US20130244943A1 - Hyaluronic acid-collagen matrices for dermal filling and volumizing applications - Google Patents
Hyaluronic acid-collagen matrices for dermal filling and volumizing applications Download PDFInfo
- Publication number
- US20130244943A1 US20130244943A1 US13/667,581 US201213667581A US2013244943A1 US 20130244943 A1 US20130244943 A1 US 20130244943A1 US 201213667581 A US201213667581 A US 201213667581A US 2013244943 A1 US2013244943 A1 US 2013244943A1
- Authority
- US
- United States
- Prior art keywords
- collagen
- hyaluronic acid
- component
- hydrogel
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *O[C@H]1[C@H](O)C([H])(O)[C@H](O[C@H]2[C@H](O)C([H])(CO)O[C@@H](*)C2([H])NC(C)=O)OC1([H])[H].O=C=O Chemical compound *O[C@H]1[C@H](O)C([H])(O)[C@H](O[C@H]2[C@H](O)C([H])(CO)O[C@@H](*)C2([H])NC(C)=O)OC1([H])[H].O=C=O 0.000 description 2
- SMBKVEWGWVJOHO-JMXMLCHCSA-N C.C(=NC1CCCCC1)=NC1CCCCC1.CC(C)N=C=NC(C)C.CCN=C=NCCCN(C)C.[2H]C#C.[2H][IH]C Chemical compound C.C(=NC1CCCCC1)=NC1CCCCC1.CC(C)N=C=NC(C)C.CCN=C=NCCCN(C)C.[2H]C#C.[2H][IH]C SMBKVEWGWVJOHO-JMXMLCHCSA-N 0.000 description 1
- BEWDTJCFZAJRLT-UHFFFAOYSA-N COP=S.O=S(=O)(O)CCCNC1CCCCC1.O=S(=O)(O)CCNC1CCCCC1.O=S(=O)=O.O=S(=O)=O.O=S(=O)=O.O=S(=O)=O.[H]CCCN1CCN(CCO)CC1.[H]CCCN1CCOCC1.[H]CCN1CCN(CCO)CC1.[H]CCN1CCOCC1 Chemical compound COP=S.O=S(=O)(O)CCCNC1CCCCC1.O=S(=O)(O)CCNC1CCCCC1.O=S(=O)=O.O=S(=O)=O.O=S(=O)=O.O=S(=O)=O.[H]CCCN1CCN(CCO)CC1.[H]CCCN1CCOCC1.[H]CCN1CCN(CCO)CC1.[H]CCN1CCOCC1 BEWDTJCFZAJRLT-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/042—Gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/735—Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/26—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3683—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
- A61L27/3695—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the function or physical properties of the final product, where no specific conditions are defined to achieve this
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/91—Injection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/34—Materials or treatment for tissue regeneration for soft tissue reconstruction
Definitions
- This application generally relates to biocompatible, implantable compositions and more specifically relates to hyaluronic acid-collagen based compositions useful as dermal fillers.
- the present invention generally relates to a soft tissue aesthetic product.
- the product comprises a filler comprising a hydrogel having a form suitable for injecting into human tissue; and a label comprising instructions to inject the filler into the human tissue; wherein the hydrogel comprises water, and a crosslinked macromolecular matrix described herein.
- Some embodiments include a method of improving an aesthetic quality of soft tissue of a human being comprising: injecting a hydrogel composition into a soft tissue of the human being to thereby improve the aesthetic quality of the soft tissue; wherein the hydrogel composition comprises water, and a crosslinked macromolecular matrix described herein.
- Some embodiments include a method of generating tissue comprising contacting a tissue with a hydrogel composition to generate an additional amount of the tissue, wherein the hydrogel composition comprises water and a crosslinked macromolecular matrix described herein.
- Some crosslinked molecular matrices may comprise a hyaluronic acid component; and a collagen component; wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component; and wherein the crosslinking component comprises a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.
- FIG. 1A is a plot of frequency sweep and FIG. 1B is a plot of strain sweep for a hydrogel in accordance with this disclosure.
- FIG. 2 is an extrusion profile through a 30 G needle for a hydrogel from Example 4.
- FIGS. 3A-3C show respectively, micrographs (at 5 ⁇ magnification) of (A) tissue adjacent to an implanted control composition of commercial crosslinked hyaluronic acid gel, (B) tissue adjacent to an implanted composition of Example 3, and (C) tissue adjacent to an implanted composition from Example 4.
- Some embodiments include a method of improving an aesthetic quality of soft tissue of a human.
- Such a method may comprise injecting a hydrogel composition, or a composition comprising a hydrogel, into a soft tissue of the human being to thereby improve the aesthetic quality of the soft tissue.
- Some embodiments may include a soft tissue aesthetic product comprising: a filler comprising a hydrogel having a form suitable for injecting into human tissue and a label comprising instructions to inject the filler into the human tissue.
- a filler comprising a hydrogel or a hydrogel composition may be any kind of filler that is suitable for injecting into human tissue to improve an aesthetic quality of a soft tissue, such as a dermal filler, a breast augmentation or reconstruction filler, a lip filler, hand rejuvenation, or the like.
- a hydrogel may stimulate tissue in-growth and generation after being injected into the soft tissue.
- a hydrogel may stimulate collagenesis after being injected into the soft tissue.
- Injecting a hydrogel comprising a crosslinked macromolecular matrix comprising a hyaluronic acid component that is crosslinked to a collagen component may provide improved aesthetic quality for an extended duration, as compared to injecting an identical hydrogel except that hyaluronic acid component and the collagen component are not crosslinked.
- Some embodiments include a method of generating tissue comprising contacting a tissue with a hydrogel composition to generate an additional amount of the tissue. This method may be used to generate tissue both ex vivo and in vivo. In some embodiments, contact between a tissue and a hydrogel may be ex vivo. In some embodiments, contact between a tissue and a hydrogel may be in vivo. Tissue types that may be generated include, but are not limited to, adipose tissue, muscle tissue, tendon tissue, cardiovascular tissue, neural tissue, bone tissue, and the like.
- Some embodiments include a packaged product comprising a syringe loaded with a hydrogel and a needle.
- a syringe may be fitted with a needle of any size that is appropriate for injecting the hydrogel into the soft tissue of interest, such as a needle with about a #25, about a #30, or a larger gauge.
- a filler comprising a hydrogel may be suitable for injection if it can be injected into the soft tissue of interest without unreasonable difficulty, and includes fillers that can be dispensed from cannulas having gauge as low as about #30 or about #25 under normal manual pressure with a smooth extrusion plateau.
- a hydrogel may provide a soft tissue augmentation that mimics the natural components of the skin.
- a hydrogel may be injected intradermally or subcutaneously to augment soft tissue and to repair or correct congenital anomalies, acquired defects, or cosmetic defects.
- congenital anomalies such as hemifacial microsomia, malar and zygomatic hypoplasia, unilateral mammary hypoplasia, pectus excavatum, pectoralis agenesis (Poland's anomaly), and velopharyngeal incompetence secondary to cleft palate repair or submucous cleft palate (as a retropharyngeal implant); acquired defects (post traumatic, post surgical, or post infectious) such as depressed scars, subcutaneous atrophy (e.g., secondary to discoid lupis erythematosis), keratotic lesions, enopthalmos in the unucleated eye (also superior sulcus syndrome), acne pitting of the face, linear
- a crosslinked macromolecular matrix for a hydrogel may be synthesized by coupling a hyaluronic acid with a collagen using a coupling agent, such as a carbodiimide.
- a coupling agent such as a carbodiimide.
- hyaluronic acid may serve as a biocompatible water-binding component, providing bulk and isovolumetric degradation.
- collagen may impart cell adhesion and signaling domains to promote cell attachment, migration, and other cell functions such as extra-cellular matrix deposition.
- the biopolymers form homogeneous hydrogels with tunable composition, swelling, and mechanical properties. Compositions can be made to be injectable for minimally invasive implantation through syringe and needle.
- Hyaluronic acid is a non-sulfated glycosaminoglycan that enhances water retention and resists hydrostatic stresses. It is non-immunogenic and can be chemically modified in numerous fashions. Hyaluronic acid may be anionic at pH ranges around or above the pKa of its carboxylic acid groups.
- Collagen is a protein that forms fibrils and sheets that bear tensile loads. Collagen also has specific integrin-binding sites for cell adhesion and is known to promote cell attachment, migration, and proliferation. Collagen may be positively charged because of its high content of basic amino acid residues such as arginine, lysine, and hydroxylysine.
- a hyaluronic acid and a collagen may be combined in an aqueous liquid in which both components are soluble.
- a hyaluronic acid and a collagen may then be crosslinked while both are dissolved in an aqueous solution to form a hydrogel.
- Reaction conditions such as the concentration of hyaluronic acid, the concentration of collagen, the pH of the solution, and salt concentration may be adjusted to help to prevent polyionic complex formation between anionic hyaluronic acid and cationic collagen. They may also help to prevent collagen microfibril formation.
- Some embodiments include a method of crosslinking hyaluronic acid and collagen.
- This method generally comprises a dissolution step which results in an aqueous pre-reaction solution.
- a dissolution step hyaluronic acid and collagen are dissolved in an aqueous solution that has a low pH and/or a salt to form an aqueous pre-reaction solution.
- a hyaluronic acid-collagen crosslinking method further comprises an activation step.
- an aqueous pre-reaction solution is modified at least by adding a water soluble coupling agent and/or by increasing the pH of the solution. If needed, a salt may also be added to keep the hyaluronic acid and collagen in solution at the higher pH.
- a crosslinking reaction mixture comprises hyaluronic acid and collagen dissolved or dispersed in an aqueous medium, a water soluble coupling agent, and a salt, and has a higher pH than the aqueous pre-reaction solution from which it was derived. The crosslinking reaction mixture is allowed to react to thereby crosslink the hyaluronic acid and the collagen.
- the pH of the aqueous pre-reaction solution may be increased and a substantial amount of fiber formation may be allowed to occur in the solution before adding the water soluble coupling agent.
- the water soluble coupling agent may be added to the aqueous pre-reaction solution before substantially any fiber formation occurs.
- a crosslinking reaction mixture can react to form a crosslinked macromolecular matrix. Since reaction occurs in an aqueous solution, a crosslinked macromolecular matrix may be dispersed in an aqueous liquid in hydrogel form as it is formed by a crosslinking reaction. A crosslinked macromolecular matrix may be kept in hydrogel form because, in many instances, a crosslinked macromolecular matrix may be used in hydrogel form.
- an aqueous pre-reaction solution or a crosslinking reaction mixture may further comprise about 10% to about 90% of an organic solvent in which hyaluronic acid has poor solubility, such as ethanol, methanol, isopropanol, or the like.
- the crosslinked macromolecular matrix may be particulated or homogenized through a mesh. This may help to form an injectable slurry or hydrogel.
- a mesh used for particulating a crosslinked macromolecular matrix may have any suitable pore size depending upon the size of particles desired. In some embodiments, the mesh may have a pore size of about 10 microns to about 100 microns, about 50 microns to about 70 microns, or about 60 microns.
- a dialysis membrane may have a molecular weight cutoff that may vary.
- the cutoff may be about 5,000 daltons to about 100,0000 daltons, about 10,000 daltons to about 30,000 daltons, or about 20,000 daltons.
- the dialysis may be carried out against a buffer solution, or the liquid on the other side of the membrane from the hydrogel may be a buffer solution.
- the buffer solution may be a sterile phosphate buffer solution that may comprise phosphate buffer, potassium chloride, and/or sodium chloride.
- a sterile phosphate buffer solution may be substantially isosmotic with respect to human physiological fluid.
- the liquid component of a hydrogel may be substantially isosmotic with respect to human physiological fluid.
- a crosslinked macromolecular complex may further comprise an aqueous liquid.
- the crosslinked macromolecular complex may absorb the aqueous liquid so that a hydrogel is formed.
- An aqueous liquid may comprise water with a salt dissolved in it, such as a phosphate buffer, sodium chloride, potassium chloride, etc.
- an aqueous liquid may comprise water, sodium chloride at a concentration of about 100 mM to about 200 mM, potassium chloride at a concentration of about 2 mM to about 3 mM, and phosphate buffer at a concentration of about 5 mM to about 15 mM, wherein the pH of the liquid is about 7 to about 8.
- a hydrogel may be used in a soft tissue aesthetic product.
- a soft tissue aesthetic product may comprise: an aesthetic device having a form suitable for injecting or implanting into human tissue; and a label comprising instructions to inject or implant the aesthetic component into human tissue; wherein the aesthetic device comprises a crosslinked macromolecular matrix described herein.
- Some products may comprise the crosslinked macromolecular matrix in hydrogel form.
- Some embodiments include a method of improving an aesthetic quality of an anatomic feature of a human being comprising: injecting or implanting an aesthetic device into a tissue of the human being to thereby improve the aesthetic quality of the anatomic feature; wherein the aesthetic device comprises a crosslinked macromolecular matrix comprising described herein.
- the crosslinked macromolecular matrix used in the product may be in hydrogel form.
- a hydrogel of a crosslinked macromolecular complex may have a storage modulus of about 1 Pa to about 10,000 Pa, about 50 Pa to 10,000 Pa, about 500 Pa to about 1000 Pa, about 556 Pa, about 560 Pa, about 850 Pa, about 852 Pa, or any value in a range bounded by, or between, any of these values.
- a hydrogel of a crosslinked macromolecular complex may have a loss modulus of about 1 Pa to about 500 Pa, about 10 Pa to 200 Pa, about 100 Pa to about 200 Pa, about 20 Pa, about 131 Pa, about 152 Pa, or any value in a range bounded by, or between, any of these values.
- a hydrogel of a crosslinked macromolecular complex may have an average extrusion force of about 20 N to 30 N, or about 25 N, when the hydrogel is forced through a 30 G needle syringe by moving the plunger of a 1 mL syringe containing the hydrogel at a rate of 100 mm/min for about 11 mm, and measuring the average force from about 4 mm to about 10 mm.
- a crosslinked macromolecular complex may have tunable swelling properties based on reaction conditions and hydrogel dilution.
- a crosslinked macromolecular complex may have a swelling ratio of about 1 to about 7.
- a swelling ratio is the ratio of the weight of the crosslinked macromolecular complex when saturated with water to the weight of the crosslinked macromolecular complex without any water. More specifically, the swelling ratio is the ratio of the mass of the gel which has been allowed to fully swell to the mass of the gel at its initial concentration.
- the molecular weight of a hyaluronic acid may vary.
- a hyaluronic acid may have a molecular weight of about 500,000 daltons to about 10,000,000 daltons, about 1,000,000 daltons to about 5,000,000 daltons, or about 1,000,000 daltons to about 3,000,000 daltons.
- the resulting crosslinked macromolecular product may have a hyaluronic acid component derived from the hyaluronic acid in the crosslinking reaction.
- the ranges recited above may also apply to the molecular weight of a hyaluronic acid component, e.g.
- molecular weight is applied in this situation to a portion of the matrix even though the hyaluronic acid component may not actually be a separate molecule due to the crosslinking.
- the concentration of hyaluronic acid in an aqueous pre-reaction solution or a crosslinking reaction mixture may vary.
- hyaluronic acid is present at about 3 mg/mL to about 100 mg/mL, about 6 mg/mL to about 24 mg/mL, about 1 mg/mL to about 30 mg/mL, about 1.7 mg/mL, about 3 mg/mL, about 6 mg/mL, about 12 mg/mL, about 16 mg/mL, or about 24 mg/mL
- collagen type I collagen type III
- collagen type IV collagen type VI
- a collagen or a collagen component comprises collagen type I or collagen type III.
- the collagen component comprises collagen type V.
- a collagen may be derived from cell culture, animal tissue, or recombinant means, and may be derived from human, porcine, or bovine sources. Some embodiments comprise collagen derived from human fibroblast culture. Some embodiments comprise collagen that has been denatured to gelatin. The source and/or collagen extraction/processing conditions can alter the way in which collagen macromolecules bundle together to form supramolecular structures. These higher order structures can have effects on the gel physical properties (stiffness, viscosity) and may also have an effect on the reactivity of the collagen to crosslinking reagents.
- Collagen concentration in an aqueous pre-reaction solution or a crosslinking reaction mixture may vary.
- collagen may be present at a concentration of about 1 mg/mL to about 40 mg/mL, about 1 mg/mL to about 15 mg/mL, about 3 mg/mL to about 12 mg/mL, about 1.7 mg/mL, about 3 mg/mL, about 6 mg/mL, about 8 mg/mL, or about 12 mg/mL.
- the collagen concentration has an effect on the physical properties of the gel (stiffness, viscosity). In general, higher collagen concentrations lead to a higher elastic modulus.
- the weight ratio of hyaluronic acid to collagen in a aqueous pre-reaction solution or a aqueous pre-reaction solution or a crosslinking reaction mixture may be about 0.5 to about 3, about 1 to about 3, about 1 to about 2, about 1, or about 2.
- the resulting crosslinked macromolecular product may have a collagen component derived from the collagen in the crosslinking reaction.
- the resulting crosslinked macromolecular matrix may have a weight ratio of hyaluronic acid component to collagen component that corresponds to the weight ratio in the crosslinking reaction, e.g. about 0.5 to about 3, about 1 to about 3, about 1 to about 2, about 1, or about 2.
- compositions have an HA to collagen ratio of between about 0.5 to 1 and about 7 to 1.
- a salt may help to screen the negative charges of hyaluronic acid from positive charges of collagen, and may thus prevent precipitation of a polyionic ion complex from solution.
- high concentrations of salt may reduce the solubility of some components in solution.
- the salt concentration of an aqueous pre-reaction solution or a crosslinking reaction mixture may be high enough to screen the charges so that the polyionic ion complex is not formed, but also low enough so that the components of the mixture remain in solution.
- the total salt concentration of some aqueous pre-reaction solutions or crosslinking reaction mixtures may be about 10 mM to about 1 M, for example, between about 5 mM to about 0.5 M, for example, between about 2 mM to about 0.2 M.
- Some salts in an aqueous pre-reaction solution or a crosslinking reaction mixture may be non-coordinating buffers. Any non-coordinating buffer may be used that is capable of buffering the mixture and does not coordinate with metal atoms or ions in the collagen. In some embodiments, the buffer does not react with the crosslinking reagents (carbodiimide and additive). For example, acetate or phosphate buffers may not be used in these embodiments.
- suitable non-coordinating buffers may include, but are not limited to, 2-(N-morpholino)ethanesulfonic acid (MES),3-(N-morpholino)propanesulfonic acid (MOPS),4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid (HEPES), 3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (HEPPS), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), etc.
- MES 2-(N-morpholino)ethanesulfonic acid
- MOPS 3-(N-morpholino)propanesulfonic acid
- HPES 4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid
- HPPS 3-[4-(2-hydroxyethyl)
- the concentration of a non-coordinating buffer may vary.
- some aqueous pre-reaction solutions or crosslinking reaction mixtures may have a buffer concentration in a range of about 10 mM to about 1 M, about 10 mM to about 500 mM, about 20 mM to about 100 mM, or about 25 mM to about 250 mM.
- Some aqueous pre-reaction solutions or crosslinking reaction mixtures comprise MES at a concentration of about 20 mM to about 200 mM, about 20 mM to about 100 mM, about 100 mM, or about 180 mM.
- Non-buffering salts may also be included in an aqueous pre-reaction solution or a crosslinking reaction mixture as an alternative to, or in addition, to buffering salts.
- Some examples may include sodium chloride, potassium chloride, potassium bromide, sodium bromide, lithium chloride, lithium bromide, sodium iodide, and potassium iodide
- the concentration of a non-buffering salt may vary. For example, some mixtures may have a non-buffering salt concentration in a range of about 10 mM to about 1 mM, about 30 mM to about 500 mM, or about 50 mM to about 300 mM.
- sodium chloride may be present at a concentration in a range of about 0.5% w/v to about 2% about 0.9% w/v, about 1.6% w/v, about 20 mM to about 1 mM, about 40 mM to about 500 mM, about 50 to 300 mM, about 80 mM to about 330 mM, about 150 mM, or about 270 mM.
- the pH of an aqueous pre-reaction solution may be lower than the pH of a crosslinking reaction mixture. If the salt content of the aqueous pre-reaction solution is low, the pH may be lower to enhance solubility of the hyaluronic acid and the collagen. If the salt content is higher, the pH may be higher in the aqueous pre-reaction solution. In some embodiments, the pH of the aqueous pre-reaction mixture is about 1 to about 8, about 3 to about 8, about 4 to about 6, about 4.7 to about 7.4, or about 5.4. For low salt concentrations, the pH may be about 1 to about 4 or about 1 to about 3.
- pH may be adjusted to neutral to allow collagen gelation or fiber formation before adding a coupling agent.
- the pH may be adjusted to neutral immediately prior to, around the time of, or after adding a coupling agent, such that collagen gelation is reduced or does not substantially occur.
- Any water-soluble coupling agent may be used that can crosslink hyaluronic acid to collagen.
- a coupling agent include carbodiimides such as N,N′-dicyclohexylcarbodiimide (DCC), N,N′-diisopropylcarbodiimide (DIC), or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC).
- Carbodiimide coupling agents may facilitate ester or amide bond formation without becoming part of the linkage. However, other coupling agents that become part of the crosslinking group may be used.
- the concentration of a coupling agent may vary.
- a coupling agent may be present at about 2 mM to about 150 mM, about 2 mM to about 50 mM, about 20 mM to about 100 mM, or about 50 mM.
- the coupling agent is EDC that is present at a concentration of about 20 mM to about 100 mM, about 2 mM to about 50 mM, or about 50 mM.
- a crosslinked macromolecular matrix may comprise a crosslinking component that crosslinks or covalently connects the hyaluronic acid component to the collagen component.
- a crosslink component comprises a plurality of crosslink units, or individual covalent bonding links, between the hyaluronic acid component and the collagen component. At least a portion of the crosslink units comprise an ester bond or an amide bond. In some embodiments, at least a portion of the crosslink units may be —CON— or —CO 2 —, where the N is a nitrogen from an amino acid residue.
- an activating agent may be used to increase the ratio of amide bonds compared to ester bonds formed in the crosslinked product.
- an activating agent may be a triazole such as hydroxybenzotriazole (HOBT) or 1-hydroxy-7-azabenzotriazole (HOAT); a fluorinated phenol such as pentafluorophenol; a succinimide such as N-hydroxysuccinimide (NHS) or N-hydroxysulfosuccinimide (sulfoNHS), and the like.
- the concentration of an activating agent may vary.
- the activating agent may have a concentration of about 2 mM to about 200 mM, about 2 mM to about 50 mM, about 20 mM to about 100 mM, or about 50 mM.
- the activating agent may be NHS or sulfoNHS is at a concentration of about 2 mM to about 50 mM.
- the activating agent may be N-hydroxysulfosuccinimide, sodium salt, at a concentration of about 20 mM to about 100 mM, or about 50 Mm.
- a crosslinking reaction mixture may comprise a carbodiimide coupling agent and an activating agent.
- the coupling agent is EDC and the activating agent is NHS or sulfoNHS.
- EDC is present at a concentration of about 2 mM to about 50 mM and NHS or sulfoNHS is present at about 2 mM to about 50 mM.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 1.7 mg/mL, collagen at a concentration of about 1.7 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 Mm, wherein the solution has a pH of about 5.4.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 6 mg/mL, collagen at a concentration of about 6 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 180 mM, sodium chloride at a concentration of about 1.6 wt % or about 270 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 16 mg/mL of, collagen at a concentration of about 8 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of between about 4.5 and 5.5, for example, about 5.2.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 12 mg/mL, collagen at a concentration of about 12 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 3 mg/mL, collagen at a concentration of about 3 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 12 mg/mL, collagen at a concentration of about 6 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 24 mg/mL, collagen at a concentration of about 12 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 1 mg/mL to about 20 mg/mL, collagen at a concentration of about 1 mg/mL to about 15 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 20 mM to about 200 mM, sodium chloride at a concentration of about 0.5 wt % to about 2 wt % or about 80 mM to about 330 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 20 mM to about 100 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 20 mM to about 100 mM, wherein the solution has a pH of about 4 to about 6.
- hyaluronic acid (HA) and collagen were produced by dissolving 15 mg of 2.0 MDa hyaluronic acid in 5 mL of human collagen(III) solution at 3 mg/mL in 0.01 N hydrochloric acid (Fibrogen). The hyaluronic acid/collagen solution was then lyophilized at ⁇ 50° C. and 0.02 Torr. The resulting sponges were soaked in 20 mL of ethanol:water mixture at ratios varying from 1:2 to 5:1 with 50 mM of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and 50 mM of N-hydroxysulfosuccinimide sodium salt for 24 hrs. The crosslinked gels were then washed in 70% isopropanol/30% water for sterilization followed by five washes in sterile phosphate buffer for purification.
- a solution of HA at 3.4 mg/mL was created by dissolving 34 mg of 2 MDa HA in 10 mL of 100 mM MES buffer with 0.9 wt % NaCl, pH 4.7. Upon full hydration and dissolution of the HA, this solution was mixed with 10 mL of 3.4 mg/mL human collagen(III) solution in 100 mM HCl. The pH of the resulting HA/collagen(III) solution was adjusted to 5.4 with 10 mM NaOH solution. EDC (192 mg) and 217 mg of sulfoNHS (50 mM each) were added to the HA/collagen(III) solution and mixed thoroughly. The crosslinking reaction proceeded for 18 hrs before the gel was particulated through a 100 micron pore-sized mesh.
- Rat tail collagen(I) in 0.01 N hydrochloric acid was concentrated from 5 mg/mL to 8 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff.
- HA 160 mg, 2 MDa
- the solution was then homogenized by passing from syringe to syringe through a leur-leur connector.
- NaCl 93 mg
- 201 mg of MES were added to the solution and mixed.
- EDC 98 mg
- 111 mg of sulfoNHS were added to the solution and quickly mixed.
- Rat tail collagen(I) in 0.01 N hydrochloric acid was concentrated from 5 mg/mL to 12 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff.
- HA 120 mg, 2 MDa
- the solution was then homogenized by passing from syringe to syringe through a leur-leur connector.
- NaCl 93 mg
- 201 mg of MES were added to the solution and mixed.
- EDC 98 mg
- 111 mg of sulfoNHS were added to the solution and quickly mixed.
- Rat tail collagen(I) in 0.01 N hydrochloric acid was concentrated from 5 mg/mL to 12 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff.
- HA 120 mg, 2 MDa
- the solution was then homogenized by passing from syringe to syringe through a leur-leur connector.
- NaCl 93 mg
- 201 mg of MES 201 mg of MES
- 200 ⁇ L of 1 N NaOH were added to the solution, mixed, and given 45 minutes for collagen polymerization.
- EDC 98 mg
- 111 mg of sulfoNHS were then added and the final solution was mixed by syringe-to-syringe passing.
- the reaction solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles.
- the gel was then particulated through a 60 micron pore-sized mesh.
- the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer for 48 hrs at 4° C. with three changes of buffer.
- the gel was then dispensed into syringes under aseptic conditions.
- Oscillatory parallel plate rheology was used to characterize the mechanical properties of gels using an Anton Paar MCR 301.
- a plate diameter of 25 mm was used at a gap height of 1 mm.
- a frequency sweep from 0.1 to 10 Hz at a fixed strain of 2% with logarithmic increase in frequency was applied followed by a strain sweep between 0.1% and 300% at a fixed frequency of 5 Hz with logarithmic increase in strain.
- the storage modulus (G′) and loss modulus (G′′) were determined from frequency sweep measurements at 5 Hz.
- the gel from Example 4 had a storage modulus (G′) of 556 Pa and loss modulus (G′′) of 131 Pa.
- the frequency sweep (A) and strain sweep (B) are shown in FIG. 1 .
- the extrusion profile through a 30 G needle for gel from Example 4 is shown in FIG. 2 .
- the gel had an average extrusion force of 25 N from 4 through 10 mm.
- Hyaluronic acid 2 MDa molecular weight, was dissolved in human collagen(I) solution in 0.01 N hydrochloric acid (Advanced BioMatrix). Sodium chloride was added at 0.9 wt % and 2-(N-morpholino)ethanesulfonic acid was added at 100 mM to the solution and mixed. The hyaluronic acid was allowed to hydrate for 1 hr and the solution was homogenized by syringe-to-syringe mixing. The pH of the solution was adjusted to 5.4 by addition of 1 N sodium hydroxide.
- the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer, pH 7.4, for 48 hrs at 4° C. with four changes of buffer. The gel was then dispensed into syringes under aseptic conditions.
- the weight of the hydrated gel was compared to that of dried gel.
- a 2 mL sample of gel was weighed and dried by flash-freezing in liquid nitrogen followed by lyophilization at ⁇ 50° C. and 0.02 Torr.
- a solution of the appropriate buffer was also weighed and dried in the same fashion to account for salt content of the gel.
- the total solids content of the gel was calculated by dividing the dry weight by the wet volume, assuming 1 g/mL density for the wet gel, to give a value in mg/mL. The salt solids content was then subtracted from this value to determine the biopolymer concentration in the gel.
- Swelling ratios relative to initial water content were determined for gels by increase in weight when equilibrated with phosphate buffer. For each gel, approximately 1 mL was injected into a 15 mL Falcon tube and weighed, followed by addition of 10 mL of phosphate buffered saline, pH 7.4. The gels were thoroughly mixed with the buffer and vortexed for 30 seconds. The gels were then allowed to equilibrate in the buffer for 48 hrs at 4° C. After this time, the suspensions were centrifuged at 4000 RPM in a swinging bucket rotor for 5 minutes. The supernatant buffer was then decanted and the weight of the swollen gel was measured. The swelling ratio was determined by dividing the final weight of the swollen gel by the weight of the initial gel.
- compositions and methods disclosed herein for a facial disorder illustrates the use of compositions and methods disclosed herein for a facial disorder.
- a composition of the invention such as described in EXAMPLE 4, is provided in a 20 mL syringe.
- One-holed blunt infiltration cannulas (3 mm inner diameter) are used to place about 15 mL of the composition in the syringe subcutaneously and under superficial musculoaponeurotix system into the left and right checks.
- the individual is monitored for approximately 7 days.
- the physician evaluates the treatment area and determines that the treatment was successful.
- the woman's cheeks are fuller than prior to treatment, Both the woman and her physician are satisfied with the results of the procedure because she looks younger than she did when she came in for treatment.
- compositions and methods disclosed herein for a treatment of eyelid defects.
- a composition such as made as described in Example 5, is provided in a 20 mL syringe. About 2.5 mL of the composition is injected with a fine needle subcutaneously in the skin beneath the wrinkles into the regions adjacent the eyes.
- the individual is monitored for approximately 7 days.
- the physician evaluates the eye of the patient and determines that the treatment was successful. Both the woman and her physician are satisfied with the results of the procedure because her eyes appear refreshed and the skin appears rejuvenated. Approximately one year after the procedure, the woman indicates that her quality of life has improved.
- This example illustrates the use of compositions and methods disclosed herein for treatment of acne scars.
- a 25-year-old man presents with moderate acne scarring on his jaw line including depressions and pitting. He reports that he is dissatisfied with his appearance and feels he is socially inhibited due to his perception of his appearance.
- Pre-operative evaluation of the person includes routine history and physical examination in addition to thorough informed consent disclosing all relevant risks and benefits of the procedure. The physician evaluating the individual determines that he is a candidate for administration of the dermal filler compositions and methods disclosed herein.
- a composition such as that made as described in Example 12, is provided in 10 mL syringes.
- the physician injects a small amount of the composition below the skin in each depressed or pitted area of the patient's jawline to raise the area to match the surrounding skin.
- the individual returns for a follow up visit with the physician in 14 days.
- the physician evaluates the patient and determines that the treatment was successful.
- the man reports he is satisfied with the results of the procedure because his skin is more smooth in appearance and the acne scarring is substantially less visible.
- the man returns for a follow up treatment. He reports to the physician that his quality of life has greatly improved since the procedure and he is no longer shy about his appearance.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Dispersion Chemistry (AREA)
- Birds (AREA)
- Biophysics (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Abstract
Hydrogels comprising a macromolecular matrix and water may be used for aesthetic fillers, for example, dermal fillers. The macromolecular matrix may include a crosslinked combination of hyaluronic acid and collagen.
Description
- This application claims priority to U.S. Provisional Patent Application No. 61/555,970, filed Nov. 4, 2011, and also is a continuation-in-part of U.S. patent application Ser. No. 13/605,565, filed on Sep. 6, 2012, which claims priority to U.S. Provisional Patent Application No. 61/531,533, filed on Sep. 6, 2011, and which is a continuation-in-part of U.S. patent application Ser. No. 13/603,213, filed Sep. 4, 2012, which claims priority to U.S. Provisional Patent Application No. 61/531,533, filed Sep. 6, 2011, the entire disclosure of each of these applications being incorporated herein by this specific reference.
- This application generally relates to biocompatible, implantable compositions and more specifically relates to hyaluronic acid-collagen based compositions useful as dermal fillers.
- The present invention generally relates to a soft tissue aesthetic product. In one aspect, the product comprises a filler comprising a hydrogel having a form suitable for injecting into human tissue; and a label comprising instructions to inject the filler into the human tissue; wherein the hydrogel comprises water, and a crosslinked macromolecular matrix described herein.
- Some embodiments include a method of improving an aesthetic quality of soft tissue of a human being comprising: injecting a hydrogel composition into a soft tissue of the human being to thereby improve the aesthetic quality of the soft tissue; wherein the hydrogel composition comprises water, and a crosslinked macromolecular matrix described herein.
- Some embodiments include a method of generating tissue comprising contacting a tissue with a hydrogel composition to generate an additional amount of the tissue, wherein the hydrogel composition comprises water and a crosslinked macromolecular matrix described herein.
- Some crosslinked molecular matrices may comprise a hyaluronic acid component; and a collagen component; wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component; and wherein the crosslinking component comprises a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.
- Some aspects of the present disclosure may be more clearly understood with reference to the appended drawings of which:
-
FIG. 1A is a plot of frequency sweep andFIG. 1B is a plot of strain sweep for a hydrogel in accordance with this disclosure. -
FIG. 2 is an extrusion profile through a 30 G needle for a hydrogel from Example 4. -
FIGS. 3A-3C show respectively, micrographs (at 5× magnification) of (A) tissue adjacent to an implanted control composition of commercial crosslinked hyaluronic acid gel, (B) tissue adjacent to an implanted composition of Example 3, and (C) tissue adjacent to an implanted composition from Example 4. - Some embodiments include a method of improving an aesthetic quality of soft tissue of a human. Such a method may comprise injecting a hydrogel composition, or a composition comprising a hydrogel, into a soft tissue of the human being to thereby improve the aesthetic quality of the soft tissue.
- Some embodiments may include a soft tissue aesthetic product comprising: a filler comprising a hydrogel having a form suitable for injecting into human tissue and a label comprising instructions to inject the filler into the human tissue.
- A filler comprising a hydrogel or a hydrogel composition may be any kind of filler that is suitable for injecting into human tissue to improve an aesthetic quality of a soft tissue, such as a dermal filler, a breast augmentation or reconstruction filler, a lip filler, hand rejuvenation, or the like. When injected, a hydrogel may stimulate tissue in-growth and generation after being injected into the soft tissue. In some embodiments, a hydrogel may stimulate collagenesis after being injected into the soft tissue.
- Injecting a hydrogel comprising a crosslinked macromolecular matrix comprising a hyaluronic acid component that is crosslinked to a collagen component may provide improved aesthetic quality for an extended duration, as compared to injecting an identical hydrogel except that hyaluronic acid component and the collagen component are not crosslinked.
- Some embodiments include a method of generating tissue comprising contacting a tissue with a hydrogel composition to generate an additional amount of the tissue. This method may be used to generate tissue both ex vivo and in vivo. In some embodiments, contact between a tissue and a hydrogel may be ex vivo. In some embodiments, contact between a tissue and a hydrogel may be in vivo. Tissue types that may be generated include, but are not limited to, adipose tissue, muscle tissue, tendon tissue, cardiovascular tissue, neural tissue, bone tissue, and the like.
- Some embodiments include a packaged product comprising a syringe loaded with a hydrogel and a needle. A syringe may be fitted with a needle of any size that is appropriate for injecting the hydrogel into the soft tissue of interest, such as a needle with about a #25, about a #30, or a larger gauge.
- A filler comprising a hydrogel may be suitable for injection if it can be injected into the soft tissue of interest without unreasonable difficulty, and includes fillers that can be dispensed from cannulas having gauge as low as about #30 or about #25 under normal manual pressure with a smooth extrusion plateau.
- Injection of a hydrogel may provide a soft tissue augmentation that mimics the natural components of the skin. A hydrogel may be injected intradermally or subcutaneously to augment soft tissue and to repair or correct congenital anomalies, acquired defects, or cosmetic defects. Examples of such conditions include congenital anomalies such as hemifacial microsomia, malar and zygomatic hypoplasia, unilateral mammary hypoplasia, pectus excavatum, pectoralis agenesis (Poland's anomaly), and velopharyngeal incompetence secondary to cleft palate repair or submucous cleft palate (as a retropharyngeal implant); acquired defects (post traumatic, post surgical, or post infectious) such as depressed scars, subcutaneous atrophy (e.g., secondary to discoid lupis erythematosis), keratotic lesions, enopthalmos in the unucleated eye (also superior sulcus syndrome), acne pitting of the face, linear scleroderma with subcutaneous atrophy, saddle-nose deformity, Romberg's disease, and unilateral vocal cord paralysis; and cosmetic defects such as glabellar frown lines, deep nasolabial creases, circum-oral geographical wrinkles, sunken cheeks, and mammary hypoplasia.
- Crosslinked hyaluronic acid, collagen, and crosslinked collagen, such as those used in dermal fillers, do not promote cellular infiltration and tissue in-growth. Similarly, collagen simply blended into hyaluronic acid hydrogels does not promote tissue integration or de novo tissue generation. However, some hydrogels described herein do promote cellular migration into the hydrogels and tissue formation within the gels when implanted in vivo.
- A hydrogel may comprise water and a crosslinked macromolecular matrix. Typically, a crosslinked molecular matrix may comprise a hyaluronic acid component and a collagen component, wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component. A crosslinking component may comprise a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.
- A crosslinked macromolecular matrix for a hydrogel may be synthesized by coupling a hyaluronic acid with a collagen using a coupling agent, such as a carbodiimide. In these hydrogels, hyaluronic acid may serve as a biocompatible water-binding component, providing bulk and isovolumetric degradation. Additionally, collagen may impart cell adhesion and signaling domains to promote cell attachment, migration, and other cell functions such as extra-cellular matrix deposition. The biopolymers form homogeneous hydrogels with tunable composition, swelling, and mechanical properties. Compositions can be made to be injectable for minimally invasive implantation through syringe and needle.
- Hyaluronic acid is a non-sulfated glycosaminoglycan that enhances water retention and resists hydrostatic stresses. It is non-immunogenic and can be chemically modified in numerous fashions. Hyaluronic acid may be anionic at pH ranges around or above the pKa of its carboxylic acid groups.
- Collagen is a protein that forms fibrils and sheets that bear tensile loads. Collagen also has specific integrin-binding sites for cell adhesion and is known to promote cell attachment, migration, and proliferation. Collagen may be positively charged because of its high content of basic amino acid residues such as arginine, lysine, and hydroxylysine.
- Because hyaluronic acid may be anionic and collagen may be cationic, the two macromolecules may form polyionic complexes in aqueous solution. A polyionic complex may be significantly less soluble in water than either hyaluronic acid or collagen, and thus may precipitate out of aqueous solution when the two macromolecules are together in a mixture.
- Under certain conditions, a hyaluronic acid and a collagen may be combined in an aqueous liquid in which both components are soluble. A hyaluronic acid and a collagen may then be crosslinked while both are dissolved in an aqueous solution to form a hydrogel. Reaction conditions such as the concentration of hyaluronic acid, the concentration of collagen, the pH of the solution, and salt concentration may be adjusted to help to prevent polyionic complex formation between anionic hyaluronic acid and cationic collagen. They may also help to prevent collagen microfibril formation.
- Some embodiments include a method of crosslinking hyaluronic acid and collagen. This method generally comprises a dissolution step which results in an aqueous pre-reaction solution. In a dissolution step, hyaluronic acid and collagen are dissolved in an aqueous solution that has a low pH and/or a salt to form an aqueous pre-reaction solution.
- A hyaluronic acid-collagen crosslinking method further comprises an activation step. In an activation step, an aqueous pre-reaction solution is modified at least by adding a water soluble coupling agent and/or by increasing the pH of the solution. If needed, a salt may also be added to keep the hyaluronic acid and collagen in solution at the higher pH. Thus, a crosslinking reaction mixture comprises hyaluronic acid and collagen dissolved or dispersed in an aqueous medium, a water soluble coupling agent, and a salt, and has a higher pH than the aqueous pre-reaction solution from which it was derived. The crosslinking reaction mixture is allowed to react to thereby crosslink the hyaluronic acid and the collagen.
- In some embodiments, the pH of the aqueous pre-reaction solution may be increased and a substantial amount of fiber formation may be allowed to occur in the solution before adding the water soluble coupling agent. In some embodiments, the water soluble coupling agent may be added to the aqueous pre-reaction solution before substantially any fiber formation occurs.
- A crosslinking reaction mixture can react to form a crosslinked macromolecular matrix. Since reaction occurs in an aqueous solution, a crosslinked macromolecular matrix may be dispersed in an aqueous liquid in hydrogel form as it is formed by a crosslinking reaction. A crosslinked macromolecular matrix may be kept in hydrogel form because, in many instances, a crosslinked macromolecular matrix may be used in hydrogel form.
- In some embodiments, an aqueous pre-reaction solution or a crosslinking reaction mixture may further comprise about 10% to about 90% of an organic solvent in which hyaluronic acid has poor solubility, such as ethanol, methanol, isopropanol, or the like.
- After a crosslinking reaction has occurred, the crosslinked macromolecular matrix may be particulated or homogenized through a mesh. This may help to form an injectable slurry or hydrogel. A mesh used for particulating a crosslinked macromolecular matrix may have any suitable pore size depending upon the size of particles desired. In some embodiments, the mesh may have a pore size of about 10 microns to about 100 microns, about 50 microns to about 70 microns, or about 60 microns.
- A hydrogel comprising a crosslinked molecular matrix may be treated by dialysis for sterilization or other purposes. Dialysis may be carried out by placing a semipermeable membrane between the hydrogel and another liquid so as to allow the hydrogel and the liquid to exchange molecules or salts that can pass between the membrane.
- A dialysis membrane may have a molecular weight cutoff that may vary. For example, the cutoff may be about 5,000 daltons to about 100,0000 daltons, about 10,000 daltons to about 30,000 daltons, or about 20,000 daltons.
- The dialysis may be carried out against a buffer solution, or the liquid on the other side of the membrane from the hydrogel may be a buffer solution. In some embodiments, the buffer solution may be a sterile phosphate buffer solution that may comprise phosphate buffer, potassium chloride, and/or sodium chloride. A sterile phosphate buffer solution may be substantially isosmotic with respect to human physiological fluid. Thus, when dialysis is complete, the liquid component of a hydrogel may be substantially isosmotic with respect to human physiological fluid.
- In some embodiments, a crosslinked macromolecular complex may further comprise an aqueous liquid. For example, the crosslinked macromolecular complex may absorb the aqueous liquid so that a hydrogel is formed. An aqueous liquid may comprise water with a salt dissolved in it, such as a phosphate buffer, sodium chloride, potassium chloride, etc. In some embodiments, an aqueous liquid may comprise water, sodium chloride at a concentration of about 100 mM to about 200 mM, potassium chloride at a concentration of about 2 mM to about 3 mM, and phosphate buffer at a concentration of about 5 mM to about 15 mM, wherein the pH of the liquid is about 7 to about 8.
- A hydrogel may be used in a soft tissue aesthetic product. A soft tissue aesthetic product may comprise: an aesthetic device having a form suitable for injecting or implanting into human tissue; and a label comprising instructions to inject or implant the aesthetic component into human tissue; wherein the aesthetic device comprises a crosslinked macromolecular matrix described herein. Some products may comprise the crosslinked macromolecular matrix in hydrogel form.
- Some embodiments include a method of improving an aesthetic quality of an anatomic feature of a human being comprising: injecting or implanting an aesthetic device into a tissue of the human being to thereby improve the aesthetic quality of the anatomic feature; wherein the aesthetic device comprises a crosslinked macromolecular matrix comprising described herein. In some embodiments, the crosslinked macromolecular matrix used in the product may be in hydrogel form.
- In some embodiments, a hydrogel of a crosslinked macromolecular complex may have a storage modulus of about 1 Pa to about 10,000 Pa, about 50 Pa to 10,000 Pa, about 500 Pa to about 1000 Pa, about 556 Pa, about 560 Pa, about 850 Pa, about 852 Pa, or any value in a range bounded by, or between, any of these values.
- In some embodiments, a hydrogel of a crosslinked macromolecular complex may have a loss modulus of about 1 Pa to about 500 Pa, about 10 Pa to 200 Pa, about 100 Pa to about 200 Pa, about 20 Pa, about 131 Pa, about 152 Pa, or any value in a range bounded by, or between, any of these values.
- In some embodiments, a hydrogel of a crosslinked macromolecular complex may have an average extrusion force of about 20 N to 30 N, or about 25 N, when the hydrogel is forced through a 30 G needle syringe by moving the plunger of a 1 mL syringe containing the hydrogel at a rate of 100 mm/min for about 11 mm, and measuring the average force from about 4 mm to about 10 mm.
- A crosslinked macromolecular complex may have tunable swelling properties based on reaction conditions and hydrogel dilution. In some embodiments, a crosslinked macromolecular complex may have a swelling ratio of about 1 to about 7. A swelling ratio is the ratio of the weight of the crosslinked macromolecular complex when saturated with water to the weight of the crosslinked macromolecular complex without any water. More specifically, the swelling ratio is the ratio of the mass of the gel which has been allowed to fully swell to the mass of the gel at its initial concentration.
- In a crosslinking reaction, the molecular weight of a hyaluronic acid may vary. In some embodiments, a hyaluronic acid may have a molecular weight of about 500,000 daltons to about 10,000,000 daltons, about 1,000,000 daltons to about 5,000,000 daltons, or about 1,000,000 daltons to about 3,000,000 daltons. When the crosslinking reaction occurs, the resulting crosslinked macromolecular product may have a hyaluronic acid component derived from the hyaluronic acid in the crosslinking reaction. Thus, the ranges recited above may also apply to the molecular weight of a hyaluronic acid component, e.g. about 500,000 daltons to about 10,000,000 daltons, about 1,000,000 daltons to about 5,000,000 daltons, or about 1,000,000 daltons to about 3,000,000 daltons. The term “molecular weight” is applied in this situation to a portion of the matrix even though the hyaluronic acid component may not actually be a separate molecule due to the crosslinking.
- The concentration of hyaluronic acid in an aqueous pre-reaction solution or a crosslinking reaction mixture may vary. In some embodiments, hyaluronic acid is present at about 3 mg/mL to about 100 mg/mL, about 6 mg/mL to about 24 mg/mL, about 1 mg/mL to about 30 mg/mL, about 1.7 mg/mL, about 3 mg/mL, about 6 mg/mL, about 12 mg/mL, about 16 mg/mL, or about 24 mg/mL
- Any type of collagen may be used in the methods and compositions described herein. In some embodiments, collagen type I, collagen type III, collagen type IV, collagen type VI, or a combination thereof, may be used. In some embodiments, a collagen or a collagen component comprises collagen type I or collagen type III. In some embodiments, the collagen component comprises collagen type V.
- A collagen may be derived from cell culture, animal tissue, or recombinant means, and may be derived from human, porcine, or bovine sources. Some embodiments comprise collagen derived from human fibroblast culture. Some embodiments comprise collagen that has been denatured to gelatin. The source and/or collagen extraction/processing conditions can alter the way in which collagen macromolecules bundle together to form supramolecular structures. These higher order structures can have effects on the gel physical properties (stiffness, viscosity) and may also have an effect on the reactivity of the collagen to crosslinking reagents.
- Collagen concentration in an aqueous pre-reaction solution or a crosslinking reaction mixture may vary. In some embodiments, collagen may be present at a concentration of about 1 mg/mL to about 40 mg/mL, about 1 mg/mL to about 15 mg/mL, about 3 mg/mL to about 12 mg/mL, about 1.7 mg/mL, about 3 mg/mL, about 6 mg/mL, about 8 mg/mL, or about 12 mg/mL. The collagen concentration has an effect on the physical properties of the gel (stiffness, viscosity). In general, higher collagen concentrations lead to a higher elastic modulus.
- In some embodiments, the weight ratio of hyaluronic acid to collagen in a aqueous pre-reaction solution or a aqueous pre-reaction solution or a crosslinking reaction mixture (e.g. [wt hyaluronic acid]/[wt collagen]) may be about 0.5 to about 3, about 1 to about 3, about 1 to about 2, about 1, or about 2. When the crosslinking reaction occurs, the resulting crosslinked macromolecular product may have a collagen component derived from the collagen in the crosslinking reaction. Thus, the resulting crosslinked macromolecular matrix may have a weight ratio of hyaluronic acid component to collagen component that corresponds to the weight ratio in the crosslinking reaction, e.g. about 0.5 to about 3, about 1 to about 3, about 1 to about 2, about 1, or about 2.
- In other embodiments of the invention, the compositions have an HA to collagen ratio of between about 0.5 to 1 and about 7 to 1.
- A salt may help to screen the negative charges of hyaluronic acid from positive charges of collagen, and may thus prevent precipitation of a polyionic ion complex from solution. However, high concentrations of salt may reduce the solubility of some components in solution. Thus, in some embodiments, the salt concentration of an aqueous pre-reaction solution or a crosslinking reaction mixture may be high enough to screen the charges so that the polyionic ion complex is not formed, but also low enough so that the components of the mixture remain in solution. For example, the total salt concentration of some aqueous pre-reaction solutions or crosslinking reaction mixtures may be about 10 mM to about 1 M, for example, between about 5 mM to about 0.5 M, for example, between about 2 mM to about 0.2 M.
- Some salts in an aqueous pre-reaction solution or a crosslinking reaction mixture may be non-coordinating buffers. Any non-coordinating buffer may be used that is capable of buffering the mixture and does not coordinate with metal atoms or ions in the collagen. In some embodiments, the buffer does not react with the crosslinking reagents (carbodiimide and additive). For example, acetate or phosphate buffers may not be used in these embodiments. Examples of suitable non-coordinating buffers may include, but are not limited to, 2-(N-morpholino)ethanesulfonic acid (MES),3-(N-morpholino)propanesulfonic acid (MOPS),4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid (HEPES), 3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (HEPPS), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), etc.
- The concentration of a non-coordinating buffer may vary. For example, some aqueous pre-reaction solutions or crosslinking reaction mixtures may have a buffer concentration in a range of about 10 mM to about 1 M, about 10 mM to about 500 mM, about 20 mM to about 100 mM, or about 25 mM to about 250 mM. Some aqueous pre-reaction solutions or crosslinking reaction mixtures comprise MES at a concentration of about 20 mM to about 200 mM, about 20 mM to about 100 mM, about 100 mM, or about 180 mM.
- Non-buffering salts may also be included in an aqueous pre-reaction solution or a crosslinking reaction mixture as an alternative to, or in addition, to buffering salts. Some examples may include sodium chloride, potassium chloride, potassium bromide, sodium bromide, lithium chloride, lithium bromide, sodium iodide, and potassium iodide The concentration of a non-buffering salt may vary. For example, some mixtures may have a non-buffering salt concentration in a range of about 10 mM to about 1 mM, about 30 mM to about 500 mM, or about 50 mM to about 300 mM. In some embodiments, sodium chloride may be present at a concentration in a range of about 0.5% w/v to about 2% about 0.9% w/v, about 1.6% w/v, about 20 mM to about 1 mM, about 40 mM to about 500 mM, about 50 to 300 mM, about 80 mM to about 330 mM, about 150 mM, or about 270 mM.
- The pH of an aqueous pre-reaction solution may be lower than the pH of a crosslinking reaction mixture. If the salt content of the aqueous pre-reaction solution is low, the pH may be lower to enhance solubility of the hyaluronic acid and the collagen. If the salt content is higher, the pH may be higher in the aqueous pre-reaction solution. In some embodiments, the pH of the aqueous pre-reaction mixture is about 1 to about 8, about 3 to about 8, about 4 to about 6, about 4.7 to about 7.4, or about 5.4. For low salt concentrations, the pH may be about 1 to about 4 or about 1 to about 3.
- In some embodiments, pH may be adjusted to neutral to allow collagen gelation or fiber formation before adding a coupling agent.
- In some embodiments, the pH may be adjusted to neutral immediately prior to, around the time of, or after adding a coupling agent, such that collagen gelation is reduced or does not substantially occur.
- Any water-soluble coupling agent may be used that can crosslink hyaluronic acid to collagen. Some non-limiting examples of a coupling agent include carbodiimides such as N,N′-dicyclohexylcarbodiimide (DCC), N,N′-diisopropylcarbodiimide (DIC), or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Carbodiimide coupling agents may facilitate ester or amide bond formation without becoming part of the linkage. However, other coupling agents that become part of the crosslinking group may be used. The concentration of a coupling agent may vary. In some embodiments, a coupling agent may be present at about 2 mM to about 150 mM, about 2 mM to about 50 mM, about 20 mM to about 100 mM, or about 50 mM. In some embodiments, the coupling agent is EDC that is present at a concentration of about 20 mM to about 100 mM, about 2 mM to about 50 mM, or about 50 mM.
- As a result of a crosslinking reaction, a crosslinked macromolecular matrix may comprise a crosslinking component that crosslinks or covalently connects the hyaluronic acid component to the collagen component. A crosslink component comprises a plurality of crosslink units, or individual covalent bonding links, between the hyaluronic acid component and the collagen component. At least a portion of the crosslink units comprise an ester bond or an amide bond. In some embodiments, at least a portion of the crosslink units may be —CON— or —CO2—, where the N is a nitrogen from an amino acid residue.
- An activating agent may be used to increase the ratio of amide bonds compared to ester bonds formed in the crosslinked product. In some embodiments, an activating agent may be a triazole such as hydroxybenzotriazole (HOBT) or 1-hydroxy-7-azabenzotriazole (HOAT); a fluorinated phenol such as pentafluorophenol; a succinimide such as N-hydroxysuccinimide (NHS) or N-hydroxysulfosuccinimide (sulfoNHS), and the like.
- The concentration of an activating agent may vary. In some embodiments, the activating agent may have a concentration of about 2 mM to about 200 mM, about 2 mM to about 50 mM, about 20 mM to about 100 mM, or about 50 mM. In some embodiments, the activating agent may be NHS or sulfoNHS is at a concentration of about 2 mM to about 50 mM. In some embodiments, the activating agent may be N-hydroxysulfosuccinimide, sodium salt, at a concentration of about 20 mM to about 100 mM, or about 50 Mm.
- In some embodiments, a crosslinking reaction mixture may comprise a carbodiimide coupling agent and an activating agent. In some embodiments, the coupling agent is EDC and the activating agent is NHS or sulfoNHS. In some embodiments EDC is present at a concentration of about 2 mM to about 50 mM and NHS or sulfoNHS is present at about 2 mM to about 50 mM.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 1.7 mg/mL, collagen at a concentration of about 1.7 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 Mm, wherein the solution has a pH of about 5.4.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 6 mg/mL, collagen at a concentration of about 6 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 180 mM, sodium chloride at a concentration of about 1.6 wt % or about 270 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 16 mg/mL of, collagen at a concentration of about 8 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of between about 4.5 and 5.5, for example, about 5.2.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 12 mg/mL, collagen at a concentration of about 12 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 3 mg/mL, collagen at a concentration of about 3 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 12 mg/mL, collagen at a concentration of about 6 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 24 mg/mL, collagen at a concentration of about 12 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.
- In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 1 mg/mL to about 20 mg/mL, collagen at a concentration of about 1 mg/mL to about 15 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 20 mM to about 200 mM, sodium chloride at a concentration of about 0.5 wt % to about 2 wt % or about 80 mM to about 330 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 20 mM to about 100 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 20 mM to about 100 mM, wherein the solution has a pH of about 4 to about 6.
- Solutions of hyaluronic acid (HA) and collagen were produced by dissolving 15 mg of 2.0 MDa hyaluronic acid in 5 mL of human collagen(III) solution at 3 mg/mL in 0.01 N hydrochloric acid (Fibrogen). The hyaluronic acid/collagen solution was then lyophilized at −50° C. and 0.02 Torr. The resulting sponges were soaked in 20 mL of ethanol:water mixture at ratios varying from 1:2 to 5:1 with 50 mM of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and 50 mM of N-hydroxysulfosuccinimide sodium salt for 24 hrs. The crosslinked gels were then washed in 70% isopropanol/30% water for sterilization followed by five washes in sterile phosphate buffer for purification.
- A solution of HA at 3.4 mg/mL was created by dissolving 34 mg of 2 MDa HA in 10 mL of 100 mM MES buffer with 0.9 wt % NaCl, pH 4.7. Upon full hydration and dissolution of the HA, this solution was mixed with 10 mL of 3.4 mg/mL human collagen(III) solution in 100 mM HCl. The pH of the resulting HA/collagen(III) solution was adjusted to 5.4 with 10 mM NaOH solution. EDC (192 mg) and 217 mg of sulfoNHS (50 mM each) were added to the HA/collagen(III) solution and mixed thoroughly. The crosslinking reaction proceeded for 18 hrs before the gel was particulated through a 100 micron pore-sized mesh.
- Rat tail collagen(I) in 0.01 N hydrochloric acid (Invitrogen) was concentrated from 5 mg/mL to 8 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff. HA (160 mg, 2 MDa) was added to 10 mL of the collagen solution and allowed to hydrate for 60 minutes. The solution was then homogenized by passing from syringe to syringe through a leur-leur connector. NaCl (93 mg) and 201 mg of MES were added to the solution and mixed. EDC (98 mg) and 111 mg of sulfoNHS were added to the solution and quickly mixed. Finally, 200 μL of 1 N NaOH was added to the solution which was mixed by syringe-to-syringe passing. The reaction solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The gel was then particulated through a 60 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer for 48 hrs at 4° C. with three changes of buffer. The gel was then dispensed into syringes under aseptic conditions.
- Rat tail collagen(I) in 0.01 N hydrochloric acid (Invitrogen) was concentrated from 5 mg/mL to 12 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff. HA (120 mg, 2 MDa) was added to 10 mL of the collagen solution and allowed to hydrate for 60 minutes. The solution was then homogenized by passing from syringe to syringe through a leur-leur connector. NaCl (93 mg) and 201 mg of MES were added to the solution and mixed. EDC (98 mg) and 111 mg of sulfoNHS were added to the solution and quickly mixed. Finally, 200 μL of 1 N NaOH was added to the solution which was mixed by syringe-to-syringe passing. The reaction solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The gel was then particulated through a 60 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer for 48 hrs at 4° C. with three changes of buffer. The gel was then dispensed into syringes under aseptic conditions.
- Rat tail collagen(I) in 0.01 N hydrochloric acid (Invitrogen) was concentrated from 5 mg/mL to 12 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff. HA (120 mg, 2 MDa) was added to 10 mL of the collagen solution and allowed to hydrate for 60 minutes. The solution was then homogenized by passing from syringe to syringe through a leur-leur connector. NaCl (93 mg), 201 mg of MES, and 200 μL of 1 N NaOH were added to the solution, mixed, and given 45 minutes for collagen polymerization. EDC (98 mg) and 111 mg of sulfoNHS were then added and the final solution was mixed by syringe-to-syringe passing. The reaction solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The gel was then particulated through a 60 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer for 48 hrs at 4° C. with three changes of buffer. The gel was then dispensed into syringes under aseptic conditions.
- Oscillatory parallel plate rheology was used to characterize the mechanical properties of gels using an Anton Paar MCR 301. A plate diameter of 25 mm was used at a gap height of 1 mm. A frequency sweep from 0.1 to 10 Hz at a fixed strain of 2% with logarithmic increase in frequency was applied followed by a strain sweep between 0.1% and 300% at a fixed frequency of 5 Hz with logarithmic increase in strain. The storage modulus (G′) and loss modulus (G″) were determined from frequency sweep measurements at 5 Hz.
- The gel from Example 4 had a storage modulus (G′) of 556 Pa and loss modulus (G″) of 131 Pa. The frequency sweep (A) and strain sweep (B) are shown in
FIG. 1 . - In order to determine the force required to extrude the gels, they were ejected from 1 mL BD syringes through 30G needles using an Instron 5564 with
Bluehill 2 software. The plunger was pushed at a rate of 100 mm/min for 11.35 mm and the extrusion profile was recorded. - The extrusion profile through a 30 G needle for gel from Example 4 is shown in
FIG. 2 . The gel had an average extrusion force of 25 N from 4 through 10 mm. - Hyaluronic acid, 2 MDa molecular weight, was dissolved in human collagen(I) solution in 0.01 N hydrochloric acid (Advanced BioMatrix). Sodium chloride was added at 0.9 wt % and 2-(N-morpholino)ethanesulfonic acid was added at 100 mM to the solution and mixed. The hyaluronic acid was allowed to hydrate for 1 hr and the solution was homogenized by syringe-to-syringe mixing. The pH of the solution was adjusted to 5.4 by addition of 1 N sodium hydroxide. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (50 mM) and N-hydroxysulfosuccinimide sodium salt (50 mM) were added to the hyaluronic acid/collagen solution and quickly mixed by syringe-to-syringe transfer. The solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The resulting gel was allowed to react for 16 hrs at 4° C. The gel was then particulated through a 100 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer, pH 7.4, for 48 hrs at 4° C. with four changes of buffer. The gel was then dispensed into syringes under aseptic conditions.
- This procedure was used to produce hydrogels with varying concentrations of hyaluronic acid and collagen. When required, human collagen(I) in 0.01 N hydrochloric acid was concentrated from 3 mg/mL to the desired reaction concentration in 20 kDa molecular-weight cut-off centrifugal filtration devices. A 50 mL sample of each gel was synthesized, sterilized by exposure to 70% isopropanol, and purified by dialysis against phosphate buffer, pH 7.4. The gels synthesized are described in Table 2 along with their rheological properties.
-
TABLE 2 Hyaluronic acid-human collagen(I) hydrogel synthesis concentrations and rheological properties Sample [HA] [Col(I)] G′ G″ ID (mg/mL) (mg/mL) (Pa) (Pa) A 3 3 199 24.6 B 12 6 1260 154 C 16 8 2450 288 D 12 12 3160 420 E 24 12 5440 433 F 12 3 1110 52.2 G 16 3 1490 60.6 H 20 3 1770 49.5 - In order to determine the biopolymer concentration in gels, the weight of the hydrated gel was compared to that of dried gel. A 2 mL sample of gel was weighed and dried by flash-freezing in liquid nitrogen followed by lyophilization at −50° C. and 0.02 Torr. A solution of the appropriate buffer was also weighed and dried in the same fashion to account for salt content of the gel. The total solids content of the gel was calculated by dividing the dry weight by the wet volume, assuming 1 g/mL density for the wet gel, to give a value in mg/mL. The salt solids content was then subtracted from this value to determine the biopolymer concentration in the gel.
-
TABLE 3 Final concentrations of hyaluronic acid-human collagen(I) hydrogels Final Sample [Col(I)] concentration ID [HA] (mg/mL) (mg/mL) (mg/mL) A 3 3 5.3 B 12 6 16.3 C 16 8 19.4 D 12 12 22.6 E 24 12 31.6 - Swelling ratios relative to initial water content were determined for gels by increase in weight when equilibrated with phosphate buffer. For each gel, approximately 1 mL was injected into a 15 mL Falcon tube and weighed, followed by addition of 10 mL of phosphate buffered saline, pH 7.4. The gels were thoroughly mixed with the buffer and vortexed for 30 seconds. The gels were then allowed to equilibrate in the buffer for 48 hrs at 4° C. After this time, the suspensions were centrifuged at 4000 RPM in a swinging bucket rotor for 5 minutes. The supernatant buffer was then decanted and the weight of the swollen gel was measured. The swelling ratio was determined by dividing the final weight of the swollen gel by the weight of the initial gel.
-
TABLE 4 Swelling ratios of hyaluronic acid-human collagen(I) hydrogels Sample [HA] [Col(I)] Swelling ID (mg/mL) (mg/mL) ratio A 3 3 0.96 B 12 6 1.67 C 16 8 1.69 D 12 12 1.49 E 24 12 1.65 - This example illustrates the use of compositions and methods disclosed herein for a facial disorder.
- A 58-year-old woman presented with a lean face. She felt her face looked old, sad and bitter because of the less fullness of her cheek contour. Pre-operative evaluation of the person includes routine history and physical examination in addition to thorough informed consent disclosing all relevant risks and benefits of the procedure. The physician evaluating the individual determines that she is a candidate for administration of the dermal filler compositions and methods disclosed herein.
- A composition of the invention, such as described in EXAMPLE 4, is provided in a 20 mL syringe. One-holed blunt infiltration cannulas (3 mm inner diameter) are used to place about 15 mL of the composition in the syringe subcutaneously and under superficial musculoaponeurotix system into the left and right checks.
- The individual is monitored for approximately 7 days. The physician evaluates the treatment area and determines that the treatment was successful. The woman's cheeks are fuller than prior to treatment, Both the woman and her physician are satisfied with the results of the procedure because she looks younger than she did when she came in for treatment.
- This example illustrates the use of compositions and methods disclosed herein for a treatment of eyelid defects.
- A 37-year-old woman presented with fine wrinkles around her eyes and she reports that her eyes made her look old and angry. Pre-operative evaluation of the person includes routine history and physical examination in addition to thorough informed consent disclosing all relevant risks and benefits of the procedure. The physician evaluating the individual determines that she is a candidate for administration of the dermal filler compositions and methods disclosed herein.
- A composition, such as made as described in Example 5, is provided in a 20 mL syringe. About 2.5 mL of the composition is injected with a fine needle subcutaneously in the skin beneath the wrinkles into the regions adjacent the eyes.
- The individual is monitored for approximately 7 days. The physician evaluates the eye of the patient and determines that the treatment was successful. Both the woman and her physician are satisfied with the results of the procedure because her eyes appear refreshed and the skin appears rejuvenated. Approximately one year after the procedure, the woman indicates that her quality of life has improved.
- This example illustrates the use of compositions and methods disclosed herein for treatment of acne scars.
- A 25-year-old man presents with moderate acne scarring on his jaw line including depressions and pitting. He reports that he is dissatisfied with his appearance and feels he is socially inhibited due to his perception of his appearance. Pre-operative evaluation of the person includes routine history and physical examination in addition to thorough informed consent disclosing all relevant risks and benefits of the procedure. The physician evaluating the individual determines that he is a candidate for administration of the dermal filler compositions and methods disclosed herein.
- A composition, such as that made as described in Example 12, is provided in 10 mL syringes. The physician injects a small amount of the composition below the skin in each depressed or pitted area of the patient's jawline to raise the area to match the surrounding skin.
- The individual returns for a follow up visit with the physician in 14 days. The physician evaluates the patient and determines that the treatment was successful. The man reports he is satisfied with the results of the procedure because his skin is more smooth in appearance and the acne scarring is substantially less visible. Approximately six months after the procedure, the man returns for a follow up treatment. He reports to the physician that his quality of life has greatly improved since the procedure and he is no longer shy about his appearance.
- Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
- The terms “a,” “an,” “the,” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of any claim. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
- Groupings of alternative elements or embodiments disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
- Certain embodiments are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, the claims include all modifications and equivalents of the subject matter recited in the claims as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is contemplated unless otherwise indicated herein or otherwise clearly contradicted by context.
- In closing, it is to be understood that the embodiments disclosed herein are illustrative of the principles of the claims. Other modifications that may be employed are within the scope of the claims. Thus, by way of example, but not of limitation, alternative embodiments may be utilized in accordance with the teachings herein. Accordingly, the claims are not limited to embodiments precisely as shown and described.
Claims (13)
1. A soft tissue aesthetic product comprising:
a filler comprising a hydrogel having a form suitable for injecting into mammalian tissue; and
a label comprising instructions to inject the filler into the tissue;
wherein the hydrogel comprises water, and a crosslinked macromolecular matrix comprising:
a hyaluronic acid component; and
a collagen component;
wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component; and
wherein the crosslinking component comprises a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.
2. The product of claim 1 , wherein the collagen component comprises collagen type I or collagen type III.
3. The product of claim 1 , wherein crosslinked macromolecular matrix has a weight ratio of the hyaluronic acid component to the collagen component of about 1 to about 3.
4. The product of claim 1 , wherein the hydrogel is in the form of a dermal filler.
5. The product of claim 1 , wherein the hydrogel is in the form of a lip filler.
6. A method of improving an aesthetic quality of soft tissue of a human being comprising:
injecting a hydrogel composition into a soft tissue of the human being to thereby improve the aesthetic quality of the soft tissue;
wherein the hydrogel composition comprises water, and a crosslinked macromolecular matrix comprising:
a hyaluronic acid component; and
a collagen component;
wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component; and
wherein the crosslinking component comprises a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.
7. The method of claim 6 , wherein the collagen component comprises collagen type I or collagen type III.
8. The method of claim 6 , wherein the hydrogel is in the form of a dermal filler.
9. The method of claim 6 , wherein the hydrogel is in the form of a lip filler.
10. A dermal filler comprising:
a hydrogel having a form suitable for injecting into mammalian tissue;
wherein the hydrogel comprises water, and a crosslinked macromolecular matrix comprising:
a hyaluronic acid component; and
a collagen component;
wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component; and
wherein the crosslinking component comprises a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.
11. The dermal filler of claim 10 , wherein the collagen component comprises collagen type I or collagen type III.
12. The dermal filler of claim 10 , wherein crosslinked macromolecular matrix has a weight ratio of the hyaluronic acid component to the collagen component of about 1 to about 3.
13. The dermal filler of claim 10 wherein the crosslinked macromolecular matrix has a weight ratio of the hyaluronic acid component to the collagen component of about 1 to about 7.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/667,581 US20130244943A1 (en) | 2011-09-06 | 2012-11-02 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
PCT/US2012/071835 WO2013101939A1 (en) | 2011-12-28 | 2012-12-27 | Hyalruonic acid-collagen matrices for tissue engineering |
US13/728,855 US20130116190A1 (en) | 2011-09-06 | 2012-12-27 | Hyaluronic acid-collagen matrices for tissue engineering |
EP22195056.1A EP4122441A1 (en) | 2012-01-13 | 2013-01-11 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
PCT/US2013/021243 WO2013106715A1 (en) | 2012-01-13 | 2013-01-11 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
EP13701534.3A EP2802308A1 (en) | 2012-01-13 | 2013-01-11 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US13/740,712 US20130129835A1 (en) | 2011-09-06 | 2013-01-14 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US14/535,033 US9662422B2 (en) | 2011-09-06 | 2014-11-06 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US14/962,897 US9821086B2 (en) | 2011-09-06 | 2015-12-08 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US15/494,991 US9782517B2 (en) | 2011-09-06 | 2017-04-24 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US15/609,967 US9795711B2 (en) | 2011-09-06 | 2017-05-31 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US15/686,444 US20170348463A1 (en) | 2011-09-06 | 2017-08-25 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US15/727,916 US10434214B2 (en) | 2011-09-06 | 2017-10-09 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US16/527,804 US11844878B2 (en) | 2011-09-06 | 2019-07-31 | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US16/595,481 US11833269B2 (en) | 2011-09-06 | 2019-10-08 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161531533P | 2011-09-06 | 2011-09-06 | |
US201161555970P | 2011-11-04 | 2011-11-04 | |
US13/603,213 US20130116411A1 (en) | 2011-09-06 | 2012-09-04 | Methods of making hyaluronic acid/collagen compositions |
US13/605,565 US20130116188A1 (en) | 2011-09-06 | 2012-09-06 | Implantable hyaluronic acid/collagen compositions |
US13/667,581 US20130244943A1 (en) | 2011-09-06 | 2012-11-02 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/605,565 Continuation-In-Part US20130116188A1 (en) | 2011-09-06 | 2012-09-06 | Implantable hyaluronic acid/collagen compositions |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/728,855 Continuation-In-Part US20130116190A1 (en) | 2011-09-06 | 2012-12-27 | Hyaluronic acid-collagen matrices for tissue engineering |
US14/962,897 Division US9821086B2 (en) | 2011-09-06 | 2015-12-08 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130244943A1 true US20130244943A1 (en) | 2013-09-19 |
Family
ID=49158184
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/667,581 Abandoned US20130244943A1 (en) | 2011-09-06 | 2012-11-02 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US14/962,897 Active US9821086B2 (en) | 2011-09-06 | 2015-12-08 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US15/609,967 Active US9795711B2 (en) | 2011-09-06 | 2017-05-31 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US15/727,916 Active US10434214B2 (en) | 2011-09-06 | 2017-10-09 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US16/595,481 Active US11833269B2 (en) | 2011-09-06 | 2019-10-08 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/962,897 Active US9821086B2 (en) | 2011-09-06 | 2015-12-08 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US15/609,967 Active US9795711B2 (en) | 2011-09-06 | 2017-05-31 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US15/727,916 Active US10434214B2 (en) | 2011-09-06 | 2017-10-09 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US16/595,481 Active US11833269B2 (en) | 2011-09-06 | 2019-10-08 | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
Country Status (1)
Country | Link |
---|---|
US (5) | US20130244943A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8697059B2 (en) | 2010-08-19 | 2014-04-15 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US8853184B2 (en) | 2007-11-30 | 2014-10-07 | Allergan, Inc. | Polysaccharide gel formulation having increased longevity |
US8921338B2 (en) | 2010-03-12 | 2014-12-30 | Allergan Industrie, Sas | Fluid compositions for improving skin conditions |
US9089519B2 (en) | 2008-08-04 | 2015-07-28 | Allergan Industrie Sas | Hyaluronic acid-based gels including lidocaine |
US9228027B2 (en) | 2008-09-02 | 2016-01-05 | Allergan Holdings France S.A.S. | Threads of Hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof |
US9265761B2 (en) | 2007-11-16 | 2016-02-23 | Allergan, Inc. | Compositions and methods for treating purpura |
US9333160B2 (en) | 2010-01-13 | 2016-05-10 | Allergan Industrie, Sas | Heat stable hyaluronic acid compositions for dermatological use |
US20160199537A1 (en) * | 2014-08-28 | 2016-07-14 | Mimedx Group, Inc. | Collagen reinforced tissue grafts |
US9393263B2 (en) | 2011-06-03 | 2016-07-19 | Allergan, Inc. | Dermal filler compositions including antioxidants |
US9408797B2 (en) | 2011-06-03 | 2016-08-09 | Allergan, Inc. | Dermal filler compositions for fine line treatment |
US9662422B2 (en) | 2011-09-06 | 2017-05-30 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US9737633B2 (en) | 2011-06-03 | 2017-08-22 | Allergan, Inc. | Dermal filler compositions including antioxidants |
US10434214B2 (en) | 2011-09-06 | 2019-10-08 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US10722444B2 (en) | 2014-09-30 | 2020-07-28 | Allergan Industrie, Sas | Stable hydrogel compositions including additives |
US10905797B2 (en) | 2010-03-22 | 2021-02-02 | Allergan, Inc. | Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation |
CN112587721A (en) * | 2020-12-30 | 2021-04-02 | 广州益诚生物科技有限公司 | Injection filling material and preparation process thereof |
IT201900024208A1 (en) | 2019-12-17 | 2021-06-17 | Altergon Sa | INJECTABLE MIXTURES OF HYALURONIC ACID FOR USE IN DERMOESTHETICS |
US11083684B2 (en) | 2011-06-03 | 2021-08-10 | Allergan Industrie, Sas | Dermal filler compositions |
CN114042193A (en) * | 2021-11-22 | 2022-02-15 | 上海交通大学 | Crosslinked sodium hyaluronate gel filler for injection |
US11684700B2 (en) | 2014-08-15 | 2023-06-27 | The Johns Hopkins University | Composite material for tissue restoration |
US11771807B2 (en) | 2018-05-09 | 2023-10-03 | The Johns Hopkins University | Nanofiber-hydrogel composites for cell and tissue delivery |
US12036339B2 (en) | 2018-05-09 | 2024-07-16 | The Johns Hopkins University | Nanofiber-hydrogel composites for enhanced soft tissue replacement and regeneration |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11324854B2 (en) | 2017-11-17 | 2022-05-10 | Altergon Sa | Resorbable implantable device based on crosslinked glycosaminoglycans, and process for the preparation thereof |
KR20210005945A (en) | 2018-05-03 | 2021-01-15 | 콜플랜트 리미티드 | Dermal filler and its application |
WO2022213101A1 (en) * | 2021-04-01 | 2022-10-06 | Vitrean Inc. | Methods for manufacturing of highly concentrated hydrogels |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080501A (en) * | 2000-09-08 | 2002-03-19 | Japan Science & Technology Corp | Glycosaminoglycan-polycation complex for matrix of anagenesis and method for producing the same |
WO2010003104A2 (en) * | 2008-07-02 | 2010-01-07 | Allergan, Inc. | Compositions and methods for tissue filling and regeneration |
Family Cites Families (328)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2128827A (en) | 1938-03-09 | 1938-08-30 | Frank B Killian | Method and apparatus for manufacturing thin rubber articles |
CA807629A (en) | 1966-06-30 | 1969-03-04 | Eigen Edward | Lotion and detergent compositions |
JPS4838158B1 (en) | 1970-10-05 | 1973-11-15 | ||
CA949965A (en) | 1971-12-03 | 1974-06-25 | Robert H. Marchessault | Method of preparing cross-linked starch and starch derivatives |
US3949073A (en) | 1974-11-18 | 1976-04-06 | The Board Of Trustees Of Leland Stanford Junior University | Process for augmenting connective mammalian tissue with in situ polymerizable native collagen solution |
US4060081A (en) | 1975-07-15 | 1977-11-29 | Massachusetts Institute Of Technology | Multilayer membrane useful as synthetic skin |
US4233360A (en) | 1975-10-22 | 1980-11-11 | Collagen Corporation | Non-antigenic collagen and articles of manufacture |
CA1073360A (en) | 1975-10-22 | 1980-03-11 | John R. Daniels | Non-antigenic collagen and articles of manufacture |
JPS55153711A (en) | 1979-05-19 | 1980-11-29 | Pola Chem Ind Inc | Cosmetic lotion |
US4279812A (en) | 1979-09-12 | 1981-07-21 | Seton Company | Process for preparing macromolecular biologically active collagen |
JPS6052129B2 (en) | 1979-10-04 | 1985-11-18 | 呉羽化学工業株式会社 | Manufacturing method of medical collagen fiber |
US4424208A (en) | 1982-01-11 | 1984-01-03 | Collagen Corporation | Collagen implant material and method for augmenting soft tissue |
US4582640A (en) | 1982-03-08 | 1986-04-15 | Collagen Corporation | Injectable cross-linked collagen implant material |
US4501306A (en) | 1982-11-09 | 1985-02-26 | Collagen Corporation | Automatic syringe filling system |
SE442820B (en) | 1984-06-08 | 1986-02-03 | Pharmacia Ab | GEL OF THE CROSS-BOND HYALURONIC ACID FOR USE AS A GLASS BODY SUBSTITUTE |
SE456346B (en) | 1984-07-23 | 1988-09-26 | Pharmacia Ab | GEL TO PREVENT ADHESION BETWEEN BODY TISSUE AND SET FOR ITS PREPARATION |
GB8418772D0 (en) | 1984-07-24 | 1984-08-30 | Geistlich Soehne Ag | Chemical substances |
US4636524A (en) | 1984-12-06 | 1987-01-13 | Biomatrix, Inc. | Cross-linked gels of hyaluronic acid and products containing such gels |
US4582865A (en) | 1984-12-06 | 1986-04-15 | Biomatrix, Inc. | Cross-linked gels of hyaluronic acid and products containing such gels |
US4605691A (en) | 1984-12-06 | 1986-08-12 | Biomatrix, Inc. | Cross-linked gels of hyaluronic acid and products containing such gels |
SE8501022L (en) | 1985-03-01 | 1986-09-02 | Pharmacia Ab | FORMAT CREATES AND PROCEDURES FOR ITS PREPARATION |
US4713448A (en) | 1985-03-12 | 1987-12-15 | Biomatrix, Inc. | Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues |
US4642117A (en) | 1985-03-22 | 1987-02-10 | Collagen Corporation | Mechanically sheared collagen implant material and method |
US4803075A (en) | 1986-06-25 | 1989-02-07 | Collagen Corporation | Injectable implant composition having improved intrudability |
FR2608456B1 (en) | 1986-12-18 | 1993-06-18 | Mero Rousselot Satia | MICROCAPSULES BASED ON GELATIN AND POLYSACCHARIDES AND PROCESS FOR OBTAINING THEM |
US5385938B1 (en) | 1986-12-23 | 1997-07-15 | Tristrata Inc | Method of using glycolic acid for treating wrinkles |
US5091171B2 (en) | 1986-12-23 | 1997-07-15 | Tristrata Inc | Amphoteric compositions and polymeric forms of alpha hydroxyacids and their therapeutic use |
FR2623167B2 (en) | 1987-08-14 | 1992-08-07 | Genus Int | IMPROVEMENT IN ARTICLES WITH ELASTIC ARTICULATIONS RIGIDIFYING ON THEIR TENSIONING |
US5017229A (en) | 1990-06-25 | 1991-05-21 | Genzyme Corporation | Water insoluble derivatives of hyaluronic acid |
US6174999B1 (en) | 1987-09-18 | 2001-01-16 | Genzyme Corporation | Water insoluble derivatives of polyanionic polysaccharides |
IT1219587B (en) | 1988-05-13 | 1990-05-18 | Fidia Farmaceutici | SELF-CROSS-LINKED CARBOXYLY POLYSACCHARIDES |
US5614587A (en) | 1988-11-21 | 1997-03-25 | Collagen Corporation | Collagen-based bioadhesive compositions |
US5565519A (en) | 1988-11-21 | 1996-10-15 | Collagen Corporation | Clear, chemically modified collagen-synthetic polymer conjugates for ophthalmic applications |
US5510418A (en) | 1988-11-21 | 1996-04-23 | Collagen Corporation | Glycosaminoglycan-synthetic polymer conjugates |
US5162430A (en) | 1988-11-21 | 1992-11-10 | Collagen Corporation | Collagen-polymer conjugates |
US5643464A (en) | 1988-11-21 | 1997-07-01 | Collagen Corporation | Process for preparing a sterile, dry crosslinking agent |
SE462587B (en) | 1988-11-30 | 1990-07-23 | Wiklund Henry & Co | DEVICE FOR MARKING THE WORK PAPER WITH WRITTEN OR OTHER SIGNS |
JPH02215707A (en) | 1989-02-15 | 1990-08-28 | Chisso Corp | Skin cosmetic |
DE69019779T2 (en) | 1989-05-19 | 1995-12-14 | Hayashibara Biochem Lab | Alpha-glycosyl-L-ascorbic acid and its production and uses. |
US5356883A (en) | 1989-08-01 | 1994-10-18 | Research Foundation Of State University Of N.Y. | Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use |
EP0416250A3 (en) | 1989-08-01 | 1991-08-28 | The Research Foundation Of State University Of New York | N-acylurea and o-acylisourea derivatives of hyaluronic acid |
CA2023922A1 (en) | 1989-09-05 | 1991-03-06 | James M. Curtis | Method of manufacturing an implantable article provided with a micropillared surface |
JP2832848B2 (en) | 1989-10-21 | 1998-12-09 | 株式会社林原生物化学研究所 | Crystal 2-O-α-D-glucopyranosyl-L-ascorbic acid, its production method and use |
US5246698A (en) | 1990-07-09 | 1993-09-21 | Biomatrix, Inc. | Biocompatible viscoelastic gel slurries, their preparation and use |
US5143724A (en) | 1990-07-09 | 1992-09-01 | Biomatrix, Inc. | Biocompatible viscoelastic gel slurries, their preparation and use |
JP3115625B2 (en) | 1991-03-30 | 2000-12-11 | 帝國製薬株式会社 | Topical patch containing lidocaine |
US5314874A (en) | 1991-04-19 | 1994-05-24 | Koken Co., Ltd. | Intracorporeally injectable composition for implanting highly concentrated cross-linked atelocollagen |
EP0632820B1 (en) | 1992-02-28 | 2000-05-17 | Collagen Corporation | High concentration homogenized collagen compositions |
IT1260154B (en) | 1992-07-03 | 1996-03-28 | Lanfranco Callegaro | HYALURONIC ACID AND ITS DERIVATIVES IN INTERPENETRATING POLYMERS (IPN) |
ATE152784T1 (en) | 1993-01-20 | 1997-05-15 | Squibb & Sons Inc | FIBERS |
CA2158638C (en) | 1993-03-19 | 1999-11-30 | Bengt Agerup | A composition and a method for tissue augmentation |
US5531716A (en) | 1993-09-29 | 1996-07-02 | Hercules Incorporated | Medical devices subject to triggered disintegration |
US5616568A (en) | 1993-11-30 | 1997-04-01 | The Research Foundation Of State University Of New York | Functionalized derivatives of hyaluronic acid |
CA2140053C (en) | 1994-02-09 | 2000-04-04 | Joel S. Rosenblatt | Collagen-based injectable drug delivery system and its use |
CA2146090C (en) | 1994-05-10 | 1998-11-24 | Mark E. Mitchell | Apparatus and method of mixing materials in a sterile environment |
US5616689A (en) | 1994-07-13 | 1997-04-01 | Collagen Corporation | Method of controlling structure stability of collagen fibers produced form solutions or dispersions treated with sodium hydroxide for infectious agent deactivation |
AU706434B2 (en) | 1994-10-18 | 1999-06-17 | Ethicon Inc. | Injectable liquid copolymers for soft tissue repair and augmentation |
US20050186673A1 (en) | 1995-02-22 | 2005-08-25 | Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie | Collagen carrier of therapeutic genetic material, and method |
US6962979B1 (en) | 1995-03-14 | 2005-11-08 | Cohesion Technologies, Inc. | Crosslinkable biomaterial compositions containing hydrophobic and hydrophilic crosslinking agents |
US5972326A (en) | 1995-04-18 | 1999-10-26 | Galin; Miles A. | Controlled release of pharmaceuticals in the anterior chamber of the eye |
FR2733427B1 (en) | 1995-04-25 | 2001-05-25 | W K Et Associes | INJECTABLE BIPHASIC COMPOSITIONS CONTAINING HYALURONIC ACID, ESPECIALLY USEFUL IN REPAIRING AND AESTHETIC SURGERIES |
FR2733426B1 (en) | 1995-04-25 | 1997-07-18 | Debacker Yves | MEDICAL DEVICE FOR FILLING SKIN VOLUME DEFORMATIONS SUCH AS WRINKLES AND SCARS BY INJECTION OF 2 DIFFERENT PHYSICO-CHEMICAL FORMS OF A BIOLOGICAL POLYMER |
US6214331B1 (en) | 1995-06-06 | 2001-04-10 | C. R. Bard, Inc. | Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained |
US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
US5827937A (en) | 1995-07-17 | 1998-10-27 | Q Med Ab | Polysaccharide gel composition |
US5571503A (en) | 1995-08-01 | 1996-11-05 | Mausner; Jack | Anti-pollution cosmetic composition |
US6063405A (en) | 1995-09-29 | 2000-05-16 | L.A.M. Pharmaceuticals, Llc | Sustained release delivery system |
US6833408B2 (en) | 1995-12-18 | 2004-12-21 | Cohesion Technologies, Inc. | Methods for tissue repair using adhesive materials |
IT1277707B1 (en) | 1995-12-22 | 1997-11-11 | Chemedica Sa | OPHTHALMIC FORMULATION BASED ON SODIUM HYALURONATE FOR USE IN OCULAR SURGERY |
US5980948A (en) | 1996-08-16 | 1999-11-09 | Osteotech, Inc. | Polyetherester copolymers as drug delivery matrices |
US6066325A (en) | 1996-08-27 | 2000-05-23 | Fusion Medical Technologies, Inc. | Fragmented polymeric compositions and methods for their use |
FR2752843B1 (en) | 1996-08-30 | 1998-10-16 | Sod Conseils Rech Applic | CROSSLINKED COPOLYMERS BASED ON POLYCARBOXYLIC POLYMERS AND THEIR USE AS SUPPORTS OF PHARMACEUTICAL COMPOSITIONS |
IT1287967B1 (en) | 1996-10-17 | 1998-09-10 | Fidia Spa In Amministrazione S | PHARMACEUTICAL PREPARATIONS FOR LOCAL ANESTHETIC USE |
US5866165A (en) | 1997-01-15 | 1999-02-02 | Orquest, Inc. | Collagen-polysaccharide matrix for bone and cartilage repair |
FR2759576B1 (en) | 1997-02-17 | 1999-08-06 | Corneal Ind | PRE-DESCEMETIC SCLERO-KERATECTOMY IMPLANT |
FR2759577B1 (en) | 1997-02-17 | 1999-08-06 | Corneal Ind | DEEP SCLERECTOMY IMPLANT |
US7767452B2 (en) | 1997-02-20 | 2010-08-03 | Kleinsek Don A | Tissue treatments with adipocyte cells |
US5935164A (en) | 1997-02-25 | 1999-08-10 | Pmt Corporaton | Laminated prosthesis and method of manufacture |
FR2764514B1 (en) | 1997-06-13 | 1999-09-03 | Biopharmex Holding Sa | IMPLANT INJECTED IN SUBCUTANEOUS OR INTRADERMAL WITH CONTROLLED BIORESORBABILITY FOR REPAIR OR PLASTIC SURGERY AND AESTHETIC DERMATOLOGY |
US7192984B2 (en) | 1997-06-17 | 2007-03-20 | Fziomed, Inc. | Compositions of polyacids and polyethers and methods for their use as dermal fillers |
US6391336B1 (en) | 1997-09-22 | 2002-05-21 | Royer Biomedical, Inc. | Inorganic-polymer complexes for the controlled release of compounds including medicinals |
FR2780730B1 (en) | 1998-07-01 | 2000-10-13 | Corneal Ind | INJECTABLE BIPHASIC COMPOSITIONS, ESPECIALLY USEFUL IN RESTORATIVE AND AESTHETIC SURGERIES |
ITPD980169A1 (en) | 1998-07-06 | 2000-01-06 | Fidia Advanced Biopolymers Srl | AMIDES OF HYALURONIC ACID AND ITS DERIVATIVES AND PROCESS FOR THEIR PREPARATION. |
US6129751A (en) | 1998-07-28 | 2000-10-10 | Intermedics Inc. | Cardiac lead with active fixation and biocompatible lubricant |
IT1301994B1 (en) | 1998-08-05 | 2000-07-20 | Jasper Ltd Liability Co | HYALURONIC ACID DERIVATIVES. |
US6630457B1 (en) | 1998-09-18 | 2003-10-07 | Orthogene Llc | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
IT1303738B1 (en) | 1998-11-11 | 2001-02-23 | Aquisitio S P A | CARBOXYLATE POLYSACCHARIDE CROSS-LINKING PROCESS. |
DK172900B1 (en) | 1998-12-18 | 1999-09-27 | Per Julius Nielsen | Preparation and kit for use in intraocular surgery |
GB9902652D0 (en) | 1999-02-05 | 1999-03-31 | Fermentech Med Ltd | Process |
CA2299692C (en) | 1999-03-01 | 2007-09-18 | Johnson & Johnson Vision Care, Inc. | Method of sterilization |
US6767928B1 (en) | 1999-03-19 | 2004-07-27 | The Regents Of The University Of Michigan | Mineralization and biological modification of biomaterial surfaces |
US7015198B1 (en) | 1999-05-11 | 2006-03-21 | Orentreich Foundation For The Advancement Of Science, Inc. | Materials for soft tissue augmentation and methods of making and using same |
US6372494B1 (en) | 1999-05-14 | 2002-04-16 | Advanced Tissue Sciences, Inc. | Methods of making conditioned cell culture medium compositions |
US6521223B1 (en) | 2000-02-14 | 2003-02-18 | Genzyme Corporation | Single phase gels for the prevention of adhesions |
US6682760B2 (en) | 2000-04-18 | 2004-01-27 | Colbar R&D Ltd. | Cross-linked collagen matrices and methods for their preparation |
KR20010096388A (en) | 2000-04-19 | 2001-11-07 | 진세훈 | Human glans enhancing materials and glans enhancing method |
US6991652B2 (en) | 2000-06-13 | 2006-01-31 | Burg Karen J L | Tissue engineering composite |
DK1294414T3 (en) | 2000-06-29 | 2006-07-24 | Biosyntech Canada Inc | Preparation and method of healing and regenerating cartilage and other tissues |
FR2811671B1 (en) | 2000-07-17 | 2003-02-28 | Corneal Ind | POLYMER (S) HYDROGEL, BIODEGRATION RESISTANT, PREPARATION AND USE AS TISSUE REGENERATION SUPPORT |
FR2811996B1 (en) | 2000-07-19 | 2003-08-08 | Corneal Ind | CROSS-LINKING OF POLYSACCHARIDE (S), PREPARATION OF HYDROGEL (S); POLYSACCHARIDE (S) AND HYDROGEL (S) OBTAINED, THEIR USES |
WO2002009792A1 (en) | 2000-07-28 | 2002-02-07 | Anika Therapeutics, Inc. | Bioabsorbable composites of derivatized hyaluronic acid |
US6773723B1 (en) | 2000-08-30 | 2004-08-10 | Depuy Acromed, Inc. | Collagen/polysaccharide bilayer matrix |
US6620196B1 (en) | 2000-08-30 | 2003-09-16 | Sdgi Holdings, Inc. | Intervertebral disc nucleus implants and methods |
US6924273B2 (en) | 2000-10-03 | 2005-08-02 | Scott W. Pierce | Chondroprotective/restorative compositions and methods of use thereof |
CA2424896A1 (en) | 2000-10-06 | 2002-04-11 | Jagotec Ag | A controlled-release, parenterally administrable microparticle preparation |
KR100375299B1 (en) | 2000-10-10 | 2003-03-10 | 주식회사 엘지생명과학 | Crosslinked derivatives of hyaluronic acid by amide formation and their preparation methods |
EP1404516A2 (en) | 2000-12-13 | 2004-04-07 | Purdue Research Foundation | Microencapsulation of drugs by solvent exchange |
US6979440B2 (en) | 2001-01-29 | 2005-12-27 | Salvona, Llc | Compositions and method for targeted controlled delivery of active ingredients and sensory markers onto hair, skin, and fabric |
AUPR289601A0 (en) | 2001-02-05 | 2001-03-01 | Commonwealth Scientific And Industrial Research Organisation | Method of tissue repair |
US7119062B1 (en) | 2001-02-23 | 2006-10-10 | Neucoll, Inc. | Methods and compositions for improved articular surgery using collagen |
TW574301B (en) | 2001-05-02 | 2004-02-01 | Ind Tech Res Inst | Manufacturing method of epoxide crosslinked polysaccharides matrix |
US20050227936A1 (en) | 2001-05-18 | 2005-10-13 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA) |
IL159624A0 (en) | 2001-06-29 | 2004-06-01 | Medgraft Microtech Inc | Biodegradable injectable implants and related methods of manufacture and use |
US6749841B2 (en) | 2001-07-26 | 2004-06-15 | Revlon Consumer Products Corporation | Stabilized aqueous acidic antiperspirant compositions and related methods |
JP4230135B2 (en) | 2001-08-21 | 2009-02-25 | 独立行政法人科学技術振興機構 | Method for producing glycosaminoglycan-collagen complex cross-linked by multifunctional cross-linking agent |
US7651684B2 (en) | 2001-12-07 | 2010-01-26 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in augmenting autologous fat transfer |
US20060189516A1 (en) | 2002-02-19 | 2006-08-24 | Industrial Technology Research Institute | Method for producing cross-linked hyaluronic acid-protein bio-composites |
AU2003215330B2 (en) | 2002-02-21 | 2008-03-13 | Encelle, Inc. | Immobilized bioactive hydrogel matrices as surface coatings |
JP3916516B2 (en) | 2002-06-10 | 2007-05-16 | 独立行政法人科学技術振興機構 | Scaffolding material for hard tissue-soft tissue interface regeneration |
US6780366B2 (en) | 2002-08-15 | 2004-08-24 | Mentor Corporation | Drip retainer |
KR100523953B1 (en) | 2002-08-27 | 2005-10-25 | 주식회사 엘지생명과학 | Microbeads of natural polysaccharide and hyaluronic acid and processes for preparing the same |
KR100507545B1 (en) | 2002-09-03 | 2005-08-09 | 주식회사 엘지생명과학 | Hyaluronic acid derivatives and processes for preparing them |
US20040127932A1 (en) | 2002-09-12 | 2004-07-01 | Shah Tilak M. | Dip-molded polymeric medical devices with reverse thickness gradient, and method of making same |
DE10246340A1 (en) | 2002-10-04 | 2004-04-29 | Wohlrab, David, Dr. | Combination preparation of hyaluronic acid and at least one local anesthetic and its use |
US20040101959A1 (en) | 2002-11-21 | 2004-05-27 | Olga Marko | Treatment of tissue with undifferentiated mesenchymal cells |
US20040199241A1 (en) | 2002-12-30 | 2004-10-07 | Angiotech International Ag | Silk stent grafts |
TWI251596B (en) | 2002-12-31 | 2006-03-21 | Ind Tech Res Inst | Method for producing a double-crosslinked hyaluronate material |
AU2004208821B2 (en) | 2003-01-31 | 2009-01-15 | Zimmer Orthobiologics Inc. | Hydrogel compositions comprising nucleus pulposus tissue |
WO2004067575A1 (en) | 2003-01-31 | 2004-08-12 | Biosphere S.P.A. | Water soluble and biocompatible gels of hyaluronic acid cross-linked with bi-functional l-aminoacids or l-aminoesters |
AU2003206922A1 (en) | 2003-02-19 | 2004-09-09 | Aventis Pharmaceuticals Holdings Inc. | Composition and method for intradermal soft tissue augmentation |
JP2006521180A (en) | 2003-03-25 | 2006-09-21 | バイオキュア・インコーポレーテッド | Medical device with hydrogel yarn |
FR2861734B1 (en) | 2003-04-10 | 2006-04-14 | Corneal Ind | CROSSLINKING OF LOW AND HIGH MOLECULAR MASS POLYSACCHARIDES; PREPARATION OF INJECTABLE SINGLE PHASE HYDROGELS; POLYSACCHARIDES AND HYDROGELS OBTAINED |
AU2003901834A0 (en) | 2003-04-17 | 2003-05-01 | Clearcoll Pty Ltd | Cross-linked polysaccharide compositions |
JP2004323453A (en) | 2003-04-25 | 2004-11-18 | Chisso Corp | Decomposable gel and method for producing the same |
JP4208843B2 (en) | 2003-05-13 | 2009-01-14 | 三益半導体工業株式会社 | Wafer isolation method, wafer isolation apparatus, and wafer isolation transfer machine |
RU2360928C2 (en) | 2003-07-30 | 2009-07-10 | Антэ С.А. | Complex matrix for medico-biological application |
EP1660013A4 (en) | 2003-08-26 | 2011-07-20 | Gel Del Technologies Inc | Protein biomaterials and biocoacervates and methods of making and using thereof |
EP1677846B1 (en) | 2003-10-22 | 2014-08-20 | Encelle, Inc. | Bioactive hydrogel compositions for regenerating connective tissue |
ES2406555T3 (en) | 2003-10-29 | 2013-06-07 | Teijin Limited | Composed of hyaluronic acid, hydrogel thereof and material to treat joints |
EP1691852A2 (en) | 2003-11-10 | 2006-08-23 | Angiotech International AG | Medical implants and fibrosis-inducing agents |
US20060141049A1 (en) | 2003-11-12 | 2006-06-29 | Allergan, Inc. | Triamcinolone compositions for intravitreal administration to treat ocular conditions |
US20090148527A1 (en) | 2007-12-07 | 2009-06-11 | Robinson Michael R | Intraocular formulation |
US20050101582A1 (en) | 2003-11-12 | 2005-05-12 | Allergan, Inc. | Compositions and methods for treating a posterior segment of an eye |
US20070224278A1 (en) | 2003-11-12 | 2007-09-27 | Lyons Robert T | Low immunogenicity corticosteroid compositions |
AU2004293463A1 (en) | 2003-11-20 | 2005-06-09 | Angiotech International Ag | Implantable sensors and implantable pumps and anti-scarring agents |
US7316822B2 (en) | 2003-11-26 | 2008-01-08 | Ethicon, Inc. | Conformable tissue repair implant capable of injection delivery |
EP1535952B1 (en) | 2003-11-28 | 2013-01-16 | Universite Louis Pasteur | Method for preparing crosslinked polyelectrolyte multilayer films |
US8124120B2 (en) | 2003-12-22 | 2012-02-28 | Anika Therapeutics, Inc. | Crosslinked hyaluronic acid compositions for tissue augmentation |
US8524213B2 (en) | 2003-12-30 | 2013-09-03 | Genzyme Corporation | Polymeric materials, their preparation and use |
WO2005066215A1 (en) | 2003-12-30 | 2005-07-21 | Genzyme Corporation | Cohesive gels form cross-linked hyaluronan and/or hylan, their preparation and use |
DE102004002001A1 (en) | 2004-01-14 | 2005-08-11 | Reinmüller, Johannes, Dr.med. | Agent for the treatment of inflammatory diseases |
CN1897930A (en) | 2004-01-30 | 2007-01-17 | 血管技术国际股份公司 | Compositions and methods for treating contracture |
FR2865737B1 (en) | 2004-02-03 | 2006-03-31 | Anteis Sa | BIOCOMPATIBLE RETICLE GEL |
US20050226936A1 (en) | 2004-04-08 | 2005-10-13 | Q-Med Ab | Method of soft tissue augmentation |
US8288362B2 (en) | 2004-05-07 | 2012-10-16 | S.K. Pharmaceuticals, Inc. | Stabilized glycosaminoglycan preparations and related methods |
US7651702B2 (en) | 2004-05-20 | 2010-01-26 | Mentor Corporation | Crosslinking hyaluronan and chitosanic polymers |
WO2005112888A2 (en) | 2004-05-20 | 2005-12-01 | Mentor Corporation | Methods for making injectable polymer hydrogels |
JP2008502690A (en) | 2004-06-15 | 2008-01-31 | アンドリュー シァン チェン, | Phospholipid composition and methods for its preparation and use |
FR2873379B1 (en) | 2004-07-23 | 2008-05-16 | Jerome Asius | PROCESS FOR THE PREPARATION OF RETICULATED HYALURONIC ACID, RETICULATED HYALURONIC ACID WHICH CAN BE OBTAINED BY THIS METHOD, IMPLANT CONTAINING THE RETICULATED HYALURONIC ACID, AND USE THEREOF |
CN101018513B (en) | 2004-08-13 | 2011-11-16 | 渥太华健康研究所 | Vision enhancing ophthalmic devices and related methods and compositions |
BRPI0515191A (en) | 2004-08-13 | 2008-07-08 | Angiotech Internac Ag | pharmaceutical composition, method for augmenting bone or replacing bone loss, method for reducing pain associated with postoperative scarring, method for preventing surgical adhesion, method for enlarging or repairing skin or tissue, method for maintaining eye fluid volume during eye surgery , method for reducing pain associated with osteoarthritis, method for treating gastroesophageal reflux disease, method for treating or preventing urinary incontinence, method for treating or preventing fecal incontinence, implant method and medical device |
US20060040895A1 (en) | 2004-08-19 | 2006-02-23 | Kipling Thacker | Aesthetic use of hyaluronan |
US7318822B2 (en) | 2004-09-03 | 2008-01-15 | Diros Technology Inc. | Hybrid cannula/electrode medical device and method |
US7414021B2 (en) | 2004-10-01 | 2008-08-19 | Vincent Carmine Giampapa | Method and composition for restoration of age related tissue loss in the face or selected areas of the body |
KR100762928B1 (en) | 2004-10-29 | 2007-10-04 | 재단법인서울대학교산학협력재단 | Nonwoven Nanofibrous Membranes of Silk Fibroin for Guided Bone Tissue Regeneration and Their Preparation Method |
NO20044818D0 (en) | 2004-11-05 | 2004-11-05 | Bioforsk As | Spermine in cosmetic preparations |
US20060105022A1 (en) | 2004-11-15 | 2006-05-18 | Shiseido Co., Ltd. | Process for preparing crosslinked hyaluronic acid gel |
EP1817347B1 (en) | 2004-11-24 | 2017-05-17 | Albumedix A/S | Method of cross-linking hyaluronic acid with divinylsulfone |
FR2878444B1 (en) | 2004-11-30 | 2008-04-25 | Corneal Ind Soc Par Actions Si | VISCOELASTIC SOLUTIONS COMPRISING SODIUM HYALURONATE AND HYDROXYPROPYLMETHYLCELLULOSE, PREPARATION AND USES |
WO2006067608A1 (en) | 2004-12-22 | 2006-06-29 | Laboratoire Medidom S.A. | Aqueous formulations based on sodium hyaluronate for parenteral use |
WO2006122183A2 (en) | 2005-05-10 | 2006-11-16 | Cytophil, Inc. | Injectable hydrogels and methods of making and using same |
EP1726299A3 (en) | 2005-05-27 | 2007-04-18 | StratoSphere Pharma AB | Cores and microcapsules suitable for parenteral administration as well as process for their manufacture |
US20090317376A1 (en) | 2005-06-06 | 2009-12-24 | Georgetown University Medical School | Compositions And Methods For Lipo Modeling |
US7491709B2 (en) | 2005-07-01 | 2009-02-17 | Wayne Carey | Treatment with hyaluronic acid |
JP4329738B2 (en) | 2005-07-14 | 2009-09-09 | セイコーエプソン株式会社 | Liquid crystal device manufacturing apparatus and liquid crystal device manufacturing method |
CN101232891A (en) | 2005-08-11 | 2008-07-30 | 株式会社林原生物化学研究所 | Agent for enhancing collagen production and utilization of the same |
JP4982718B2 (en) | 2005-08-31 | 2012-07-25 | 株式会社林原 | Composition for oral intake for beautiful skin |
JP4902159B2 (en) | 2005-09-12 | 2012-03-21 | 日本板硝子株式会社 | Method for separating and collecting ceramic sintered body and glass |
ES2747978T3 (en) | 2005-10-03 | 2020-03-12 | Mark A Pinsky | Non-phospholipid liposomes comprising hyaluronic acid |
US20070104692A1 (en) | 2005-11-07 | 2007-05-10 | Quijano Rodolfo C | Breast tissue regeneration |
US20070104693A1 (en) | 2005-11-07 | 2007-05-10 | Quijano Rodolfo C | Breast augmentation system |
CA2633978A1 (en) | 2005-12-14 | 2007-06-21 | Anika Therapeutics, Inc. | Bioabsorbable implant of hyaluronic acid derivative for treatment of osteochondral and chondral defects |
WO2007070547A2 (en) | 2005-12-14 | 2007-06-21 | Anika Therapeutics, Inc. | Treatment of arthritis and other musculoskeletal disorders with crosslinked hyaluronic acid |
FR2894827B1 (en) | 2005-12-21 | 2010-10-29 | Galderma Res & Dev | PHARMACEUTICAL OR COSMETIC PREPARATIONS FOR TOPICAL AND / OR PARENTERAL APPLICATION, PROCESSES FOR THEIR PREPARATION, AND USES THEREOF |
FR2895907B1 (en) | 2006-01-06 | 2012-06-01 | Anteis Sa | VISCOELASTIC GEL FOR DERMATOLOGICAL USE |
US20070184087A1 (en) | 2006-02-06 | 2007-08-09 | Bioform Medical, Inc. | Polysaccharide compositions for use in tissue augmentation |
US20070212385A1 (en) | 2006-03-13 | 2007-09-13 | David Nathaniel E | Fluidic Tissue Augmentation Compositions and Methods |
US20070260054A1 (en) | 2006-03-15 | 2007-11-08 | Surmodics, Inc. | Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof |
FR2900575B1 (en) | 2006-05-05 | 2008-10-17 | Anteis Sa | BIOCOMPATIBLE CONTROLLED RELEASE GEL, PREPARATION METHOD AND USE THEREOF |
EP2543340A1 (en) | 2006-05-19 | 2013-01-09 | Trustees Of Boston University | Novel hydrophilic polymers as medical lubricants and gels |
US20070298005A1 (en) | 2006-06-22 | 2007-12-27 | Marie-Josee Thibault | Injectable composition for treatment of skin defects or deformations |
WO2008003321A2 (en) | 2006-07-07 | 2008-01-10 | Novozymes Biopolymer A/S | Compositions with several hyaluronic acid fractions for cosmetic use |
EP1884231A1 (en) | 2006-08-01 | 2008-02-06 | Auriga International S.A. | Cosmetic or pharmaceutical composition containing hyaluronic acid |
ITBA20060049A1 (en) | 2006-08-02 | 2008-02-03 | Pierre S R L | FOOD SUPPLEMENT BASED ON BIOLOGICAL LYCOPENE AND PROCEDURE FOR OBTAINING BIOLOGICAL LICOPENE. |
ITGE20060080A1 (en) | 2006-08-02 | 2008-02-03 | Mares Spa | BUCKLE, IN PARTICULAR FOR MASKS OR SIMILAR. |
ITMI20061726A1 (en) | 2006-09-11 | 2008-03-12 | Fidia Farmaceutici | CROSSLINKATI DERIVATIVES BASED ON HYALURONIC ACID RETICULATED VIA CLICK CHEMISTRY |
WO2008034176A1 (en) | 2006-09-19 | 2008-03-27 | Ultraceuticals R & D Pty Ltd | Cross-linked polysaccharide gels |
US8968272B2 (en) | 2006-10-06 | 2015-03-03 | Lipocosm Llc | Closed system and method for atraumatic, low pressure, continuous harvesting, processing, and grafting of lipoaspirate |
FR2908415B1 (en) | 2006-11-10 | 2009-01-23 | Abr Dev Sarl | RETICULATED HYALURONIC ACID AND PROCESS FOR PREPARING THE SAME |
WO2008063569A1 (en) | 2006-11-16 | 2008-05-29 | Coapt Systems, Inc. | Co-mixed human fat and gel suspension implant material |
US20080118310A1 (en) | 2006-11-20 | 2008-05-22 | Graham Robert G | All-ceramic heat exchangers, systems in which they are used and processes for the use of such systems |
FR2909560B1 (en) | 2006-12-06 | 2012-12-28 | Fabre Pierre Dermo Cosmetique | HYALURONIC ACID GEL FOR INTRADERMAL INJECTION |
JP5539727B2 (en) | 2006-12-11 | 2014-07-02 | チット2ジェル リミテッド | A novel injectable chitosan mixture forming a hydrogel |
KR100759091B1 (en) | 2006-12-13 | 2007-09-17 | 조강선 | Dermal filler composition |
WO2008077172A2 (en) | 2006-12-22 | 2008-07-03 | Croma-Pharma Gesellschaft M.B.H. | Use of polymers |
WO2008098007A1 (en) | 2007-02-05 | 2008-08-14 | Freedom-2, Inc. | Tissue fillers and methods of using the same |
WO2008098019A2 (en) | 2007-02-05 | 2008-08-14 | Carbylan Biosurgery, Inc. | Polymer formulations for delivery of bioactive agents |
US7776840B2 (en) | 2007-02-21 | 2010-08-17 | Cutanea Life Sciences, Inc. | Methods of use of biomaterial and injectable implant containing biomaterial |
US7939578B2 (en) | 2007-02-23 | 2011-05-10 | 3M Innovative Properties Company | Polymeric fibers and methods of making |
CL2008000596A1 (en) | 2007-03-01 | 2008-09-05 | Glaxo Group Ltd | DOSAGE FORM INCLUDING 1- (6 - [(3-CYCLLOBUTIL-2,3,4,5-TETRAHIDRO-1H-3-BENZAZEPIN-7-IL) OXI] -3-PIRIDINIL) -2-PIRROLIDINONA, A STABILIZER , A EXCIPIENT; PREPARATION PROCEDURE; AND ITS USE TO TREAT NEUROLOGICAL DISEASES. |
US8642067B2 (en) | 2007-04-02 | 2014-02-04 | Allergen, Inc. | Methods and compositions for intraocular administration to treat ocular conditions |
US11078262B2 (en) | 2007-04-30 | 2021-08-03 | Allergan, Inc. | High viscosity macromolecular compositions for treating ocular conditions |
US20100323985A1 (en) | 2007-05-11 | 2010-12-23 | Marc Moutet | Pharmaceutical or cosmetic preparations for topical and/or parenteral application, preparation methods thereof and use of same |
EP2155149A2 (en) | 2007-05-11 | 2010-02-24 | Galderma Research & Development | Pharmaceutical or cosmetic preparations for topical and/or parenteral application, preparation methods thereof and use of same |
AU2008256864A1 (en) | 2007-05-23 | 2008-12-04 | Allergan, Inc. | Coated hyaluronic acid particles |
EP2152743A2 (en) | 2007-05-23 | 2010-02-17 | Allergan, Inc. | Cross-linked collagen and uses thereof |
WO2008148071A2 (en) | 2007-05-24 | 2008-12-04 | Nidus2, Llc | Injectable dermis |
WO2008146071A2 (en) | 2007-05-29 | 2008-12-04 | Ljupce Trajkoski | Pump for exchange of heat using the heat capacity of the earth anc system for climatization |
DE602007010434D1 (en) | 2007-06-01 | 2010-12-23 | Allergan Inc | Device for generating tension-induced growth of biological tissue |
WO2008157608A1 (en) | 2007-06-18 | 2008-12-24 | Cartlix, Inc. | Composite scaffolds for tissue regeneration |
WO2009005790A2 (en) | 2007-06-29 | 2009-01-08 | Carbylan Biosurgery, Inc. | Sterile thiol-derivatized hyaluronic acid polymer compositions and uses thereof |
US8198245B2 (en) | 2007-07-27 | 2012-06-12 | Humacyte, Inc. | Compositions and methods for soft tissue augmentation |
US20110077737A1 (en) | 2007-07-30 | 2011-03-31 | Allergan, Inc. | Tunably Crosslinked Polysaccharide Compositions |
US8318695B2 (en) | 2007-07-30 | 2012-11-27 | Allergan, Inc. | Tunably crosslinked polysaccharide compositions |
US20120071437A1 (en) | 2007-07-30 | 2012-03-22 | Allergan, Inc. | Tunable crosslinked polysaccharide compositions |
FR2920000B1 (en) | 2007-08-13 | 2010-01-29 | Oreal | COSMETIC OR PHARMACEUTICAL COMPOSITION CONTAINING HYALURONIC ACID, AND COSMETIC PROCESS FOR DECREASING SIGNS OF AGING |
US8529897B2 (en) | 2007-08-16 | 2013-09-10 | Carnegie Mellon University | Inflammation-regulating compositions and methods |
EP2033689A1 (en) | 2007-08-22 | 2009-03-11 | Italfarmacia S.r.l. | Injectable dermatological composition for treatment of the wrinkles |
KR100813224B1 (en) | 2007-08-24 | 2008-03-13 | 한양대학교 산학협력단 | Thermo-reversible coacervate combination gels for protein delivery |
WO2009026764A1 (en) | 2007-08-27 | 2009-03-05 | Beijing Choice Electronic Technology Co., Ltd. | Wrist blood pressure meter with oximeter |
FR2920968B1 (en) | 2007-09-14 | 2009-11-13 | Oreal | COSMETIC PROCESS FOR AESTHETIC TREATMENT AND / OR REPAIR OF SKIN |
US8697044B2 (en) | 2007-10-09 | 2014-04-15 | Allergan, Inc. | Crossed-linked hyaluronic acid and collagen and uses thereof |
US7910134B2 (en) | 2007-10-29 | 2011-03-22 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8394784B2 (en) | 2007-11-30 | 2013-03-12 | Allergan, Inc. | Polysaccharide gel formulation having multi-stage bioactive agent delivery |
US20090143348A1 (en) | 2007-11-30 | 2009-06-04 | Ahmet Tezel | Polysaccharide gel compositions and methods for sustained delivery of drugs |
US8394782B2 (en) | 2007-11-30 | 2013-03-12 | Allergan, Inc. | Polysaccharide gel formulation having increased longevity |
KR100828494B1 (en) | 2007-12-06 | 2008-05-13 | (주)다림티센 | A composition of a cosmetic essense and the method of prepating it for improvenent of wrinkle |
FR2924615B1 (en) | 2007-12-07 | 2010-01-22 | Vivacy Lab | HYDROGEL COHESIVE BIODEGRADABLE. |
US9161970B2 (en) | 2007-12-12 | 2015-10-20 | Allergan, Inc. | Dermal filler |
US20090181104A1 (en) | 2007-12-14 | 2009-07-16 | Gino Rigotti | Breast reconstruction or augmentation using computer-modeled deposition of processed adipose tissue |
TW200927074A (en) | 2007-12-25 | 2009-07-01 | Univ Nat Taiwan | Colloidal frame used in tissue engineering |
AU2008345068A1 (en) | 2007-12-26 | 2009-07-09 | Mark A. Pinsky | Collagen formulations for improved skin care |
WO2009102452A2 (en) | 2008-02-11 | 2009-08-20 | The Johns Hopkins University | Compositions and methods for implantation of adipose tissue and adipose tissue products |
JP5178242B2 (en) | 2008-02-29 | 2013-04-10 | 株式会社東芝 | Energy storage device operation plan creation method and operation plan creation device |
US8420112B2 (en) | 2008-03-21 | 2013-04-16 | Paindure Ltd. | Solid dosage form for treating headaches |
US20090291986A1 (en) | 2008-05-22 | 2009-11-26 | Apostolos Pappas | Composition and method of treating facial skin defect |
US20090297632A1 (en) | 2008-06-02 | 2009-12-03 | Waugh Jacob M | Device, Methods and Compositions to Alter Light Interplay with Skin |
DE102008027486B4 (en) | 2008-06-10 | 2013-11-07 | Human Med Ag | Method and apparatus for separating tissue cells from a fluid |
DE102009055227B3 (en) | 2009-12-23 | 2011-06-22 | Human Med AG, 19061 | Method for conveying a fluid and device for generating a volume flow |
WO2010003797A1 (en) | 2008-07-09 | 2010-01-14 | Novozymes Biopharma Dk A/S | Hyaluronic acid for corneal wound healing |
US8450475B2 (en) | 2008-08-04 | 2013-05-28 | Allergan, Inc. | Hyaluronic acid-based gels including lidocaine |
JP5722217B2 (en) | 2008-09-02 | 2015-05-20 | アラーガン・ホールディングス・フランス・ソシエテ・パール・アクシオン・サンプリフィエAllergan Holdings France S.A.S. | Yarn of hyaluronic acid and / or its derivative, method for its preparation and use thereof |
FI20085817L (en) | 2008-09-02 | 2010-03-03 | Steammotor Finland Oy Ab Ltd | Planetary rotary piston engine |
US9216188B2 (en) | 2008-09-04 | 2015-12-22 | The General Hospital Corporation | Hydrogels for vocal cord and soft tissue augmentation and repair |
FI20085839A0 (en) | 2008-09-08 | 2008-09-08 | Timo Ylikomi | Methods and tools for soft tissue technology |
GB0816496D0 (en) | 2008-09-10 | 2008-10-15 | Zhao Xiaobin | Hyaluronic acid cryogel |
WO2010038771A1 (en) | 2008-09-30 | 2010-04-08 | 中外製薬株式会社 | Light-stabilized pharmaceutical composition |
US20100098794A1 (en) | 2008-10-17 | 2010-04-22 | Armand Gerard | Topical anti-wrinkle and anti-aging moisturizing cream |
US20100111919A1 (en) | 2008-10-31 | 2010-05-06 | Tyco Healthcare Group Lp | Delayed gelation compositions and methods of use |
WO2010053918A1 (en) | 2008-11-05 | 2010-05-14 | Hancock Jaffe Laboratories, Inc. | Composite containing collagen and elastin as a dermal expander and tissue filler |
FR2938187B1 (en) | 2008-11-07 | 2012-08-17 | Anteis Sa | INJECTABLE COMPOSITION BASED ON HYALURONIC ACID OR ONE OF ITS HEAT-STERILIZED SALTS, POLYOLS AND LIDOCAINE |
EA029534B1 (en) | 2008-11-07 | 2018-04-30 | Клокс Текнолоджиз Инк. | Combination of an oxidant and a photoactivator for the healing of wounds |
ITRM20080636A1 (en) | 2008-11-28 | 2010-05-29 | Univ Palermo | PROCEDURE FOR THE PRODUCTION OF FUNCTIONAL DERIVATIVES OF HYALURONIC ACID AND RELATIVE HYDROGELS. |
WO2010065784A2 (en) | 2008-12-03 | 2010-06-10 | Jakk Group, Inc. | Methods, devices, and compositions for dermal filling |
SE533818C2 (en) | 2009-02-04 | 2011-01-25 | Roxtec Ab | Eccentric part of a pipe or cable entry |
WO2010102266A1 (en) | 2009-03-05 | 2010-09-10 | Biomimetic Therapeutics, Inc. | Platelet-derived growth factor compositions and methods for the treatment of osteochondral defects |
US20100249924A1 (en) | 2009-03-27 | 2010-09-30 | Allergan, Inc. | Bioerodible matrix for tissue involvement |
WO2010116458A1 (en) | 2009-03-30 | 2010-10-14 | イビデン株式会社 | Sealing material for honey-comb structure, honey-comb structure, and method for manufacture of honey-comb structure |
NO2236523T3 (en) | 2009-03-30 | 2018-07-21 | ||
ES2621380T3 (en) | 2009-04-02 | 2017-07-03 | Allergan, Inc. | Hair-shaped hydrogels for soft tissue augmentation |
US9371402B2 (en) | 2009-04-09 | 2016-06-21 | Scivision Biotech Inc. | Method for producing cross-linked hyaluronic acid |
US20110111031A1 (en) | 2009-04-20 | 2011-05-12 | Guang-Liang Jiang | Drug Delivery Platforms Comprising Silk Fibroin Hydrogels and Uses Thereof |
US20110052695A1 (en) | 2009-04-20 | 2011-03-03 | Allergan, Inc. | Drug delivery platforms comprising silk fibroin hydrogels and uses thereof |
US20110008406A1 (en) | 2009-04-20 | 2011-01-13 | Altman Gregory H | Silk Fibroin Hydrogels and Uses Thereof |
US20110189292A1 (en) | 2009-04-20 | 2011-08-04 | Allergan, Inc. | Dermal fillers comprising silk fibroin hydrogels and uses thereof |
US9173975B2 (en) | 2009-04-24 | 2015-11-03 | Ingeneron, Inc. | Reparative cell delivery via hyaluronic acid vehicles |
US9101538B2 (en) | 2009-05-20 | 2015-08-11 | Donna M. Tozzi | Injectable amino-acid composition |
IT1395392B1 (en) | 2009-08-27 | 2012-09-14 | Fidia Farmaceutici | VISCOELASTIC FROSTS LIKE NEW FILLERS |
CA2784847C (en) | 2009-12-18 | 2017-11-21 | Molly Sandra Shoichet | Injectable polymer composition for use as a cell delivery vehicle |
US8790683B2 (en) | 2009-12-22 | 2014-07-29 | National Cheng Kung University | Cell tissue gel containing collagen and hyaluronan |
US9114188B2 (en) | 2010-01-13 | 2015-08-25 | Allergan, Industrie, S.A.S. | Stable hydrogel compositions including additives |
US20110171310A1 (en) | 2010-01-13 | 2011-07-14 | Allergan Industrie, Sas | Hydrogel compositions comprising vasoconstricting and anti-hemorrhagic agents for dermatological use |
US20110171311A1 (en) | 2010-01-13 | 2011-07-14 | Allergan Industrie, Sas | Stable hydrogel compositions including additives |
US20110172180A1 (en) | 2010-01-13 | 2011-07-14 | Allergan Industrie. Sas | Heat stable hyaluronic acid compositions for dermatological use |
US20110171286A1 (en) | 2010-01-13 | 2011-07-14 | Allergan, Inc. | Hyaluronic acid compositions for dermatological use |
JP4985792B2 (en) | 2010-01-27 | 2012-07-25 | 株式会社日立プラントテクノロジー | Reagent cartridge for microorganism detection device |
US8801682B2 (en) | 2010-01-27 | 2014-08-12 | Human Med Ag | Apparatus for separating tissue cells from a fluid |
CN102188746B (en) | 2010-03-11 | 2013-08-14 | 北京益而康生物工程开发中心 | Artificial extracellular matrix and preparation method thereof |
EP2544652A2 (en) | 2010-03-12 | 2013-01-16 | Allergan Industrie SAS | A fluid composition comprising a hyaluronan polymer and mannitol for improving skin condition. |
EP3520827B1 (en) | 2010-03-22 | 2022-05-25 | Allergan, Inc. | Cross-linked hydrogels for soft tissue augmentation |
ES2368307B1 (en) | 2010-04-28 | 2012-10-17 | Universidade De Santiago De Compostela | HYDROGELS ELABORATED BASED ON ANIONIC POLYMERS OF NATURAL ORIGIN. |
US20110295238A1 (en) | 2010-05-26 | 2011-12-01 | Human Med Ag | Device for fluid jet-supported separation and suctioning of tissue cells from a biological structure |
KR20110138765A (en) | 2010-06-22 | 2011-12-28 | (주)차바이오앤디오스텍 | Composite filler comprising cells isolated from human adipose tissue and hyaluronic acid derivative |
US9017712B2 (en) | 2010-07-12 | 2015-04-28 | Shin Poong Pharmaceutical Co., Ltd. | Filler composition for tissue reinforcement |
US8883139B2 (en) | 2010-08-19 | 2014-11-11 | Allergan Inc. | Compositions and soft tissue replacement methods |
US8900571B2 (en) | 2010-08-19 | 2014-12-02 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US8741281B2 (en) | 2010-08-19 | 2014-06-03 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US8697057B2 (en) | 2010-08-19 | 2014-04-15 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US8894992B2 (en) | 2010-08-19 | 2014-11-25 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US8926963B2 (en) | 2010-08-19 | 2015-01-06 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US9005605B2 (en) | 2010-08-19 | 2015-04-14 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US8889123B2 (en) | 2010-08-19 | 2014-11-18 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US8697056B2 (en) | 2010-08-19 | 2014-04-15 | Allergan, Inc. | Compositions and soft tissue replacement methods |
ES2645860T3 (en) | 2010-10-20 | 2017-12-11 | Allergan Holdings France S.A.S. | Crosslinked hyaluronic acid strands and use thereof |
DE102011080218B4 (en) | 2010-10-20 | 2014-11-20 | Human Med Ag | Method and apparatus for separating adult stem cells from adipose tissue |
US9299476B2 (en) | 2010-10-22 | 2016-03-29 | Newsouth Innovations Pty Limited | Polymeric material |
FR2968306B1 (en) | 2010-12-06 | 2014-02-28 | Teoxane | PROCESS FOR PREPARING RETICULATED GEL |
FR2968305B1 (en) | 2010-12-06 | 2014-02-28 | Teoxane | PROCESS FOR PREPARING RETICULATED GEL |
CA2821744A1 (en) | 2010-12-23 | 2012-06-28 | Surgimatix, Inc. | Skin suturing device using rotating needles |
US20130096081A1 (en) | 2011-06-03 | 2013-04-18 | Allergan, Inc. | Dermal filler compositions |
US9408797B2 (en) | 2011-06-03 | 2016-08-09 | Allergan, Inc. | Dermal filler compositions for fine line treatment |
KR102015676B1 (en) | 2011-06-03 | 2019-10-21 | 알러간, 인코포레이티드 | Dermal filler compositions including antioxidants |
US9393263B2 (en) | 2011-06-03 | 2016-07-19 | Allergan, Inc. | Dermal filler compositions including antioxidants |
WO2013009102A2 (en) | 2011-07-13 | 2013-01-17 | (주)차바이오앤디오스텍 | Cartilage cell treating agent comprising collagen, hyaluronic acid derivative, and stem cell derived from mammal umbilical cord |
WO2013015579A2 (en) | 2011-07-26 | 2013-01-31 | (주)차바이오앤디오스텍 | Medical composite organic material including collagen and hyaluronic acid derivatives |
KR102034645B1 (en) | 2011-07-26 | 2019-10-22 | 주식회사 차메디텍 | Medicinal Composite Biomaterial Comprising Collagen and Hyaluronic Acid Derivative |
US9662422B2 (en) | 2011-09-06 | 2017-05-30 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US20130116190A1 (en) | 2011-09-06 | 2013-05-09 | Allergan, Inc. | Hyaluronic acid-collagen matrices for tissue engineering |
US20130244943A1 (en) | 2011-09-06 | 2013-09-19 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US20130116411A1 (en) | 2011-09-06 | 2013-05-09 | Allergan, Inc. | Methods of making hyaluronic acid/collagen compositions |
US20130129835A1 (en) | 2011-09-06 | 2013-05-23 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
CA2854570C (en) | 2011-11-04 | 2017-08-15 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
DK3175840T3 (en) | 2011-12-08 | 2020-09-28 | Allergan Ind Sas | DERMAL FILLER COMPOSITIONS |
WO2013101939A1 (en) | 2011-12-28 | 2013-07-04 | Allergan, Inc. | Hyalruonic acid-collagen matrices for tissue engineering |
EP3750568A1 (en) | 2012-09-06 | 2020-12-16 | Allergan, Inc. | Hyaluronic acid/collagen-based dermal filler compositions and methods for making same |
US20140315828A1 (en) | 2013-04-22 | 2014-10-23 | Allergan, Inc. | Cross-linked silk-hyaluronic acid compositions |
EP3620184A1 (en) | 2014-09-30 | 2020-03-11 | Allergan Industrie, SAS | Stable hydrogel compositions including additives |
KR20210005945A (en) | 2018-05-03 | 2021-01-15 | 콜플랜트 리미티드 | Dermal filler and its application |
-
2012
- 2012-11-02 US US13/667,581 patent/US20130244943A1/en not_active Abandoned
-
2015
- 2015-12-08 US US14/962,897 patent/US9821086B2/en active Active
-
2017
- 2017-05-31 US US15/609,967 patent/US9795711B2/en active Active
- 2017-10-09 US US15/727,916 patent/US10434214B2/en active Active
-
2019
- 2019-10-08 US US16/595,481 patent/US11833269B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080501A (en) * | 2000-09-08 | 2002-03-19 | Japan Science & Technology Corp | Glycosaminoglycan-polycation complex for matrix of anagenesis and method for producing the same |
WO2010003104A2 (en) * | 2008-07-02 | 2010-01-07 | Allergan, Inc. | Compositions and methods for tissue filling and regeneration |
Non-Patent Citations (4)
Title |
---|
Boulle et al, Lip Augmentation and Contour Correction With a Ribose Cross-linked Collagen Dermal Filler, Journals of Drugs in Dermatology, 2009, 8, pages 1-8. * |
Machine translation of JP 2002/080501 A, pages 1-8, accessed 9/19/2013. * |
Van Der Rest et al, Collagen family of proteins, FASEB J., 1991, 5, pages 2814-2823. * |
Wang et al, Development of hyaluronic acid-based scaffolds for brain tissue engineering, Acta Biomatcrialia, 2009, 5, pages 2371-2384. * |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9265761B2 (en) | 2007-11-16 | 2016-02-23 | Allergan, Inc. | Compositions and methods for treating purpura |
US8853184B2 (en) | 2007-11-30 | 2014-10-07 | Allergan, Inc. | Polysaccharide gel formulation having increased longevity |
US9089519B2 (en) | 2008-08-04 | 2015-07-28 | Allergan Industrie Sas | Hyaluronic acid-based gels including lidocaine |
US9238013B2 (en) | 2008-08-04 | 2016-01-19 | Allergan Industrie, Sas | Hyaluronic acid-based gels including lidocaine |
US11020512B2 (en) | 2008-08-04 | 2021-06-01 | Allergan Industrie, Sas | Hyaluronic acid-based gels including lidocaine |
US10485896B2 (en) | 2008-08-04 | 2019-11-26 | Allergan Industrie Sas | Hyaluronic acid-based gels including lidocaine |
US9358322B2 (en) | 2008-08-04 | 2016-06-07 | Allergan Industrie Sas | Hyaluronic acid-based gels including lidocaine |
US11173232B2 (en) | 2008-08-04 | 2021-11-16 | Allergan Industrie, Sas | Hyaluronic acid-based gels including lidocaine |
US10391202B2 (en) | 2008-08-04 | 2019-08-27 | Allergan Industrie Sas | Hyaluronic acid-based gels including lidocaine |
US10328180B2 (en) | 2008-08-04 | 2019-06-25 | Allergan Industrie, S.A.S. | Hyaluronic acid-based gels including lidocaine |
US9861570B2 (en) | 2008-09-02 | 2018-01-09 | Allergan Holdings France S.A.S. | Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof |
US9228027B2 (en) | 2008-09-02 | 2016-01-05 | Allergan Holdings France S.A.S. | Threads of Hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof |
US11154484B2 (en) | 2008-09-02 | 2021-10-26 | Allergan Holdings France S.A.S. | Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof |
US9333160B2 (en) | 2010-01-13 | 2016-05-10 | Allergan Industrie, Sas | Heat stable hyaluronic acid compositions for dermatological use |
US9855367B2 (en) | 2010-01-13 | 2018-01-02 | Allergan Industrie, Sas | Heat stable hyaluronic acid compositions for dermatological use |
US10806821B2 (en) | 2010-01-13 | 2020-10-20 | Allergan Industrie, Sas | Heat stable hyaluronic acid compositions for dermatological use |
US10220113B2 (en) | 2010-01-13 | 2019-03-05 | Allergan Industrie, Sas | Heat stable hyaluronic acid compositions for dermatological use |
US8921338B2 (en) | 2010-03-12 | 2014-12-30 | Allergan Industrie, Sas | Fluid compositions for improving skin conditions |
US10905797B2 (en) | 2010-03-22 | 2021-02-02 | Allergan, Inc. | Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation |
US8697059B2 (en) | 2010-08-19 | 2014-04-15 | Allergan, Inc. | Compositions and soft tissue replacement methods |
US9408797B2 (en) | 2011-06-03 | 2016-08-09 | Allergan, Inc. | Dermal filler compositions for fine line treatment |
US9393263B2 (en) | 2011-06-03 | 2016-07-19 | Allergan, Inc. | Dermal filler compositions including antioxidants |
US11083684B2 (en) | 2011-06-03 | 2021-08-10 | Allergan Industrie, Sas | Dermal filler compositions |
US10994049B2 (en) | 2011-06-03 | 2021-05-04 | Allergan Industrie, Sas | Dermal filler compositions for fine line treatment |
US9962464B2 (en) | 2011-06-03 | 2018-05-08 | Allergan, Inc. | Dermal filler compositions including antioxidants |
US10624988B2 (en) | 2011-06-03 | 2020-04-21 | Allergan Industrie, Sas | Dermal filler compositions including antioxidants |
US11000626B2 (en) | 2011-06-03 | 2021-05-11 | Allergan Industrie, Sas | Dermal filler compositions including antioxidants |
US9950092B2 (en) | 2011-06-03 | 2018-04-24 | Allergan, Inc. | Dermal filler compositions for fine line treatment |
US9737633B2 (en) | 2011-06-03 | 2017-08-22 | Allergan, Inc. | Dermal filler compositions including antioxidants |
US10434214B2 (en) | 2011-09-06 | 2019-10-08 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US9782517B2 (en) | 2011-09-06 | 2017-10-10 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US11844878B2 (en) | 2011-09-06 | 2023-12-19 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US11833269B2 (en) | 2011-09-06 | 2023-12-05 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
US9662422B2 (en) | 2011-09-06 | 2017-05-30 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
US11684700B2 (en) | 2014-08-15 | 2023-06-27 | The Johns Hopkins University | Composite material for tissue restoration |
US11707553B2 (en) | 2014-08-15 | 2023-07-25 | The Johns Hopkins University | Composite material for tissue restoration |
US20160199537A1 (en) * | 2014-08-28 | 2016-07-14 | Mimedx Group, Inc. | Collagen reinforced tissue grafts |
US10617785B2 (en) * | 2014-08-28 | 2020-04-14 | Mimedx Group, Inc. | Collagen reinforced tissue grafts |
US10722444B2 (en) | 2014-09-30 | 2020-07-28 | Allergan Industrie, Sas | Stable hydrogel compositions including additives |
US11771807B2 (en) | 2018-05-09 | 2023-10-03 | The Johns Hopkins University | Nanofiber-hydrogel composites for cell and tissue delivery |
US12036339B2 (en) | 2018-05-09 | 2024-07-16 | The Johns Hopkins University | Nanofiber-hydrogel composites for enhanced soft tissue replacement and regeneration |
WO2021122934A1 (en) | 2019-12-17 | 2021-06-24 | Altergon S.A. | Injectable mixtures of hyaluronic acid for use in dermo-aesthetics |
IT201900024208A1 (en) | 2019-12-17 | 2021-06-17 | Altergon Sa | INJECTABLE MIXTURES OF HYALURONIC ACID FOR USE IN DERMOESTHETICS |
CN112587721A (en) * | 2020-12-30 | 2021-04-02 | 广州益诚生物科技有限公司 | Injection filling material and preparation process thereof |
CN114042193A (en) * | 2021-11-22 | 2022-02-15 | 上海交通大学 | Crosslinked sodium hyaluronate gel filler for injection |
Also Published As
Publication number | Publication date |
---|---|
US9795711B2 (en) | 2017-10-24 |
US20160089475A1 (en) | 2016-03-31 |
US10434214B2 (en) | 2019-10-08 |
US20200030490A1 (en) | 2020-01-30 |
US20180028719A1 (en) | 2018-02-01 |
US11833269B2 (en) | 2023-12-05 |
US20170266344A1 (en) | 2017-09-21 |
US9821086B2 (en) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11833269B2 (en) | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications | |
AU2017268636B2 (en) | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications | |
AU2022256160B2 (en) | Hyaluronic acid/collagen-based dermal filler compositions and methods for making same | |
EP3750568A1 (en) | Hyaluronic acid/collagen-based dermal filler compositions and methods for making same | |
US20240350706A1 (en) | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications | |
DK2773319T3 (en) | HYALURONIC ACID COLLAGEN MATRIX FOR DERMAL FILLING AND VOLUME USING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLERGAN, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YU, XIAOJIE;REEL/FRAME:031564/0394 Effective date: 20130118 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |