US20110221029A1 - Balanced adaptive body bias control - Google Patents
Balanced adaptive body bias control Download PDFInfo
- Publication number
- US20110221029A1 US20110221029A1 US13/113,798 US201113113798A US2011221029A1 US 20110221029 A1 US20110221029 A1 US 20110221029A1 US 201113113798 A US201113113798 A US 201113113798A US 2011221029 A1 US2011221029 A1 US 2011221029A1
- Authority
- US
- United States
- Prior art keywords
- body bias
- integrated circuit
- bias voltage
- voltage
- representation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/324—Power saving characterised by the action undertaken by lowering clock frequency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3296—Power saving characterised by the action undertaken by lowering the supply or operating voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- Embodiments in accordance with the present invention relate to control of body bias. More specifically, embodiments in accordance with the present invention relate to balanced adaptive body bias control.
- these parameters may include threshold voltage of active devices of the integrated circuit. It is known to adjust threshold voltage after manufacture of an integrated circuit by adjusting body biasing voltage(s) applied to body biasing wells of such active devices.
- a method of balanced adaptive body bias control comprises determining a desirable dynamic condition for circuitry of an integrated circuit.
- a first dynamic indicator corresponding to the desirable dynamic condition is accessed.
- Second and third dynamic indicators of the integrated circuit are accessed.
- a first body biasing voltage is adjusted by an increment so as to change the first dynamic indicator in the direction of the desirable dynamic condition.
- a second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.
- embodiments in accordance with the present invention control two body biasing voltages as two one-dimensional problems, rather than as a two-dimensional problem.
- This reduces complexity of the control solution from an order two, e.g., quadratic, problem to an order one, e.g., linear, problem, greatly reducing computational resources required to implement such control solutions, while also reducing characterization time and complexity, which simplifies modeling of the control system.
- FIG. 1 illustrates an integrated circuit, for example, a microprocessor, comprising dynamic condition reporting registers, in accordance with embodiments of the present invention.
- FIG. 2 illustrates an exemplary computer controlled method of balanced adaptive body bias control, in accordance with embodiments of the present invention.
- process 200 Some portions of the detailed descriptions that follow (e.g., process 200 ) are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that can be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art.
- a procedure, computer executed step, logic block, process, etc. is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result.
- the steps are those requiring physical manipulations of physical quantities.
- these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
- Embodiments in accordance with the present invention are described in the context of design and operation of integrated semiconductors. More particularly, embodiments of the present invention relate to balanced adaptive body bias control. It is appreciated, however, that elements of the present invention may be utilized in other areas of semiconductor design and operation.
- pFETs or p-type metal oxide semiconductor field effect transistors (MOSFETS)
- MOSFETS metal oxide semiconductor field effect transistors
- nFETs or n-type MOSFETS formed in surface P-wells when a p-type substrate and an N-well process are utilized.
- nFETs e.g., n-type MOSFETS
- pFETs e.g., p-type MOSFETS
- Embodiments in accordance with the present invention are well suited to a variety of types of semiconductors supporting electrically adjustable transistor threshold voltages and such embodiments are considered within the scope of the present invention.
- Examples of such semiconductors include a fully depleted body structure with back gate electrode separated from the body of a transistor by a buried insulator.
- Integrated circuit e.g., a microprocessor
- operational indicators of an integrated circuit can be measured dynamically, e.g., in-situ, while the integrated circuit is in operation.
- the operating temperature of the integrated circuit can be measured.
- Such measurements can be external, e.g., via an applied thermocouple, or they can be made internally, e.g., via on-chip measurement circuits.
- a wide variety of integrated circuit characteristics can be measured or determined, either directly or inferred from other characteristics, while the device is operating. For example, in addition to temperature, other characteristics such as gate delays, metal delays, leakage current, “on” current, relative behavior of NMOS and PMOS devices, maximum frequency and the like can be measured or determined for the instant operating conditions of an integrated circuit.
- Co-pending, commonly owned U.S. patent application Ser. No. 10/124,152, filed Apr. 16, 2002, entitled “System and Method for Measuring Transistor Leakage Current with a Ring Oscillator” and incorporated by reference herein provides exemplary systems and methods of such dynamic determinations, or dynamic operating indicators, that are well suited to embodiments in accordance with the present invention.
- Such measurements or indications are typically made available, e.g., to control circuitry, state machines and/or processor control software, via registers.
- register values frequently comprise a count of a number of events, e.g., oscillations of a ring oscillator in a given time interval.
- a model of a register reporting a value that is correlated to an operating characteristic of an integrated circuit is employed. It is to be appreciated, however, that embodiments in accordance with the present invention are well suited to a variety of systems and methods of determining and reporting dynamic operating conditions of an integrated circuit.
- FIG. 1 illustrates an integrated circuit 100 , for example, a microprocessor, comprising dynamic condition reporting registers, in accordance with embodiments of the present invention.
- Dynamic condition reporting registers R 1 101 , R 2 102 and R 3 103 each indicate a dynamic condition metric of integrated circuit 100 .
- each dynamic condition reporting register is associated with a dynamic condition measuring circuit either as a part of the integrated circuit or external to the integrated circuit.
- Conversion of a measured quantity, e.g., oscillations of a ring oscillator, into a usable metric related to the measured quantity, e.g., a frequency measurement, e.g., in hertz, or a count of oscillations per unit time can be embodied in either software or hardware, and all such embodiments are to be considered within the scope of the present invention.
- logic circuitry can increment a counting register for each oscillation for a period of time.
- dynamic condition reporting registers e.g., dynamic condition reporting registers R 1 101 , R 2 102 and R 3 103 , can refer to any memory location utilized to store such indications of a dynamic condition.
- dynamic condition reporting registers R 1 101 , R 2 102 and R 3 103 As operating conditions of integrated circuit 100 change, values reported by dynamic condition reporting registers R 1 101 , R 2 102 and R 3 103 will generally change. For example, operating voltage and operating temperature are strong influences on gate delay and/or leakage current within an integrated circuit. Likewise, body biasing voltage(s) applied to circuitry of integrated circuit 100 also strongly influence operating conditions such as gate delay and/or leakage current. As body biasing voltage(s) applied to circuitry of integrated circuit 100 vary, so too in general will the values reported by dynamic condition reporting registers R 1 101 , R 2 102 and R 3 103 .
- dynamic condition reporting register R 1 101 can indicate a number of oscillations per time of a ring oscillator comprising complementary metal oxide inverter gates. Such a circuit can be utilized to indicate gate delays for the microprocessor at the instant operating conditions, e.g., operating temperature, operating voltage, applied body biasing voltage(s) and the like.
- other dynamic condition reporting registers can indicate other operational characteristics of integrated circuit 100 . For example, device leakage, gate leakage, temperature, metal delays, “on” current, behavior of n type and p type devices and/or relative behavior of n type and p type devices can be reported by dynamic condition reporting registers.
- Most useful dynamic conditions indications will have a correlation with maximum achievable operating frequency of an integrated circuit at those operating conditions.
- an indication of operating temperature will generally have a correlation with maximum achievable operating frequency.
- maximum achievable operating frequency For example, for operation above a thermal null voltage, as operating temperature increases, maximum achievable operating frequency decreases.
- Other dynamic condition indications may have other correlations with maximum achievable operating frequency.
- the number of oscillations of a ring oscillator per unit time may generally increase as maximum achievable operating frequency of an integrated circuit increases.
- Integrated circuit 100 further comprises adjustable body biasing voltage sources 110 and 120 .
- adjustable body biasing voltage source 110 is configured to supply a body biasing voltage to n type body wells of p type metal oxide semiconductors (PMOS).
- adjustable body biasing voltage source 120 is configured to supply a body biasing voltage to p type body wells of n type metal oxide semiconductors (NMOS). It is to be appreciated that embodiments in accordance with the present invention are not dependent upon the location of such body biasing voltage sources, and are well suited to body biasing voltages applied to integrated circuit 100 from external sources, e.g., voltage supplies external to integrated circuit 100 .
- FIG. 2 illustrates an exemplary computer controlled method 200 of balanced adaptive body bias control, in accordance with embodiments of the present invention.
- a desirable dynamic condition for circuitry of an integrated circuit is determined. For example, software operating on a microprocessor may determine an operating frequency necessary to perform a particular task on the microprocessor. A desirable gate delay for circuitry of the microprocessor corresponding to such desirable operating frequency can be determined, e.g., via table lookup. Similarly, a desirable power condition of the integrated circuit can be determined.
- a first dynamic indicator corresponding to the desirable dynamic condition, second and third dynamic indicators are accessed.
- a second dynamic indicator can indicate leakage current of PMOS devices of the integrated circuit and a third dynamic indicator can indicate leakage current of NMOS devices of the integrated circuit.
- dynamic condition reporting registers R 1 101 , R 2 102 and R 3 103 are accessed. Embodiments of the present invention are well suited to measurements of such dynamics indicators taking place prior to or during method 200 .
- a first body biasing voltage is adjusted to change the first dynamic indicator in the direction of the desirable dynamic condition. For example, if a measured gate delay is larger than a desirable gate delay, the first body biasing voltage can be decreased.
- the speed of operation of circuitry of an integrated circuit e.g., maximum frequency of operation
- one transistor type typically NMOS
- circuit leakage is more sensitive to the other transistor type, typically PMOS.
- a determination of which body biasing voltage to adjust first e.g., in 230 , should correspond to which body biasing voltage has a greater effect on the desirable dynamic condition. For example, if the desirable dynamic condition is maximum frequency of operation, body biasing voltage applied to NMOS devices, e.g., a p well voltage, should be adjusted first.
- a second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.
- method 200 can signal such body biasing voltage supply to increase or decrease the particular body biasing voltage relative to a previous condition of the body biasing voltage.
- the relative adjustment in body biasing voltage may be the minimum increment of adjustment available from the body biasing voltage supplies, e.g., adjustable body biasing voltage sources 110 and 120 of FIG. 1 .
- An exemplary value of such minimum increments or step sizes is 20 mV. It is to be appreciated, however, that embodiments in accordance with the present invention are well suited to determining an absolute value, e.g., via table lookup, for a body biasing voltage based on a desirable adjustment to a dynamic indicator.
- Relation 1 illustrates an exemplary relationship between a second dynamic indicator and a third dynamic indicator:
- Ioffn is a dynamic indication of leakage current of n type devices
- Ioffp is a dynamic indication of leakage current of p type devices
- scale is a scaling factor and “
- the scaling factor used within Relation 1 can be used to adjust for variations between n type and p type devices within an integrated circuit.
- n type devices are typically faster than p type devices, and may generally be designed to have less leakage current for a given maximum frequency of operation in comparison to p type devices.
- such a scaling factor can be used to adjust for such variations in leakage current. It is appreciated that the scaling factor need not be linear and may be unity.
- the second body biasing voltage is adjusted so as to minimize a value of Relation 1.
- the second body biasing voltage is adjusted a minimum increment in a direction, e.g., increased or decreased, so as to minimize a value of Relation 1.
- an interval e.g., a settling delay
- An exemplary delay might be ten microseconds.
- control reverts to 210 and the method repeats.
- any measurable dynamic condition can be used as the second and third dynamic indicators in method 200 , in accordance with embodiments of the present invention.
- leakage currents e.g., “off” currents, for example, “on” currents, gate delays by transistor type, combinations, e.g., ratios of “on” current to “off” current by transistor type and the like may be utilized as such second and third dynamic indicators, and are well suited to embodiments of the present invention.
- any measurable dynamic condition can be used as the desirable dynamic condition.
- gate delays and maximum operating frequency for example, “on” currents, gate delays by transistor type, combinations, e.g., ratios of “on” current to “off” current by transistor type, power consumption, chip temperature, wire-dominated delays, critical path replicas and the like may be utilized as the desirable dynamic condition, and are well suited to embodiments of the present invention.
- embodiments in accordance with the present invention are capable of controlling two body biasing voltages as two one-dimensional problems, rather than as a two-dimensional problem.
- Embodiments in accordance with the present invention thus provide systems and methods of adaptively controlling body biasing voltages to adjust threshold voltages while balancing characteristics of p type and n type devices.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
- This Application is a Continuation Application of and claims priority to co-pending, commonly owned U.S. patent application No. 11/238,446, now U.S. Pat. No. 7,949,864, filed Sep. 28, 2005, which is hereby incorporated herein by reference in its entirety.
- Which in turn was a continuation in part of co-pending, commonly owned U.S. patent application Ser. No. 10/334,918, now U.S. Pat. No. 7,941,675, filed Dec. 31, 2002, attorney docket TRAN-P126, entitled “Adaptive Power Control” to Burr et al., which is hereby incorporated herein by reference in its entirety.
- Which in turn was a continuation in part of co-pending commonly-owned U.S. patent application Ser. No. 10/771,015, now U.S. Pat. No. 7,256,639, filed Feb. 2, 2004, attorney docket TRAN-P256, entitled “Systems and Methods for Adjusting Threshold Voltage” to Masleid and Burr, which is hereby incorporated herein by reference in its entirety.
- Which in turn was a continuation in part of co-pending commonly-owned U.S. patent application Ser. No. 10/956,207, now U.S. Pat. No. 7,180,322, filed Sep. 30, 2004, attorney docket TRAN-P306, entitled “Closed Loop Feedback Control of Integrated Circuits” to Koniaris and Burr, which is hereby incorporated herein by reference in its entirety.
- Co-pending, commonly owned U.S. patent application Ser. No. 10/124,152, now U.S. Pat. No. 6,882,172, attorney docket TRAN-P095, filed Apr. 16, 2002, entitled “System and Method for Measuring Transistor Leakage Current with a Ring Oscillator” to Suzuki and Burr, is hereby incorporated herein by reference in its entirety.
- Embodiments in accordance with the present invention relate to control of body bias. More specifically, embodiments in accordance with the present invention relate to balanced adaptive body bias control.
- In order to operate an integrated circuit, e.g., a microprocessor, in an efficient manner, for example, to consume a low amount of energy to accomplish a task, it is known to adjust various controlling parameters. These parameters may include threshold voltage of active devices of the integrated circuit. It is known to adjust threshold voltage after manufacture of an integrated circuit by adjusting body biasing voltage(s) applied to body biasing wells of such active devices.
- Systems and methods of adaptively controlling body biasing voltages to adjust threshold voltages while balancing characteristics of p type and n type devices are highly desired.
- Accordingly, systems and methods of balanced adaptive body bias control are disclosed. In accordance with a first embodiment of the present invention, a method of balanced adaptive body bias control comprises determining a desirable dynamic condition for circuitry of an integrated circuit. A first dynamic indicator corresponding to the desirable dynamic condition is accessed. Second and third dynamic indicators of the integrated circuit are accessed. A first body biasing voltage is adjusted by an increment so as to change the first dynamic indicator in the direction of the desirable dynamic condition. A second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.
- Advantageously, embodiments in accordance with the present invention control two body biasing voltages as two one-dimensional problems, rather than as a two-dimensional problem. This reduces complexity of the control solution from an order two, e.g., quadratic, problem to an order one, e.g., linear, problem, greatly reducing computational resources required to implement such control solutions, while also reducing characterization time and complexity, which simplifies modeling of the control system.
-
FIG. 1 illustrates an integrated circuit, for example, a microprocessor, comprising dynamic condition reporting registers, in accordance with embodiments of the present invention. -
FIG. 2 illustrates an exemplary computer controlled method of balanced adaptive body bias control, in accordance with embodiments of the present invention. - In the following detailed description of the present invention, balanced adaptive body bias control, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one skilled in the art that the present invention may be practiced without these specific details or with equivalents thereof. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
- Some portions of the detailed descriptions that follow (e.g., process 200) are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that can be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
- It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “accessing” or “commanding” or “storing” or “dividing” or “computing” or “testing” or “calculating” or “determining” or “storing” or “measuring” or “adjusting” or “generating” or “performing” or “comparing” or “synchronizing” or “accessing” or “retrieving” or “conveying” or “sending” or “resuming” or “installing” or “gathering” or the like, refer to the action and processes of a computer system, or similar electronic computing device” that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
- Embodiments in accordance with the present invention are described in the context of design and operation of integrated semiconductors. More particularly, embodiments of the present invention relate to balanced adaptive body bias control. It is appreciated, however, that elements of the present invention may be utilized in other areas of semiconductor design and operation.
- The following description of embodiments in accordance with the present invention is directed toward pFETs (or p-type metal oxide semiconductor field effect transistors (MOSFETS)) formed in surface N-wells and/or nFETs (or n-type MOSFETS) formed in surface P-wells when a p-type substrate and an N-well process are utilized. It is to be appreciated, however, that embodiments in accordance with the present invention are equally applicable to nFETs (e.g., n-type MOSFETS) formed in surface P-wells and/or pFETs (e.g., p-type MOSFETS) formed in surface N-wells when an n-type substrate and a P-well process are utilized. Embodiments in accordance with the present invention are well suited to a variety of types of semiconductors supporting electrically adjustable transistor threshold voltages and such embodiments are considered within the scope of the present invention. Examples of such semiconductors include a fully depleted body structure with back gate electrode separated from the body of a transistor by a buried insulator.
- Several operational indicators of an integrated circuit, e.g., a microprocessor, can be measured dynamically, e.g., in-situ, while the integrated circuit is in operation. For example, the operating temperature of the integrated circuit can be measured. Such measurements can be external, e.g., via an applied thermocouple, or they can be made internally, e.g., via on-chip measurement circuits.
- A wide variety of integrated circuit characteristics can be measured or determined, either directly or inferred from other characteristics, while the device is operating. For example, in addition to temperature, other characteristics such as gate delays, metal delays, leakage current, “on” current, relative behavior of NMOS and PMOS devices, maximum frequency and the like can be measured or determined for the instant operating conditions of an integrated circuit. Co-pending, commonly owned U.S. patent application Ser. No. 10/124,152, filed Apr. 16, 2002, entitled “System and Method for Measuring Transistor Leakage Current with a Ring Oscillator” and incorporated by reference herein, provides exemplary systems and methods of such dynamic determinations, or dynamic operating indicators, that are well suited to embodiments in accordance with the present invention.
- Such measurements or indications are typically made available, e.g., to control circuitry, state machines and/or processor control software, via registers. Such register values frequently comprise a count of a number of events, e.g., oscillations of a ring oscillator in a given time interval. For the purpose of illustrating embodiments in accordance with the present invention, a model of a register reporting a value that is correlated to an operating characteristic of an integrated circuit is employed. It is to be appreciated, however, that embodiments in accordance with the present invention are well suited to a variety of systems and methods of determining and reporting dynamic operating conditions of an integrated circuit.
-
FIG. 1 illustrates anintegrated circuit 100, for example, a microprocessor, comprising dynamic condition reporting registers, in accordance with embodiments of the present invention. - Dynamic condition reporting registers
R1 101,R2 102 andR3 103 each indicate a dynamic condition metric ofintegrated circuit 100. For example, generally each dynamic condition reporting register is associated with a dynamic condition measuring circuit either as a part of the integrated circuit or external to the integrated circuit. Conversion of a measured quantity, e.g., oscillations of a ring oscillator, into a usable metric related to the measured quantity, e.g., a frequency measurement, e.g., in hertz, or a count of oscillations per unit time, can be embodied in either software or hardware, and all such embodiments are to be considered within the scope of the present invention. For example, logic circuitry can increment a counting register for each oscillation for a period of time. Alternatively, for example, a software timing loop, with or without hardware timing assistance, can count a number of oscillations per unit time. In accordance with embodiments of the present invention, dynamic condition reporting registers, e.g., dynamic condition reporting registersR1 101,R2 102 andR3 103, can refer to any memory location utilized to store such indications of a dynamic condition. - As operating conditions of
integrated circuit 100 change, values reported by dynamic condition reporting registersR1 101,R2 102 andR3 103 will generally change. For example, operating voltage and operating temperature are strong influences on gate delay and/or leakage current within an integrated circuit. Likewise, body biasing voltage(s) applied to circuitry ofintegrated circuit 100 also strongly influence operating conditions such as gate delay and/or leakage current. As body biasing voltage(s) applied to circuitry ofintegrated circuit 100 vary, so too in general will the values reported by dynamic condition reporting registersR1 101,R2 102 andR3 103. - For example, dynamic condition reporting
register R1 101 can indicate a number of oscillations per time of a ring oscillator comprising complementary metal oxide inverter gates. Such a circuit can be utilized to indicate gate delays for the microprocessor at the instant operating conditions, e.g., operating temperature, operating voltage, applied body biasing voltage(s) and the like. Similarly, other dynamic condition reporting registers can indicate other operational characteristics ofintegrated circuit 100. For example, device leakage, gate leakage, temperature, metal delays, “on” current, behavior of n type and p type devices and/or relative behavior of n type and p type devices can be reported by dynamic condition reporting registers. - Most useful dynamic conditions indications will have a correlation with maximum achievable operating frequency of an integrated circuit at those operating conditions. For example, an indication of operating temperature will generally have a correlation with maximum achievable operating frequency. For example, for operation above a thermal null voltage, as operating temperature increases, maximum achievable operating frequency decreases. Other dynamic condition indications may have other correlations with maximum achievable operating frequency. For example, the number of oscillations of a ring oscillator per unit time may generally increase as maximum achievable operating frequency of an integrated circuit increases.
-
Integrated circuit 100 further comprises adjustable body biasingvoltage sources voltage source 110 is configured to supply a body biasing voltage to n type body wells of p type metal oxide semiconductors (PMOS). Similarly, adjustable body biasingvoltage source 120 is configured to supply a body biasing voltage to p type body wells of n type metal oxide semiconductors (NMOS). It is to be appreciated that embodiments in accordance with the present invention are not dependent upon the location of such body biasing voltage sources, and are well suited to body biasing voltages applied to integratedcircuit 100 from external sources, e.g., voltage supplies external tointegrated circuit 100. -
FIG. 2 illustrates an exemplary computer controlledmethod 200 of balanced adaptive body bias control, in accordance with embodiments of the present invention. In 210, a desirable dynamic condition for circuitry of an integrated circuit is determined. For example, software operating on a microprocessor may determine an operating frequency necessary to perform a particular task on the microprocessor. A desirable gate delay for circuitry of the microprocessor corresponding to such desirable operating frequency can be determined, e.g., via table lookup. Similarly, a desirable power condition of the integrated circuit can be determined. - In 220, a first dynamic indicator corresponding to the desirable dynamic condition, second and third dynamic indicators are accessed. For example, a second dynamic indicator can indicate leakage current of PMOS devices of the integrated circuit and a third dynamic indicator can indicate leakage current of NMOS devices of the integrated circuit. For example, dynamic condition reporting registers
R1 101,R2 102 and R3 103 (FIG. 1 ) are accessed. Embodiments of the present invention are well suited to measurements of such dynamics indicators taking place prior to or duringmethod 200. - In 230, a first body biasing voltage is adjusted to change the first dynamic indicator in the direction of the desirable dynamic condition. For example, if a measured gate delay is larger than a desirable gate delay, the first body biasing voltage can be decreased.
- In general, the speed of operation of circuitry of an integrated circuit, e.g., maximum frequency of operation, is more sensitive to one transistor type, typically NMOS, while circuit leakage is more sensitive to the other transistor type, typically PMOS. A determination of which body biasing voltage to adjust first, e.g., in 230, should correspond to which body biasing voltage has a greater effect on the desirable dynamic condition. For example, if the desirable dynamic condition is maximum frequency of operation, body biasing voltage applied to NMOS devices, e.g., a p well voltage, should be adjusted first.
- In 240, a second body biasing voltage is adjusted based on a relationship between the second dynamic indicator and the third dynamic indicator.
- In accordance with embodiments of the present invention, it is not necessary to specify a particular body biasing voltage to a body biasing voltage supply. Rather,
method 200 can signal such body biasing voltage supply to increase or decrease the particular body biasing voltage relative to a previous condition of the body biasing voltage. Generally, such relative changes are beneficially less computationally intense than determining an absolute value for a body biasing voltage. In accordance with an embodiment of the present invention, the relative adjustment in body biasing voltage (230, 240) may be the minimum increment of adjustment available from the body biasing voltage supplies, e.g., adjustable body biasingvoltage sources FIG. 1 . An exemplary value of such minimum increments or step sizes is 20 mV. It is to be appreciated, however, that embodiments in accordance with the present invention are well suited to determining an absolute value, e.g., via table lookup, for a body biasing voltage based on a desirable adjustment to a dynamic indicator. - Relation 1, below, illustrates an exemplary relationship between a second dynamic indicator and a third dynamic indicator:
-
|(Ioffn−scale*Ioffp)| (Relation 1) - where Ioffn is a dynamic indication of leakage current of n type devices, Ioffp is a dynamic indication of leakage current of p type devices, scale is a scaling factor and “|” indicates the absolute value operation.
- The scaling factor used within Relation 1 can be used to adjust for variations between n type and p type devices within an integrated circuit. For example, n type devices are typically faster than p type devices, and may generally be designed to have less leakage current for a given maximum frequency of operation in comparison to p type devices. For example, such a scaling factor can be used to adjust for such variations in leakage current. It is appreciated that the scaling factor need not be linear and may be unity.
- In accordance with one embodiment of the present invention, the second body biasing voltage is adjusted so as to minimize a value of Relation 1. For example, the second body biasing voltage is adjusted a minimum increment in a direction, e.g., increased or decreased, so as to minimize a value of Relation 1.
- It is to be appreciated that other relationships among dynamic indicators may be used in 240, in accordance with embodiments of the present invention. For example, a quadratic relationship is well suited to embodiments of the present invention.
- In optional 250, an interval, e.g., a settling delay, is delayed for changes in body biasing voltages to have an effect. An exemplary delay might be ten microseconds. In optional 260, control reverts to 210 and the method repeats.
- It is to be appreciated that virtually any measurable dynamic condition, as well as relationships among such measurable dynamic conditions, can be used as the second and third dynamic indicators in
method 200, in accordance with embodiments of the present invention. In addition to the previously described leakage currents, e.g., “off” currents, for example, “on” currents, gate delays by transistor type, combinations, e.g., ratios of “on” current to “off” current by transistor type and the like may be utilized as such second and third dynamic indicators, and are well suited to embodiments of the present invention. - Similarly, it is to be appreciated that virtually any measurable dynamic condition, as well as relationships among such measurable dynamic conditions, can be used as the desirable dynamic condition. In addition to the previously described gate delays and maximum operating frequency, for example, “on” currents, gate delays by transistor type, combinations, e.g., ratios of “on” current to “off” current by transistor type, power consumption, chip temperature, wire-dominated delays, critical path replicas and the like may be utilized as the desirable dynamic condition, and are well suited to embodiments of the present invention.
- Advantageously, embodiments in accordance with the present invention are capable of controlling two body biasing voltages as two one-dimensional problems, rather than as a two-dimensional problem. This reduces complexity of the control solution from an order two, e.g., quadratic, problem to an order one, e.g., linear, problem, greatly reducing computational resources required to implement such control solutions.
- Embodiments in accordance with the present invention thus provide systems and methods of adaptively controlling body biasing voltages to adjust threshold voltages while balancing characteristics of p type and n type devices.
- Embodiments in accordance with the present invention, balanced adaptive body bias control, are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/113,798 US20110221029A1 (en) | 2002-12-31 | 2011-05-23 | Balanced adaptive body bias control |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/334,918 US7941675B2 (en) | 2002-12-31 | 2002-12-31 | Adaptive power control |
US11/238,446 US7949864B1 (en) | 2002-12-31 | 2005-09-28 | Balanced adaptive body bias control |
US13/113,798 US20110221029A1 (en) | 2002-12-31 | 2011-05-23 | Balanced adaptive body bias control |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/238,446 Continuation US7949864B1 (en) | 2002-12-31 | 2005-09-28 | Balanced adaptive body bias control |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110221029A1 true US20110221029A1 (en) | 2011-09-15 |
Family
ID=44022328
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/238,446 Expired - Lifetime US7949864B1 (en) | 2002-12-31 | 2005-09-28 | Balanced adaptive body bias control |
US13/113,798 Abandoned US20110221029A1 (en) | 2002-12-31 | 2011-05-23 | Balanced adaptive body bias control |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/238,446 Expired - Lifetime US7949864B1 (en) | 2002-12-31 | 2005-09-28 | Balanced adaptive body bias control |
Country Status (1)
Country | Link |
---|---|
US (2) | US7949864B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106873360A (en) * | 2015-12-14 | 2017-06-20 | 上海华虹集成电路有限责任公司 | Frequency adaptive circuit |
WO2019025141A1 (en) | 2017-08-04 | 2019-02-07 | RACYICS GmbH | A method and a circuit for adaptive regulation of body bias voltages controlling nmos and pmos transistors of an ic |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4246517A (en) * | 1979-08-24 | 1981-01-20 | Burroughs Corporation | SCR lamp supply |
US4335445A (en) * | 1979-02-26 | 1982-06-15 | Kepco, Inc. | System for interfacing computers with programmable power supplies |
US4679130A (en) * | 1986-06-04 | 1987-07-07 | Superior Manufacturing & Instrument Corporation | Programmable power supply |
US4739252A (en) * | 1986-04-24 | 1988-04-19 | International Business Machines Corporation | Current attenuator useful in a very low leakage current measuring device |
US4769784A (en) * | 1986-08-19 | 1988-09-06 | Advanced Micro Devices, Inc. | Capacitor-plate bias generator for CMOS DRAM memories |
US4798974A (en) * | 1987-01-12 | 1989-01-17 | Siemens Aktiengesellschaft | Integrated circuit comprising a latch-up protection circuit in complementary MOS-circuitry technology |
US4893228A (en) * | 1987-09-01 | 1990-01-09 | Hewlett Packard Company | High-efficiency programmable power supply |
US4912347A (en) * | 1987-08-25 | 1990-03-27 | American Telephone And Telegraph Company, At&T Bell Laboratories | CMOS to ECL output buffer |
US4929621A (en) * | 1987-09-09 | 1990-05-29 | Synthelabo | 1-1[(2-pyrimidinyl)amino-alkyl]piperidines, their preparation and their application in therapy |
US5039877A (en) * | 1990-08-30 | 1991-08-13 | Micron Technology, Inc. | Low current substrate bias generator |
US5086501A (en) * | 1989-04-17 | 1992-02-04 | Motorola, Inc. | Computing system with selective operating voltage and bus speed |
US5103110A (en) * | 1989-10-20 | 1992-04-07 | Keltronics Corporation | Programmable power supply |
US5113088A (en) * | 1988-11-09 | 1992-05-12 | Oki Electric Industry Co., Ltd. | Substrate bias generating circuitry stable against source voltage changes |
US5124632A (en) * | 1991-07-01 | 1992-06-23 | Motorola, Inc. | Low-voltage precision current generator |
US5167024A (en) * | 1989-09-08 | 1992-11-24 | Apple Computer, Inc. | Power management for a laptop computer with slow and sleep modes |
US5201059A (en) * | 1989-11-13 | 1993-04-06 | Chips And Technologies, Inc. | Method for reducing power consumption includes comparing variance in number of time microprocessor tried to react input in predefined period to predefined variance |
US5204863A (en) * | 1990-02-09 | 1993-04-20 | Valeo Neiman | Device for monitoring the operation of a microprocessor system, or the like |
US5218704A (en) * | 1989-10-30 | 1993-06-08 | Texas Instruments | Real-time power conservation for portable computers |
US5230055A (en) * | 1991-01-25 | 1993-07-20 | International Business Machines Corporation | Battery operated computer operation suspension in response to environmental sensor inputs |
US5239652A (en) * | 1991-02-04 | 1993-08-24 | Apple Computer, Inc. | Arrangement for reducing computer power consumption by turning off the microprocessor when inactive |
US5254883A (en) * | 1992-04-22 | 1993-10-19 | Rambus, Inc. | Electrical current source circuitry for a bus |
US5336986A (en) * | 1992-02-07 | 1994-08-09 | Crosspoint Solutions, Inc. | Voltage regulator for field programmable gate arrays |
US5386135A (en) * | 1985-09-25 | 1995-01-31 | Hitachi, Ltd. | Semiconductor CMOS memory device with separately biased wells |
US5394026A (en) * | 1993-02-02 | 1995-02-28 | Motorola Inc. | Substrate bias generating circuit |
US5406212A (en) * | 1991-07-19 | 1995-04-11 | Sumitomo Electric Industries, Ltd. | Burn-in apparatus and method for self-heating semiconductor devices having built-in temperature sensors |
US5410278A (en) * | 1991-12-19 | 1995-04-25 | Sharp Kabushiki Kaisha | Ring oscillator having a variable oscillating frequency |
US5422591A (en) * | 1994-01-03 | 1995-06-06 | Sgs-Thomson Microelectronics, Inc. | Output driver circuit with body bias control for multiple power supply operation |
US5422806A (en) * | 1994-03-15 | 1995-06-06 | Acc Microelectronics Corporation | Temperature control for a variable frequency CPU |
US5440520A (en) * | 1994-09-16 | 1995-08-08 | Intel Corporation | Integrated circuit device that selects its own supply voltage by controlling a power supply |
US5447876A (en) * | 1993-11-19 | 1995-09-05 | Micrel, Inc. | Method of making a diamond shaped gate mesh for cellular MOS transistor array |
US5461266A (en) * | 1990-11-27 | 1995-10-24 | Hitachi, Ltd. | Power consumption control system |
US5483434A (en) * | 1992-01-14 | 1996-01-09 | Seesink; Petrus H. | High voltage generator having output current control |
US5495184A (en) * | 1995-01-12 | 1996-02-27 | Vlsi Technology, Inc. | High-speed low-power CMOS PECL I/O transmitter |
US5502838A (en) * | 1994-04-28 | 1996-03-26 | Consilium Overseas Limited | Temperature management for integrated circuits |
US5506541A (en) * | 1993-05-13 | 1996-04-09 | Microunity Systems Engineering, Inc. | Bias voltage distribution system |
US5511203A (en) * | 1994-02-02 | 1996-04-23 | Advanced Micro Devices | Power management system distinguishing between primary and secondary system activity |
US5513152A (en) * | 1994-06-22 | 1996-04-30 | At&T Global Information Solutions Company | Circuit and method for determining the operating performance of an integrated circuit |
US5519309A (en) * | 1988-05-24 | 1996-05-21 | Dallas Semiconductor Corporation | Voltage to current converter with extended dynamic range |
US5560020A (en) * | 1990-09-21 | 1996-09-24 | Hitachi, Ltd. | Power saving processing system |
US5568103A (en) * | 1994-12-28 | 1996-10-22 | Mitsubishi Electric Engineering Co., Ltd. | Current control circuit of ring oscillator |
US5592173A (en) * | 1994-07-18 | 1997-01-07 | Trimble Navigation, Ltd | GPS receiver having a low power standby mode |
US5594360A (en) * | 1994-10-19 | 1997-01-14 | Intel Corporation | Low current reduced area programming voltage detector for flash memory |
US5610533A (en) * | 1993-11-29 | 1997-03-11 | Mitsubishi Denki Kabushiki Kaisha | Switched substrate bias for logic circuits |
US5680359A (en) * | 1995-03-24 | 1997-10-21 | Hyundai Electronics Industries Co., Ltd. | Self-refresh period adjustment circuit for semiconductor memory device |
US5682093A (en) * | 1995-04-12 | 1997-10-28 | Nokia Mobile Phones Ltd. | Apparatus and method for reducing the power consumption of an electronic device |
US5692204A (en) * | 1995-02-15 | 1997-11-25 | International Business Machines Corporation | Method and apparatus for computer system power management |
US5717319A (en) * | 1994-06-10 | 1998-02-10 | Nokia Mobile Phones Ltd. | Method to reduce the power consumption of an electronic device comprising a voltage regulator |
US5719800A (en) * | 1995-06-30 | 1998-02-17 | Intel Corporation | Performance throttling to reduce IC power consumption |
US5727208A (en) * | 1995-07-03 | 1998-03-10 | Dell U.S.A. L.P. | Method and apparatus for configuration of processor operating parameters |
US5745375A (en) * | 1995-09-29 | 1998-04-28 | Intel Corporation | Apparatus and method for controlling power usage |
US5744996A (en) * | 1992-07-01 | 1998-04-28 | International Business Machines Corporation | CMOS integrated semiconductor circuit |
US5752011A (en) * | 1994-06-20 | 1998-05-12 | Thomas; C. Douglas | Method and system for controlling a processor's clock frequency in accordance with the processor's temperature |
US5754869A (en) * | 1994-10-04 | 1998-05-19 | Intel Corporation | Method and apparatus for managing power consumption of the CPU and on-board system devices of personal computers |
US5757171A (en) * | 1996-12-31 | 1998-05-26 | Intel Corporation | On-board voltage regulators with automatic processor type detection |
US5764110A (en) * | 1996-07-15 | 1998-06-09 | Mitsubishi Denki Kabushiki Kaisha | Voltage controlled ring oscillator stabilized against supply voltage fluctuations |
US5778237A (en) * | 1995-01-10 | 1998-07-07 | Hitachi, Ltd. | Data processor and single-chip microcomputer with changing clock frequency and operating voltage |
US5781060A (en) * | 1996-03-29 | 1998-07-14 | Nec Corporation | Semiconductor integrated circuit device having a variable current source controlled by a shift register |
US5796313A (en) * | 1996-04-25 | 1998-08-18 | Waferscale Integration Inc. | Low power programmable ring oscillator |
US5812860A (en) * | 1996-02-12 | 1998-09-22 | Intel Corporation | Method and apparatus providing multiple voltages and frequencies selectable based on real time criteria to control power consumption |
US5815724A (en) * | 1996-03-29 | 1998-09-29 | Intel Corporation | Method and apparatus for controlling power consumption in a microprocessor |
US5815725A (en) * | 1996-04-03 | 1998-09-29 | Sun Microsystems, Inc. | Apparatus and method for reducing power consumption in microprocessors through selective gating of clock signals |
US5818290A (en) * | 1995-02-15 | 1998-10-06 | Nec Corporation | Bias voltage controlling apparatus with complete feedback control |
US5838189A (en) * | 1994-12-21 | 1998-11-17 | Samsung Electronics Co., Ltd. | Substrate voltage generating circuit of semiconductor memory device |
US5842860A (en) * | 1997-09-05 | 1998-12-01 | Funt; Lawrence A. | Medical reservoir system |
US5848281A (en) * | 1996-07-23 | 1998-12-08 | Smalley; Kenneth George | Method and apparatus for powder management in a multifunction controller with an embedded microprocessor |
US5880620A (en) * | 1997-04-22 | 1999-03-09 | Xilinx, Inc. | Pass gate circuit with body bias control |
US5884049A (en) * | 1996-12-31 | 1999-03-16 | Compaq Computer Corporation | Increased processor performance comparable to a desktop computer from a docked portable computer |
US5894577A (en) * | 1993-09-22 | 1999-04-13 | Advanced Micro Devices, Inc. | Interrupt controller with external in-service indication for power management within a computer system |
US5900773A (en) * | 1997-04-22 | 1999-05-04 | Microchip Technology Incorporated | Precision bandgap reference circuit |
US5920226A (en) * | 1997-03-31 | 1999-07-06 | Hitachi, Ltd. | Internal voltage generator with reduced power consumption |
US5923545A (en) * | 1998-05-18 | 1999-07-13 | Intel Corporation | Method and apparatus for providing multiple output voltages from a voltage regulator |
US5929621A (en) * | 1997-10-23 | 1999-07-27 | Stmicroelectronics S.R.L. | Generation of temperature compensated low noise symmetrical reference voltages |
US5933649A (en) * | 1994-06-20 | 1999-08-03 | Samsung Electronics Co., Ltd. | Method and device for controlling a CPU stop clock interrupt |
US5940786A (en) * | 1996-11-22 | 1999-08-17 | Eaton Corporation | Temperature regulated clock rate for microprocessors |
US5940785A (en) * | 1996-04-29 | 1999-08-17 | International Business Machines Corporation | Performance-temperature optimization by cooperatively varying the voltage and frequency of a circuit |
US5940020A (en) * | 1997-10-09 | 1999-08-17 | Tritech Microelectronics, Ltd | Digital to analog converter with a reduced resistor count |
US5973526A (en) * | 1997-12-19 | 1999-10-26 | Intel Corporation | Compensating a characteristic of a circuit |
US5977763A (en) * | 1996-02-27 | 1999-11-02 | Micron Technology, Inc. | Circuit and method for measuring and forcing an internal voltage of an integrated circuit |
US5986947A (en) * | 1997-04-11 | 1999-11-16 | Samsung Electronics Co., Ltd. | Charge pump circuits having floating wells |
US5996083A (en) * | 1995-08-11 | 1999-11-30 | Hewlett-Packard Company | Microprocessor having software controllable power consumption |
US5996084A (en) * | 1996-01-17 | 1999-11-30 | Texas Instruments Incorporated | Method and apparatus for real-time CPU thermal management and power conservation by adjusting CPU clock frequency in accordance with CPU activity |
US5999040A (en) * | 1997-03-19 | 1999-12-07 | Stmicroelectronics S.A. | Voltage booster circuit with controlled number of stages |
US6006169A (en) * | 1997-12-31 | 1999-12-21 | Intel Corporation | Method and apparatus for trimming an integrated circuit |
US6011403A (en) * | 1997-10-31 | 2000-01-04 | Credence Systems Corporation | Circuit arrangement for measuring leakage current utilizing a differential integrating capacitor |
US6018264A (en) * | 1998-02-11 | 2000-01-25 | Lg Semicon Co., Ltd. | Pumping circuit with amplitude limited to prevent an over pumping for semiconductor device |
US6232827B1 (en) * | 1997-06-20 | 2001-05-15 | Intel Corporation | Transistors providing desired threshold voltage and reduced short channel effects with forward body bias |
US6252806B1 (en) * | 2000-05-26 | 2001-06-26 | International Business Machines Corporation | Multi-generator, partial array Vt tracking system to improve array retention time |
US6262447B1 (en) * | 1998-10-13 | 2001-07-17 | Taiwan Semiconductor Manufacturing Corporation | Single polysilicon DRAM cell and array with current gain |
US20020029352A1 (en) * | 1998-12-30 | 2002-03-07 | Shekhar Y. Borkar | Software control of transistor body bias in controlling chip parameters |
US20040124475A1 (en) * | 2002-12-31 | 2004-07-01 | Mike Pelham | Diagonal deep well region for routing body-bias voltage for mosfets in surface well regions |
US20040128631A1 (en) * | 2002-12-31 | 2004-07-01 | Ditzel David R. | Software controlled body bias |
US20040158756A1 (en) * | 1996-11-21 | 2004-08-12 | Renesas Technology Corporation | Low power processor |
US20050058221A1 (en) * | 2002-02-01 | 2005-03-17 | Gunnar Wetzker | Additive dc component detection included in an input burst signal |
US7205758B1 (en) * | 2004-02-02 | 2007-04-17 | Transmeta Corporation | Systems and methods for adjusting threshold voltage |
Family Cites Families (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02201516A (en) | 1989-01-31 | 1990-08-09 | Toshiba Corp | Power save system |
US6158012A (en) | 1989-10-30 | 2000-12-05 | Texas Instruments Incorporated | Real-time power conservation and thermal management for computers |
EP0474963A3 (en) | 1990-09-13 | 1992-04-15 | Kabushiki Kaisha Toshiba | Computer system having sleep mode function |
JPH0776894B2 (en) | 1991-02-25 | 1995-08-16 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Clock signal control method for processor and information processing system |
US6311287B1 (en) | 1994-10-11 | 2001-10-30 | Compaq Computer Corporation | Variable frequency clock control for microprocessor-based computer systems |
US6078319A (en) | 1995-04-17 | 2000-06-20 | Cirrus Logic, Inc. | Programmable core-voltage solution for a video controller |
US6035407A (en) | 1995-08-14 | 2000-03-07 | Compaq Computer Corporation | Accomodating components |
JPH1070243A (en) | 1996-05-30 | 1998-03-10 | Toshiba Corp | Semiconductor integrated circuit and method and apparatus for testing the same |
JP3195256B2 (en) | 1996-10-24 | 2001-08-06 | 株式会社東芝 | Semiconductor integrated circuit |
US5832284A (en) | 1996-12-23 | 1998-11-03 | International Business Machines Corporation | Self regulating temperature/performance/voltage scheme for micros (X86) |
US6218895B1 (en) | 1997-06-20 | 2001-04-17 | Intel Corporation | Multiple well transistor circuits having forward body bias |
US6218892B1 (en) | 1997-06-20 | 2001-04-17 | Intel Corporation | Differential circuits employing forward body bias |
US6411156B1 (en) | 1997-06-20 | 2002-06-25 | Intel Corporation | Employing transistor body bias in controlling chip parameters |
JP3650269B2 (en) | 1997-10-07 | 2005-05-18 | セイコーインスツル株式会社 | Electronic timepiece with power generation element |
US6091300A (en) | 1997-10-20 | 2000-07-18 | Lucent Technologies, Inc. | Method and apparatus for adjusting the input common mode voltage of a differential amplifier |
US6279048B1 (en) | 1997-11-14 | 2001-08-21 | Lucent Technologies, Inc. | System wake-up based on joystick movement |
US6091283A (en) | 1998-02-24 | 2000-07-18 | Sun Microsystems, Inc. | Sub-threshold leakage tuning circuit |
US6218708B1 (en) | 1998-02-25 | 2001-04-17 | Sun Microsystems, Inc. | Back-biased MOS device and method |
US6097242A (en) | 1998-02-26 | 2000-08-01 | Micron Technology, Inc. | Threshold voltage compensation circuits for low voltage and low power CMOS integrated circuits |
JP3573957B2 (en) | 1998-05-20 | 2004-10-06 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Operating speed control method of processor in computer and computer |
US6048746A (en) | 1998-06-08 | 2000-04-11 | Sun Microsystems, Inc. | Method for making die-compensated threshold tuning circuit |
US6087892A (en) | 1998-06-08 | 2000-07-11 | Sun Microsystems, Inc. | Target Ion/Ioff threshold tuning circuit and method |
US6345363B1 (en) | 1998-06-23 | 2002-02-05 | National Semiconductor Corporation | Microprocessor core power reduction by not reloading existing operands |
US6202104B1 (en) | 1998-07-28 | 2001-03-13 | Siemens Aktiengesellschaft | Processor having a clock driven CPU with static design |
US6141762A (en) | 1998-08-03 | 2000-10-31 | Nicol; Christopher J. | Power reduction in a multiprocessor digital signal processor based on processor load |
US6242936B1 (en) | 1998-08-11 | 2001-06-05 | Texas Instruments Incorporated | Circuit for driving conductive line and testing conductive line for current leakage |
US6347379B1 (en) | 1998-09-25 | 2002-02-12 | Intel Corporation | Reducing power consumption of an electronic device |
US6378081B1 (en) | 1998-10-01 | 2002-04-23 | Gateway, Inc. | Power conservation without performance reduction in a power-managed system |
JP2000122747A (en) | 1998-10-12 | 2000-04-28 | Nec Corp | Device and method for controlling digital signal processing part |
US6426641B1 (en) | 1998-10-21 | 2002-07-30 | International Business Machines Corporation | Single pin performance screen ring oscillator with frequency division |
US6415388B1 (en) | 1998-10-30 | 2002-07-02 | Intel Corporation | Method and apparatus for power throttling in a microprocessor using a closed loop feedback system |
US6272642B2 (en) | 1998-12-03 | 2001-08-07 | Intel Corporation | Managing a system's performance state |
US6118306A (en) | 1998-12-03 | 2000-09-12 | Intel Corporation | Changing clock frequency |
KR100363105B1 (en) | 1998-12-23 | 2003-02-19 | 주식회사 하이닉스반도체 | Self-Refresh Device for Compensating Cellridge Current |
US6314522B1 (en) | 1999-01-13 | 2001-11-06 | Acqis Technology, Inc. | Multi-voltage level CPU module |
JP3049051B1 (en) | 1999-03-31 | 2000-06-05 | 新潟日本電気株式会社 | Temperature control circuit of central processing unit |
US6477654B1 (en) | 1999-04-06 | 2002-11-05 | International Business Machines Corporation | Managing VT for reduced power using power setting commands in the instruction stream |
EP1045251A3 (en) | 1999-04-14 | 2001-09-12 | Matsushita Electric Industrial Co., Ltd. | Voltage detecting circuit |
US6457134B1 (en) | 1999-04-21 | 2002-09-24 | Palm, Inc. | Portable computer with differentiated time-out feature |
US6304824B1 (en) | 1999-04-21 | 2001-10-16 | Hewlett-Packard Company | Voltage control of integrated circuits |
US6510525B1 (en) | 1999-04-26 | 2003-01-21 | Mediaq, Inc. | Method and apparatus to power up an integrated device from a low power state |
US6425086B1 (en) | 1999-04-30 | 2002-07-23 | Intel Corporation | Method and apparatus for dynamic power control of a low power processor |
US6457135B1 (en) | 1999-08-10 | 2002-09-24 | Intel Corporation | System and method for managing a plurality of processor performance states |
JP3928837B2 (en) | 1999-09-13 | 2007-06-13 | 株式会社ルネサステクノロジ | Semiconductor integrated circuit device |
US6422746B1 (en) | 1999-11-23 | 2002-07-23 | G & W Instruments, Inc. | Method and device for a self orienting floating apparatus |
JP2001175368A (en) | 1999-12-15 | 2001-06-29 | Nec Shizuoka Ltd | Cpu core voltage switching circuit |
US6442746B1 (en) | 1999-12-21 | 2002-08-27 | Intel Corporation | Preventing damaging of low voltage processor in high voltage system |
US7100061B2 (en) | 2000-01-18 | 2006-08-29 | Transmeta Corporation | Adaptive power control |
JP2001274265A (en) | 2000-03-28 | 2001-10-05 | Mitsubishi Electric Corp | Semiconductor device |
US6574739B1 (en) | 2000-04-14 | 2003-06-03 | Compal Electronics, Inc. | Dynamic power saving by monitoring CPU utilization |
TW498998U (en) * | 2000-05-17 | 2002-08-11 | Asustek Comp Inc | Switching circuit for supplying operation point of central processor |
US6476632B1 (en) | 2000-06-22 | 2002-11-05 | International Business Machines Corporation | Ring oscillator design for MOSFET device reliability investigations and its use for in-line monitoring |
US20020032829A1 (en) * | 2000-06-28 | 2002-03-14 | Z-World, Inc. | Microprocessor memory device controller |
JP4353621B2 (en) | 2000-06-30 | 2009-10-28 | 株式会社ルネサステクノロジ | Semiconductor device |
US6941480B1 (en) | 2000-09-30 | 2005-09-06 | Intel Corporation | Method and apparatus for transitioning a processor state from a first performance mode to a second performance mode |
US6303444B1 (en) | 2000-10-19 | 2001-10-16 | Sun Microsystems, Inc. | Method for introducing an equivalent RC circuit in a MOS device using resistive wells |
JP3877518B2 (en) | 2000-12-13 | 2007-02-07 | 松下電器産業株式会社 | Processor power control device |
US6988211B2 (en) | 2000-12-29 | 2006-01-17 | Intel Corporation | System and method for selecting a frequency and voltage combination from a table using a selection field and a read-only limit field |
US20020138778A1 (en) | 2001-03-22 | 2002-09-26 | Cole James R. | Controlling CPU core voltage to reduce power consumption |
US6920573B2 (en) * | 2001-05-23 | 2005-07-19 | Smartpower Corporation | Energy-conserving apparatus and operating system having multiple operating functions stored in keep-alive memory |
US6489224B1 (en) | 2001-05-31 | 2002-12-03 | Sun Microsystems, Inc. | Method for engineering the threshold voltage of a device using buried wells |
US7058824B2 (en) | 2001-06-15 | 2006-06-06 | Microsoft Corporation | Method and system for using idle threads to adaptively throttle a computer |
US6518826B2 (en) | 2001-06-28 | 2003-02-11 | Intel Corporation | Method and apparatus for dynamic leakage control |
US7013232B2 (en) | 2001-08-15 | 2006-03-14 | National Insurance Corporation | Network-based system for configuring a measurement system using configuration information generated based on a user specification |
US6621325B2 (en) | 2001-09-18 | 2003-09-16 | Xilinx, Inc. | Structures and methods for selectively applying a well bias to portions of a programmable device |
US7111178B2 (en) | 2001-09-28 | 2006-09-19 | Intel Corporation | Method and apparatus for adjusting the voltage and frequency to minimize power dissipation in a multiprocessor system |
US20030074591A1 (en) | 2001-10-17 | 2003-04-17 | Mcclendon Thomas W. | Self adjusting clocks in computer systems that adjust in response to changes in their environment |
US20040025061A1 (en) | 2001-10-25 | 2004-02-05 | Lawrence Richard H. | Method and system for power reduction |
JP4090231B2 (en) | 2001-11-01 | 2008-05-28 | 株式会社ルネサステクノロジ | Semiconductor integrated circuit device |
US6794630B2 (en) | 2001-12-17 | 2004-09-21 | Intel Corporation | Method and apparatus for adjusting the threshold of a CMOS radiation-measuring circuit |
US6731157B2 (en) | 2002-01-15 | 2004-05-04 | Honeywell International Inc. | Adaptive threshold voltage control with positive body bias for N and P-channel transistors |
US6614301B2 (en) | 2002-01-31 | 2003-09-02 | Intel Corporation | Differential amplifier offset adjustment |
US6731179B2 (en) | 2002-04-09 | 2004-05-04 | International Business Machines Corporation | System and method for measuring circuit performance degradation due to PFET negative bias temperature instability (NBTI) |
US7336090B1 (en) | 2002-04-16 | 2008-02-26 | Transmeta Corporation | Frequency specific closed loop feedback control of integrated circuits |
US6882172B1 (en) | 2002-04-16 | 2005-04-19 | Transmeta Corporation | System and method for measuring transistor leakage current with a ring oscillator |
US7112978B1 (en) | 2002-04-16 | 2006-09-26 | Transmeta Corporation | Frequency specific closed loop feedback control of integrated circuits |
US6792379B2 (en) | 2002-04-24 | 2004-09-14 | Yoshiyuki Ando | Data-based control of integrated circuits |
US6657504B1 (en) | 2002-04-30 | 2003-12-02 | Unisys Corporation | System and method of determining ring oscillator speed |
US6724214B2 (en) | 2002-09-13 | 2004-04-20 | Chartered Semiconductor Manufacturing Ltd. | Test structures for on-chip real-time reliability testing |
JP4133166B2 (en) | 2002-09-25 | 2008-08-13 | 株式会社ルネサステクノロジ | Nonvolatile semiconductor memory device |
US6784722B2 (en) | 2002-10-09 | 2004-08-31 | Intel Corporation | Wide-range local bias generator for body bias grid |
US7013406B2 (en) | 2002-10-14 | 2006-03-14 | Intel Corporation | Method and apparatus to dynamically change an operating frequency and operating voltage of an electronic device |
US6815971B2 (en) | 2002-11-06 | 2004-11-09 | Taiwan Semiconductor Manufacturing Co., Ltd | Method and apparatus for stress testing integrated circuits using an adjustable AC hot carrier injection source |
US7120804B2 (en) * | 2002-12-23 | 2006-10-10 | Intel Corporation | Method and apparatus for reducing power consumption through dynamic control of supply voltage and body bias including maintaining a substantially constant operating frequency |
US6812758B2 (en) | 2003-02-12 | 2004-11-02 | Sun Microsystems, Inc. | Negative bias temperature instability correction technique for delay locked loop and phase locked loop bias generators |
US6858897B2 (en) | 2003-04-30 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Individually adjustable back-bias technique |
JP2005098981A (en) | 2003-08-27 | 2005-04-14 | Nec Corp | Semiconductor integrated circuit device, measurement result managing system, and management server |
GB2408116B (en) | 2003-11-14 | 2006-09-20 | Advanced Risc Mach Ltd | Operating voltage determination for an integrated circuit |
US7502565B2 (en) | 2004-03-05 | 2009-03-10 | Finisar Corporation | Circuit for filtering a laser signal |
US7348827B2 (en) * | 2004-05-19 | 2008-03-25 | Altera Corporation | Apparatus and methods for adjusting performance of programmable logic devices |
US7129745B2 (en) * | 2004-05-19 | 2006-10-31 | Altera Corporation | Apparatus and methods for adjusting performance of integrated circuits |
US7509504B1 (en) | 2004-09-30 | 2009-03-24 | Transmeta Corporation | Systems and methods for control of integrated circuits comprising body biasing systems |
US7652494B2 (en) | 2005-07-01 | 2010-01-26 | Apple Inc. | Operating an integrated circuit at a minimum supply voltage |
US7263457B2 (en) | 2006-01-03 | 2007-08-28 | Advanced Micro Devices, Inc. | System and method for operating components of an integrated circuit at independent frequencies and/or voltages |
-
2005
- 2005-09-28 US US11/238,446 patent/US7949864B1/en not_active Expired - Lifetime
-
2011
- 2011-05-23 US US13/113,798 patent/US20110221029A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4335445A (en) * | 1979-02-26 | 1982-06-15 | Kepco, Inc. | System for interfacing computers with programmable power supplies |
US4246517A (en) * | 1979-08-24 | 1981-01-20 | Burroughs Corporation | SCR lamp supply |
US5386135A (en) * | 1985-09-25 | 1995-01-31 | Hitachi, Ltd. | Semiconductor CMOS memory device with separately biased wells |
US4739252A (en) * | 1986-04-24 | 1988-04-19 | International Business Machines Corporation | Current attenuator useful in a very low leakage current measuring device |
US4679130A (en) * | 1986-06-04 | 1987-07-07 | Superior Manufacturing & Instrument Corporation | Programmable power supply |
US4769784A (en) * | 1986-08-19 | 1988-09-06 | Advanced Micro Devices, Inc. | Capacitor-plate bias generator for CMOS DRAM memories |
US4798974A (en) * | 1987-01-12 | 1989-01-17 | Siemens Aktiengesellschaft | Integrated circuit comprising a latch-up protection circuit in complementary MOS-circuitry technology |
US4912347A (en) * | 1987-08-25 | 1990-03-27 | American Telephone And Telegraph Company, At&T Bell Laboratories | CMOS to ECL output buffer |
US4893228A (en) * | 1987-09-01 | 1990-01-09 | Hewlett Packard Company | High-efficiency programmable power supply |
US4929621A (en) * | 1987-09-09 | 1990-05-29 | Synthelabo | 1-1[(2-pyrimidinyl)amino-alkyl]piperidines, their preparation and their application in therapy |
US5519309A (en) * | 1988-05-24 | 1996-05-21 | Dallas Semiconductor Corporation | Voltage to current converter with extended dynamic range |
US5113088A (en) * | 1988-11-09 | 1992-05-12 | Oki Electric Industry Co., Ltd. | Substrate bias generating circuitry stable against source voltage changes |
US5086501A (en) * | 1989-04-17 | 1992-02-04 | Motorola, Inc. | Computing system with selective operating voltage and bus speed |
US5167024A (en) * | 1989-09-08 | 1992-11-24 | Apple Computer, Inc. | Power management for a laptop computer with slow and sleep modes |
US5103110A (en) * | 1989-10-20 | 1992-04-07 | Keltronics Corporation | Programmable power supply |
US5218704A (en) * | 1989-10-30 | 1993-06-08 | Texas Instruments | Real-time power conservation for portable computers |
US5201059A (en) * | 1989-11-13 | 1993-04-06 | Chips And Technologies, Inc. | Method for reducing power consumption includes comparing variance in number of time microprocessor tried to react input in predefined period to predefined variance |
US5204863A (en) * | 1990-02-09 | 1993-04-20 | Valeo Neiman | Device for monitoring the operation of a microprocessor system, or the like |
US5039877A (en) * | 1990-08-30 | 1991-08-13 | Micron Technology, Inc. | Low current substrate bias generator |
US5560020A (en) * | 1990-09-21 | 1996-09-24 | Hitachi, Ltd. | Power saving processing system |
US5461266A (en) * | 1990-11-27 | 1995-10-24 | Hitachi, Ltd. | Power consumption control system |
US5230055A (en) * | 1991-01-25 | 1993-07-20 | International Business Machines Corporation | Battery operated computer operation suspension in response to environmental sensor inputs |
US5239652A (en) * | 1991-02-04 | 1993-08-24 | Apple Computer, Inc. | Arrangement for reducing computer power consumption by turning off the microprocessor when inactive |
US5124632A (en) * | 1991-07-01 | 1992-06-23 | Motorola, Inc. | Low-voltage precision current generator |
US5406212A (en) * | 1991-07-19 | 1995-04-11 | Sumitomo Electric Industries, Ltd. | Burn-in apparatus and method for self-heating semiconductor devices having built-in temperature sensors |
US5410278A (en) * | 1991-12-19 | 1995-04-25 | Sharp Kabushiki Kaisha | Ring oscillator having a variable oscillating frequency |
US5483434A (en) * | 1992-01-14 | 1996-01-09 | Seesink; Petrus H. | High voltage generator having output current control |
US5336986A (en) * | 1992-02-07 | 1994-08-09 | Crosspoint Solutions, Inc. | Voltage regulator for field programmable gate arrays |
US5254883A (en) * | 1992-04-22 | 1993-10-19 | Rambus, Inc. | Electrical current source circuitry for a bus |
US5744996A (en) * | 1992-07-01 | 1998-04-28 | International Business Machines Corporation | CMOS integrated semiconductor circuit |
US5394026A (en) * | 1993-02-02 | 1995-02-28 | Motorola Inc. | Substrate bias generating circuit |
US5506541A (en) * | 1993-05-13 | 1996-04-09 | Microunity Systems Engineering, Inc. | Bias voltage distribution system |
US5894577A (en) * | 1993-09-22 | 1999-04-13 | Advanced Micro Devices, Inc. | Interrupt controller with external in-service indication for power management within a computer system |
US5447876A (en) * | 1993-11-19 | 1995-09-05 | Micrel, Inc. | Method of making a diamond shaped gate mesh for cellular MOS transistor array |
US5610533A (en) * | 1993-11-29 | 1997-03-11 | Mitsubishi Denki Kabushiki Kaisha | Switched substrate bias for logic circuits |
US5422591A (en) * | 1994-01-03 | 1995-06-06 | Sgs-Thomson Microelectronics, Inc. | Output driver circuit with body bias control for multiple power supply operation |
US5511203A (en) * | 1994-02-02 | 1996-04-23 | Advanced Micro Devices | Power management system distinguishing between primary and secondary system activity |
US5422806A (en) * | 1994-03-15 | 1995-06-06 | Acc Microelectronics Corporation | Temperature control for a variable frequency CPU |
US5502838A (en) * | 1994-04-28 | 1996-03-26 | Consilium Overseas Limited | Temperature management for integrated circuits |
US5717319A (en) * | 1994-06-10 | 1998-02-10 | Nokia Mobile Phones Ltd. | Method to reduce the power consumption of an electronic device comprising a voltage regulator |
US5752011A (en) * | 1994-06-20 | 1998-05-12 | Thomas; C. Douglas | Method and system for controlling a processor's clock frequency in accordance with the processor's temperature |
US5974557A (en) * | 1994-06-20 | 1999-10-26 | Thomas; C. Douglass | Method and system for performing thermal and power management for a computer |
US5933649A (en) * | 1994-06-20 | 1999-08-03 | Samsung Electronics Co., Ltd. | Method and device for controlling a CPU stop clock interrupt |
US5513152A (en) * | 1994-06-22 | 1996-04-30 | At&T Global Information Solutions Company | Circuit and method for determining the operating performance of an integrated circuit |
US5592173A (en) * | 1994-07-18 | 1997-01-07 | Trimble Navigation, Ltd | GPS receiver having a low power standby mode |
US5440520A (en) * | 1994-09-16 | 1995-08-08 | Intel Corporation | Integrated circuit device that selects its own supply voltage by controlling a power supply |
US5754869A (en) * | 1994-10-04 | 1998-05-19 | Intel Corporation | Method and apparatus for managing power consumption of the CPU and on-board system devices of personal computers |
US5594360A (en) * | 1994-10-19 | 1997-01-14 | Intel Corporation | Low current reduced area programming voltage detector for flash memory |
US5952871A (en) * | 1994-12-21 | 1999-09-14 | Samsung Electronics, Co., Ltd. | Substrate voltage generating circuit of semiconductor memory device |
US5838189A (en) * | 1994-12-21 | 1998-11-17 | Samsung Electronics Co., Ltd. | Substrate voltage generating circuit of semiconductor memory device |
US5568103A (en) * | 1994-12-28 | 1996-10-22 | Mitsubishi Electric Engineering Co., Ltd. | Current control circuit of ring oscillator |
US5778237A (en) * | 1995-01-10 | 1998-07-07 | Hitachi, Ltd. | Data processor and single-chip microcomputer with changing clock frequency and operating voltage |
US5495184A (en) * | 1995-01-12 | 1996-02-27 | Vlsi Technology, Inc. | High-speed low-power CMOS PECL I/O transmitter |
US5692204A (en) * | 1995-02-15 | 1997-11-25 | International Business Machines Corporation | Method and apparatus for computer system power management |
US5818290A (en) * | 1995-02-15 | 1998-10-06 | Nec Corporation | Bias voltage controlling apparatus with complete feedback control |
US5680359A (en) * | 1995-03-24 | 1997-10-21 | Hyundai Electronics Industries Co., Ltd. | Self-refresh period adjustment circuit for semiconductor memory device |
US5682093A (en) * | 1995-04-12 | 1997-10-28 | Nokia Mobile Phones Ltd. | Apparatus and method for reducing the power consumption of an electronic device |
US5719800A (en) * | 1995-06-30 | 1998-02-17 | Intel Corporation | Performance throttling to reduce IC power consumption |
US5727208A (en) * | 1995-07-03 | 1998-03-10 | Dell U.S.A. L.P. | Method and apparatus for configuration of processor operating parameters |
US5996083A (en) * | 1995-08-11 | 1999-11-30 | Hewlett-Packard Company | Microprocessor having software controllable power consumption |
US5745375A (en) * | 1995-09-29 | 1998-04-28 | Intel Corporation | Apparatus and method for controlling power usage |
US5825674A (en) * | 1995-09-29 | 1998-10-20 | Intel Corporation | Power control for mobile electronics using no-operation instructions |
US5996084A (en) * | 1996-01-17 | 1999-11-30 | Texas Instruments Incorporated | Method and apparatus for real-time CPU thermal management and power conservation by adjusting CPU clock frequency in accordance with CPU activity |
US5812860A (en) * | 1996-02-12 | 1998-09-22 | Intel Corporation | Method and apparatus providing multiple voltages and frequencies selectable based on real time criteria to control power consumption |
US5977763A (en) * | 1996-02-27 | 1999-11-02 | Micron Technology, Inc. | Circuit and method for measuring and forcing an internal voltage of an integrated circuit |
US5781060A (en) * | 1996-03-29 | 1998-07-14 | Nec Corporation | Semiconductor integrated circuit device having a variable current source controlled by a shift register |
US5815724A (en) * | 1996-03-29 | 1998-09-29 | Intel Corporation | Method and apparatus for controlling power consumption in a microprocessor |
US5815725A (en) * | 1996-04-03 | 1998-09-29 | Sun Microsystems, Inc. | Apparatus and method for reducing power consumption in microprocessors through selective gating of clock signals |
US5796313A (en) * | 1996-04-25 | 1998-08-18 | Waferscale Integration Inc. | Low power programmable ring oscillator |
US5940785A (en) * | 1996-04-29 | 1999-08-17 | International Business Machines Corporation | Performance-temperature optimization by cooperatively varying the voltage and frequency of a circuit |
US5764110A (en) * | 1996-07-15 | 1998-06-09 | Mitsubishi Denki Kabushiki Kaisha | Voltage controlled ring oscillator stabilized against supply voltage fluctuations |
US5848281A (en) * | 1996-07-23 | 1998-12-08 | Smalley; Kenneth George | Method and apparatus for powder management in a multifunction controller with an embedded microprocessor |
US20040158756A1 (en) * | 1996-11-21 | 2004-08-12 | Renesas Technology Corporation | Low power processor |
US5940786A (en) * | 1996-11-22 | 1999-08-17 | Eaton Corporation | Temperature regulated clock rate for microprocessors |
US5884049A (en) * | 1996-12-31 | 1999-03-16 | Compaq Computer Corporation | Increased processor performance comparable to a desktop computer from a docked portable computer |
US5757171A (en) * | 1996-12-31 | 1998-05-26 | Intel Corporation | On-board voltage regulators with automatic processor type detection |
US5999040A (en) * | 1997-03-19 | 1999-12-07 | Stmicroelectronics S.A. | Voltage booster circuit with controlled number of stages |
US5920226A (en) * | 1997-03-31 | 1999-07-06 | Hitachi, Ltd. | Internal voltage generator with reduced power consumption |
US5986947A (en) * | 1997-04-11 | 1999-11-16 | Samsung Electronics Co., Ltd. | Charge pump circuits having floating wells |
US5880620A (en) * | 1997-04-22 | 1999-03-09 | Xilinx, Inc. | Pass gate circuit with body bias control |
US5900773A (en) * | 1997-04-22 | 1999-05-04 | Microchip Technology Incorporated | Precision bandgap reference circuit |
US6232827B1 (en) * | 1997-06-20 | 2001-05-15 | Intel Corporation | Transistors providing desired threshold voltage and reduced short channel effects with forward body bias |
US5842860A (en) * | 1997-09-05 | 1998-12-01 | Funt; Lawrence A. | Medical reservoir system |
US5940020A (en) * | 1997-10-09 | 1999-08-17 | Tritech Microelectronics, Ltd | Digital to analog converter with a reduced resistor count |
US5929621A (en) * | 1997-10-23 | 1999-07-27 | Stmicroelectronics S.R.L. | Generation of temperature compensated low noise symmetrical reference voltages |
US6011403A (en) * | 1997-10-31 | 2000-01-04 | Credence Systems Corporation | Circuit arrangement for measuring leakage current utilizing a differential integrating capacitor |
US5973526A (en) * | 1997-12-19 | 1999-10-26 | Intel Corporation | Compensating a characteristic of a circuit |
US6006169A (en) * | 1997-12-31 | 1999-12-21 | Intel Corporation | Method and apparatus for trimming an integrated circuit |
US6018264A (en) * | 1998-02-11 | 2000-01-25 | Lg Semicon Co., Ltd. | Pumping circuit with amplitude limited to prevent an over pumping for semiconductor device |
US5923545A (en) * | 1998-05-18 | 1999-07-13 | Intel Corporation | Method and apparatus for providing multiple output voltages from a voltage regulator |
US6262447B1 (en) * | 1998-10-13 | 2001-07-17 | Taiwan Semiconductor Manufacturing Corporation | Single polysilicon DRAM cell and array with current gain |
US20020029352A1 (en) * | 1998-12-30 | 2002-03-07 | Shekhar Y. Borkar | Software control of transistor body bias in controlling chip parameters |
US6484265B2 (en) * | 1998-12-30 | 2002-11-19 | Intel Corporation | Software control of transistor body bias in controlling chip parameters |
US6252806B1 (en) * | 2000-05-26 | 2001-06-26 | International Business Machines Corporation | Multi-generator, partial array Vt tracking system to improve array retention time |
US20050058221A1 (en) * | 2002-02-01 | 2005-03-17 | Gunnar Wetzker | Additive dc component detection included in an input burst signal |
US20040124475A1 (en) * | 2002-12-31 | 2004-07-01 | Mike Pelham | Diagonal deep well region for routing body-bias voltage for mosfets in surface well regions |
US20040128631A1 (en) * | 2002-12-31 | 2004-07-01 | Ditzel David R. | Software controlled body bias |
US7332763B1 (en) * | 2002-12-31 | 2008-02-19 | Transmeta Corporation | Selective coupling of voltage feeds for body bias voltage in an integrated circuit device |
US7205758B1 (en) * | 2004-02-02 | 2007-04-17 | Transmeta Corporation | Systems and methods for adjusting threshold voltage |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106873360A (en) * | 2015-12-14 | 2017-06-20 | 上海华虹集成电路有限责任公司 | Frequency adaptive circuit |
WO2019025141A1 (en) | 2017-08-04 | 2019-02-07 | RACYICS GmbH | A method and a circuit for adaptive regulation of body bias voltages controlling nmos and pmos transistors of an ic |
US10943053B2 (en) | 2017-08-04 | 2021-03-09 | RACYICS GmbH | Method and a circuit for adaptive regulation of body bias voltages controlling NMOS and PMOS transistors of an IC |
Also Published As
Publication number | Publication date |
---|---|
US7949864B1 (en) | 2011-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10432174B2 (en) | Closed loop feedback control of integrated circuits | |
US7336090B1 (en) | Frequency specific closed loop feedback control of integrated circuits | |
US7562233B1 (en) | Adaptive control of operating and body bias voltages | |
US8319515B2 (en) | Systems and methods for adjusting threshold voltage | |
US7221211B2 (en) | Semiconductor integrated circuit apparatus | |
US6448840B2 (en) | Adaptive body biasing circuit and method | |
US7811917B2 (en) | Systems and methods for maintaining performance at a reduced power | |
US6055489A (en) | Temperature measurement and compensation scheme | |
US20040183588A1 (en) | Adaptive power supply and substrate control for ultra low power digital processors using triple well control | |
US6814485B2 (en) | On-die thermal monitoring technique | |
US20110221029A1 (en) | Balanced adaptive body bias control | |
US20060226863A1 (en) | Method and apparatus to adjust die frequency | |
JPH11101860A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTELLECTUAL VENTURES HOLDING 81 LLC, NEVADA Free format text: MERGER;ASSIGNOR:INTELLECTUAL VENTURE FUNDING LLC;REEL/FRAME:036711/0160 Effective date: 20150827 |
|
AS | Assignment |
Owner name: INTELLECTUAL VENTURES HOLDING 81 LLC, NEVADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR'S NAME PREVIOUSLY RECORDED AT REEL: 036711 FRAME: 0160. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:INTELLECTUAL VENTURES FUNDING LLC;REEL/FRAME:036797/0356 Effective date: 20150827 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
AS | Assignment |
Owner name: FACEBOOK, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTELLECTUAL VENTURES ASSETS 88 LLC;REEL/FRAME:048125/0419 Effective date: 20180917 |
|
AS | Assignment |
Owner name: META PLATFORMS, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:FACEBOOK, INC.;REEL/FRAME:059481/0835 Effective date: 20211028 |