx, Inc. | Devices, methods, and systems for shrinking tissues |
US5954719A (en) | 1996-12-11 | 1999-09-21 | Irvine Biomedical, Inc. | System for operating a RF ablation generator |
JP2002515801A (en) | 1997-02-12 | 2002-05-28 | オーレイテック インターヴェンションズ インコーポレイテッド | Concave tip for arthroscopic surgery |
US5954761A (en) | 1997-03-25 | 1999-09-21 | Intermedics Inc. | Implantable endocardial lead assembly having a stent |
US7027869B2 (en) | 1998-01-07 | 2006-04-11 | Asthmatx, Inc. | Method for treating an asthma attack |
US6024740A (en) | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
USRE40279E1 (en) | 1997-06-26 | 2008-04-29 | Sherwood Services Ag | Method and system for neural tissue modification |
WO1999000060A1 (en) | 1997-06-26 | 1999-01-07 | Advanced Coronary Intervention | Electrosurgical catheter for resolving obstructions by radio frequency ablation |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6869431B2 (en) | 1997-07-08 | 2005-03-22 | Atrionix, Inc. | Medical device with sensor cooperating with expandable member |
US6917834B2 (en) | 1997-12-03 | 2005-07-12 | Boston Scientific Scimed, Inc. | Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates |
US6273886B1 (en) | 1998-02-19 | 2001-08-14 | Curon Medical, Inc. | Integrated tissue heating and cooling apparatus |
US6142993A (en) | 1998-02-27 | 2000-11-07 | Ep Technologies, Inc. | Collapsible spline structure using a balloon as an expanding actuator |
US6314325B1 (en) | 1998-04-07 | 2001-11-06 | William R. Fitz | Nerve hyperpolarization method and apparatus for pain relief |
US6219577B1 (en) | 1998-04-14 | 2001-04-17 | Global Vascular Concepts, Inc. | Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues |
US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy |
WO1999065561A1 (en) | 1998-06-19 | 1999-12-23 | Cordis Webster, Inc. | Method and apparatus for transvascular treatment of tachycardia and fibrillation |
US6322559B1 (en) | 1998-07-06 | 2001-11-27 | Vnus Medical Technologies, Inc. | Electrode catheter having coil structure |
US6123702A (en) | 1998-09-10 | 2000-09-26 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
US7313444B2 (en) | 1998-11-20 | 2007-12-25 | Pacesetter, Inc. | Self-anchoring coronary sinus lead |
JP4102031B2 (en) | 1999-03-09 | 2008-06-18 | サーメイジ インコーポレイテッド | Apparatus and method for treating tissue |
US6325797B1 (en) | 1999-04-05 | 2001-12-04 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
US6939346B2 (en) | 1999-04-21 | 2005-09-06 | Oratec Interventions, Inc. | Method and apparatus for controlling a temperature-controlled probe |
WO2000066017A1 (en) | 1999-05-04 | 2000-11-09 | Curon Medical, Inc. | Electrodes for creating lesions in tissue regions at or near a sphincter |
US7171263B2 (en) | 1999-06-04 | 2007-01-30 | Impulse Dynamics Nv | Drug delivery device |
JP2003503119A (en) | 1999-06-25 | 2003-01-28 | エモリ ユニバーシティ | Vagal nerve stimulation device and method |
AU7735200A (en) | 1999-09-28 | 2001-04-30 | Novasys Medical, Inc. | Treatment of tissue by application of energy and drugs |
US6542781B1 (en) | 1999-11-22 | 2003-04-01 | Scimed Life Systems, Inc. | Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue |
US6711444B2 (en) | 1999-11-22 | 2004-03-23 | Scimed Life Systems, Inc. | Methods of deploying helical diagnostic and therapeutic element supporting structures within the body |
US6885888B2 (en) | 2000-01-20 | 2005-04-26 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
US6770070B1 (en) | 2000-03-17 | 2004-08-03 | Rita Medical Systems, Inc. | Lung treatment apparatus and method |
AU2001266824B2 (en) | 2000-06-13 | 2005-05-12 | Atrionix, Inc. | Surgical ablation probe for forming a circumferential lesion |
JP4099388B2 (en) | 2000-07-13 | 2008-06-11 | プロリズム,インコーポレイテッド | A device for applying energy to the body of a living organism |
US7306591B2 (en) | 2000-10-02 | 2007-12-11 | Novasys Medical, Inc. | Apparatus and methods for treating female urinary incontinence |
US6640120B1 (en) | 2000-10-05 | 2003-10-28 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
US6616624B1 (en) | 2000-10-30 | 2003-09-09 | Cvrx, Inc. | Systems and method for controlling renovascular perfusion |
CA2434151C (en) | 2001-01-11 | 2009-12-22 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US6972016B2 (en) | 2001-05-01 | 2005-12-06 | Cardima, Inc. | Helically shaped electrophysiology catheter |
US20030050635A1 (en) | 2001-08-22 | 2003-03-13 | Csaba Truckai | Embolization systems and techniques for treating tumors |
US7778703B2 (en) | 2001-08-31 | 2010-08-17 | Bio Control Medical (B.C.M.) Ltd. | Selective nerve fiber stimulation for treating heart conditions |
US20030125790A1 (en) | 2001-12-27 | 2003-07-03 | Vitaly Fastovsky | Deployment device, system and method for medical implantation |
US6893436B2 (en) | 2002-01-03 | 2005-05-17 | Afx, Inc. | Ablation instrument having a flexible distal portion |
US6736835B2 (en) | 2002-03-21 | 2004-05-18 | Depuy Acromed, Inc. | Early intervention spinal treatment methods and devices for use therein |
WO2003082403A2 (en) | 2002-03-27 | 2003-10-09 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control via coupled electrodes |
US20110207758A1 (en) | 2003-04-08 | 2011-08-25 | Medtronic Vascular, Inc. | Methods for Therapeutic Renal Denervation |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7620451B2 (en) | 2005-12-29 | 2009-11-17 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
US8131371B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Methods and apparatus for monopolar renal neuromodulation |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US8175711B2 (en) | 2002-04-08 | 2012-05-08 | Ardian, Inc. | Methods for treating a condition or disease associated with cardio-renal function |
US8145317B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods for renal neuromodulation |
US6748953B2 (en) | 2002-06-11 | 2004-06-15 | Scimed Life Systems, Inc. | Method for thermal treatment of type II endoleaks in arterial aneurysms |
US6923808B2 (en) | 2003-02-24 | 2005-08-02 | Boston Scientific Scimed, Inc. | Probes having helical and loop shaped inflatable therapeutic elements |
US7097643B2 (en) | 2003-03-03 | 2006-08-29 | Sinus Rhythm Technologies, Inc. | Electrical block positioning devices and methods of use therefor |
US7221979B2 (en) | 2003-04-30 | 2007-05-22 | Medtronic, Inc. | Methods and apparatus for the regulation of hormone release |
JP4212949B2 (en) | 2003-05-06 | 2009-01-21 | 朝日インテック株式会社 | Chemical injection device |
CA2938411C (en) | 2003-09-12 | 2019-03-05 | Minnow Medical, Llc | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US7435248B2 (en) | 2003-09-26 | 2008-10-14 | Boston Scientific Scimed, Inc. | Medical probes for creating and diagnosing circumferential lesions within or around the ostium of a vessel |
US7416549B2 (en) | 2003-10-10 | 2008-08-26 | Boston Scientific Scimed, Inc. | Multi-zone bipolar ablation probe assembly |
US7231260B2 (en) | 2004-05-06 | 2007-06-12 | Boston Scientific Scimed, Inc. | Intravascular self-anchoring electrode body with arcuate springs, spring loops, or arms |
EP1796568A1 (en) | 2004-09-09 | 2007-06-20 | Vnus Medical Technologies, Inc. | Methods and apparatus for treatment of hollow anatomical structures |
US7524318B2 (en) | 2004-10-28 | 2009-04-28 | Boston Scientific Scimed, Inc. | Ablation probe with flared electrodes |
WO2006052905A2 (en) | 2004-11-08 | 2006-05-18 | Cardima, Inc. | System and method for performing ablation and other medical procedures using an electrode array with flex circuit |
CN101511292B (en) | 2005-03-28 | 2011-04-06 | 明诺医学有限公司 | Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues |
US7390894B2 (en) | 2005-07-07 | 2008-06-24 | Mayo Foundation For Medical Education And Research | Glutathione S-transferase sequence variants |
US8834461B2 (en) | 2005-07-11 | 2014-09-16 | Medtronic Ablation Frontiers Llc | Low power tissue ablation system |
EP2076193A4 (en) | 2006-10-18 | 2010-02-03 | Minnow Medical Inc | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
US8630704B2 (en) | 2007-06-25 | 2014-01-14 | Cardiac Pacemakers, Inc. | Neural stimulation with respiratory rhythm management |
US8290582B2 (en) | 2007-09-26 | 2012-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method to treat tissue with electric current |
US20110208173A1 (en) | 2010-02-24 | 2011-08-25 | Medtronic Vascular, Inc. | Methods for Treating sleep apnea via renal Denervation |
-
2011
- 2011-02-24 US US13/034,595 patent/US20110207758A1/en not_active Abandoned
-
2014
- 2014-06-06 US US14/297,970 patent/US9629679B2/en not_active Expired - Lifetime
-
2017
- 2017-03-14 US US15/458,496 patent/US9867663B2/en not_active Expired - Lifetime
- 2017-12-11 US US15/837,488 patent/US10194983B2/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US911930A (en) * | 1906-07-16 | 1909-02-09 | Harry F Anderson | Printing-press. |
US2276995A (en) * | 1938-01-22 | 1942-03-17 | A J Ginsberg | Electrotherapy |
US2276996A (en) * | 1940-11-30 | 1942-03-17 | A J Ginsberg | Non-radio-interfering therapeutic apparatus |
US3563246A (en) * | 1967-04-24 | 1971-02-16 | Intelectron Corp | Method and apparatus for improving neural performance in human subjects by electrotherapy |
US3650277A (en) * | 1969-02-24 | 1972-03-21 | Lkb Medical Ab | Apparatus for influencing the systemic blood pressure in a patient by carotid sinus nerve stimulation |
US3794022A (en) * | 1972-06-30 | 1974-02-26 | E Nawracaj | Dual oscillator, variable pulse duration electrotherapeutic device |
US4011861A (en) * | 1974-04-03 | 1977-03-15 | Case Western Reserve University | Implantable electric terminal for organic tissue |
US4315503A (en) * | 1976-11-17 | 1982-02-16 | Electro-Biology, Inc. | Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment |
US4071033A (en) * | 1976-12-20 | 1978-01-31 | Nawracaj Edward P | Electrotherapeutic device with modulated dual signals |
US4141365A (en) * | 1977-02-24 | 1979-02-27 | The Johns Hopkins University | Epidural lead electrode and insertion needle |
US4816016A (en) * | 1984-03-16 | 1989-03-28 | Pudenz-Schulte Medical Research Corp. | Subcutaneous infusion reservoir and pump system |
US4649936A (en) * | 1984-10-11 | 1987-03-17 | Case Western Reserve University | Asymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking |
US4998532A (en) * | 1986-05-23 | 1991-03-12 | Lti Biomedical, Inc. | Portable electro-therapy system |
US5096636A (en) * | 1986-11-04 | 1992-03-17 | Maschinenfabrik J. Dieffenbacher Gmbh & Co. | High-speed hydraulic press |
US5389069A (en) * | 1988-01-21 | 1995-02-14 | Massachusetts Institute Of Technology | Method and apparatus for in vivo electroporation of remote cells and tissue |
US4981146A (en) * | 1988-04-21 | 1991-01-01 | Maven Labs, Inc. | Nausea control device |
US5094242A (en) * | 1988-11-07 | 1992-03-10 | Regents Of The University Of California | Implantable nerve stimulation device |
US5188837A (en) * | 1989-11-13 | 1993-02-23 | Nova Pharmaceutical Corporation | Lipsopheres for controlled delivery of substances |
US5193048A (en) * | 1990-04-27 | 1993-03-09 | Kaufman Dennis R | Stun gun with low battery indicator and shutoff timer |
US5282468A (en) * | 1990-06-07 | 1994-02-01 | Medtronic, Inc. | Implantable neural electrode |
US5282785A (en) * | 1990-06-15 | 1994-02-01 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5286254A (en) * | 1990-06-15 | 1994-02-15 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5499971A (en) * | 1990-06-15 | 1996-03-19 | Cortrak Medical, Inc. | Method for iontophoretically delivering drug adjacent to a heart |
US5498238A (en) * | 1990-06-15 | 1996-03-12 | Cortrak Medical, Inc. | Simultaneous angioplasty and phoretic drug delivery |
US5193540A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5193539A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5484400A (en) * | 1992-08-12 | 1996-01-16 | Vidamed, Inc. | Dual channel RF delivery system |
US5494822A (en) * | 1992-09-21 | 1996-02-27 | Bio-Preserve Medical Corporation | Organ perfusion device |
US5865787A (en) * | 1992-10-06 | 1999-02-02 | Cortrak Medical, Inc. | Simultaneous cardiac pacing and local drug delivery |
US5397338A (en) * | 1993-03-29 | 1995-03-14 | Maven Labs, Inc. | Electrotherapy device |
US6517811B2 (en) * | 1993-05-06 | 2003-02-11 | Research Corporation Technologies, Inc. | Compounds for cancer imaging and therapy |
US6171306B1 (en) * | 1993-10-14 | 2001-01-09 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US5400784A (en) * | 1993-10-15 | 1995-03-28 | Case Western Reserve University | Slowly penetrating inter-fascicular nerve cuff electrode and method of using |
US5397308A (en) * | 1993-10-22 | 1995-03-14 | Scimed Life Systems, Inc. | Balloon inflation measurement apparatus |
US5599345A (en) * | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment apparatus |
US20020002329A1 (en) * | 1993-12-03 | 2002-01-03 | Boaz Avitall | Mapping and ablation catheter system |
US5713847A (en) * | 1994-02-09 | 1998-02-03 | The University Of Iowa Research Foundation | Human drug delivery device for tinnitus |
US5723001A (en) * | 1994-06-09 | 1998-03-03 | Electropharmacology, Inc. | Apparatus and method for therapeutically treating human body tissue with electromagnetic radiation |
US6009877A (en) * | 1994-06-24 | 2000-01-04 | Edwards; Stuart D. | Method for treating a sphincter |
US5722401A (en) * | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
US6506189B1 (en) * | 1995-05-04 | 2003-01-14 | Sherwood Services Ag | Cool-tip electrode thermosurgery system |
US6524607B1 (en) * | 1995-06-09 | 2003-02-25 | Euro-Celtique, S.A. | Formulations and methods for providing prolonged local anesthesia |
US5711326A (en) * | 1995-08-25 | 1998-01-27 | Whirlpool Corporation | Dishwasher accumulator soil removal grating for a filter system |
US5707400A (en) * | 1995-09-19 | 1998-01-13 | Cyberonics, Inc. | Treating refractory hypertension by nerve stimulation |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6010613A (en) * | 1995-12-08 | 2000-01-04 | Cyto Pulse Sciences, Inc. | Method of treating materials with pulsed electrical fields |
US5861021A (en) * | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US5704908A (en) * | 1996-10-10 | 1998-01-06 | Genetronics, Inc. | Electroporation and iontophoresis catheter with porous balloon |
US6026326A (en) * | 1997-01-13 | 2000-02-15 | Medtronic, Inc. | Apparatus and method for treating chronic constipation |
US6516211B1 (en) * | 1997-05-23 | 2003-02-04 | Transurgical, Inc. | MRI-guided therapeutic unit and methods |
US6522932B1 (en) * | 1998-02-10 | 2003-02-18 | Advanced Bionics Corporation | Implantable, expandable, multicontact electrodes and tools for use therewith |
US6192889B1 (en) * | 1998-05-05 | 2001-02-27 | Woodside Biomedical, Inc. | Method of suppression and prevention of the gag reflex |
US6347247B1 (en) * | 1998-05-08 | 2002-02-12 | Genetronics Inc. | Electrically induced vessel vasodilation |
US6508774B1 (en) * | 1999-03-09 | 2003-01-21 | Transurgical, Inc. | Hifu applications with feedback control |
US6178349B1 (en) * | 1999-04-15 | 2001-01-23 | Medtronic, Inc. | Drug delivery neural stimulation device for treatment of cardiovascular disorders |
US20020026228A1 (en) * | 1999-11-30 | 2002-02-28 | Patrick Schauerte | Electrode for intravascular stimulation, cardioversion and/or defibrillation |
US6690971B2 (en) * | 1999-11-30 | 2004-02-10 | Biotronik Mess - Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Device for regulating heart rate and heart pumping force |
US20020026222A1 (en) * | 1999-11-30 | 2002-02-28 | Biotronik Mess- Und Therapiegeraete Gmbh & Co | Device for regulating heart rate and heart pumping force |
US6692738B2 (en) * | 2000-01-27 | 2004-02-17 | The General Hospital Corporation | Delivery of therapeutic biologicals from implantable tissue matrices |
US6514226B1 (en) * | 2000-02-10 | 2003-02-04 | Chf Solutions, Inc. | Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney |
US6522926B1 (en) * | 2000-09-27 | 2003-02-18 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control |
US6985774B2 (en) * | 2000-09-27 | 2006-01-10 | Cvrx, Inc. | Stimulus regimens for cardiovascular reflex control |
US20040019364A1 (en) * | 2000-09-27 | 2004-01-29 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control via coupled electrodes |
US6845267B2 (en) * | 2000-09-28 | 2005-01-18 | Advanced Bionics Corporation | Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation |
US20040010289A1 (en) * | 2000-10-17 | 2004-01-15 | Broncus Technologies, Inc. | Control system and process for application of energy to airway walls and other mediums |
US20030004549A1 (en) * | 2000-10-26 | 2003-01-02 | Medtronic, Inc. | Method and apparatus to minimize the effects of a cardiac insult |
US6681136B2 (en) * | 2000-12-04 | 2004-01-20 | Science Medicus, Inc. | Device and method to modulate blood pressure by electrical waveforms |
US6676657B2 (en) * | 2000-12-07 | 2004-01-13 | The United States Of America As Represented By The Department Of Health And Human Services | Endoluminal radiofrequency cauterization system |
US6672312B2 (en) * | 2001-01-31 | 2004-01-06 | Transurgical, Inc. | Pulmonary vein ablation with myocardial tissue locating |
US20040019371A1 (en) * | 2001-02-08 | 2004-01-29 | Ali Jaafar | Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation |
US20030009145A1 (en) * | 2001-03-23 | 2003-01-09 | Struijker-Boudier Harry A.J. | Delivery of drugs from sustained release devices implanted in myocardial tissue or in the pericardial space |
US20030018367A1 (en) * | 2001-07-23 | 2003-01-23 | Dilorenzo Daniel John | Method and apparatus for neuromodulation and phsyiologic modulation for the treatment of metabolic and neuropsychiatric disease |
US20050010263A1 (en) * | 2001-07-27 | 2005-01-13 | Patrick Schauerte | Neurostimulation unit for immobilizing the heart during cardiosurgical operations |
US6994706B2 (en) * | 2001-08-13 | 2006-02-07 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of benign prostatic hyperplasia |
US6697670B2 (en) * | 2001-08-17 | 2004-02-24 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients |
US20030040774A1 (en) * | 2001-08-21 | 2003-02-27 | Terry Reese S. | Treatment of congestive heart failure and autonomic cardiovascular drive disorders |
US6684105B2 (en) * | 2001-08-31 | 2004-01-27 | Biocontrol Medical, Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US20040010303A1 (en) * | 2001-09-26 | 2004-01-15 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US6850801B2 (en) * | 2001-09-26 | 2005-02-01 | Cvrx, Inc. | Mapping methods for cardiovascular reflex control devices |
US20050038409A1 (en) * | 2001-11-29 | 2005-02-17 | Jerome Segal | Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment |
US20060025821A1 (en) * | 2002-04-08 | 2006-02-02 | Mark Gelfand | Methods and devices for renal nerve blocking |
US7162303B2 (en) * | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US7653438B2 (en) * | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US7647115B2 (en) * | 2002-04-08 | 2010-01-12 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US20090036948A1 (en) * | 2002-04-08 | 2009-02-05 | Ardian, Inc. | Renal nerve stimulation methods for treatment of patients |
US20060041277A1 (en) * | 2002-04-08 | 2006-02-23 | Mark Deem | Methods and apparatus for renal neuromodulation |
US6994700B2 (en) * | 2002-09-20 | 2006-02-07 | Flowmedica, Inc. | Apparatus and method for inserting an intra-aorta catheter through a delivery sheath |
US20060030814A1 (en) * | 2002-09-20 | 2006-02-09 | Flowmedica, Inc. | Method and apparatus for selective drug infusion via an intra-aortic flow diverter delivery catheter |
US20060036218A1 (en) * | 2002-09-20 | 2006-02-16 | Flowmedica, Inc. | Method and apparatus for selective material delivery via an intra-renal catheter |
US7004911B1 (en) * | 2003-02-24 | 2006-02-28 | Hosheng Tu | Optical thermal mapping for detecting vulnerable plaque |
US20050021092A1 (en) * | 2003-06-09 | 2005-01-27 | Yun Anthony Joonkyoo | Treatment of conditions through modulation of the autonomic nervous system |
US20080015659A1 (en) * | 2003-12-24 | 2008-01-17 | Yi Zhang | Neurostimulation systems and methods for cardiac conditions |
US20060004417A1 (en) * | 2004-06-30 | 2006-01-05 | Cvrx, Inc. | Baroreflex activation for arrhythmia treatment |
US20060004430A1 (en) * | 2004-06-30 | 2006-01-05 | Cvrx, Inc. | Connection structures for extra-vascular electrode lead body |
US20060041283A1 (en) * | 2004-08-19 | 2006-02-23 | Mark Gelfand | Implantable device and method for treatment of hypertension |
US20100010567A1 (en) * | 2005-07-22 | 2010-01-14 | The Foundry, Llc | Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction |
US20090024195A1 (en) * | 2005-09-12 | 2009-01-22 | The Cleveland Clinic Foundation | Method and apparatus for renal neuromodulation |
US20080004673A1 (en) * | 2006-04-03 | 2008-01-03 | Cvrx, Inc. | Implantable extravascular electrostimulation system having a resilient cuff |
US20080039904A1 (en) * | 2006-08-08 | 2008-02-14 | Cherik Bulkes | Intravascular implant system |
Cited By (238)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9629679B2 (en) | 2002-04-08 | 2017-04-25 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal denervation |
US10194983B2 (en) | 2002-04-08 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal denervation |
US9867663B2 (en) | 2002-04-08 | 2018-01-16 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal denervation |
US9707034B2 (en) | 2002-07-01 | 2017-07-18 | Recor Medical, Inc. | Intraluminal method and apparatus for ablating nerve tissue |
US9700372B2 (en) | 2002-07-01 | 2017-07-11 | Recor Medical, Inc. | Intraluminal methods of ablating nerve tissue |
US9510901B2 (en) | 2003-09-12 | 2016-12-06 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US10188457B2 (en) | 2003-09-12 | 2019-01-29 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US8939970B2 (en) | 2004-09-10 | 2015-01-27 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US9486355B2 (en) | 2005-05-03 | 2016-11-08 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US9808300B2 (en) | 2006-05-02 | 2017-11-07 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US12076033B2 (en) | 2006-05-19 | 2024-09-03 | Recor Medical, Inc. | Ablation device with optimized input power profile and method of using the same |
US10499937B2 (en) | 2006-05-19 | 2019-12-10 | Recor Medical, Inc. | Ablation device with optimized input power profile and method of using the same |
US10213252B2 (en) | 2006-10-18 | 2019-02-26 | Vessix, Inc. | Inducing desirable temperature effects on body tissue |
US10413356B2 (en) | 2006-10-18 | 2019-09-17 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US8768469B2 (en) | 2008-08-08 | 2014-07-01 | Enteromedics Inc. | Systems for regulation of blood pressure and heart rate |
US9616231B2 (en) | 2008-08-08 | 2017-04-11 | Enteromedics Inc. | Systems for regulation of blood pressure and heart rate |
US9095711B2 (en) | 2008-08-08 | 2015-08-04 | Enteromedics Inc. | Systems for regulation of blood pressure and heart rate |
US9327100B2 (en) | 2008-11-14 | 2016-05-03 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8974445B2 (en) | 2009-01-09 | 2015-03-10 | Recor Medical, Inc. | Methods and apparatus for treatment of cardiac valve insufficiency |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US11707629B2 (en) | 2009-05-28 | 2023-07-25 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
US8975233B2 (en) | 2010-01-26 | 2015-03-10 | Northwind Medical, Inc. | Methods for renal denervation |
US9056184B2 (en) | 2010-01-26 | 2015-06-16 | Northwind Medical, Inc. | Methods for renal denervation |
US20110208175A1 (en) * | 2010-02-24 | 2011-08-25 | Medtronic Vascular, Inc. | Methods for Treating Sleep Apnea Via Renal Denervation |
US20110208173A1 (en) * | 2010-02-24 | 2011-08-25 | Medtronic Vascular, Inc. | Methods for Treating sleep apnea via renal Denervation |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US8880185B2 (en) | 2010-06-11 | 2014-11-04 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US11931096B2 (en) | 2010-10-13 | 2024-03-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9848946B2 (en) | 2010-11-15 | 2017-12-26 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9649156B2 (en) | 2010-12-15 | 2017-05-16 | Boston Scientific Scimed, Inc. | Bipolar off-wall electrode device for renal nerve ablation |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US11964113B2 (en) | 2011-04-22 | 2024-04-23 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US11717345B2 (en) | 2011-04-22 | 2023-08-08 | Ablative Solutions, Inc. | Methods of ablating tissue using a catheter injection system |
US9131983B2 (en) | 2011-04-22 | 2015-09-15 | Ablative Solutions, Inc. | Methods ablating tissue using a catheter-based injection system |
US10172663B2 (en) | 2011-04-22 | 2019-01-08 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US11007346B2 (en) | 2011-04-22 | 2021-05-18 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US9237925B2 (en) | 2011-04-22 | 2016-01-19 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US9795441B2 (en) | 2011-04-22 | 2017-10-24 | Ablative Solutions, Inc. | Methods of ablating tissue using a catheter injection system |
US11007008B2 (en) | 2011-04-22 | 2021-05-18 | Ablative Solutions, Inc. | Methods of ablating tissue using a catheter injection system |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
US11007329B2 (en) | 2011-08-24 | 2021-05-18 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
US10485951B2 (en) | 2011-08-24 | 2019-11-26 | Ablative Solutions, Inc. | Catheter systems and packaged kits for dual layer guide tubes |
US11759608B2 (en) | 2011-08-24 | 2023-09-19 | Ablative Solutions, Inc. | Intravascular fluid catheter with minimal internal fluid volume |
US11752303B2 (en) | 2011-08-24 | 2023-09-12 | Ablative Solutions, Inc. | Catheter systems and packaged kits for dual layer guide tubes |
US10118004B2 (en) | 2011-08-24 | 2018-11-06 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
US10576246B2 (en) | 2011-08-24 | 2020-03-03 | Ablative Solutions, Inc. | Intravascular fluid catheter with minimal internal fluid volume |
US9278196B2 (en) | 2011-08-24 | 2016-03-08 | Ablative Solutions, Inc. | Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation |
US9757196B2 (en) | 2011-09-28 | 2017-09-12 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
US11779395B2 (en) | 2011-09-28 | 2023-10-10 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
EP2594193A3 (en) * | 2011-09-29 | 2013-05-29 | Pacesetter, Inc. | System and method for performing renal denervation verification |
EP3028628A1 (en) * | 2011-09-29 | 2016-06-08 | Pacesetter, Inc. | System and method for performing renal denervation verification |
US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US10085799B2 (en) | 2011-10-11 | 2018-10-02 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9060784B2 (en) | 2011-12-09 | 2015-06-23 | Metavention, Inc. | Hepatic denervation systems |
US9999461B2 (en) | 2011-12-09 | 2018-06-19 | Metavention, Inc. | Therapeutic denervation of nerves surrounding a hepatic vessel |
US8568399B2 (en) | 2011-12-09 | 2013-10-29 | Metavention, Inc. | Methods for thermally-induced hepatic neuromodulation |
US8579891B2 (en) | 2011-12-09 | 2013-11-12 | Metavention, Inc. | Devices for thermally-induced hepatic neuromodulation |
US9033969B2 (en) | 2011-12-09 | 2015-05-19 | Metavention, Inc. | Nerve modulation to treat diabetes |
US10543034B2 (en) | 2011-12-09 | 2020-01-28 | Metavention, Inc. | Modulation of nerves innervating the liver |
US8728070B2 (en) | 2011-12-09 | 2014-05-20 | Metavention, Inc. | Hepatic neuromodulation methods |
US9265575B2 (en) | 2011-12-09 | 2016-02-23 | Metavention, Inc. | Balloon catheter neuromodulation systems |
US9089542B2 (en) | 2011-12-09 | 2015-07-28 | Metavention, Inc. | Hepatic neuromodulation using microwave energy |
US8728069B2 (en) | 2011-12-09 | 2014-05-20 | Metavention, Inc. | Modulation of nerves that innervate the liver |
US8758334B2 (en) | 2011-12-09 | 2014-06-24 | Metavention, Inc. | Hepatic neuromodulation devices |
US8876815B2 (en) | 2011-12-09 | 2014-11-04 | Metavention, Inc. | Energy delivery devices for hepatic neuromodulation |
US8894639B2 (en) | 2011-12-09 | 2014-11-25 | Metavention, Inc. | Hepatic artery nerve modulation methods |
US12029466B2 (en) | 2011-12-09 | 2024-07-09 | Medtronic Ireland Manufacturing Unlimited Company | Neuromodulation for metabolic conditions or syndromes |
US9089541B2 (en) | 2011-12-09 | 2015-07-28 | Metavention, Inc. | Gastroduodenal artery neuromodulation |
US10070911B2 (en) | 2011-12-09 | 2018-09-11 | Metavention, Inc. | Neuromodulation methods to alter glucose levels |
US10064674B2 (en) | 2011-12-09 | 2018-09-04 | Metavention, Inc. | Methods of modulating nerves of the hepatic plexus |
US9114123B2 (en) | 2011-12-09 | 2015-08-25 | Metavention, Inc. | Hepatic neuromodulation using fluids or chemical agents |
US10617460B2 (en) | 2011-12-09 | 2020-04-14 | Metavention, Inc. | Neuromodulation for metabolic conditions or syndromes |
US9011422B2 (en) | 2011-12-09 | 2015-04-21 | Metavention, Inc. | Hepatic neuromodulation to treat fatty liver conditions |
US10856926B2 (en) | 2011-12-09 | 2020-12-08 | Metavention, Inc. | Neuromodulation for metabolic conditions or syndromes |
US9114124B2 (en) | 2011-12-09 | 2015-08-25 | Metavention, Inc. | Modulation of nerves innervating the liver |
US9005191B2 (en) | 2011-12-09 | 2015-04-14 | Metavention, Inc. | Neuromodulation methods using balloon catheter |
US9005190B2 (en) | 2011-12-09 | 2015-04-14 | Metavention, Inc. | Treatment of non-alcoholic fatty liver disease |
US9149329B2 (en) | 2011-12-09 | 2015-10-06 | Metavention, Inc. | Glucose alteration methods |
US9028391B2 (en) | 2011-12-15 | 2015-05-12 | The Board Of Trustees Of The Leland Stanford Jr. University | Apparatus and methods for treating pulmonary hypertension |
US9005100B2 (en) | 2011-12-15 | 2015-04-14 | The Board Of Trustees Of The Leland Stanford Jr. University | Apparatus and methods for treating pulmonary hypertension |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9592386B2 (en) | 2011-12-23 | 2017-03-14 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9072902B2 (en) | 2011-12-23 | 2015-07-07 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9186211B2 (en) | 2011-12-23 | 2015-11-17 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9037259B2 (en) | 2011-12-23 | 2015-05-19 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9174050B2 (en) | 2011-12-23 | 2015-11-03 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9028472B2 (en) | 2011-12-23 | 2015-05-12 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9402684B2 (en) | 2011-12-23 | 2016-08-02 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US12102376B2 (en) | 2012-02-08 | 2024-10-01 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
US11515029B2 (en) | 2012-03-08 | 2022-11-29 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation and associated systems and methods for the management of pain |
US20150088111A1 (en) * | 2012-03-08 | 2015-03-26 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation methods and systems for treatment of hyperaldosteronism |
US9883909B2 (en) * | 2012-03-08 | 2018-02-06 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation methods and systems for treatment of hyperaldosteronism |
WO2013134472A1 (en) * | 2012-03-08 | 2013-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation methods and systems for treatment of hyperaldosteronism |
AU2013230886B2 (en) * | 2012-03-08 | 2015-10-01 | Medtronic Af Luxembourg S.A.R.L. | Renal neuromodulation methods and systems for treatment of hyperaldosteronism |
WO2013134479A1 (en) * | 2012-03-08 | 2013-09-12 | Medtronic Ardian Luxembourg Sarl | Neuromodulation and associated systems and methods for the management of pain |
US20160038769A1 (en) * | 2012-03-08 | 2016-02-11 | Carol Sullivan | Neuromodulation and associated systems and methods for the management of pain |
AU2013230893B2 (en) * | 2012-03-08 | 2015-12-03 | Medtronic Af Luxembourg S.A.R.L. | Neuromodulation and associated systems and methods for the management of pain |
US10737123B2 (en) * | 2012-03-08 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation and associated systems and methods for the management of pain |
US10300281B2 (en) | 2012-03-09 | 2019-05-28 | Mayo Foundation For Medical Education And Research | Modulating afferent signals to treat medical conditions |
US11207519B2 (en) | 2012-03-09 | 2021-12-28 | Mayo Foundation For Medical Education And Research | Modulating afferent signals to treat medical conditions |
US9439598B2 (en) | 2012-04-12 | 2016-09-13 | NeuroMedic, Inc. | Mapping and ablation of nerves within arteries and tissues |
WO2013169741A1 (en) * | 2012-05-08 | 2013-11-14 | Stein Emily A | Agents and devices for affecting nerve function |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10835305B2 (en) | 2012-10-10 | 2020-11-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US9526827B2 (en) | 2012-10-29 | 2016-12-27 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US9320850B2 (en) | 2012-10-29 | 2016-04-26 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with unique injection fitting |
US9539047B2 (en) | 2012-10-29 | 2017-01-10 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US9254360B2 (en) | 2012-10-29 | 2016-02-09 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with deflection surface support structures |
US10736656B2 (en) | 2012-10-29 | 2020-08-11 | Ablative Solutions | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
US12053238B2 (en) | 2012-10-29 | 2024-08-06 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US10881458B2 (en) | 2012-10-29 | 2021-01-05 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US10945787B2 (en) | 2012-10-29 | 2021-03-16 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US9301795B2 (en) | 2012-10-29 | 2016-04-05 | Ablative Solutions, Inc. | Transvascular catheter for extravascular delivery |
US9554849B2 (en) | 2012-10-29 | 2017-01-31 | Ablative Solutions, Inc. | Transvascular method of treating hypertension |
US10226278B2 (en) | 2012-10-29 | 2019-03-12 | Ablative Solutions, Inc. | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
US11944373B2 (en) | 2012-10-29 | 2024-04-02 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US9179962B2 (en) | 2012-10-29 | 2015-11-10 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US11202889B2 (en) | 2012-10-29 | 2021-12-21 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US11980408B2 (en) | 2012-10-29 | 2024-05-14 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US10405912B2 (en) | 2012-10-29 | 2019-09-10 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US10350392B2 (en) | 2012-10-29 | 2019-07-16 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US9827036B2 (en) | 2012-11-13 | 2017-11-28 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US9872720B2 (en) | 2012-11-13 | 2018-01-23 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US11241267B2 (en) | 2012-11-13 | 2022-02-08 | Pulnovo Medical (Wuxi) Co., Ltd | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US9820800B2 (en) | 2012-11-13 | 2017-11-21 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US12082868B2 (en) | 2012-11-13 | 2024-09-10 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US10874454B2 (en) | 2012-11-13 | 2020-12-29 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US9918776B2 (en) | 2012-11-13 | 2018-03-20 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US9888956B2 (en) | 2013-01-22 | 2018-02-13 | Angiodynamics, Inc. | Integrated pump and generator device and method of use |
US10076384B2 (en) | 2013-03-08 | 2018-09-18 | Symple Surgical, Inc. | Balloon catheter apparatus with microwave emitter |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US9827039B2 (en) | 2013-03-15 | 2017-11-28 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US12011212B2 (en) | 2013-06-05 | 2024-06-18 | Medtronic Ireland Manufacturing Unlimited Company | Modulation of targeted nerve fibers |
US11957405B2 (en) | 2013-06-13 | 2024-04-16 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10660698B2 (en) | 2013-07-11 | 2020-05-26 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10722300B2 (en) | 2013-08-22 | 2020-07-28 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
US10952790B2 (en) | 2013-09-13 | 2021-03-23 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US10945786B2 (en) | 2013-10-18 | 2021-03-16 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
US11751787B2 (en) | 2013-10-25 | 2023-09-12 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
US10736524B2 (en) | 2013-10-25 | 2020-08-11 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
US10420481B2 (en) | 2013-10-25 | 2019-09-24 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US11510729B2 (en) | 2013-10-25 | 2022-11-29 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US9949652B2 (en) | 2013-10-25 | 2018-04-24 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US11937933B2 (en) | 2013-10-25 | 2024-03-26 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US9931046B2 (en) | 2013-10-25 | 2018-04-03 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
US10881312B2 (en) | 2013-10-25 | 2021-01-05 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US10517666B2 (en) | 2013-10-25 | 2019-12-31 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US10022059B2 (en) | 2013-10-25 | 2018-07-17 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US10194980B1 (en) * | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US10194979B1 (en) * | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US9980766B1 (en) | 2014-03-28 | 2018-05-29 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and systems for renal neuromodulation |
WO2015153767A1 (en) * | 2014-04-01 | 2015-10-08 | Mayo Foundation For Medical Education And Research | Methods and materials for treating hypertension |
US20170065327A1 (en) * | 2014-04-01 | 2017-03-09 | Mayo Foundation For Medical Education And Research | Methods and materials for treating elevated sympathetic nerve activity conditions |
WO2015153775A1 (en) * | 2014-04-01 | 2015-10-08 | Mayo Foundation For Medical Education And Research | Methods and materials for treating elevated sympathetic nerve activity conditions |
US10478249B2 (en) | 2014-05-07 | 2019-11-19 | Pythagoras Medical Ltd. | Controlled tissue ablation techniques |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
US20220023627A1 (en) * | 2014-08-28 | 2022-01-27 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for assessing efficacy of renal neuromodulation and associated systems and devices |
US20170325733A1 (en) * | 2014-12-17 | 2017-11-16 | Medtronic Ardian Luxembourg S.A.R.L. | Systems and methods for assessing sympathetic nervous system tone for neuromodulation therapy |
US10667736B2 (en) * | 2014-12-17 | 2020-06-02 | Medtronic Ardian Luxembourg S.A.R.L. | Systems and methods for assessing sympathetic nervous system tone for neuromodulation therapy |
US10383685B2 (en) | 2015-05-07 | 2019-08-20 | Pythagoras Medical Ltd. | Techniques for use with nerve tissue |
US10736692B2 (en) * | 2016-04-28 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation and associated systems and methods for the treatment of cancer |
US11678932B2 (en) | 2016-05-18 | 2023-06-20 | Symap Medical (Suzhou) Limited | Electrode catheter with incremental advancement |
US10524859B2 (en) | 2016-06-07 | 2020-01-07 | Metavention, Inc. | Therapeutic tissue modulation devices and methods |
US11723710B2 (en) | 2016-11-17 | 2023-08-15 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
GB2563649A (en) * | 2017-06-22 | 2018-12-26 | Galvani Bioelectronics Ltd | Nerve activity monitoring |
US11284934B2 (en) * | 2017-07-05 | 2022-03-29 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating sleep disorders in patients via renal neuromodulation |
US11890047B2 (en) | 2017-07-05 | 2024-02-06 | Medtronic Ireland Manufacturing Unlimited Company | Methods for treating anxiety disorders in patients via renal neuromodulation |
US11865343B2 (en) | 2017-07-05 | 2024-01-09 | Medtronic Ireland Manufacturing Unlimited Company | Methods for treating post-traumatic stress disorder in patients via renal neuromodulation |
AU2018204841B2 (en) * | 2017-07-05 | 2023-08-10 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating post-traumatic stress disorder in patients via renal neuromodulation |
AU2018204888B2 (en) * | 2017-07-05 | 2023-08-10 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating sleep disorders in patients via renal neuromodulation |
AU2018204842B2 (en) * | 2017-07-05 | 2023-07-27 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating depression in patients via renal neuromodulation |
AU2018204843B2 (en) * | 2017-07-05 | 2023-07-27 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating anxiety disorders in patients via renal neuromodulation |
US12108982B2 (en) | 2018-07-18 | 2024-10-08 | Ablative Solutions, Inc. | Peri-vascular tissue access catheter with locking handle |
US10849685B2 (en) | 2018-07-18 | 2020-12-01 | Ablative Solutions, Inc. | Peri-vascular tissue access catheter with locking handle |
US11457977B2 (en) * | 2019-02-08 | 2022-10-04 | Shanghai Golden Leaf Medtech Co., Ltd. | Method for treating diabetes, diabetes-associated condition or disorder, or symptoms thereof |
US11950842B2 (en) | 2021-06-24 | 2024-04-09 | Gradient Denervation Technologies Sas | Systems and methods for applying energy to denervate a pulmonary artery |
US11744640B2 (en) | 2021-06-24 | 2023-09-05 | Gradient Denervation Technologies Sas | Systems and methods for applying energy to denervate a pulmonary artery |
US11717346B2 (en) | 2021-06-24 | 2023-08-08 | Gradient Denervation Technologies Sas | Systems and methods for monitoring energy application to denervate a pulmonary artery |
Also Published As
Publication number | Publication date |
---|---|
US10194983B2 (en) | 2019-02-05 |
US20140356290A1 (en) | 2014-12-04 |
US9867663B2 (en) | 2018-01-16 |
US9629679B2 (en) | 2017-04-25 |
US20170245925A1 (en) | 2017-08-31 |
US20180168723A1 (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10194983B2 (en) | Methods for therapeutic renal denervation | |
US20110208175A1 (en) | Methods for Treating Sleep Apnea Via Renal Denervation | |
AU2016204116B2 (en) | Devices for regulation of blood pressure and heart rate | |
US9616231B2 (en) | Systems for regulation of blood pressure and heart rate | |
Hoppe et al. | Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial | |
Stouffer et al. | Catheter-based renal denervation in the treatment of resistant hypertension | |
Kannan et al. | Renal sympathetic nervous system and the effects of denervation on renal arteries | |
Gulati et al. | Review of the state of renal nerve ablation for patients with severe and resistant hypertension | |
Wang et al. | A new use of transcutaneous electrical nerve stimulation: Role of bioelectric technology in resistant hypertension | |
Briasoulis et al. | Timing and efficacy of alternative methods of sympathetic blockade | |
AU2015202019B2 (en) | Systems for regulation of blood pressure and heart rate | |
Heradien et al. | Renal denervation: dark past, bright future? | |
Jordan et al. | Research needs in the area of device-related treatments for hypertension | |
Prince et al. | Catheter-based arterial sympathectomy: hypertension and beyond | |
Brandão et al. | Renal sympathetic denervation for resistant hypertension treatment: Current perspectives | |
Frishman et al. | The role of nonpharmacologic device interventions in the management of drug-resistant hypertension | |
LORETO | HYPERTENSION TREATMENT: AN OVERVIEW OF PHARMACOLOGICAL, NUTRITIONAL AND EMERGING INTERVENTIONAL THERAPIES | |
Ewen et al. | Catheter-based Renal Denervation for Therapy of Hypertension: Is there a Hope for its Resurgence? | |
Schiller | The role of renal nerves in normal physiological and heart failure states in the conscious rabbit | |
Barley | Outcomes following microvascular decompression of the medulla versus standard of care for refractory hypertension | |
Parati et al. | Scientific Newsletter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDTRONIC ARDIAN, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOBOTKA, PAUL;BARMAN, NEIL;GELFAND, MARK;AND OTHERS;SIGNING DATES FROM 20110427 TO 20110510;REEL/FRAME:026262/0541 |
|
AS | Assignment |
Owner name: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC ARDIAN LLC;REEL/FRAME:030454/0946 Effective date: 20120203 Owner name: MEDTRONIC ARDIAN LLC, DELAWARE Free format text: CHANGE OF NAME;ASSIGNOR:ARDIAN, INC.;REEL/FRAME:030454/0873 Effective date: 20110121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |