US20110224773A1 - Methods and devices for protecting a passageway in a body when advancing devices through the passageway - Google Patents
Methods and devices for protecting a passageway in a body when advancing devices through the passageway Download PDFInfo
- Publication number
- US20110224773A1 US20110224773A1 US13/048,856 US201113048856A US2011224773A1 US 20110224773 A1 US20110224773 A1 US 20110224773A1 US 201113048856 A US201113048856 A US 201113048856A US 2011224773 A1 US2011224773 A1 US 2011224773A1
- Authority
- US
- United States
- Prior art keywords
- liner
- anchor
- inch
- stent
- passageway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/97—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0095—Packages or dispensers for prostheses or other implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/018—Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0067—Three-dimensional shapes conical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/0078—Quadric-shaped hyperboloidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
Definitions
- the present invention is directed to methods and devices for protecting a passageway in a body when advancing devices through the passageway.
- a specific application of the present invention is for treatment of blood vessels although the invention may be used in any part of the body.
- the present invention is used to protect blood vessels during intravascular procedures for treating aneurysms, arteriovenous malformations, and atherosclerotic disease of vessels.
- a particular application of the present invention is for atherosclerotic disease of the carotid arteries or saphenous vein grafts.
- Carotid artery atherosclerotic occlusive disease contributes to hundreds of thousands of strokes annually in the United States.
- Atherosclerotic disease of the internal carotid artery is particularly problematic since plaque dislodged from the internal carotid artery leads directly to the cerebral vasculature.
- a conventional method of treating carotid artery occlusive disease is by surgical removal of the plaque (carotid endarterectomy).
- the carotid artery is opened surgically, the plaque is removed and the carotid artery is then closed.
- Carotid endarterectomies have demonstrated significant clinical benefit over conservative treatment with medication by reducing strokes over the next five years. Although carotid endarteretomy reduces strokes over a period of time after the procedure, the procedure still has a 6% risk of death or stroke.
- Another method of treating carotid artery disease is to use interventional devices such as stents.
- interventional devices such as stents.
- a problem with treating carotid artery occlusive disease with stents is that the user is wary of dislodging plaque when advancing the stent through the carotid artery. Any plaque which breaks free during introduction of the stent travels directly to the patient's brain and can cause a stroke or death.
- Yet another method of treating carotid artery occlusive disease is to introduce a filter through the carotid artery to trap emboli released during subsequent deployment of a stent or angioplasty balloon.
- This method suffers the same drawback in that advancement of the filter itself may dislodge plaque.
- exchange of various therapeutic catheters over the filter element result in undesirable movement of the filter with attendant risk of losing filtered emboli or damaging the vessel wall with the filter.
- the present invention is directed to improved methods of protecting a body passageway when advancing devices through the body passageway.
- the present invention is also directed to improved methods of treating atherosclerotic vessels and, in particular, occlusive disease of the internal carotid artery.
- a liner is provided to protect a body passageway during introduction of other devices into the passageway.
- the methods and devices of the present invention are used to protect blood vessels, such as the internal carotid artery, during intravascular procedures. It is understood that use of the present invention for protection of blood vessels is discussed as an example of how the present invention may he used, however, the invention may he used in any other part of the body without departing from the scope of the invention.
- the liner is collapsed for introduction into the patient and advanced to a narrowed region of a blood vessel.
- the liner is passed through a region of the blood vessel in the collapsed condition and an intravascular device, such as a stent or filter, is then introduced into the liner.
- the liner may be used to protect vessels from any type of problem including atherosclerotic disease, perforation, aneurysm or AVM.
- the liner protects the vessel as the intravascular device is passed through the region to prevent the device from dislodging plaque.
- the stent is preferably expanded within the liner to trap the liner between the stent and the vessel.
- the liner may be expanded by the stent or may be partially or fully expanded before introduction of the stem.
- the devices and methods of the present invention are particularly useful for treating occlusive disease of the internal carotid artery.
- the liner may be any suitable material and suitable materials include expanded PTFE, woven dacron, nylon, low durometer silicone, or thin-walled polyethylene.
- the liner is preferably mounted to a delivery catheter and is advanced over a guidewire.
- the liner may have an anchor at a proximal end which is used to open the proximal end of the liner.
- the anchor may be self-expanding or balloon expandable. Once the proximal end of the liner is opened, the liner can be designed so that blood pressure opens the liner. Alternatively, the liner may open automatically or may be opened with a separate device, the delivery catheter or the stent itself.
- the anchor When treating occlusive disease of the internal carotid artery, the anchor may be positioned completely in the internal carotid artery or may extend from the common carotid artery across the bifurcation of the internal and external carotid arteries and into the internal common carotid.
- the anchor preferably has an open structure which permits blood flow into the external carotid artery.
- the liner may be an elastic liner or may be folded into a collapsed position.
- the liner may be collapsed in any suitable manner and preferably has a number of folded sections which are wrapped around one another.
- the folded sections are preferably adhered to one another to hold the liner in the collapsed position.
- the folded sections may be adhered together by application of heat or with an adhesive or coating.
- the distal end of the liner may be coated to form a curved surface which covers the ends of the folded sections.
- the ends of the liner may be scalloped or contoured so that when folded the edge tapers down more cleanly.
- the liner may also be designed to evert when expanding.
- the everting liner reduces sliding between the liner and vessel so that plaque is not dislodged when introducing the liner.
- An end of the everting liner may be releasably attached to the delivery catheter.
- the proximal end of the liner may also be opened with an expandable device, such as a balloon, on the delivery catheter rather than with an anchor attached to the liner. Once the proximal end is open, the stent or other device is advanced through the liner.
- an expandable device such as a balloon
- the catheter holds the proximal end partially open.
- the stent or other device is then advanced through the open proximal end.
- the liner can be released when using a stent or may be removed after use.
- FIG. 1 shows a system for advancing devices through a narrowed region of a blood vessel such as the internal carotid artery.
- FIG. 2 shows a liner advanced through the narrowed region in a collapsed position.
- FIG. 3 shows the liner detached from the delivery catheter and expanded.
- FIG. 4 shows only the proximal end of the liner expanded with an anchor.
- FIG. 5 shows the liner having openings or perforations.
- FIG. 6A shows the liner having a woven or braided configuration.
- FIG. 6B shows the liner having a radiopaque maker and a scalloped distal end.
- FIG. 7 shows the liner folded into six folded sections.
- FIG. 8 shows the folded sections wrapped around one another.
- FIG. 9 shows an end view of the liner of FIG. 7 .
- FIG. 10 shows an end view of the liner of FIG. 8 with the liner wrapped around a guidewire.
- FIG. 11 shows the liner having four folded sections.
- FIG. 12 shows the liner of FIG. 11 with the folds wrapped around one another.
- FIG. 13 shows a coating over a distal end of the liner.
- FIG. 14 shows the coating extending over the length of the liner.
- FIG. 15 is a cross-sectional view of the liner and coating with four, folded sections.
- FIG. 16 is a cross-sectional view of the liner and coating with six folded sections.
- FIG. 17 shows a sheath covering the liner in the collapsed condition.
- FIG. 18 shows a filament tearing a distal end of the sheath.
- FIG. 19 shows the liner attached to the anchor.
- FIG. 20 shows the liner attached to a tapered anchor.
- FIG. 21 shows an anchor contained entirely within the internal carotid artery.
- FIG. 22 shows the balloon expanding the anchor and blocking blood flow into the internal carotid artery.
- FIG. 23 shows the liner and anchor of FIG. 22 deployed.
- FIG. 24 shows a balloon-expandable stent introduced into the liner.
- FIG. 25 shows the stent expanded.
- FIG. 26A shows an elongate element which opens the distal end of the liner.
- FIG. 26B shows the elongate element contained within a tube during delivery of the liner.
- FIG. 26C shows the elongate element of FIG. 26B advanced into a pocket of the liner to open the proximal end of the liner.
- FIG. 26D shows the stent introduced into the liner of FIG. 26C .
- FIG. 27 shows the delivery catheter for the anchor used to deliver a stent into the liner.
- FIG. 28 shows the distal end of the stent of FIG. 27 expanded to trap plaque behind the liner.
- FIG. 29 shows the delivery catheter for the anchor used to deliver a distal anchor.
- FIG. 30 show the delivery catheter in position for delivering the distal anchor.
- FIG. 31 shows the distal anchor deployed so that the proximal and distal ends of the liner are expanded.
- FIG. 32 shows another stent delivered between the proximal and distal anchors.
- FIG. 33 shows the stent of FIG. 32 expanded.
- FIG. 34 shows a delivery catheter having an expandable section for opening the proximal end of the liner.
- FIG. 35 shows the proximal end of the liner opened with the expandable section.
- FIG. 36 shows the stent advanced through the liner.
- FIG. 37 shows the stent partially expanded.
- FIG. 38 shows the stent expanded into contact with the vessel wall and the liner released from the delivery catheter.
- FIG. 39 shows the stent fully expanded.
- FIG. 40 show a filter passed through the liner.
- FIG. 41 shows the liner everting when deployed.
- FIG. 42 shows the liner partially everted.
- FIG. 43 shows the liner almost completely evened and the distal end released.
- FIG. 44 shows the liner released from the delivery catheter.
- FIG. 45 shows another delivery catheter which holds the proximal end of the liner open.
- FIG. 46 shows the stent advanced through the liner of FIG. 45 .
- FIG. 47 shows another delivery catheter for the liner.
- FIG. 48 shows still another delivery catheter for the liner.
- FIG. 49 shows yet another delivery catheter for the liner.
- FIG. 50 shows a distal end of the liner trapped in a fold.
- FIG. 51 shows a kit having devices and instructions for use in accordance with the present invention.
- FIGS. 1-4 A system 2 for protecting vessels during intravascular procedures is shown in FIGS. 1-4 .
- the liner may be used in other vessels such as saphenous vein grafts of coronary bypass procedures, iliac and coronary arteries.
- a guide catheter 4 is introduced through the femoral artery and advanced to the common carotid artery in the conventional manner.
- the guide catheter 4 has a hemostasis valve 6 which receives a liner delivery catheter 8 .
- the guide catheter 4 may be omitted without departing from the scope of the invention.
- a liner 10 is used to protect the body passageway when passing other devices through the body passageway.
- the liner 10 may be used to protect the carotid artery to prevent plaque from being dislodged when passing other devices through the carotid artery.
- a proximal end 11 of the liner 10 may be attached to an anchor 12 which expands and opens the liner 10 and holds the liner 10 against the vessel wall to reduce or eliminate flow around the liner.
- the liner is preferably non-metallic and is relatively flexible to conform to the body passageway.
- the anchor 12 as will be discussed below, is mounted to one end of the liner 10 while the other end of the liner 10 is preferably free.
- the liner 10 is advanced through the vessel in the collapsed condition of FIG. 2 so that the liner 10 can be advanced through small or highly stenosed vessels.
- other devices such as a stent 26 ( FIG. 25 ) or filter ( FIG. 40 ) may be passed through the liner 10 so that the liner 10 prevents contact between the device and the vessel wall.
- the liner 10 may also be used to protect the vessel when advancing other devices such as angioplasty balloons, drug delivery catheters, laser catheters or ultrasound catheters.
- FIG. 3 shows both ends of the liner 10 opened to trap plaque behind the liner 10 so that loose plaque cannot flow downstream.
- the liner 10 is preferably delivered over a conventional guidewire 15 which has a 0.010-0.018 inch diameter but may be of any other suitable size depending upon the vascular site.
- the liner 10 is preferably made of expanded PTFE having a thickness of 0.006 to 0.002 inch, more preferably 0.001 to 0.002 inch and most preferably about 0.001 +/ ⁇ 0.0005 inch although any other suitable material may be used.
- the liner 10 may have a woven construction such as silk or polyester as shown in FIG. 5 .
- the liner 10 may also have small openings 25 or perforations which act similar to a filter in that they permit blood to flow through but prevent large emboli from escaping ( FIG. 6A ).
- the openings 25 also may promote tissue growth.
- the liner 10 may also have a scalloped distal end 7 to form a smoother transition at the distal end when collapsed.
- the liner 10 may also have a radiopaque marker 9 , such as a 0.002 inch by 0.008 inch platinum ribbon, embedded, sewn, or folded into the liner 10 .
- the liner 10 may have the markers 9 extending longitudinally ( FIG. 6B ) or circumferentially. When the markers 9 extend longitudinally, three markers 9 are preferably provided 120 degrees apart.
- the liner 10 may also be elastic so that the liner 10 remains substantially cylindrical and without folds in the collapsed and expanded positions.
- the liner 10 is preferably a tube of low durometer silicone, latex or natural rubber, thermoplastic elastomers such as Kraton or hydrogenated thermoplastic isoprenes having a thickness of 0.001 to 0.0005 inch.
- the liner 10 could he made of an inelastic but plastically deformable material. Initially the liner 10 would he sized to allow easy passage of the devices such as the balloons, stents and filters described herein. The liner 10 is then plastically deformed by the devices which pass therethrough.
- a pre-dilatation balloon may be introduced to dilate the liner 10 .
- the stent 27 can then be advanced into the dilated liner 10 and expanded to open the narrowed vessel. Expansion of the stent continues plastic deformation of the liner 10 to a final size.
- Any of the liners 10 described herein may be substituted for any of the other liners 10 without departing from the scope of the invention.
- FIGS. 7-12 show a preferred method of collapsing the liner 10 .
- the liner 10 is folded longitudinally along creases 13 to create at least 2 and preferably 4-6 folded sections 14 .
- Four folded sections 14 are shown in FIGS. 11 and six folded sections 14 are shown in FIGS. 7 and 9 .
- the folds 14 are then wrapped as shown in FIGS. 8 , 10 and 12 .
- the liner 10 may, of course, be wrapped in any other manner.
- the liner 10 may be spiral wrapped or randomly compressed and set with high pressure and/or heat.
- the folded sections 14 may be adhered to one another by application of heat which holds the folded sections 14 together without melting and fusing the sections 14 together.
- Another method of holding the liner 10 in the collapsed position is to apply an adhesive 16 such as medical grade glue, cyanoacrylates, epoxies, ultraviolet activated adhesives, low molecular weight polyvinyl alcohol polymer, gelatin and sucrose.
- the liner 10 may also be partially or completely covered with a coating 20 which dissolves in blood such as sugar ( FIGS. 13-16 ).
- the distal end 19 of the liner 10 may he covered with the coating 20 to form a smooth, atraumatic end as shown in FIG. 13 .
- the coating 20 may extend along the length of the liner 10 as shown in FIG. 14 or may be only at the distal end or intermittent as shown in FIG. 13 .
- the liner 10 may also be covered by a removable sheath 21 as shown in FIGS. 17 and 18 .
- the sheath may be removed in any manner such as tearing along perforations or with a chemical, thermal or electrolytically severable bond.
- a filament 23 may also be used to tear the sheath 21 as shown in FIGS. 17 and 18 .
- the filament 23 may have both ends extending through the catheter rather than having one end extend out of the catheter.
- the filament 23 is shown separated from the sheath 21 for clarity but would either pass inside the sheath 21 or would be partially embedded in the sheath 21 .
- the sheath 21 can also be a simple retractable sheath 21 as is known in the art.
- the liner 10 is collapsed onto the guidewire 15 so that the liner 10 has an outer diameter ⁇ of no more than 0.065 inch, more preferably no more than 0.040 inch, and most preferably no more than 0.026 inch.
- the thickness ⁇ of the liner 10 is preferably no more than 0.015 inch, more preferably no more than 0.012 inch, and most preferably no more than 0.008 inch when measured in a radial direction.
- the liner 10 is preferably collapsed so that the outer diameter ⁇ is 0.020 to 0.032 inch, preferably about 0.026 inch, and the thickness ⁇ of the liner 10 is 0.004 to 0.008 inch, preferably about 0.006 inch.
- the liner 10 is preferably collapsed so that the outer diameter ⁇ is still about 0.020 to 0.032 inch, preferably about 0.026 inch. and the thickness ⁇ of the liner 10 is 0.003 to 0.006 inch, preferably about 0.004 inch.
- the liner 10 also has a high ratio of collapsed cross-sectional area to expanded circumference in the range of 1:10 to 1:30 and preferably at least 1:20.
- the relatively small size of the liner 10 advantageously permits the liner 10 to be introduced through small and heavily stenosed vessels.
- the carotid artery is often occluded 95 to 98% and may have diameters as small as 0.020 inch or even 0.010 inch before surgical or interventional procedures are performed.
- Conventional stents used in the internal carotid artery have a collapsed diameter of about 0.065 to 0.092 inch and, thus, must often displace the plaque to pass through the vessel. It is believed that some strokes which occur when using stents in the carotid artery are caused by plaque which is dislodged when the stent is advanced through and expanded within highly stenosed regions.
- the liner 10 of the present invention protects the vessel as the stent or other device is passed through the vessel.
- the liner 10 preferably has a length (of at least 2 cm and preferably 2-10 cm ( FIG. 2 ).
- the liner 10 and anchor 12 have a diameter of 4-10 mm in the expanded condition with the specific size selected depending upon the size of the vessel being treated.
- the relative dimensions shown in the drawing have been exaggerated to illustrate the features of the invention.
- the liner 10 has a length to width ratio ((to ⁇ ) in the collapsed position of at least 20 to 1, 50 to 1, 80 to 1, and even up to 200 to 1 depending upon the particular application.
- the liner 10 preferably increases in outer diameter at least 5, more preferably at least 6 and most preferably at least 8 times when moving from the collapsed to expanded positions.
- the anchor 12 may be attached to the proximal end 11 of the liner 10 to expand the end 11 of the liner 10 , hold the liner 10 in position and reduce flow around the liner 10 .
- the anchor 12 may be any suitable device including a commercially available nitinol or stainless steel stent such as the MULTILINK manufactured by ACS and the NIR manufactured by Scimed.
- the liner 10 is attached to a portion of the anchor 12 with an adhesive, mechanical interconnection, thermal bond, suture or the like, or fused or soldered with radiopaque wire or ribbon.
- the liner 10 may, of course, be attached in any other manner.
- the liner 10 may also be encapsulated between layers of expanded PTFE.
- the anchor 12 and liner 10 may form a continuous, cylindrical shape in the expanded position ( FIG. 19 ) or the anchor 12 may have a tapered shape ( FIG. 20 ).
- the tapered shape of the anchor 12 may be useful when used in the carotid arteries with the small end positioned in the internal carotid artery and the large end in the common carotid.
- a method of forming the expanded shape of FIG. 20 is for the anchor 12 to have a larger diameter than the liner 10 so that the liner 10 holds an end of the anchor 12 at a smaller diameter.
- the anchor 12 may be a stent having an 8 mm diameter with the liner 10 having a 6 mm expanded diameter so that the liner 10 holds the end 11 of the anchor 12 to about 6 mm.
- the anchor 12 could be designed to expand to different predetermined diameters at different points along its length by varying strut lengths along its length.
- the anchor 12 is positioned within an anchor retention catheter 22 ( FIG. 2 ).
- the anchor 12 is naturally biased to the expanded condition of FIG. 3 and is held in the collapsed position by the retention catheter 22 .
- the anchor 12 is deployed by retracting the catheter 22 while an inner element 24 holds the anchor 12 at the desired location in the vessel.
- the liner 10 is advanced over the guidewire 15 which is advanced ahead of the catheter 22 .
- the anchor 12 may be deployed to extend into the common carotid artery at the bifurcation of the external and internal carotid arteries ( FIG. 2 ) or may be contained entirely within the internal carotid artery ( FIG. 21-23 ).
- the anchor 12 may also be deployed by inflating a balloon 27 as shown in FIG. 21 or may be a shape memory material which is heat activated.
- the anchor 12 is preferably a conventional nitinol or stainless steel stent although any suitable stent or device may be used.
- the balloon 27 is preferably compliant so that a proximal portion of the balloon 27 expands to occlude the vessel as shown in FIG. 21 before expansion of the anchor 12 .
- the balloon could be non-compliant but designed to inflate at a lower pressure than that required to expand the stent. By occluding the vessel, blood flow through the vessel is stopped so that even if plaque is released the plaque will not flow downstream. Further inflation of the balloon 27 (using inflation source 39 ) expands the anchor 12 into engagement with the vessel wall ( FIG. 22 ). Any of the embodiments of the liner 10 described herein may be used with balloon or self-expanding anchors 12 and stents 26 .
- the liner 10 can be configured to automatically open with blood pressure ( FIG. 3 ).
- the catheter 22 may be advanced through the liner 10 to partially open the liner 10 .
- the device such as the stent 26 , may also be advanced through the liner 10 to open the liner 10 .
- the liner 10 protects the vessel to prevent intravascular devices from dislodging plaque when passing through the vessel.
- the distal end of the liner 10 may also be opened with an elongate element 29 , such as a nitinol wire, advanced into the liner 10 to open the liner 10 as shown in FIG. 26A .
- the element 29 may be advanced and retracted independently with an inner actuator 31 .
- the elongate element 29 A may also be advanced into a pocket 35 in liner 10 A.
- the pocket 35 is preferably formed by simply inverting or everting the end of the liner 10 A and attaching the end to another part of the liner 10 A to form the pocket 35 .
- the elongate clement 29 A passes through a tube 41 , preferably a hypotube, polymer tube or composite tube, which is releasably attached to the pocket 35 .
- the tube 41 is preferably released by heat, electrolytic detachment, mechanical detachment, dissolution of a bond by blood, or retraction of a retention cord although any suitable method may be used.
- the elongate element 29 A is preferably made of a superelastic material, such as nitinol, which forms a loop 47 in the expanded position.
- the elongate element 29 A is contained within the tube 41 when the liner 10 A is advanced through the vasculature.
- the liner 10 A is advanced over the guidewire 15 by pushing the tube 41 .
- the element 29 A is advanced into the pocket 35 so that the loop 47 opens the liner 10 A as shown in FIGS. 26C and 26D .
- the liner 10 may be used in any manner described herein.
- the stent 26 may be advanced into the liner 10 A to open the narrowed region of the blood vessel as described in further detail below and shown in FIGS. 26D and 26E .
- the stent 26 When the device introduced into the liner 10 is the stent 26 , the stent 26 is preferably expanded to open the narrowed portion of the vessel as shown in FIG. 25 .
- the stent 26 is mounted to a balloon 33 which is coupled to an inflation source 37 ( FIG. 1 ) for inflating the balloon 33 .
- the stent 26 is preferably a conventional nitinol or stainless steel stent.
- the delivery catheter 22 is preferably introduced into the liner 10 as shown in FIG. 27 with the distal end of the catheter 22 positioned beyond the end of the liner 10 . The catheter 22 is then retracted to expose the distal end of the stent 26 .
- the distal end of the stent 26 is preferably opened first so that plaque is trapped between the anchor 12 and stent 26 when expanding the rest of the stent 26 .
- the liner 10 may have the openings 25 ( FIG. 5 ) which effectively filter blood trapped behind the liner 10 and help to equalize pressure on opposite sides of the liner as the stent 26 is expanded.
- the catheter 22 may also be used to deliver a distal anchor 43 which holds the distal end of the liner 10 open as shown in FIGS. 29-31 .
- Another stent 45 can then be delivered to expand the liner 10 between the anchor and distal anchor 43 ( FIGS. 32 and 33 ).
- the proximal end of the liner 10 may be expanded by delivery catheter 50 and then released so that the anchor 12 is not required.
- the catheter 50 has an expanding section 32 which is preferably inflatable but may also be mechanically actuated.
- the expanding section 32 is coupled to a lumen for inflating the expanding section 32 .
- the liner 10 is attached to the expanding section 32 with any suitable connection such as glue, suture, or soldered with radiopaque wire or ribbon.
- the liner 10 is preferably attached to the expanding section 32 with a thread 34 which passes through the liner 10 and expanding section 32 . An end of the thread 34 is pulled to release the liner 10 .
- the expanding section 32 is inflated to expand the proximal end of the liner 10 as shown in FIG. 35 .
- the stent 26 or other device may then be passed through the liner 10 to open the liner 10 further as shown in FIG. 35 .
- the stent 26 is partially expanded so that the liner 10 is held firmly in place by the stent.
- the liner 10 is then detached by pulling the thread 34 and the stern 26 is fully expanded.
- the device may also be a filter 36 which is advanced through the liner 10 to trap dislodged plaque during an angioplasty, stent or other procedure.
- the liner 10 may then be removed before removing the filter 36 or may be used to line the vessel when deploying the stent 26 .
- the liner 10 may also be everted when moving from the collapsed to expanded positions.
- the liner 10 has the anchor 12 which is self-expanding and held in the collapsed position by retention catheter 37 .
- Pusher element 38 holds the anchor 12 in place while retracting the retention catheter 37 .
- a proximal end 40 of the liner 10 is releasably attached to an inner member 42 .
- the liner 10 is pressurized, preferably with saline, using lumen 44 in the pusher element 38 . Once the liner 10 is pressurized, the inner member 42 is advanced so that the liner 10 everts and moves through the vessel as shown in FIGS. 42-43 .
- An advantage of the everting liner 10 is that sliding forces between the liner 10 and the vessel wall are reduced when advancing the liner 10 .
- the retention catheter 37 is retracted so that the anchor 12 expands and holds the proximal end of the liner 10 open.
- the liner 10 is then detached from the inner member 42 .
- the liner 10 may have a mechanical connection which is released with a push rod or guidewire 43 .
- the liner 10 may also have a severable bond with the inner member 42 such as a thermally, chemically or electrolytically severable bond using the guidewire 43 .
- the device, such as the stent 26 is then delivered through the liner 10 .
- the liner 10 may also be held open slightly at the proximal end 11 by delivery catheter 60 .
- the proximal end 11 of the liner is preferably held open to a diameter of 6 mm to 8 mm or 4 Fr to 7 Fr.
- One or more filaments 62 hold the liner to the catheter 60 .
- the liner 10 extends over the distal end of the catheter 60 but may also be mounted inside the catheter 60 .
- the filaments are shown separated from the body of the catheter 60 for clarity but would, of course, either pass through the catheter or be held close to the catheter 60 .
- the distal end of the stent 26 is inflated first to trap the plaque behind the liner 10 and reduce flow around the liner 10 . The rest of the stent 26 is then expanded in the conventional manner.
- FIG. 47 another catheter 70 for delivering the liner 10 is shown wherein the same or similar reference numbers refer to the same or similar structure.
- the catheter 70 operates similar to catheter 22 described above in that the liner 10 is mounted to the self-expanding anchor 12 .
- the anchor 12 is held in the collapsed position of FIG. 47 by an outer wall 72 of the catheter 70 .
- the outer wall 72 is retracted to expose the anchor 12 and permit the anchor 12 to expand.
- the liner 10 is positioned between a flexible sheath 74 and an inner tube 76 .
- the sheath 74 and inner tube 76 prevent the liner 10 from contacting the walls of the vessel and guidewire 15 when the liner 10 is advanced through the vasculature.
- the sheath 74 and tube 76 also hold the liner 10 in the collapsed position although the liner 10 may be collapsed without requiring the sheath 74 and tube 76 .
- the sheath 74 is attached to the outer wall 72 and is retracted together with the outer wall 72 .
- a shaft 80 extends through the catheter 62 and a flexible shaft extension 82 extends from the shaft 80 .
- the shaft extension 82 and inner tube 76 provide a relatively flexible distal portion to navigate tortuous vessels such as the cerebral vasculature.
- the flexible shaft extension 82 may be a coil 84 as shown in FIG. 47 or may be a tube 86 of material as shown in FIG. 48 .
- a distal portion 88 of the catheter 70 which extends from the distal end of the shaft 80 , is preferably more flexible than a proximal portion 90 which terminates at the end of the shaft 80 .
- the guidewire 15 passes through slots 93 , 95 in the outer wall 72 and shaft 80 for loading the device on the guidewire 15 .
- the guidewire 15 may also pass through slots 92 , 97 , 99 in the outer wall 72 , inner tube 76 and shaft extension 82 .
- the catheter 70 may, of course, have a continuous lumen which extends to the proximal end of the catheter 70 .
- a handle 94 is attached to the outer wall 72 and is pulled relative to the shaft 80 to retract the sheath 74 and outer wall 72 .
- the outer wall 72 is preferably made of high density polyethylene having a thickness of about 0.005 inch and an outer diameter of 0.040 to 0.070 inch, preferably about 0.055 inch.
- the outer wall 72 preferably has a length of 110 to 150 cm and preferably about 135 cm.
- the sheath 74 is preferably made of linear low density polyethylene having a wall thickness of about 0.002 inch and an outer diameter of about 0.049 inch.
- the inner tube 76 is preferably made of polyimide having a wall thickness of 0.0005 to 0.001 inch and an outer diameter of 0.014 to 0.026 inch, more preferably 0.018 to 0.024 inch and most preferably about 0.022 inch.
- the liner 10 is collapsed to have a diameter, length, thickness and length to thickness ratios as described above when mounted to the tube 76 .
- the shaft 80 is preferably a 0.022 inch diameter stainless steel mandrel and the shaft extension 82 is preferably a stainless steel coil.
- the shaft extension is fused to the inner tube 76 ( FIG. 47 ).
- the extension 82 may also be a tube of linear low density polyethylene which is extruded and then irradiated with 25/30 Mrads to an outer diameter of about 0.040 and a wall thickness of about 0.018 inch ( FIG. 48 ). Any other suitable materials may be used without departing from the scope of the invention.
- the catheter 70 and liner 10 are used in substantially the same manner as the catheters and liners 10 described above and the discussion above is equally applicable here.
- the liner 10 is advanced over the guidewire 15 to a narrowed region of a blood vessel such as the internal carotid artery.
- the liner 10 and catheter have a small profile, as discussed above and incorporated here, so that the liner 10 may be advanced into the narrowed region without dislodging plaque.
- the handle 94 and shaft 80 are manipulated to retract the sheath 74 and the outer wall 72 .
- the anchor 12 is free to expand.
- the liner 10 may then be used in the manner described above.
- the stent 26 or filter 36 may be advanced into the liner 10 .
- FIG. 49 another catheter 100 for delivering the liner 10 is shown.
- the catheter 100 has the self-expanding anchor 12 which is held in the collapsed position by a collar 102 .
- An arm 104 is attached to the collar 102 which in turn is attached to a first core-wire 106 .
- the first core wire 106 passes through a shaft 108 which has a handle 110 mounted to the proximal end. The handle 110 is retracted to pull the core wire 106 , first arm 104 and collar 102 for releasing the self-expanding anchor 12 .
- a tube 112 is fused to the shaft 108 and an inner tube 114 is attached to the tube 114 .
- the arm 104 travels in a slot 116 in the tube 114 to stabilize retraction of the collar 102 .
- the tube 112 and inner tube 114 form a lumen 118 through which the guidewire 15 passes.
- the distal end of the liner 10 is locked into a fold 120 at the end of the inner tube 114 .
- a wire loop 122 holds the liner 10 in the fold 120 .
- the wire loop 122 is preferably attached to the collar 102 with a wire 124 embedded in the collar 102 .
- the wire loop 122 is retracted together with the collar 102 so that the distal end of the liner 10 is released as the collar 102 is retracted.
- the wire loop 122 is preferably a 0.005 inch diameter stainless steel wire.
- the fold 120 is preferably made of silicone although other suitable materials may be used.
- the shaft 108 is preferably made of stainless steel hypotube having a wall thickness of about 0.005 inch and an outer diameter of about 0.024 inch.
- the tube 112 is preferably made of linear low density polyethylene having a wall thickness of about 0.004 inch and an outer diameter of about 0.040 inch.
- the inner tube 114 is preferably made of polyimide having a thickness of 0.0005 inch and an outer diameter of about 0.022 inch.
- the liner 10 is deployed and used in substantially the same manner as described above and the discussion above is applicable here.
- kits 124 which include various assemblies as described above.
- the kit 124 may include the liner 10 , delivery catheter 22 and instructions for use 126 setting forth any of the methods described herein as shown in FIG. 51 .
- the kits may, of course, also include the stent(s) 26 , anchors 12 and stent delivery catheter(s) 22 and/or the filter 36 as well.
- the kits 124 will usually include a container 126 , such as a pouch, tray, box, tube, or the like, which contains the devices as well as the instructions for use 128 .
- the instructions for use 128 may be set forth on a separate instructional sheet within the package or printed in whole or in part on the packaging itself.
- kit 124 other system components useful for performing the methods of the present invention could be provided within the kit 124 , including guidewires, introductory sheaths, guiding catheters, and the like. Any of the devices described herein may form a kit with instructions setting forth a method of the present invention.
- any of the delivery catheters may have a balloon for occluding the vessel while delivering the liner or advancing the device through the liner and any of the liners may have perforations to filter blood or may be made of a tightly woven material.
- the preferred dimensions described herein with respect to any of the embodiments is equally applicable to other embodiments.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
A liner is advanced through a narrowed region in a vessel such as the internal carotid artery. The liner is advanced through the narrowed region in a collapsed position. A stent is then advanced through the liner and expanded to open the narrowed region. The liner may also have an anchor which expands an end of the liner before the stent is introduced.
Description
- The present invention is directed to methods and devices for protecting a passageway in a body when advancing devices through the passageway. A specific application of the present invention is for treatment of blood vessels although the invention may be used in any part of the body. For example, the present invention is used to protect blood vessels during intravascular procedures for treating aneurysms, arteriovenous malformations, and atherosclerotic disease of vessels. A particular application of the present invention is for atherosclerotic disease of the carotid arteries or saphenous vein grafts. Carotid artery atherosclerotic occlusive disease contributes to hundreds of thousands of strokes annually in the United States. Atherosclerotic disease of the internal carotid artery is particularly problematic since plaque dislodged from the internal carotid artery leads directly to the cerebral vasculature.
- A conventional method of treating carotid artery occlusive disease is by surgical removal of the plaque (carotid endarterectomy). The carotid artery is opened surgically, the plaque is removed and the carotid artery is then closed. Carotid endarterectomies have demonstrated significant clinical benefit over conservative treatment with medication by reducing strokes over the next five years. Although carotid endarteretomy reduces strokes over a period of time after the procedure, the procedure still has a 6% risk of death or stroke.
- Another method of treating carotid artery disease is to use interventional devices such as stents. A problem with treating carotid artery occlusive disease with stents is that the user is wary of dislodging plaque when advancing the stent through the carotid artery. Any plaque which breaks free during introduction of the stent travels directly to the patient's brain and can cause a stroke or death.
- Yet another method of treating carotid artery occlusive disease is to introduce a filter through the carotid artery to trap emboli released during subsequent deployment of a stent or angioplasty balloon. This method suffers the same drawback in that advancement of the filter itself may dislodge plaque. Moreover, exchange of various therapeutic catheters over the filter element result in undesirable movement of the filter with attendant risk of losing filtered emboli or damaging the vessel wall with the filter.
- The present invention is directed to improved methods of protecting a body passageway when advancing devices through the body passageway. The present invention is also directed to improved methods of treating atherosclerotic vessels and, in particular, occlusive disease of the internal carotid artery.
- In accordance with the objects of the invention, a liner is provided to protect a body passageway during introduction of other devices into the passageway. In a specific application, the methods and devices of the present invention are used to protect blood vessels, such as the internal carotid artery, during intravascular procedures. It is understood that use of the present invention for protection of blood vessels is discussed as an example of how the present invention may he used, however, the invention may he used in any other part of the body without departing from the scope of the invention. The liner is collapsed for introduction into the patient and advanced to a narrowed region of a blood vessel. The liner is passed through a region of the blood vessel in the collapsed condition and an intravascular device, such as a stent or filter, is then introduced into the liner. The liner may be used to protect vessels from any type of problem including atherosclerotic disease, perforation, aneurysm or AVM.
- The liner protects the vessel as the intravascular device is passed through the region to prevent the device from dislodging plaque. When the device is a stent, the stent is preferably expanded within the liner to trap the liner between the stent and the vessel. The liner may be expanded by the stent or may be partially or fully expanded before introduction of the stem. The devices and methods of the present invention are particularly useful for treating occlusive disease of the internal carotid artery. The liner may be any suitable material and suitable materials include expanded PTFE, woven dacron, nylon, low durometer silicone, or thin-walled polyethylene.
- The liner is preferably mounted to a delivery catheter and is advanced over a guidewire. The liner may have an anchor at a proximal end which is used to open the proximal end of the liner. The anchor may be self-expanding or balloon expandable. Once the proximal end of the liner is opened, the liner can be designed so that blood pressure opens the liner. Alternatively, the liner may open automatically or may be opened with a separate device, the delivery catheter or the stent itself. When treating occlusive disease of the internal carotid artery, the anchor may be positioned completely in the internal carotid artery or may extend from the common carotid artery across the bifurcation of the internal and external carotid arteries and into the internal common carotid. The anchor preferably has an open structure which permits blood flow into the external carotid artery.
- The liner may be an elastic liner or may be folded into a collapsed position. The liner may be collapsed in any suitable manner and preferably has a number of folded sections which are wrapped around one another. The folded sections are preferably adhered to one another to hold the liner in the collapsed position. The folded sections may be adhered together by application of heat or with an adhesive or coating. The distal end of the liner may be coated to form a curved surface which covers the ends of the folded sections. Alternatively, the ends of the liner may be scalloped or contoured so that when folded the edge tapers down more cleanly.
- The liner may also be designed to evert when expanding. The everting liner reduces sliding between the liner and vessel so that plaque is not dislodged when introducing the liner. An end of the everting liner may be releasably attached to the delivery catheter.
- The proximal end of the liner may also be opened with an expandable device, such as a balloon, on the delivery catheter rather than with an anchor attached to the liner. Once the proximal end is open, the stent or other device is advanced through the liner.
- In yet another aspect of the invention, the catheter holds the proximal end partially open. The stent or other device is then advanced through the open proximal end. The liner can be released when using a stent or may be removed after use.
- These and other features and advantages of the invention will become evident from the following description of the preferred embodiments.
-
FIG. 1 shows a system for advancing devices through a narrowed region of a blood vessel such as the internal carotid artery. -
FIG. 2 shows a liner advanced through the narrowed region in a collapsed position. -
FIG. 3 shows the liner detached from the delivery catheter and expanded. -
FIG. 4 shows only the proximal end of the liner expanded with an anchor. -
FIG. 5 shows the liner having openings or perforations. -
FIG. 6A shows the liner having a woven or braided configuration. -
FIG. 6B shows the liner having a radiopaque maker and a scalloped distal end. -
FIG. 7 shows the liner folded into six folded sections. -
FIG. 8 shows the folded sections wrapped around one another. -
FIG. 9 shows an end view of the liner ofFIG. 7 . -
FIG. 10 shows an end view of the liner ofFIG. 8 with the liner wrapped around a guidewire. -
FIG. 11 shows the liner having four folded sections. -
FIG. 12 shows the liner ofFIG. 11 with the folds wrapped around one another. -
FIG. 13 shows a coating over a distal end of the liner. -
FIG. 14 shows the coating extending over the length of the liner. -
FIG. 15 is a cross-sectional view of the liner and coating with four, folded sections. -
FIG. 16 is a cross-sectional view of the liner and coating with six folded sections. -
FIG. 17 shows a sheath covering the liner in the collapsed condition. -
FIG. 18 shows a filament tearing a distal end of the sheath. -
FIG. 19 shows the liner attached to the anchor. -
FIG. 20 shows the liner attached to a tapered anchor. -
FIG. 21 shows an anchor contained entirely within the internal carotid artery. -
FIG. 22 shows the balloon expanding the anchor and blocking blood flow into the internal carotid artery. -
FIG. 23 shows the liner and anchor ofFIG. 22 deployed. -
FIG. 24 shows a balloon-expandable stent introduced into the liner. -
FIG. 25 shows the stent expanded. -
FIG. 26A shows an elongate element which opens the distal end of the liner. -
FIG. 26B shows the elongate element contained within a tube during delivery of the liner. -
FIG. 26C shows the elongate element ofFIG. 26B advanced into a pocket of the liner to open the proximal end of the liner. -
FIG. 26D shows the stent introduced into the liner ofFIG. 26C . -
FIG. 27 shows the delivery catheter for the anchor used to deliver a stent into the liner. -
FIG. 28 shows the distal end of the stent ofFIG. 27 expanded to trap plaque behind the liner. -
FIG. 29 shows the delivery catheter for the anchor used to deliver a distal anchor. -
FIG. 30 show the delivery catheter in position for delivering the distal anchor. -
FIG. 31 shows the distal anchor deployed so that the proximal and distal ends of the liner are expanded. -
FIG. 32 shows another stent delivered between the proximal and distal anchors. -
FIG. 33 shows the stent ofFIG. 32 expanded. -
FIG. 34 shows a delivery catheter having an expandable section for opening the proximal end of the liner. -
FIG. 35 shows the proximal end of the liner opened with the expandable section. -
FIG. 36 shows the stent advanced through the liner. -
FIG. 37 shows the stent partially expanded. -
FIG. 38 shows the stent expanded into contact with the vessel wall and the liner released from the delivery catheter. -
FIG. 39 shows the stent fully expanded. -
FIG. 40 show a filter passed through the liner. -
FIG. 41 shows the liner everting when deployed. -
FIG. 42 shows the liner partially everted. -
FIG. 43 shows the liner almost completely evened and the distal end released. -
FIG. 44 shows the liner released from the delivery catheter. -
FIG. 45 shows another delivery catheter which holds the proximal end of the liner open. -
FIG. 46 shows the stent advanced through the liner ofFIG. 45 . -
FIG. 47 shows another delivery catheter for the liner. -
FIG. 48 shows still another delivery catheter for the liner. -
FIG. 49 shows yet another delivery catheter for the liner. -
FIG. 50 shows a distal end of the liner trapped in a fold. -
FIG. 51 shows a kit having devices and instructions for use in accordance with the present invention. - A system 2 for protecting vessels during intravascular procedures is shown in
FIGS. 1-4 . Although the present invention is described in relation to treatment of atherosclerotic disease of the internal carotid artery and the particular problems encountered when working in the carotid arteries, the liner may be used in other vessels such as saphenous vein grafts of coronary bypass procedures, iliac and coronary arteries. Aguide catheter 4 is introduced through the femoral artery and advanced to the common carotid artery in the conventional manner. Theguide catheter 4 has ahemostasis valve 6 which receives aliner delivery catheter 8. Theguide catheter 4 may be omitted without departing from the scope of the invention. - A
liner 10 is used to protect the body passageway when passing other devices through the body passageway. For example, theliner 10 may be used to protect the carotid artery to prevent plaque from being dislodged when passing other devices through the carotid artery. Aproximal end 11 of theliner 10 may be attached to ananchor 12 which expands and opens theliner 10 and holds theliner 10 against the vessel wall to reduce or eliminate flow around the liner. The liner is preferably non-metallic and is relatively flexible to conform to the body passageway. Theanchor 12, as will be discussed below, is mounted to one end of theliner 10 while the other end of theliner 10 is preferably free. - The
liner 10 is advanced through the vessel in the collapsed condition ofFIG. 2 so that theliner 10 can be advanced through small or highly stenosed vessels. After theliner 10 is in position, other devices, such as a stent 26 (FIG. 25 ) or filter (FIG. 40 ), may be passed through theliner 10 so that theliner 10 prevents contact between the device and the vessel wall. Theliner 10 may also be used to protect the vessel when advancing other devices such as angioplasty balloons, drug delivery catheters, laser catheters or ultrasound catheters.FIG. 3 shows both ends of theliner 10 opened to trap plaque behind theliner 10 so that loose plaque cannot flow downstream. Theliner 10 is preferably delivered over aconventional guidewire 15 which has a 0.010-0.018 inch diameter but may be of any other suitable size depending upon the vascular site. - The
liner 10 is preferably made of expanded PTFE having a thickness of 0.006 to 0.002 inch, more preferably 0.001 to 0.002 inch and most preferably about 0.001 +/−0.0005 inch although any other suitable material may be used. For example, theliner 10 may have a woven construction such as silk or polyester as shown inFIG. 5 . Theliner 10 may also havesmall openings 25 or perforations which act similar to a filter in that they permit blood to flow through but prevent large emboli from escaping (FIG. 6A ). Theopenings 25 also may promote tissue growth. Referring toFIG. 6B , theliner 10 may also have a scallopeddistal end 7 to form a smoother transition at the distal end when collapsed. Theliner 10 may also have aradiopaque marker 9, such as a 0.002 inch by 0.008 inch platinum ribbon, embedded, sewn, or folded into theliner 10. Theliner 10 may have themarkers 9 extending longitudinally (FIG. 6B ) or circumferentially. When themarkers 9 extend longitudinally, threemarkers 9 are preferably provided 120 degrees apart. - The
liner 10 may also be elastic so that theliner 10 remains substantially cylindrical and without folds in the collapsed and expanded positions. When using anelastic liner 10, theliner 10 is preferably a tube of low durometer silicone, latex or natural rubber, thermoplastic elastomers such as Kraton or hydrogenated thermoplastic isoprenes having a thickness of 0.001 to 0.0005 inch. Alternatively, theliner 10 could he made of an inelastic but plastically deformable material. Initially theliner 10 would he sized to allow easy passage of the devices such as the balloons, stents and filters described herein. Theliner 10 is then plastically deformed by the devices which pass therethrough. For example, a pre-dilatation balloon may be introduced to dilate theliner 10. Thestent 27 can then be advanced into the dilatedliner 10 and expanded to open the narrowed vessel. Expansion of the stent continues plastic deformation of theliner 10 to a final size. Any of theliners 10 described herein may be substituted for any of theother liners 10 without departing from the scope of the invention. -
FIGS. 7-12 show a preferred method of collapsing theliner 10. Theliner 10 is folded longitudinally alongcreases 13 to create at least 2 and preferably 4-6 foldedsections 14. Four foldedsections 14 are shown inFIGS. 11 and six foldedsections 14 are shown inFIGS. 7 and 9 . Thefolds 14 are then wrapped as shown inFIGS. 8 , 10 and 12. Theliner 10 may, of course, be wrapped in any other manner. For example, theliner 10 may be spiral wrapped or randomly compressed and set with high pressure and/or heat. The foldedsections 14 may be adhered to one another by application of heat which holds the foldedsections 14 together without melting and fusing thesections 14 together. Another method of holding theliner 10 in the collapsed position is to apply an adhesive 16 such as medical grade glue, cyanoacrylates, epoxies, ultraviolet activated adhesives, low molecular weight polyvinyl alcohol polymer, gelatin and sucrose. Theliner 10 may also be partially or completely covered with acoating 20 which dissolves in blood such as sugar (FIGS. 13-16 ). In particular, thedistal end 19 of theliner 10 may he covered with thecoating 20 to form a smooth, atraumatic end as shown inFIG. 13 . Thecoating 20 may extend along the length of theliner 10 as shown inFIG. 14 or may be only at the distal end or intermittent as shown inFIG. 13 . - The
liner 10 may also be covered by aremovable sheath 21 as shown inFIGS. 17 and 18 . The sheath may be removed in any manner such as tearing along perforations or with a chemical, thermal or electrolytically severable bond. Afilament 23 may also be used to tear thesheath 21 as shown inFIGS. 17 and 18 . Thefilament 23 may have both ends extending through the catheter rather than having one end extend out of the catheter. Thefilament 23 is shown separated from thesheath 21 for clarity but would either pass inside thesheath 21 or would be partially embedded in thesheath 21. Thesheath 21 can also be a simpleretractable sheath 21 as is known in the art. - Referring again to
FIGS. 10 and 12 , theliner 10 is collapsed onto theguidewire 15 so that theliner 10 has an outer diameter ∀ of no more than 0.065 inch, more preferably no more than 0.040 inch, and most preferably no more than 0.026 inch. Stated another way, the thickness ∃ of theliner 10 is preferably no more than 0.015 inch, more preferably no more than 0.012 inch, and most preferably no more than 0.008 inch when measured in a radial direction. For aguidewire 15 having a 0.014 inch diameter, theliner 10 is preferably collapsed so that the outer diameter ∀ is 0.020 to 0.032 inch, preferably about 0.026 inch, and the thickness ∃ of theliner 10 is 0.004 to 0.008 inch, preferably about 0.006 inch. For aguidewire 15 having a 0.018 inch diameter, theliner 10 is preferably collapsed so that the outer diameter ∀ is still about 0.020 to 0.032 inch, preferably about 0.026 inch. and the thickness ∃ of theliner 10 is 0.003 to 0.006 inch, preferably about 0.004 inch. Theliner 10 also has a high ratio of collapsed cross-sectional area to expanded circumference in the range of 1:10 to 1:30 and preferably at least 1:20. - The relatively small size of the
liner 10 advantageously permits theliner 10 to be introduced through small and heavily stenosed vessels. The carotid artery is often occluded 95 to 98% and may have diameters as small as 0.020 inch or even 0.010 inch before surgical or interventional procedures are performed. Conventional stents used in the internal carotid artery have a collapsed diameter of about 0.065 to 0.092 inch and, thus, must often displace the plaque to pass through the vessel. It is believed that some strokes which occur when using stents in the carotid artery are caused by plaque which is dislodged when the stent is advanced through and expanded within highly stenosed regions. Theliner 10 of the present invention protects the vessel as the stent or other device is passed through the vessel. Theliner 10 preferably has a length (of at least 2 cm and preferably 2-10 cm (FIG. 2 ). Theliner 10 andanchor 12 have a diameter of 4-10 mm in the expanded condition with the specific size selected depending upon the size of the vessel being treated. The relative dimensions shown in the drawing have been exaggerated to illustrate the features of the invention. In fact, theliner 10 has a length to width ratio ((to ∀) in the collapsed position of at least 20 to 1, 50 to 1, 80 to 1, and even up to 200 to 1 depending upon the particular application. Theliner 10 preferably increases in outer diameter at least 5, more preferably at least 6 and most preferably at least 8 times when moving from the collapsed to expanded positions. - Referring again to
FIGS. 3 and 4 , theanchor 12 may be attached to theproximal end 11 of theliner 10 to expand theend 11 of theliner 10, hold theliner 10 in position and reduce flow around theliner 10. Theanchor 12 may be any suitable device including a commercially available nitinol or stainless steel stent such as the MULTILINK manufactured by ACS and the NIR manufactured by Scimed. Theliner 10 is attached to a portion of theanchor 12 with an adhesive, mechanical interconnection, thermal bond, suture or the like, or fused or soldered with radiopaque wire or ribbon. Theliner 10 may, of course, be attached in any other manner. Theliner 10 may also be encapsulated between layers of expanded PTFE. - The
anchor 12 andliner 10 may form a continuous, cylindrical shape in the expanded position (FIG. 19 ) or theanchor 12 may have a tapered shape (FIG. 20 ). The tapered shape of theanchor 12 may be useful when used in the carotid arteries with the small end positioned in the internal carotid artery and the large end in the common carotid. A method of forming the expanded shape ofFIG. 20 is for theanchor 12 to have a larger diameter than theliner 10 so that theliner 10 holds an end of theanchor 12 at a smaller diameter. For example, theanchor 12 may be a stent having an 8 mm diameter with theliner 10 having a 6 mm expanded diameter so that theliner 10 holds theend 11 of theanchor 12 to about 6 mm. Alternatively, theanchor 12 could be designed to expand to different predetermined diameters at different points along its length by varying strut lengths along its length. - The
anchor 12 is positioned within an anchor retention catheter 22 (FIG. 2 ). Theanchor 12 is naturally biased to the expanded condition ofFIG. 3 and is held in the collapsed position by theretention catheter 22. Theanchor 12 is deployed by retracting thecatheter 22 while aninner element 24 holds theanchor 12 at the desired location in the vessel. Theliner 10 is advanced over theguidewire 15 which is advanced ahead of thecatheter 22. - The
anchor 12 may be deployed to extend into the common carotid artery at the bifurcation of the external and internal carotid arteries (FIG. 2 ) or may be contained entirely within the internal carotid artery (FIG. 21-23 ). Theanchor 12 may also be deployed by inflating aballoon 27 as shown inFIG. 21 or may be a shape memory material which is heat activated. When using aballoon 27 to expand theanchor 12, theanchor 12 is preferably a conventional nitinol or stainless steel stent although any suitable stent or device may be used. Theballoon 27 is preferably compliant so that a proximal portion of theballoon 27 expands to occlude the vessel as shown inFIG. 21 before expansion of theanchor 12. Alternatively, the balloon could be non-compliant but designed to inflate at a lower pressure than that required to expand the stent. By occluding the vessel, blood flow through the vessel is stopped so that even if plaque is released the plaque will not flow downstream. Further inflation of the balloon 27 (using inflation source 39) expands theanchor 12 into engagement with the vessel wall (FIG. 22 ). Any of the embodiments of theliner 10 described herein may be used with balloon or self-expandinganchors 12 andstents 26. - After the
anchor 12 has been expanded, theliner 10 can be configured to automatically open with blood pressure (FIG. 3 ). Alternatively, thecatheter 22 may be advanced through theliner 10 to partially open theliner 10. The device, such as thestent 26, may also be advanced through theliner 10 to open theliner 10. Theliner 10 protects the vessel to prevent intravascular devices from dislodging plaque when passing through the vessel. The distal end of theliner 10 may also be opened with an elongate element 29, such as a nitinol wire, advanced into theliner 10 to open theliner 10 as shown inFIG. 26A . The element 29 may be advanced and retracted independently with aninner actuator 31. - Referring to
FIGS. 26B and 26C , theelongate element 29A may also be advanced into apocket 35 inliner 10A. Thepocket 35 is preferably formed by simply inverting or everting the end of theliner 10A and attaching the end to another part of theliner 10A to form thepocket 35. Theelongate clement 29A passes through atube 41, preferably a hypotube, polymer tube or composite tube, which is releasably attached to thepocket 35. Thetube 41 is preferably released by heat, electrolytic detachment, mechanical detachment, dissolution of a bond by blood, or retraction of a retention cord although any suitable method may be used. - The
elongate element 29A is preferably made of a superelastic material, such as nitinol, which forms aloop 47 in the expanded position. Theelongate element 29A is contained within thetube 41 when theliner 10A is advanced through the vasculature. Theliner 10A is advanced over theguidewire 15 by pushing thetube 41. When the user is ready to expand the proximal end of theliner 10A, theelement 29A is advanced into thepocket 35 so that theloop 47 opens theliner 10A as shown inFIGS. 26C and 26D . After opening the proximal end of theliner 10A, theliner 10 may be used in any manner described herein. For example, thestent 26 may be advanced into theliner 10A to open the narrowed region of the blood vessel as described in further detail below and shown inFIGS. 26D and 26E . - When the device introduced into the
liner 10 is thestent 26, thestent 26 is preferably expanded to open the narrowed portion of the vessel as shown inFIG. 25 . Thestent 26 is mounted to aballoon 33 which is coupled to an inflation source 37 (FIG. 1 ) for inflating theballoon 33. Thestent 26 is preferably a conventional nitinol or stainless steel stent. Thedelivery catheter 22 is preferably introduced into theliner 10 as shown inFIG. 27 with the distal end of thecatheter 22 positioned beyond the end of theliner 10. Thecatheter 22 is then retracted to expose the distal end of thestent 26. The distal end of thestent 26 is preferably opened first so that plaque is trapped between theanchor 12 andstent 26 when expanding the rest of thestent 26. Theliner 10 may have the openings 25 (FIG. 5 ) which effectively filter blood trapped behind theliner 10 and help to equalize pressure on opposite sides of the liner as thestent 26 is expanded. Thecatheter 22 may also be used to deliver adistal anchor 43 which holds the distal end of theliner 10 open as shown inFIGS. 29-31 . Anotherstent 45 can then be delivered to expand theliner 10 between the anchor and distal anchor 43 (FIGS. 32 and 33 ). - Referring to
FIGS. 34-39 , the proximal end of theliner 10 may be expanded bydelivery catheter 50 and then released so that theanchor 12 is not required. Thecatheter 50 has an expandingsection 32 which is preferably inflatable but may also be mechanically actuated. The expandingsection 32 is coupled to a lumen for inflating the expandingsection 32. Theliner 10 is attached to the expandingsection 32 with any suitable connection such as glue, suture, or soldered with radiopaque wire or ribbon. Theliner 10 is preferably attached to the expandingsection 32 with athread 34 which passes through theliner 10 and expandingsection 32. An end of thethread 34 is pulled to release theliner 10. - The expanding
section 32 is inflated to expand the proximal end of theliner 10 as shown inFIG. 35 . Thestent 26 or other device may then be passed through theliner 10 to open theliner 10 further as shown inFIG. 35 . Referring toFIG. 38 , thestent 26 is partially expanded so that theliner 10 is held firmly in place by the stent. Theliner 10 is then detached by pulling thethread 34 and the stern 26 is fully expanded. Referring toFIG. 40 , the device may also be afilter 36 which is advanced through theliner 10 to trap dislodged plaque during an angioplasty, stent or other procedure. Theliner 10 may then be removed before removing thefilter 36 or may be used to line the vessel when deploying thestent 26. - Referring to
FIGS. 41-44 , theliner 10 may also be everted when moving from the collapsed to expanded positions. Theliner 10 has theanchor 12 which is self-expanding and held in the collapsed position byretention catheter 37.Pusher element 38 holds theanchor 12 in place while retracting theretention catheter 37. Aproximal end 40 of theliner 10 is releasably attached to aninner member 42. Theliner 10 is pressurized, preferably with saline, usinglumen 44 in thepusher element 38. Once theliner 10 is pressurized, theinner member 42 is advanced so that theliner 10 everts and moves through the vessel as shown inFIGS. 42-43 . An advantage of theeverting liner 10 is that sliding forces between theliner 10 and the vessel wall are reduced when advancing theliner 10. - After the
liner 10 has been fully everted, theretention catheter 37 is retracted so that theanchor 12 expands and holds the proximal end of theliner 10 open. Theliner 10 is then detached from theinner member 42. Theliner 10 may have a mechanical connection which is released with a push rod orguidewire 43. Theliner 10 may also have a severable bond with theinner member 42 such as a thermally, chemically or electrolytically severable bond using theguidewire 43. The device, such as thestent 26, is then delivered through theliner 10. - Referring now to
FIGS. 45 and 46 , theliner 10 may also be held open slightly at theproximal end 11 bydelivery catheter 60. Theproximal end 11 of the liner is preferably held open to a diameter of 6 mm to 8 mm or 4 Fr to 7 Fr. One ormore filaments 62 hold the liner to thecatheter 60. Theliner 10 extends over the distal end of thecatheter 60 but may also be mounted inside thecatheter 60. The filaments are shown separated from the body of thecatheter 60 for clarity but would, of course, either pass through the catheter or be held close to thecatheter 60. The distal end of thestent 26 is inflated first to trap the plaque behind theliner 10 and reduce flow around theliner 10. The rest of thestent 26 is then expanded in the conventional manner. - Referring to
FIG. 47 , anothercatheter 70 for delivering theliner 10 is shown wherein the same or similar reference numbers refer to the same or similar structure. Thecatheter 70 operates similar tocatheter 22 described above in that theliner 10 is mounted to the self-expandinganchor 12. Theanchor 12 is held in the collapsed position ofFIG. 47 by anouter wall 72 of thecatheter 70. Theouter wall 72 is retracted to expose theanchor 12 and permit theanchor 12 to expand. - The
liner 10 is positioned between aflexible sheath 74 and aninner tube 76. Thesheath 74 andinner tube 76 prevent theliner 10 from contacting the walls of the vessel and guidewire 15 when theliner 10 is advanced through the vasculature. Thesheath 74 andtube 76 also hold theliner 10 in the collapsed position although theliner 10 may be collapsed without requiring thesheath 74 andtube 76. Thesheath 74 is attached to theouter wall 72 and is retracted together with theouter wall 72. - A
shaft 80 extends through thecatheter 62 and aflexible shaft extension 82 extends from theshaft 80. Theshaft extension 82 andinner tube 76 provide a relatively flexible distal portion to navigate tortuous vessels such as the cerebral vasculature. Theflexible shaft extension 82 may be acoil 84 as shown inFIG. 47 or may be atube 86 of material as shown inFIG. 48 . Adistal portion 88 of thecatheter 70, which extends from the distal end of theshaft 80, is preferably more flexible than aproximal portion 90 which terminates at the end of theshaft 80. - Referring to
FIG. 47 , theguidewire 15 passes throughslots outer wall 72 andshaft 80 for loading the device on theguidewire 15. Referring toFIG. 48 , theguidewire 15 may also pass throughslots outer wall 72,inner tube 76 andshaft extension 82. Thecatheter 70 may, of course, have a continuous lumen which extends to the proximal end of thecatheter 70. Referring again toFIG. 47 , ahandle 94 is attached to theouter wall 72 and is pulled relative to theshaft 80 to retract thesheath 74 andouter wall 72. Theouter wall 72 is preferably made of high density polyethylene having a thickness of about 0.005 inch and an outer diameter of 0.040 to 0.070 inch, preferably about 0.055 inch. Theouter wall 72 preferably has a length of 110 to 150 cm and preferably about 135 cm. Thesheath 74 is preferably made of linear low density polyethylene having a wall thickness of about 0.002 inch and an outer diameter of about 0.049 inch. Theinner tube 76 is preferably made of polyimide having a wall thickness of 0.0005 to 0.001 inch and an outer diameter of 0.014 to 0.026 inch, more preferably 0.018 to 0.024 inch and most preferably about 0.022 inch. Theliner 10 is collapsed to have a diameter, length, thickness and length to thickness ratios as described above when mounted to thetube 76. Theshaft 80 is preferably a 0.022 inch diameter stainless steel mandrel and theshaft extension 82 is preferably a stainless steel coil. The shaft extension is fused to the inner tube 76 (FIG. 47 ). Theextension 82 may also be a tube of linear low density polyethylene which is extruded and then irradiated with 25/30 Mrads to an outer diameter of about 0.040 and a wall thickness of about 0.018 inch (FIG. 48 ). Any other suitable materials may be used without departing from the scope of the invention. - The
catheter 70 andliner 10 are used in substantially the same manner as the catheters andliners 10 described above and the discussion above is equally applicable here. Theliner 10 is advanced over theguidewire 15 to a narrowed region of a blood vessel such as the internal carotid artery. Theliner 10 and catheter have a small profile, as discussed above and incorporated here, so that theliner 10 may be advanced into the narrowed region without dislodging plaque. When theliner 10 is at the desired location, thehandle 94 andshaft 80 are manipulated to retract thesheath 74 and theouter wall 72. When theouter wall 72 andsheath 74 are retracted, theanchor 12 is free to expand. Theliner 10 may then be used in the manner described above. For example, thestent 26 orfilter 36 may be advanced into theliner 10. - Referring to
FIG. 49 , anothercatheter 100 for delivering theliner 10 is shown. Thecatheter 100 has the self-expandinganchor 12 which is held in the collapsed position by acollar 102. Anarm 104 is attached to thecollar 102 which in turn is attached to a first core-wire 106. Thefirst core wire 106 passes through ashaft 108 which has ahandle 110 mounted to the proximal end. Thehandle 110 is retracted to pull thecore wire 106,first arm 104 andcollar 102 for releasing the self-expandinganchor 12. - A
tube 112 is fused to theshaft 108 and aninner tube 114 is attached to thetube 114. Thearm 104 travels in aslot 116 in thetube 114 to stabilize retraction of thecollar 102. Thetube 112 andinner tube 114 form alumen 118 through which theguidewire 15 passes. - Referring to
FIG. 50 , the distal end of theliner 10 is locked into afold 120 at the end of theinner tube 114. Awire loop 122 holds theliner 10 in thefold 120. Thewire loop 122 is preferably attached to thecollar 102 with awire 124 embedded in thecollar 102. Thewire loop 122 is retracted together with thecollar 102 so that the distal end of theliner 10 is released as thecollar 102 is retracted. Thewire loop 122 is preferably a 0.005 inch diameter stainless steel wire. Thefold 120 is preferably made of silicone although other suitable materials may be used. Theshaft 108 is preferably made of stainless steel hypotube having a wall thickness of about 0.005 inch and an outer diameter of about 0.024 inch. Thetube 112 is preferably made of linear low density polyethylene having a wall thickness of about 0.004 inch and an outer diameter of about 0.040 inch. Theinner tube 114 is preferably made of polyimide having a thickness of 0.0005 inch and an outer diameter of about 0.022 inch. Theliner 10 is deployed and used in substantially the same manner as described above and the discussion above is applicable here. - The present invention is also directed to
kits 124 which include various assemblies as described above. For example, thekit 124 may include theliner 10,delivery catheter 22 and instructions foruse 126 setting forth any of the methods described herein as shown inFIG. 51 . The kits may, of course, also include the stent(s) 26, anchors 12 and stent delivery catheter(s) 22 and/or thefilter 36 as well. Thekits 124 will usually include acontainer 126, such as a pouch, tray, box, tube, or the like, which contains the devices as well as the instructions foruse 128. The instructions foruse 128 may be set forth on a separate instructional sheet within the package or printed in whole or in part on the packaging itself. Optionally, other system components useful for performing the methods of the present invention could be provided within thekit 124, including guidewires, introductory sheaths, guiding catheters, and the like. Any of the devices described herein may form a kit with instructions setting forth a method of the present invention. - While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims. For example, any of the delivery catheters may have a balloon for occluding the vessel while delivering the liner or advancing the device through the liner and any of the liners may have perforations to filter blood or may be made of a tightly woven material. Furthermore, the preferred dimensions described herein with respect to any of the embodiments is equally applicable to other embodiments.
Claims (23)
1-41. (canceled)
42. A method of advancing a device through a passageway in a body, comprising the steps of:
providing a liner movable from a collapsed condition to an expanded condition;
advancing the liner to region in a passageway in a body with the liner in the collapsed position;
passing at least a portion of the liner into the region in the collapsed position; and
introducing a device into the liner so that the device is also positioned in the region of the passageway, the liner preventing the device from contacting the region of the passageway.
43. The method of claim 42 , wherein:
the introducing step is carried out with the device is selected from the group consisting of a stent, filter, angioplasty balloon, drug delivery device or catheter, laser catheter, and ultrasound catheter.
44. The method of claim 42 , further comprising the step of:
expanding the stent to trap the liner between the stent and the vessel wall.
45. The method of claim 42 , wherein:
the providing step is carried out with the liner having an outer diameter of no more than 0.065 inch in the collapsed position.
46. The method of claim 45 , wherein:
the providing step is carried out with the liner having an outer diameter of no more than 0.040 inch in the collapsed position.
47. The method of claim 42 , wherein:
the providing step is carried out with the liner being collapsed to a radial thickness of no more than 0.025 inch.
48. The method of claim 42 , wherein:
the providing step is carried out with the liner being collapsed to a radial thickness of no more than 0.020 inch.
49. The method of claim 42 , wherein:
the providing step is carried out with the liner being mounted onto a tube of material having a lumen; and
the advancing step is carried out with the liner being advanced over a guidewire passing through the lumen in the tube.
50. The method of claim 42 , wherein:
the providing step is carried out with the liner having a length to width ratio of at least 20 to 1.
51. The method of claim 42 , wherein:
the providing step is carried out with the liner having a length to width ratio of at least 40 to 1.
52. The method of claim 42 , wherein:
the providing step is carried out with the liner having a length to width ratio of at least 60 to 1.
53. A device for protecting a passageway in a body when passing other devices through the passageway, comprising:
a liner movable from a collapsed position to an expanded position, the liner having a diameter of no more than 0.018 inch in the collapsed position, the liner having an outer diameter of no more than 0.040 inch when in the collapsed position; and
an expandable anchor attached to the liner, the anchor being movable from an expanded shape to a collapsed shape, the anchor being configured to hold the liner at a position in a passageway in a body.
54. The device of claim 53 , wherein:
the liner has an outer diameter of no more than 0.026 inch.
55. The device of claim 53 , wherein:
the liner has a length, the length to diameter ratio for the liner being at least 20 to 1.
56. The device of claim 55 , wherein:
the length to diameter ratio is at least 50 to 1.
57. The device of claim 55 , wherein:
the length to diameter ratio is at least 80 to 1.
58. The device of claim 55 , wherein:
the anchor is mounted inside a delivery catheter which holds the anchor in the collapsed position, the anchor being naturally biased toward the expanded position.
59. The device of claim 53 , further comprising:
a retractable sheath disposed over the liner when the liner is in the collapsed position.
60. The device of claim 53 , further comprising:
an inner tube which has a throughhole to receive a guidewire, the liner being mounted over the inner tube so that the inner tube prevents the liner from contacting the guidewire.
61. The device of claim 53 , wherein:
the liner has a thickness in a radial direction of no more than 0.012 inch.
62. The device of claim 53 , wherein:
the liner has a first end and a second end, the anchor being attached to the first end and the liner being free at the second end when in the expanded position.
63-67. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/048,856 US20110224773A1 (en) | 1999-10-12 | 2011-03-15 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/416,309 US6383171B1 (en) | 1999-10-12 | 1999-10-12 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US10/090,456 US20020169495A1 (en) | 1999-10-12 | 2002-03-04 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US10/956,433 US20050043780A1 (en) | 1999-10-12 | 2004-10-01 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US13/048,856 US20110224773A1 (en) | 1999-10-12 | 2011-03-15 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/956,433 Continuation US20050043780A1 (en) | 1999-10-12 | 2004-10-01 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110224773A1 true US20110224773A1 (en) | 2011-09-15 |
Family
ID=23649445
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/416,309 Expired - Fee Related US6383171B1 (en) | 1999-10-12 | 1999-10-12 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US09/522,316 Expired - Fee Related US6712842B1 (en) | 1999-10-12 | 2000-03-09 | Methods and devices for lining a blood vessel and opening a narrowed region of a blood vessel |
US10/090,456 Abandoned US20020169495A1 (en) | 1999-10-12 | 2002-03-04 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US10/956,433 Abandoned US20050043780A1 (en) | 1999-10-12 | 2004-10-01 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US13/048,856 Abandoned US20110224773A1 (en) | 1999-10-12 | 2011-03-15 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/416,309 Expired - Fee Related US6383171B1 (en) | 1999-10-12 | 1999-10-12 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US09/522,316 Expired - Fee Related US6712842B1 (en) | 1999-10-12 | 2000-03-09 | Methods and devices for lining a blood vessel and opening a narrowed region of a blood vessel |
US10/090,456 Abandoned US20020169495A1 (en) | 1999-10-12 | 2002-03-04 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US10/956,433 Abandoned US20050043780A1 (en) | 1999-10-12 | 2004-10-01 | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
Country Status (1)
Country | Link |
---|---|
US (5) | US6383171B1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110046716A1 (en) * | 2008-02-20 | 2011-02-24 | Murray Vascular Pty Limited | Stent |
US9636244B2 (en) | 2015-04-09 | 2017-05-02 | Mubin I. Syed | Apparatus and method for proximal to distal stent deployment |
US9980838B2 (en) | 2015-10-30 | 2018-05-29 | Ram Medical Innovations Llc | Apparatus and method for a bifurcated catheter for use in hostile aortic arches |
US10173031B2 (en) | 2016-06-20 | 2019-01-08 | Mubin I. Syed | Interchangeable flush/selective catheter |
US10213187B1 (en) | 2012-01-25 | 2019-02-26 | Mubin I. Syed | Method and apparatus for percutaneous superficial temporal artery access for carotid artery stenting |
US10327929B2 (en) | 2015-10-30 | 2019-06-25 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10492936B2 (en) | 2015-10-30 | 2019-12-03 | Ram Medical Innovations, Llc | Apparatus and method for improved access of procedural catheter in tortuous vessels |
US10588766B2 (en) | 2012-11-21 | 2020-03-17 | Ram Medical Innovations, Llc | Steerable intravascular anchor and method of operation |
WO2020102679A1 (en) | 2018-11-15 | 2020-05-22 | Baleen Medical Llc | Methods, systems, and devices for embolic protection |
US10779976B2 (en) | 2015-10-30 | 2020-09-22 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10857014B2 (en) | 2018-02-18 | 2020-12-08 | Ram Medical Innovations, Llc | Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions |
US11020256B2 (en) | 2015-10-30 | 2021-06-01 | Ram Medical Innovations, Inc. | Bifurcated “Y” anchor support for coronary interventions |
WO2024097234A1 (en) * | 2022-11-02 | 2024-05-10 | Cephea Valve Technologies, Inc. | Intravascular delivery system |
US12121674B2 (en) | 2022-02-03 | 2024-10-22 | Mubin I. Syed | Interchangeable flush/selective catheter |
Families Citing this family (351)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7410482B2 (en) * | 1998-09-04 | 2008-08-12 | Boston Scientific-Scimed, Inc. | Detachable aneurysm neck bridge |
US6673089B1 (en) * | 1999-03-11 | 2004-01-06 | Mindguard Ltd. | Implantable stroke treating device |
US6383171B1 (en) * | 1999-10-12 | 2002-05-07 | Allan Will | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
CA2386844A1 (en) * | 1999-10-12 | 2001-04-19 | Allan R. Will | Methods and devices for protecting a passageway in a body |
EP1108400A1 (en) * | 1999-12-13 | 2001-06-20 | Biomedix S.A. | Removable fixation apparatus for a prosthesis in a body vessel |
WO2001060285A1 (en) * | 2000-02-15 | 2001-08-23 | Eva Corporation | Temporary stent assembly for use in a surgical procedure |
US6592616B1 (en) * | 2000-04-28 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | System and device for minimizing embolic risk during an interventional procedure |
IL137326A0 (en) * | 2000-07-17 | 2001-07-24 | Mind Guard Ltd | Implantable braided stroke preventing device and method of manufacturing |
US6773446B1 (en) * | 2000-08-02 | 2004-08-10 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US20020022860A1 (en) | 2000-08-18 | 2002-02-21 | Borillo Thomas E. | Expandable implant devices for filtering blood flow from atrial appendages |
US6602286B1 (en) * | 2000-10-26 | 2003-08-05 | Ernst Peter Strecker | Implantable valve system |
US6676691B1 (en) * | 2001-03-28 | 2004-01-13 | Ayman A. Hosny | Stent delivery system |
EP1258230A3 (en) | 2001-03-29 | 2003-12-10 | CardioSafe Ltd | Balloon catheter device |
US7105017B2 (en) * | 2001-04-11 | 2006-09-12 | Andrew Kerr | Axially-connected stent/graft assembly |
US9937066B2 (en) | 2001-04-11 | 2018-04-10 | Andre Kerr | Stent/graft assembly |
US10105209B2 (en) | 2001-04-11 | 2018-10-23 | Andrew Kerr | Stent/graft assembly |
US20040215322A1 (en) * | 2001-07-06 | 2004-10-28 | Andrew Kerr | Stent/graft assembly |
US20040073288A1 (en) * | 2001-07-06 | 2004-04-15 | Andrew Kerr | Stent/graft assembly |
US7175651B2 (en) * | 2001-07-06 | 2007-02-13 | Andrew Kerr | Stent/graft assembly |
US7232460B2 (en) * | 2001-04-25 | 2007-06-19 | Xillus, Inc. | Nanodevices, microdevices and sensors on in-vivo structures and method for the same |
US8771302B2 (en) | 2001-06-29 | 2014-07-08 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8623077B2 (en) | 2001-06-29 | 2014-01-07 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US7544206B2 (en) | 2001-06-29 | 2009-06-09 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US20030100945A1 (en) * | 2001-11-23 | 2003-05-29 | Mindguard Ltd. | Implantable intraluminal device and method of using same in treating aneurysms |
GB0121980D0 (en) | 2001-09-11 | 2001-10-31 | Cathnet Science Holding As | Expandable stent |
US6712843B2 (en) * | 2001-11-20 | 2004-03-30 | Scimed Life Systems, Inc | Stent with differential lengthening/shortening members |
US7892273B2 (en) | 2001-12-03 | 2011-02-22 | Xtent, Inc. | Custom length stent apparatus |
US7182779B2 (en) * | 2001-12-03 | 2007-02-27 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
US7147656B2 (en) * | 2001-12-03 | 2006-12-12 | Xtent, Inc. | Apparatus and methods for delivery of braided prostheses |
US7270668B2 (en) * | 2001-12-03 | 2007-09-18 | Xtent, Inc. | Apparatus and methods for delivering coiled prostheses |
US7294146B2 (en) | 2001-12-03 | 2007-11-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US8080048B2 (en) | 2001-12-03 | 2011-12-20 | Xtent, Inc. | Stent delivery for bifurcated vessels |
US20040186551A1 (en) | 2003-01-17 | 2004-09-23 | Xtent, Inc. | Multiple independent nested stent structures and methods for their preparation and deployment |
US20030135266A1 (en) | 2001-12-03 | 2003-07-17 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US7351255B2 (en) * | 2001-12-03 | 2008-04-01 | Xtent, Inc. | Stent delivery apparatus and method |
US7137993B2 (en) * | 2001-12-03 | 2006-11-21 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US7309350B2 (en) * | 2001-12-03 | 2007-12-18 | Xtent, Inc. | Apparatus and methods for deployment of vascular prostheses |
US6682503B1 (en) * | 2001-12-07 | 2004-01-27 | Ibionics, Inc. | Anti-reflux valve interconnected with a catheter |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
US7060089B2 (en) * | 2002-01-23 | 2006-06-13 | Boston Scientific Scimed, Inc. | Multi-layer stent |
US6866679B2 (en) | 2002-03-12 | 2005-03-15 | Ev3 Inc. | Everting stent and stent delivery system |
US20030195609A1 (en) * | 2002-04-10 | 2003-10-16 | Scimed Life Systems, Inc. | Hybrid stent |
US7131991B2 (en) * | 2002-04-24 | 2006-11-07 | Medtronic Vascular, Inc. | Endoluminal prosthetic assembly and extension method |
US7273492B2 (en) * | 2002-08-27 | 2007-09-25 | Advanced Cardiovascular Systems Inc. | Stent for treating vulnerable plaque |
WO2004032805A1 (en) * | 2002-10-11 | 2004-04-22 | Scimed Life Systems, Inc. | Embolic entrapment sheath |
US20050043585A1 (en) * | 2003-01-03 | 2005-02-24 | Arindam Datta | Reticulated elastomeric matrices, their manufacture and use in implantable devices |
US7229454B2 (en) * | 2003-01-07 | 2007-06-12 | Boston Scientific Scimed, Inc. | Occlusive cinching devices and methods of use |
US7144419B2 (en) * | 2003-01-24 | 2006-12-05 | Medtronic Vascular, Inc. | Drug-polymer coated stent with blended phenoxy and styrenic block copolymers |
US7220271B2 (en) * | 2003-01-30 | 2007-05-22 | Ev3 Inc. | Embolic filters having multiple layers and controlled pore size |
US20040153119A1 (en) * | 2003-01-30 | 2004-08-05 | Kusleika Richard S. | Embolic filters with a distal loop or no loop |
US7323001B2 (en) * | 2003-01-30 | 2008-01-29 | Ev3 Inc. | Embolic filters with controlled pore size |
WO2004071343A2 (en) | 2003-02-11 | 2004-08-26 | Cook, Inc. | Removable vena cava filter |
US7985213B2 (en) * | 2003-04-25 | 2011-07-26 | Cook Medical Technologies Llc | Delivery catheter and method of manufacture |
US7951557B2 (en) * | 2003-04-27 | 2011-05-31 | Protalix Ltd. | Human lysosomal proteins from plant cell culture |
US20100196345A1 (en) * | 2003-04-27 | 2010-08-05 | Protalix | Production of high mannose proteins in plant culture |
CA2525792C (en) | 2003-05-15 | 2015-10-13 | Biomerix Corporation | Reticulated elastomeric matrices, their manufacture and use in implantable devices |
JP4845335B2 (en) * | 2003-05-21 | 2011-12-28 | キヤノン株式会社 | Data stream transmitting apparatus and data stream receiving apparatus |
US20040236414A1 (en) * | 2003-05-23 | 2004-11-25 | Brar Balbir S. | Devices and methods for treatment of stenotic regions |
US7226473B2 (en) * | 2003-05-23 | 2007-06-05 | Brar Balbir S | Treatment of stenotic regions |
US8239045B2 (en) | 2003-06-04 | 2012-08-07 | Synecor Llc | Device and method for retaining a medical device within a vessel |
EP1633434B1 (en) * | 2003-06-04 | 2014-11-19 | Synecor | Intravascular electrophysiological system |
US7617007B2 (en) * | 2003-06-04 | 2009-11-10 | Synecor Llc | Method and apparatus for retaining medical implants within body vessels |
US7082336B2 (en) * | 2003-06-04 | 2006-07-25 | Synecor, Llc | Implantable intravascular device for defibrillation and/or pacing |
US7241308B2 (en) * | 2003-06-09 | 2007-07-10 | Xtent, Inc. | Stent deployment systems and methods |
DE602004022432D1 (en) | 2003-09-15 | 2009-09-17 | Super Dimension Ltd | SYSTEM FROM ACCESSORIES FOR USE WITH BRONCHOSCOPES |
EP2316328B1 (en) * | 2003-09-15 | 2012-05-09 | Super Dimension Ltd. | Wrap-around holding device for use with bronchoscopes |
US8876882B2 (en) * | 2003-10-10 | 2014-11-04 | Mark Gelido Barongan | Cutting stent |
US7553324B2 (en) * | 2003-10-14 | 2009-06-30 | Xtent, Inc. | Fixed stent delivery devices and methods |
US7192440B2 (en) * | 2003-10-15 | 2007-03-20 | Xtent, Inc. | Implantable stent delivery devices and methods |
US7338530B2 (en) * | 2003-11-24 | 2008-03-04 | Checkmed Systems, Inc. | Stent |
US9241735B2 (en) | 2003-12-05 | 2016-01-26 | Onset Medical Corporation | Expandable percutaneous sheath |
US7403966B2 (en) * | 2003-12-08 | 2008-07-22 | Freescale Semiconductor, Inc. | Hardware for performing an arithmetic function |
JP2007514482A (en) * | 2003-12-12 | 2007-06-07 | シネコー・エルエルシー | Implantable medical device having a preimplantation exoskeleton |
US7824442B2 (en) * | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
EP2529699B1 (en) | 2003-12-23 | 2014-01-29 | Sadra Medical, Inc. | Repositionable heart valve |
US20120041550A1 (en) | 2003-12-23 | 2012-02-16 | Sadra Medical, Inc. | Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements |
US8828078B2 (en) | 2003-12-23 | 2014-09-09 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US7326236B2 (en) | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
US8603160B2 (en) | 2003-12-23 | 2013-12-10 | Sadra Medical, Inc. | Method of using a retrievable heart valve anchor with a sheath |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7824443B2 (en) * | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Medical implant delivery and deployment tool |
US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US8579962B2 (en) | 2003-12-23 | 2013-11-12 | Sadra Medical, Inc. | Methods and apparatus for performing valvuloplasty |
US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
US8182528B2 (en) * | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US20050137694A1 (en) | 2003-12-23 | 2005-06-23 | Haug Ulrich R. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7748389B2 (en) * | 2003-12-23 | 2010-07-06 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US20050137687A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Heart valve anchor and method |
US8328868B2 (en) | 2004-11-05 | 2012-12-11 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
US11278398B2 (en) | 2003-12-23 | 2022-03-22 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7381219B2 (en) * | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US20050137686A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Externally expandable heart valve anchor and method |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US7763077B2 (en) | 2003-12-24 | 2010-07-27 | Biomerix Corporation | Repair of spinal annular defects and annulo-nucleoplasty regeneration |
US8764725B2 (en) | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof |
US7699864B2 (en) * | 2004-03-18 | 2010-04-20 | Onset Medical Corporation | Expandable medical access device |
US20050209627A1 (en) * | 2004-03-18 | 2005-09-22 | Kick George F | Expandable medical access device |
US7323006B2 (en) | 2004-03-30 | 2008-01-29 | Xtent, Inc. | Rapid exchange interventional devices and methods |
US8105349B2 (en) | 2004-04-16 | 2012-01-31 | Cook Medical Technologies Llc | Removable vena cava filter having primary struts for enhanced retrieval and delivery |
EP1737384B1 (en) | 2004-04-16 | 2009-11-11 | Cook, Inc. | Removable vena cava filter having inwardly positioned anchoring hooks in collapsed configuration |
DE602005027189D1 (en) | 2004-04-16 | 2011-05-12 | Cook William Europ | REMOVABLE VENA CAVA FILTER FOR REDUCING TRAUMATA IN THE FOLDED CONDITION |
DK1737385T3 (en) | 2004-04-16 | 2011-03-21 | Cook Inc | Detachable vena cava filter with anchoring device for diminished trauma |
US7922759B1 (en) | 2004-04-22 | 2011-04-12 | Cook Medical Technologies Llc | Apparatus and methods for vascular treatment |
US20050240255A1 (en) * | 2004-04-23 | 2005-10-27 | Schaeffer Darin G | Carrier-Based Delivery System for Intraluminal Medical Devices |
US20070190108A1 (en) * | 2004-05-17 | 2007-08-16 | Arindam Datta | High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair |
US20050273074A1 (en) * | 2004-06-03 | 2005-12-08 | Lewis Joseph G | Intravascular catheter delivery system |
US20050277839A1 (en) * | 2004-06-10 | 2005-12-15 | Honeywell International, Inc. | Wireless flow measurement in arterial stent |
US20050288766A1 (en) * | 2004-06-28 | 2005-12-29 | Xtent, Inc. | Devices and methods for controlling expandable prostheses during deployment |
US8317859B2 (en) | 2004-06-28 | 2012-11-27 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
EP1819391B1 (en) | 2004-09-09 | 2020-02-19 | Onset Medical Corporation | Expandable transluminal sheath |
US7892203B2 (en) | 2004-09-09 | 2011-02-22 | Onset Medical Corporation | Expandable transluminal sheath |
CA2580786C (en) | 2004-09-27 | 2012-10-23 | Cook, Inc. | Removable vena cava filter comprising struts having axial bends |
US8795315B2 (en) | 2004-10-06 | 2014-08-05 | Cook Medical Technologies Llc | Emboli capturing device having a coil and method for capturing emboli |
US20060116714A1 (en) * | 2004-11-26 | 2006-06-01 | Ivan Sepetka | Coupling and release devices and methods for their assembly and use |
US7892592B1 (en) * | 2004-11-30 | 2011-02-22 | Advanced Cardiovascular Systems, Inc. | Coating abluminal surfaces of stents and other implantable medical devices |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
EP1848488B1 (en) | 2005-02-18 | 2012-01-04 | Tyco Healthcare Group LP | Rapid exchange catheter |
US8945169B2 (en) | 2005-03-15 | 2015-02-03 | Cook Medical Technologies Llc | Embolic protection device |
US8221446B2 (en) | 2005-03-15 | 2012-07-17 | Cook Medical Technologies | Embolic protection device |
US7402168B2 (en) * | 2005-04-11 | 2008-07-22 | Xtent, Inc. | Custom-length stent delivery system with independently operable expansion elements |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
CA2843097C (en) * | 2005-05-24 | 2015-10-27 | Inspire M.D Ltd. | Stent apparatuses for treatment via body lumens and methods of use |
US8961586B2 (en) * | 2005-05-24 | 2015-02-24 | Inspiremd Ltd. | Bifurcated stent assemblies |
US8043323B2 (en) | 2006-10-18 | 2011-10-25 | Inspiremd Ltd. | In vivo filter assembly |
US7938851B2 (en) | 2005-06-08 | 2011-05-10 | Xtent, Inc. | Devices and methods for operating and controlling interventional apparatus |
US20060282149A1 (en) | 2005-06-08 | 2006-12-14 | Xtent, Inc., A Delaware Corporation | Apparatus and methods for deployment of multiple custom-length prostheses (II) |
US7780723B2 (en) | 2005-06-13 | 2010-08-24 | Edwards Lifesciences Corporation | Heart valve delivery system |
US20060287668A1 (en) * | 2005-06-16 | 2006-12-21 | Fawzi Natalie V | Apparatus and methods for intravascular embolic protection |
US7963988B2 (en) * | 2005-06-23 | 2011-06-21 | Boston Scientific Scimed, Inc. | ePTFE lamination—resizing ePTFE tubing |
AU2006269444B2 (en) * | 2005-07-07 | 2011-07-21 | Cook Medical Technologies Llc | Branch vessel stent graft |
US20070016242A1 (en) * | 2005-07-14 | 2007-01-18 | Israel Henry M | Percutaneous device with multiple expandable struts |
US8187298B2 (en) | 2005-08-04 | 2012-05-29 | Cook Medical Technologies Llc | Embolic protection device having inflatable frame |
JP2009506802A (en) * | 2005-08-10 | 2009-02-19 | エヌフォーカス ニューロメディカル, インコーポレイテッド | Restenosis prevention treatment device |
US7712606B2 (en) * | 2005-09-13 | 2010-05-11 | Sadra Medical, Inc. | Two-part package for medical implant |
US20080188928A1 (en) * | 2005-09-16 | 2008-08-07 | Amr Salahieh | Medical device delivery sheath |
US8377092B2 (en) * | 2005-09-16 | 2013-02-19 | Cook Medical Technologies Llc | Embolic protection device |
US8632562B2 (en) | 2005-10-03 | 2014-01-21 | Cook Medical Technologies Llc | Embolic protection device |
US8182508B2 (en) | 2005-10-04 | 2012-05-22 | Cook Medical Technologies Llc | Embolic protection device |
US8252017B2 (en) | 2005-10-18 | 2012-08-28 | Cook Medical Technologies Llc | Invertible filter for embolic protection |
US8216269B2 (en) * | 2005-11-02 | 2012-07-10 | Cook Medical Technologies Llc | Embolic protection device having reduced profile |
US20070112420A1 (en) * | 2005-11-14 | 2007-05-17 | Duke Fiduciary Llc | Detachable therapeutic tube |
US8152831B2 (en) | 2005-11-17 | 2012-04-10 | Cook Medical Technologies Llc | Foam embolic protection device |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US9517123B2 (en) * | 2005-12-29 | 2016-12-13 | Cook Medical Technologies Llc | Endovascular prosthesis and a method of connecting a structural component and a woven graft material |
US20070179599A1 (en) * | 2006-01-31 | 2007-08-02 | Icon Medical Corp. | Vascular protective device |
EP1988851A2 (en) | 2006-02-14 | 2008-11-12 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
WO2007109621A2 (en) | 2006-03-20 | 2007-09-27 | Xtent, Inc. | Apparatus and methods for deployment of linked prosthetic segments |
EP1839600A1 (en) * | 2006-03-30 | 2007-10-03 | Levitronix LLC | Expandable conduit-guide |
EP1839601A1 (en) * | 2006-03-30 | 2007-10-03 | Levitronix LLC | Self-expanding cannula |
US20070244546A1 (en) * | 2006-04-18 | 2007-10-18 | Medtronic Vascular, Inc. | Stent Foundation for Placement of a Stented Valve |
US20070282421A1 (en) * | 2006-05-31 | 2007-12-06 | Parker Fred T | Stent Assembly for Protecting the Interior Surface of a Vessel |
GB0617074D0 (en) * | 2006-08-30 | 2006-10-11 | Angiomed Ag | Arteriovenous fistula |
US20080071307A1 (en) | 2006-09-19 | 2008-03-20 | Cook Incorporated | Apparatus and methods for in situ embolic protection |
CN102836023B (en) * | 2006-10-18 | 2015-12-02 | 印斯拜尔Md有限公司 | The support casing of braiding |
CA2666712C (en) * | 2006-10-18 | 2015-03-31 | Asher Holzer | Filter assemblies |
US20100324664A1 (en) * | 2006-10-18 | 2010-12-23 | Asher Holzer | Bifurcated Stent Assemblies |
EP2088962B1 (en) | 2006-11-22 | 2017-10-11 | Inspiremd Ltd. | Optimized stent jacket |
WO2008074027A1 (en) * | 2006-12-13 | 2008-06-19 | Biomerix Corporation | Aneurysm occlusion devices |
US20080199510A1 (en) | 2007-02-20 | 2008-08-21 | Xtent, Inc. | Thermo-mechanically controlled implants and methods of use |
US9901434B2 (en) | 2007-02-27 | 2018-02-27 | Cook Medical Technologies Llc | Embolic protection device including a Z-stent waist band |
US8486132B2 (en) | 2007-03-22 | 2013-07-16 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
SI2150608T1 (en) * | 2007-05-07 | 2018-04-30 | Protalix Ltd. | Large scale disposable bioreactor |
US20090043380A1 (en) * | 2007-08-09 | 2009-02-12 | Specialized Vascular Technologies, Inc. | Coatings for promoting endothelization of medical devices |
US20090043330A1 (en) * | 2007-08-09 | 2009-02-12 | Specialized Vascular Technologies, Inc. | Embolic protection devices and methods |
US8419748B2 (en) | 2007-09-14 | 2013-04-16 | Cook Medical Technologies Llc | Helical thrombus removal device |
US8252018B2 (en) | 2007-09-14 | 2012-08-28 | Cook Medical Technologies Llc | Helical embolic protection device |
US9138307B2 (en) * | 2007-09-14 | 2015-09-22 | Cook Medical Technologies Llc | Expandable device for treatment of a stricture in a body vessel |
US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method |
US20090112239A1 (en) * | 2007-10-31 | 2009-04-30 | Specialized Vascular Technologies, Inc. | Sticky dilatation balloon and methods of using |
US20090138065A1 (en) * | 2007-11-28 | 2009-05-28 | Wilson-Cook Medical Inc. | Double loaded stent delivery system |
US8128677B2 (en) | 2007-12-12 | 2012-03-06 | Intact Vascular LLC | Device and method for tacking plaque to a blood vessel wall |
US9375327B2 (en) | 2007-12-12 | 2016-06-28 | Intact Vascular, Inc. | Endovascular implant |
US10166127B2 (en) | 2007-12-12 | 2019-01-01 | Intact Vascular, Inc. | Endoluminal device and method |
US10022250B2 (en) | 2007-12-12 | 2018-07-17 | Intact Vascular, Inc. | Deployment device for placement of multiple intraluminal surgical staples |
US9603730B2 (en) | 2007-12-12 | 2017-03-28 | Intact Vascular, Inc. | Endoluminal device and method |
US7896911B2 (en) | 2007-12-12 | 2011-03-01 | Innovasc Llc | Device and method for tacking plaque to blood vessel wall |
US8246672B2 (en) | 2007-12-27 | 2012-08-21 | Cook Medical Technologies Llc | Endovascular graft with separately positionable and removable frame units |
US8021413B2 (en) | 2007-12-27 | 2011-09-20 | Cook Medical Technologies Llc | Low profile medical device |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US9101503B2 (en) | 2008-03-06 | 2015-08-11 | J.W. Medical Systems Ltd. | Apparatus having variable strut length and methods of use |
US10456554B2 (en) * | 2008-04-17 | 2019-10-29 | W. L. Gore & Associates, Inc. | Device delivery catheter having a curved distal tip |
US20090264859A1 (en) * | 2008-04-21 | 2009-10-22 | Medtronic Vascular, Inc. | Catheter Having a Selectively Expandable Distal Tip |
US9061119B2 (en) | 2008-05-09 | 2015-06-23 | Edwards Lifesciences Corporation | Low profile delivery system for transcatheter heart valve |
US8562559B2 (en) * | 2008-05-14 | 2013-10-22 | Onset Medical Corporation | Expandable iliac sheath and method of use |
US20090287145A1 (en) * | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
US8231686B2 (en) * | 2008-06-11 | 2012-07-31 | Eric Mangiardi | Stent |
US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool |
US8652202B2 (en) | 2008-08-22 | 2014-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
AU2009296415B2 (en) | 2008-09-25 | 2015-11-19 | Advanced Bifurcation Systems Inc. | Partially crimped stent |
US12076258B2 (en) | 2008-09-25 | 2024-09-03 | Advanced Bifurcation Systems Inc. | Selective stent crimping |
US8828071B2 (en) | 2008-09-25 | 2014-09-09 | Advanced Bifurcation Systems, Inc. | Methods and systems for ostial stenting of a bifurcation |
US11298252B2 (en) | 2008-09-25 | 2022-04-12 | Advanced Bifurcation Systems Inc. | Stent alignment during treatment of a bifurcation |
US8821562B2 (en) | 2008-09-25 | 2014-09-02 | Advanced Bifurcation Systems, Inc. | Partially crimped stent |
DE102008053635A1 (en) * | 2008-10-29 | 2010-05-12 | Acandis Gmbh & Co. Kg | Medical device for recanalization of thrombi |
US20100119578A1 (en) * | 2008-11-07 | 2010-05-13 | Specialized Vascular Technologies, Inc. | Extracellular matrix modulating coatings for medical devices |
US8246648B2 (en) | 2008-11-10 | 2012-08-21 | Cook Medical Technologies Llc | Removable vena cava filter with improved leg |
US8388644B2 (en) | 2008-12-29 | 2013-03-05 | Cook Medical Technologies Llc | Embolic protection device and method of use |
GB0823658D0 (en) | 2008-12-30 | 2009-02-04 | Angiomed Ag | Stent delivery device |
DE102009003890A1 (en) * | 2009-01-02 | 2010-07-08 | Bioregeneration Gmbh | Apparatus comprising a device and a liner implantable in a vessel of the body of a patient, and methods of making same |
BRPI1013573A2 (en) * | 2009-04-24 | 2016-04-12 | Flexible Stenting Solutions Inc | flexible devices |
US8162975B2 (en) * | 2009-05-08 | 2012-04-24 | Medtronic Vascular, Inc. | Systems and methods for closing a percutaneous vascular puncture |
US8858613B2 (en) | 2010-09-20 | 2014-10-14 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
WO2011031972A1 (en) * | 2009-09-10 | 2011-03-17 | Novostent Corporation | Vascular prosthesis delivery system and method |
EP2477558B1 (en) | 2009-09-14 | 2016-08-10 | CircuLite, Inc. | Endovascular anastomotic connector device and delivery system |
US8333727B2 (en) * | 2009-10-08 | 2012-12-18 | Circulite, Inc. | Two piece endovascular anastomotic connector |
WO2011044533A2 (en) | 2009-10-09 | 2011-04-14 | Specialized Vascular Technologies, Inc. | Coating system and method for drug elution management |
CA2782385A1 (en) * | 2009-12-01 | 2011-06-09 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US20110190697A1 (en) * | 2010-02-03 | 2011-08-04 | Circulite, Inc. | Vascular introducers having an expandable section |
US9750866B2 (en) | 2010-02-11 | 2017-09-05 | Circulite, Inc. | Cannula lined with tissue in-growth material |
WO2011100552A1 (en) * | 2010-02-11 | 2011-08-18 | Circulte, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
EP3028672A1 (en) | 2010-03-01 | 2016-06-08 | Colibri Heart Valve LLC | Percutaneously deliverable heart valve and method associated therewith |
CA2794078A1 (en) | 2010-03-24 | 2011-09-29 | Advanced Bifurcation Systems, Inc. | Stent alignment during treatment of a bifurcation |
CN103037816B (en) | 2010-03-24 | 2018-12-28 | 高级分支系统股份有限公司 | System and method for handling furcation |
AU2011232360B2 (en) | 2010-03-24 | 2015-10-08 | Advanced Bifurcation Systems Inc. | Methods and systems for treating a bifurcation with provisional side branch stenting |
JP2013526388A (en) | 2010-05-25 | 2013-06-24 | イエナバルブ テクノロジー インク | Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent |
US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method |
EP2585157B1 (en) | 2010-06-28 | 2019-10-16 | Colibri Heart Valve LLC | Method and apparatus for the endoluminal delivery of intravascular devices |
JP5931880B2 (en) | 2010-09-10 | 2016-06-08 | シメティス・ソシエテ・アノニムSymetis Sa | Valve replacement device, system including valve replacement device and delivery device thereof, and method for manufacturing valve replacement device |
CA3027755C (en) | 2010-12-14 | 2021-05-11 | Colibri Heart Valve Llc | Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets |
CN103533911A (en) * | 2011-01-13 | 2014-01-22 | 因诺维亚有限责任公司 | Endoluminal drug applicator and method of treating diseased vessels of the body |
US10022212B2 (en) | 2011-01-13 | 2018-07-17 | Cook Medical Technologies Llc | Temporary venous filter with anti-coagulant delivery method |
EP3777780B1 (en) | 2011-02-08 | 2024-04-24 | Advanced Bifurcation Systems Inc. | System for treating a bifurcation with a fully crimped stent |
WO2012109382A2 (en) | 2011-02-08 | 2012-08-16 | Advanced Bifurcation Systems, Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use |
US9155619B2 (en) | 2011-02-25 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP2688516B1 (en) | 2011-03-21 | 2022-08-17 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
US9744033B2 (en) | 2011-04-01 | 2017-08-29 | W.L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
EP2520251A1 (en) | 2011-05-05 | 2012-11-07 | Symetis SA | Method and Apparatus for Compressing Stent-Valves |
US10285831B2 (en) | 2011-06-03 | 2019-05-14 | Intact Vascular, Inc. | Endovascular implant |
US10117765B2 (en) | 2011-06-14 | 2018-11-06 | W.L. Gore Associates, Inc | Apposition fiber for use in endoluminal deployment of expandable implants |
EP2731558B1 (en) * | 2011-07-12 | 2015-09-09 | Rush University Medical Center | Vessel bifurcation stent deployment system with zippered catheters |
EP2731550B1 (en) | 2011-07-12 | 2016-02-24 | Boston Scientific Scimed, Inc. | Coupling system for a replacement valve |
US10213329B2 (en) | 2011-08-12 | 2019-02-26 | W. L. Gore & Associates, Inc. | Evertable sheath devices, systems, and methods |
US9554806B2 (en) | 2011-09-16 | 2017-01-31 | W. L. Gore & Associates, Inc. | Occlusive devices |
US8870947B2 (en) | 2011-09-16 | 2014-10-28 | W.L. Gore & Associates, Inc. | Medical device fixation anchors |
US9554904B2 (en) | 2011-09-28 | 2017-01-31 | Medtronic CV Luxembourg S.a.r.l. | Distal tip assembly for a heart valve delivery catheter |
WO2013060740A1 (en) | 2011-10-28 | 2013-05-02 | Advant Medical Limited | Protection device for a prostheses and/or balloon catheter and method making and using the same |
US9131926B2 (en) | 2011-11-10 | 2015-09-15 | Boston Scientific Scimed, Inc. | Direct connect flush system |
US9782282B2 (en) | 2011-11-14 | 2017-10-10 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US9877858B2 (en) | 2011-11-14 | 2018-01-30 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US8940014B2 (en) | 2011-11-15 | 2015-01-27 | Boston Scientific Scimed, Inc. | Bond between components of a medical device |
US8951243B2 (en) | 2011-12-03 | 2015-02-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US9277993B2 (en) | 2011-12-20 | 2016-03-08 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US9510945B2 (en) | 2011-12-20 | 2016-12-06 | Boston Scientific Scimed Inc. | Medical device handle |
US10172708B2 (en) | 2012-01-25 | 2019-01-08 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
EP2806826B1 (en) | 2012-01-25 | 2020-01-08 | Intact Vascular, Inc. | Endoluminal device |
US9072624B2 (en) | 2012-02-23 | 2015-07-07 | Covidien Lp | Luminal stenting |
US20130226278A1 (en) | 2012-02-23 | 2013-08-29 | Tyco Healthcare Group Lp | Methods and apparatus for luminal stenting |
US9375308B2 (en) | 2012-03-13 | 2016-06-28 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US9078659B2 (en) | 2012-04-23 | 2015-07-14 | Covidien Lp | Delivery system with hooks for resheathability |
US9883941B2 (en) | 2012-06-19 | 2018-02-06 | Boston Scientific Scimed, Inc. | Replacement heart valve |
US9724222B2 (en) | 2012-07-20 | 2017-08-08 | Covidien Lp | Resheathable stent delivery system |
CA2881535A1 (en) | 2012-08-10 | 2014-02-13 | Altura Medical, Inc. | Stent delivery systems and associated methods |
US9763819B1 (en) | 2013-03-05 | 2017-09-19 | W. L. Gore & Associates, Inc. | Tapered sleeve |
US9986967B2 (en) * | 2013-03-15 | 2018-06-05 | Volcano Corporation | Distal protection systems and methods with pressure and ultrasound features |
WO2014144809A1 (en) | 2013-03-15 | 2014-09-18 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
CN103876787B (en) * | 2013-05-06 | 2016-01-13 | 陈明远 | The outer protective cradle of blood vessel |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
US8870948B1 (en) | 2013-07-17 | 2014-10-28 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US10130500B2 (en) | 2013-07-25 | 2018-11-20 | Covidien Lp | Methods and apparatus for luminal stenting |
US9782186B2 (en) | 2013-08-27 | 2017-10-10 | Covidien Lp | Vascular intervention system |
US10265207B2 (en) | 2013-08-27 | 2019-04-23 | Covidien Lp | Delivery of medical devices |
JP6563394B2 (en) | 2013-08-30 | 2019-08-21 | イェーナヴァルヴ テクノロジー インコーポレイテッド | Radially foldable frame for an artificial valve and method for manufacturing the frame |
US9907641B2 (en) | 2014-01-10 | 2018-03-06 | W. L. Gore & Associates, Inc. | Implantable intraluminal device |
US10966850B2 (en) * | 2014-03-06 | 2021-04-06 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter |
US9901445B2 (en) | 2014-11-21 | 2018-02-27 | Boston Scientific Scimed, Inc. | Valve locking mechanism |
WO2016093877A1 (en) | 2014-12-09 | 2016-06-16 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US10449043B2 (en) | 2015-01-16 | 2019-10-22 | Boston Scientific Scimed, Inc. | Displacement based lock and release mechanism |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
WO2016122862A1 (en) * | 2015-01-28 | 2016-08-04 | Aortic Innovations, Llc | Modular endo-aortic device and method of using the same |
US9375336B1 (en) | 2015-01-29 | 2016-06-28 | Intact Vascular, Inc. | Delivery device and method of delivery |
US9433520B2 (en) | 2015-01-29 | 2016-09-06 | Intact Vascular, Inc. | Delivery device and method of delivery |
US10201417B2 (en) | 2015-02-03 | 2019-02-12 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US9788942B2 (en) | 2015-02-03 | 2017-10-17 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US10285809B2 (en) | 2015-03-06 | 2019-05-14 | Boston Scientific Scimed Inc. | TAVI anchoring assist device |
US10426617B2 (en) | 2015-03-06 | 2019-10-01 | Boston Scientific Scimed, Inc. | Low profile valve locking mechanism and commissure assembly |
US10080652B2 (en) | 2015-03-13 | 2018-09-25 | Boston Scientific Scimed, Inc. | Prosthetic heart valve having an improved tubular seal |
EP4403138A3 (en) | 2015-05-01 | 2024-10-09 | JenaValve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
JP2018515246A (en) | 2015-05-14 | 2018-06-14 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated | Devices and methods for atrial appendage occlusion |
EP3294220B1 (en) | 2015-05-14 | 2023-12-06 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
EP3294221B1 (en) | 2015-05-14 | 2024-03-06 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10179057B2 (en) * | 2015-05-28 | 2019-01-15 | George Kramer | Tracheobronchial Y-stents, delivery catheters and delivery apparatus, and methods for delivering bronchial Y-stents |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
US10335277B2 (en) | 2015-07-02 | 2019-07-02 | Boston Scientific Scimed Inc. | Adjustable nosecone |
US10195392B2 (en) | 2015-07-02 | 2019-02-05 | Boston Scientific Scimed, Inc. | Clip-on catheter |
US10136991B2 (en) | 2015-08-12 | 2018-11-27 | Boston Scientific Scimed Inc. | Replacement heart valve implant |
US10179041B2 (en) | 2015-08-12 | 2019-01-15 | Boston Scientific Scimed Icn. | Pinless release mechanism |
US10179046B2 (en) | 2015-08-14 | 2019-01-15 | Edwards Lifesciences Corporation | Gripping and pushing device for medical instrument |
US10779940B2 (en) | 2015-09-03 | 2020-09-22 | Boston Scientific Scimed, Inc. | Medical device handle |
US10321996B2 (en) | 2015-11-11 | 2019-06-18 | Edwards Lifesciences Corporation | Prosthetic valve delivery apparatus having clutch mechanism |
US10993824B2 (en) | 2016-01-01 | 2021-05-04 | Intact Vascular, Inc. | Delivery device and method of delivery |
US10342660B2 (en) | 2016-02-02 | 2019-07-09 | Boston Scientific Inc. | Tensioned sheathing aids |
US11219746B2 (en) | 2016-03-21 | 2022-01-11 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799677B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799676B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
CN109475419B (en) | 2016-05-13 | 2021-11-09 | 耶拿阀门科技股份有限公司 | Heart valve prosthesis delivery systems and methods for delivering heart valve prostheses through guide sheaths and loading systems |
US10583005B2 (en) | 2016-05-13 | 2020-03-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US10245136B2 (en) | 2016-05-13 | 2019-04-02 | Boston Scientific Scimed Inc. | Containment vessel with implant sheathing guide |
US10201416B2 (en) | 2016-05-16 | 2019-02-12 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
EP3471665B1 (en) | 2016-06-17 | 2023-10-11 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices |
US10376396B2 (en) | 2017-01-19 | 2019-08-13 | Covidien Lp | Coupling units for medical device delivery systems |
CA3051272C (en) | 2017-01-23 | 2023-08-22 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
EP4209196A1 (en) | 2017-01-23 | 2023-07-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US11224511B2 (en) | 2017-04-18 | 2022-01-18 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
SI3682854T1 (en) | 2017-04-18 | 2022-04-29 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10973634B2 (en) | 2017-04-26 | 2021-04-13 | Edwards Lifesciences Corporation | Delivery apparatus for a prosthetic heart valve |
US10959846B2 (en) | 2017-05-10 | 2021-03-30 | Edwards Lifesciences Corporation | Mitral valve spacer device |
WO2018226915A1 (en) | 2017-06-08 | 2018-12-13 | Boston Scientific Scimed, Inc. | Heart valve implant commissure support structure |
EP3644903B1 (en) | 2017-06-30 | 2023-07-19 | Edwards Lifesciences Corporation | Docking stations for transcatheter valves |
CN110891526A (en) | 2017-06-30 | 2020-03-17 | 爱德华兹生命科学公司 | Locking and releasing mechanism for transcatheter implantable devices |
US10857334B2 (en) | 2017-07-12 | 2020-12-08 | Edwards Lifesciences Corporation | Reduced operation force inflator |
US11660218B2 (en) | 2017-07-26 | 2023-05-30 | Intact Vascular, Inc. | Delivery device and method of delivery |
WO2019028161A1 (en) | 2017-08-01 | 2019-02-07 | Boston Scientific Scimed, Inc. | Medical implant locking mechanism |
US10939996B2 (en) | 2017-08-16 | 2021-03-09 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
US10806573B2 (en) | 2017-08-22 | 2020-10-20 | Edwards Lifesciences Corporation | Gear drive mechanism for heart valve delivery apparatus |
US11051939B2 (en) | 2017-08-31 | 2021-07-06 | Edwards Lifesciences Corporation | Active introducer sheath system |
WO2019051476A1 (en) | 2017-09-11 | 2019-03-14 | Incubar, LLC | Conduit vascular implant sealing device for reducing endoleak |
AU2018348150B2 (en) | 2017-10-11 | 2021-08-12 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
EP3697344A1 (en) | 2017-10-18 | 2020-08-26 | Edwards Lifesciences Corporation | Catheter assembly |
US11207499B2 (en) | 2017-10-20 | 2021-12-28 | Edwards Lifesciences Corporation | Steerable catheter |
EP3740160A2 (en) | 2018-01-19 | 2020-11-25 | Boston Scientific Scimed Inc. | Inductance mode deployment sensors for transcatheter valve system |
US11246625B2 (en) | 2018-01-19 | 2022-02-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
EP3749252A1 (en) | 2018-02-07 | 2020-12-16 | Boston Scientific Scimed, Inc. | Medical device delivery system with alignment feature |
WO2019165394A1 (en) | 2018-02-26 | 2019-08-29 | Boston Scientific Scimed, Inc. | Embedded radiopaque marker in adaptive seal |
US11071637B2 (en) | 2018-04-12 | 2021-07-27 | Covidien Lp | Medical device delivery |
US11413176B2 (en) | 2018-04-12 | 2022-08-16 | Covidien Lp | Medical device delivery |
US11123209B2 (en) | 2018-04-12 | 2021-09-21 | Covidien Lp | Medical device delivery |
US10786377B2 (en) | 2018-04-12 | 2020-09-29 | Covidien Lp | Medical device delivery |
EP3793478A1 (en) | 2018-05-15 | 2021-03-24 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
US11844914B2 (en) | 2018-06-05 | 2023-12-19 | Edwards Lifesciences Corporation | Removable volume indicator for syringe |
WO2019241477A1 (en) | 2018-06-13 | 2019-12-19 | Boston Scientific Scimed, Inc. | Replacement heart valve delivery device |
US11779728B2 (en) | 2018-11-01 | 2023-10-10 | Edwards Lifesciences Corporation | Introducer sheath with expandable introducer |
US11241312B2 (en) | 2018-12-10 | 2022-02-08 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
US11439504B2 (en) | 2019-05-10 | 2022-09-13 | Boston Scientific Scimed, Inc. | Replacement heart valve with improved cusp washout and reduced loading |
US11413174B2 (en) | 2019-06-26 | 2022-08-16 | Covidien Lp | Core assembly for medical device delivery systems |
TW202218639A (en) | 2020-08-24 | 2022-05-16 | 美商愛德華生命科學公司 | Balloon cover for a delivery apparatus for an expandable prosthetic heart valve |
CN216455494U (en) | 2020-08-31 | 2022-05-10 | 爱德华兹生命科学公司 | System for crimping a prosthetic implant to a delivery device and crimping system |
CN112642044B (en) * | 2021-01-07 | 2023-08-25 | 上海翰凌医疗器械有限公司 | Dilating tube and vascular sheath |
CN112717269B (en) * | 2021-01-07 | 2021-11-12 | 上海翰凌医疗器械有限公司 | Vascular sheath device, vascular sheath device and cooperation structure of expander in advance |
US12042413B2 (en) | 2021-04-07 | 2024-07-23 | Covidien Lp | Delivery of medical devices |
US12109137B2 (en) | 2021-07-30 | 2024-10-08 | Covidien Lp | Medical device delivery |
US11944558B2 (en) | 2021-08-05 | 2024-04-02 | Covidien Lp | Medical device delivery devices, systems, and methods |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US3945052A (en) | 1972-05-01 | 1976-03-23 | Meadox Medicals, Inc. | Synthetic vascular graft and method for manufacturing the same |
US3868956A (en) | 1972-06-05 | 1975-03-04 | Ralph J Alfidi | Vessel implantable appliance and method of implanting it |
US4140126A (en) | 1977-02-18 | 1979-02-20 | Choudhury M Hasan | Method for performing aneurysm repair |
US4550447A (en) | 1983-08-03 | 1985-11-05 | Shiley Incorporated | Vascular graft prosthesis |
FR2556210B1 (en) | 1983-12-08 | 1988-04-15 | Barra Jean Aubert | VENOUS PROSTHESIS AND PROCESS FOR PRODUCING THE SAME |
US4787899A (en) | 1983-12-09 | 1988-11-29 | Lazarus Harrison M | Intraluminal graft device, system and method |
US5104399A (en) | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US5275622A (en) | 1983-12-09 | 1994-01-04 | Harrison Medical Technologies, Inc. | Endovascular grafting apparatus, system and method and devices for use therewith |
US5749920A (en) | 1983-12-09 | 1998-05-12 | Endovascular Technologies, Inc. | Multicapsule intraluminal grafting system and method |
US4562596A (en) | 1984-04-25 | 1986-01-07 | Elliot Kornberg | Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4728328A (en) | 1984-10-19 | 1988-03-01 | Research Corporation | Cuffed tubular organic prostheses |
ES8705239A1 (en) * | 1984-12-05 | 1987-05-01 | Medinvent Sa | A device for implantation and a method of implantation in a vessel using such device. |
US4681110A (en) * | 1985-12-02 | 1987-07-21 | Wiktor Dominik M | Catheter arrangement having a blood vessel liner, and method of using it |
US4649922A (en) | 1986-01-23 | 1987-03-17 | Wiktor Donimik M | Catheter arrangement having a variable diameter tip and spring prosthesis |
US4878906A (en) | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
US4740207A (en) | 1986-09-10 | 1988-04-26 | Kreamer Jeffry W | Intralumenal graft |
JPH0763489B2 (en) | 1986-10-31 | 1995-07-12 | 宇部興産株式会社 | Medical tube |
US4820298A (en) | 1987-11-20 | 1989-04-11 | Leveen Eric G | Internal vascular prosthesis |
US6015430A (en) | 1987-12-08 | 2000-01-18 | Wall; William H. | Expandable stent having a fabric liner |
US5078726A (en) | 1989-02-01 | 1992-01-07 | Kreamer Jeffry W | Graft stent and method of repairing blood vessels |
US5137512A (en) | 1989-03-17 | 1992-08-11 | Scimed Life Systems, Inc. | Multisegment balloon protector for dilatation catheter |
US5571169A (en) | 1993-06-07 | 1996-11-05 | Endovascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
US5843089A (en) | 1990-12-28 | 1998-12-01 | Boston Scientific Corporation | Stent lining |
US5158548A (en) * | 1990-04-25 | 1992-10-27 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5123917A (en) | 1990-04-27 | 1992-06-23 | Lee Peter Y | Expandable intraluminal vascular graft |
US5360443A (en) * | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
US5578071A (en) | 1990-06-11 | 1996-11-26 | Parodi; Juan C. | Aortic graft |
AR246020A1 (en) | 1990-10-03 | 1994-03-30 | Hector Daniel Barone Juan Carl | A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms. |
CA2065634C (en) | 1991-04-11 | 1997-06-03 | Alec A. Piplani | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5151105A (en) | 1991-10-07 | 1992-09-29 | Kwan Gett Clifford | Collapsible vessel sleeve implant |
US5456713A (en) | 1991-10-25 | 1995-10-10 | Cook Incorporated | Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting |
US5211658A (en) | 1991-11-05 | 1993-05-18 | New England Deaconess Hospital Corporation | Method and device for performing endovascular repair of aneurysms |
US5395349A (en) * | 1991-12-13 | 1995-03-07 | Endovascular Technologies, Inc. | Dual valve reinforced sheath and method |
US5510077A (en) | 1992-03-19 | 1996-04-23 | Dinh; Thomas Q. | Method of making an intraluminal stent |
DE69326631T2 (en) | 1992-03-19 | 2000-06-08 | Medtronic, Inc. | Intraluminal expansion device |
US5366473A (en) | 1992-08-18 | 1994-11-22 | Ultrasonic Sensing And Monitoring Systems, Inc. | Method and apparatus for applying vascular grafts |
JP2935751B2 (en) | 1993-01-14 | 1999-08-16 | ミードックス メディカルズ インコーポレイテッド | Radially expandable tubular prosthesis |
CA2125258C (en) | 1993-08-05 | 1998-12-22 | Dinah B Quiachon | Multicapsule intraluminal grafting system and method |
DE69431302T2 (en) | 1993-08-18 | 2003-05-15 | W.L. Gore & Associates, Inc. | TUBULAR INTRALUMINAL APPLICABLE FABRIC |
WO1995008966A1 (en) * | 1993-09-30 | 1995-04-06 | White Geoffrey H | Intraluminal graft |
EP0657147B1 (en) | 1993-11-04 | 1999-08-04 | C.R. Bard, Inc. | Non-migrating vascular prosthesis |
IT1269443B (en) | 1994-01-19 | 1997-04-01 | Stefano Nazari | VASCULAR PROSTHESIS FOR THE REPLACEMENT OR INTERNAL COATING OF MEDIUM AND LARGE DIAMETER BLOOD VESSELS AND DEVICE FOR ITS APPLICATION WITHOUT INTERRUPTION OF BLOOD FLOW |
US5609627A (en) | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US6001123A (en) | 1994-04-01 | 1999-12-14 | Gore Enterprise Holdings Inc. | Folding self-expandable intravascular stent-graft |
US5456694A (en) * | 1994-05-13 | 1995-10-10 | Stentco, Inc. | Device for delivering and deploying intraluminal devices |
US5666969A (en) * | 1994-05-18 | 1997-09-16 | Scimed Life Systems, Inc. | Guidewire having multiple radioscopic coils |
US5609605A (en) | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
US6015429A (en) | 1994-09-08 | 2000-01-18 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
WO1996013228A1 (en) | 1994-10-27 | 1996-05-09 | Schneider (Usa) Inc. | Stent delivery device |
EP0790810B1 (en) | 1994-11-09 | 2004-04-28 | Endotex Interventional Systems, Inc. | Kit of delivery catheter and graft for aneurysm repair |
US5800521A (en) | 1994-11-09 | 1998-09-01 | Endotex Interventional Systems, Inc. | Prosthetic graft and method for aneurysm repair |
US5591226A (en) | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US5556414A (en) | 1995-03-08 | 1996-09-17 | Wayne State University | Composite intraluminal graft |
US5647857A (en) | 1995-03-16 | 1997-07-15 | Endotex Interventional Systems, Inc. | Protective intraluminal sheath |
US5609628A (en) | 1995-04-20 | 1997-03-11 | Keranen; Victor J. | Intravascular graft and catheter |
US5728131A (en) | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
EP0840577B1 (en) | 1995-07-07 | 2005-08-24 | W.L. GORE & ASSOCIATES, INC. | Interior liner for tubes, pipes and blood conduits |
US5713948A (en) | 1995-07-19 | 1998-02-03 | Uflacker; Renan | Adjustable and retrievable graft and graft delivery system for stent-graft system |
US5785679A (en) | 1995-07-19 | 1998-07-28 | Endotex Interventional Systems, Inc. | Methods and apparatus for treating aneurysms and arterio-venous fistulas |
US5713907A (en) | 1995-07-20 | 1998-02-03 | Endotex Interventional Systems, Inc. | Apparatus and method for dilating a lumen and for inserting an intraluminal graft |
US5749918A (en) | 1995-07-20 | 1998-05-12 | Endotex Interventional Systems, Inc. | Intraluminal graft and method for inserting the same |
US5769882A (en) * | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
US5591195A (en) | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
US5665117A (en) | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US5824040A (en) | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US5807327A (en) | 1995-12-08 | 1998-09-15 | Ethicon, Inc. | Catheter assembly |
US5843158A (en) * | 1996-01-05 | 1998-12-01 | Medtronic, Inc. | Limited expansion endoluminal prostheses and methods for their use |
US5697380A (en) * | 1996-01-11 | 1997-12-16 | Intella Interventional Systems, Inc. | Guide wire having distal extremity with adjustable support characteristic and method |
US5843160A (en) * | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US5617878A (en) | 1996-05-31 | 1997-04-08 | Taheri; Syde A. | Stent and method for treatment of aortic occlusive disease |
US5928279A (en) | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US5741326A (en) | 1996-07-15 | 1998-04-21 | Cordis Corporation | Low profile thermally set wrapped cover for a percutaneously deployed stent |
US5676697A (en) | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US6325819B1 (en) | 1996-08-19 | 2001-12-04 | Cook Incorporated | Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm |
AU739710B2 (en) * | 1996-08-23 | 2001-10-18 | Boston Scientific Limited | Stent delivery system having stent securement apparatus |
US6007573A (en) | 1996-09-18 | 1999-12-28 | Microtherapeutics, Inc. | Intracranial stent and method of use |
US5772669A (en) | 1996-09-27 | 1998-06-30 | Scimed Life Systems, Inc. | Stent deployment catheter with retractable sheath |
US5941908A (en) | 1997-04-23 | 1999-08-24 | Vascular Science, Inc. | Artificial medical graft with a releasable retainer |
US5860998A (en) | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
US5961545A (en) | 1997-01-17 | 1999-10-05 | Meadox Medicals, Inc. | EPTFE graft-stent composite device |
US5957974A (en) | 1997-01-23 | 1999-09-28 | Schneider (Usa) Inc | Stent graft with braided polymeric sleeve |
JP2001514568A (en) | 1997-03-14 | 2001-09-11 | ベルナール ジョセフ スポエルストラ,ハリー | Device for endovascular repair of vascular segments |
US5824052A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Coiled sheet stent having helical articulation and methods of use |
US6425915B1 (en) | 1997-03-18 | 2002-07-30 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US5824053A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US5824054A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Coiled sheet graft stent and methods of making and use |
US5824055A (en) | 1997-03-25 | 1998-10-20 | Endotex Interventional Systems, Inc. | Stent graft delivery system and methods of use |
US5925063A (en) | 1997-09-26 | 1999-07-20 | Khosravi; Farhad | Coiled sheet valve, filter or occlusive device and methods of use |
US5948017A (en) | 1997-10-12 | 1999-09-07 | Taheri; Syde A. | Modular graft assembly |
US6132457A (en) | 1997-10-22 | 2000-10-17 | Triad Vascular Systems, Inc. | Endovascular graft having longitudinally displaceable sections |
US6139540A (en) | 1997-10-30 | 2000-10-31 | Lake Region Manufacturing, Inc. | Guidewire with disposition to coil |
US5873907A (en) | 1998-01-27 | 1999-02-23 | Endotex Interventional Systems, Inc. | Electrolytic stent delivery system and methods of use |
US6280467B1 (en) * | 1998-02-26 | 2001-08-28 | World Medical Manufacturing Corporation | Delivery system for deployment and endovascular assembly of a multi-stage stented graft |
US6030407A (en) | 1999-02-24 | 2000-02-29 | Scimed Life Systems, Inc. | Device and method for protecting a stent delivery assembly |
US6319275B1 (en) * | 1999-04-07 | 2001-11-20 | Medtronic Ave, Inc. | Endolumenal prosthesis delivery assembly and method of use |
US6383171B1 (en) * | 1999-10-12 | 2002-05-07 | Allan Will | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
-
1999
- 1999-10-12 US US09/416,309 patent/US6383171B1/en not_active Expired - Fee Related
-
2000
- 2000-03-09 US US09/522,316 patent/US6712842B1/en not_active Expired - Fee Related
-
2002
- 2002-03-04 US US10/090,456 patent/US20020169495A1/en not_active Abandoned
-
2004
- 2004-10-01 US US10/956,433 patent/US20050043780A1/en not_active Abandoned
-
2011
- 2011-03-15 US US13/048,856 patent/US20110224773A1/en not_active Abandoned
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110046716A1 (en) * | 2008-02-20 | 2011-02-24 | Murray Vascular Pty Limited | Stent |
US10213187B1 (en) | 2012-01-25 | 2019-02-26 | Mubin I. Syed | Method and apparatus for percutaneous superficial temporal artery access for carotid artery stenting |
US10639179B2 (en) | 2012-11-21 | 2020-05-05 | Ram Medical Innovations, Llc | System for the intravascular placement of a medical device |
US10588766B2 (en) | 2012-11-21 | 2020-03-17 | Ram Medical Innovations, Llc | Steerable intravascular anchor and method of operation |
US10478325B2 (en) | 2015-04-09 | 2019-11-19 | Mubin I. Syed | Apparatus and method for proximal to distal stent deployment |
US9636244B2 (en) | 2015-04-09 | 2017-05-02 | Mubin I. Syed | Apparatus and method for proximal to distal stent deployment |
US11020256B2 (en) | 2015-10-30 | 2021-06-01 | Ram Medical Innovations, Inc. | Bifurcated “Y” anchor support for coronary interventions |
US9980838B2 (en) | 2015-10-30 | 2018-05-29 | Ram Medical Innovations Llc | Apparatus and method for a bifurcated catheter for use in hostile aortic arches |
US10327929B2 (en) | 2015-10-30 | 2019-06-25 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US11337837B2 (en) | 2015-10-30 | 2022-05-24 | Ram Medical Innovations, Inc. | Apparatus and method for improved access of procedural catheter in tortuous vessels |
US10492936B2 (en) | 2015-10-30 | 2019-12-03 | Ram Medical Innovations, Llc | Apparatus and method for improved access of procedural catheter in tortuous vessels |
US10779976B2 (en) | 2015-10-30 | 2020-09-22 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10888445B2 (en) | 2015-10-30 | 2021-01-12 | Ram Medical Innovations, Inc. | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10173031B2 (en) | 2016-06-20 | 2019-01-08 | Mubin I. Syed | Interchangeable flush/selective catheter |
US11724063B2 (en) | 2016-06-20 | 2023-08-15 | Mubin I. Syed | Interchangeable flush/selective catheter |
US10857014B2 (en) | 2018-02-18 | 2020-12-08 | Ram Medical Innovations, Llc | Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions |
US11007075B2 (en) | 2018-02-18 | 2021-05-18 | Ram Medical Innovations, Inc. | Vascular access devices and methods for lower limb interventions |
US11877940B2 (en) | 2018-02-18 | 2024-01-23 | Ram Medical Innovations, Inc. | Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions |
US12011379B2 (en) | 2018-02-18 | 2024-06-18 | Ram Medical Innovations, Inc. | Vascular access devices and methods for lower limb interventions |
WO2020102679A1 (en) | 2018-11-15 | 2020-05-22 | Baleen Medical Llc | Methods, systems, and devices for embolic protection |
EP3880134A4 (en) * | 2018-11-15 | 2022-07-06 | Baleen Medical LLC | Methods, systems, and devices for embolic protection |
US12121674B2 (en) | 2022-02-03 | 2024-10-22 | Mubin I. Syed | Interchangeable flush/selective catheter |
WO2024097234A1 (en) * | 2022-11-02 | 2024-05-10 | Cephea Valve Technologies, Inc. | Intravascular delivery system |
Also Published As
Publication number | Publication date |
---|---|
US20020169495A1 (en) | 2002-11-14 |
US20050043780A1 (en) | 2005-02-24 |
US6383171B1 (en) | 2002-05-07 |
US6712842B1 (en) | 2004-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6383171B1 (en) | Methods and devices for protecting a passageway in a body when advancing devices through the passageway | |
US20040230285A1 (en) | Methods and devices for protecting a passageway in a body when advancing devices through the passageway | |
US10959867B2 (en) | Intraluminal devices configured for directional expansion | |
US9254213B2 (en) | Stent delivery device | |
US6629992B2 (en) | Sheath for self-expanding stent | |
EP1011520B1 (en) | Intracranial stent | |
US6746469B2 (en) | Balloon actuated apparatus having multiple embolic filters, and method of use | |
US20090240238A1 (en) | Clot Retrieval Mechanism | |
US20040064179A1 (en) | Stent delivery device with embolic protection | |
JP2000515032A (en) | Apparatus for surgical treatment of body lumen | |
WO2007033963A1 (en) | Apparatus and methods for protected angioplasty and stenting at a carotid bifurcation | |
WO2004089435A2 (en) | Facilitating catheter assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |