[go: nahoru, domu]

US20140289067A1 - Computer-based right distribution system with temporal variation - Google Patents

Computer-based right distribution system with temporal variation Download PDF

Info

Publication number
US20140289067A1
US20140289067A1 US14/250,167 US201414250167A US2014289067A1 US 20140289067 A1 US20140289067 A1 US 20140289067A1 US 201414250167 A US201414250167 A US 201414250167A US 2014289067 A1 US2014289067 A1 US 2014289067A1
Authority
US
United States
Prior art keywords
bid
priority
auction
rights
participant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/250,167
Inventor
Kenton F. Brett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ticketmaster LLC
Original Assignee
Ticketmaster LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/862,547 external-priority patent/US6023685A/en
Priority claimed from US09/586,927 external-priority patent/US6704713B1/en
Priority claimed from US09/778,606 external-priority patent/US6907405B2/en
Application filed by Ticketmaster LLC filed Critical Ticketmaster LLC
Priority to US14/250,167 priority Critical patent/US20140289067A1/en
Publication of US20140289067A1 publication Critical patent/US20140289067A1/en
Priority to US15/145,268 priority patent/US9614733B1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: LIVE NATION ENTERTAINMENT, INC., LIVE NATION WORLDWIDE, INC.
Priority to US15/477,914 priority patent/US9900220B2/en
Priority to US15/899,001 priority patent/US10355936B2/en
Priority to US16/511,880 priority patent/US10880177B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/08Auctions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/02Reservations, e.g. for tickets, services or events
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes
    • G06Q20/367Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes involving electronic purses or money safes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1809Arrangements for providing special services to substations for broadcast or conference, e.g. multicast for auctioneering devices

Definitions

  • the present invention relates to the field of auctions and, in particular, networked systems for conducting specialty auctions using computers.
  • the market values of those tickets differ depending upon the location of the ticket within the venue. Therefore, the market value of the right to sit in a particular seat at a concert depends at least in part upon the characteristic of the proximity of the seat to center stage.
  • a ticket is one example of a priority right used throughout the specification. However, it is to be understood that tickets are not the only priority rights applicable to the present invention.
  • the manner in which differences in the pertinent characteristic affect the market value of the right are apparent. For instance, for most sports or concert performances, the market value of the ticket rights, i.e., the right to sit in a particular seat at a particular event, is greater if the seat is closer to the stage. Thus, it may be relatively easy for a seller to rank the ticket rights prior to any sale of the rights.
  • the characteristic that affects the market value of the right may itself be obvious, the manner in which variance in the characteristic affects the market value is not apparent. For example, when an individual wishes to purchase the right to play a round of golf at a particular course, the time that the round begins will likely affect the amount that the individual is willing to pay.
  • the golfer may wish to be the first to tee off and would be willing to pay more for such a time than for any other.
  • the golfer may have another commitment in the morning and be interested only in tee times in the afternoon. Therefore, the amount the individual would be willing to pay for a time in the afternoon varies greatly from the amount for a time in the morning. Due to this variability in consumer preference, any ranking of the rights to play a round of golf at particular times on a particular day by the owner of the golf course may not result in sales prices for these rights that are equal to their true market values. Therefore, a system is needed whereby the true market values of all priority rights can be achieved, including both those rights with relative values that can be easily pre-ranked and those rights with relative market values dependent upon consumer preferences that are difficult to discern prior to the commencement of sales.
  • the right to sit in a particular seat for a particular event is a priority right wherein the market value of similar rights can be ranked prior to the sale of the rights, by ordering the seats in large part according to their proximity to center stage.
  • the current manner of selling the right to sit in a particular seat for a particular event involves selling tickets to the event.
  • the established method of selling tickets to sporting and entertainment events involves pre-setting inflexible prices and then releasing the tickets for sale at a box office or by phone.
  • This method has a number of shortcomings. Typically, each sale involves employees taking time-consuming individual orders and trying to describe the prices and seat locations to customers. Another shortcoming with this method is that it can be highly inconvenient and sometimes impossible for the purchaser to access the sale due to demand.
  • Another priority right with a relative market value that can be fairly easily determined prior to sale is the right to obtain a product for which the market demand far exceeds the supply.
  • a manufacturer underestimates the demand for its product and thus creates too few units for the product's initial market release. Examples of this occurrence in the recent past include the Cabbage Patch kidsTM doll, the Tickle-Me ElmoTM doll, and the Sony PlayStation 2TM video game system.
  • the manufacturer generally maintains a fixed selling price and offers the products on a “first-come-first-served” basis. The manufacturer not only loses revenue from the sales it could have made if it had produced more units, but it also loses revenue by selling the units it did produce at a price below their true market value.
  • This difference between the original sales price and the market value is typically realized by an entity other than the manufacturer, e.g. one who buys the product and then resells it at a higher price.
  • the pertinent characteristic that determines the market value of such highly desired products is the time of availability of the product to the consumer. In other words, a consumer would pay more to have the first product off the assembly line than to have the five-hundredth. Therefore, a system is needed so that when a manufacturer realizes that it has produced too few of a highly desired product, the manufacturer may maximize its revenue on those products by selling them at their true market value.
  • priority rights with market values that can be ranked prior to their sale are rights to obtain services wherein the value of those rights are dependent upon the order in which the services are received. For example, many consumers hire companies or individuals to remove snow from their property after an accumulation of snow. However, the value of this service is dependent upon the time at which the service is performed and, therefore, is dependent upon the order in which the properties are serviced. For instance, a consumer would likely be willing to pay more to be the first serviced after the accumulation of snow has stopped than to be the twentieth to receive the same service. Therefore, a system is needed wherein this discrepancy in market value may be realized by the provider of the service.
  • a service with a market value dependent upon the order of its performance is admittance through a toll booth.
  • the administrator of a toll booth receives a set price for each vehicle that passes through the toll booth. That price is often dependent upon the type of vehicle, but the price does not reflect the true market value of the right to pass through the booth.
  • the true market value depends upon how quickly the consumer is able to pass through the booth, i.e., the consumer's order in the line at the toll booth. Therefore, a system is required whereby the price of the right to pass through a toll booth is dependent upon the order in which the consumer is allowed to pass through the toll area.
  • Another right for which the current sales system does not return the true market value of the right is the right to obtain a certain numbered product of a limited edition series of products.
  • a popular artist may sell only 100 prints of one of her paintings.
  • the current established method for such sales is offering all of the prints for sale at a set, inflexible price on a “first-come-first-served” basis.
  • this sales approach may not achieve the full market value for all of the prints.
  • Many consumers may be willing to pay more for the first numbered print than for the fiftieth. Therefore, because only one price is set for all of the prints, many of the prints are likely being sold at a price below their true market value.
  • Another characteristic which determines the value of some priority rights is the time of entry into some venue.
  • the established methods for selling these priority rights are not capable of garnering the full market value of the rights.
  • theme parks such as DisneylandTM and Busch GardensTM
  • the actual time of admission to the park on any particular day is generally determined by how early the patron is willing to arrive at the park to stand in line.
  • An earlier time of admission is desired by many patrons because the most popular attractions at theme parks often fill up quickly and maintain long lines for the entire day.
  • Another priority right with a market value dependent upon location, but for which pre-ranking of the relative market values may not gamer the true market value of the rights, is the right to sit at a particular table in a restaurant.
  • a patron is likely to pay more to obtain a table closer to a window, for example, and is likely to pay less for a table close to the kitchen.
  • individual patrons may prefer one window view to another or may desire to sit at a table in a corner for more privacy. Therefore, a complete, objective ranking of such rights to sit at a particular table may not be entirely accurate.
  • the right to begin a round of golf at a particular time is a priority right for which the relative market values of related rights are difficult to determine prior to the sale of the rights.
  • the tee time itself is the pertinent characteristic that determines the relative values of the rights to begin rounds of golf throughout a particular day. However, it is unclear prior to the sale of the rights which times are most desired by individuals wishing to play golf that day.
  • the established method for determining tee times at a golf course is to set an inflexible price for playing a certain number of holes and then offering tee times on a “first come first served” basis.
  • the system may be slightly different, requiring consumers to stay at a particular resort or be a member of an association in order to purchase a round of golf.
  • the tee times are generally offered on a “first-come-first-serve-d” basis.
  • These systems fail to gamer the most profit for the golf course owners because individuals who attempt to reserve tee times after all the times have been reserved may be willing to pay more than the owner has currently received for a particular time. Also, some individuals may prefer to tee off at certain times of the day and, therefore, would be willing to pay more for the right to tee off at those times.
  • a golfer may wish to be the first person to tee off on a particular day, or a golfer may wish to tee off later in the afternoon to avoid the heat of the day and to view the sunset on the golf course. Therefore, the current system for selling golf tee times is sub-optimal because it does not account for individuals who would pay more to play at a particular time or for individuals who attempt to make reservations after all tee times have been reserved.
  • Another priority right with a relative value dependent upon individual consumer preference, therefore, difficult to rank prior to a sale is the right to sit in a particular seat to view a movie in a theater.
  • a particular seat to view a movie in a theater.
  • many individuals prefer to sit in the exact middle of the theater.
  • others such as those with small children, may wish to sit on an aisle, and others may prefer seats in the back of the theater. Therefore, the market value of the right to sit in a particular seat is not determined by some easy calculation, such as the distance from the center of the screen, but is dependent upon each potential movie-goer's personal preferences.
  • the current system of selling tickets to the movie and then allowing admission on a “first-come-first-served” basis does not gamer the full market value of the right to view the movie in a particular seat. Therefore, a system is needed whereby the full market value of the right to sit in a particular seat to see a particular movie at a particular time can be recognized by the theater owner.
  • priority rights are unique in that it may be relatively easy in one situation to determine the relative market value of related rights prior to their sale while in another situation it is very difficult.
  • One example of such a priority right is the right to view an art exhibit.
  • many individuals would be willing to pay a premium for the right to be one of the first to view the exhibit. Therefore, the true market value of the right to enter the art exhibit is not being achieved by the current system of either issuing select invitations to a premiere night or simply allowing admission to ticket holders on a “first-come-first-served” basis. In this situation, the priority rights could easily be pre-ranked with the earliest time of admittance being the most valuable.
  • a system is needed whereby the exhibit organizer may realize the full market value of the right to view such an exhibit.
  • a bidder may be willing to pay a premium for the right to sit in the first few rows but not for the right to sit in all the seats in a section specified by the seller of the rights. Therefore, a system is needed whereby a bidder may personally designate one or more priority rights and then offer to pay up to a certain amount for those rights.
  • U.S. Pat. No. 4,689,928 details an auction system for used cars that is capable of interactive, essentially real-time auctioning. Instead of being Internet based, this used car auctioning system is constructed with a 4-level hierarchy of computers networked to a plurality of auto dealers terminals. At each level, the bids received by the computer are processed and only select bids are transmitted to the next level. The bids are raised in increments of 3000 yen and the participants may bid via a single signal indicating a “yes” in response to the bid being raised. This system is based on the traditional auction format, and is used to sell one item or lot at a time.
  • Another need for on-line auction systems is a method of convincing bidders to place their bids early instead of waiting to bid at the last minute before the auction closes.
  • on-line auctions are typically conducted over a set period of time. With these systems, bidders often wait until the last possible second before auction closing to place their bids in an attempt to block subsequent bidders from making higher bids. Such actions by bidders not only keeps the price of the auctioned item undesirably low, but sometimes results in a large quantity of bids just before auction closing which the on-line system is not capable of handling. Thus, it would be advantageous for an on-line auction system that provides incentives for bidders to place their bids early in the auction rather than waiting until the last minute.
  • ticket auction participants occasionally need to have two or more mutually exclusive ticket purchase options available to them.
  • Ticket purchase decisions are often made based on price and availability of seats having acceptable locations. Even the number of tickets a consumer wishes to order may be dependent on price. For example, a consumer may desire two front row tickets if they are within his budget, otherwise he desires four tickets in a different location within budget, otherwise he desires ten tickets anywhere available within budget. But with auctions of pre-ranked seats, some such information cannot be known until the auction has ended, unless the auction close is phased-out from the best to the worst seats. There exists a need to make solutions available in the form of mutually exclusive, prioritized bids simultaneously entered by a consumer in a ticket auction.
  • a potential negative effect of a system that places primary emphasis upon the maximum amount of money an individual is willing to pay for a particular right is that less affluent members of the consuming public will be unable to procure desired priority rights.
  • individuals of limited means may still purchase rights if they are willing to stand in line for an extended period of time.
  • a system that only seeks the highest profit margin in priority rights sales would not permit special treatment of certain bidders, such as alumni group members, company employees, or frequent purchasers. Such special treatment may be important to the public image of a priority right seller, and, thus, its long-term economic success. Therefore, there is a need for a priority right sales system that may. be modified to favor members of a selected group, such as those of limited means or company employees.
  • a system for selling priority rights should be capable of real-time statistical analysis to aid the system administrator in regulating the system to achieve optimal results.
  • an object of the present invention is to provide a computer controlled auctioning system, in which a large number of participants may have simultaneous access to bid on to the desired priority rights.
  • the above stated needs as well as others are fulfilled by the present invention through a system constructed to sell a large number of priority rights in a very short time, each said priority right being sold for a value set by existing market forces.
  • the system provides participants with simple, yet informative graphical standing bid information on the entire stock of priority rights available, and allows them real-time bidding interaction. This system can achieve such sales even for priority rights garnering extremely high public interest, without excluding any potential purchasers.
  • the present invention achieves said objectives by employing a computer controlled priority right auctioning system which receives and evaluates bid information records received from a plurality of remote terminals, said bid information “records corresponding to bids for one or more priority rights.
  • the automated priority right auctioning system is comprised of a memory storing a plurality of previously accepted bid information records, said records each including identification information, section information, quantity information, and bid price information.
  • the automated priority right auctioning system is further comprised of a central controlling computer operably connected to the memory and operable to receive a message including a received bid information record from one of a plurality of remote terminals through a communication system, determine a lowest minimum acceptable bid value corresponding to the received section information using the previously accepted bid information records stored in the memory, and store the received bid information record if a value represented by the received bid price information exceeds the lowest minimum acceptable bid value.
  • the central controlling computer is further operable to, in a like manner, receive, evaluate and store, if acceptable, subsequent bids received and to stop receiving subsequent messages after a predetermined time period.
  • each previously accepted bid information record includes rank information based on the section information and the bid price information
  • the central controlling computer is further operable to assign a rank to each received bid information record based on its section information, its bid price information, and the previously accepted bid information records.
  • the central controlling computer is further operable to associate one or more particular priority rights with a previously accepted bid information record based on the rank information and the section information of each of a plurality of previously accepted bid information records.
  • the automated priority right auctioning system further includes a programmed graphical representation method designed to efficiently convey to auction participants useful standing bid information across a spectrum of priority rights to be auctioned, allowing current priority right bid prices to be quantified in an effective manner.
  • the system further includes programmed methods for ensuring contiguous grouping of priority rights within each multiple priority right bid, and for ensuring that the standing bid information is automatically updated on a real-time basis and presented as such to all auction participants; said programmed method employing HTML programming features such as the recently available META refresh (a client pull type browser directive) or the multipart/mixed MIME format (a server push type browser directive).
  • HTML programming features such as the recently available META refresh (a client pull type browser directive) or the multipart/mixed MIME format (a server push type browser directive).
  • Participants may access this system from remote sites using terminals, such as personal computers, via telephone lines or other means of communication.
  • terminals such as personal computers
  • the status of bids and their corresponding priority rights are conveyed on graphic displays which are updated on a real time basis for all participants to view. Participants may place bids of any amount, subject to predetermined limits, and cancel, raise, or lower bids at will. In addition, participants may view their personal bid standings and the updated overall bid standings without having to continually re-access the auction site.
  • the personal bid requests are sent to the host computer which immediately processes, and sorts the bids according to section and price.
  • the central computer immediately updates and displays the new bid standing order. When the auction is closed, the bids become fixed and the physical transaction can occur.
  • the system further includes the ability for participants to limit their bids to particular types of priority rights. Additionally, the system will allow participants to lock-in their priority rights before auction closing upon the payment of a premium. Also, the system provides for proxy bidding which allows participants to automatically increase bid amounts to match subsequent higher bids. The system further includes the ability for participants to define their own personal bidding sections and to make alternative bids. Also, the system provides incentives for compelling bidders to place bids well in advance of auction closing.
  • the system would be advantageous for the system to further include the ability for each participant to place two or more prioritized simultaneous but mutually exclusive bids in a single ticket auction.
  • FIG. 1 is a block diagram of an exemplary system built in accordance with the present invention.
  • FIG. 2 is a flowchart illustrating an exemplary system built in accordance with the present invention.
  • FIG. 3 is a flowchart illustrating an exemplary participant registration procedure used in a system built in accordance with the present invention.
  • FIG. 4 is a flowchart illustrating an exemplary auction procedure used in a system built in accordance with the present invention.
  • FIGS. 5A and 5B show exemplary representations of at least part of the main auction database storing the order of bids received.
  • FIGS. 6A and 6B show exemplary representations of at least part of a referring database which stores the available priority rights for sale.
  • FIG. 7 is an exemplary representation of a referring database which stores the participants identity and personal and payment information.
  • FIG. 8 is an example of the statistical record of all bid events received, for use in marketing studies and customer service.
  • FIG. 9 is an example of the participant's terminal screen, as it might appear before the beginning of an auction.
  • the terminal displays a graphical representation of a venue of seats, the rights to which are to be auctioned, and the preset minimum bid price of those rights.
  • FIG. 10 is an example of the participant's terminal screen, as it might appear during an auction.
  • the terminal displays a graphical representation of the rights to be auctioned, the present bid price of those rights, and the personal bid standing for this particular participant.
  • FIG. 11 is an example of the participant's terminal screen when the desired section is chosen for bidding.
  • the bid form is included on this screen.
  • FIG. 12 is a flowchart illustrating an exemplary algorithm used to ensure contiguous priority rights within each bid in a system built in accordance with the present invention.
  • FIG. 13 is a flowchart illustrating an exemplary algorithm used to match the number of available priority rights with the number of seats requested by winning bidders in a system built in accordance with the present invention.
  • FIG. 14 is an example of the participant's terminal screen requesting further information from the participant about participant preferences.
  • FIG. 15 is an example of the participant's terminal screen showing a bidding activity meter during open bidding.
  • FIG. 16 is an example of the participant's terminal screen showing the bidding activity meter of FIG. 15 after bidding is closed.
  • FIG. 17 is an example of the participant's terminal screen, as it might appear during an auction.
  • the terminal displays a graphical representation of the rights to be auctioned and the present bid price of those rights.
  • FIG. 18 is an example of the participant's terminal screen, as it might appear during an auction; the terminal displays a graphical representation of the rights to be auctioned and the present bid price of those rights.
  • FIG. 19 is a flowchart illustrating an exemplary algorithm within step 50 of FIG. 4 for processing alternative priority right bids.
  • FIG. 20 is a flowchart illustrating an exemplary algorithm for sorting unranked priority rights.
  • FIG. 21 is an illustration of an auction for the right to begin a round of golf at a particular time conducted using the automated priority right auctioning system of the current invention and the algorithm of FIG. 20 .
  • FIG. 22 is a graph of the gross revenue of an automated priority right auction versus the time over which the auction took place.
  • FIG. 23 is a graph of the gross revenue of an automated priority right auction versus the time over which the auction took place denoting the duration and effect of various events on the gross revenue.
  • FIG. 24 is the graph of FIG. 22 and a graph displaying the change in the rate of growth of the gross revenue of an automated priority right auction per minute of the auction.
  • FIG. 25 is the graph of FIG. 22 and a graph of the number of priority right lock-ins ordered and the amount of the priority right lock-in premium versus the time over which the auction took place.
  • FIG. 26 is a graph of the average price per priority right in an automated priority right auction versus the time have which the auction took place.
  • FIG. 27 is a computer display of two graphs and two frames displaying statistics pertaining to an automated priority right auction of the rights to sit in a particular seat at an event.
  • FIG. 28 is an example of the participant's terminal screen after selection of a priority bidding option.
  • FIG. 29 is an example of the participant's terminal screen upon selecting a first priority location.
  • FIG. 30 is an example of the participant's terminal screen after click-and-drag adjustment of a first priority boundary area.
  • FIG. 31 is an example of the participant's terminal screen after entering a first priority quantity and bid amount, and submitting a first priority bid.
  • FIG. 32 is an example of the participant's terminal screen upon selecting a second priority location.
  • FIG. 33 is an example of the participant's terminal screen after entering a second priority quantity and bid amount, and submitting a second priority bid.
  • FIG. 34 is an example of the participant's terminal screen after entering a third priority location, quantity and bid amount, and submitting a third priority bid.
  • a computer controlled priority right auctioning system is now described with reference to FIGS. 1-34 .
  • the priority right auctioning system may be used to auction any of a number of different types of priority rights, examples of which are provided above in the Background. Therefore, references in the Description to certain pieces of auction information, such as “groups” and “subgroups” or “sections” and “subsections”, may not apply to all priority right auctions.
  • the term “priority rights” is used throughout the Description to represent all such priority rights which may be auctioned using the system.
  • FIG. 1 shows a computer controlled ticket auctioning system 10 which is built according to the present invention.
  • the computer controlled ticket auctioning system 10 is comprised of a central computer 12 such as an Internet server which sends and receives information through a communication system 13 such as the public telephone system, television cable system, or satellite communications system to remote terminals 14 .sub. 1 , 14 .sub. 2 , 14 .sub. 3 . . . . 14 .sub.n, such as personal computers or other network accessing devices.
  • Internet sites are constructed consisting of web pages of graphics and text stored as html files, which present the necessary information pertaining to upcoming events and ticket sales. These sites are stored in the memory of the central computer 12 .
  • the construction and initiation of these sites is shown as step 22 and step 23 in FIG. 2 , which is a flowchart illustrating the general operation of this exemplary system.
  • brokers may access the central computer 12 of FIG. 1 through any remote terminal 14 1 , 14 2 , 14 3 . . . 14 n to receive a wide variety of information about the auctions, the related events, venues, performers or teams, schedules, and merchandise; and to pre-register for the auction and payment.
  • the registration process is represented as step 24 in FIG. 2 .
  • FIG. 2 illustrates, the auction operation 25 is executed; the transactions 26 take place, and the system is ended 27 .
  • registration and bid information originating in the remote terminals 14 1 , 14 2 , 14 3 . . . 14 n is transferred via the communication system 13 and received by the central computer 12 .
  • the central computer 12 processes said information and stores it in databases: specifically, the participant database 15 for registrations and the main auction database 16 for bids.
  • the word database as used herein, and in the appended claims is intended to refer to a collection of information organized in such a way that the central computer can quickly select and store desired pieces of data within the database.
  • the information in the database may be stored in any of several ways, including, but not limited to, magnetic storage, optical storage, or any other form of storage known in the art.
  • the central computer 12 also performs sorting and indexing operations, described below, necessary to keep the information in the databases current and correctly ordered.
  • the central computer 12 processes and controls the information flowing between the Internet sites and the databases with programming written in the C++ programming language or any of the other computer programming languages known by one skilled in the art. Registration information may be received and stored before and during operation of the auction.
  • the participant database, represented by FIG. 7 contains the name, address, and payment information for all participants, and is used as a referring database to the main auction database, represented by FIG. 5 , during the open auction and for billing purposes when the auction is concluded.
  • FIG. 5 and FIG. 7 are detailed below.
  • a master computer 11 is connected to the central computer 12 •for purposes of setting up, initiating, monitoring and dismantling the auction, and its related sites or pages.
  • the central computer 12 stores these parameters for later application to the auction process.
  • the central computer 12 stores in the ticket database 17 a unique record for each ticket available. The auction is then conducted by the central computer 12 , as described below.
  • the master computer 11 can be used to monitor the auction progress, make any necessary spontaneous changes to existing parameters, and to generally ensure that the auction is conducted with a minimum of problems. In practice, it may be possible to combine the functions of the central computer 12 and the master computer 11 .
  • Step 24 in FIG. 2 is illustrated in detail by FIG. 3 , an exemplary participant registration flowchart.
  • the potential registrant begins in step 28 by interfacing with one of the terminals, for example, terminal 14 .sub. 1 , of FIG. 1 .
  • the rules and registration Internet site is accessed at step 29 of FIG. 3 , the registrant is encouraged to read the auction rules thoroughly, and agree to their terms.
  • This site includes a registration form which will contain that registrant's personal information including records for the fields illustrated in the participant database of FIG. 7 , as well as a checkbox for agreement to the terms of the auction rules, and a password, if desired, to protect access.
  • the password may be chosen for use when accessing the auction, in lieu of re-entering the credit card number. This allows the participant to have an agent place bids, without disclosing the credit card number.
  • the central computer 12 of FIG. 1 performs all remaining steps in this registration process depicted in FIG. 3 .
  • step 30 of FIG. 3
  • the registration information is received and in step 31 , a determination is made as to whether the information is satisfactorily complete. If not, a message to that effect is sent in step 32 back to the registrant, and the registration process is ended at step 39 . If the registration information is satisfactorily complete, then in step 33 , the credit information is obtained through existing credit card systems for comparison to the information given by the registrant. In step 34 , said comparison is performed and if the credit information does not match or the limit is exceeded, a message to that effect is sent in step 35 back to the registrant, and the registration process is ended at step 39 .
  • step 34 If in step 34 the card is determined to be valid and the limit not to be exceeded, then in step 36 , an ‘authorization only’ hold is placed on the registrant's credit card, for an amount specified by the participant.
  • This limit also stored in the participant database of FIG. 7 , will be that registrant/participant's maximum allowable bid during the upcoming open auction.
  • the authorization hold verifies and reserves the payment means for the seller, while limiting unauthorized bids made by agents of the registrant/participant.
  • step 37 the registrant is notified that the registration was accepted and then in step 38 , the records are sent to the participant database before the registration is ended in step 39 .
  • an Internet site is constructed and initiated to provide viewing of graphical displays of the priority right and sale information to the participants.
  • FIG. 9 represents one such view, with initial minimum bids displayed in each section of a venue for an auction of rights to sit in particular seats at an event (i.e., “tickets”). All potential participants may access and view this site before the auction is opened.
  • the central computer 12 of FIG. 1 activates the site to become interactive, so participants can use it to place bids on tickets.
  • the site activation is represented as step 40 in FIG. 4 which is discussed below.
  • FIG. 4 is a flowchart illustrating an exemplary auction procedure which is step 25 in FIG. 2 .
  • the central computer 12 of FIG. 1 performs all steps in this auction process depicted in FIG. 4 .
  • all bid information received by participants' remote terminals is generated by the central computer 12 of FIG. 1 as web-pages constructed of html programming code.
  • the auction procedure illustrated by the flowchart in FIG. 4 is useful in auctioning all priority rights with relative market values that can be easily ranked prior to the start of the auction.
  • This auction procedure is also capable of auctioning the rights to sit in particular seats in a movie theater if each right is sold as the right to enter the theater at a certain time and freely select from all available seats.
  • a bid information record (bid) is received as a response to a web-page form: an html programming tool commonly used to submit information from a personal computer to a server.
  • a bid information record includes received identification information, received section information, received quantity information, and received bid price information.
  • step 44 of FIG. 4 a check is made to ensure the participant's bid exceeds the standing minimum bid for the particular section requested. This is accomplished by conducting a query on the main auction database 16 of FIG. 1 , detailed in FIG. 5 , using the received section information and bid price information as the query criteria. If the query finds the bid price too low, a message to that effect is sent in step 45 back to the participant, and the bid is not recorded.
  • step 46 a check is made to ensure the participant's bid is less than the established maximum; specifically, the amount of the ‘authorization only’ hold established in the participant registration and stored, for example, under the field name “SLIMIT” in the participant database of FIG. 7 . Again, this is accomplished by conducting a query on the participant database using the received bid price information as the query criterion. If this maximum is exceeded, a message to that effect is sent in step 47 of FIG. 4 back to the participant, and the bid is not recorded. Upon receipt of such a message, the participant may choose to re-register in order to raise the set maximum. However, an agent of the participant would be unable to do so without the credit card information. Thus, protection is afforded by use of the password established in the participant registration and stored, for example under the field name “SETPASS” shown in the participant database of FIG. 7 .
  • step 46 if the comparison in step 46 is positive, then the bid is accepted and displayed as in step 48 .
  • step 49 the bid information record is recorded to the main auction database of FIG. 5 and indexed to the corresponding participant in the participant database of FIG. 7 .
  • step 50 of FIG. 4 again using the received bid price information as the query criterion, the bid is then inserted at the appropriate rank in the ticket database of FIG. 6 , described below, and indexed to the corresponding bid record in the main auction database of FIG. 5 , with lower standing bids being reordered to reflect the new standings. At this step, the lowest bid(s) are removed from the order, (bumped), unless additional tickets are still available.
  • Bumped bids are stored in a market research database, represented in FIG. 8 , the format of which is similar to that of the main auction database. An added function of this database is to ensure that an accurate record of each bid event can be identified for customer service purposes. Next, participants whose bids become too low are notified.
  • step 51 and step 52 if the standing bid price of a pre-selected key ticket in the graphical representation has changed as a result of the latest bid, this change is reflected immediately by automatically updating the display of the current bid standings. These prices are displayed within the graphical view of the priority right and sale information, just as the initial minimum bids were displayed in FIG. 9 . A representation of this real-time bid status view is shown in FIG. 10 .
  • This interactive view gives participants clear, useful information sufficient to make bid decisions, regardless of the number of tickets for sale or what ticket is desired. More precise information is readily obtainable by simply clicking the mouse on the desired section of seats. This action summons the bid form along with a more precise bid status graphic such as shown in FIG. 11 .
  • the standing prices represented on these interactive sites are obtained by the central computer 12 of FIG. 1 from records stored in the ticket database 17 and inserted into the html file for display to participants.
  • This task is step 52 of FIG. 4 and is repeated each time a change has occurred in the standing bid price of one of these key tickets.
  • This determination is represented as step 51 of FIG. 4 .
  • These changes are automatically presented to the participants by means of META refresh, a client pull type html programming feature which directs the browser to automatically refresh the information every x seconds, where x is a variable programmed into the html file code. If no key ticket prices have changed, no further action is taken until the next bid is received or the auction is ended.
  • FIG. 17 and FIG. 18 illustrate two alternative methods for displaying the current bid values for the available tickets in an auction for the right to sit in a particular seat at an event.
  • the auction participant may scroll through a list 350 of available tickets and their current standing bid values. As the participant highlights a particular seat, a red star 352 appears on the graphical representation of all available seats 354 to display the highlighted seat's location.
  • the auction participant may also scroll through a list 400 of available seats and their current standing bid values. In the graphical representation of all available seats 402 in FIG. 18 , though, all the available seats are visible at all times. As the auction participant highlights a particular seat in the list 400 , the same seat is highlighted in the graphical representation 402 .
  • step 53 the auction may be ended in response to a signal which may be sent from the master computer 11 of FIG. 1 or from an internal timer or some other predetermined means.
  • step 54 of FIG. 4 , finalizing the ticket assignments involves application of an algorithm designed to ensure that seats within a bid are contiguous. Prior to the start of the auction, the seats may be organized into specific sections and subsections, or groups and subgroups, of rights. For example, if the rights to be sold are the rights to sit in particular seats at an event, those rights may be grouped by section number and then divided into subsections by row number. Alternatively, during the pendency of the auction, each bidder may define seat sections or subsections. FIG.
  • step 12 is an example of an algorithm that ensures contiguous seats within a bid.
  • this algorithm is executed, starting with the highest bid, obtained in step 121 , and working back. If the bid presently under evaluation is the last in its section, then a different algorithm is used. This determination and action is step 122 and step 123 . If the bid presently under evaluation is not the last in its section, then in step 124 , it is determined if the number of tickets required by the bid is more than the number available in its subsection, or subgroup. If so, it is impossible for all the seats to be contiguous, and the process begins for the next bid, in step 128 .
  • step 125 the next decision is to see if there are any breaks in the seats grouping. If not, the process begins again for the next bid, in step 128 . If so, the group of seats is moved to the next subsection back, step 126 , and the resulting seat vacancies are filled by moving the next lower bid(s) forward, step 127 . In unusual circumstances, this could result in the moved group spanning two subsections again. In this exemplary algorithm, the group will not be moved again, it will remain split. When the last active bid is processed, the last-priority-right algorithm shown in FIG. 13 is applied.
  • step 131 If the number of tickets in the bid is greater than the number of seats remaining in the section, step 131 , then in step 132 the bidder is notified of the cut-off and asked it the reduced number of tickets will suffice. In step 133 and step 134 if the reply is negative or if there is no reply within 2 minutes, the bid is removed. If there is a positive reply, the number of tickets is reduced to the available amount, and the algorithm is ended.
  • step 26 upon auction closing, successful bidders are immediately notified at their terminals and payment is confirmed.
  • the credit cards are debited for the appropriate amounts, and the excess amount from the ‘authorization only’ hold is released. Proof of the bidder's ownership of the ticket is then delivered by any of a number of conventional means.
  • FIG. 5 a and FIG. 5 b represent the main auction database which stores and ranks all active bid records and pairs the associated participants and priority rights accordingly, by referencing the two referring databases.
  • FIG. 5 a is the design view of this database, defining the fields and their parameters
  • FIG. 5 b is the table view showing sample bid records for the first bids in a hypothetical auction.
  • FIG. 6 depicts the ticket database, which is the other referring database.
  • the ticket database of FIG. 6 contains a record of each ticket in the auction arranged in order of preference as predetermined by the promoter or ticket seller.
  • the ticket database of FIG. 6 contains a record of each priority in the auction arranged in an order enabling efficient indexing of the ticket records to the bid records in the main auction database.
  • the databases shown in FIG. 5 , FIG. 6 and FIG. 7 contain records for a hypothetical auction that is greatly simplified for illustration purposes.
  • This hypothetical event venue contains only 12 available tickets, each defined by a record in the ticket database ( FIG. 6 b ).
  • minimum bids had been pre-set at $15 and the highest bid received was bid #1 of $30, with a quantity of 2 tickets.
  • the first field in the ticket database, “RIGHTID” contains the unique ticket identification number which is indexed to the main auction database ( FIG. 5 b ) by the fields “FRIGHTID” (first ticket identification number) and “LRIGHTID” (last ticket identification number).
  • the last field is “BIDDERID”, in which are stored indices referencing records in the participant database. As shown in FIG.
  • the lowest bid was #3, requesting 2 tickets at $15. However, only one seat was reserved, since only one was available at that bid level. As detailed in FIG. 13 above, when the auction is ended, if one ticket is not satisfactory, this participant will be given the opportunity to cancel the bid.
  • FIG. 10 is a sample participant interface to the auction system during the open auction, represented here as a web page with graphical links to forms for placing bids on tickets to sit in particular seats for an event.
  • the participant wishing to bid simply uses a mouse to click on the desired ticket section, calling up a bid form and a more precise view of standing bids to use as a guideline.
  • FIG. 11 shows this more precise view for a participant who clicked on section C.
  • the form on the right confirms this selection and prompts the participant for the specific bid information; while the diagram on the left shows that if, for instance, the bid placed is $73, then the tickets will be in the middle of section C, unless future (higher) bids push it back.
  • a ticket seller could promote numerous ticket sales simultaneously at one network site, with the added step for the registrant/participant of choosing the desired sale from those presented.
  • a template may be loaded into participants' terminals prior to their accessing the auction site, said template providing text or graphic information that does not change during an auction or between auctions, such as background art, forms or instructions.
  • Said template maybe downloaded from the Internet, or installed from a disc or by some other means.
  • Use of a template allows the bid status updates to be made with transmission of only the numerical data, which in combination with the template, presents the comprehensive auction status update to participants.
  • the bid status changes are automatically presented to the participants by means of the multipart/mixed MIME format, a recently available server-push type programming feature which takes advantage of a connection that is held open over multiple responses, allowing the server to send more data at will. This method can be more efficient, since new HTTP connections do not have to be reopened.
  • participant preference screen 200 which is a terminal screen that asks the participant a number of questions concerning the participant's bid.
  • a priority right options block 202 on the participant preference screen 200 the participant is given the participant preference option of canceling the bid or moving back to another section if the participant is unable to secure a bid in the desired section.
  • the system will generally default for the participant to be moved back a section unless the participant changes this option to cancel the bid in the event of a bump.
  • Another participant preference option presented to the bidder under the ticket options block 202 is the option for a premium subsection ticket, such as the right to sit in a front row seat at an event.
  • Certain bidders may be exclusively interested in a premium subsection ticket.
  • the participant may instruct the system to cancel the bid if the bid is bumped from the premium subsection.
  • the system will cancel the bid if the bid is bumped from the premium subsection.
  • the participant may state that he simply prefers the premium subsection, but will take other tickets.
  • the system will leave the participant with a premium subsection ticket so long as his bid is consistent with the other premium subsection bids.
  • the participant's bid will not be canceled, but he will simply be moved back. This will generally be the system default.
  • the participant may state that he absolutely does not want a premium subsection ticket, and•he should be moved back if his bid lands him in the premium subsection.
  • the system will place the participant in another subsection even if his bid qualifies him for the premium subsection.
  • the ticket options block 202 would allow the participant to specify aisle seat preference as a participant preference option.
  • the system may present the participant with a number of choices concerning the aisle, including the following options: (i) must have an aisle seat and will move back to get on the aisle, (ii) will not accept an aisle seat, (iii) prefer the aisle, but will accept other seats, (iv) do not prefer the aisle, and (v) don't care.
  • the “don't care” option is generally the system default. Based upon the participant's input, the system will attempt to place the participant in the desired location either on an. aisle or away from an aisle.
  • participant preference options other than those described above may also be specified in the ticket options block 202 .
  • the system may give participants options for being placed near concession stands, restrooms, exits, or the rear of a section.
  • Other preference options are also possible and may be easily incorporated by those of ordinary skill in the art.
  • the participant's preference screen 200 also includes an option 204 that allows the system to receive lock-in ticket information.
  • This option 204 allows the participant to secure a ticket, upon payment of a premium, regardless of any subsequent bids for the ticket during the auction.
  • This premium may be expressed in any number of ways such as a flat dollar amount (e.g., $25) or a percent of the bid value (e.g., 50%).
  • the premium is expressed on the preferences screen 200 by lock-in premium line 208 . Thus, if the participant makes a bid of $80 per ticket for five seats, and this bid currently places the bidder in a particular subsection of seats, the participant may lock-in these five tickets upon payment of the premium.
  • the participant would be required to pay $120 per ticket, or $600 total dollars to secure these five seats until the close of the auction. If the participant does choose to lock-in his bid by paying the premium, the participant will retain all five tickets throughout the auction even if a subsequent bidder offers $120 or more for the same tickets.
  • the participant's preference screen 200 may also include an option that allows the system to receive proxy bid information.
  • the proxy bid options are shown under proxy block 206 .
  • the participant may enter a maximum proxy bid amount in addition to the current bid amount.
  • the maximum proxy bid amount is the amount that the bidder authorizes the system to bid in his absence in order to keep the bidder in the preferred seat or location.
  • the bidder has the following three options: (i) keep the bidder in the bidding for the same tickets for up to the maximum bid amount, (ii) keep the bidder in the same section of seats for up to the maximum bid amount, and (iii) keep the bidder in the bidding for any ticket in the auction for up to the maximum bid amount.
  • the participant may leave the auction, knowing that proxy bids will be made for him up to $130 should a subsequent bid exceed his bid. If the participant chooses the option to stay in the bidding for the same ticket for up to the maximum bid, the system will keep the participant in the bidding for that ticket until subsequent bids for that ticket are received exceeding $130. At that time, the participant's bid will be bumped. If the participant chooses the option to stay in bidding for the same section of seats for up to the maximum bid, the participant will be bumped to the rear of the section as subsequent bids are received for greater than $80.
  • the participant's bid will automatically increase to keep him in the section up to a value of $130. Once all bids in the section exceed $130, the participant's bid will be bumped. Finally, if the bidder chooses to simply stay in the overall bidding for up to $130, the participant's $80 bid will be continually bumped to less preferential tickets, as bid values exceed $80. Once the least preferential ticket reaches $80, the participant's bid will automatically increase to keep him in the bidding for up to a bid of $130. If bids for the least preferential ticket exceed $120, the participant will be completely removed from the bidding.
  • the participant's preference screen 200 may also include an option that allows the auction participant to individually designate those seats upon which the participant wishes to bid. Instead of selecting to bid within the sections or subsections defined by the auction organizer, each participant may define his own personal bidding section.
  • One embodiment of this invention is to allow the auction participant to define the bounds of his personal bidding section by using a mouse to “click and drag” a cursor over a portion of the graphical representation of the available seats.
  • Another embodiment involves permitting the auction participant to define his personal bidding section by entering the first and last seat identification numbers in the desired personal bidding section.
  • the participant's preference screen 200 may also include an option that allows the auction participant to place alternative bids. For example, in an auction for the right to sit in a particular seat at an event, an auction-participant could designate that she wished to stay in the bidding for the right to sit in a seat in Section A for up to $50, but if that bid was bumped then she wished to stay in the bidding for the right to sit in a seat in Section D for up to $25.
  • This option to place alternative bids may be used with the seat sections designated by the auction organizer, as in the previous example, or with the participant's personal bidding sections. Therefore, the auction participant could designate that she wished to stay in the bidding for a right in her first personal bidding section for up to $45, and if that bid was bumped then she wished to stay in the bidding for a right within her second personal bidding section for up to $25. Additionally, more than two alternative bids may be placed.
  • FIG. 19 is a flowchart of an exemplary algorithm that permits the tickets auction system to properly process alternative bids.
  • This algorithm is step 50 of FIG. 4 .
  • the automated ticket auction system processes each alternative bid as a separate bid. For example, if an individual designated a bid of $50 for rights within a first section, a first alternative bid of $30 for rights within a second section, and a second alternative bid of $20 within a third section, the system would record all three bids. However, the system would only activate the $30 bid after the $50 bid was bumped and would then activate the $20 bid only after the $30 bid was bumped.
  • step 400 all tickets bids are sorted. As a result of this process, some bids may be bumped.
  • the central computer 12 determines whether any bids have been bumped. If no bumped bids exist, the control is passed, in step 404 , to step 51 of FIG. 4 . If a bid has been bumped, in step 406 the central computer 12 determines whether the bumped bid is part of a series of alternative bids. If not, in step 408 it is determined whether any other bids were bumped by the sorting undertaken in step 400 . If other bids were bumped, control is passed back to step 406 .
  • the central computer 12 proceeds to step 404 .
  • the central computer 12 determines, in step 410 , whether the bumped bid was the last alternative bid in the series. If the bumped bid was the last alternative bid in the series, the central computer 12 proceeds to step 408 . If not, the central computer 12 activates, in step 412 , the next alternative bid in the bumped bid's series.
  • step 414 the central computer 12 determines whether the activated bid exceeds the standing minimum acceptable bid for the tickets identified in the activated bid. This is accomplished by conducting a query on the main auction database 16 of FIG. 1 , detailed in FIG. 5 , using the received section information and bid price information as the query criteria. If the query finds the bid price too low, a message to that effect is sent in step 416 back to the participant, and the bid is not recorded. If the query finds the bid price is not too low, then in step 418 , a check is made to ensure the participant's bid is less than the established maximum; specifically, the amount of the ‘authorization only’ hold established in the participant registration and stored, for example, under the field name “SLIMIT” in the participant database of FIG. 7 .
  • this is accomplished by conducting a query on the participant database using the received bid price information as the query criterion. If this maximum is exceeded, a message to that effect is sent in step 420 of FIG. 19 back to the participant, and the bid is not recorded. Upon receipt of such a message, the participant may choose to re-register in order to raise the set maximum. However, an agent of the participant would be unable to do so without the credit card information. Thus, protection is afforded by use of the password established in the participant registration and stored, for example under the field name “SETPASS” shown in the participant database of FIG. 7 .
  • step 418 if the comparison in step 418 is positive, then the bid is accepted and displayed as in step 422 .
  • the bid information record is recorded to the main auction database of FIG. 5 and indexed to the corresponding participant in the participant database of FIG. 7 .
  • step 426 the central computer 12 determines whether any additional bids were bumped by the sorting of step 420 . If so, the central computer 12 returns to step 406 so that all bids bumped by the sorting of step 420 can be examined for related alternative bids before all of the bids are re-sorted. If the comparison in step 426 is negative, the central computer 12 returns to step 420 to re-sort all of the ticket bids with the inclusion of the newly accepted bid.
  • This algorithm is only one of various available means to enable the proper processing of alternative bids by the ticket auctioning system of this invention.
  • a bidding activity meter 302 is used as shown in FIG. 15 .
  • the bidding activity meter shows a graphical representation of the rate of bidding on tickets (e.g., bids per hour or total bid revenue increase per minute).
  • the meter shows a number of different bidding rates from left to right across the meter.
  • a bar extends from the left side of the meter toward the right side of the meter to represent the current bidding rate. In this manner the participant can see the current rate of bids placed for tickets.
  • the bidding activity meter allows the system to have an adjustable bidding window based upon bidding activity.
  • the adjustable bidding window may be defined as an adjustable period of time that may be immediately terminated upon the bidding rate reaching a predefined low threshold.
  • the system may set up an auction for tickets starting at 10 a.m. on a particular day.
  • the auction may be set up to accept bids for at least five hours, until 3 p.m., but for no more than fourteen hours, until 12 p.m.
  • Bidding will remain open after 3 p.m., so long as the bidding continues above the predetermined threshold (e.g., 1000 bids per hour). However, if the bidding drops below that threshold, the auction will be closed immediately. Thus, the auction will definitely accept bids from 10 a.m. until 3 p.m. If the total bidding from 3 p.m. to 4 p.m. exceeds the threshold rate, the bidding will remain open.
  • the bidding rate drops below the threshold, the bidding will immediately cease.
  • the threshold is 1000 bids per hour and the total bidding during the hours of 9 p.m. and 10 p.m. drops to 900 bids, the auction will close, and no further bids will be taken.
  • the bidding activity meter encourages bidders to place their bids early and not wait until the very last minute before auction closing to place their bids.
  • the system may be unable to handle the large number of bids and all bidders may not be allowed to place their bids. If all bids are not placed, the market price per ticket is not realized.
  • the bidding activity meter prevents this problem by encouraging bidders to place their bids early.
  • bidders will monitor the bidding activity meter and place their bids immediately when they realize that bidding is reaching the low threshold level. Because bidders will likely have a continuum of different interpretations as to when the bidding activity meter is reaching the low threshold level, bids will be more evenly distributed over time and the intensity of the final bidding will be decreased.
  • bidding may be split into a first session and a second session.
  • bids are taken to determine which bidders will receive the tickets.
  • a market price is determined for the least preferential ticket in the auction.
  • bidders may bid on the least preferential ticket in each section. Bidders making bids in excess of the market price are guaranteed a ticket and allowed to bid in the second session.
  • bidders place bids on particular tickets in the auction. The most preferential tickets in the auction are awarded to the highest bidders, consistent with the method of conducting an auction described herein.
  • the bid activity meter 302 may be used in both the first and second session of bidding to define the time limits that bidders have to place bids during the first or second sessions.
  • priority bidding may be offered.
  • priority bidding allows the bid participant to place a prioritized bid that acts as a packet of bids and includes a first bid as well as at least one back up bid in the event that the first bid or other higher priority bid in the prioritized bid is rejected during the auction.
  • FIG. 28 shows the participant's terminal screen 400 after selection of the priority bidding option. The participant first selects and clicks a location on the venue map, which generates a colored area defining the area boundaries of this first priority bid.
  • FIG. 29 shows the participant terminal screen 402 at this point. The first priority bid area may then be adjusted by the participant by clicking and dragging the boundaries, as shown in FIG. 30 , terminal screen 404 .
  • the participant's first priority bid is for tickets to seats near the stage in the first section, but does not include tickets on the right side or toward the rear of the front section.
  • the participant enters the desired number of seats and bid amount he wishes to place, and submits the bid.
  • a terminal screen such as screen 406 in FIG. 31 is shown that allows the participant to enter a second priority bid.
  • the participant is prompted to enter a second priority bid location, number of seats desired and bid amount, and is allowed to adjust the second bid location area according to his or her wishes.
  • FIG. 32 shows the participant terminal screen 408 after the participant has entered the second priority bid location, but has yet to enter the information about the number of desired seats and the bid amount.
  • FIG. 33 shows the participant terminal screen 408 after the participant has entered quantity and bid amount information and submitted the second priority bid.
  • the participant may choose to enter a third priority bid or any number of priority bids. Entering third or additional priority bids is performed in generally the same manner as described above for the first and second priority bids. Right clicking with the mouse selects an entire section for the area of a bid, as shown in FIG. 34 with participant terminal screen 410 .
  • the first priority bid of a prioritized bid When the first priority bid of a prioritized bid has been entered by the bid participant, it becomes active immediately, and is either accepted or rejected by the system. When the lower priority bids are entered, they remain inactive unless other bidders bump the first priority bid out such that the bid is no longer acceptable within its defined area. If the first priority bid is bumped or otherwise rejected during the auction, the second priority bid is then activated. If the second priority bid is bumped, the third is activated and so on. If all priority bids are bumped, the participant must raise one or more bids or enter a new bid in order to purchase tickets.
  • the auction procedure illustrated by the flowchart in FIG. 4 may be modified to permit auctioning of priority rights with relative market values that are difficult to rank prior to their sale.
  • two consecutive priority rights may have widely different market values due to individual consumer preference. For example, the value of the right to begin a round of golf at 9:00 a.m. may be significantly greater than the value of the right to begin a round of golf at 9:15 a.m. if an individual consumer's schedule dictates that he must begin at 9:00 a.m.
  • the minimum acceptable bid for each priority right must be evaluated individually as a bid is placed upon the priority right.
  • the auction procedure illustrated by the flowchart in FIG. 4 will satisfy this requirement if each priority right is treated as its own section in the bidding process and some modification is made to the central computer's sorting algorithm.
  • step 428 the central computer 12 performs a search over the entire spectrum of received priority right bids to determine the highest bid among all the priority right sections. This search may be performed expeditiously if in step 49 of FIG. 4 the bid rank of each received bid is determined relative to all other bids received in the auction. Therefore, in the main auction database of FIG. 5 , the “RANK” field of the highest overall bid received in the auction would contain a “1”, the “RANK” field of the second highest overall bid received in the auction would contain a “2”, and so on.
  • step 428 after the central computer 12 has determined which bid is the highest, the priority right designated in that bid's bid information record is assigned to that bid. This process is completed by indexing the corresponding bid record in the main auction database of FIG. 5 to the corresponding priority right record in the priority right database of FIG. 6 .
  • step 430 the central computer 12 determines whether any priority rights are still available for auction. If the answer is negative, the central computer 12 determines if any bids have been bumped, step 432 , and then exits the sorting algorithm, step 434 . If any priority rights are still available for auction, the central computer 12 determines whether any bids have yet to be processed in step 436 . If not, the algorithm proceeds to step 432 .
  • the central computer 12 conducts another query to determine which bid is the next highest overall bid, step 438 .
  • the central computer 12 assigns to that bid the priority right designated in that bid's bid information record. If the priority right designated in that bid information record has already been assigned to a higher bid, then the available priority right that is the closest to the designated priority right is assigned. After assigning a priority right to the bid, the algorithm returns to step 430 . The process is continued until all available priority rights have been assigned or until all bids have been processed, whichever occurs first.
  • the algorithm illustrated in FIG. 20 is simply one of various algorithms that permit the priority right auctioning system of the present invention to sort unranked priority rights so as to obtain for those rights their true market value.
  • FIG. 21 illustrates an auction for the right to begin a round of golf at a particular time that is conducted using the automated priority right auctioning system of the current invention with the sorting algorithm of FIG. 20 .
  • Frame 440 in FIG. 21 contains the bids received during the auction.
  • participants were permitted to designate one of four golf tee times: 8:00 a.m., 8:30 a.m., 9:00 a.m., and 9:30 a.m.
  • the central computer 12 then utilized the sorting algorithm in FIG. 20 to assign twenty-seven available tee times to the highest of these bids.
  • the central computer 12 in step 428 , determined that priority right bid 442 for $300 was the highest of all the bids received. Therefore, that bid was assigned the priority right to tee off at 8:00 a.m., and the bid record corresponding to bid 442 in the main auction database of FIG. 5 was indexed to the priority right record corresponding to the 8:00 a.m. tee-off time in the priority right database of FIG. 6 . The result of this assignment can be seen in frame 444 of FIG. 21 .
  • the central computer 12 then determined that there were more available priority rights, step 430 , and that there remained bids that had not yet been processed, step 436 . Therefore, the central computer 12 queried the main auction database of FIG. 5 to determine that priority right bid 446 for $260 was the highest unprocessed bid. The central computer 12 thus assigned the priority right to tee off at 8:30 a.m. and indexed the bid record corresponding to bid 446 in the main auction database of FIG. 5 to the priority right record corresponding to the 8:30 a.m. tee-off time in the priority right database of FIG. 6 . The result of this assignment can be seen in frame 444 of FIG. 21 .
  • the central computer 12 determined that there were more priority rights available and, in step 436 , that more unprocessed bids existed. So, in step 438 , the central computer 12 queried the main auction database of FIG. 5 to discover that the highest unprocessed bid was bid 448 for $250. However, because bid 448 designated 8:00 a.m. as its desired priority right and bid 442 had already been assigned the 8:00 a.m. priority right, the central computer 12 assigned to bid 448 the available priority right closest to the 8:00 a.m. priority right, the 8:05 a.m. priority right. The central computer 12 then indexed the bid record corresponding to bid 448 in the main auction database of FIG. 5 to the priority right record corresponding to the 8:05 a.m. tee-off time in the priority right database of FIG. 6 . The result of this assignment can be seen in frame 444 of FIG. 21 .
  • the central computer 12 continued processing this algorithm until all priority rights were assigned to received bids.
  • the final result of all priority right assignments can be seen in frame 444 .
  • the priority rights auctioning system could be modified to permit, as discussed above, alternative priority right bids, personal priority right bidding sections; and participant preference options, such as the option to designate which direction the bid is bumped.
  • the priority rights auctioning system of the present invention utilizing a sorting algorithm such as that illustrated in FIG. 20 , is thus. capable of obtaining the true market value of priority rights that have relative values that are difficult to rank prior to their sale.
  • FIG. 22 through FIG. 27 are examples of such graphs and tables for a ticket auction.
  • FIG. 22 is a graph of the gross revenue of the auction versus the time over which the auction takes place. It displays the dollar amount that the auction organizer must obtain to break even, eleven million dollars in this example, and the time at which the gross revenue reaches that amount 450 .
  • a legend 452 is included in FIG. 22 which denotes that each of the points on the graph labeled A through H shows the gross revenue at the exact time that a section was filled.
  • the section of the graph labeled II i.e. between dotted line 454 and dotted line 456 , displays how the rate of increase of the gross revenue decreases as the auction nears its end.
  • FIG. 23 is also a graph of the gross revenue of the auction versus the time over which the auction takes place.
  • FIG. 23 denotes the duration of multimedia presentations on the Internet website affiliated with the auction and their effect on the gross revenue. Other information may also be placed on the graph.
  • dotted line 500 may denote the time at which ticket lock-ins become available
  • dotted line 502 may denote the time at which a promotional commercial airs on a local radio station.
  • FIG. 24 is the graph of FIG. 22 with an additional graph 550 below it displaying the change in the rate of growth of the gross revenue per minute of the auction.
  • the auction organizer can assess not only the effect of each promotional activity upon the total gross revenue but also its effect on the rate of growth of the revenue.
  • FIG. 25 is the graph of FIG. 22 with an additional graph 600 below it of the number of lock-ins ordered and the amount of the lock-in premium versus the time over which the auction takes place.
  • Lines 602 and 604 in FIG. 25 display the changes in the level of the lock-in premiums over the term of the auction. Prior to the time denoted by dotted line 606 in FIG. 25 , no lock-in premiums were available.
  • Lines 608 and 610 display the number of lock-ins ordered at different times during the auction.
  • FIG. 25 is useful to an auction organizer because it enables the organizer to analyze the effect of the timing and magnitude of the changes to the lock-in premium on the number of lock-ins ordered.
  • FIG. 26 is a graph of the average price per ticket versus the time over which the auction takes place.
  • Dotted line 650 denotes the time at which this graph was created, 10:09 a.m., and. separates the graph into a part that is based on actual sales and a part that consists of average price forecasts based upon those actual sales.
  • Dotted line 652 marks the end of the auction, and all lines in the graph that intersect with dotted line 652 are projections of the average price of tickets at the end of the auction.
  • line 654 plots the average price of a seat in Section A in an auction for the right to sit in a seat at an event. As of 10:09 a.m. the average price of a seat in Section A is about $400.
  • a forecasting algorithm has predicted with 95% certainty, based on the rate of growth of the average sale price of a seat in Section A from the start of the auction until 10:09 a.m., that the price of the average seat in Section A at the end of the auction will not be below $650.
  • the algorithm calculates that to obtain this amount for a ticket at 10:09 a.m., the lock-in premium should be set at 40%.
  • the forecasting algorithm has predicted with a 50% certainty that the final average price will not be below $1050 and has calculated its related lock-in premium of 125%.
  • the forecasting algorithm has also predicted with a 5% certainty that the final average price will not be below $1850 and has calculated the related lock-in premium of 300%.
  • the auction organizer may use graphs such as FIG. 26 throughout an auction to determine a reasonable lock-in premium amount.
  • FIG. 27 contains two graphs displaying real-time ticket sale stats for an auction of the rights to sit in a particular seat at an event.
  • Graph 700 in FIG. 27 plots the number of bids received per minute during the time that the auction takes place.
  • statistics frame 702 contains numerical data useful to the auction organizer, including the total number of bids received, the total number of bumped bids, the average number of seats per bid, and the number of lock-ins ordered.
  • Graph 704 in FIG. 27 plots the distribution of bids at a certain. point of time in the auction. The minimum, maximum, average, and median bid amounts are denoted by label 706 , label 708 , label 710 , and dotted line 712 , respectively.
  • graph 704 distinguishes between standing bids and bumped bids by graphing each in a different color.
  • the auction organizer may create multiple versions of graph 704 for various times during the auction, enabling the organizer to view the progression of bids during the auction.
  • Statistics frame 714 contains numerical data such as the number of sections filled, the average standing bid amount, the high bid amount, and the low bid amount.
  • the exemplary contiguous ticket algorithm of FIG. 12 may readily be modified to allow repeated movements of a group to ensure contiguous tickets or to allow block-style groupings, or other variations.
  • this ensuring of contiguous tickets shown at step 54 of FIG. 4 could be performed as each bid is placed, rather than only at the close of the auction.
  • the last ticket cut-off in step 55 of FIG. 4 could be executed with each bid made.
  • the auction system may readily be modified to sell each section of seats in succession or at different Internet locations.
  • Other embodiments may provide additional incentives for bidders to bid early in the auction. For example, if the auction is for the right to sit in a particular seat at an event, those bidding within the first ten minutes from the auction opening may be awarded cash value certificates for redemption at the event for concessions or gift shop items. Larger awards may be granted for earlier bids (e.g., $10 for a bid within the first ten minutes after auction opening) and smaller awards may be granted for later bids (e.g., $2 for a bid within the first hour after auction opening). In other alternative embodiments, certain classes of people may be awarded preferential treatment during bidding.
  • alumni bids maybe augmented by a given dollar amount, alumni may be given access to a certain portion of the tickets, or alumni may be allowed to place bids after the auction closes.
  • auctions for priority rights such as event tickets and golf tee times have been used in the above description, the invention is not limited to systems auctioning those priority rights, and the system may be designed to auction any number of different types of priority rights.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Engineering & Computer Science (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Technology Law (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Tourism & Hospitality (AREA)
  • Signal Processing (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

An automated ticket auctioning system receives and evaluates bid information records received from a plurality of remote terminals. Each bid information record corresponds to at least one bid for one or more desired seats at a venue. Each bid information record may also include a plurality of additional bids identified for different seats in the venue. The separate bids in each bid information record are prioritized. The automated ticket auctioning system includes a central controlling computer operable to receive the bid information records and determine, in order of priority, whether any of the bids in a bid information record is accepted. If one bid in a bid information record is accepted, all lower priority bids in that bid information record are dismissed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 11/502,344, filed Aug. 10, 2006, which is a continuation of U.S. application Ser. No. 11/059,990, filed Feb. 17, 20015, now (U.S. Pat. No. 7,747,507), which is a continuation-in-part of U.S. application Ser. No. 09/778,606, filed Feb. 7, 2001, (now, U.S. Pat. No. 6,907,405), which is a continuation-in-part of U.S. application Ser. No. 09/586,927 filed Jun. 5, 2000 (now U.S. Pat. No. 6,704,713), which is a continuation of PCT application Ser. No. PCT/US00/03136 filed Feb. 7, 2000, which is a continuation-in-part of U.S. application Ser. No. 08/862,547, filed May 23, 1997 (now U.S. Pat. No. 6,023,685), which claims the priority of provisional patent application No. 60/018,211, filed May 23, 1996. Each of these applications is hereby incorporated by reference in its entirety for all purposes.
  • BACKGROUND
  • 1. Field
  • The present invention relates to the field of auctions and, in particular, networked systems for conducting specialty auctions using computers.
  • 2. Background
  • An important goal of anyone attempting to sell the right to attend an event, to own a product, or to perform an activity is to receive in return for that right the true market value of the right. For some rights, the market values of similar rights are all equal. For example, under normal conditions, the fair market value of two identical radios, both of the same brand and model, is the same. Thus, if a consumer were given the opportunity to purchase the right to obtain one of the radios instead of the other, there would typically be no incentive for the consumer to pay for that right. Therefore, the market value of the rights to obtain the radios are equal. However, the relative market values of some rights to similar products, services, or events are not the same, but are dependent upon a difference in some characteristic of the rights. For example, when purchasing tickets to a concert, although each of two tickets may allow the holder to see the same performer, on the same night, in the same venue, the market values of those tickets differ depending upon the location of the ticket within the venue. Therefore, the market value of the right to sit in a particular seat at a concert depends at least in part upon the characteristic of the proximity of the seat to center stage.
  • The right to perform an activity, or obtain a product, or attend an event wherein the difference between the market value of the right and the market value of another similar right is dependent upon the difference in some characteristic of the rights shall be referred to herein as a “priority right”. A ticket is one example of a priority right used throughout the specification. However, it is to be understood that tickets are not the only priority rights applicable to the present invention.
  • Too often, the established methods of selling priority rights do not result in prices for these rights that are equal to their true market value. Therefore, these established methods are incapable of maximizing the revenue of those selling priority rights.
  • For some priority rights; the manner in which differences in the pertinent characteristic affect the market value of the right are apparent. For instance, for most sports or concert performances, the market value of the ticket rights, i.e., the right to sit in a particular seat at a particular event, is greater if the seat is closer to the stage. Thus, it may be relatively easy for a seller to rank the ticket rights prior to any sale of the rights. However, for other priority rights, although the characteristic that affects the market value of the right may itself be obvious, the manner in which variance in the characteristic affects the market value is not apparent. For example, when an individual wishes to purchase the right to play a round of golf at a particular course, the time that the round begins will likely affect the amount that the individual is willing to pay. The golfer may wish to be the first to tee off and would be willing to pay more for such a time than for any other. On the other hand, the golfer may have another commitment in the morning and be interested only in tee times in the afternoon. Therefore, the amount the individual would be willing to pay for a time in the afternoon varies greatly from the amount for a time in the morning. Due to this variability in consumer preference, any ranking of the rights to play a round of golf at particular times on a particular day by the owner of the golf course may not result in sales prices for these rights that are equal to their true market values. Therefore, a system is needed whereby the true market values of all priority rights can be achieved, including both those rights with relative values that can be easily pre-ranked and those rights with relative market values dependent upon consumer preferences that are difficult to discern prior to the commencement of sales.
  • Types of Priority Rights
  • As discussed above, the right to sit in a particular seat for a particular event is a priority right wherein the market value of similar rights can be ranked prior to the sale of the rights, by ordering the seats in large part according to their proximity to center stage. The current manner of selling the right to sit in a particular seat for a particular event involves selling tickets to the event. However, the established method of selling tickets to sporting and entertainment events involves pre-setting inflexible prices and then releasing the tickets for sale at a box office or by phone. This method has a number of shortcomings. Typically, each sale involves employees taking time-consuming individual orders and trying to describe the prices and seat locations to customers. Another shortcoming with this method is that it can be highly inconvenient and sometimes impossible for the purchaser to access the sale due to demand. This is especially true for premium “high demand” events. Moreover, for practical reasons, prices are assigned to tickets in large blocks, while, in reality, purchasers often consider tickets within a block to have a wide ranging continuum of values; and these market values can be very hard to estimate before the tickets are sold. Largely because of these shortcomings, many premium tickets are sold for substantially less than their market value. Generally, these shortcomings exist even with new automated methods involving phone or Internet sales since the number of tickets is limited and the selling system is still fundamentally the same; with “first-come-first-served” orders taken for pre-priced tickets.
  • Another priority right with a relative market value that can be fairly easily determined prior to sale is the right to obtain a product for which the market demand far exceeds the supply. Occasionally, a manufacturer underestimates the demand for its product and thus creates too few units for the product's initial market release. Examples of this occurrence in the recent past include the Cabbage Patch Kids™ doll, the Tickle-Me Elmo™ doll, and the Sony PlayStation 2™ video game system. When such a situation exists, the manufacturer generally maintains a fixed selling price and offers the products on a “first-come-first-served” basis. The manufacturer not only loses revenue from the sales it could have made if it had produced more units, but it also loses revenue by selling the units it did produce at a price below their true market value. This difference between the original sales price and the market value is typically realized by an entity other than the manufacturer, e.g. one who buys the product and then resells it at a higher price. The pertinent characteristic that determines the market value of such highly desired products is the time of availability of the product to the consumer. In other words, a consumer would pay more to have the first product off the assembly line than to have the five-hundredth. Therefore, a system is needed so that when a manufacturer realizes that it has produced too few of a highly desired product, the manufacturer may maximize its revenue on those products by selling them at their true market value.
  • Other priority rights with market values that can be ranked prior to their sale are rights to obtain services wherein the value of those rights are dependent upon the order in which the services are received. For example, many consumers hire companies or individuals to remove snow from their property after an accumulation of snow. However, the value of this service is dependent upon the time at which the service is performed and, therefore, is dependent upon the order in which the properties are serviced. For instance, a consumer would likely be willing to pay more to be the first serviced after the accumulation of snow has stopped than to be the twentieth to receive the same service. Therefore, a system is needed wherein this discrepancy in market value may be realized by the provider of the service.
  • Another example of a service with a market value dependent upon the order of its performance is admittance through a toll booth. Currently, the administrator of a toll booth receives a set price for each vehicle that passes through the toll booth. That price is often dependent upon the type of vehicle, but the price does not reflect the true market value of the right to pass through the booth. The true market value depends upon how quickly the consumer is able to pass through the booth, i.e., the consumer's order in the line at the toll booth. Therefore, a system is required whereby the price of the right to pass through a toll booth is dependent upon the order in which the consumer is allowed to pass through the toll area.
  • Another right for which the current sales system does not return the true market value of the right is the right to obtain a certain numbered product of a limited edition series of products. For example, a popular artist may sell only 100 prints of one of her paintings. The current established method for such sales is offering all of the prints for sale at a set, inflexible price on a “first-come-first-served” basis. However, this sales approach may not achieve the full market value for all of the prints. Many consumers may be willing to pay more for the first numbered print than for the fiftieth. Therefore, because only one price is set for all of the prints, many of the prints are likely being sold at a price below their true market value. Also, by basing the availability of the prints upon “first-come-first-served,” the additional profit that could be gained by selling a print to one who comes later but is willing to pay more is lost. Because the lower the number on the limited edition item, the higher its value, the relative market values of the rights to obtain items with different numbers can be determined prior to any sales activity. A system is needed whereby the true market value of limited edition items may be realized by the seller of the items.
  • Other markets in which the priority rights that are sold are often purchased for less than their market value are those markets containing products whose true market value depends on the product's location. For example, the rights to stay in cabins on cruise ships or hotel rooms or bungalows in vacation resorts are often assigned a sales price based on the amenities available in the room. However, among rooms containing the same amenities, the true market value of the right to stay in each room may differ depending upon the distance from the room to some desired location, such as a pool, beach, or lounge. The established method for determining the price of the right to stay in such rooms is to simply set a fixed price and make the rooms available on a “first-come-first-served” basis. A system is needed whereby the market values of these priority rights, which can be ranked according to the distance from some desired attraction or attractions, can be fully realized.
  • Another characteristic which determines the value of some priority rights is the time of entry into some venue. The established methods for selling these priority rights are not capable of garnering the full market value of the rights. For example, theme parks, such as Disneyland™ and Busch Gardens™, sell tickets at an inflexible price for a day's admission to the park. However, the actual time of admission to the park on any particular day is generally determined by how early the patron is willing to arrive at the park to stand in line. An earlier time of admission is desired by many patrons because the most popular attractions at theme parks often fill up quickly and maintain long lines for the entire day. The desirability of early admission is evidenced by the current practice of some theme parks, such as Walt Disney World™ in Orlando, Fla., which allow customers who stay at resorts affiliated with the theme park to enter the park earlier than customers who do not. However, this practice consists of allowing all patrons of the affiliated resort to enter the park at a set time, such as one hour prior to the admittance of the general public. This practice does not maximize the profit that may be obtained by the selling of these rights. Some of those customers who stay at the affiliated resorts may be willing to pay more to enter the park before other affiliated resort patrons. Further, this system does not account for the profit that could be gained by allowing members of the general public to purchase the right to enter the park at a time prior to other members of the general public. The relative value of these rights can be easily ranked, with earlier times of admittance having higher market values.
  • Another priority right with a market value dependent upon location, but for which pre-ranking of the relative market values may not gamer the true market value of the rights, is the right to sit at a particular table in a restaurant. A patron is likely to pay more to obtain a table closer to a window, for example, and is likely to pay less for a table close to the kitchen. However, individual patrons may prefer one window view to another or may desire to sit at a table in a corner for more privacy. Therefore, a complete, objective ranking of such rights to sit at a particular table may not be entirely accurate. There is a need for a system which would enable the seller of these rights to obtain their full market value.
  • As discussed above, the right to begin a round of golf at a particular time is a priority right for which the relative market values of related rights are difficult to determine prior to the sale of the rights. The tee time itself is the pertinent characteristic that determines the relative values of the rights to begin rounds of golf throughout a particular day. However, it is unclear prior to the sale of the rights which times are most desired by individuals wishing to play golf that day. The established method for determining tee times at a golf course is to set an inflexible price for playing a certain number of holes and then offering tee times on a “first come first served” basis. At premier golf courses, the system may be slightly different, requiring consumers to stay at a particular resort or be a member of an association in order to purchase a round of golf. However, even within these premier systems, the tee times are generally offered on a “first-come-first-serve-d” basis. These systems fail to gamer the most profit for the golf course owners because individuals who attempt to reserve tee times after all the times have been reserved may be willing to pay more than the owner has currently received for a particular time. Also, some individuals may prefer to tee off at certain times of the day and, therefore, would be willing to pay more for the right to tee off at those times. For example, a golfer may wish to be the first person to tee off on a particular day, or a golfer may wish to tee off later in the afternoon to avoid the heat of the day and to view the sunset on the golf course. Therefore, the current system for selling golf tee times is sub-optimal because it does not account for individuals who would pay more to play at a particular time or for individuals who attempt to make reservations after all tee times have been reserved.
  • Another priority right with a relative value dependent upon individual consumer preference, therefore, difficult to rank prior to a sale is the right to sit in a particular seat to view a movie in a theater. When viewing a movie, many individuals prefer to sit in the exact middle of the theater. However, others, such as those with small children, may wish to sit on an aisle, and others may prefer seats in the back of the theater. Therefore, the market value of the right to sit in a particular seat is not determined by some easy calculation, such as the distance from the center of the screen, but is dependent upon each potential movie-goer's personal preferences. The current system of selling tickets to the movie and then allowing admission on a “first-come-first-served” basis does not gamer the full market value of the right to view the movie in a particular seat. Therefore, a system is needed whereby the full market value of the right to sit in a particular seat to see a particular movie at a particular time can be recognized by the theater owner.
  • Some priority rights are unique in that it may be relatively easy in one situation to determine the relative market value of related rights prior to their sale while in another situation it is very difficult. One example of such a priority right is the right to view an art exhibit. For highly anticipated art exhibits, many individuals would be willing to pay a premium for the right to be one of the first to view the exhibit. Therefore, the true market value of the right to enter the art exhibit is not being achieved by the current system of either issuing select invitations to a premiere night or simply allowing admission to ticket holders on a “first-come-first-served” basis. In this situation, the priority rights could easily be pre-ranked with the earliest time of admittance being the most valuable. Thus, a system is needed whereby the exhibit organizer may realize the full market value of the right to view such an exhibit.
  • However, on any day after the opening day of an art exhibit, the relative values of different times of admittance may vary more widely due to the schedules of potential viewers. For example, one individual may be willing to view the exhibit late in the afternoon because work precludes any other time of attendance. Therefore, to that individual, the right to view the exhibit in the late afternoon is more valuable than the right to view it in the morning. The current system of selling tickets for an art exhibit does not account for this variance in market value due to individual viewers' preferences. Therefore, there is a need for a system that does yield the full market value of the rights sold.
  • Priority Right Auctioning System Options
  • In selling priority rights where the relative market values of the priority rights can be easily pre-ranked, there also exists a need for a system that can allow the purchaser to override the pre-ranking to denote the purchaser's own personal preference. For example, although seats in the front row at a concert are widely regarded as the best seats and would be pre-ranked as the seats with the highest relative market value, an individual may wish to sit on the side of the stage to be near a particular member of the performing group. If that individual was willing to pay handsomely for the right to sit in a seat on the side, but not one in front of the stage, then the full market value of the right to sit in a seat on the side of the stage would only be captured by a system which allowed the individual to denote his own ranking of desired seats. Also, a bidder may be willing to pay a premium for the right to sit in the first few rows but not for the right to sit in all the seats in a section specified by the seller of the rights. Therefore, a system is needed whereby a bidder may personally designate one or more priority rights and then offer to pay up to a certain amount for those rights.
  • Additionally, when purchasing priority rights consumers often wish to designate alternative bids. For example, an individual who wished to purchase the right to sit in a seat at an event may only be interested in sitting in the first few rows if it would cost below a particular price. If that person's bid was unsuccessful for that section of priority rights, however, he may be willing to sit in one of a group of seats in another location for some lesser amount of money. The current method of selling priority rights does not accommodate this desire by the consuming public to designate individually-tailored alternative priority right bids. Therefore, there is a need for a system that satisfies this desire.
  • Shortcomings of Current Auctioning Systems
  • Logistically, auctioning of priority rights has not always been feasible due to the large quantity of unique rights and even larger quantity of buyers wishing to purchase them. A few auction systems have been developed that operate using the Internet as the communications mode. These systems have been used to auction items such as computer equipment, artwork, and special items for charity. However, these systems are not suitable for use in connection with a real-time mass auction of priority rights. With the currently operating systems, generally the items being sold are of a small quantity or individually unique. In most of the currently operating systems, the items for sale are individually listed and individually bid upon using e-mail over a period of days or weeks. While, the currently operating systems are useful for such limited purposes, they have several shortcomings.
  • One such shortcoming arises from the use of e-mail to place bids and to update participants of their bid status. While in theory e-mail is instantaneous, there are occasional routing delays of which the sender is often not immediately aware. In an auction of a slow, deliberate nature such as those presently operating, this is not a great concern. However, in a fast pace auction with numerous participants some bids could be lost as delayed e-mail, unbeknownst to the participant.
  • An additional problem with the e-mail approach is that time may elapse before the bid information is read and applied. Therefore, the participant may not get instantaneous feedback on other bids which may be taking place simultaneously. The participant often must wait for some period of time to learn if the bid is successful. If the participant has a strategy for bidding on a very desirable item, the participant must return to the auction numerous times to follow its progression.
  • Most currently operating systems provide some general bid status data, usually a minimal. amount of information such as “current” high bid. This “current” high bid is updated by periodically reviewing the bids received, and entering the highest bid to date. Therefore, these “current” bids are not current up to the second. Moreover, if there are many of a particular item, such as event tickets or golf tee times having a continuum of values, participants need to know considerably more than the high bid information in order to make an informed bidding decision.
  • Currently operating systems do not provide bid status information updates independent of solicitation of the information from participants. Once the Internet auction site is accessed, the information conveyed may become outdated as it is being viewed. Again this would be quite unfavorable for fast-paced auctions. Therefore, even with auction sites which were actually being updated real-time, a participant would need to continually re-access the site in order to keep information truly updated.
  • One Internet auction system, “onsale” at http://www.onsale.com/ attempts to overcome the e-mail auction problems by automatically updating its Internet site. However, like the other Internet auction sites, “onsale” conducts relatively slow, deliberate sales, and still relies on e-mail to transmit some of the bid information. In addition, although the “onsale” auction site is automatically updated, it does not automatically present this information to participants. As explained above, participants need to continually re-access the site in order to keep information truly updated.
  • U.S. Pat. No. 4,689,928 details an auction system for used cars that is capable of interactive, essentially real-time auctioning. Instead of being Internet based, this used car auctioning system is constructed with a 4-level hierarchy of computers networked to a plurality of auto dealers terminals. At each level, the bids received by the computer are processed and only select bids are transmitted to the next level. The bids are raised in increments of 3000 yen and the participants may bid via a single signal indicating a “yes” in response to the bid being raised. This system is based on the traditional auction format, and is used to sell one item or lot at a time. When a car has been auctioned, a disc is loaded by each dealer into his terminal which shows the photograph of the next car to be auctioned. Bidding is limited to a predetermined group of auto dealers. Because the structure of this system is hierarchical, i.e. not on the Internet, it is not practical for use in wide-spread auctions available to consumers. Because of the methodical nature of this system, selling a progression of single items with incremented bids, it is geared for low volume sales of items with relatively high values.
  • Recently tickets have been made available for purchase on the Internet, for example at http://www.ticketmaster.com and http://www.tickets.com. However, at these Internet sites, sales are of the traditional pre-set pricing, “first-come-first-served” format. Some Internet sites do offer tickets in an auction format, but only a few tickets to select events sold by individuals who have purchased the tickets and are attempting to resell them. Examples of such sites are http://www.ebay.com, http://auctions.yahoo.com, http://www.allsoldout.com, and http://www.busyrhino.com.
  • Considering the selling of a large number of priority rights, there are unique circumstances which present challenges not manifested in selling other types of rights. Since the values of priority rights vary widely depending upon the difference in a pertinent characteristic, it is not practical to mass the priority rights into simple generic blocks to be auctioned. Nor is it practical to list and auction each priority right individually, since this could present auction participants with a prohibitively large number of individual auctions, and no practical way to obtain contiguous priority rights. In other words, if a bidder wished to purchase the right to sit in four adjacent seats at a show or movie, and the right to sit in each seat was sold in a separate auction, it would be virtually impossible for the bidder to monitor every combination of four adjacent seats and make appropriate bids. Accordingly, there exists a need for a system which can, within a single, clear format, auction a large number of rights with a continuum of values, each at its market price. Furthermore, this system needs to apply logic in sorting bids based not only on price, but on clustering requirements to ensure that within a multiple priority right bid, the priority rights are contiguous. This would require a database configuration unlike that employed by the prior art.
  • Moreover, given the furious pace of sales for many premium priority rights, there exists the unique and as yet, unmet challenge of providing instant, automatic, comprehensive feedback for the status of a relatively complex arrangement of standing bids. Frequently the more popular sporting and entertainment events sell all available tickets in a matter of a few minutes. The number of tickets to these events may reach into the hundreds of thousands. A practicable auction of priority rights for such an event would require a system uniquely designed to process this large volume while presenting an updated, clear and informative view of the proceedings to all participants. It would be logical to presume that efficient conveyance of bid information for a large, complex pattern of bids would require a graphical representation of the bid standings. Although some Internet auctions employ graphical representation of objects for sale, none employ graphical representation of bid status.
  • Another need for on-line auction systems is a method of convincing bidders to place their bids early instead of waiting to bid at the last minute before the auction closes. As mentioned previously, on-line auctions are typically conducted over a set period of time. With these systems, bidders often wait until the last possible second before auction closing to place their bids in an attempt to block subsequent bidders from making higher bids. Such actions by bidders not only keeps the price of the auctioned item undesirably low, but sometimes results in a large quantity of bids just before auction closing which the on-line system is not capable of handling. Thus, it would be advantageous for an on-line auction system that provides incentives for bidders to place their bids early in the auction rather than waiting until the last minute.
  • In addition, ticket auction participants occasionally need to have two or more mutually exclusive ticket purchase options available to them. Ticket purchase decisions are often made based on price and availability of seats having acceptable locations. Even the number of tickets a consumer wishes to order may be dependent on price. For example, a consumer may desire two front row tickets if they are within his budget, otherwise he desires four tickets in a different location within budget, otherwise he desires ten tickets anywhere available within budget. But with auctions of pre-ranked seats, some such information cannot be known until the auction has ended, unless the auction close is phased-out from the best to the worst seats. There exists a need to make solutions available in the form of mutually exclusive, prioritized bids simultaneously entered by a consumer in a ticket auction.
  • In addition, not all ticket auction customers will agree with the exact seat pre-ranking assigned for an auction. For example, a race fan may prefer seats behind his favorite driver's pit stop. An older fan at an arena concert may wish to be as close as possible without being on the floor, where he assumes fans will stand during much of the show. Again, there exists a need for mutually exclusive, simultaneous prioritized bidding in order to provide this flexibility to fans.
  • Another shortcoming of currently established methods for selling tickets and other priority rights is their inability to reap for the priority right seller the dramatic increases in market value of priority rights immediately prior to their usage. For example, in the days immediately preceding a popular concert or movie premiere, the market value of tickets to those events typically increase dramatically as publicity increases and the public focuses on the event. However, because a large percentage of the public must plan their schedules far in advance, it is not feasible to only sell tickets to these events in the few days before the event occurs. Therefore, tickets are sold months in advance and popular events sell out before the true market value of the rights to attend the event can be determined. A system is needed that permits individuals to reserve priority rights a sufficient amount of time in advance but that also garners for the priority right seller the full market value of those rights.
  • A potential negative effect of a system that places primary emphasis upon the maximum amount of money an individual is willing to pay for a particular right is that less affluent members of the consuming public will be unable to procure desired priority rights. Under current established methods for selling priority rights which offer rights on a “first-come-first-served” basis, individuals of limited means may still purchase rights if they are willing to stand in line for an extended period of time. Also, a system that only seeks the highest profit margin in priority rights sales would not permit special treatment of certain bidders, such as alumni group members, company employees, or frequent purchasers. Such special treatment may be important to the public image of a priority right seller, and, thus, its long-term economic success. Therefore, there is a need for a priority right sales system that may. be modified to favor members of a selected group, such as those of limited means or company employees.
  • Additionally, to achieve the full market value of a group of priority rights, the administrator of a priority right sales system must be equipped with certain statistical information regarding the progress of the sale. Therefore, a system for selling priority rights should be capable of real-time statistical analysis to aid the system administrator in regulating the system to achieve optimal results.
  • In spite of their shortcomings, the above mentioned prior art systems are useful for their respective intended purposes. However, given their limitations, and the above noted unique circumstances for mass priority right sales, it is simply not practical or feasible to apply any of the prior art to the particular task of auctioning a large volume of priority rights.
  • SUMMARY
  • Accordingly, an object of the present invention is to provide a computer controlled auctioning system, in which a large number of participants may have simultaneous access to bid on to the desired priority rights. The above stated needs as well as others are fulfilled by the present invention through a system constructed to sell a large number of priority rights in a very short time, each said priority right being sold for a value set by existing market forces. The system provides participants with simple, yet informative graphical standing bid information on the entire stock of priority rights available, and allows them real-time bidding interaction. This system can achieve such sales even for priority rights garnering extremely high public interest, without excluding any potential purchasers.
  • The present invention achieves said objectives by employing a computer controlled priority right auctioning system which receives and evaluates bid information records received from a plurality of remote terminals, said bid information “records corresponding to bids for one or more priority rights.
  • The automated priority right auctioning system is comprised of a memory storing a plurality of previously accepted bid information records, said records each including identification information, section information, quantity information, and bid price information. The automated priority right auctioning system is further comprised of a central controlling computer operably connected to the memory and operable to receive a message including a received bid information record from one of a plurality of remote terminals through a communication system, determine a lowest minimum acceptable bid value corresponding to the received section information using the previously accepted bid information records stored in the memory, and store the received bid information record if a value represented by the received bid price information exceeds the lowest minimum acceptable bid value.
  • The central controlling computer is further operable to, in a like manner, receive, evaluate and store, if acceptable, subsequent bids received and to stop receiving subsequent messages after a predetermined time period.
  • Within the automated priority right auctioning system, each previously accepted bid information record includes rank information based on the section information and the bid price information, and the central controlling computer is further operable to assign a rank to each received bid information record based on its section information, its bid price information, and the previously accepted bid information records.
  • After stopping receiving subsequent messages, the central controlling computer is further operable to associate one or more particular priority rights with a previously accepted bid information record based on the rank information and the section information of each of a plurality of previously accepted bid information records.
  • The automated priority right auctioning system further includes a programmed graphical representation method designed to efficiently convey to auction participants useful standing bid information across a spectrum of priority rights to be auctioned, allowing current priority right bid prices to be quantified in an effective manner.
  • The system further includes programmed methods for ensuring contiguous grouping of priority rights within each multiple priority right bid, and for ensuring that the standing bid information is automatically updated on a real-time basis and presented as such to all auction participants; said programmed method employing HTML programming features such as the recently available META refresh (a client pull type browser directive) or the multipart/mixed MIME format (a server push type browser directive).
  • Participants may access this system from remote sites using terminals, such as personal computers, via telephone lines or other means of communication. The status of bids and their corresponding priority rights are conveyed on graphic displays which are updated on a real time basis for all participants to view. Participants may place bids of any amount, subject to predetermined limits, and cancel, raise, or lower bids at will. In addition, participants may view their personal bid standings and the updated overall bid standings without having to continually re-access the auction site. Through the participants' remote terminals, the personal bid requests are sent to the host computer which immediately processes, and sorts the bids according to section and price. The central computer immediately updates and displays the new bid standing order. When the auction is closed, the bids become fixed and the physical transaction can occur.
  • The system further includes the ability for participants to limit their bids to particular types of priority rights. Additionally, the system will allow participants to lock-in their priority rights before auction closing upon the payment of a premium. Also, the system provides for proxy bidding which allows participants to automatically increase bid amounts to match subsequent higher bids. The system further includes the ability for participants to define their own personal bidding sections and to make alternative bids. Also, the system provides incentives for compelling bidders to place bids well in advance of auction closing.
  • In addition, it would be advantageous for the system to further include the ability for each participant to place two or more prioritized simultaneous but mutually exclusive bids in a single ticket auction.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an exemplary system built in accordance with the present invention.
  • FIG. 2 is a flowchart illustrating an exemplary system built in accordance with the present invention.
  • FIG. 3 is a flowchart illustrating an exemplary participant registration procedure used in a system built in accordance with the present invention.
  • FIG. 4 is a flowchart illustrating an exemplary auction procedure used in a system built in accordance with the present invention.
  • FIGS. 5A and 5B show exemplary representations of at least part of the main auction database storing the order of bids received.
  • FIGS. 6A and 6B show exemplary representations of at least part of a referring database which stores the available priority rights for sale.
  • FIG. 7 is an exemplary representation of a referring database which stores the participants identity and personal and payment information.
  • FIG. 8 is an example of the statistical record of all bid events received, for use in marketing studies and customer service.
  • FIG. 9 is an example of the participant's terminal screen, as it might appear before the beginning of an auction. The terminal displays a graphical representation of a venue of seats, the rights to which are to be auctioned, and the preset minimum bid price of those rights.
  • FIG. 10 is an example of the participant's terminal screen, as it might appear during an auction. The terminal displays a graphical representation of the rights to be auctioned, the present bid price of those rights, and the personal bid standing for this particular participant.
  • FIG. 11 is an example of the participant's terminal screen when the desired section is chosen for bidding. The bid form is included on this screen.
  • FIG. 12 is a flowchart illustrating an exemplary algorithm used to ensure contiguous priority rights within each bid in a system built in accordance with the present invention.
  • FIG. 13 is a flowchart illustrating an exemplary algorithm used to match the number of available priority rights with the number of seats requested by winning bidders in a system built in accordance with the present invention.
  • FIG. 14 is an example of the participant's terminal screen requesting further information from the participant about participant preferences.
  • FIG. 15 is an example of the participant's terminal screen showing a bidding activity meter during open bidding.
  • FIG. 16 is an example of the participant's terminal screen showing the bidding activity meter of FIG. 15 after bidding is closed.
  • FIG. 17 is an example of the participant's terminal screen, as it might appear during an auction. The terminal displays a graphical representation of the rights to be auctioned and the present bid price of those rights.
  • FIG. 18 is an example of the participant's terminal screen, as it might appear during an auction; the terminal displays a graphical representation of the rights to be auctioned and the present bid price of those rights.
  • FIG. 19 is a flowchart illustrating an exemplary algorithm within step 50 of FIG. 4 for processing alternative priority right bids.
  • FIG. 20 is a flowchart illustrating an exemplary algorithm for sorting unranked priority rights.
  • FIG. 21 is an illustration of an auction for the right to begin a round of golf at a particular time conducted using the automated priority right auctioning system of the current invention and the algorithm of FIG. 20.
  • FIG. 22 is a graph of the gross revenue of an automated priority right auction versus the time over which the auction took place.
  • FIG. 23 is a graph of the gross revenue of an automated priority right auction versus the time over which the auction took place denoting the duration and effect of various events on the gross revenue.
  • FIG. 24 is the graph of FIG. 22 and a graph displaying the change in the rate of growth of the gross revenue of an automated priority right auction per minute of the auction.
  • FIG. 25 is the graph of FIG. 22 and a graph of the number of priority right lock-ins ordered and the amount of the priority right lock-in premium versus the time over which the auction took place.
  • FIG. 26 is a graph of the average price per priority right in an automated priority right auction versus the time have which the auction took place.
  • FIG. 27 is a computer display of two graphs and two frames displaying statistics pertaining to an automated priority right auction of the rights to sit in a particular seat at an event.
  • FIG. 28 is an example of the participant's terminal screen after selection of a priority bidding option.
  • FIG. 29 is an example of the participant's terminal screen upon selecting a first priority location.
  • FIG. 30 is an example of the participant's terminal screen after click-and-drag adjustment of a first priority boundary area.
  • FIG. 31 is an example of the participant's terminal screen after entering a first priority quantity and bid amount, and submitting a first priority bid.
  • FIG. 32 is an example of the participant's terminal screen upon selecting a second priority location.
  • FIG. 33 is an example of the participant's terminal screen after entering a second priority quantity and bid amount, and submitting a second priority bid.
  • FIG. 34 is an example of the participant's terminal screen after entering a third priority location, quantity and bid amount, and submitting a third priority bid.
  • DESCRIPTION
  • A computer controlled priority right auctioning system is now described with reference to FIGS. 1-34. Although many of the Figures anticipate that the priority rights being auctioned are in the form of tickets for seats to a venue during a particular event, as described herein the priority right auctioning system may be used to auction any of a number of different types of priority rights, examples of which are provided above in the Background. Therefore, references in the Description to certain pieces of auction information, such as “groups” and “subgroups” or “sections” and “subsections”, may not apply to all priority right auctions. In addition, the term “priority rights” is used throughout the Description to represent all such priority rights which may be auctioned using the system.
  • FIG. 1 shows a computer controlled ticket auctioning system 10 which is built according to the present invention. As, shown, the computer controlled ticket auctioning system 10 is comprised of a central computer 12 such as an Internet server which sends and receives information through a communication system 13 such as the public telephone system, television cable system, or satellite communications system to remote terminals 14.sub.1, 14.sub.2, 14.sub.3 . . . . 14.sub.n, such as personal computers or other network accessing devices. In this embodiment, Internet sites are constructed consisting of web pages of graphics and text stored as html files, which present the necessary information pertaining to upcoming events and ticket sales. These sites are stored in the memory of the central computer 12. The construction and initiation of these sites is shown as step 22 and step 23 in FIG. 2, which is a flowchart illustrating the general operation of this exemplary system.
  • Accordingly, consumers wishing to become participants (also referred to herein as “bidders”) in an upcoming auction may access the central computer 12 of FIG. 1 through any remote terminal 14 1, 14 2, 14 3 . . . 14 n to receive a wide variety of information about the auctions, the related events, venues, performers or teams, schedules, and merchandise; and to pre-register for the auction and payment. The registration process is represented as step 24 in FIG. 2. Next, as FIG. 2 illustrates, the auction operation 25 is executed; the transactions 26 take place, and the system is ended 27. These steps are described in more detail below.
  • Registration Procedure of Auctioning System
  • Referring again to FIG. 1, registration and bid information originating in the remote terminals 14 1, 14 2, 14 3 . . . 14 n, is transferred via the communication system 13 and received by the central computer 12. The central computer 12 processes said information and stores it in databases: specifically, the participant database 15 for registrations and the main auction database 16 for bids. The word database, as used herein, and in the appended claims is intended to refer to a collection of information organized in such a way that the central computer can quickly select and store desired pieces of data within the database. The information in the database may be stored in any of several ways, including, but not limited to, magnetic storage, optical storage, or any other form of storage known in the art. The central computer 12 also performs sorting and indexing operations, described below, necessary to keep the information in the databases current and correctly ordered. The central computer 12 processes and controls the information flowing between the Internet sites and the databases with programming written in the C++ programming language or any of the other computer programming languages known by one skilled in the art. Registration information may be received and stored before and during operation of the auction. The participant database, represented by FIG. 7 contains the name, address, and payment information for all participants, and is used as a referring database to the main auction database, represented by FIG. 5, during the open auction and for billing purposes when the auction is concluded. FIG. 5 and FIG. 7 are detailed below.
  • Referring again to FIG. 1, a master computer 11 is connected to the central computer 12•for purposes of setting up, initiating, monitoring and dismantling the auction, and its related sites or pages. For example, in preparation for an auction, numerous details specific to that auction, such as minimum initial bids, event and sponsor names, dates and times, and arrangements are generated using the master computer 11 and then transferred by disk or modem or other means to the central computer 12 when needed. The central computer 12 stores these parameters for later application to the auction process. In particular, the central computer 12 stores in the ticket database 17 a unique record for each ticket available. The auction is then conducted by the central computer 12, as described below. During the auction, the master computer 11 can be used to monitor the auction progress, make any necessary spontaneous changes to existing parameters, and to generally ensure that the auction is conducted with a minimum of problems. In practice, it may be possible to combine the functions of the central computer 12 and the master computer 11.
  • Step 24 in FIG. 2 is illustrated in detail by FIG. 3, an exemplary participant registration flowchart. The potential registrant begins in step 28 by interfacing with one of the terminals, for example, terminal 14.sub.1, of FIG. 1. When the rules and registration Internet site is accessed at step 29 of FIG. 3, the registrant is encouraged to read the auction rules thoroughly, and agree to their terms. This site includes a registration form which will contain that registrant's personal information including records for the fields illustrated in the participant database of FIG. 7, as well as a checkbox for agreement to the terms of the auction rules, and a password, if desired, to protect access. The password may be chosen for use when accessing the auction, in lieu of re-entering the credit card number. This allows the participant to have an agent place bids, without disclosing the credit card number.
  • The central computer 12 of FIG. 1 performs all remaining steps in this registration process depicted in FIG. 3. In step 30, of FIG. 3, the registration information is received and in step 31, a determination is made as to whether the information is satisfactorily complete. If not, a message to that effect is sent in step 32 back to the registrant, and the registration process is ended at step 39. If the registration information is satisfactorily complete, then in step 33, the credit information is obtained through existing credit card systems for comparison to the information given by the registrant. In step 34, said comparison is performed and if the credit information does not match or the limit is exceeded, a message to that effect is sent in step 35 back to the registrant, and the registration process is ended at step 39. If in step 34 the card is determined to be valid and the limit not to be exceeded, then in step 36, an ‘authorization only’ hold is placed on the registrant's credit card, for an amount specified by the participant. This limit, also stored in the participant database of FIG. 7, will be that registrant/participant's maximum allowable bid during the upcoming open auction. The authorization hold verifies and reserves the payment means for the seller, while limiting unauthorized bids made by agents of the registrant/participant. Referring again to FIG. 3, in step 37, the registrant is notified that the registration was accepted and then in step 38, the records are sent to the participant database before the registration is ended in step 39.
  • At step 22 of FIG. 2 before the auction is opened, an Internet site is constructed and initiated to provide viewing of graphical displays of the priority right and sale information to the participants. FIG. 9 represents one such view, with initial minimum bids displayed in each section of a venue for an auction of rights to sit in particular seats at an event (i.e., “tickets”). All potential participants may access and view this site before the auction is opened. When the auction is opened, the central computer 12 of FIG. 1 activates the site to become interactive, so participants can use it to place bids on tickets. The site activation is represented as step 40 in FIG. 4 which is discussed below. When a participant places a bid, the information is received and then processed by the central computer 12 of FIG. 1 according to the flowchart outlined in FIG. 4.
  • Auction Procedure of Auctioning System
  • FIG. 4 is a flowchart illustrating an exemplary auction procedure which is step 25 in FIG. 2. The central computer 12 of FIG. 1 performs all steps in this auction process depicted in FIG. 4. In addition, all bid information received by participants' remote terminals is generated by the central computer 12 of FIG. 1 as web-pages constructed of html programming code. The auction procedure illustrated by the flowchart in FIG. 4 is useful in auctioning all priority rights with relative market values that can be easily ranked prior to the start of the auction. This auction procedure is also capable of auctioning the rights to sit in particular seats in a movie theater if each right is sold as the right to enter the theater at a certain time and freely select from all available seats. Larger bids permit their bidders to enter the theater at earlier times to select seats. Therefore, the entrance times into the theater are easily ranked, with earlier times more valuable than later times. Other priority rights that may be auctioned using this procedure include the right to be in a particular location, e.g., a seat, during a concert, a theatrical event, a sporting event, or any other live entertainment event. The auction procedure of FIG. 4 is also, with slight modification, capable of auctioning rights with relative market values that are largely dependent upon individual consumer preference and, therefore, cannot be easily ranked prior to the sale of the rights. These modifications are described in more detail below.
  • Referring again to FIG. 4, in step 41 a bid information record (bid) is received as a response to a web-page form: an html programming tool commonly used to submit information from a personal computer to a server. A bid information record includes received identification information, received section information, received quantity information, and received bid price information. When a bid is received, as in step 41, then in step 42 a check is made to ensure participant's registration is on record. This is accomplished by conducting a query on the participant database 15 of FIG. 1, detailed in FIG. 7, using the received bid identification information as the query criterion. If the query finds the participant is not registered, a message to that effect is sent in step 43 back to the participant, and the bid is not recorded.
  • If the query finds the participant is registered, then in step 44 of FIG. 4, a check is made to ensure the participant's bid exceeds the standing minimum bid for the particular section requested. This is accomplished by conducting a query on the main auction database 16 of FIG. 1, detailed in FIG. 5, using the received section information and bid price information as the query criteria. If the query finds the bid price too low, a message to that effect is sent in step 45 back to the participant, and the bid is not recorded. If the query finds the bid price is not too low, then in step 46, a check is made to ensure the participant's bid is less than the established maximum; specifically, the amount of the ‘authorization only’ hold established in the participant registration and stored, for example, under the field name “SLIMIT” in the participant database of FIG. 7. Again, this is accomplished by conducting a query on the participant database using the received bid price information as the query criterion. If this maximum is exceeded, a message to that effect is sent in step 47 of FIG. 4 back to the participant, and the bid is not recorded. Upon receipt of such a message, the participant may choose to re-register in order to raise the set maximum. However, an agent of the participant would be unable to do so without the credit card information. Thus, protection is afforded by use of the password established in the participant registration and stored, for example under the field name “SETPASS” shown in the participant database of FIG. 7.
  • Referring again to FIG. 4, if the comparison in step 46 is positive, then the bid is accepted and displayed as in step 48. In step 49, the bid information record is recorded to the main auction database of FIG. 5 and indexed to the corresponding participant in the participant database of FIG. 7. In step 50 of FIG. 4, again using the received bid price information as the query criterion, the bid is then inserted at the appropriate rank in the ticket database of FIG. 6, described below, and indexed to the corresponding bid record in the main auction database of FIG. 5, with lower standing bids being reordered to reflect the new standings. At this step, the lowest bid(s) are removed from the order, (bumped), unless additional tickets are still available. Bumped bids are stored in a market research database, represented in FIG. 8, the format of which is similar to that of the main auction database. An added function of this database is to ensure that an accurate record of each bid event can be identified for customer service purposes. Next, participants whose bids become too low are notified.
  • As shown in step 51 and step 52, if the standing bid price of a pre-selected key ticket in the graphical representation has changed as a result of the latest bid, this change is reflected immediately by automatically updating the display of the current bid standings. These prices are displayed within the graphical view of the priority right and sale information, just as the initial minimum bids were displayed in FIG. 9. A representation of this real-time bid status view is shown in FIG. 10. This interactive view gives participants clear, useful information sufficient to make bid decisions, regardless of the number of tickets for sale or what ticket is desired. More precise information is readily obtainable by simply clicking the mouse on the desired section of seats. This action summons the bid form along with a more precise bid status graphic such as shown in FIG. 11. The standing prices represented on these interactive sites are obtained by the central computer 12 of FIG. 1 from records stored in the ticket database 17 and inserted into the html file for display to participants. This task is step 52 of FIG. 4 and is repeated each time a change has occurred in the standing bid price of one of these key tickets. This determination is represented as step 51 of FIG. 4. These changes are automatically presented to the participants by means of META refresh, a client pull type html programming feature which directs the browser to automatically refresh the information every x seconds, where x is a variable programmed into the html file code. If no key ticket prices have changed, no further action is taken until the next bid is received or the auction is ended.
  • FIG. 17 and FIG. 18 illustrate two alternative methods for displaying the current bid values for the available tickets in an auction for the right to sit in a particular seat at an event. Referring to FIG. 17, the auction participant may scroll through a list 350 of available tickets and their current standing bid values. As the participant highlights a particular seat, a red star 352 appears on the graphical representation of all available seats 354 to display the highlighted seat's location. In FIG. 18, the auction participant may also scroll through a list 400 of available seats and their current standing bid values. In the graphical representation of all available seats 402 in FIG. 18, though, all the available seats are visible at all times. As the auction participant highlights a particular seat in the list 400, the same seat is highlighted in the graphical representation 402.
  • Referring again to FIG. 4, in step 53 the auction may be ended in response to a signal which may be sent from the master computer 11 of FIG. 1 or from an internal timer or some other predetermined means. In step 54, of FIG. 4, finalizing the ticket assignments involves application of an algorithm designed to ensure that seats within a bid are contiguous. Prior to the start of the auction, the seats may be organized into specific sections and subsections, or groups and subgroups, of rights. For example, if the rights to be sold are the rights to sit in particular seats at an event, those rights may be grouped by section number and then divided into subsections by row number. Alternatively, during the pendency of the auction, each bidder may define seat sections or subsections. FIG. 12 is an example of an algorithm that ensures contiguous seats within a bid.•For each section, or group, of seats in the auction this algorithm is executed, starting with the highest bid, obtained in step 121, and working back. If the bid presently under evaluation is the last in its section, then a different algorithm is used. This determination and action is step 122 and step 123. If the bid presently under evaluation is not the last in its section, then in step 124, it is determined if the number of tickets required by the bid is more than the number available in its subsection, or subgroup. If so, it is impossible for all the seats to be contiguous, and the process begins for the next bid, in step 128. If not, in step 125 the next decision is to see if there are any breaks in the seats grouping. If not, the process begins again for the next bid, in step 128. If so, the group of seats is moved to the next subsection back, step 126, and the resulting seat vacancies are filled by moving the next lower bid(s) forward, step 127. In unusual circumstances, this could result in the moved group spanning two subsections again. In this exemplary algorithm, the group will not be moved again, it will remain split. When the last active bid is processed, the last-priority-right algorithm shown in FIG. 13 is applied. If the number of tickets in the bid is greater than the number of seats remaining in the section, step 131, then in step 132 the bidder is notified of the cut-off and asked it the reduced number of tickets will suffice. In step 133 and step 134 if the reply is negative or if there is no reply within 2 minutes, the bid is removed. If there is a positive reply, the number of tickets is reduced to the available amount, and the algorithm is ended.
  • Referring again to FIG. 2, step 26, upon auction closing, successful bidders are immediately notified at their terminals and payment is confirmed. The credit cards are debited for the appropriate amounts, and the excess amount from the ‘authorization only’ hold is released. Proof of the bidder's ownership of the ticket is then delivered by any of a number of conventional means.
  • FIG. 5 a and FIG. 5 b represent the main auction database which stores and ranks all active bid records and pairs the associated participants and priority rights accordingly, by referencing the two referring databases. FIG. 5 a is the design view of this database, defining the fields and their parameters, while FIG. 5 b is the table view showing sample bid records for the first bids in a hypothetical auction. FIG. 6 depicts the ticket database, which is the other referring database. In auctions for easily ranked tickets, the ticket database of FIG. 6 contains a record of each ticket in the auction arranged in order of preference as predetermined by the promoter or ticket seller. In auctions for tickets with relative market values that are not easy to rank, the ticket database of FIG. 6 contains a record of each priority in the auction arranged in an order enabling efficient indexing of the ticket records to the bid records in the main auction database.
  • The databases shown in FIG. 5, FIG. 6 and FIG. 7 contain records for a hypothetical auction that is greatly simplified for illustration purposes. This hypothetical event venue contains only 12 available tickets, each defined by a record in the ticket database (FIG. 6 b). As shown, minimum bids had been pre-set at $15 and the highest bid received was bid #1 of $30, with a quantity of 2 tickets. The first field in the ticket database, “RIGHTID” contains the unique ticket identification number which is indexed to the main auction database (FIG. 5 b) by the fields “FRIGHTID” (first ticket identification number) and “LRIGHTID” (last ticket identification number). The last field is “BIDDERID”, in which are stored indices referencing records in the participant database. As shown in FIG. 5 b, the lowest bid was #3, requesting 2 tickets at $15. However, only one seat was reserved, since only one was available at that bid level. As detailed in FIG. 13 above, when the auction is ended, if one ticket is not satisfactory, this participant will be given the opportunity to cancel the bid.
  • FIG. 10 is a sample participant interface to the auction system during the open auction, represented here as a web page with graphical links to forms for placing bids on tickets to sit in particular seats for an event. As exemplified here, the participant wishing to bid, simply uses a mouse to click on the desired ticket section, calling up a bid form and a more precise view of standing bids to use as a guideline. FIG. 11 shows this more precise view for a participant who clicked on section C. The form on the right confirms this selection and prompts the participant for the specific bid information; while the diagram on the left shows that if, for instance, the bid placed is $73, then the tickets will be in the middle of section C, unless future (higher) bids push it back. Likewise, in practice it is possible, albeit tedious, to display bid prices in every subsection or even for every seat.
  • Accordingly, a ticket seller could promote numerous ticket sales simultaneously at one network site, with the added step for the registrant/participant of choosing the desired sale from those presented.
  • In one embodiment, a template may be loaded into participants' terminals prior to their accessing the auction site, said template providing text or graphic information that does not change during an auction or between auctions, such as background art, forms or instructions. Said template maybe downloaded from the Internet, or installed from a disc or by some other means. Use of a template allows the bid status updates to be made with transmission of only the numerical data, which in combination with the template, presents the comprehensive auction status update to participants. In another embodiment, the bid status changes are automatically presented to the participants by means of the multipart/mixed MIME format, a recently available server-push type programming feature which takes advantage of a connection that is held open over multiple responses, allowing the server to send more data at will. This method can be more efficient, since new HTTP connections do not have to be reopened.
  • Participant Preference Options of Auctioning System
  • Various other alternative embodiments of the invention are also possible. For example, as shown in FIG. 14, after a participant places a bid, he or she is presented with participant preference options on a participant preference screen 200, which is a terminal screen that asks the participant a number of questions concerning the participant's bid. Under a priority right options block 202 on the participant preference screen 200, the participant is given the participant preference option of canceling the bid or moving back to another section if the participant is unable to secure a bid in the desired section. The system will generally default for the participant to be moved back a section unless the participant changes this option to cancel the bid in the event of a bump. Thus, if a participant has bid on tickets in Section B, but that bid is bumped, the participant will automatically be moved back to Section C upon being bumped from Section B, unless the participant instructs the system to completely cancel the bid in the event the bid is bumped.
  • Another participant preference option presented to the bidder under the ticket options block 202 is the option for a premium subsection ticket, such as the right to sit in a front row seat at an event. Certain bidders may be exclusively interested in a premium subsection ticket. Under this option, the participant may instruct the system to cancel the bid if the bid is bumped from the premium subsection. Thus, if a participant makes a bid and specifies that he must be in the premium subsection, the system will cancel the bid if the bid is bumped from the premium subsection. Alternatively, the participant may state that he simply prefers the premium subsection, but will take other tickets. Thus, under this option, the system will leave the participant with a premium subsection ticket so long as his bid is consistent with the other premium subsection bids. If the participant is bumped from the premium subsection, the participant's bid will not be canceled, but he will simply be moved back. This will generally be the system default. Finally, the participant may state that he absolutely does not want a premium subsection ticket, and•he should be moved back if his bid lands him in the premium subsection. Thus, under this option, the system will place the participant in another subsection even if his bid qualifies him for the premium subsection.
  • Another example of a premium subsection ticket is the right to sit in an aisle seat at an event. The ticket options block 202 would allow the participant to specify aisle seat preference as a participant preference option. The system may present the participant with a number of choices concerning the aisle, including the following options: (i) must have an aisle seat and will move back to get on the aisle, (ii) will not accept an aisle seat, (iii) prefer the aisle, but will accept other seats, (iv) do not prefer the aisle, and (v) don't care. The “don't care” option is generally the system default. Based upon the participant's input, the system will attempt to place the participant in the desired location either on an. aisle or away from an aisle.
  • A number of other participant preference options other than those described above may also be specified in the ticket options block 202. For example, if the priority right is the right to sit in a particular seat at an event, the system may give participants options for being placed near concession stands, restrooms, exits, or the rear of a section. Other preference options are also possible and may be easily incorporated by those of ordinary skill in the art.
  • The participant's preference screen 200 also includes an option 204 that allows the system to receive lock-in ticket information. This option 204 allows the participant to secure a ticket, upon payment of a premium, regardless of any subsequent bids for the ticket during the auction. This premium may be expressed in any number of ways such as a flat dollar amount (e.g., $25) or a percent of the bid value (e.g., 50%). The premium is expressed on the preferences screen 200 by lock-in premium line 208. Thus, if the participant makes a bid of $80 per ticket for five seats, and this bid currently places the bidder in a particular subsection of seats, the participant may lock-in these five tickets upon payment of the premium. If the premium is 50% of the bid value, the participant would be required to pay $120 per ticket, or $600 total dollars to secure these five seats until the close of the auction. If the participant does choose to lock-in his bid by paying the premium, the participant will retain all five tickets throughout the auction even if a subsequent bidder offers $120 or more for the same tickets.
  • The participant's preference screen 200 may also include an option that allows the system to receive proxy bid information. The proxy bid options are shown under proxy block 206. According to the proxy bid options, the participant may enter a maximum proxy bid amount in addition to the current bid amount. The maximum proxy bid amount is the amount that the bidder authorizes the system to bid in his absence in order to keep the bidder in the preferred seat or location. Under this block 206, the bidder has the following three options: (i) keep the bidder in the bidding for the same tickets for up to the maximum bid amount, (ii) keep the bidder in the same section of seats for up to the maximum bid amount, and (iii) keep the bidder in the bidding for any ticket in the auction for up to the maximum bid amount. Thus, if the participant bids $80 for a ticket in a certain section, but authorizes proxy bidding up to $130, the participant may leave the auction, knowing that proxy bids will be made for him up to $130 should a subsequent bid exceed his bid. If the participant chooses the option to stay in the bidding for the same ticket for up to the maximum bid, the system will keep the participant in the bidding for that ticket until subsequent bids for that ticket are received exceeding $130. At that time, the participant's bid will be bumped. If the participant chooses the option to stay in bidding for the same section of seats for up to the maximum bid, the participant will be bumped to the rear of the section as subsequent bids are received for greater than $80. Once bids for the rear of the section reach $80, the participant's bid will automatically increase to keep him in the section up to a value of $130. Once all bids in the section exceed $130, the participant's bid will be bumped. Finally, if the bidder chooses to simply stay in the overall bidding for up to $130, the participant's $80 bid will be continually bumped to less preferential tickets, as bid values exceed $80. Once the least preferential ticket reaches $80, the participant's bid will automatically increase to keep him in the bidding for up to a bid of $130. If bids for the least preferential ticket exceed $120, the participant will be completely removed from the bidding.
  • The participant's preference screen 200 may also include an option that allows the auction participant to individually designate those seats upon which the participant wishes to bid. Instead of selecting to bid within the sections or subsections defined by the auction organizer, each participant may define his own personal bidding section. One embodiment of this invention is to allow the auction participant to define the bounds of his personal bidding section by using a mouse to “click and drag” a cursor over a portion of the graphical representation of the available seats. Another embodiment involves permitting the auction participant to define his personal bidding section by entering the first and last seat identification numbers in the desired personal bidding section.
  • The participant's preference screen 200 may also include an option that allows the auction participant to place alternative bids. For example, in an auction for the right to sit in a particular seat at an event, an auction-participant could designate that she wished to stay in the bidding for the right to sit in a seat in Section A for up to $50, but if that bid was bumped then she wished to stay in the bidding for the right to sit in a seat in Section D for up to $25.
  • This option to place alternative bids may be used with the seat sections designated by the auction organizer, as in the previous example, or with the participant's personal bidding sections. Therefore, the auction participant could designate that she wished to stay in the bidding for a right in her first personal bidding section for up to $45, and if that bid was bumped then she wished to stay in the bidding for a right within her second personal bidding section for up to $25. Additionally, more than two alternative bids may be placed.
  • FIG. 19 is a flowchart of an exemplary algorithm that permits the tickets auction system to properly process alternative bids. This algorithm is step 50 of FIG. 4. In processing this algorithm, the automated ticket auction system processes each alternative bid as a separate bid. For example, if an individual designated a bid of $50 for rights within a first section, a first alternative bid of $30 for rights within a second section, and a second alternative bid of $20 within a third section, the system would record all three bids. However, the system would only activate the $30 bid after the $50 bid was bumped and would then activate the $20 bid only after the $30 bid was bumped.
  • Referring to FIG. 19, in step 400, all tickets bids are sorted. As a result of this process, some bids may be bumped. In step 402, the central computer 12 determines whether any bids have been bumped. If no bumped bids exist, the control is passed, in step 404, to step 51 of FIG. 4. If a bid has been bumped, in step 406 the central computer 12 determines whether the bumped bid is part of a series of alternative bids. If not, in step 408 it is determined whether any other bids were bumped by the sorting undertaken in step 400. If other bids were bumped, control is passed back to step 406. If no additional bids were bumped, the central computer 12 proceeds to step 404. Referring again to step 406, if the bumped bid is part of a series of alternative bids, the central computer 12 then determines, in step 410, whether the bumped bid was the last alternative bid in the series. If the bumped bid was the last alternative bid in the series, the central computer 12 proceeds to step 408. If not, the central computer 12 activates, in step 412, the next alternative bid in the bumped bid's series.
  • Then, in step 414 the central computer 12 determines whether the activated bid exceeds the standing minimum acceptable bid for the tickets identified in the activated bid. This is accomplished by conducting a query on the main auction database 16 of FIG. 1, detailed in FIG. 5, using the received section information and bid price information as the query criteria. If the query finds the bid price too low, a message to that effect is sent in step 416 back to the participant, and the bid is not recorded. If the query finds the bid price is not too low, then in step 418, a check is made to ensure the participant's bid is less than the established maximum; specifically, the amount of the ‘authorization only’ hold established in the participant registration and stored, for example, under the field name “SLIMIT” in the participant database of FIG. 7. Again, this is accomplished by conducting a query on the participant database using the received bid price information as the query criterion. If this maximum is exceeded, a message to that effect is sent in step 420 of FIG. 19 back to the participant, and the bid is not recorded. Upon receipt of such a message, the participant may choose to re-register in order to raise the set maximum. However, an agent of the participant would be unable to do so without the credit card information. Thus, protection is afforded by use of the password established in the participant registration and stored, for example under the field name “SETPASS” shown in the participant database of FIG. 7.
  • Referring again to FIG. 19, if the comparison in step 418 is positive, then the bid is accepted and displayed as in step 422. In step 424, the bid information record is recorded to the main auction database of FIG. 5 and indexed to the corresponding participant in the participant database of FIG. 7. In step 426, the central computer 12 determines whether any additional bids were bumped by the sorting of step 420. If so, the central computer 12 returns to step 406 so that all bids bumped by the sorting of step 420 can be examined for related alternative bids before all of the bids are re-sorted. If the comparison in step 426 is negative, the central computer 12 returns to step 420 to re-sort all of the ticket bids with the inclusion of the newly accepted bid. This algorithm is only one of various available means to enable the proper processing of alternative bids by the ticket auctioning system of this invention.
  • Alternative Embodiments of Auctioning System
  • In another alternative embodiment of the invention, a bidding activity meter 302 is used as shown in FIG. 15. The bidding activity meter shows a graphical representation of the rate of bidding on tickets (e.g., bids per hour or total bid revenue increase per minute). The meter shows a number of different bidding rates from left to right across the meter. A bar extends from the left side of the meter toward the right side of the meter to represent the current bidding rate. In this manner the participant can see the current rate of bids placed for tickets. The bidding activity meter allows the system to have an adjustable bidding window based upon bidding activity. The adjustable bidding window may be defined as an adjustable period of time that may be immediately terminated upon the bidding rate reaching a predefined low threshold. For example, the system may set up an auction for tickets starting at 10 a.m. on a particular day. The auction may be set up to accept bids for at least five hours, until 3 p.m., but for no more than fourteen hours, until 12 p.m. Bidding will remain open after 3 p.m., so long as the bidding continues above the predetermined threshold (e.g., 1000 bids per hour). However, if the bidding drops below that threshold, the auction will be closed immediately. Thus, the auction will definitely accept bids from 10 a.m. until 3 p.m. If the total bidding from 3 p.m. to 4 p.m. exceeds the threshold rate, the bidding will remain open. However, if at any time before 12 p.m., the bidding rate drops below the threshold, the bidding will immediately cease. Thus, if the threshold is 1000 bids per hour and the total bidding during the hours of 9 p.m. and 10 p.m. drops to 900 bids, the auction will close, and no further bids will be taken.
  • Because the auction may be conducted over an adjustable time period using the bidding activity meter, the bidding activity meter encourages bidders to place their bids early and not wait until the very last minute before auction closing to place their bids. When a large number of bidders wait to bid at the very last minute before auction closing, the system may be unable to handle the large number of bids and all bidders may not be allowed to place their bids. If all bids are not placed, the market price per ticket is not realized. However, the bidding activity meter prevents this problem by encouraging bidders to place their bids early. With the bidding activity meter 302, bidders will monitor the bidding activity meter and place their bids immediately when they realize that bidding is reaching the low threshold level. Because bidders will likely have a continuum of different interpretations as to when the bidding activity meter is reaching the low threshold level, bids will be more evenly distributed over time and the intensity of the final bidding will be decreased.
  • In a further embodiment of the invention, bidding may be split into a first session and a second session. In this first session, bids are taken to determine which bidders will receive the tickets. In this session, a market price is determined for the least preferential ticket in the auction. Alternatively, bidders may bid on the least preferential ticket in each section. Bidders making bids in excess of the market price are guaranteed a ticket and allowed to bid in the second session. In the second session of bidding, bidders place bids on particular tickets in the auction. The most preferential tickets in the auction are awarded to the highest bidders, consistent with the method of conducting an auction described herein. The bid activity meter 302 may be used in both the first and second session of bidding to define the time limits that bidders have to place bids during the first or second sessions.
  • In yet another embodiment of the invention, priority bidding may be offered. In the ticket auction context, priority bidding allows the bid participant to place a prioritized bid that acts as a packet of bids and includes a first bid as well as at least one back up bid in the event that the first bid or other higher priority bid in the prioritized bid is rejected during the auction. By way of example, FIG. 28 shows the participant's terminal screen 400 after selection of the priority bidding option. The participant first selects and clicks a location on the venue map, which generates a colored area defining the area boundaries of this first priority bid. FIG. 29 shows the participant terminal screen 402 at this point. The first priority bid area may then be adjusted by the participant by clicking and dragging the boundaries, as shown in FIG. 30, terminal screen 404. In this example, the participant's first priority bid is for tickets to seats near the stage in the first section, but does not include tickets on the right side or toward the rear of the front section. Next, the participant enters the desired number of seats and bid amount he wishes to place, and submits the bid.
  • After submission of the first priority bit, a terminal screen such as screen 406 in FIG. 31 is shown that allows the participant to enter a second priority bid. As shown in FIG. 31, the participant is prompted to enter a second priority bid location, number of seats desired and bid amount, and is allowed to adjust the second bid location area according to his or her wishes. FIG. 32 shows the participant terminal screen 408 after the participant has entered the second priority bid location, but has yet to enter the information about the number of desired seats and the bid amount. FIG. 33 shows the participant terminal screen 408 after the participant has entered quantity and bid amount information and submitted the second priority bid.
  • After submission of the second priority bid, the participant may choose to enter a third priority bid or any number of priority bids. Entering third or additional priority bids is performed in generally the same manner as described above for the first and second priority bids. Right clicking with the mouse selects an entire section for the area of a bid, as shown in FIG. 34 with participant terminal screen 410.
  • When the first priority bid of a prioritized bid has been entered by the bid participant, it becomes active immediately, and is either accepted or rejected by the system. When the lower priority bids are entered, they remain inactive unless other bidders bump the first priority bid out such that the bid is no longer acceptable within its defined area. If the first priority bid is bumped or otherwise rejected during the auction, the second priority bid is then activated. If the second priority bid is bumped, the third is activated and so on. If all priority bids are bumped, the participant must raise one or more bids or enter a new bid in order to purchase tickets.
  • As mentioned above, the auction procedure illustrated by the flowchart in FIG. 4 may be modified to permit auctioning of priority rights with relative market values that are difficult to rank prior to their sale. In the auction of a group of such priority rights, two consecutive priority rights may have widely different market values due to individual consumer preference. For example, the value of the right to begin a round of golf at 9:00 a.m. may be significantly greater than the value of the right to begin a round of golf at 9:15 a.m. if an individual consumer's schedule dictates that he must begin at 9:00 a.m. Therefore, instead of classifying such priority rights into sections and subsections and determining the amount of an acceptable minimum bid by viewing the lowest bid in a particular section, the minimum acceptable bid for each priority right must be evaluated individually as a bid is placed upon the priority right. The auction procedure illustrated by the flowchart in FIG. 4 will satisfy this requirement if each priority right is treated as its own section in the bidding process and some modification is made to the central computer's sorting algorithm.
  • In an auction for priority rights that are not easily pre-ranked, the sorting algorithm of step 50 in FIG. 4 and step 400 of FIG. 19 is slightly modified. One exemplary algorithm that illustrates this modification is shown in FIG. 20. In step 428, the central computer 12 performs a search over the entire spectrum of received priority right bids to determine the highest bid among all the priority right sections. This search may be performed expeditiously if in step 49 of FIG. 4 the bid rank of each received bid is determined relative to all other bids received in the auction. Therefore, in the main auction database of FIG. 5, the “RANK” field of the highest overall bid received in the auction would contain a “1”, the “RANK” field of the second highest overall bid received in the auction would contain a “2”, and so on.
  • Referring again to FIG. 20, in step 428, after the central computer 12 has determined which bid is the highest, the priority right designated in that bid's bid information record is assigned to that bid. This process is completed by indexing the corresponding bid record in the main auction database of FIG. 5 to the corresponding priority right record in the priority right database of FIG. 6. In step 430, the central computer 12 determines whether any priority rights are still available for auction. If the answer is negative, the central computer 12 determines if any bids have been bumped, step 432, and then exits the sorting algorithm, step 434. If any priority rights are still available for auction, the central computer 12 determines whether any bids have yet to be processed in step 436. If not, the algorithm proceeds to step 432. If there are remaining bids to be processed, the central computer 12 conducts another query to determine which bid is the next highest overall bid, step 438. The central computer 12 then assigns to that bid the priority right designated in that bid's bid information record. If the priority right designated in that bid information record has already been assigned to a higher bid, then the available priority right that is the closest to the designated priority right is assigned. After assigning a priority right to the bid, the algorithm returns to step 430. The process is continued until all available priority rights have been assigned or until all bids have been processed, whichever occurs first. The algorithm illustrated in FIG. 20 is simply one of various algorithms that permit the priority right auctioning system of the present invention to sort unranked priority rights so as to obtain for those rights their true market value.
  • FIG. 21 illustrates an auction for the right to begin a round of golf at a particular time that is conducted using the automated priority right auctioning system of the current invention with the sorting algorithm of FIG. 20. Frame 440 in FIG. 21 contains the bids received during the auction. In this auction, participants were permitted to designate one of four golf tee times: 8:00 a.m., 8:30 a.m., 9:00 a.m., and 9:30 a.m. The central computer 12 then utilized the sorting algorithm in FIG. 20 to assign twenty-seven available tee times to the highest of these bids.
  • First, the central computer 12, in step 428, determined that priority right bid 442 for $300 was the highest of all the bids received. Therefore, that bid was assigned the priority right to tee off at 8:00 a.m., and the bid record corresponding to bid 442 in the main auction database of FIG. 5 was indexed to the priority right record corresponding to the 8:00 a.m. tee-off time in the priority right database of FIG. 6. The result of this assignment can be seen in frame 444 of FIG. 21.
  • The central computer 12 then determined that there were more available priority rights, step 430, and that there remained bids that had not yet been processed, step 436. Therefore, the central computer 12 queried the main auction database of FIG. 5 to determine that priority right bid 446 for $260 was the highest unprocessed bid. The central computer 12 thus assigned the priority right to tee off at 8:30 a.m. and indexed the bid record corresponding to bid 446 in the main auction database of FIG. 5 to the priority right record corresponding to the 8:30 a.m. tee-off time in the priority right database of FIG. 6. The result of this assignment can be seen in frame 444 of FIG. 21.
  • Returning to step 430 in FIG. 20, the central computer 12 determined that there were more priority rights available and, in step 436, that more unprocessed bids existed. So, in step 438, the central computer 12 queried the main auction database of FIG. 5 to discover that the highest unprocessed bid was bid 448 for $250. However, because bid 448 designated 8:00 a.m. as its desired priority right and bid 442 had already been assigned the 8:00 a.m. priority right, the central computer 12 assigned to bid 448 the available priority right closest to the 8:00 a.m. priority right, the 8:05 a.m. priority right. The central computer 12 then indexed the bid record corresponding to bid 448 in the main auction database of FIG. 5 to the priority right record corresponding to the 8:05 a.m. tee-off time in the priority right database of FIG. 6. The result of this assignment can be seen in frame 444 of FIG. 21.
  • The central computer 12 continued processing this algorithm until all priority rights were assigned to received bids. The final result of all priority right assignments can be seen in frame 444. During the process of assigning priority rights, if a desired priority right was already assigned the central computer 12 then selected the closest available priority right to the desired priority right. Other embodiments of this invention may vary this selection, opting to only choose priority rights in one direction, e.g. later tee times. Additionally, the priority rights auctioning system could be modified to permit, as discussed above, alternative priority right bids, personal priority right bidding sections; and participant preference options, such as the option to designate which direction the bid is bumped. The priority rights auctioning system of the present invention, utilizing a sorting algorithm such as that illustrated in FIG. 20, is thus. capable of obtaining the true market value of priority rights that have relative values that are difficult to rank prior to their sale.
  • Statistical Analysis of Auctioning System
  • The automated priority right auctioning system of the present invention may be used in connection with other computer programs to create graphs and tables to enable real-time statistical analysis of the auction. FIG. 22 through FIG. 27 are examples of such graphs and tables for a ticket auction. FIG. 22 is a graph of the gross revenue of the auction versus the time over which the auction takes place. It displays the dollar amount that the auction organizer must obtain to break even, eleven million dollars in this example, and the time at which the gross revenue reaches that amount 450. A legend 452 is included in FIG. 22 which denotes that each of the points on the graph labeled A through H shows the gross revenue at the exact time that a section was filled. The section of the graph labeled II, i.e. between dotted line 454 and dotted line 456, displays how the rate of increase of the gross revenue decreases as the auction nears its end.
  • FIG. 23 is also a graph of the gross revenue of the auction versus the time over which the auction takes place. FIG. 23 denotes the duration of multimedia presentations on the Internet website affiliated with the auction and their effect on the gross revenue. Other information may also be placed on the graph. For example, dotted line 500 may denote the time at which ticket lock-ins become available, and dotted line 502 may denote the time at which a promotional commercial airs on a local radio station.
  • FIG. 24 is the graph of FIG. 22 with an additional graph 550 below it displaying the change in the rate of growth of the gross revenue per minute of the auction. Thus, the auction organizer can assess not only the effect of each promotional activity upon the total gross revenue but also its effect on the rate of growth of the revenue.
  • FIG. 25 is the graph of FIG. 22 with an additional graph 600 below it of the number of lock-ins ordered and the amount of the lock-in premium versus the time over which the auction takes place. Lines 602 and 604 in FIG. 25 display the changes in the level of the lock-in premiums over the term of the auction. Prior to the time denoted by dotted line 606 in FIG. 25, no lock-in premiums were available. Lines 608 and 610 display the number of lock-ins ordered at different times during the auction. FIG. 25 is useful to an auction organizer because it enables the organizer to analyze the effect of the timing and magnitude of the changes to the lock-in premium on the number of lock-ins ordered.
  • FIG. 26 is a graph of the average price per ticket versus the time over which the auction takes place. Dotted line 650 denotes the time at which this graph was created, 10:09 a.m., and. separates the graph into a part that is based on actual sales and a part that consists of average price forecasts based upon those actual sales. Dotted line 652 marks the end of the auction, and all lines in the graph that intersect with dotted line 652 are projections of the average price of tickets at the end of the auction. For example, line 654 plots the average price of a seat in Section A in an auction for the right to sit in a seat at an event. As of 10:09 a.m. the average price of a seat in Section A is about $400. A forecasting algorithm has predicted with 95% certainty, based on the rate of growth of the average sale price of a seat in Section A from the start of the auction until 10:09 a.m., that the price of the average seat in Section A at the end of the auction will not be below $650. The algorithm calculates that to obtain this amount for a ticket at 10:09 a.m., the lock-in premium should be set at 40%. Likewise, the forecasting algorithm has predicted with a 50% certainty that the final average price will not be below $1050 and has calculated its related lock-in premium of 125%. The forecasting algorithm has also predicted with a 5% certainty that the final average price will not be below $1850 and has calculated the related lock-in premium of 300%. The auction organizer may use graphs such as FIG. 26 throughout an auction to determine a reasonable lock-in premium amount.
  • FIG. 27 contains two graphs displaying real-time ticket sale stats for an auction of the rights to sit in a particular seat at an event. Graph 700 in FIG. 27 plots the number of bids received per minute during the time that the auction takes place. In addition, statistics frame 702 contains numerical data useful to the auction organizer, including the total number of bids received, the total number of bumped bids, the average number of seats per bid, and the number of lock-ins ordered. Graph 704 in FIG. 27 plots the distribution of bids at a certain. point of time in the auction. The minimum, maximum, average, and median bid amounts are denoted by label 706, label 708, label 710, and dotted line 712, respectively. Additionally, graph 704 distinguishes between standing bids and bumped bids by graphing each in a different color. The auction organizer may create multiple versions of graph 704 for various times during the auction, enabling the organizer to view the progression of bids during the auction. Statistics frame 714 contains numerical data such as the number of sections filled, the average standing bid amount, the high bid amount, and the low bid amount.
  • It is to be understood that the above-described embodiments of the invention are merely illustrative. Other implementations may readily be devised by those of ordinary skill in the art which will embody the principles of the invention and fall within the spirit and scope thereof. For example, the exemplary contiguous ticket algorithm of FIG. 12 may readily be modified to allow repeated movements of a group to ensure contiguous tickets or to allow block-style groupings, or other variations. Moreover, this ensuring of contiguous tickets shown at step 54 of FIG. 4, could be performed as each bid is placed, rather than only at the close of the auction. Likewise, the last ticket cut-off in step 55 of FIG. 4 could be executed with each bid made. Additionally, the auction system may readily be modified to sell each section of seats in succession or at different Internet locations. Other embodiments may provide additional incentives for bidders to bid early in the auction. For example, if the auction is for the right to sit in a particular seat at an event, those bidding within the first ten minutes from the auction opening may be awarded cash value certificates for redemption at the event for concessions or gift shop items. Larger awards may be granted for earlier bids (e.g., $10 for a bid within the first ten minutes after auction opening) and smaller awards may be granted for later bids (e.g., $2 for a bid within the first hour after auction opening). In other alternative embodiments, certain classes of people may be awarded preferential treatment during bidding. For example, alumni bids maybe augmented by a given dollar amount, alumni may be given access to a certain portion of the tickets, or alumni may be allowed to place bids after the auction closes. In any event, although auctions for priority rights such as event tickets and golf tee times have been used in the above description, the invention is not limited to systems auctioning those priority rights, and the system may be designed to auction any number of different types of priority rights.

Claims (21)

1. A computer-implemented method for allocating a plurality of priority rights, the method comprising:
storing, in a memory, data associated with the plurality of priority rights, the data including priority right rank data and priority right time data;
receiving bid records that include bidder identification information, bid amount information and a bidder time preference;
ranking the bid records based on the bid amount information and the bidder time preference, such that the bid records have a bid record rank associated therewith; and
associating a selected bid record with a selected priority right based on the selected bid record rank and the selected priority right rank data.
2. The method of claim 1, wherein the selected bid record is associated with the selected priority right data based further on the selected priority right time data and the bidder time preference.
3. The method of claim 1, wherein the plurality of priority rights correspond to a plurality of event tickets.
4. The method of claim 1, wherein the plurality of priority rights correspond to a plurality of tickets to one or more•events, and the priority right time data corresponds to times at which the one or more events occur.
5. The method of claim 1, wherein the selected bid record is received from a user, the method further comprising distributing the selected priority right to the user.
6. The method of claim 1, wherein the selected bid record is received from a user, the method further comprising notifying the user that the selected bid record has been associated with the selected priority right.
7. The method of claim 1, wherein at least a portion of the bid records are received via the Internet.
8. A computer-implemented method for distributing a plurality of priority rights in an auction, the method comprising:
storing, in a memory, data associated with the plurality of priority rights, the data including event identification data that corresponds to one or more events;
receiving a plurality of bid records, the bid records including bid amount data and a bidder event preference; and
correlating a selected bid record with a subset of priority rights, wherein (a) the subset of priority rights is selected from the plurality of priority rights at least partially based on the selected bid record bid amount data, and (b) the subset of priority rights has associated therewith event identification data corresponding to the bidder event preference.
9. The method of claim 8, wherein the event identification data includes event time data.
10. The method of claim 8, wherein the event identification data includes event venue data.
11. The method of claim 8, wherein the plurality of priority rights correspond to a plurality of event tickets.
12. The method of claim 8, wherein the one or more events correspond to a plurality of golf tee times.
13. The method of claim 8, wherein the selected bid record is received from a user, the method further comprising receiving registration information from the user before receiving the selected bid record.
14. The method of claim 8, wherein the selected bid record is received from a user, the method further comprising distributing the subset of priority rights to the user.
15-21. (canceled)
22. A computer-program product tangibly embodied in a non-transitory machine-readable storage medium, including instructions configured to cause one or more data processors to perform actions including:
storing, in a memory, data associated with the plurality of priority rights, the data including priority right rank data and priority right time data;
receiving bid records that include bidder identification information, bid amount information and a bidder time preference;
ranking the bid records based on the bid amount information and the bidder time preference, such that the bid records have a bid record rank associated therewith; and
associating a selected bid record with a selected priority right based on the selected bid record rank and the selected priority right rank data.
23. The computer-program product of claim 22, wherein the selected bid record is associated with the selected priority right data based further on the selected priority right time data and the bidder time preference.
24. The computer-program product of claim 22, wherein the plurality of priority rights corresponds to a plurality of event tickets.
25. The computer-program product of claim 22, wherein the plurality of priority rights correspond to a plurality of tickets to one or more•events, and the priority right time data corresponds to times at which the one or more events occur.
26. The computer-program product of claim 22, wherein the selected bid record is received from a user, the actions further comprising distributing the selected priority right to the user.
27. The computer-program product of claim 22, wherein the selected bid record is received from a user, the actions further comprising notifying the user that the selected bid record has been associated with the selected priority right.
US14/250,167 1996-05-23 2014-04-10 Computer-based right distribution system with temporal variation Abandoned US20140289067A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/250,167 US20140289067A1 (en) 1996-05-23 2014-04-10 Computer-based right distribution system with temporal variation
US15/145,268 US9614733B1 (en) 1996-05-23 2016-05-03 Methods and systems for reducing burst usage of a networked computer system
US15/477,914 US9900220B2 (en) 1996-05-23 2017-04-03 Methods and systems for reducing burst usage of a networked computer system
US15/899,001 US10355936B2 (en) 1996-05-23 2018-02-19 Methods and systems for reducing burst usage of a networked computer system
US16/511,880 US10880177B2 (en) 1996-05-23 2019-07-15 Methods and systems for reducing burst usage of a networked computer system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US1821196P 1996-05-23 1996-05-23
US08/862,547 US6023685A (en) 1996-05-23 1997-05-23 Computer controlled event ticket auctioning system
PCT/US2000/003136 WO2001059649A1 (en) 1997-05-23 2000-02-07 Computer controlled event ticket auctioning system
US09/586,927 US6704713B1 (en) 1996-05-23 2000-06-05 Computer controlled event ticket auctioning system
US09/778,606 US6907405B2 (en) 1996-05-23 2001-02-07 Computer controlled priority right auctioning system
US11/059,990 US7747507B2 (en) 1996-05-23 2005-02-17 Computer controlled auction system
US11/502,344 US8732033B2 (en) 1996-05-23 2006-08-10 Computer-based right distribution system with temporal variation
US14/250,167 US20140289067A1 (en) 1996-05-23 2014-04-10 Computer-based right distribution system with temporal variation

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US11/502,344 Division US8732033B2 (en) 1996-05-23 2006-08-10 Computer-based right distribution system with temporal variation
US13/462,277 Continuation US9147170B2 (en) 1996-05-23 2012-05-02 Methods and systems for reducing burst usage of a networked computer system

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/703,525 Continuation-In-Part US8176177B2 (en) 1996-05-23 2007-02-07 Methods and systems for reducing burst usage of a networked computer system
US14/843,594 Continuation-In-Part US9363142B2 (en) 1996-05-23 2015-09-02 Methods and systems for reducing burst usage of a networked computer system
US15/145,268 Continuation-In-Part US9614733B1 (en) 1996-05-23 2016-05-03 Methods and systems for reducing burst usage of a networked computer system

Publications (1)

Publication Number Publication Date
US20140289067A1 true US20140289067A1 (en) 2014-09-25

Family

ID=34705232

Family Applications (9)

Application Number Title Priority Date Filing Date
US11/059,990 Expired - Fee Related US7747507B2 (en) 1996-05-23 2005-02-17 Computer controlled auction system
US11/453,286 Expired - Fee Related US7698210B2 (en) 1996-05-23 2006-06-14 Computer-based right distribution system
US11/474,089 Expired - Fee Related US7720746B2 (en) 1996-05-23 2006-06-23 Computer-based right distribution system with password protection
US11/475,733 Expired - Fee Related US7647269B2 (en) 1996-05-23 2006-06-26 Computer-based right distribution system with reserve pricing
US11/502,344 Expired - Fee Related US8732033B2 (en) 1996-05-23 2006-08-10 Computer-based right distribution system with temporal variation
US11/502,608 Expired - Fee Related US7769673B2 (en) 1996-05-23 2006-08-10 Computer-based right distribution system with request reallocation
US12/758,437 Expired - Fee Related US8538856B2 (en) 1996-05-23 2010-04-12 Computer-based right distribution system
US12/777,972 Expired - Fee Related US8073765B2 (en) 1996-05-23 2010-05-11 Computer-based right distribution system with password protection
US14/250,167 Abandoned US20140289067A1 (en) 1996-05-23 2014-04-10 Computer-based right distribution system with temporal variation

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US11/059,990 Expired - Fee Related US7747507B2 (en) 1996-05-23 2005-02-17 Computer controlled auction system
US11/453,286 Expired - Fee Related US7698210B2 (en) 1996-05-23 2006-06-14 Computer-based right distribution system
US11/474,089 Expired - Fee Related US7720746B2 (en) 1996-05-23 2006-06-23 Computer-based right distribution system with password protection
US11/475,733 Expired - Fee Related US7647269B2 (en) 1996-05-23 2006-06-26 Computer-based right distribution system with reserve pricing
US11/502,344 Expired - Fee Related US8732033B2 (en) 1996-05-23 2006-08-10 Computer-based right distribution system with temporal variation
US11/502,608 Expired - Fee Related US7769673B2 (en) 1996-05-23 2006-08-10 Computer-based right distribution system with request reallocation
US12/758,437 Expired - Fee Related US8538856B2 (en) 1996-05-23 2010-04-12 Computer-based right distribution system
US12/777,972 Expired - Fee Related US8073765B2 (en) 1996-05-23 2010-05-11 Computer-based right distribution system with password protection

Country Status (1)

Country Link
US (9) US7747507B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100257000A1 (en) * 2009-04-04 2010-10-07 Ken Harris Engine, system and method for upselling perishable products or service items
WO2016183680A1 (en) * 2015-05-19 2016-11-24 Fredette Benoît System and method for managing event access rights
US9900220B2 (en) 1996-05-23 2018-02-20 Live Nation Entertainment, Inc. Methods and systems for reducing burst usage of a networked computer system
US11132249B1 (en) 2020-07-08 2021-09-28 Bank Of America Corporation Software code change reversal tool
US11853923B2 (en) 2020-08-06 2023-12-26 Vigilante Strategy LLC Method for controlling remote system settings using cloud-based control platform

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747507B2 (en) 1996-05-23 2010-06-29 Ticketmaster L.L.C. Computer controlled auction system
US7249085B1 (en) * 1999-03-31 2007-07-24 Ariba, Inc. Method and system for conducting electronic auctions with multi-parameter price equalization bidding
US7454361B1 (en) * 1999-04-22 2008-11-18 Ceats, Inc. Individual seat selection ticketing and reservation system
PL356201A1 (en) * 1999-09-28 2004-06-14 Cfph, L.L.C. Systems and methods for transferring items with restricted transferability
US6876991B1 (en) 1999-11-08 2005-04-05 Collaborative Decision Platforms, Llc. System, method and computer program product for a collaborative decision platform
US20020013763A1 (en) * 1999-12-08 2002-01-31 Harris Scott C. Real time auction with end game
US20060095344A1 (en) * 2000-06-09 2006-05-04 Nakfoor Brett A System and method for fan lifecycle management
US9697650B2 (en) 2000-06-09 2017-07-04 Flash Seats, Llc Method and system for access verification within a venue
US7076445B1 (en) 2000-06-20 2006-07-11 Cartwright Shawn D System and methods for obtaining advantages and transacting the same in a computer gaming environment
US7249180B2 (en) * 2000-09-14 2007-07-24 International Business Machines Corporation Method and system for marketplace social proxies
US9740988B1 (en) 2002-12-09 2017-08-22 Live Nation Entertainment, Inc. System and method for using unique device indentifiers to enhance security
US10366373B1 (en) 2002-12-09 2019-07-30 Live Nation Entertainment, Incorporated Apparatus for access control and processing
US9477820B2 (en) 2003-12-09 2016-10-25 Live Nation Entertainment, Inc. Systems and methods for using unique device identifiers to enhance security
US8510138B2 (en) * 2009-03-06 2013-08-13 Ticketmaster Llc Networked barcode verification system
US8463627B1 (en) 2003-12-16 2013-06-11 Ticketmaster Systems and methods for queuing requests and providing queue status
US7584123B1 (en) 2004-04-06 2009-09-01 Ticketmaster Systems for dynamically allocating finite or unique resources
US20060041499A1 (en) * 2004-08-23 2006-02-23 Transaxtions Llc Obtaining A Need With Guiding Information And Credit Worthiness Using A Competitive Process
US20060143109A1 (en) 2004-12-23 2006-06-29 Ebay Inc. Method and system of listing an item in a fixed-price section
US9608929B2 (en) 2005-03-22 2017-03-28 Live Nation Entertainment, Inc. System and method for dynamic queue management using queue protocols
WO2006102354A2 (en) 2005-03-22 2006-09-28 Ticketmaster Apparatus and methods for providing queue messaging over a network
US9762685B2 (en) 2005-04-27 2017-09-12 Live Nation Entertainment, Inc. Location-based task execution for enhanced data access
US20140379390A1 (en) 2013-06-20 2014-12-25 Live Nation Entertainment, Inc. Location-based presentations of ticket opportunities
JP4708439B2 (en) * 2006-01-20 2011-06-22 富士通株式会社 Image browsing device, image browsing method, image browsing program, image browsing system
US7644861B2 (en) * 2006-04-18 2010-01-12 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US8294549B2 (en) 2006-05-09 2012-10-23 Ticketmaster Llc Apparatus for access control and processing
US20070276707A1 (en) * 2006-05-25 2007-11-29 Collopy Charles E Tour event clearinghouse system and method for interaction with retail travel systems
WO2008028191A2 (en) * 2006-09-01 2008-03-06 United Consumer Benefit Network Method for reward auctioning of internet sites
US8015073B2 (en) * 2006-09-25 2011-09-06 International Business Machines Corporation Increasing market efficiency of ticket supply systems
US8661025B2 (en) 2008-11-21 2014-02-25 Stubhub, Inc. System and methods for third-party access to a network-based system for providing location-based upcoming event information
US8024234B1 (en) 2006-10-25 2011-09-20 Stubhub, Inc. System and methods for mapping price and location of tickets in an event venue
US11295244B2 (en) 2006-10-25 2022-04-05 Stubhub, Inc. System and methods for mapping price and location of tickets in an event venue
US7917398B2 (en) * 2006-10-25 2011-03-29 Stubhub, Inc. Method and system for illustrating where a ticket is located in an event venue
CN101589404A (en) * 2006-12-07 2009-11-25 票务专家公司 Methods and systems for access control using a networked turnstele
US10348708B2 (en) 2006-12-07 2019-07-09 Live Nation Entertainment, Inc. Short-range device interactions for facilitating partial uses of clustered access rights
US20080301688A1 (en) * 2007-05-31 2008-12-04 Boss Gregory J Method, system, and program product for allocating a resource
US8032407B2 (en) * 2007-05-31 2011-10-04 International Business Machines Corporation Application of brokering methods to scalability characteristics
US8589206B2 (en) * 2007-05-31 2013-11-19 International Business Machines Corporation Service requests for multiple service level characteristics
US8180660B2 (en) * 2007-05-31 2012-05-15 International Business Machines Corporation Non-depleting chips for obtaining desired service level characteristics
US20080301025A1 (en) * 2007-05-31 2008-12-04 Boss Gregory J Application of brokering methods to availability characteristics
US9147215B2 (en) 2007-05-31 2015-09-29 International Business Machines Corporation Discrete, depleting chips for obtaining desired service level characteristics
US8140446B2 (en) * 2007-05-31 2012-03-20 International Business Machines Corporation Application of brokering methods to operational support characteristics
US8117074B2 (en) * 2007-05-31 2012-02-14 International Business Machines Corporation Scaling offers for elemental biddable resources (EBRs)
US8332859B2 (en) * 2007-05-31 2012-12-11 International Business Machines Corporation Intelligent buyer's agent usage for allocation of service level characteristics
US7899696B2 (en) * 2007-05-31 2011-03-01 International Business Machines Corporation Application of brokering methods to recoverability characteristics
US9165266B2 (en) * 2007-05-31 2015-10-20 International Business Machines Corporation Resource management framework for holding auctions and applying service level characteristics in response to bids for resources
US7899697B2 (en) * 2007-05-31 2011-03-01 International Business Machines Corporation Application of brokering methods to security characteristics
US8041599B2 (en) * 2007-05-31 2011-10-18 International Business Machines Corporation Method, system, and program product for selecting a brokering method for obtaining desired service level characteristics
US8041600B2 (en) * 2007-05-31 2011-10-18 International Business Machines Corporation Application of brokering methods to performance characteristics
US7840433B2 (en) * 2007-05-31 2010-11-23 International Business Machines Corporation Fluid, depleting chips for obtaining desired service level characteristics
WO2009021060A2 (en) * 2007-08-07 2009-02-12 Ticketmaster, Llc Systems and methods for providing resources allocation in a networked environment
US9807096B2 (en) 2014-12-18 2017-10-31 Live Nation Entertainment, Inc. Controlled token distribution to protect against malicious data and resource access
US8126991B2 (en) 2007-09-04 2012-02-28 Ticketmaster, Llc Methods and systems for validating real time network communications
US8682746B2 (en) * 2007-10-01 2014-03-25 Apple Inc. Techniques for correlating events to digital media assets
US8024228B1 (en) * 2007-10-04 2011-09-20 Patrick James Schultz Concealed performance bid
US8126748B2 (en) * 2008-02-25 2012-02-28 Tixtrack, Inc. Sports and concert event ticket pricing and visualization system
WO2009137511A2 (en) * 2008-05-05 2009-11-12 Ticketmaster, Llc Process control system
US8050950B2 (en) * 2008-08-06 2011-11-01 Shaun Beheruz Sethna System and method for boarding passengers based on bids
US20110137692A1 (en) * 2008-08-06 2011-06-09 Shaun Beheruz Sethna System and method for boarding passengers based on valuation data
US8266010B2 (en) * 2008-10-30 2012-09-11 Sri Raghavan Methods and systems for supporting asset exchange
US20110040656A1 (en) * 2009-08-12 2011-02-17 Groetzinger Jon D System and method for generating predictions of price and availability of event tickets on secondary markets
US10096161B2 (en) 2010-06-15 2018-10-09 Live Nation Entertainment, Inc. Generating augmented reality images using sensor and location data
AU2011268420B2 (en) 2010-06-15 2014-05-01 Ticketmaster, Llc Methods and systems for computer aided event and venue setup and modeling and interactive maps
US9781170B2 (en) 2010-06-15 2017-10-03 Live Nation Entertainment, Inc. Establishing communication links using routing protocols
US8984015B1 (en) 2010-08-09 2015-03-17 Todpix, LLC Method and apparatus for demand assignment of content display opportunities
US9367848B2 (en) 2010-12-27 2016-06-14 Stubhub, Inc. Dynamic interactive seat map
EP4400692A3 (en) * 2011-04-07 2024-10-16 Typhon Technology Solutions, LLC Electrically powered system for use in fracturing underground formations
EP2737441A4 (en) * 2011-07-19 2015-02-18 David B Fink Apparatus and method for expedited event access
US9070161B2 (en) 2011-08-15 2015-06-30 Philip L. Elias Method of conducting auctions and audience guided events utilizing closed network satellite broadcasts to multiple location digital theater environments with integrated real time audience interaction
US20130124234A1 (en) * 2011-11-10 2013-05-16 Stubhub, Inc. Intelligent seat recommendation
US8401923B1 (en) 2012-05-04 2013-03-19 Transengine Technologies, LLC Method for a ticket exchange across different systems of record
US11853927B1 (en) * 2012-09-12 2023-12-26 Southern Experience, Llc Method and system for optimizing experiences and/or purchases at live events through virtual electronic tickets on a portable computing device (PCD)
US8584225B1 (en) 2012-12-21 2013-11-12 Live Nation Entertainment, Inc. Push channel authentication for mobile computing devices
JP5661091B2 (en) * 2012-12-25 2015-01-28 楽天株式会社 Ticket processing system, ticket processing system control method, and program
US9904954B2 (en) * 2013-03-15 2018-02-27 Ten-X, Llc Flexible commercial loan pool
US9773275B2 (en) * 2013-03-15 2017-09-26 Ten-X, Llc Profiling auction assets and/or participants to predict auction outcome
US10261900B2 (en) * 2013-03-29 2019-04-16 Rakuten, Inc. Data cache system, recording medium and method
WO2015088827A1 (en) * 2013-12-10 2015-06-18 Schlumberger Canada Limited System and method of treating a subterranean formation with a diverting composition
US10262335B2 (en) * 2014-02-21 2019-04-16 Ebay Inc. Systems and methods for real time upgrades
US20150332384A1 (en) * 2014-05-15 2015-11-19 Edward O'Neil Garcia Artist tour generation
US9112931B1 (en) 2014-10-27 2015-08-18 Rushline, LLC Systems and methods for enabling dialog amongst different participant groups
US10614384B2 (en) 2014-12-30 2020-04-07 Stubhub, Inc. Automated ticket comparison and substitution recommendation system
US20160316450A1 (en) * 2015-04-22 2016-10-27 Pebble Technology Corp. Living notifications
US20170024810A1 (en) * 2015-07-21 2017-01-26 Ying-Tsun Su Auction server and selling method thereof
US11315047B2 (en) 2016-02-05 2022-04-26 Stubhub, Inc. Blending electronic inventory
US11216857B2 (en) 2016-06-23 2022-01-04 Stubhub, Inc. Weather enhanced graphical preview for an online ticket marketplace
US11113636B2 (en) 2016-12-30 2021-09-07 Stubhub, Inc. Automated generation of a package data object
US10825084B1 (en) 2017-06-23 2020-11-03 GolfLine, Inc. Method to optimize revenue using a bid reservation system
CN108564399B (en) * 2018-03-29 2021-09-17 北京红马传媒文化发展有限公司 Value attribute setting method and device, recommendation method and device for stadium seats
US20200027156A1 (en) * 2018-07-17 2020-01-23 Wesley Palmer GAVIN Methods and systems for online auctioning of items
CN109474666A (en) * 2018-10-12 2019-03-15 厦门海迈科技股份有限公司 Bid opening and bid appraisal place management method, device and storage medium
EP3660776A1 (en) 2018-11-29 2020-06-03 Mozion Solutions S.L. Computer-implemented method, system and computer program products for allocation of access rights with variable price
US11025989B2 (en) * 2019-02-13 2021-06-01 Live Inc. Live event video stream service
US11023729B1 (en) * 2019-11-08 2021-06-01 Msg Entertainment Group, Llc Providing visual guidance for presenting visual content in a venue
US11093909B1 (en) 2020-03-05 2021-08-17 Stubhub, Inc. System and methods for negotiating ticket transfer
US20220044269A1 (en) * 2020-08-05 2022-02-10 Bandits Roost LLC System and method for contactless sales using location-based services

Family Cites Families (305)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581072A (en) * 1968-03-28 1971-05-25 Frederick Nymeyer Auction market computation system
US3622995A (en) 1969-03-21 1971-11-23 Burroughs Corp Automatic ticket/credit card check-in system
US4004388A (en) * 1974-02-21 1977-01-25 Ppg Industries, Inc. Window panel edge construction
US4412287A (en) 1975-05-29 1983-10-25 Braddock Iii Walter D Automated stock exchange
US4816904A (en) * 1983-06-09 1989-03-28 Control Data Corporation Television and market research data collection system and method
US4788643A (en) 1983-08-29 1988-11-29 Trippe Kenneth A B Cruise information and booking data processing system
US4980826A (en) 1983-11-03 1990-12-25 World Energy Exchange Corporation Voice actuated automated futures trading exchange
US4603232A (en) 1984-09-24 1986-07-29 Npd Research, Inc. Rapid market survey collection and dissemination method
US4845739A (en) * 1985-07-10 1989-07-04 Fdr Interactive Technologies Telephonic-interface statistical analysis system
US5255309A (en) 1985-07-10 1993-10-19 First Data Resources Inc. Telephonic-interface statistical analysis system
US5048075A (en) 1985-07-10 1991-09-10 First Data Resources Inc. Telephonic-interface statistical analysis system
US5259023A (en) 1985-07-10 1993-11-02 First Data Resources Inc. Telephonic-interface statistical analysis system
US6449346B1 (en) 1985-07-10 2002-09-10 Ronald A. Katz Technology Licensing, L.P. Telephone-television interface statistical analysis system
US5898762A (en) 1985-07-10 1999-04-27 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface statistical analysis system
JPH0743748B2 (en) 1986-02-17 1995-05-15 株式会社オークネット Information transmission processing method of auction information transmission processing system
US4926255A (en) 1986-03-10 1990-05-15 Kohorn H Von System for evaluation of response to broadcast transmissions
US4799158A (en) * 1986-05-27 1989-01-17 Ford Motor Company System for computer controlled shifting of an automatic transmission
US4799156A (en) * 1986-10-01 1989-01-17 Strategic Processing Corporation Interactive market management system
US4862357A (en) 1987-01-28 1989-08-29 Systemone Holdings, Inc. Computer reservation system with means to rank travel itineraries chosen in terms of schedule/fare data
US5181788A (en) 1987-03-02 1993-01-26 Bantec, Inc. Ribbon saving control mechanism
US4889280A (en) 1989-02-24 1989-12-26 Gas Research Institute Temperature and humidity auctioneering control
IT1230069B (en) * 1989-03-10 1991-10-05 Eniricerche Spa PROCEDURE FOR THE REDUCTION OF THE COD FROM INDUSTRIAL OR URBAN WASTE.
US5077665A (en) 1989-05-25 1991-12-31 Reuters Limited Distributed matching system
US5136501A (en) 1989-05-26 1992-08-04 Reuters Limited Anonymous matching system
US5101353A (en) * 1989-05-31 1992-03-31 Lattice Investments, Inc. Automated system for providing liquidity to securities markets
NL8902818A (en) * 1989-11-15 1991-06-03 Nedap Nv AUTOMATED CHECKOUT SYSTEM.
NZ236258A (en) * 1989-11-28 1996-09-25 Japan Airlines Co Terminal for reservation system
US5253165A (en) 1989-12-18 1993-10-12 Eduardo Leiseca Computerized reservations and scheduling system
US5112050A (en) * 1990-01-05 1992-05-12 John R. Koza Broadcast lottery
US5283737A (en) * 1990-09-21 1994-02-01 Prolab Software Inc. Mechanism for generating linguistic expressions based on synonyms and rules derived from examples
WO1992006438A1 (en) 1990-10-01 1992-04-16 Bush Thomas A Transactional processing system
CA2035767C (en) 1991-02-06 1995-07-18 Douglas Huegel Automatic ticket dispensing system
CA2059078C (en) 1991-02-27 1995-10-03 Alexander G. Fraser Mediation of transactions by a communications system
DE4111445A1 (en) 1991-04-09 1992-10-15 Hoechst Ag RADIATION-SENSITIVE MIXTURE WITH ESTERS OF 1,2-NAPHTHOQUINONE-2-DIAZIDE SULFONIC ACID AND A RADIATION-SENSITIVE RECORDING MATERIAL PRODUCED THEREFOR
US5333257A (en) 1991-08-09 1994-07-26 C/A Architects, Inc. System for displaying selected assembly-facility seating views
US5426281A (en) 1991-08-22 1995-06-20 Abecassis; Max Transaction protection system
US5237499A (en) 1991-11-12 1993-08-17 Garback Brent J Computer travel planning system
US5557518A (en) 1994-04-28 1996-09-17 Citibank, N.A. Trusted agents for open electronic commerce
US5428778A (en) 1992-02-13 1995-06-27 Office Express Pty. Ltd. Selective dissemination of information
CA2108072A1 (en) 1992-03-19 1995-04-09 Robert P. Coe Secure event tickets
US5265916A (en) 1992-03-19 1993-11-30 Moore Business Forms, Inc. Secure event tickets
US5408417A (en) * 1992-05-28 1995-04-18 Wilder; Wilford B. Automated ticket sales and dispensing system
US5388101A (en) 1992-10-26 1995-02-07 Eon Corporation Interactive nationwide data service communication system for stationary and mobile battery operated subscriber units
US6023686A (en) * 1996-02-20 2000-02-08 Health Hero Network Method for conducting an on-line bidding session with bid pooling
US5794219A (en) 1996-02-20 1998-08-11 Health Hero Network, Inc. Method of conducting an on-line auction with bid pooling
US5724520A (en) 1993-06-08 1998-03-03 Anthony V. Pugliese Electronic ticketing and reservation system and method
US5794207A (en) 1996-09-04 1998-08-11 Walker Asset Management Limited Partnership Method and apparatus for a cryptographically assisted commercial network system designed to facilitate buyer-driven conditional purchase offers
US5422809A (en) 1993-08-25 1995-06-06 Touch Screen Media, Inc. Method and apparatus for providing travel destination information and making travel reservations
CA2112077C (en) 1993-09-15 1999-08-24 Barry Craig Smith Network architecture for allocating flight inventory segments and resources
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
US5592375A (en) * 1994-03-11 1997-01-07 Eagleview, Inc. Computer-assisted system for interactively brokering goods or services between buyers and sellers
US5559707A (en) 1994-06-24 1996-09-24 Delorme Publishing Company Computer aided routing system
US5518239A (en) * 1994-07-07 1996-05-21 Johnston; William H. Lottery racing sweepstake
US5518145A (en) * 1994-09-12 1996-05-21 Chen; Hsi H. Glue injector and the process of injection
US5489239A (en) * 1994-09-15 1996-02-06 Case Corporation Rotary combine
US5826241A (en) 1994-09-16 1998-10-20 First Virtual Holdings Incorporated Computerized system for making payments and authenticating transactions over the internet
JP3614480B2 (en) * 1994-11-18 2005-01-26 株式会社日立製作所 Electronic ticket sales / refund system and sales / refund method
US5598477A (en) * 1994-11-22 1997-01-28 Pitney Bowes Inc. Apparatus and method for issuing and validating tickets
JPH08161412A (en) 1994-12-07 1996-06-21 Oak Net:Kk Auction information transmitting and processing system
US5684801A (en) 1994-12-30 1997-11-04 Lucent Technologies Portable wireless local area network
US5553145A (en) 1995-03-21 1996-09-03 Micali; Silvia Simultaneous electronic transactions with visible trusted parties
US5845265A (en) 1995-04-26 1998-12-01 Mercexchange, L.L.C. Consignment nodes
US5489096A (en) * 1995-04-27 1996-02-06 Double Win, Ltd. Ticket systems for wagering on sports events
US5845266A (en) 1995-12-12 1998-12-01 Optimark Technologies, Inc. Crossing network utilizing satisfaction density profile with price discovery features
US5664115A (en) 1995-06-07 1997-09-02 Fraser; Richard Interactive computer system to match buyers and sellers of real estate, businesses and other property using the internet
US5826244A (en) 1995-08-23 1998-10-20 Xerox Corporation Method and system for providing a document service over a computer network using an automated brokered auction
US5757917A (en) * 1995-11-01 1998-05-26 First Virtual Holdings Incorporated Computerized payment system for purchasing goods and services on the internet
US5794210A (en) 1995-12-11 1998-08-11 Cybergold, Inc. Attention brokerage
US5812670A (en) 1995-12-28 1998-09-22 Micali; Silvio Traceable anonymous transactions
US5742763A (en) * 1995-12-29 1998-04-21 At&T Corp. Universal message delivery system for handles identifying network presences
US6026383A (en) * 1996-01-04 2000-02-15 Ausubel; Lawrence M. System and method for an efficient dynamic auction for multiple objects
US5918209A (en) 1996-01-11 1999-06-29 Talus Solutions, Inc. Method and system for determining marginal values for use in a revenue management system
US5797126A (en) 1996-02-16 1998-08-18 Helbling; Edward Automatic theater ticket concierge
US5855006A (en) 1996-03-01 1998-12-29 Humware Personal activity scheduling apparatus
US5850442A (en) 1996-03-26 1998-12-15 Entegrity Solutions Corporation Secure world wide electronic commerce over an open network
US5774873A (en) 1996-03-29 1998-06-30 Adt Automotive, Inc. Electronic on-line motor vehicle auction and information system
US6243691B1 (en) * 1996-03-29 2001-06-05 Onsale, Inc. Method and system for processing and transmitting electronic auction information
US5835896A (en) 1996-03-29 1998-11-10 Onsale, Inc. Method and system for processing and transmitting electronic auction information
US6048271A (en) * 1996-05-07 2000-04-11 Barcelou; David M. Automated league and tournament device
US6907405B2 (en) 1996-05-23 2005-06-14 Ita Investments, Llc Computer controlled priority right auctioning system
US7747507B2 (en) 1996-05-23 2010-06-29 Ticketmaster L.L.C. Computer controlled auction system
US6023685A (en) 1996-05-23 2000-02-08 Brett; Kenton F. Computer controlled event ticket auctioning system
US6704713B1 (en) * 1996-05-23 2004-03-09 Ita Investments, Llc Computer controlled event ticket auctioning system
US5930761A (en) 1996-07-08 1999-07-27 O'toole; Martin J. Ticket package management software
US5890138A (en) * 1996-08-26 1999-03-30 Bid.Com International Inc. Computer auction system
US6047264A (en) * 1996-08-08 2000-04-04 Onsale, Inc. Method for supplying automatic status updates using electronic mail
EP0823694A1 (en) 1996-08-09 1998-02-11 Koninklijke KPN N.V. Tickets stored in smart cards
JP3407561B2 (en) * 1996-09-04 2003-05-19 株式会社日立製作所 Auction apparatus and method
US6484153B1 (en) 1996-09-04 2002-11-19 Priceline.Com Incorporated System and method for managing third-party input to a conditional purchase offer (CPO)
US6418415B1 (en) 1996-09-04 2002-07-09 Priceline.Com Incorporated System and method for aggregating multiple buyers utilizing conditional purchase offers (CPOS)
US20050043994A1 (en) 1996-09-04 2005-02-24 Walker Jay S. Method for allowing a customer to obtain a discounted price for a transaction and terminal for performing the method
US6240396B1 (en) * 1996-09-04 2001-05-29 Priceline.Com Incorporated Conditional purchase offer management system for event tickets
US6175922B1 (en) * 1996-12-04 2001-01-16 Esign, Inc. Electronic transaction systems and methods therefor
JP3869065B2 (en) * 1997-03-03 2007-01-17 株式会社東芝 Ticket gate system, search device, and ticket management system traffic management method
US6341353B1 (en) * 1997-04-11 2002-01-22 The Brodia Group Smart electronic receipt system
US6999936B2 (en) * 1997-05-06 2006-02-14 Sehr Richard P Electronic ticketing system and methods utilizing multi-service visitor cards
US6047284A (en) * 1997-05-14 2000-04-04 Portal Software, Inc. Method and apparatus for object oriented storage and retrieval of data from a relational database
US6085976A (en) 1998-05-22 2000-07-11 Sehr; Richard P. Travel system and methods utilizing multi-application passenger cards
JP3791131B2 (en) * 1997-07-14 2006-06-28 富士ゼロックス株式会社 Electronic ticket system
US6119096A (en) 1997-07-31 2000-09-12 Eyeticket Corporation System and method for aircraft passenger check-in and boarding using iris recognition
US6107932A (en) 1997-08-22 2000-08-22 Walker Digital, Llc System and method for controlling access to a venue using alterable tickets
US7460859B2 (en) 1997-11-03 2008-12-02 Light Elliott D System and method for obtaining a status of an authorization device over a network for administration of theatrical performances
US6223166B1 (en) * 1997-11-26 2001-04-24 International Business Machines Corporation Cryptographic encoded ticket issuing and collection system for remote purchasers
US6082620A (en) 1997-12-24 2000-07-04 Bone, Jr.; Wilburn I. Liquid crystal dynamic barcode display
US6415269B1 (en) 1998-05-29 2002-07-02 Bidcatcher, L.P. Interactive remote auction bidding system
US7069243B2 (en) 1998-05-29 2006-06-27 Dinwoodie David L Interactive remote auction bidding system
US6216227B1 (en) * 1998-06-29 2001-04-10 Sun Microsystems, Inc. Multi-venue ticketing using smart cards
US6067532A (en) * 1998-07-14 2000-05-23 American Express Travel Related Services Company Inc. Ticket redistribution system
DE69932294T8 (en) * 1998-08-12 2007-10-25 Nippon Telegraph And Telephone Corp. A recording medium with electronic ticket definitions recorded thereon and methods and apparatus for processing electronic tickets
US6230146B1 (en) * 1998-09-18 2001-05-08 Freemarkets, Inc. Method and system for controlling closing times of electronic auctions involving multiple lots
US7152043B2 (en) 1999-02-19 2006-12-19 Ariba, Inc. Method and system for dynamically controlling overtime in electronic auctions
US6192349B1 (en) * 1998-09-28 2001-02-20 International Business Machines Corporation Smart card mechanism and method for obtaining electronic tickets for goods services over an open communications link
US6308159B1 (en) 1998-12-11 2001-10-23 At&T Corporation Method and apparatus for ticket turn-back capability
US6470451B1 (en) 1999-02-25 2002-10-22 International Computers Limited Cancellation method for an automatic ticket system
US6658390B1 (en) 1999-03-02 2003-12-02 Walker Digital, Llc System and method for reselling a previously sold product
US6963854B1 (en) 1999-03-05 2005-11-08 Manugistics, Inc. Target pricing system
JP3061933U (en) 1999-03-05 1999-09-28 義幸 大澤 Real estate auction system
CA2368377C (en) 1999-04-07 2007-05-22 Swisscom Mobile Ag Method and system for ordering, loading and using access tickets
US7003485B1 (en) * 1999-05-07 2006-02-21 Dale Young Ticket auction
JP2003501712A (en) 1999-06-01 2003-01-14 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Digital ticket delivery and inspection system and method
US7093130B1 (en) 2000-01-24 2006-08-15 The Regents Of The University Of California System and method for delivering and examining digital tickets
AU5596700A (en) 1999-06-03 2000-12-28 Charles H. CELLA Contingency-based options and futures for contingent travel accommodations
US20030163373A1 (en) 1999-06-30 2003-08-28 Vlady Cornateanu Device for receiving advertising data and method of application
US6477503B1 (en) 1999-07-08 2002-11-05 Robert O. Mankes Active reservation system
JP4503143B2 (en) 1999-07-14 2010-07-14 パナソニック株式会社 Electronic ticket system, service server and mobile terminal
US6418419B1 (en) 1999-07-23 2002-07-09 5Th Market, Inc. Automated system for conditional order transactions in securities or other items in commerce
US6910627B1 (en) 1999-09-29 2005-06-28 Canon Kabushiki Kaisha Smart card systems and electronic ticketing methods
JP3721016B2 (en) * 1999-09-30 2005-11-30 宮崎沖電気株式会社 Resist processing equipment
US6662230B1 (en) 1999-10-20 2003-12-09 International Business Machines Corporation System and method for dynamically limiting robot access to server data
US7373317B1 (en) 1999-10-27 2008-05-13 Ebay, Inc. Method and apparatus for facilitating sales of goods by independent parties
US20020023955A1 (en) * 1999-11-29 2002-02-28 Leonard Frank Electronic delivery of admission tickets direct to a purchaser
AU4307501A (en) 1999-12-02 2001-06-12 Ultimate Markets, Inc. Method and apparatus for processing quotes in a commodity exchange system
AU1939101A (en) 1999-12-02 2001-06-12 Ultimate Markets, Inc. Service contracts and commodities market for trading service contracts
AU4510501A (en) 1999-12-02 2001-06-25 Ultimate Markets, Inc. Method and apparatus for establishing commodity markets
US6466917B1 (en) 1999-12-03 2002-10-15 Ebay Inc. Method and apparatus for verifying the identity of a participant within an on-line auction environment
AU782617B2 (en) 1999-12-17 2005-08-11 Ochoa Optics Llc System and method permitting customers to order selected products from a vast array of products offered by multiple participating merchants
US7249059B2 (en) 2000-01-10 2007-07-24 Dean Michael A Internet advertising system and method
US6446045B1 (en) 2000-01-10 2002-09-03 Lucinda Stone Method for using computers to facilitate and control the creating of a plurality of functions
WO2001052139A1 (en) 2000-01-13 2001-07-19 Justarrive, Inc. A system and method for electronic ticketing
US8781940B2 (en) * 2000-01-26 2014-07-15 Ebay Inc. Method and apparatus for facilitating user selection of a category item in a transaction
US6910019B2 (en) 2000-01-26 2005-06-21 Robert C. Dorr Countdown on-line auction clock
CA2399155A1 (en) 2000-02-07 2001-08-16 Ita Investments, Llc Computer controlled event ticket auctioning system
AU2007214305B2 (en) 2000-02-07 2009-05-21 Ticketmaster Llc Computer controlled event ticket auctioning system
US6366891B1 (en) 2000-02-08 2002-04-02 Vanberg & Dewulf Data processing system for conducting a modified on-line auction
US20020072999A1 (en) 2000-02-17 2002-06-13 International Business Machines Corporation System and method for providing integrated inventory control of time-sensitive inventory
US7092892B1 (en) 2000-03-01 2006-08-15 Site59, Inc. System and method for grouping and selling products or services
AU2001241126B2 (en) 2000-03-13 2006-01-12 Pia Corporation Electronic ticket system
US20030105641A1 (en) 2000-03-17 2003-06-05 Woodson Lewis Electronic ticketing and validation system and method
CA2404079C (en) 2000-03-22 2014-09-30 Global Eticket Exchange Ltd. Entertainment event ticket purchase and exchange system
US20040006497A1 (en) * 2001-03-22 2004-01-08 Nestor Tod A. Entertainment event ticket purchase and exchange system
DE60125744T2 (en) 2000-04-18 2007-11-08 British Airways Plc, Harmondsworth A METHOD OF OPERATING A TICKET OUTPUT SYSTEM
US6604107B1 (en) 2000-04-24 2003-08-05 Ebay Inc. Generic attribute database system for storing items of different categories having shared attributes
US20030024988A1 (en) 2000-04-24 2003-02-06 David Stanard System for providing evidence of payment
US7127404B1 (en) 2000-05-11 2006-10-24 Ebay, Incorporated Method and apparatus for a dual online registration contact information system
WO2001091001A2 (en) 2000-05-19 2001-11-29 Manugistic Atlanta, Inc. Dynamic pricing system
US6603568B1 (en) 2000-05-19 2003-08-05 Pitney Bowes Inc. System and method for issuing electronic tickets
JP2001344453A (en) 2000-05-31 2001-12-14 Koichi Nakajima Auction system
US20030236736A1 (en) 2002-06-25 2003-12-25 Richard Harmon Electronic system and method for trading seat licenses, event tickets and contingent event ticket certificates
US20040039696A1 (en) * 2002-06-25 2004-02-26 Richard Harmon System and method for executing a payment transaction over a computer network
US6496809B1 (en) 2000-06-09 2002-12-17 Brett Nakfoor Electronic ticketing system and method
US7110960B2 (en) 2000-06-09 2006-09-19 Manugistics, Inc. Event revenue management system
US8346580B2 (en) * 2000-06-09 2013-01-01 Flash Seats, Llc System and method for managing transfer of ownership rights to access to a venue and allowing access to the venue to patron with the ownership right
US20060095344A1 (en) * 2000-06-09 2006-05-04 Nakfoor Brett A System and method for fan lifecycle management
US9697650B2 (en) * 2000-06-09 2017-07-04 Flash Seats, Llc Method and system for access verification within a venue
AU768162B2 (en) * 2000-06-19 2003-12-04 William Henry Tan Forecasting group demand
US7149549B1 (en) 2000-10-26 2006-12-12 Ortiz Luis M Providing multiple perspectives for a venue activity through an electronic hand held device
JP2002024464A (en) * 2000-07-07 2002-01-25 Nec Corp System and method for selling ticket with ic card, and recording medium
US7031945B1 (en) * 2000-07-24 2006-04-18 Donner Irah H System and method for reallocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US7162454B1 (en) * 2000-07-24 2007-01-09 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other even admittance means, goods and/or services
US6820201B1 (en) 2000-08-04 2004-11-16 Sri International System and method using information-based indicia for securing and authenticating transactions
US7099841B1 (en) 2000-08-04 2006-08-29 Sports Securities, Inc. Methods and systems for trading permanent seat licenses
US7333943B1 (en) 2000-08-11 2008-02-19 The Prudential Insurance Company Of America Method and system for managing real property transactions having internet access and control
AU2001288293A1 (en) * 2000-08-16 2002-02-25 Omead Amidi Scannable barcode display and methods for using the same
US7058602B1 (en) 2000-08-18 2006-06-06 Luckysurf.Com, Inc. Enhanced auction mechanism for online transactions
US20020082879A1 (en) 2000-08-31 2002-06-27 Brent Miller Method and system for seat selection and ticket purchasing in a networked computer system
US6434398B1 (en) 2000-09-06 2002-08-13 Eric Inselberg Method and apparatus for interactive audience participation at a live spectator event
US6944599B1 (en) 2000-09-13 2005-09-13 Ebay Inc. Monitoring and automatic notification of irregular activity in a network-based transaction facility
US6523037B1 (en) * 2000-09-22 2003-02-18 Ebay Inc, Method and system for communicating selected search results between first and second entities over a network
US20020040346A1 (en) * 2000-09-27 2002-04-04 Kwan Khai Hee Computer system and method for on-line generating a password protected and barcode prepaid instrument of entitlement and activating said instrument on presentation over a computer network
KR100397813B1 (en) * 2000-09-29 2003-09-13 주식회사 시큐베이 The integrated customer management system using wireless barcode
JP4645928B2 (en) * 2000-09-29 2011-03-09 ヤマハ株式会社 Admission authentication method and system
GB0024545D0 (en) * 2000-10-06 2000-11-22 Magic4 Ltd Ticketing apparatus and method
JP2002189933A (en) * 2000-10-10 2002-07-05 Sharp Corp Related information providing system for specific electronic information
JPWO2002033612A1 (en) 2000-10-19 2004-02-26 ジェームス ジェイ スキナ Electronic ticket issuing system
US7340429B2 (en) 2000-10-23 2008-03-04 Ebay Inc. Method and system to enable a fixed price purchase within a online auction environment
US20020052758A1 (en) * 2000-10-26 2002-05-02 Arthur Roland Bushonville Method and apparatus for providing rights for event tickets
EP1350199A4 (en) 2000-10-27 2006-12-20 Manugistics Inc Supply chain demand forecasting and planning
US6965914B2 (en) 2000-10-27 2005-11-15 Eric Morgan Dowling Negotiated wireless peripheral systems
US6901429B2 (en) * 2000-10-27 2005-05-31 Eric Morgan Dowling Negotiated wireless peripheral security systems
US7899717B2 (en) 2000-11-06 2011-03-01 Raymond Anthony Joao Apparatus and method for selling a ticket to an event and/or to a portion of an event or venue
US8103881B2 (en) * 2000-11-06 2012-01-24 Innovation Connection Corporation System, method and apparatus for electronic ticketing
US6877665B2 (en) * 2000-11-20 2005-04-12 Ecrio, Inc. System, method, and apparatus for communicating information encoded in a light-based signal using a fob device
WO2002042926A1 (en) * 2000-11-20 2002-05-30 Ecrio Inc. Method for downloading bar code encoded information with a mobile communication
US6685093B2 (en) * 2001-09-25 2004-02-03 Ecrio, Inc. System, method and apparatus for communicating information between a mobile communications device and a bar code reader
KR20020042028A (en) * 2000-11-29 2002-06-05 윤종용 Method for providing and using ticket and system thereof
US7299206B2 (en) * 2000-11-30 2007-11-20 Ebay Inc. Method and system to implement seller authorized buying privileges within a network-based shopping facility
JP2002183633A (en) 2000-12-13 2002-06-28 Sony Corp Information-recording medium, information processor, information processing method, program recording medium and information processing system
US20020082969A1 (en) 2000-12-21 2002-06-27 O'keeffe Gerard M. Event ticket pricing and distribution system
US20020091555A1 (en) 2000-12-22 2002-07-11 Leppink David Morgan Fraud-proof internet ticketing system and method
US7555361B2 (en) 2000-12-25 2009-06-30 Sony Corporation Apparatus, system and method for electronic ticket management and electronic ticket distribution authentication
US20020087456A1 (en) 2000-12-29 2002-07-04 Daniel Abeshouse Method, apparatus, and system for synchronizing timing of an auction throug a computer network
US7194418B2 (en) 2001-01-26 2007-03-20 International Business Machines Corporation Methods and systems for dynamic determination of the number of tickets available for purchase
WO2002069107A2 (en) 2001-02-28 2002-09-06 Musicrebellion Com, Inc. Digital online exchange
GB2373406A (en) 2001-03-02 2002-09-18 Nokia Mobile Phones Ltd Wireless transactions
JP2002279113A (en) 2001-03-22 2002-09-27 Fujitsu Ltd Event participation invitation method
US20020138770A1 (en) 2001-03-26 2002-09-26 International Business Machines Corporation System and method for processing ticked items with customer security features
US6965997B2 (en) 2001-03-26 2005-11-15 International Business Machines Corporation System and method for binding and unbinding ticket items with user-negotiated security features
US20040128257A1 (en) 2001-03-28 2004-07-01 Okamoto Steve Atsushi Method and apparatus for administering one or more value bearing instruments
US20040128516A1 (en) 2001-03-28 2004-07-01 Okamoto Steve Atsushi Method and apparatus for verifying bearing instruments
US7080328B1 (en) 2001-03-28 2006-07-18 Ebay, Inc. Graphical user interface for filtering a population of items
US20020143860A1 (en) 2001-03-31 2002-10-03 Koninklijke Philips Electronics N. V. Machine readable label reader system with versatile default mode
US20020156715A1 (en) 2001-04-19 2002-10-24 Cameron Wall Apparatus and method for auctioning and reissuing a ticket online
US20020169623A1 (en) 2001-05-10 2002-11-14 Call Nicholas J. Online creation of tickets for ticketed events
US8428996B2 (en) 2001-06-11 2013-04-23 Ebay Inc. Method and system automatically to support multiple transaction types, and to display seller-specific transactions of various transaction types in an integrated, commingled listing
US20030040943A1 (en) * 2001-08-22 2003-02-27 International Business Machines Corporation System and method for selecting arena seat locations for display
US8032442B2 (en) 2001-09-27 2011-10-04 Stubhub, Inc. System and method for providing logistics for a sale of goods
US7085818B2 (en) * 2001-09-27 2006-08-01 International Business Machines Corporation Method, system, and program for providing information on proximate events based on current location and user availability
US20030067464A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. System for displaying personal messages at a public facility and method of doing business
US20030069762A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. System and method for selling image-display time to customers of a public facility
US20030069763A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. Business method and system for communicating public-facility status information through a virtual ticket device
US20030069827A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. Ticket exchange system and method of operation
US20030069764A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. Selling best available seats at a public facility
US20030069789A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. System and business method for offering seat upgrades to patrons at a public facility
US20030069810A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. System and method for selling goods to customers of a public facility
US20030069829A1 (en) * 2001-10-04 2003-04-10 Koninklijke Philips Electronics N.V. Public-venue auction system and method of operation
US7044362B2 (en) 2001-10-10 2006-05-16 Hewlett-Packard Development Company, L.P. Electronic ticketing system and method
US6920428B2 (en) 2001-11-19 2005-07-19 The Friday Group Llc Method of selling and distributing articles associated with live events
US7636674B2 (en) 2001-12-26 2009-12-22 Francis Mitchell J Ticket distribution system
US8290785B2 (en) 2002-11-15 2012-10-16 Francis Mitchell J Ticket distribution system
US7386492B2 (en) 2002-01-15 2008-06-10 Clear Channel Communications, Inc. Inventory and revenue maximization method and system
US20050149458A1 (en) 2002-02-27 2005-07-07 Digonex Technologies, Inc. Dynamic pricing system with graphical user interface
US7213754B2 (en) 2002-02-27 2007-05-08 Digonex Technologies, Inc. Dynamic pricing system with graphical user interface
US20050139662A1 (en) 2002-02-27 2005-06-30 Digonex Technologies, Inc. Dynamic pricing system
US7076558B1 (en) 2002-02-27 2006-07-11 Microsoft Corporation User-centric consent management system and method
US20040073439A1 (en) * 2002-03-26 2004-04-15 Ideaflood, Inc. Method and apparatus for issuing a non-transferable ticket
US7725402B2 (en) 2002-04-01 2010-05-25 Booth John R System and method for booking a performance venue
US20030229790A1 (en) 2002-04-30 2003-12-11 Russell William Christopher System and method for electronic ticket purchasing and redemption
US7139916B2 (en) 2002-06-28 2006-11-21 Ebay, Inc. Method and system for monitoring user interaction with a computer
US6854651B2 (en) * 2002-07-01 2005-02-15 Wildseed Ltd. Non-persistently displayed bar code based data input method and apparatus
US7376593B2 (en) * 2002-07-02 2008-05-20 Sap Aktiengesellschaft Methods and computer readable storage medium for conducting a reverse auction
AU2003263815A1 (en) * 2002-07-26 2004-02-16 Rubbermaid Incorporated Anti-tip rack for long handled tools
US20040019571A1 (en) * 2002-07-26 2004-01-29 Intel Corporation Mobile communication device with electronic token repository and method
US20040049412A1 (en) * 2002-09-10 2004-03-11 Johnson Jeffrey P. Electronic commodities and automated ticket manager
AU2003269186B2 (en) 2002-09-17 2008-05-22 Ncr Financial Solutions Group Limited Optimised messages containing barcode information for mobile receiving device
US7083081B2 (en) 2002-10-08 2006-08-01 First Data Corporation Electronic card and ticket and methods for their use
US20040086257A1 (en) * 2002-11-01 2004-05-06 Werberig David K. Integrated machine readable media and ticket
JP4062680B2 (en) 2002-11-29 2008-03-19 株式会社日立製作所 Facility reservation method, server used for facility reservation method, and server used for event reservation method
US7904346B2 (en) * 2002-12-31 2011-03-08 Ebay Inc. Method and system to adjust a seller fixed price offer
US7593866B2 (en) * 2002-12-31 2009-09-22 Ebay Inc. Introducing a fixed-price transaction mechanism in conjunction with an auction transaction mechanism
US8005719B2 (en) 2002-12-31 2011-08-23 Ebay Inc. Method and system to publish a seller fixed price offer
US8001007B2 (en) * 2002-12-31 2011-08-16 Ebay Inc. Method, and system to publish a proxy bid and a reserve price
JP2004295197A (en) * 2003-03-25 2004-10-21 Nec Corp Electronic ticket vending system and method
EP1618486A4 (en) * 2003-03-27 2008-10-08 Univ Washington Performing predictive pricing based on historical data
FR2853108A1 (en) * 2003-03-27 2004-10-01 France Telecom DEVICE FOR REPRESENTATION BY BAR CODE OF A MULTI-PURPOSE CONSUMPTION TICKET
US20040204991A1 (en) 2003-04-11 2004-10-14 Jay Monahan Method and system to incentivize a seller to perform an activity relating to a network-based marketplace
US20040204990A1 (en) 2003-04-11 2004-10-14 Lee Stacy A. Method and system to incentivize a user to perform an activity relating to a network-based marketplace in a timely manner
US20040220821A1 (en) 2003-04-30 2004-11-04 Ericsson Arthur Dale Bidding method for time-sensitive offerings
AU2004248632A1 (en) * 2003-06-12 2004-12-23 Adpay, Inc Facilitating the sale of ad items via the internet
US7127408B2 (en) 2003-06-13 2006-10-24 Rosen Michael J Method of creating season ticket package
KR100456134B1 (en) 2003-06-17 2004-11-10 김성수 one-way sending time expiring coupon operating method for sale of unsold perishable resources
US7792700B2 (en) * 2003-06-25 2010-09-07 Stubhub, Inc. Methods and computer-readable storage devices for managing transactions with multiple broker affiliates
JP3099294U (en) * 2003-07-17 2004-04-02 ニッセー工業株式会社 cushion
US20050027608A1 (en) * 2003-07-29 2005-02-03 Andreas Wiesmuller System and method for providing commercial services over a wireless communication network
US20060161474A1 (en) 2003-08-06 2006-07-20 David Diamond Delivery of targeted offers for move theaters and other retail stores
US20050140675A1 (en) 2003-08-06 2005-06-30 Billingsley Eric N. Method and system to generate an image for monitoring user interaction with a computer
US20050065868A1 (en) * 2003-08-08 2005-03-24 Soeren Rabe Systems, methods, and articles of manufacture for loaning securities
US7249062B2 (en) * 2003-09-25 2007-07-24 Nor1, Inc. Method for transacting for a perishable object having an uncertain availability
US8200684B2 (en) 2003-12-08 2012-06-12 Ebay Inc. Method and system for dynamic templatized query language in software
US7783555B2 (en) 2003-12-11 2010-08-24 Ebay Inc. Auction with interest rate bidding
US7698199B2 (en) 2004-01-16 2010-04-13 Bgc Partners, Inc. System and method for offering a futures contract indexed to entertainment revenue
US7698184B2 (en) 2004-01-16 2010-04-13 Bgc Partners, Inc. System and method for trading a financial instrument indexed to entertainment revenue
US7792763B2 (en) 2004-04-12 2010-09-07 Ebay Inc. Method and system to detect outlying behavior in a network-based marketplace
US20050240453A1 (en) 2004-04-21 2005-10-27 Scott Lyons Home ticketing system
US20050273405A1 (en) 2004-06-04 2005-12-08 Perry Chen Method and system fro making a conditional event binding on purchasers and vendors
US20060017541A1 (en) * 2004-07-22 2006-01-26 Nguyen Martin K Tracking by radio frequency identification
US9152651B2 (en) * 2004-10-15 2015-10-06 Celeritasworks, Llc Ticket entry systems and methods
US20060100985A1 (en) 2004-11-08 2006-05-11 Gerald Mark System and method of assigning seats and/or tables, as well as issuing and tracking personalized tickets for patrons attending events
US20060105783A1 (en) 2004-11-16 2006-05-18 Giraldin Timothy W Guest amenity system and methods for using same
US20060108418A1 (en) 2004-11-22 2006-05-25 Rice Rodney S System for buying and selling tickets to sporting events in the aftermarket through gifting
US20060155659A1 (en) 2004-11-23 2006-07-13 Dicesare Vincent Method and system for promoting fan identification with a sports team
US8121872B2 (en) 2004-11-29 2012-02-21 Mlb Advanced Media, L.P. System and method for allocating seats for a ticketed event
EP1825415A4 (en) 2004-12-02 2009-10-14 Provident Intellectual Propert Providing purchasing opportunities for performances
DE102004059608A1 (en) 2004-12-10 2006-06-14 Skidata Ag Access control system
US7080882B2 (en) 2004-12-14 2006-07-25 Douglas Stitt Seat lock
US20060143109A1 (en) 2004-12-23 2006-06-29 Ebay Inc. Method and system of listing an item in a fixed-price section
JP4207000B2 (en) 2004-12-28 2009-01-14 ブラザー工業株式会社 Ticket providing system, client device, confirmation server and program
US20060148566A1 (en) 2004-12-30 2006-07-06 Lakshminarasimha Arkalgud N Method and apparatus of an extended Cell-A-Lot sales lead enhancement and customer loyalty system
US8002175B2 (en) 2004-12-31 2011-08-23 Veritec, Inc. System and method for utilizing a highly secure two-dimensional matrix code on a mobile communications display
US8160928B2 (en) 2005-01-21 2012-04-17 Ebay Inc. Network-based commerce facility offer management methods and systems
US20060190387A1 (en) 2005-02-07 2006-08-24 Molloy Mark E Normalized synthetic continuous double auctions
US20060190389A1 (en) 2005-02-07 2006-08-24 Molloy Mark E Compound buy-buy auctions
US7792723B2 (en) 2005-02-07 2010-09-07 Liquid Markets Inc Synthetic continuous double auctions
US20060190390A1 (en) 2005-02-07 2006-08-24 Molloy Mark E Compound buy-sell auctions
US20060195356A1 (en) 2005-02-25 2006-08-31 Mark Nerenhausen Entertainment venue data analysis system and method
WO2006102354A2 (en) * 2005-03-22 2006-09-28 Ticketmaster Apparatus and methods for providing queue messaging over a network
US20060232110A1 (en) 2005-04-01 2006-10-19 Ariel Ovadia Reserved seat control apparatus and system for arenas, stadiums and theaters
US20060271462A1 (en) 2005-04-25 2006-11-30 The Ticket Reserve, Inc. Methods and Apparatus for Marketing contingent Event Certificates
US20060277130A1 (en) 2005-04-25 2006-12-07 The Ticket Reserve, Inc. Methods and apparatus to predict demand for a product or service
US20060244564A1 (en) 2005-04-28 2006-11-02 Madsen Josh D Secured entertainment seating
TWI259385B (en) 2005-05-03 2006-08-01 Shooter Digital Co Ltd Electronic transaction system capable of enhancing transaction security and electronic transaction method thereof
US7651990B2 (en) 2005-06-13 2010-01-26 3M Innovative Properties Company Foamable alcohol compositions comprising alcohol and a silicone surfactant, systems and methods of use
US20060293929A1 (en) 2005-06-23 2006-12-28 Chunghwa Telecom Co., Ltd. Electronic-ticket service system based on color-scale-code image recognition
US7650307B2 (en) 2005-06-28 2010-01-19 Ebay Inc. Method and system to enable a fixed price purchase within a multi-unit online auction environment
US20070017979A1 (en) * 2005-07-25 2007-01-25 Chunghwa Telecom Co., Ltd. Mobile ticketing via information hiding
JP5204952B2 (en) 2005-11-11 2013-06-05 株式会社ブリヂストン Developing roller and image forming apparatus having the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900220B2 (en) 1996-05-23 2018-02-20 Live Nation Entertainment, Inc. Methods and systems for reducing burst usage of a networked computer system
US10355936B2 (en) 1996-05-23 2019-07-16 Live Nation Entertainment, Inc. Methods and systems for reducing burst usage of a networked computer system
US10880177B2 (en) 1996-05-23 2020-12-29 Live Nation Entertainment, Inc. Methods and systems for reducing burst usage of a networked computer system
US20100257000A1 (en) * 2009-04-04 2010-10-07 Ken Harris Engine, system and method for upselling perishable products or service items
WO2016183680A1 (en) * 2015-05-19 2016-11-24 Fredette Benoît System and method for managing event access rights
US11488072B2 (en) 2015-05-19 2022-11-01 Benoît Fredette System and method for managing event access rights
US11132249B1 (en) 2020-07-08 2021-09-28 Bank Of America Corporation Software code change reversal tool
US11520651B2 (en) 2020-07-08 2022-12-06 Bank Of America Corporation Software code change reversal tool
US11853923B2 (en) 2020-08-06 2023-12-26 Vigilante Strategy LLC Method for controlling remote system settings using cloud-based control platform

Also Published As

Publication number Publication date
US20070033131A1 (en) 2007-02-08
US7720746B2 (en) 2010-05-18
US20100217629A1 (en) 2010-08-26
US20070124232A1 (en) 2007-05-31
US7769673B2 (en) 2010-08-03
US7747507B2 (en) 2010-06-29
US20070027794A1 (en) 2007-02-01
US20100257002A1 (en) 2010-10-07
US8538856B2 (en) 2013-09-17
US8732033B2 (en) 2014-05-20
US8073765B2 (en) 2011-12-06
US7698210B2 (en) 2010-04-13
US20070038582A1 (en) 2007-02-15
US20050144115A1 (en) 2005-06-30
US7647269B2 (en) 2010-01-12
US20070027798A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US8073765B2 (en) Computer-based right distribution system with password protection
US6907405B2 (en) Computer controlled priority right auctioning system
AU2006203419B2 (en) Computer controlled event ticket auctioning system
US6704713B1 (en) Computer controlled event ticket auctioning system
US10217065B2 (en) Entertainment event ticket purchase and exchange system
AU2008202813B2 (en) Entertainment event ticket purchase and exchange system
US20080040172A1 (en) Method and System for Reserving and Controlling Access to Products and Services at a Remote Location Via a Communications Network
AU2000229843B2 (en) Computer controlled event ticket auctioning system
AU2007214305B2 (en) Computer controlled event ticket auctioning system

Legal Events

Date Code Title Description
AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNORS:LIVE NATION ENTERTAINMENT, INC.;LIVE NATION WORLDWIDE, INC.;REEL/FRAME:040521/0186

Effective date: 20161031

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, DE

Free format text: SECURITY AGREEMENT;ASSIGNORS:LIVE NATION ENTERTAINMENT, INC.;LIVE NATION WORLDWIDE, INC.;REEL/FRAME:040521/0186

Effective date: 20161031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION