US20150148796A1 - Insulated ablation catheter devices and methods of use - Google Patents
Insulated ablation catheter devices and methods of use Download PDFInfo
- Publication number
- US20150148796A1 US20150148796A1 US14/613,155 US201514613155A US2015148796A1 US 20150148796 A1 US20150148796 A1 US 20150148796A1 US 201514613155 A US201514613155 A US 201514613155A US 2015148796 A1 US2015148796 A1 US 2015148796A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- ablation electrode
- insulating chamber
- elongate body
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00089—Thermal conductivity
- A61B2018/00101—Thermal conductivity low, i.e. thermally insulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
Definitions
- the present disclosure relates to the field of ablation and, more particularly, to insulated ablation catheter devices and methods of use.
- Atrial fibrillation is a heart condition whereby abnormal electrical signals cause irregular heart contractions.
- One treatment for this condition includes open heart surgery and creating several lesions in the endocardium of the atria. These lesions can function to block aberrant electrical impulses, permitting an impulse originating from the sinus node to properly regulate heart contraction.
- open heart surgery is highly invasive and requires a lengthy patient recovery period, alternate methods for making lesions are required.
- One alternative procedure uses ablation catheters.
- an ablation catheter is advanced into the heart via the patient's blood vessels.
- radio frequency (“RF”) energy is supplied to the catheter.
- RF energy ablates the tissue surrounding the ablation electrode, thereby creating a lesion in the endocardium.
- cooled ablation catheters are limited in their ability to accurately determine the temperature of tissue surrounding the tip electrode. Temperature sensors of such catheters typically sense the temperature of the cooling fluid rather than tissue temperature. Accurate tissue temperature readings are desirable as they can provide a useful indication of tissue ablation. Accordingly, the present disclosure provides devices and methods for accurately determining tissue temperature that overcomes some of the disadvantages of current ablation technologies.
- an ablation catheter having an ablative electrode and an insulating chamber.
- the catheter can include a pathway for providing cooling fluid to the ablative tip. Within the tip, cooling fluid can circulate in an open loop or closed loop configuration.
- a catheter device can be sized and shaped for vascular access.
- the catheter can include an elongate body extending between a proximal end and a distal end. Further, the elongate body can include at least one inner lumen configured to receive a fluid.
- the catheter can also include an ablation electrode configured to provide ablative energy, wherein the electrode can be located distally along the elongate body and can include a passageway fluidly connected to the lumen of the elongate body.
- the catheter can also include a sensor configured to provide a signal representative of temperature.
- the catheter can include an insulating chamber extending at least partially about the ablation electrode and configured to at least partially insulate the sensor from the ablation electrode.
- the method includes the steps of providing an ablation electrode, wherein the ablation electrode can include a passageway fluidly connected to a lumen of an elongate body of a catheter device, an insulating chamber extending at least partially about the ablation electrode, and a temperature sensor at least partially insulated from the ablation electrode.
- the method can further include delivering fluid to the lumen to cool the ablation electrode, and delivering ablative energy to the ablation electrode.
- the electrode device can include a proximal section configured for attachment to an elongate body of a catheter device.
- the electrode device can further include a passageway configured to connect to a lumen of the elongate body, wherein the passageway can be configured to receive a fluid.
- a sensor configured to provide a signal representative of a temperature of a region external to the ablation electrode.
- the electrode device can include an insulating chamber extending at least partially about the ablation electrode and configured to at least partially insulate the sensor.
- the method can include providing a passageway configured to connect to a lumen of an elongate body of a catheter device, wherein the passageway can be configured to receive a fluid.
- the method can further include providing an insulating chamber extending at least partially about the ablation electrode.
- the method can include attaching a sensor to the insulating chamber, wherein the sensor can be configured to provide a signal representative of a temperature of a region external to the ablation electrode.
- FIG. 1 illustrates a partially transparent view of one exemplary embodiment of an ablation catheter.
- FIG. 2 illustrates a cross-sectional view of one embodiment of an ablation electrode described herein.
- FIG. 3 illustrates a cross-sectional view of another embodiment of an ablation electrode.
- FIG. 4 illustrates a cross-sectional view of another embodiment of an ablation electrode.
- FIG. 5 illustrates a cross-sectional view of another embodiment of an ablation electrode.
- FIG. 6A illustrates a method of manufacturing an ablation electrode as described herein.
- FIG. 6B illustrates a method of manufacturing an ablation electrode.
- the catheters include a flow path that provides cooling to a distal section of the catheter.
- the catheter can include an ablation electrode having irrigation apertures for delivery of a cooling fluid to the environment surrounding the electrode or to the surface of the electrode.
- the electrode can include an insulating chamber to at least partially thermally insulate a temperature sensor from other heat sources, such as, for example, the electrode or cooling fluid. The insulating chamber can improve the accuracy of sensing the temperature of the tissue or fluid surrounding the electrode.
- FIG. 1 provides a cut-away view of one exemplary embodiment of an ablation catheter device 10 for use with the electrode structure described herein.
- Catheter device 10 can include an elongate body 12 extending between a proximal section 14 and a distal section 16 .
- Distal section 16 includes an ablation electrode 20 , configured to deliver ablative energy to tissue as discussed in detail below.
- proximal portion 14 of device 10 can include a handle 22 configured for use by a user.
- handle 22 can incorporate a variety of features to facilitate control of the catheter or the ablation process.
- handle 22 can be configured to connect catheter device 10 to a source of fluid, a source of ablative energy, a temperature display, sensors, or control software or hardware.
- handle 22 can provide a source of cooling fluid for electrode 20 via one or more ports 24 , configured to receive or expel fluid.
- device 10 can include mating elements 26 for receiving or transmitting energy to electrodes located distally along elongate body 12 , such as, for example, electrode 20 .
- electrodes located distally along elongate body 12 , such as, for example, electrode 20 .
- catheter device 10 can be articulating.
- catheter device 10 can include an articulating section 17 , located distally along elongate body 12 .
- distal section 16 can be deflected or bent in one or more directions. Articulation can provide one or more degrees of freedom and permit up/down or left/right movement of elongate body 12 .
- catheter 10 can include a variety of features associated with conventional articulating catheter devices.
- Articulating section 17 can be controlled via a proximally located control mechanism 28 .
- Control mechanism 28 can be mounted on handle 22 and can direct movement of distal section 16 of elongate body 12 . Such movement of elongate body 12 can facilitate insertion of catheter device 10 through a body lumen, such as, for example, vasculature. Control mechanism 28 can also manipulate distal section 16 to place electrode 20 at a target tissue location.
- Elongate body 12 can be defined by a flexible cylindrical structure extending between handle 22 and distal section 16 .
- body 12 can house at least one lumen configured to receive a fluid. Such fluid can be transferred to electrode 20 for cooling purposes.
- body 12 can house electrical conductors, such as, for example, wires for transmitting sensed signals or ablation energy.
- articulation mechanisms such as, for example, control wires, can extend within body 12 to articulation section 17 to permit movement of catheter device 10 .
- body 12 can include a variety of structures shaped and sized to pass through a body cavity, such as, for example, a vascular lumen.
- control wires e.g., push/pull wires
- a reinforcing or anchor member (not shown) could be positioned within distal section 16 .
- One or more control wires could mate with the reinforcing member to anchor the distal end of the control wire.
- wires can alternatively, or additionally, be fixed at a more proximal location of device 10 .
- Distal section 16 of catheter device 10 can include at least one electrode for delivering ablation energy, sensing physiological signals, or functioning as a return electrode.
- one or more ring electrodes 30 can be located distally along elongate body 12 . Ring electrodes 30 can, for example, permit sensing or mapping of cardiac signals.
- FIG. 1 illustrates three ring electrodes 30 within distal section 16 and positioned proximally from electrode 20 .
- Various ring electrodes 30 or electrode 20 can be used to sense physiological signals. Mapping is usually accomplished using a pair of electrodes, including, for example, electrode 20 .
- distal section 16 of device 10 can be configured to deliver ablation energy using bipolar or monopolar signals.
- RF radio frequency
- microwave or other ablative energy can be delivered via one or more electrodes, such as, for example, ablation electrode 20 .
- One or more ring electrodes 30 or a separate ground pad, can function as a return electrode.
- FIGS. 2 to 5 illustrate various exemplary embodiments of ablation electrode 20 .
- electrode 20 is configured to deliver RF energy to target tissue.
- electrode 20 can include a flow path, indicated by arrow 21 , for regulating the temperature of electrode 20 .
- a build up of biological materials on the outer surface of electrode 20 or in the area surrounding electrode 20 can result in less effective energy transfer to the tissue. This effect can be seen as a rise in impedance and a corresponding increase in tissue heating or charring immediately adjacent to ablation electrode 20 .
- Cooling of electrode 20 can permit more efficient energy transfer to tissue and allow larger lesion sizes. For example, cooling fluid moving through electrode 20 can absorb heat to reduce the electrode's temperature.
- a flow path can direct fluid through electrode 20 to the outer surface of electrode 20 .
- the fluid can function as a conduit to transmit RF energy to tissue.
- movement of fluid around electrode 20 while device 10 is in contact with tissue can reduce impedance rise as energy is delivered to the tissue.
- the movement of the fluid can sweep biological material, such as, for example, blood and tissue, away from electrode 20 to reduce the build-up of embolic material.
- Catheter device 10 also includes at least one insulating chamber configured to at least partially reduce heat transfer associated with conventional ablation catheters.
- temperature readings from the distal tip of ablation catheters could be affected by the other heat sources.
- the temperature of the cooling fluid could modify the temperature sensed at a distal tip.
- ablation electrodes can increase in temperature during an ablative procedure, again reducing the temperature measurement's accuracy.
- an insulating chamber 62 is configured to at least partially insulate a temperature sensor 46 from distal section 16 of catheter device 10 .
- Insulating chamber 62 can contain air, other fluid, or a solid material. Such insulating substances are designed to reduce energy flow between temperature sensor 46 and other components of distal section 16 .
- Temperature sensor 46 may then be configured to accurately sense the temperature of the environment or region surrounding distal section 16 . Such temperature information can provide a better indication of tissue ablation.
- FIG. 2 illustrates one embodiment of electrode 20 having a proximal end 40 and a distal end 42 , wherein proximal end 40 can be configured to mate with elongate body 12 .
- a connecting member 48 can be configured to connect electrode 20 and elongate body 12 .
- connecting member 48 could be a generally cylindrical structure configured to mate with an inner surface of body 12 and electrode 20 .
- electrode 20 and body 12 could mate via an overlapping connection (not shown), whereby a portion of electrode 20 or body 12 could be positioned within or about a portion of the other structure.
- mating mechanisms could be used, including frictional, mechanical, or adhesive engagements.
- a sheath could extend about part of elongate body 12 or electrode 20 .
- electrode 20 includes a body 41 configured to provide ablation energy to tissue.
- Body 41 can be constructed of a single unibody structure or of multiple segments of similar or different materials. Irrespective of its construction, body 41 can be formed of a variety of electrically and/or thermally conductive materials including, for example, platinum, iridium, stainless steel, gold, plated brass, and combinations thereof. In another aspect, body 41 could be an electrically conductive material, but not necessarily a thermally conductive material.
- Electrode 20 can be configured to operate with various lumens, wires, or control mechanisms.
- proximal end 40 of electrode 20 can be configured to mate with various lumens, wires, or control mechanisms extending through body 12 .
- a passageway 45 within electrode 20 could be configured to receive fluid.
- passageway 45 can be in fluid communication with a lumen 44 associated with elongate body 12 . Fluid may flow into catheter device 10 via ports 24 (as shown in FIG. 1 ), through lumen 44 and into passageway 45 .
- one or more lumens may be fluidly connected with one or more passageways in electrode 20 .
- one or more apertures 23 may be configured to direct a fluid from passageway 45 to a region surrounding electrode 20 . As illustrated in FIG. 2 , four apertures 23 are shown although a different number of apertures 23 may also be used. As discussed below with respect to FIG. 3 , electrode 20 may include no apertures.
- catheter device 10 can include insulating chamber 62 located distally along device 10 .
- insulating chamber 62 can be positioned proximal to at least a portion of electrode 20 or adjacent to distal end 42 of electrode 20 .
- insulating chamber 62 can at least partially extend, or extend substantially, about electrode 20 .
- insulating chamber 62 can provide at least some insulation from energy originating from distal section 16 .
- insulating chamber 62 can function to reduce heat transfer to a distally located temperature sensor 46 , such as, for example, a thermocouple or thermistor.
- sensor 46 may be located within insulating chamber 62 .
- Insulating chamber 62 can be configured to form various shapes.
- insulating chamber 62 could be a generally cylindrical shape, extending in a longitudinal direction parallel to a longitudinal axis of electrode 20 .
- Such a curvilinear form may also include linear or curvilinear sections.
- insulating chamber 62 could be a “peanut” shape, including generally bulbous distal and proximal sections and a smaller section between. Insulating chamber 62 could also be generally pear shaped or generally spherical.
- insulating chamber 62 can include a sidewall 65 .
- Sidewall 65 could be constructed of any suitable material, such as, for example, an alloy, a polymer, a ceramic, or combinations thereof.
- Sidewall 65 may be mated with a sidewall 64 of electrode body 41 via welding, heat sealing, friction fit, or other methods known in the art.
- Sidewall 65 may also be at least partially insulated from sidewall 64 to at least partially reduce heat transfer from sidewall 64 to sidewall 65 .
- sidewall 65 may be bonded to sidewall 64 using an insulative glue or other suitable adhesive.
- sidewall 64 and/or sidewall 65 may be formed from or bonded with, in part or in whole, an insulative material.
- Insulating chamber 62 can include an enclosed volume 66 that provides at least a partial insulative function.
- volume 66 can partially insulate sensor 46 from one or more heat sources.
- volume 66 may be defined by a region enclosed by sidewalls 64 and 65 .
- volume 66 could be at least partially filled with various fluids or solids.
- volume 66 could be filled with air, nitrogen, water, saline solution, foam, polymer, or ceramic material. Such substances may have low thermal and/or electrical conductivity.
- electrode 20 a may operate with a closed loop fluid circulation system. Specifically, fluid flow 21 may enter and exit electrode 20 a via two or more lumens 44 a. While electrode 20 a contains no apertures, fluid can be expelled from electrode 20 a via a lumen 44 a configured to receive fluid flow 21 and transfer fluid away from electrode 20 a.
- electrode 20 could include two or more insulating chambers.
- FIG. 4 illustrates one embodiment of electrode 20 having a first insulating chamber 62 a and a second insulating chamber 62 b.
- insulating chambers 62 a, 62 b may include one or more side walls 65 a, 65 b that may generally extend at least partially about electrode 20 .
- insulating chambers 62 a, 62 b can be variously shaped and sized.
- insulating chambers 62 a , 62 b can include volumes 66 a, 66 b that may be filled with various or different insulating materials. Chambers 62 a, 62 b could be differently configured, and may include multiple temperature sensors 46 a, 46 b.
- FIG. 4 illustrates an embodiment of electrode 20 having one or more ring electrodes 30 a.
- ring electrodes 30 a includes a distal ring electrode 32 and a proximal ring electrode 33 .
- Other embodiments of electrode 20 could include more or less ring electrodes 30 a configured to sense a physiological signal.
- ring electrodes 30 a could extend at least partially about electrode 20 .
- ring electrodes 32 , 33 may be separated by an insulating material 76 .
- Insulating material 76 could separate one or more ring electrodes from each other, one or more insulating chambers 62 a, 62 b, or electrode 20 .
- Insulating material 76 may be different to insulating material contained with volumes 66 a, 66 b. In some embodiments, the insulating materials could be similar.
- FIG. 5 illustrates another embodiment of electrode 20 .
- electrode 20 and insulating chamber 62 c can be configured to form an outer structure having a substantially similar cross-section along its longitudinal axis.
- electrode 20 can include a concave region configured to provide a concave sidewall of volume 66 c .
- Another sidewall of volume 66 c can be provided by a generally linear sidewall 65 c , such that insulating chamber 62 c can have an outer diameter similar to the outer diameter of electrode 20 at its distal end.
- temperature sensor 46 can be positioned within insulating chamber 62 .
- Electrically conductive wires can extend through elongate body 12 or electrode 20 to deliver energy or to permit communication with sensor 46 .
- sensor 46 can be positioned about insulating chamber 62 .
- the limited thermal conductivity of insulating chamber 62 facilitates accurate temperature sensing of the region surrounding electrode 20 .
- insulating chamber 62 can provide sufficient thermal insulation such that a temperature of the surrounding region is approximately equal to the temperature of sidewall 65 or insulating chamber 62 .
- both electrode 20 and insulating chamber 62 can be preformed as two separate components. All or a portion of insulating chamber 62 can be defined by a separate structure and can be configured to mate with part of electrode 20 . As illustrated in FIG. 68 , both components may then be combined to form a complete electrode assembly.
- one or more sidewalls 65 may be attached to sidewalls 64 to form insulating chambers 62 . Such attachment can include welding, soldering, gluing, or other suitable methods.
- an electrode and an insulating chamber may be discussed as separate elements for the sake of convenience or clarity, but such a description does not limit electrode 20 , as described or claimed, to a configuration in which the insulating chamber 62 is a distinct structure mated with electrode 20 .
- the outer surface of insulating chamber 62 can define a portion of the outer surface of electrode 20 .
- sidewall 65 can define the outer surface of electrode 20 .
- part of insulating chamber 62 could be manufactured from material similar or different to a material used to manufacture electrode 20 .
- sidewall 65 could be similar or different material to sidewall 64 .
- Irrigation apertures 23 can be formed in a variety of ways. In one aspect, channels can be drilled through sidewall 64 . While a macroporous electrode 20 is illustrated in the figures, microporous structures are also contemplated. For example, the sidewall 64 could be formed from sintered material having a porosity which allows cooling fluid flow therethrough. One skilled in the art will appreciate that a variety of conventional macro or microporous catheter materials can be utilized to form electrode 20 .
- electrode 20 can be varied according to the use of device 10 .
- another embodiment of ablation electrode 20 could include a blunt distal end.
- Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration and practice of the specification. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Disclosed herein is a catheter device sized and shaped for vascular access that has an elongate body extending between a proximal end and a distal end. Further, the elongate body has at least one inner lumen configured to receive a fluid. The catheter also has an ablation electrode configured to provide ablative energy, wherein the electrode is located distally along the elongate body and includes a passageway fluidly connected to the lumen of the elongate body. Also, the catheter has a sensor configured to provide a signal representative of temperature, and an insulating chamber extending at least partially about the ablation electrode and configured to at least partially insulate the sensor.
Description
- The present application is a continuation of U.S. patent application Ser. No. 12/702,396, filed on Feb. 9, 2010, now U.S. Pat. No. 8,945,117, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/151,709, which was filed on Feb. 11, 2009, the entirety of which are incorporated herein by reference.
- The present disclosure relates to the field of ablation and, more particularly, to insulated ablation catheter devices and methods of use.
- Atrial fibrillation is a heart condition whereby abnormal electrical signals cause irregular heart contractions. One treatment for this condition includes open heart surgery and creating several lesions in the endocardium of the atria. These lesions can function to block aberrant electrical impulses, permitting an impulse originating from the sinus node to properly regulate heart contraction. However, because open heart surgery is highly invasive and requires a lengthy patient recovery period, alternate methods for making lesions are required. One alternative procedure uses ablation catheters.
- Typically, an ablation catheter is advanced into the heart via the patient's blood vessels. When the catheter's electrodes are placed in the desired position within the heart chamber, radio frequency (“RF”) energy is supplied to the catheter. Such RF energy ablates the tissue surrounding the ablation electrode, thereby creating a lesion in the endocardium.
- Traditional ablation catheters included an elongated shaft with an ablation electrode mounted at the distal end of the shaft. Point or linear lesions could be formed with these catheters by manipulating the placement of the distal tip. However, creating suitable lesions using these catheters can be difficult because the tip electrode may overheat during ablation. Newer catheter designs mitigated these disadvantages by cooling the tip electrode during use, thereby minimizing the risk of overheating.
- However cooled ablation catheters are limited in their ability to accurately determine the temperature of tissue surrounding the tip electrode. Temperature sensors of such catheters typically sense the temperature of the cooling fluid rather than tissue temperature. Accurate tissue temperature readings are desirable as they can provide a useful indication of tissue ablation. Accordingly, the present disclosure provides devices and methods for accurately determining tissue temperature that overcomes some of the disadvantages of current ablation technologies.
- Described herein are medical treatments for delivering ablative energy to target tissue while providing improved devices and methods for determining tissue temperature. In one aspect, an ablation catheter having an ablative electrode and an insulating chamber is disclosed. The catheter can include a pathway for providing cooling fluid to the ablative tip. Within the tip, cooling fluid can circulate in an open loop or closed loop configuration.
- In one embodiment, a catheter device can be sized and shaped for vascular access. The catheter can include an elongate body extending between a proximal end and a distal end. Further, the elongate body can include at least one inner lumen configured to receive a fluid. The catheter can also include an ablation electrode configured to provide ablative energy, wherein the electrode can be located distally along the elongate body and can include a passageway fluidly connected to the lumen of the elongate body. The catheter can also include a sensor configured to provide a signal representative of temperature. In addition, the catheter can include an insulating chamber extending at least partially about the ablation electrode and configured to at least partially insulate the sensor from the ablation electrode.
- Another aspect of the current disclosure is directed to a method for ablating tissue. The method includes the steps of providing an ablation electrode, wherein the ablation electrode can include a passageway fluidly connected to a lumen of an elongate body of a catheter device, an insulating chamber extending at least partially about the ablation electrode, and a temperature sensor at least partially insulated from the ablation electrode. The method can further include delivering fluid to the lumen to cool the ablation electrode, and delivering ablative energy to the ablation electrode.
- Another aspect of the current disclosure is directed to an ablation electrode device configured to provide ablative energy to cardiac tissue. The electrode device can include a proximal section configured for attachment to an elongate body of a catheter device. The electrode device can further include a passageway configured to connect to a lumen of the elongate body, wherein the passageway can be configured to receive a fluid. Also included can be a sensor configured to provide a signal representative of a temperature of a region external to the ablation electrode. In addition, the electrode device can include an insulating chamber extending at least partially about the ablation electrode and configured to at least partially insulate the sensor.
- Yet another aspect of the current disclosure is directed to a method of manufacturing an ablation electrode. The method can include providing a passageway configured to connect to a lumen of an elongate body of a catheter device, wherein the passageway can be configured to receive a fluid. The method can further include providing an insulating chamber extending at least partially about the ablation electrode. Also, the method can include attaching a sensor to the insulating chamber, wherein the sensor can be configured to provide a signal representative of a temperature of a region external to the ablation electrode.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and are not restrictive of the present disclosure, as claimed. In addition, structures and features described with respect to one embodiment can similarly be applied to other embodiments.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, provide illustrative embodiments of the present disclosure and, together with the description, serve to explain the disclosure's principles.
-
FIG. 1 illustrates a partially transparent view of one exemplary embodiment of an ablation catheter. -
FIG. 2 illustrates a cross-sectional view of one embodiment of an ablation electrode described herein. -
FIG. 3 illustrates a cross-sectional view of another embodiment of an ablation electrode. -
FIG. 4 illustrates a cross-sectional view of another embodiment of an ablation electrode. -
FIG. 5 illustrates a cross-sectional view of another embodiment of an ablation electrode. -
FIG. 6A illustrates a method of manufacturing an ablation electrode as described herein. -
FIG. 6B illustrates a method of manufacturing an ablation electrode. - Disclosed herein are ablation catheters and methods of use. In general, the catheters include a flow path that provides cooling to a distal section of the catheter. The catheter can include an ablation electrode having irrigation apertures for delivery of a cooling fluid to the environment surrounding the electrode or to the surface of the electrode. In addition, the electrode can include an insulating chamber to at least partially thermally insulate a temperature sensor from other heat sources, such as, for example, the electrode or cooling fluid. The insulating chamber can improve the accuracy of sensing the temperature of the tissue or fluid surrounding the electrode.
-
FIG. 1 provides a cut-away view of one exemplary embodiment of anablation catheter device 10 for use with the electrode structure described herein.Catheter device 10 can include anelongate body 12 extending between aproximal section 14 and adistal section 16.Distal section 16 includes anablation electrode 20, configured to deliver ablative energy to tissue as discussed in detail below. - In one aspect,
proximal portion 14 ofdevice 10 can include ahandle 22 configured for use by a user. To permit operation ofdevice 10, handle 22 can incorporate a variety of features to facilitate control of the catheter or the ablation process. For example, handle 22 can be configured to connectcatheter device 10 to a source of fluid, a source of ablative energy, a temperature display, sensors, or control software or hardware. In particular, handle 22 can provide a source of cooling fluid forelectrode 20 via one ormore ports 24, configured to receive or expel fluid. In addition,device 10 can includemating elements 26 for receiving or transmitting energy to electrodes located distally alongelongate body 12, such as, for example,electrode 20. One skilled in the art will appreciate that a variety of catheter handle configurations are contemplated depending on the features of theelongate body 12,ablation electrode 20, or the intended use ofcatheter device 10. - In some embodiments,
catheter device 10 can be articulating. For example,catheter device 10 can include an articulatingsection 17, located distally alongelongate body 12. Specifically,distal section 16 can be deflected or bent in one or more directions. Articulation can provide one or more degrees of freedom and permit up/down or left/right movement ofelongate body 12. One skilled in the art will understand thatcatheter 10 can include a variety of features associated with conventional articulating catheter devices. - Articulating
section 17 can be controlled via a proximally locatedcontrol mechanism 28.Control mechanism 28 can be mounted onhandle 22 and can direct movement ofdistal section 16 ofelongate body 12. Such movement ofelongate body 12 can facilitate insertion ofcatheter device 10 through a body lumen, such as, for example, vasculature.Control mechanism 28 can also manipulatedistal section 16 to placeelectrode 20 at a target tissue location. -
Elongate body 12 can be defined by a flexible cylindrical structure extending betweenhandle 22 anddistal section 16. In one embodiment,body 12 can house at least one lumen configured to receive a fluid. Such fluid can be transferred toelectrode 20 for cooling purposes. In addition,body 12 can house electrical conductors, such as, for example, wires for transmitting sensed signals or ablation energy. Also, articulation mechanisms, such as, for example, control wires, can extend withinbody 12 toarticulation section 17 to permit movement ofcatheter device 10. One skilled in the art will appreciate thatbody 12 can include a variety of structures shaped and sized to pass through a body cavity, such as, for example, a vascular lumen. - Where
catheter device 10 includes articulatingsection 17, control wires (e.g., push/pull wires) can be configured to mate withdistal section 16 ofelongate body 12. For example, a reinforcing or anchor member (not shown) could be positioned withindistal section 16. One or more control wires could mate with the reinforcing member to anchor the distal end of the control wire. However, such wires can alternatively, or additionally, be fixed at a more proximal location ofdevice 10. -
Distal section 16 ofcatheter device 10 can include at least one electrode for delivering ablation energy, sensing physiological signals, or functioning as a return electrode. In one aspect, one ormore ring electrodes 30 can be located distally alongelongate body 12.Ring electrodes 30 can, for example, permit sensing or mapping of cardiac signals.FIG. 1 illustrates threering electrodes 30 withindistal section 16 and positioned proximally fromelectrode 20.Various ring electrodes 30 orelectrode 20 can be used to sense physiological signals. Mapping is usually accomplished using a pair of electrodes, including, for example,electrode 20. - In addition to sensing,
distal section 16 ofdevice 10 can be configured to deliver ablation energy using bipolar or monopolar signals. For example, radio frequency (RF), microwave, or other ablative energy can be delivered via one or more electrodes, such as, for example,ablation electrode 20. One ormore ring electrodes 30, or a separate ground pad, can function as a return electrode. -
FIGS. 2 to 5 illustrate various exemplary embodiments ofablation electrode 20. In one aspect,electrode 20 is configured to deliver RF energy to target tissue. To reduce coagulum formation,electrode 20 can include a flow path, indicated byarrow 21, for regulating the temperature ofelectrode 20. A build up of biological materials on the outer surface ofelectrode 20 or in thearea surrounding electrode 20 can result in less effective energy transfer to the tissue. This effect can be seen as a rise in impedance and a corresponding increase in tissue heating or charring immediately adjacent toablation electrode 20. Cooling ofelectrode 20 can permit more efficient energy transfer to tissue and allow larger lesion sizes. For example, cooling fluid moving throughelectrode 20 can absorb heat to reduce the electrode's temperature. - In some embodiments, a flow path can direct fluid through
electrode 20 to the outer surface ofelectrode 20. The fluid can function as a conduit to transmit RF energy to tissue. Also, movement of fluid aroundelectrode 20 whiledevice 10 is in contact with tissue can reduce impedance rise as energy is delivered to the tissue. In some situations, the movement of the fluid can sweep biological material, such as, for example, blood and tissue, away fromelectrode 20 to reduce the build-up of embolic material. -
Catheter device 10 also includes at least one insulating chamber configured to at least partially reduce heat transfer associated with conventional ablation catheters. Previously, temperature readings from the distal tip of ablation catheters could be affected by the other heat sources. Specifically, the temperature of the cooling fluid could modify the temperature sensed at a distal tip. Also, ablation electrodes can increase in temperature during an ablative procedure, again reducing the temperature measurement's accuracy. - In some embodiments, an insulating
chamber 62 is configured to at least partially insulate atemperature sensor 46 fromdistal section 16 ofcatheter device 10. Insulatingchamber 62 can contain air, other fluid, or a solid material. Such insulating substances are designed to reduce energy flow betweentemperature sensor 46 and other components ofdistal section 16.Temperature sensor 46 may then be configured to accurately sense the temperature of the environment or region surroundingdistal section 16. Such temperature information can provide a better indication of tissue ablation. -
FIG. 2 illustrates one embodiment ofelectrode 20 having aproximal end 40 and a distal end 42, whereinproximal end 40 can be configured to mate withelongate body 12. In one embodiment, a connectingmember 48 can be configured to connectelectrode 20 andelongate body 12. For example, connectingmember 48 could be a generally cylindrical structure configured to mate with an inner surface ofbody 12 andelectrode 20. Alternatively,electrode 20 andbody 12 could mate via an overlapping connection (not shown), whereby a portion ofelectrode 20 orbody 12 could be positioned within or about a portion of the other structure. One skilled in the art will appreciate that a variety of mating mechanisms could be used, including frictional, mechanical, or adhesive engagements. In other embodiments, a sheath could extend about part ofelongate body 12 orelectrode 20. - In one embodiment,
electrode 20 includes a body 41 configured to provide ablation energy to tissue. Body 41 can be constructed of a single unibody structure or of multiple segments of similar or different materials. Irrespective of its construction, body 41 can be formed of a variety of electrically and/or thermally conductive materials including, for example, platinum, iridium, stainless steel, gold, plated brass, and combinations thereof. In another aspect, body 41 could be an electrically conductive material, but not necessarily a thermally conductive material. -
Electrode 20 can be configured to operate with various lumens, wires, or control mechanisms. In particular,proximal end 40 ofelectrode 20 can be configured to mate with various lumens, wires, or control mechanisms extending throughbody 12. For example, apassageway 45 withinelectrode 20 could be configured to receive fluid. In some embodiments,passageway 45 can be in fluid communication with a lumen 44 associated withelongate body 12. Fluid may flow intocatheter device 10 via ports 24 (as shown inFIG. 1 ), through lumen 44 and intopassageway 45. In other embodiments, one or more lumens may be fluidly connected with one or more passageways inelectrode 20. - In some embodiments, one or
more apertures 23 may be configured to direct a fluid frompassageway 45 to aregion surrounding electrode 20. As illustrated inFIG. 2 , fourapertures 23 are shown although a different number ofapertures 23 may also be used. As discussed below with respect toFIG. 3 ,electrode 20 may include no apertures. - In some embodiments,
catheter device 10 can include insulatingchamber 62 located distally alongdevice 10. In particular, insulatingchamber 62 can be positioned proximal to at least a portion ofelectrode 20 or adjacent to distal end 42 ofelectrode 20. Further, insulatingchamber 62 can at least partially extend, or extend substantially, aboutelectrode 20. By at least partially surrounding an outer surface ofelectrode 20, insulatingchamber 62 can provide at least some insulation from energy originating fromdistal section 16. For example, insulatingchamber 62 can function to reduce heat transfer to a distally locatedtemperature sensor 46, such as, for example, a thermocouple or thermistor. In some embodiments,sensor 46 may be located within insulatingchamber 62. - Insulating
chamber 62 can be configured to form various shapes. For example, insulatingchamber 62 could be a generally cylindrical shape, extending in a longitudinal direction parallel to a longitudinal axis ofelectrode 20. Such a curvilinear form may also include linear or curvilinear sections. In particular, insulatingchamber 62 could be a “peanut” shape, including generally bulbous distal and proximal sections and a smaller section between. Insulatingchamber 62 could also be generally pear shaped or generally spherical. - In one aspect, insulating
chamber 62 can include asidewall 65.Sidewall 65 could be constructed of any suitable material, such as, for example, an alloy, a polymer, a ceramic, or combinations thereof.Sidewall 65 may be mated with asidewall 64 of electrode body 41 via welding, heat sealing, friction fit, or other methods known in the art.Sidewall 65 may also be at least partially insulated fromsidewall 64 to at least partially reduce heat transfer fromsidewall 64 tosidewall 65. For example,sidewall 65 may be bonded tosidewall 64 using an insulative glue or other suitable adhesive. Also,sidewall 64 and/orsidewall 65 may be formed from or bonded with, in part or in whole, an insulative material. - Insulating
chamber 62 can include anenclosed volume 66 that provides at least a partial insulative function. In particular,volume 66 can partially insulatesensor 46 from one or more heat sources. In some embodiments,volume 66 may be defined by a region enclosed by sidewalls 64 and 65. Also,volume 66 could be at least partially filled with various fluids or solids. For example,volume 66 could be filled with air, nitrogen, water, saline solution, foam, polymer, or ceramic material. Such substances may have low thermal and/or electrical conductivity. - As illustrated in
FIG. 3 ,electrode 20 a may operate with a closed loop fluid circulation system. Specifically,fluid flow 21 may enter and exitelectrode 20 a via two ormore lumens 44 a. Whileelectrode 20 a contains no apertures, fluid can be expelled fromelectrode 20 a via alumen 44 a configured to receivefluid flow 21 and transfer fluid away fromelectrode 20 a. - In some embodiments,
electrode 20 could include two or more insulating chambers.FIG. 4 illustrates one embodiment ofelectrode 20 having a first insulatingchamber 62 a and a second insulatingchamber 62 b. As described above, insulatingchambers more side walls electrode 20. As previously described, insulatingchambers chambers volumes Chambers multiple temperature sensors -
FIG. 4 illustrates an embodiment ofelectrode 20 having one ormore ring electrodes 30 a. Specifically,ring electrodes 30 a includes adistal ring electrode 32 and aproximal ring electrode 33. Other embodiments ofelectrode 20 could include more orless ring electrodes 30 a configured to sense a physiological signal. - In some embodiments,
ring electrodes 30 a could extend at least partially aboutelectrode 20. Also,ring electrodes material 76. Insulatingmaterial 76 could separate one or more ring electrodes from each other, one or moreinsulating chambers electrode 20. Insulatingmaterial 76 may be different to insulating material contained withvolumes -
FIG. 5 illustrates another embodiment ofelectrode 20. As shown,electrode 20 and insulatingchamber 62 c can be configured to form an outer structure having a substantially similar cross-section along its longitudinal axis. Specifically,electrode 20 can include a concave region configured to provide a concave sidewall ofvolume 66 c. Another sidewall ofvolume 66 c can be provided by a generallylinear sidewall 65 c, such that insulatingchamber 62 c can have an outer diameter similar to the outer diameter ofelectrode 20 at its distal end. - As illustrated in
FIGS. 2 , 4 and 5,temperature sensor 46 can be positioned within insulatingchamber 62. Electrically conductive wires can extend throughelongate body 12 orelectrode 20 to deliver energy or to permit communication withsensor 46. In other embodiments,sensor 46 can be positioned about insulatingchamber 62. In one aspect, the limited thermal conductivity of insulatingchamber 62 facilitates accurate temperature sensing of theregion surrounding electrode 20. For example, insulatingchamber 62 can provide sufficient thermal insulation such that a temperature of the surrounding region is approximately equal to the temperature ofsidewall 65 or insulatingchamber 62. - Various methods may be used to manufacture
ablation electrode 20 or insulatingchamber 62. For example, as shown inFIG. 6A , bothelectrode 20 and insulatingchamber 62 can be preformed as two separate components. All or a portion of insulatingchamber 62 can be defined by a separate structure and can be configured to mate with part ofelectrode 20. As illustrated inFIG. 68 , both components may then be combined to form a complete electrode assembly. Alternatively, as shown inFIGS. 2 to 5 , one or more sidewalls 65 may be attached to sidewalls 64 to form insulatingchambers 62. Such attachment can include welding, soldering, gluing, or other suitable methods. - The concept of an electrode and an insulating chamber may be discussed as separate elements for the sake of convenience or clarity, but such a description does not limit
electrode 20, as described or claimed, to a configuration in which the insulatingchamber 62 is a distinct structure mated withelectrode 20. In addition, the outer surface of insulatingchamber 62 can define a portion of the outer surface ofelectrode 20. For example,sidewall 65 can define the outer surface ofelectrode 20. Also, part of insulatingchamber 62 could be manufactured from material similar or different to a material used to manufactureelectrode 20. For example,sidewall 65 could be similar or different material to sidewall 64. -
Irrigation apertures 23 can be formed in a variety of ways. In one aspect, channels can be drilled throughsidewall 64. While amacroporous electrode 20 is illustrated in the figures, microporous structures are also contemplated. For example, thesidewall 64 could be formed from sintered material having a porosity which allows cooling fluid flow therethrough. One skilled in the art will appreciate that a variety of conventional macro or microporous catheter materials can be utilized to formelectrode 20. - One skilled in the art will appreciate that the shape of
electrode 20 can be varied according to the use ofdevice 10. For example, another embodiment ofablation electrode 20 could include a blunt distal end. Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration and practice of the specification. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims.
Claims (21)
1. A catheter device configured for vascular access, comprising:
an elongate body extending between a proximal end and a distal end, wherein the elongate body includes a lumen configured to receive a fluid;
an ablation electrode configured to provide ablative energy, wherein the ablation electrode is located distally along the elongate body and includes an outer surface and an inner surface, the inner surface defining a passageway fluidly connected to the lumen of the elongate body;
a sensor configured to provide a signal representative of temperature; and
an insulating chamber extending at least partially around the outer surface of the ablation electrode and configured to at least partially insulate the sensor from the ablation electrode, the insulating chamber defining a fixed volume.
2. The device of claim 1 , wherein an inner surface of the insulating chamber is spaced apart from the outer surface of the ablation electrode.
3. The device of claim 1 , wherein the insulating chamber includes at least one of a fluid and a solid material.
4. The device of claim 3 , wherein the fluid includes at least one of air, nitrogen, water, and a saline solution.
5. The device of claim 3 , wherein the solid material includes at least one of a foam, a polymer, and a ceramic material.
6. The device of claim 2 , wherein the sensor is located on the inner surface of the insulating chamber, spaced apart from the outer surface of the ablation electrode.
7. The device of claim 1 , further including at least one ring electrode located proximal to a distal end of the ablation electrode and along the elongate body.
8. The device of claim 7 , further including a second insulating chamber located proximal to at least one of the at least one ring electrodes.
9. A method for ablating tissue, comprising the steps of:
positioning an ablation electrode adjacent tissue to be ablated, wherein the ablation electrode includes an outer surface and an inner surface, the inner surface defining a passageway fluidly connected to a lumen of an elongate body of a catheter device, an insulating chamber extending at least partially around the outer surface of the ablation electrode, the insulating chamber defining a fixed volume, and a temperature sensor disposed within the insulating chamber and at least partially insulated from the ablation electrode;
delivering fluid to the lumen to cool the ablation electrode; and
delivering ablative energy to the ablation electrode.
10. The method of claim 10 , further including determining a temperature of the region external to the ablation electrode.
11. An ablation electrode device configured to provide ablative energy to cardiac tissue, comprising:
a proximal section configured for attachment to an elongate body of a catheter device;
a passageway configured to connect to a lumen of the elongate body, wherein the passageway is configured to receive a fluid;
a sensor configured to provide a signal representative of a temperature of a region external to the ablation electrode; and
an insulating chamber extending only partially around an outer surface of the ablation electrode, wherein proximal and distal ends of the ablation electrode extend beyond the insulating chamber, wherein the sensor is disposed on an inner surface of the insulating chamber, spaced apart from the outer surface of the ablation electrode, the insulating chamber configured to at least partially insulate the sensor.
12. The electrode device of claim 11 , wherein the insulating chamber extends circumferentially around the ablation electrode.
13. The electrode device of claim 11 , wherein the insulating chamber includes at least one of a fluid and a solid material, wherein the fluid includes at least one of air, nitrogen, water, and a saline solution, and the solid material includes at least one of a foam, a polymer, and a ceramic material.
14. (canceled)
15. The electrode device of claim 11 , further including at least one ring electrode located proximal to a distal end of the ablation electrode and along the ablation electrode.
16. The electrode device of claim 15 , further including a second insulating chamber located proximal to at least one of the at least one ring electrodes.
17. The electrode device of claim 11 , further including one or more irrigation apertures fluidly connected to the passageway.
18. A method of manufacturing an ablation electrode, comprising the steps of:
forming a passageway in an ablation electrode, the passageway configured to connect to a lumen of an elongate body of a catheter device, wherein the passageway is configured to receive a fluid;
providing an insulating chamber with a fixed volume extending at least partially around an outer surface of the ablation electrode; and
attaching a sensor to an inner surface of the insulating chamber, wherein the sensor is spaced apart from the outer surface of the ablation electrode and is configured to provide a signal representative of a temperature of a region external to the ablation electrode.
19. The method of claim 18 , wherein the insulating chamber is filled with at least one of a fluid and a solid material, wherein the fluid includes at least one of air, nitrogen, water, and a saline solution, and the solid material includes at least one of a foam, a polymer, and a ceramic material.
20. The method of claim 18 , wherein the insulating chamber is formed from at least one of an alloy, a polymer, and a ceramic material.
21. The electrode device of claim 11 , wherein the insulating chamber includes a sidewall connected to the outer surface of the ablation electrode, wherein the sidewall is insulated from the ablation electrode.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/613,155 US20150148796A1 (en) | 2009-02-11 | 2015-02-03 | Insulated ablation catheter devices and methods of use |
US16/370,394 US11684416B2 (en) | 2009-02-11 | 2019-03-29 | Insulated ablation catheter devices and methods of use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15170909P | 2009-02-11 | 2009-02-11 | |
US12/702,396 US8945117B2 (en) | 2009-02-11 | 2010-02-09 | Insulated ablation catheter devices and methods of use |
US14/613,155 US20150148796A1 (en) | 2009-02-11 | 2015-02-03 | Insulated ablation catheter devices and methods of use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/702,396 Continuation US8945117B2 (en) | 2009-02-11 | 2010-02-09 | Insulated ablation catheter devices and methods of use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/370,394 Continuation US11684416B2 (en) | 2009-02-11 | 2019-03-29 | Insulated ablation catheter devices and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150148796A1 true US20150148796A1 (en) | 2015-05-28 |
Family
ID=42126398
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/702,396 Active 2032-12-11 US8945117B2 (en) | 2009-02-11 | 2010-02-09 | Insulated ablation catheter devices and methods of use |
US14/613,155 Abandoned US20150148796A1 (en) | 2009-02-11 | 2015-02-03 | Insulated ablation catheter devices and methods of use |
US16/370,394 Active 2032-09-04 US11684416B2 (en) | 2009-02-11 | 2019-03-29 | Insulated ablation catheter devices and methods of use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/702,396 Active 2032-12-11 US8945117B2 (en) | 2009-02-11 | 2010-02-09 | Insulated ablation catheter devices and methods of use |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/370,394 Active 2032-09-04 US11684416B2 (en) | 2009-02-11 | 2019-03-29 | Insulated ablation catheter devices and methods of use |
Country Status (4)
Country | Link |
---|---|
US (3) | US8945117B2 (en) |
EP (1) | EP2395934B1 (en) |
JP (1) | JP5693471B2 (en) |
WO (1) | WO2010093603A1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9724170B2 (en) | 2012-08-09 | 2017-08-08 | University Of Iowa Research Foundation | Catheters, catheter systems, and methods for puncturing through a tissue structure and ablating a tissue region |
US9987081B1 (en) | 2017-04-27 | 2018-06-05 | Iowa Approach, Inc. | Systems, devices, and methods for signal generation |
US9999465B2 (en) | 2014-10-14 | 2018-06-19 | Iowa Approach, Inc. | Method and apparatus for rapid and safe pulmonary vein cardiac ablation |
US10130423B1 (en) | 2017-07-06 | 2018-11-20 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
US10172673B2 (en) | 2016-01-05 | 2019-01-08 | Farapulse, Inc. | Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
US10322286B2 (en) | 2016-01-05 | 2019-06-18 | Farapulse, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US10433906B2 (en) | 2014-06-12 | 2019-10-08 | Farapulse, Inc. | Method and apparatus for rapid and selective transurethral tissue ablation |
US10507302B2 (en) | 2016-06-16 | 2019-12-17 | Farapulse, Inc. | Systems, apparatuses, and methods for guide wire delivery |
US10512505B2 (en) | 2018-05-07 | 2019-12-24 | Farapulse, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US10517672B2 (en) | 2014-01-06 | 2019-12-31 | Farapulse, Inc. | Apparatus and methods for renal denervation ablation |
US10617867B2 (en) | 2017-04-28 | 2020-04-14 | Farapulse, Inc. | Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue |
US10625080B1 (en) | 2019-09-17 | 2020-04-21 | Farapulse, Inc. | Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation |
US10624693B2 (en) | 2014-06-12 | 2020-04-21 | Farapulse, Inc. | Method and apparatus for rapid and selective tissue ablation with cooling |
US10660702B2 (en) | 2016-01-05 | 2020-05-26 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
US10687892B2 (en) | 2018-09-20 | 2020-06-23 | Farapulse, Inc. | Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
US10842572B1 (en) | 2019-11-25 | 2020-11-24 | Farapulse, Inc. | Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines |
US10893905B2 (en) | 2017-09-12 | 2021-01-19 | Farapulse, Inc. | Systems, apparatuses, and methods for ventricular focal ablation |
US11020180B2 (en) | 2018-05-07 | 2021-06-01 | Farapulse, Inc. | Epicardial ablation catheter |
US11033236B2 (en) | 2018-05-07 | 2021-06-15 | Farapulse, Inc. | Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation |
US11065047B2 (en) | 2019-11-20 | 2021-07-20 | Farapulse, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US11259869B2 (en) | 2014-05-07 | 2022-03-01 | Farapulse, Inc. | Methods and apparatus for selective tissue ablation |
US11432870B2 (en) | 2016-10-04 | 2022-09-06 | Avent, Inc. | Cooled RF probes |
US11497541B2 (en) | 2019-11-20 | 2022-11-15 | Boston Scientific Scimed, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US11589768B2 (en) | 2014-10-13 | 2023-02-28 | Boston Scientific Scimed Inc. | Tissue diagnosis and treatment using mini-electrodes |
US11684416B2 (en) | 2009-02-11 | 2023-06-27 | Boston Scientific Scimed, Inc. | Insulated ablation catheter devices and methods of use |
US12042208B2 (en) | 2018-05-03 | 2024-07-23 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for ablation using surgical clamps |
US12121720B2 (en) | 2022-05-13 | 2024-10-22 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for signal generation |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9089700B2 (en) | 2008-08-11 | 2015-07-28 | Cibiem, Inc. | Systems and methods for treating dyspnea, including via electrical afferent signal blocking |
US9277961B2 (en) | 2009-06-12 | 2016-03-08 | Advanced Cardiac Therapeutics, Inc. | Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated |
US8954161B2 (en) | 2012-06-01 | 2015-02-10 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for radiometrically measuring temperature and detecting tissue contact prior to and during tissue ablation |
US9226791B2 (en) | 2012-03-12 | 2016-01-05 | Advanced Cardiac Therapeutics, Inc. | Systems for temperature-controlled ablation using radiometric feedback |
US8926605B2 (en) | 2012-02-07 | 2015-01-06 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for radiometrically measuring temperature during tissue ablation |
US9510894B2 (en) * | 2010-04-28 | 2016-12-06 | Biosense Webster (Israel) Ltd. | Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance |
US9918787B2 (en) * | 2010-05-05 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Monitoring, managing and/or protecting system and method for non-targeted tissue |
US10792096B2 (en) * | 2010-11-08 | 2020-10-06 | Baylis Medical Company Inc. | Medical device having a support structure |
CA2817552C (en) | 2010-11-16 | 2020-03-24 | Tva Medical, Inc. | Devices and methods for forming a fistula |
US9192435B2 (en) * | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
WO2013055537A1 (en) * | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Ablation catheter with insulated tip |
CN103315808A (en) * | 2012-03-23 | 2013-09-25 | 心诺普医疗技术(北京)有限公司 | Ablation electrode and injection type electrode conduit adopting same |
CN104519817B (en) | 2012-04-24 | 2017-11-10 | 西比姆公司 | The catheter in blood vessel and method extractd for carotid body |
WO2013181667A1 (en) | 2012-06-01 | 2013-12-05 | Cibiem, Inc. | Percutaneous methods and devices for carotid body ablation |
WO2013181660A1 (en) | 2012-06-01 | 2013-12-05 | Cibiem, Inc. | Methods and devices for cryogenic carotid body ablation |
US9955946B2 (en) | 2014-03-12 | 2018-05-01 | Cibiem, Inc. | Carotid body ablation with a transvenous ultrasound imaging and ablation catheter |
EP2866669A4 (en) | 2012-06-30 | 2016-04-20 | Cibiem Inc | Carotid body ablation via directed energy |
CA2887557C (en) | 2012-10-11 | 2022-05-17 | Tva Medical, Inc. | Devices and methods for fistula formation |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
EP2968852B1 (en) | 2013-03-14 | 2019-07-31 | TVA Medical, Inc. | Fistula formation devices |
WO2015138998A1 (en) | 2014-03-14 | 2015-09-17 | Tva Medical, Inc. | Fistula formation devices and methods therefor |
US10646666B2 (en) | 2014-08-27 | 2020-05-12 | Tva Medical, Inc. | Cryolipolysis devices and methods therefor |
JP6673598B2 (en) | 2014-11-19 | 2020-03-25 | エピックス セラピューティクス,インコーポレイテッド | High resolution mapping of tissue with pacing |
JP6825789B2 (en) | 2014-11-19 | 2021-02-03 | エピックス セラピューティクス,インコーポレイテッド | Systems and methods for high resolution mapping of tissues |
JP6725178B2 (en) | 2014-11-19 | 2020-07-15 | エピックス セラピューティクス,インコーポレイテッド | Ablation apparatus, systems and methods using high resolution electrode assemblies |
US10603040B1 (en) | 2015-02-09 | 2020-03-31 | Tva Medical, Inc. | Methods for treating hypertension and reducing blood pressure with formation of fistula |
US9636164B2 (en) | 2015-03-25 | 2017-05-02 | Advanced Cardiac Therapeutics, Inc. | Contact sensing systems and methods |
WO2017087740A1 (en) | 2015-11-20 | 2017-05-26 | St. Jude Medical, Cardiology Division, Inc. | Multi-electrode ablator tip having dual-mode, omni-directional feedback capabilities |
CN108883251B (en) | 2016-01-15 | 2021-12-07 | Tva医疗公司 | Apparatus and method for advancing wire |
AU2017208069B2 (en) | 2016-01-15 | 2021-11-25 | Tva Medical, Inc. | Devices and methods for forming a fistula |
US10874422B2 (en) | 2016-01-15 | 2020-12-29 | Tva Medical, Inc. | Systems and methods for increasing blood flow |
JP6923549B2 (en) | 2016-03-15 | 2021-08-18 | エピックス セラピューティクス,インコーポレイテッド | Improved system for irrigation cauterization |
CA3037525A1 (en) | 2016-09-25 | 2018-03-29 | Tva Medical, Inc. | Vascular stent devices and methods |
EP3614946B1 (en) | 2017-04-27 | 2024-03-20 | EPiX Therapeutics, Inc. | Determining nature of contact between catheter tip and tissue |
CN113616325B (en) * | 2021-09-13 | 2023-03-24 | 心航路医学科技(广州)有限公司 | Miniature pulse ablation device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745928A (en) * | 1984-01-13 | 1988-05-24 | American Hospital Supply Corporation | Right heart ejection fraction and cardiac output catheter |
US5114423A (en) * | 1989-05-15 | 1992-05-19 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter assembly with heated balloon |
US5277201A (en) * | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5415654A (en) * | 1993-10-05 | 1995-05-16 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
US5456682A (en) * | 1991-11-08 | 1995-10-10 | Ep Technologies, Inc. | Electrode and associated systems using thermally insulated temperature sensing elements |
US6514249B1 (en) * | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
US6673067B1 (en) * | 2000-01-31 | 2004-01-06 | Gholam A. Peyman | System and method for thermally and chemically treating cells at sites of interest in the body to impede cell proliferation |
US6723094B1 (en) * | 1998-12-18 | 2004-04-20 | Kai Desinger | Electrode assembly for a surgical instrument provided for carrying out an electrothermal coagulation of tissue |
US20050028866A1 (en) * | 2003-08-07 | 2005-02-10 | Jatco Ltd | Linear solenoid valve control device |
US20050288667A1 (en) * | 2002-05-03 | 2005-12-29 | Scimed Life Systems, Inc. | Ablation systems including insulated energy transmitting elements |
US20100011409A1 (en) * | 2008-07-09 | 2010-01-14 | Novell, Inc. | Non-interactive information card token generation |
Family Cites Families (530)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3391845A (en) | 1967-09-06 | 1968-07-09 | Packaging Corp America | Carton construction |
DE2123833A1 (en) | 1971-05-13 | 1972-11-23 | Siemens AG, 1000 Berlin u. 8000 München | Multi-channel coherent optical correlator |
JPS57168648A (en) | 1981-04-08 | 1982-10-18 | Olympus Optical Co | Ultrasonic diagnostic apparatus for body cavity |
JPS58157432A (en) | 1982-03-15 | 1983-09-19 | オリンパス光学工業株式会社 | Ultrasonic diagnostic apparatus of body cavity |
US4602624A (en) | 1984-10-11 | 1986-07-29 | Case Western Reserve University | Implantable cuff, method of manufacture, and method of installation |
DE3501863C2 (en) | 1985-01-22 | 1987-02-19 | Hermann 7803 Gundelfingen Sutter | Bipolar coagulation instrument |
US4763660A (en) | 1985-12-10 | 1988-08-16 | Cherne Industries, Inc. | Flexible and disposable electrode belt device |
EP0393021A1 (en) | 1986-09-12 | 1990-10-24 | Oral Roberts University | Radio frequency surgical tool |
JPS63229048A (en) | 1987-03-19 | 1988-09-22 | 工業技術院長 | Bodily temperature automatic control apparatus |
US5151100A (en) * | 1988-10-28 | 1992-09-29 | Boston Scientific Corporation | Heating catheters |
US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
US5230349A (en) | 1988-11-25 | 1993-07-27 | Sensor Electronics, Inc. | Electrical heating catheter |
US5029588A (en) | 1989-06-15 | 1991-07-09 | Cardiovascular Imaging Systems, Inc. | Laser catheter with imaging capability |
US5240003A (en) | 1989-10-16 | 1993-08-31 | Du-Med B.V. | Ultrasonic instrument with a micro motor having stator coils on a flexible circuit board |
US5254088A (en) | 1990-02-02 | 1993-10-19 | Ep Technologies, Inc. | Catheter steering mechanism |
US5238004A (en) | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
US5482054A (en) | 1990-05-10 | 1996-01-09 | Symbiosis Corporation | Edoscopic biopsy forceps devices with selective bipolar cautery |
US5178150A (en) | 1991-02-25 | 1993-01-12 | Silverstein Fred E | Miniature ultrasound imaging probe |
US5217460A (en) | 1991-03-22 | 1993-06-08 | Knoepfler Dennis J | Multiple purpose forceps |
CA2106378A1 (en) | 1991-04-05 | 1992-10-06 | Tom D. Bennett | Subcutaneous multi-electrode sensing system |
WO1992021285A1 (en) | 1991-05-24 | 1992-12-10 | Ep Technologies, Inc. | Combination monophasic action potential/ablation catheter and high-performance filter system |
US5383874A (en) | 1991-11-08 | 1995-01-24 | Ep Technologies, Inc. | Systems for identifying catheters and monitoring their use |
US5697882A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US5242441A (en) | 1992-02-24 | 1993-09-07 | Boaz Avitall | Deflectable catheter with rotatable tip electrode |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
WO1994002077A2 (en) | 1992-07-15 | 1994-02-03 | Angelase, Inc. | Ablation catheter system |
US5295482A (en) | 1992-10-22 | 1994-03-22 | Physiometrix, Inc. | Large surface area electrode |
US5676693A (en) | 1992-11-13 | 1997-10-14 | Scimed Life Systems, Inc. | Electrophysiology device |
US5334193A (en) | 1992-11-13 | 1994-08-02 | American Cardiac Ablation Co., Inc. | Fluid cooled ablation catheter |
US5545161A (en) | 1992-12-01 | 1996-08-13 | Cardiac Pathways Corporation | Catheter for RF ablation having cooled electrode with electrically insulated sleeve |
US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5358516A (en) | 1992-12-11 | 1994-10-25 | W. L. Gore & Associates, Inc. | Implantable electrophysiology lead and method of making |
US5385146A (en) | 1993-01-08 | 1995-01-31 | Goldreyer; Bruce N. | Orthogonal sensing for use in clinical electrophysiology |
US5579764A (en) | 1993-01-08 | 1996-12-03 | Goldreyer; Bruce N. | Method and apparatus for spatially specific electrophysiological sensing in a catheter with an enlarged ablating electrode |
DE69425249T2 (en) | 1993-03-16 | 2001-03-22 | Ep Technologies, Inc. | SUPPORT ARRANGEMENT FOR MULTIPLE ELECTRODES |
US5893847A (en) | 1993-03-16 | 1999-04-13 | Ep Technologies, Inc. | Multiple electrode support structures with slotted hub and hoop spline elements |
US6233491B1 (en) | 1993-03-16 | 2001-05-15 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
DE69432148T2 (en) | 1993-07-01 | 2003-10-16 | Boston Scientific Ltd., St. Michael | CATHETER FOR IMAGE DISPLAY, DISPLAY OF ELECTRICAL SIGNALS AND ABLATION |
US5571088A (en) | 1993-07-01 | 1996-11-05 | Boston Scientific Corporation | Ablation catheters |
US5391199A (en) | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
US5385148A (en) | 1993-07-30 | 1995-01-31 | The Regents Of The University Of California | Cardiac imaging and ablation catheter |
WO1995005212A2 (en) | 1993-08-11 | 1995-02-23 | Electro-Catheter Corporation | Improved ablation electrode |
JP2574119B2 (en) | 1993-10-05 | 1997-01-22 | 佐竹 修太郎 | Balloon catheter |
US5871526A (en) | 1993-10-13 | 1999-02-16 | Gibbs; Roselle | Portable temperature control system |
US5582609A (en) | 1993-10-14 | 1996-12-10 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US5991650A (en) | 1993-10-15 | 1999-11-23 | Ep Technologies, Inc. | Surface coatings for catheters, direct contacting diagnostic and therapeutic devices |
WO1995010978A1 (en) | 1993-10-19 | 1995-04-27 | Ep Technologies, Inc. | Segmented electrode assemblies for ablation of tissue |
US5536267A (en) * | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5377685A (en) | 1993-12-17 | 1995-01-03 | Baylis Medical Company, Inc. | Ultrasound catheter with mechanically steerable beam |
US5462521A (en) * | 1993-12-21 | 1995-10-31 | Angeion Corporation | Fluid cooled and perfused tip for a catheter |
US5417689A (en) * | 1994-01-18 | 1995-05-23 | Cordis Corporation | Thermal balloon catheter and method |
US6099524A (en) | 1994-01-28 | 2000-08-08 | Cardiac Pacemakers, Inc. | Electrophysiological mapping and ablation catheter and method |
US5485849A (en) | 1994-01-31 | 1996-01-23 | Ep Technologies, Inc. | System and methods for matching electrical characteristics and propagation velocities in cardiac tissue |
US5494042A (en) | 1994-01-28 | 1996-02-27 | Ep Technologies, Inc. | Systems and methods for deriving electrical characteristics of cardiac tissue for output in iso-characteristic displays |
US5447529A (en) | 1994-01-28 | 1995-09-05 | Philadelphia Heart Institute | Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation |
US20080154257A1 (en) | 2006-12-22 | 2008-06-26 | Shiva Sharareh | Real-time optoacoustic monitoring with electophysiologic catheters |
US5520683A (en) | 1994-05-16 | 1996-05-28 | Physiometrix, Inc. | Medical electrode and method |
US6056744A (en) * | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US6006755A (en) * | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
US6002968A (en) * | 1994-06-24 | 1999-12-14 | Vidacare, Inc. | Uterine treatment apparatus |
JP3578460B2 (en) | 1994-06-27 | 2004-10-20 | ボストン サイエンティフィック リミテッド | Systems and methods for sensing body temperature |
US5735846A (en) * | 1994-06-27 | 1998-04-07 | Ep Technologies, Inc. | Systems and methods for ablating body tissue using predicted maximum tissue temperature |
US5810802A (en) * | 1994-08-08 | 1998-09-22 | E.P. Technologies, Inc. | Systems and methods for controlling tissue ablation using multiple temperature sensing elements |
US5573535A (en) | 1994-09-23 | 1996-11-12 | United States Surgical Corporation | Bipolar surgical instrument for coagulation and cutting |
US5885278A (en) | 1994-10-07 | 1999-03-23 | E.P. Technologies, Inc. | Structures for deploying movable electrode elements |
US5722402A (en) | 1994-10-11 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrode structures |
US5876336A (en) | 1994-10-11 | 1999-03-02 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrode structure |
US6690963B2 (en) | 1995-01-24 | 2004-02-10 | Biosense, Inc. | System for determining the location and orientation of an invasive medical instrument |
US5792064A (en) | 1995-02-17 | 1998-08-11 | Panescu; Dorin | Systems and methods for analyzing cardiac biopotential morphologies by cross-correlation |
US6101409A (en) | 1995-02-17 | 2000-08-08 | Ep Technologies, Inc. | Systems and methods for analyzing biopotential morphologies in body tissue |
US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
WO1996026675A1 (en) | 1995-02-28 | 1996-09-06 | Boston Scientific Corporation | Deflectable catheter for ablating cardiac tissue |
US6030379A (en) | 1995-05-01 | 2000-02-29 | Ep Technologies, Inc. | Systems and methods for seeking sub-surface temperature conditions during tissue ablation |
US5688267A (en) * | 1995-05-01 | 1997-11-18 | Ep Technologies, Inc. | Systems and methods for sensing multiple temperature conditions during tissue ablation |
US6575969B1 (en) | 1995-05-04 | 2003-06-10 | Sherwood Services Ag | Cool-tip radiofrequency thermosurgery electrode system for tumor ablation |
US5762067A (en) | 1996-05-30 | 1998-06-09 | Advanced Technology Laboratories, Inc. | Ultrasonic endoscopic probe |
US6210337B1 (en) | 1995-06-07 | 2001-04-03 | Atl Ultrasound Inc. | Ultrasonic endoscopic probe |
DE69631681T2 (en) | 1995-10-06 | 2004-07-29 | Cordis Webster, Inc., Diamond Bar | ELECTRODE CATHETER WITH DIVIDED TIP |
JPH09140803A (en) | 1995-11-21 | 1997-06-03 | Nippon Zeon Co Ltd | Electrode catheter and its manufacture |
US5830213A (en) | 1996-04-12 | 1998-11-03 | Ep Technologies, Inc. | Systems for heating and ablating tissue using multifunctional electrode structures |
US5871483A (en) | 1996-01-19 | 1999-02-16 | Ep Technologies, Inc. | Folding electrode structures |
JP4361136B2 (en) | 1996-01-19 | 2009-11-11 | ボストン サイエンティフィック リミテッド | Tissue heat excision system and method using porous electrode structure |
WO1997025916A1 (en) | 1996-01-19 | 1997-07-24 | Ep Technologies, Inc. | Expandable-collapsible electrode structures with electrically conductive walls |
US6475213B1 (en) | 1996-01-19 | 2002-11-05 | Ep Technologies, Inc. | Method of ablating body tissue |
WO1997025917A1 (en) | 1996-01-19 | 1997-07-24 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
EP0975386A1 (en) | 1996-01-19 | 2000-02-02 | EP Technologies, Inc. | Tissue heating and ablation systems and methods using porous electrode structures |
US5800482A (en) | 1996-03-06 | 1998-09-01 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
CA2250875C (en) | 1996-04-02 | 2006-01-03 | Cordis Webster, Inc. | Electrophysiology catheter with a bullseye electrode |
US6419673B1 (en) * | 1996-05-06 | 2002-07-16 | Stuart Edwards | Ablation of rectal and other internal body structures |
AU728802B2 (en) | 1996-05-17 | 2001-01-18 | Biosense, Inc. | Self-aligning catheter |
US5820568A (en) | 1996-10-15 | 1998-10-13 | Cardiac Pathways Corporation | Apparatus and method for aiding in the positioning of a catheter |
US5904651A (en) | 1996-10-28 | 1999-05-18 | Ep Technologies, Inc. | Systems and methods for visualizing tissue during diagnostic or therapeutic procedures |
US5919188A (en) | 1997-02-04 | 1999-07-06 | Medtronic, Inc. | Linear ablation catheter |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5913854A (en) * | 1997-02-04 | 1999-06-22 | Medtronic, Inc. | Fluid cooled ablation catheter and method for making |
US5788636A (en) | 1997-02-25 | 1998-08-04 | Acuson Corporation | Method and system for forming an ultrasound image of a tissue while simultaneously ablating the tissue |
US5868735A (en) | 1997-03-06 | 1999-02-09 | Scimed Life Systems, Inc. | Cryoplasty device and method |
US6063078A (en) | 1997-03-12 | 2000-05-16 | Medtronic, Inc. | Method and apparatus for tissue ablation |
US6050267A (en) | 1997-04-28 | 2000-04-18 | American Cardiac Ablation Co. Inc. | Catheter positioning system |
US5913856A (en) | 1997-05-19 | 1999-06-22 | Irvine Biomedical, Inc. | Catheter system having a porous shaft and fluid irrigation capabilities |
US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6547788B1 (en) * | 1997-07-08 | 2003-04-15 | Atrionx, Inc. | Medical device with sensor cooperating with expandable member |
WO1999002096A1 (en) | 1997-07-08 | 1999-01-21 | The Regents Of The University Of California | Circumferential ablation device assembly and method |
US6997925B2 (en) | 1997-07-08 | 2006-02-14 | Atrionx, Inc. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US5902299A (en) | 1997-07-29 | 1999-05-11 | Jayaraman; Swaminathan | Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation |
US6490474B1 (en) | 1997-08-01 | 2002-12-03 | Cardiac Pathways Corporation | System and method for electrode localization using ultrasound |
DE69827276T2 (en) | 1997-08-27 | 2005-10-13 | Pinotage, LLC, Fayetteville | CONTROLLED SURGICAL POSITIONING DEVICE IN DIFFERENT DIRECTIONS |
US5836990A (en) | 1997-09-19 | 1998-11-17 | Medtronic, Inc. | Method and apparatus for determining electrode/tissue contact |
US5957850A (en) | 1997-09-29 | 1999-09-28 | Acuson Corporation | Multi-array pencil-sized ultrasound transducer and method of imaging and manufacture |
US6238389B1 (en) | 1997-09-30 | 2001-05-29 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US6071281A (en) | 1998-05-05 | 2000-06-06 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same |
US6171277B1 (en) | 1997-12-01 | 2001-01-09 | Cordis Webster, Inc. | Bi-directional control handle for steerable catheter |
US6120476A (en) | 1997-12-01 | 2000-09-19 | Cordis Webster, Inc. | Irrigated tip catheter |
US5971979A (en) | 1997-12-02 | 1999-10-26 | Odyssey Technologies, Inc. | Method for cryogenic inhibition of hyperplasia |
US6917834B2 (en) | 1997-12-03 | 2005-07-12 | Boston Scientific Scimed, Inc. | Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates |
AU2114299A (en) * | 1998-01-14 | 1999-08-02 | Conway-Stuart Medical, Inc. | Electrosurgical device for sphincter treatment |
US6517534B1 (en) | 1998-02-11 | 2003-02-11 | Cosman Company, Inc. | Peri-urethral ablation |
US6258087B1 (en) * | 1998-02-19 | 2001-07-10 | Curon Medical, Inc. | Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
US6042559A (en) * | 1998-02-24 | 2000-03-28 | Innercool Therapies, Inc. | Insulated catheter for selective organ perfusion |
US6096054A (en) | 1998-03-05 | 2000-08-01 | Scimed Life Systems, Inc. | Expandable atherectomy burr and method of ablating an occlusion from a patient's blood vessel |
EP0945104A1 (en) | 1998-03-25 | 1999-09-29 | Sulzer Osypka GmbH | System and method for visualising the activity of an organ |
US6432104B1 (en) | 1998-04-15 | 2002-08-13 | Scimed Life Systems, Inc. | Electro-cautery catherer |
US6050994A (en) | 1998-05-05 | 2000-04-18 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using controllable duty cycle with alternate phasing |
US6171305B1 (en) | 1998-05-05 | 2001-01-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method having high output impedance drivers |
US6059778A (en) | 1998-05-05 | 2000-05-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using unipolar and bipolar techniques |
US6027500A (en) | 1998-05-05 | 2000-02-22 | Buckles; David S. | Cardiac ablation system |
US6064905A (en) | 1998-06-18 | 2000-05-16 | Cordis Webster, Inc. | Multi-element tip electrode mapping catheter |
US6950689B1 (en) | 1998-08-03 | 2005-09-27 | Boston Scientific Scimed, Inc. | Dynamically alterable three-dimensional graphical model of a body region |
US20040006268A1 (en) | 1998-09-24 | 2004-01-08 | Super Dimension Ltd Was Filed In Parent Case | System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure |
JP2002526188A (en) | 1998-09-24 | 2002-08-20 | スーパー ディメンション リミテッド | System and method for determining the position of a catheter during a medical procedure inside the body |
US6116027A (en) | 1998-09-29 | 2000-09-12 | Air Products And Chemicals, Inc. | Supplemental air supply for an air separation system |
US6120445A (en) | 1998-10-02 | 2000-09-19 | Scimed Life Systems, Inc. | Method and apparatus for adaptive cross-sectional area computation of IVUS objects using their statistical signatures |
US6845264B1 (en) | 1998-10-08 | 2005-01-18 | Victor Skladnev | Apparatus for recognizing tissue types |
US7837624B1 (en) | 1998-11-20 | 2010-11-23 | Siemens Medical Solutions Usa, Inc. | Medical diagnostic ultrasound imaging methods for extended field of view |
GB2347685B (en) | 1998-11-06 | 2002-12-18 | Furukawa Electric Co Ltd | NiTi-based medical guidewire and method of producing the same |
US6673290B1 (en) | 1998-11-12 | 2004-01-06 | Scimed Life Systems, Inc. | Electrode structure for heating and ablating tissue and method for making and assembling the same |
US6290697B1 (en) | 1998-12-01 | 2001-09-18 | Irvine Biomedical, Inc. | Self-guiding catheter system for tissue ablation |
US6171275B1 (en) | 1998-12-03 | 2001-01-09 | Cordis Webster, Inc. | Irrigated split tip electrode catheter |
US6206831B1 (en) | 1999-01-06 | 2001-03-27 | Scimed Life Systems, Inc. | Ultrasound-guided ablation catheter and methods of use |
US6383180B1 (en) | 1999-01-25 | 2002-05-07 | Cryocath Technologies Inc. | Closed loop catheter coolant system |
US7524289B2 (en) | 1999-01-25 | 2009-04-28 | Lenker Jay A | Resolution optical and ultrasound devices for imaging and treatment of body lumens |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
US6432102B2 (en) | 1999-03-15 | 2002-08-13 | Cryovascular Systems, Inc. | Cryosurgical fluid supply |
US6423002B1 (en) | 1999-06-24 | 2002-07-23 | Acuson Corporation | Intra-operative diagnostic ultrasound multiple-array transducer probe and optional surgical tool |
US6270493B1 (en) | 1999-07-19 | 2001-08-07 | Cryocath Technologies, Inc. | Cryoablation structure |
US6315732B1 (en) | 1999-07-20 | 2001-11-13 | Scimed Life Systems, Inc. | Imaging catheter and methods of use for ultrasound-guided ablation |
DE19938558A1 (en) | 1999-08-17 | 2001-02-22 | Axel Muntermann | Catheters with improved electrical properties and treatment methods for improving the electrical properties of catheters |
US6575966B2 (en) | 1999-08-23 | 2003-06-10 | Cryocath Technologies Inc. | Endovascular cryotreatment catheter |
US7232433B1 (en) | 1999-09-22 | 2007-06-19 | Siemens Medical Solutions Usa, Inc. | Medical diagnostic ultrasound catheter with dielectric isolation |
US7097641B1 (en) | 1999-12-09 | 2006-08-29 | Cryocath Technologies Inc. | Catheter with cryogenic and heating ablation |
DE60012310T2 (en) | 1999-12-28 | 2005-08-18 | Koninklijke Philips Electronics N.V. | ULTRASONIC IMAGE PROCESSING SYSTEM AND SYSTEM FOR PRESENTING A COLOR-CODED ULTRASONIC BIL SEQUENCE OF A BODY WITH MOVING PARTS |
US6711428B2 (en) | 2000-01-27 | 2004-03-23 | Biosense Webster, Inc. | Catheter having mapping assembly |
US6628976B1 (en) | 2000-01-27 | 2003-09-30 | Biosense Webster, Inc. | Catheter having mapping assembly |
US6224557B1 (en) | 2000-02-03 | 2001-05-01 | Agilent Technologies, Inc. | Ultrasonic method using adaptive clutter filter to remove tissue wall motion |
US6663622B1 (en) | 2000-02-11 | 2003-12-16 | Iotek, Inc. | Surgical devices and methods for use in tissue ablation procedures |
US6508767B2 (en) | 2000-02-16 | 2003-01-21 | Koninklijke Philips Electronics N.V. | Ultrasonic harmonic image segmentation |
US6394956B1 (en) | 2000-02-29 | 2002-05-28 | Scimed Life Systems, Inc. | RF ablation and ultrasound catheter for crossing chronic total occlusions |
JP2003524506A (en) | 2000-03-01 | 2003-08-19 | イナークール セラピーズ インコーポレイテッド | Cryotherapy and device for angioplasty with restenosis |
US20030014095A1 (en) | 2001-03-02 | 2003-01-16 | Kramer Hans W. | Preparation of working fluid for use in cryotherapies |
US6516667B1 (en) | 2000-03-07 | 2003-02-11 | Koninklijke Philips Electronics N.V. | Ultrasonic harmonic signal acquisition |
WO2001068173A2 (en) | 2000-03-15 | 2001-09-20 | Boston Scientific Limited | Ablation and imaging catheter |
US6569162B2 (en) * | 2001-03-29 | 2003-05-27 | Ding Sheng He | Passively self-cooled electrode design for ablation catheters |
EP1272117A2 (en) * | 2000-03-31 | 2003-01-08 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US6558382B2 (en) * | 2000-04-27 | 2003-05-06 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
US6932811B2 (en) | 2000-04-27 | 2005-08-23 | Atricure, Inc. | Transmural ablation device with integral EKG sensor |
US6579278B1 (en) | 2000-05-05 | 2003-06-17 | Scimed Life Systems, Inc. | Bi-directional steerable catheter with asymmetric fulcrum |
US6395325B1 (en) | 2000-05-16 | 2002-05-28 | Scimed Life Systems, Inc. | Porous membranes |
US6400981B1 (en) | 2000-06-21 | 2002-06-04 | Biosense, Inc. | Rapid mapping of electrical activity in the heart |
WO2002000128A2 (en) | 2000-06-23 | 2002-01-03 | Cryocath Technologies, Inc. | Cryotreatment device and method |
DE10032686A1 (en) | 2000-07-05 | 2002-01-31 | G E R U S Ges Fuer Elektrochem | Porous water-flowable body made of ion exchange resin and process for its production |
US6537271B1 (en) | 2000-07-06 | 2003-03-25 | Cryogen, Inc. | Balloon cryogenic catheter |
US6569160B1 (en) | 2000-07-07 | 2003-05-27 | Biosense, Inc. | System and method for detecting electrode-tissue contact |
US6546270B1 (en) | 2000-07-07 | 2003-04-08 | Biosense, Inc. | Multi-electrode catheter, system and method |
US6408199B1 (en) | 2000-07-07 | 2002-06-18 | Biosense, Inc. | Bipolar mapping of intracardiac potentials with electrode having blood permeable covering |
EP2275175B1 (en) | 2000-07-13 | 2016-08-24 | ReCor Medical, Inc. | Thermal treatment apparatus with ultrasonic energy application |
US6656174B1 (en) | 2000-07-20 | 2003-12-02 | Scimed Life Systems, Inc. | Devices and methods for creating lesions in blood vessels without obstructing blood flow |
EP1304965A2 (en) | 2000-07-31 | 2003-05-02 | Boston Scientific Limited | Expandable atherectomy burr |
US7037264B2 (en) | 2000-08-17 | 2006-05-02 | Koninklijke Philips Electronics N.V. | Ultrasonic diagnostic imaging with steered image plane |
JP2002078809A (en) | 2000-09-07 | 2002-03-19 | Shutaro Satake | Balloon catheter for electrically isolating pulmonary vein |
PT1227766E (en) | 2000-09-08 | 2005-07-29 | Atrionix Inc | MEDICAL DEVICE WHICH HAS A SENSOR COOPERATING WITH AN EXPANSIVE COMPONENT |
US6544175B1 (en) | 2000-09-15 | 2003-04-08 | Koninklijke Philips Electronics N.V. | Ultrasound apparatus and methods for display of a volume using interlaced data |
US6640120B1 (en) | 2000-10-05 | 2003-10-28 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
US7047068B2 (en) | 2000-12-11 | 2006-05-16 | C.R. Bard, Inc. | Microelectrode catheter for mapping and ablation |
EP1343426B1 (en) | 2000-12-11 | 2012-10-24 | C.R. Bard, Inc. | Microelectrode catheter for mapping and ablation |
US6589182B1 (en) | 2001-02-12 | 2003-07-08 | Acuson Corporation | Medical diagnostic ultrasound catheter with first and second tip portions |
US6666862B2 (en) | 2001-03-01 | 2003-12-23 | Cardiac Pacemakers, Inc. | Radio frequency ablation system and method linking energy delivery with fluid flow |
US6584345B2 (en) | 2001-03-13 | 2003-06-24 | Biosense, Inc. | Apparatus and method for measuring a plurality of electrical signals from the body of a patient |
US6647281B2 (en) | 2001-04-06 | 2003-11-11 | Scimed Life Systems, Inc. | Expandable diagnostic or therapeutic apparatus and system for introducing the same into the body |
US6972016B2 (en) * | 2001-05-01 | 2005-12-06 | Cardima, Inc. | Helically shaped electrophysiology catheter |
US6837884B2 (en) | 2001-06-18 | 2005-01-04 | Arthrocare Corporation | Electrosurgical apparatus having compound return electrode |
JP2005505319A (en) | 2001-06-19 | 2005-02-24 | イーバ コーポレイション | Positioning assembly and method of use |
US6582372B2 (en) | 2001-06-22 | 2003-06-24 | Koninklijke Philips Electronics N.V. | Ultrasound system for the production of 3-D images |
US6611699B2 (en) | 2001-06-28 | 2003-08-26 | Scimed Life Systems, Inc. | Catheter with an irrigated composite tip electrode |
US6666864B2 (en) * | 2001-06-29 | 2003-12-23 | Scimed Life Systems, Inc. | Electrophysiological probes having selective element actuation and variable lesion length capability |
US6773402B2 (en) | 2001-07-10 | 2004-08-10 | Biosense, Inc. | Location sensing with real-time ultrasound imaging |
US6632179B2 (en) | 2001-07-31 | 2003-10-14 | Koninklijke Philips Electronics N.V. | Acoustic imaging system with non-focusing lens |
US6572547B2 (en) | 2001-07-31 | 2003-06-03 | Koninklijke Philips Electronics N.V. | Transesophageal and transnasal, transesophageal ultrasound imaging systems |
US6592525B2 (en) | 2001-07-31 | 2003-07-15 | Koninklijke Philips Electronics N.V. | Micro-machined ultrasonic transducer (MUT) having improved sensitivity |
US6675809B2 (en) | 2001-08-27 | 2004-01-13 | Richard S. Stack | Satiation devices and methods |
US6585733B2 (en) | 2001-09-28 | 2003-07-01 | Ethicon, Inc. | Surgical treatment for atrial fibrillation using radiofrequency technology |
JP3607231B2 (en) | 2001-09-28 | 2005-01-05 | 有限会社日本エレクテル | High frequency heating balloon catheter |
US7125409B2 (en) | 2001-10-22 | 2006-10-24 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US6735465B2 (en) | 2001-10-24 | 2004-05-11 | Scimed Life Systems, Inc. | Systems and processes for refining a registered map of a body cavity |
US20030088240A1 (en) | 2001-11-02 | 2003-05-08 | Vahid Saadat | Methods and apparatus for cryo-therapy |
US6796980B2 (en) | 2001-11-21 | 2004-09-28 | Cardiac Pacemakers, Inc. | System and method for validating and troubleshooting ablation system set-up |
US7753908B2 (en) | 2002-02-19 | 2010-07-13 | Endoscopic Technologies, Inc. (Estech) | Apparatus for securing an electrophysiology probe to a clamp |
US7785324B2 (en) | 2005-02-25 | 2010-08-31 | Endoscopic Technologies, Inc. (Estech) | Clamp based lesion formation apparatus and methods configured to protect non-target tissue |
US20040092806A1 (en) | 2001-12-11 | 2004-05-13 | Sagon Stephen W | Microelectrode catheter for mapping and ablation |
US7311708B2 (en) | 2001-12-12 | 2007-12-25 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
AU2002367296A1 (en) | 2001-12-28 | 2003-07-24 | Ekos Corporation | Multi-resonant ultrasonic catheter |
US7648462B2 (en) | 2002-01-16 | 2010-01-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Safety systems and methods for ensuring safe use of intra-cardiac ultrasound catheters |
US20030158548A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device |
US6932816B2 (en) | 2002-02-19 | 2005-08-23 | Boston Scientific Scimed, Inc. | Apparatus for converting a clamp into an electrophysiology device |
US6705992B2 (en) | 2002-02-28 | 2004-03-16 | Koninklijke Philips Electronics N.V. | Ultrasound imaging enhancement to clinical patient monitoring functions |
US6736814B2 (en) | 2002-02-28 | 2004-05-18 | Misonix, Incorporated | Ultrasonic medical treatment device for bipolar RF cauterization and related method |
US7166075B2 (en) | 2002-03-08 | 2007-01-23 | Wisconsin Alumni Research Foundation | Elastographic imaging of in vivo soft tissue |
JP3875581B2 (en) | 2002-03-18 | 2007-01-31 | 独立行政法人科学技術振興機構 | Ultrasound diagnostic system |
US6743174B2 (en) | 2002-04-01 | 2004-06-01 | Koninklijke Philips Electronics N.V. | Ultrasonic diagnostic imaging system with automatically controlled contrast and brightness |
US8150510B2 (en) | 2002-04-15 | 2012-04-03 | Imperception, Inc. | Shock timing technology |
FR2839157A1 (en) | 2002-04-30 | 2003-10-31 | Koninkl Philips Electronics Nv | ULTRASONIC IMAGING SYSTEM WITH HIGH SIDE RESOLUTION |
AUPS226402A0 (en) | 2002-05-13 | 2002-06-13 | Advanced Metal Coatings Pty Limited | An ablation catheter |
US6676606B2 (en) | 2002-06-11 | 2004-01-13 | Koninklijke Philips Electronics N.V. | Ultrasonic diagnostic micro-vascular imaging |
US6620103B1 (en) | 2002-06-11 | 2003-09-16 | Koninklijke Philips Electronics N.V. | Ultrasonic diagnostic imaging system for low flow rate contrast agents |
US6824517B2 (en) | 2002-06-25 | 2004-11-30 | Koninklijke Philips Electronics N.V. | Ultrasound quantification in real-time using acoustic data in more than two dimensions |
US6950702B2 (en) | 2002-07-15 | 2005-09-27 | Cardiac Pacemakers, Inc. | Use of curvature based features for beat detection |
US6709396B2 (en) | 2002-07-17 | 2004-03-23 | Vermon | Ultrasound array transducer for catheter use |
TWI235073B (en) | 2002-08-20 | 2005-07-01 | Toray Industries | Catheter for treating cardiac arrhythmias |
US7220233B2 (en) | 2003-04-08 | 2007-05-22 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US7758508B1 (en) | 2002-11-15 | 2010-07-20 | Koninklijke Philips Electronics, N.V. | Ultrasound-imaging systems and methods for a user-guided three-dimensional volume-scan sequence |
US7105122B2 (en) | 2002-10-08 | 2006-09-12 | Ossur Hf | Prosthesis socket direct casting device having multiple compression chambers |
US6776758B2 (en) | 2002-10-11 | 2004-08-17 | Koninklijke Philips Electronics N.V. | RFI-protected ultrasound probe |
US7001383B2 (en) | 2002-10-21 | 2006-02-21 | Biosense, Inc. | Real-time monitoring and mapping of ablation lesion formation in the heart |
US7306593B2 (en) | 2002-10-21 | 2007-12-11 | Biosense, Inc. | Prediction and assessment of ablation of cardiac tissue |
US7347820B2 (en) | 2002-11-06 | 2008-03-25 | Koninklijke Philips Electronics N.V. | Phased array acoustic system for 3D imaging of moving parts |
US6692441B1 (en) | 2002-11-12 | 2004-02-17 | Koninklijke Philips Electronics N.V. | System for identifying a volume of interest in a volume rendered ultrasound image |
US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US6796979B2 (en) | 2002-12-11 | 2004-09-28 | Cryocor, Inc. | Coaxial catheter system for performing a single step cryoablation |
US6922579B2 (en) | 2002-12-12 | 2005-07-26 | Scimed Life Systems, Inc. | La placian electrode |
JP4067976B2 (en) | 2003-01-24 | 2008-03-26 | 有限会社日本エレクテル | High frequency heating balloon catheter |
US7815572B2 (en) | 2003-02-13 | 2010-10-19 | Koninklijke Philips Electronics N.V. | Flow spectrograms synthesized from ultrasonic flow color doppler information |
US7357800B2 (en) | 2003-02-14 | 2008-04-15 | Boston Scientific Scimed, Inc. | Power supply and control apparatus and electrophysiology systems including the same |
US6923808B2 (en) | 2003-02-24 | 2005-08-02 | Boston Scientific Scimed, Inc. | Probes having helical and loop shaped inflatable therapeutic elements |
WO2004075782A2 (en) | 2003-02-26 | 2004-09-10 | Alfred, E. Mann Institute For Biomedical Engineering At The University Of Southern California | An implantable device with sensors for differential monitoring of internal condition |
WO2004078066A2 (en) | 2003-03-03 | 2004-09-16 | Sinus Rhythm Technologies, Inc. | Primary examiner |
US20040186467A1 (en) | 2003-03-21 | 2004-09-23 | Swanson David K. | Apparatus for maintaining contact between diagnostic and therapeutic elements and tissue and systems including the same |
JP2006521147A (en) | 2003-03-27 | 2006-09-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for guiding an invasive medical device by three-dimensional ultrasound imaging |
WO2004086082A1 (en) | 2003-03-27 | 2004-10-07 | Koninklijke Philips Electronics N.V. | Guidance of invasive medical devices by wide view three dimensional ultrasonic imaging |
US7270634B2 (en) | 2003-03-27 | 2007-09-18 | Koninklijke Philips Electronics N.V. | Guidance of invasive medical devices by high resolution three dimensional ultrasonic imaging |
US7938828B2 (en) | 2003-03-28 | 2011-05-10 | Boston Scientific Scimed, Inc. | Cooled ablation catheter |
US7297116B2 (en) | 2003-04-21 | 2007-11-20 | Wisconsin Alumni Research Foundation | Method and apparatus for imaging the cervix and uterine wall |
US20040215177A1 (en) | 2003-04-24 | 2004-10-28 | Scimed Life Systems, Inc. | Therapeutic apparatus having insulated region at the insertion area |
US7131947B2 (en) | 2003-05-08 | 2006-11-07 | Koninklijke Philips Electronics N.V. | Volumetric ultrasonic image segment acquisition with ECG display |
US7704208B2 (en) | 2003-06-03 | 2010-04-27 | Koninklijke Philips Electronics N.V. | Synchronizing a swiveling three-dimensional ultrasound display with an oscillating object |
WO2004109328A1 (en) | 2003-06-05 | 2004-12-16 | Koninklijke Philips Electronics, N.V. | Redundant wire bonds for increasing transducer reliability |
US7347821B2 (en) | 2003-06-26 | 2008-03-25 | Koninklijke Philips Electronics N.V. | Adaptive processing of contrast enhanced ultrasonic diagnostic images |
US8048169B2 (en) | 2003-07-28 | 2011-11-01 | Baronova, Inc. | Pyloric valve obstructing devices and methods |
US20050033136A1 (en) | 2003-08-01 | 2005-02-10 | Assaf Govari | Catheter with electrode strip |
DE10342709A1 (en) | 2003-09-11 | 2005-04-21 | Biotronik Gmbh & Co Kg | catheter |
US7569052B2 (en) | 2003-09-12 | 2009-08-04 | Boston Scientific Scimed, Inc. | Ablation catheter with tissue protecting assembly |
US20050059963A1 (en) | 2003-09-12 | 2005-03-17 | Scimed Life Systems, Inc. | Systems and method for creating transmural lesions |
US7438714B2 (en) | 2003-09-12 | 2008-10-21 | Boston Scientific Scimed, Inc. | Vacuum-based catheter stabilizer |
US20050059862A1 (en) | 2003-09-12 | 2005-03-17 | Scimed Life Systems, Inc. | Cannula with integrated imaging and optical capability |
US7736362B2 (en) | 2003-09-15 | 2010-06-15 | Boston Scientific Scimed, Inc. | Catheter balloons |
US7229437B2 (en) | 2003-09-22 | 2007-06-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical device having integral traces and formed electrodes |
US7794398B2 (en) | 2003-09-29 | 2010-09-14 | Koninklijke Philips Electronics N.V. | Real-time volumetric bi-plane ultrasound imaging and quantification |
US7198625B1 (en) * | 2003-10-01 | 2007-04-03 | Stryker Corporation | Surgical instrument with retractable sheath |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
CA2449080A1 (en) | 2003-11-13 | 2005-05-13 | Centre Hospitalier De L'universite De Montreal - Chum | Apparatus and method for intravascular ultrasound image segmentation: a fast-marching method |
US6958064B2 (en) | 2003-11-14 | 2005-10-25 | Boston Scientific Scimed, Inc. | Systems and methods for performing simultaneous ablation |
US8052676B2 (en) | 2003-12-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Surgical methods and apparatus for stimulating tissue |
US8002770B2 (en) | 2003-12-02 | 2011-08-23 | Endoscopic Technologies, Inc. (Estech) | Clamp based methods and apparatus for forming lesions in tissue and confirming whether a therapeutic lesion has been formed |
US8055357B2 (en) | 2003-12-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Self-anchoring surgical methods and apparatus for stimulating tissue |
US7608072B2 (en) | 2003-12-02 | 2009-10-27 | Boston Scientific Scimed, Inc. | Surgical methods and apparatus for maintaining contact between tissue and electrophysiology elements and confirming whether a therapeutic lesion has been formed |
US20050119653A1 (en) | 2003-12-02 | 2005-06-02 | Swanson David K. | Surgical methods and apparatus for forming lesions in tissue and confirming whether a therapeutic lesion has been formed |
US7476256B2 (en) | 2003-12-09 | 2009-01-13 | Gi Dynamics, Inc. | Intestinal sleeve |
US7371233B2 (en) | 2004-02-19 | 2008-05-13 | Boston Scientific Scimed, Inc. | Cooled probes and apparatus for maintaining contact between cooled probes and tissue |
US7238184B2 (en) | 2004-03-15 | 2007-07-03 | Boston Scientific Scimed, Inc. | Ablation probe with peltier effect thermal control |
CA2561193A1 (en) | 2004-03-26 | 2005-10-20 | Satiety, Inc. | Systems and methods for treating obesity |
US7507205B2 (en) | 2004-04-07 | 2009-03-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Steerable ultrasound catheter |
US20050228286A1 (en) | 2004-04-07 | 2005-10-13 | Messerly Jeffrey D | Medical system having a rotatable ultrasound source and a piercing tip |
EP1734867A1 (en) | 2004-04-08 | 2006-12-27 | Koninklijke Philips Electronics N.V. | Ultrasound probes with improved electrical isolation |
WO2005099583A1 (en) | 2004-04-14 | 2005-10-27 | Koninklijke Philips Electronics, N.V. | Ultrasound imaging probe featuring wide field of view |
EP1744695B1 (en) | 2004-04-16 | 2012-03-21 | Sydney West Area Health Service | Biomedical return electrode having thermochromic layer |
JP4897667B2 (en) | 2004-04-16 | 2012-03-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Automatic myocardial contrast echocardiogram |
CN1942145A (en) | 2004-04-19 | 2007-04-04 | 普罗里森姆股份有限公司 | Ablation devices with sensor structures |
US7288088B2 (en) | 2004-05-10 | 2007-10-30 | Boston Scientific Scimed, Inc. | Clamp based low temperature lesion formation apparatus, systems and methods |
US7291142B2 (en) | 2004-05-10 | 2007-11-06 | Boston Scientific Scimed, Inc. | Low temperature lesion formation apparatus, systems and methods |
US7582083B2 (en) | 2004-05-10 | 2009-09-01 | Boston Scientific Scimed, Inc. | Probe based low temperature lesion formation apparatus, systems and methods |
US10863945B2 (en) | 2004-05-28 | 2020-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system with contact sensing feature |
US7803195B2 (en) | 2004-06-03 | 2010-09-28 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
WO2006017634A2 (en) | 2004-08-04 | 2006-02-16 | Ndi Medical, Llc | Devices, systems, and methods employing a molded nerve cuff electrode |
US7549988B2 (en) | 2004-08-30 | 2009-06-23 | Boston Scientific Scimed, Inc. | Hybrid lesion formation apparatus, systems and methods |
US7306561B2 (en) | 2004-09-02 | 2007-12-11 | Scimed Life Systems, Inc. | Systems and methods for automatic time-gain compensation in an ultrasound imaging system |
US20060100522A1 (en) | 2004-11-08 | 2006-05-11 | Scimed Life Systems, Inc. | Piezocomposite transducers |
KR100640283B1 (en) * | 2004-12-28 | 2006-11-01 | 최정숙 | Electrode for radiofrequency tissue ablation |
US7862561B2 (en) | 2005-01-08 | 2011-01-04 | Boston Scientific Scimed, Inc. | Clamp based lesion formation apparatus with variable spacing structures |
US7727231B2 (en) | 2005-01-08 | 2010-06-01 | Boston Scientific Scimed, Inc. | Apparatus and methods for forming lesions in tissue and applying stimulation energy to tissue in which lesions are formed |
US7776033B2 (en) | 2005-01-08 | 2010-08-17 | Boston Scientific Scimed, Inc. | Wettable structures including conductive fibers and apparatus including the same |
US7585310B2 (en) | 2005-01-14 | 2009-09-08 | Boston Scientific Scimed, Inc. | Minimally invasive clamp |
US7918851B2 (en) | 2005-02-14 | 2011-04-05 | Biosense Webster, Inc. | Irrigated tip catheter and method for manufacturing therefor |
US8048028B2 (en) | 2005-02-17 | 2011-11-01 | Boston Scientific Scimed, Inc. | Reinforced medical balloon |
US7892228B2 (en) | 2005-02-25 | 2011-02-22 | Boston Scientific Scimed, Inc. | Dual mode lesion formation apparatus, systems and methods |
US7862562B2 (en) | 2005-02-25 | 2011-01-04 | Boston Scientific Scimed, Inc. | Wrap based lesion formation apparatus and methods configured to protect non-target tissue |
US7455669B2 (en) | 2005-03-08 | 2008-11-25 | Boston Scientific Scimed, Inc. | Finger mountable lesion formation devices and methods |
US20060224153A1 (en) | 2005-04-05 | 2006-10-05 | Fischell Robert E | Catheter system for the treatment of atrial fibrillation |
EP1709905A1 (en) | 2005-04-06 | 2006-10-11 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Belt system for measuring respiration dependent girth change during magnetic resonance imaging |
US20060253028A1 (en) | 2005-04-20 | 2006-11-09 | Scimed Life Systems, Inc. | Multiple transducer configurations for medical ultrasound imaging |
JP4958896B2 (en) | 2005-04-21 | 2012-06-20 | アスマティックス,インコーポレイテッド | Control method and apparatus for energy delivery |
US7604601B2 (en) | 2005-04-26 | 2009-10-20 | Biosense Webster, Inc. | Display of catheter tip with beam direction for ultrasound system |
US20080287810A1 (en) | 2005-05-04 | 2008-11-20 | Byong-Ho Park | Miniature actuator mechanism for intravascular optical imaging |
WO2006121916A1 (en) | 2005-05-05 | 2006-11-16 | Boston Scientific Limited | Preshaped localization catheter and system for graphically reconstructing pulmonary vein ostia |
US7857810B2 (en) | 2006-05-16 | 2010-12-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode assembly and methods for improved control of temperature and minimization of coagulation and tissue damage |
US20060271032A1 (en) | 2005-05-26 | 2006-11-30 | Chin Albert K | Ablation instruments and methods for performing abalation |
US8016822B2 (en) | 2005-05-28 | 2011-09-13 | Boston Scientific Scimed, Inc. | Fluid injecting devices and methods and apparatus for maintaining contact between fluid injecting devices and tissue |
DE102005029762A1 (en) | 2005-06-20 | 2006-12-21 | Elringklinger Ag | Sealing arrangement for a fuel cell has a high temperature gasket seal produced of a mix of ceramic and alloy metal particles |
US8303510B2 (en) | 2005-07-01 | 2012-11-06 | Scimed Life Systems, Inc. | Medical imaging device having a forward looking flow detector |
US20070021744A1 (en) | 2005-07-07 | 2007-01-25 | Creighton Francis M Iv | Apparatus and method for performing ablation with imaging feedback |
US8945151B2 (en) | 2005-07-13 | 2015-02-03 | Atricure, Inc. | Surgical clip applicator and apparatus including the same |
US9955947B2 (en) | 2005-07-15 | 2018-05-01 | General Electric Company | Device and method for shielding an ultrasound probe |
US7859170B2 (en) | 2005-08-08 | 2010-12-28 | Koninklijke Philips Electronics N.V. | Wide-bandwidth matrix transducer with polyethylene third matching layer |
US8657814B2 (en) | 2005-08-22 | 2014-02-25 | Medtronic Ablation Frontiers Llc | User interface for tissue ablation system |
US20070055225A1 (en) | 2005-09-07 | 2007-03-08 | Dodd Gerald D Iii | Method and apparatus for electromagnetic ablation of biological tissue |
US20070073135A1 (en) | 2005-09-13 | 2007-03-29 | Warren Lee | Integrated ultrasound imaging and ablation probe |
US8672936B2 (en) | 2005-10-13 | 2014-03-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods for assessing tissue contact |
US20070088345A1 (en) | 2005-10-13 | 2007-04-19 | Ust Inc. | Applications of HIFU and chemotherapy |
US8679109B2 (en) | 2005-10-13 | 2014-03-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Dynamic contact assessment for electrode catheters |
CA2626833C (en) | 2005-10-27 | 2016-06-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods for electrode contact assessment |
US7766833B2 (en) | 2005-11-23 | 2010-08-03 | General Electric Company | Ablation array having independently activated ablation elements |
US20070167821A1 (en) | 2005-11-30 | 2007-07-19 | Warren Lee | Rotatable transducer array for volumetric ultrasound |
US10362959B2 (en) | 2005-12-06 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the proximity of an electrode to tissue in a body |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US8728077B2 (en) | 2005-12-06 | 2014-05-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Handle set for ablation catheter with indicators of catheter and tissue parameters |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US8449535B2 (en) | 2005-12-06 | 2013-05-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US20090177111A1 (en) | 2006-12-06 | 2009-07-09 | Miller Stephan P | System and method for displaying contact between a catheter and tissue |
US8317783B2 (en) | 2005-12-06 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8406866B2 (en) | 2005-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
WO2007070361A2 (en) | 2005-12-06 | 2007-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
JP4702026B2 (en) | 2005-12-09 | 2011-06-15 | コニカミノルタビジネステクノロジーズ株式会社 | Image forming apparatus and method of controlling image forming apparatus |
ES2440477T3 (en) | 2005-12-15 | 2014-01-29 | Laboratorios Cair España, Sl | Device for adjusting the temperature of a physiological fluid |
US20070173680A1 (en) | 2005-12-29 | 2007-07-26 | Boston Scientific Scimed, Inc | Apparatus and method for performing therapeutic tissue ablation and brachytherapy |
US7879029B2 (en) | 2005-12-30 | 2011-02-01 | Biosense Webster, Inc. | System and method for selectively energizing catheter electrodes |
US7918850B2 (en) | 2006-02-17 | 2011-04-05 | Biosense Wabster, Inc. | Lesion assessment by pacing |
US20070225610A1 (en) | 2006-03-27 | 2007-09-27 | Boston Scientific Scimed, Inc. | Capturing electrical signals with a catheter needle |
US20070238997A1 (en) | 2006-03-29 | 2007-10-11 | Estelle Camus | Ultrasound and fluorescence imaging |
US8401650B2 (en) | 2008-04-10 | 2013-03-19 | Electrocore Llc | Methods and apparatus for electrical treatment using balloon and electrode |
EP2032045A2 (en) | 2006-05-24 | 2009-03-11 | Emcision Limited | Vessel sealing device and methods |
US20080009733A1 (en) | 2006-06-27 | 2008-01-10 | Ep Medsystems, Inc. | Method for Evaluating Regional Ventricular Function and Incoordinate Ventricular Contraction |
PL2037840T3 (en) * | 2006-06-28 | 2012-09-28 | Medtronic Ardian Luxembourg | Systems for thermally-induced renal neuromodulation |
US9119633B2 (en) | 2006-06-28 | 2015-09-01 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
WO2008017080A2 (en) | 2006-08-03 | 2008-02-07 | Hansen Medical, Inc. | Systems for performing minimally invasive procedures |
JP2008052181A (en) | 2006-08-28 | 2008-03-06 | Brother Ind Ltd | Fixing device and image forming apparatus |
US8728073B2 (en) | 2006-10-10 | 2014-05-20 | Biosense Webster, Inc. | Multi-region staged inflation balloon |
US8403858B2 (en) | 2006-10-12 | 2013-03-26 | Perceptive Navigation Llc | Image guided catheters and methods of use |
US8105392B2 (en) | 2006-11-08 | 2012-01-31 | Boston Scientific Scimed, Inc. | Pyloric obesity valve |
US8690870B2 (en) | 2006-12-28 | 2014-04-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation catheter system with pulsatile flow to prevent thrombus |
US7894871B2 (en) | 2006-12-29 | 2011-02-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Filtering method for surface modeling |
US8265745B2 (en) | 2006-12-29 | 2012-09-11 | St. Jude Medical, Atrial Fibillation Division, Inc. | Contact sensor and sheath exit sensor |
US10085798B2 (en) | 2006-12-29 | 2018-10-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode with tactile sensor |
US20080161705A1 (en) | 2006-12-29 | 2008-07-03 | Podmore Jonathan L | Devices and methods for ablating near AV groove |
DE102007003836A1 (en) | 2007-01-25 | 2008-08-07 | Erbe Elektromedizin Gmbh | Bipolar instrument and method for the electrosurgical treatment of tissue |
US8469950B2 (en) | 2007-02-15 | 2013-06-25 | Cardionova Ltd. | Intra-atrial apparatus and method of use thereof |
JP5336465B2 (en) | 2007-03-26 | 2013-11-06 | ボストン サイエンティフィック リミテッド | High resolution electrophysiology catheter |
US8577447B2 (en) | 2007-05-01 | 2013-11-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Optic-based contact sensing assembly and system |
EP2139416B1 (en) | 2007-05-09 | 2015-08-19 | Irvine Biomedical, Inc. | Basket catheter having multiple electrodes |
US8641704B2 (en) | 2007-05-11 | 2014-02-04 | Medtronic Ablation Frontiers Llc | Ablation therapy system and method for treating continuous atrial fibrillation |
US8428690B2 (en) | 2007-05-16 | 2013-04-23 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
US8628522B2 (en) | 2007-05-21 | 2014-01-14 | Estech, Inc. (Endoscopic Technologies, Inc.) | Cardiac ablation systems and methods |
US10492729B2 (en) | 2007-05-23 | 2019-12-03 | St. Jude Medical, Cardiology Division, Inc. | Flexible high-density mapping catheter tips and flexible ablation catheter tips with onboard high-density mapping electrodes |
JP2008295728A (en) | 2007-05-31 | 2008-12-11 | Olympus Medical Systems Corp | Treatment tool |
US20080312521A1 (en) | 2007-06-14 | 2008-12-18 | Solomon Edward G | System and method for determining electrode-tissue contact using phase difference |
US8160690B2 (en) | 2007-06-14 | 2012-04-17 | Hansen Medical, Inc. | System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal |
US8285362B2 (en) | 2007-06-28 | 2012-10-09 | W. L. Gore & Associates, Inc. | Catheter with deflectable imaging device |
US7976537B2 (en) | 2007-06-28 | 2011-07-12 | Biosense Webster, Inc. | Optical pyrometric catheter for tissue temperature monitoring during cardiac ablation |
WO2009032421A2 (en) | 2007-07-27 | 2009-03-12 | Meridian Cardiovascular Systems, Inc. | Image guided intracardiac catheters |
US8702609B2 (en) | 2007-07-27 | 2014-04-22 | Meridian Cardiovascular Systems, Inc. | Image-guided intravascular therapy catheters |
US8131379B2 (en) | 2007-08-27 | 2012-03-06 | St. Jude Medical Atrial Fibrillation Division, Inc. | Cardiac tissue elasticity sensing |
US20090062795A1 (en) | 2007-08-31 | 2009-03-05 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
US20090062790A1 (en) | 2007-08-31 | 2009-03-05 | Voyage Medical, Inc. | Direct visualization bipolar ablation systems |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US7957817B1 (en) | 2007-09-04 | 2011-06-07 | Pacesetter, Inc. | Medical electrode and tool for delivering the electrode |
US9023030B2 (en) | 2007-10-09 | 2015-05-05 | Boston Scientific Scimed, Inc. | Cooled ablation catheter devices and methods of use |
US20090093810A1 (en) | 2007-10-09 | 2009-04-09 | Raj Subramaniam | Electrophysiology Electrodes and Apparatus Including the Same |
US8906011B2 (en) | 2007-11-16 | 2014-12-09 | Kardium Inc. | Medical device for use in bodily lumens, for example an atrium |
US10492854B2 (en) | 2007-12-05 | 2019-12-03 | Biosense Webster, Inc. | Catheter-based acoustic radiation force impulse system |
US20090171341A1 (en) | 2007-12-28 | 2009-07-02 | Karl Pope | Dispersive return electrode and methods |
US8290578B2 (en) | 2007-12-28 | 2012-10-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for complex impedance compensation |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US8103327B2 (en) | 2007-12-28 | 2012-01-24 | Rhythmia Medical, Inc. | Cardiac mapping catheter |
US10660690B2 (en) | 2007-12-28 | 2020-05-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US8961417B2 (en) | 2008-01-04 | 2015-02-24 | Texas Heart Institute | Catheter with electrodes for impedance and/or conduction velocity measurement |
US8579889B2 (en) | 2008-01-11 | 2013-11-12 | Boston Scientific Scimed Inc. | Linear ablation devices and methods of use |
BRPI0906703A2 (en) | 2008-01-16 | 2019-09-24 | Catheter Robotics Inc | remotely controlled catheter insertion system |
WO2009105720A2 (en) | 2008-02-20 | 2009-08-27 | Guided Delivery Systems, Inc. | Electrophysiology catheter system |
US20090306643A1 (en) | 2008-02-25 | 2009-12-10 | Carlo Pappone | Method and apparatus for delivery and detection of transmural cardiac ablation lesions |
CN102065781B (en) | 2008-03-27 | 2014-05-07 | 梅奥医学教育和研究基金会 | Navigation and tissue capture systems |
JP5345678B2 (en) | 2008-05-15 | 2013-11-20 | ボストン サイエンティフィック サイムド,インコーポレイテッド | A device that adjusts the cryogenic ablation area by treating the tissue with cryogenic ablation |
US8128617B2 (en) | 2008-05-27 | 2012-03-06 | Boston Scientific Scimed, Inc. | Electrical mapping and cryo ablating with a balloon catheter |
US8133222B2 (en) | 2008-05-28 | 2012-03-13 | Medwaves, Inc. | Tissue ablation apparatus and method using ultrasonic imaging |
KR20110040878A (en) | 2008-07-01 | 2011-04-20 | 가부시키가이샤 톱필드 | Sealing water agent and a method of pipework management |
EP2334248A2 (en) | 2008-09-02 | 2011-06-22 | Medtronic Ablation Frontiers LLC | Irrigated ablation catheter system |
EP2334365B1 (en) | 2008-09-22 | 2016-10-26 | Boston Scientific Scimed, Inc. | Biasing a catheter balloon |
CN104840196B (en) | 2008-10-09 | 2018-10-09 | 加利福尼亚大学董事会 | Machine and process for the source for being automatically positioned biological rhythm disorder |
US8894643B2 (en) | 2008-10-10 | 2014-11-25 | Intuitive Surgical Operations, Inc. | Integral electrode placement and connection systems |
WO2010054409A1 (en) | 2008-11-10 | 2010-05-14 | Cardioinsight Technologies, Inc. | Visualization of electrophysiology data |
CA2743140A1 (en) | 2008-11-11 | 2010-05-20 | Shifamed, Llc | Low profile electrode assembly |
US7996085B2 (en) | 2008-11-12 | 2011-08-09 | Biosense Webster, Inc. | Isolation of sensing circuit from pace generator |
US8400164B2 (en) | 2008-11-12 | 2013-03-19 | Biosense Webster, Inc. | Calibration and compensation for errors in position measurement |
US8380301B2 (en) | 2008-12-03 | 2013-02-19 | Boston Scientific Neuromodulation Corporation | Method and apparatus for determining relative positioning between neurostimulation leads |
US8515520B2 (en) | 2008-12-08 | 2013-08-20 | Medtronic Xomed, Inc. | Nerve electrode |
US20100152728A1 (en) | 2008-12-11 | 2010-06-17 | Park Christopher J | Method and apparatus for determining the efficacy of a lesion |
US20100168557A1 (en) | 2008-12-30 | 2010-07-01 | Deno D Curtis | Multi-electrode ablation sensing catheter and system |
US20100168568A1 (en) | 2008-12-30 | 2010-07-01 | St. Jude Medical, Atrial Fibrillation Division Inc. | Combined Diagnostic and Therapeutic Device Using Aligned Energy Beams |
US20100168831A1 (en) | 2008-12-30 | 2010-07-01 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Implantable clip-on micro-cuff electrode for functional stimulation and bio-potential recording |
US9833217B2 (en) | 2008-12-31 | 2017-12-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Methods and apparatus for utilizing impeller-based rotationally-scanning catheters |
WO2010082146A1 (en) | 2009-01-14 | 2010-07-22 | Koninklijke Philips Electronics N.V. | Monitoring apparatus for monitoring an ablation procedure |
EP2395934B1 (en) | 2009-02-11 | 2019-04-17 | Boston Scientific Scimed, Inc. | Insulated ablation catheter devices |
US8647281B2 (en) | 2009-03-31 | 2014-02-11 | Boston Scientific Scimed, Inc. | Systems and methods for making and using an imaging core of an intravascular ultrasound imaging system |
US8298149B2 (en) | 2009-03-31 | 2012-10-30 | Boston Scientific Scimed, Inc. | Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system |
US20100249604A1 (en) | 2009-03-31 | 2010-09-30 | Boston Scientific Corporation | Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system |
AU2014200766B2 (en) | 2009-04-03 | 2015-06-25 | Metamodix, Inc. | Modular gastrointestinal prostheses |
EP2413849B1 (en) | 2009-04-03 | 2014-07-02 | Metamodix, Inc. | Modular gastrointestinal prostheses |
US9173760B2 (en) | 2009-04-03 | 2015-11-03 | Metamodix, Inc. | Delivery devices and methods for gastrointestinal implants |
CN101879060B (en) | 2009-05-08 | 2014-10-01 | 上海微创医疗器械(集团)有限公司 | Electrophysiological catheter with reliable tip electrode connection |
CA2703347C (en) | 2009-05-08 | 2016-10-04 | Endosense Sa | Method and apparatus for controlling lesion size in catheter-based ablation treatment |
US8183441B2 (en) | 2009-05-14 | 2012-05-22 | Monsanto Technology Llc | Plants and seeds of hybrid corn variety CH413233 |
EP2440284B1 (en) | 2009-06-09 | 2018-09-12 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
DE102009025313A1 (en) | 2009-06-15 | 2010-12-23 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts | Outer ear musculature detection means |
EP3391845B1 (en) | 2009-06-30 | 2020-02-12 | Boston Scientific Scimed, Inc. | Map and ablate open irrigated hybrid catheter |
US8280477B2 (en) | 2009-07-29 | 2012-10-02 | Medtronic Cryocath Lp | Mono-phasic action potential electrogram recording catheter, and method |
US9572624B2 (en) | 2009-08-05 | 2017-02-21 | Atricure, Inc. | Bipolar belt systems and methods |
RU2544468C2 (en) | 2009-08-28 | 2015-03-20 | Конинклейке Филипс Электроникс Н.В. | Open-loop catheter for irrigation ablation of tissue |
CN102548496B (en) | 2009-09-15 | 2015-04-29 | 皇家飞利浦电子股份有限公司 | Medical ultrasound device with force detection |
US20110071400A1 (en) | 2009-09-23 | 2011-03-24 | Boston Scientific Scimed, Inc. | Systems and methods for making and using intravascular ultrasound imaging systems with sealed imaging cores |
US20110071401A1 (en) | 2009-09-24 | 2011-03-24 | Boston Scientific Scimed, Inc. | Systems and methods for making and using a stepper motor for an intravascular ultrasound imaging system |
US20130023897A1 (en) | 2009-10-06 | 2013-01-24 | Michael P Wallace | Devices and Methods for Endovascular Therapies |
US9174065B2 (en) | 2009-10-12 | 2015-11-03 | Kona Medical, Inc. | Energetic modulation of nerves |
US8583215B2 (en) | 2009-11-05 | 2013-11-12 | Biosense Webster (Israel) Ltd. | Reduction of catheter electrode loading |
DE102009053470A1 (en) | 2009-11-16 | 2011-05-26 | Siemens Aktiengesellschaft | Thermal ablation device, catheter, and method of performing a thermal ablation |
US8454589B2 (en) | 2009-11-20 | 2013-06-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing effective delivery of ablation therapy |
US10688278B2 (en) | 2009-11-30 | 2020-06-23 | Biosense Webster (Israel), Ltd. | Catheter with pressure measuring tip |
US10624553B2 (en) | 2009-12-08 | 2020-04-21 | Biosense Webster (Israel), Ltd. | Probe data mapping using contact information |
US9907534B2 (en) | 2009-12-15 | 2018-03-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Self-aiming directable acoustic transducer assembly for invasive medical device applications |
US9565998B2 (en) | 2009-12-16 | 2017-02-14 | Boston Scientific Scimed, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US8494651B2 (en) | 2009-12-30 | 2013-07-23 | Cardiac Pacemakers, Inc. | Implantable leads with a conductor coil having two or more sections |
US9694213B2 (en) | 2009-12-31 | 2017-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Acoustic coupling for assessment and ablation procedures |
JP5581062B2 (en) | 2010-01-13 | 2014-08-27 | Hoya株式会社 | Endoscopic high-frequency treatment instrument |
WO2011089537A1 (en) | 2010-01-19 | 2011-07-28 | Koninklijke Philips Electronics N.V. | Imaging apparatus |
US10383687B2 (en) | 2010-02-05 | 2019-08-20 | Koninklijke Philips N.V. | Combined ablation and ultrasound imaging |
WO2011101778A1 (en) | 2010-02-19 | 2011-08-25 | Koninklijke Philips Electronics N.V. | Ablation catheter and a method of performing ablation |
US9820695B2 (en) | 2010-03-29 | 2017-11-21 | St. Jude Medical International Holding S.àr.l. | Method for detecting contact with the wall of a region of interest |
CN103118620B (en) | 2010-05-12 | 2015-09-23 | 施菲姆德控股有限责任公司 | The electrode assemblie of low profile |
US8617150B2 (en) | 2010-05-14 | 2013-12-31 | Liat Tsoref | Reflectance-facilitated ultrasound treatment |
US8532770B2 (en) | 2010-06-29 | 2013-09-10 | Cardiac Pacemakers, Inc. | Cardiac mechanical vibration monitor using information indicative of lead motion |
US9642970B2 (en) | 2010-06-30 | 2017-05-09 | Retractable Technologies, Inc. | Syringe with retractable needle and moveable plunger seal |
EP2588017B1 (en) | 2010-06-30 | 2021-01-13 | Koninklijke Philips N.V. | Energy application apparatus for applying energy to an object |
WO2012051305A2 (en) | 2010-10-13 | 2012-04-19 | Mau Imaging, Inc. | Multiple aperture probe internal apparatus and cable assemblies |
JP6230912B2 (en) | 2010-10-14 | 2017-11-15 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Characteristic determination device for determining the characteristics of an object |
BR112013012197A8 (en) | 2010-11-18 | 2019-02-05 | Koninl Philips Electronics Nv | ultrasonic transducer assembly, ultrasonic transducer system, catheter tip, manufacturing method of ultrasonic transducer assemblies and method of manufacturing ultrasonic transducer systems |
US9532828B2 (en) | 2010-11-29 | 2017-01-03 | Medtronic Ablation Frontiers Llc | System and method for adaptive RF ablation |
US20120172727A1 (en) | 2010-12-30 | 2012-07-05 | Boston Scientific Scimed, Inc. | Imaging system |
US9089340B2 (en) | 2010-12-30 | 2015-07-28 | Boston Scientific Scimed, Inc. | Ultrasound guided tissue ablation |
WO2012091903A1 (en) | 2010-12-30 | 2012-07-05 | Boston Scientific Scimed, Inc. | Imaging assembly combining intravascular ultrasound and optical coherence tomography |
EP2627243B1 (en) | 2010-12-30 | 2020-01-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for diagnosing arrhythmias and directing catheter therapies |
US20140012251A1 (en) | 2011-03-07 | 2014-01-09 | Tidal Wave Technology, Inc. | Ablation devices and methods |
US8888732B2 (en) | 2011-03-11 | 2014-11-18 | Apollo Endosurgery, Inc. | Intraluminal sleeve with active agents |
JP2014516608A (en) | 2011-03-31 | 2014-07-17 | ティダル ウェーブ テクノロジー、インコーポレイテッド | Radiofrequency ablation catheter device |
US8545408B2 (en) | 2011-05-23 | 2013-10-01 | St. Jude Medical, Inc. | Combination catheter for forward and side lesioning with acoustic lesion feedback capability |
EP2705464B1 (en) | 2011-05-02 | 2018-04-18 | Topera, Inc. | System and method for targeting heart rhythm disorders using shaped ablation |
WO2012166239A1 (en) | 2011-06-01 | 2012-12-06 | Boston Scientific Scimed, Inc. | Ablation probe with ultrasonic imaging capabilities |
US9119636B2 (en) | 2011-06-27 | 2015-09-01 | Boston Scientific Scimed Inc. | Dispersive belt for an ablation system |
US10201385B2 (en) | 2011-09-01 | 2019-02-12 | Biosense Webster (Israel) Ltd. | Catheter adapted for direct tissue contact |
CN103987336A (en) | 2011-09-14 | 2014-08-13 | 波士顿科学西美德公司 | Ablation device with multiple ablation modes |
EP2755588B1 (en) | 2011-09-14 | 2016-05-18 | Boston Scientific Scimed, Inc. | Ablation device with ionically conductive balloon |
US9125668B2 (en) | 2011-09-14 | 2015-09-08 | Boston Scientific Scimed Inc. | Ablation device with multiple ablation modes |
US10376301B2 (en) | 2011-09-28 | 2019-08-13 | Covidien Lp | Logarithmic amplifier, electrosurgical generator including same, and method of controlling electrosurgical generator using same |
US10791950B2 (en) | 2011-09-30 | 2020-10-06 | Biosense Webster (Israel) Ltd. | In-vivo calibration of contact force-sensing catheters using auto zero zones |
AU2012357751B2 (en) | 2011-12-19 | 2017-12-14 | Coloplast A/S | A luminal prosthesis and a gastrointestinal implant device |
US9037259B2 (en) | 2011-12-23 | 2015-05-19 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
JP2015506209A (en) | 2011-12-28 | 2015-03-02 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Ablation probe and ablation and ultrasound imaging system |
EP2797539B1 (en) | 2011-12-29 | 2020-12-02 | St. Jude Medical Atrial Fibrillation Division Inc. | System for optimized coupling of ablation catheters to body tissues and evaluation of lesions formed by the catheters |
US8825130B2 (en) | 2011-12-30 | 2014-09-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrode support structure assemblies |
US9687289B2 (en) | 2012-01-04 | 2017-06-27 | Biosense Webster (Israel) Ltd. | Contact assessment based on phase measurement |
EP2802282A1 (en) | 2012-01-10 | 2014-11-19 | Boston Scientific Scimed, Inc. | Electrophysiology system |
EP2809253B8 (en) | 2012-01-31 | 2016-09-21 | Boston Scientific Scimed, Inc. | Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging |
CA3158197A1 (en) | 2012-05-29 | 2013-12-05 | Autonomix Medical, Inc. | Endoscopic sympathectomy systems and methods |
CN104394759B (en) | 2012-06-20 | 2017-04-05 | 波士顿科学医学有限公司 | Far field on multi-electrode EGM using Multidimensional signal space vector analyses is other to local active region |
US9168004B2 (en) | 2012-08-20 | 2015-10-27 | Biosense Webster (Israel) Ltd. | Machine learning in determining catheter electrode contact |
US20140058375A1 (en) | 2012-08-22 | 2014-02-27 | Boston Scientific Scimed, Inc. | High resolution map and ablate catheter |
US10004459B2 (en) | 2012-08-31 | 2018-06-26 | Acutus Medical, Inc. | Catheter system and methods of medical uses of same, including diagnostic and treatment uses for the heart |
WO2014039589A1 (en) | 2012-09-05 | 2014-03-13 | Boston Scientific Scimed Inc. | Characterization of tissue by ultrasound echography |
US20140073893A1 (en) | 2012-09-12 | 2014-03-13 | Boston Scientific Scimed Inc. | Open irrigated-mapping linear ablation catheter |
CN104640513A (en) | 2012-09-18 | 2015-05-20 | 波士顿科学医学有限公司 | Map and ablate closed-loop cooled ablation catheter |
US9211156B2 (en) | 2012-09-18 | 2015-12-15 | Boston Scientific Scimed, Inc. | Map and ablate closed-loop cooled ablation catheter with flat tip |
CN104661609A (en) | 2012-09-20 | 2015-05-27 | 波士顿科学医学有限公司 | Nearfield ultrasound echography mapping |
WO2014058375A2 (en) | 2012-10-09 | 2014-04-17 | Telefonaktiebolaget L M Ericsson (Publ) | Channel estimation in a multi-antenna wireless communications system |
US11096741B2 (en) | 2012-10-10 | 2021-08-24 | Biosense Webster (Israel) Ltd. | Ablation power control based on contact force |
US20140107453A1 (en) | 2012-10-15 | 2014-04-17 | Boston Scientific Scimed Inc. | Real-time signal comparison to guide ablation catheter to the target location |
US20140128757A1 (en) | 2012-11-06 | 2014-05-08 | Perminova Inc. | System for electrophysiology that includes software module and body-worn monitor |
WO2014072879A2 (en) | 2012-11-08 | 2014-05-15 | Koninklijke Philips N.V. | Interventional device, method of assembling, and assembling system |
US8849393B2 (en) | 2012-11-30 | 2014-09-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes |
US9693699B2 (en) | 2013-01-16 | 2017-07-04 | University Of Vermont | Methods and systems for mapping cardiac fibrillation |
US9026208B2 (en) | 2013-02-25 | 2015-05-05 | Pacesetter, Inc. | Method and system for improving impedance data quality in the presence of pacing pulses |
EP2967726A1 (en) | 2013-03-13 | 2016-01-20 | Boston Scientific Scimed, Inc. | Steerable ablation device with linear ionically conductive balloon |
US9278187B2 (en) | 2013-03-13 | 2016-03-08 | Biosense Webster (Israel) Ltd. | Method for making a low OHMIC pressure-contact electrical connection between split ring electrode and lead wire |
US20140276052A1 (en) | 2013-03-15 | 2014-09-18 | Philips Koninklijke Electronics N.V. | Ablation catheter with ultrasonic lesion monitoring capability |
US9220429B2 (en) | 2013-03-15 | 2015-12-29 | Pacesetter, Inc. | Systems and methods to determine HR, RR and classify cardiac rhythms based on atrial IEGM and atrial pressure signals |
US9636032B2 (en) | 2013-05-06 | 2017-05-02 | Boston Scientific Scimed Inc. | Persistent display of nearest beat characteristics during real-time or play-back electrophysiology data visualization |
US9186080B2 (en) | 2013-05-07 | 2015-11-17 | Boston Scientific Scimed Inc. | System for identifying rotor propagation vectors |
US9636172B2 (en) | 2013-05-31 | 2017-05-02 | Medtronic Cryocath Lp | Compliant balloon with liquid injection |
WO2014201113A1 (en) | 2013-06-11 | 2014-12-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-electrode impedance sensing |
US9333033B2 (en) | 2013-07-11 | 2016-05-10 | Biosense Webster (Israel) Ltd. | Detection of ablation electrode contact with tissue |
US9265434B2 (en) | 2013-12-18 | 2016-02-23 | Biosense Webster (Israel) Ltd. | Dynamic feature rich anatomical reconstruction from a point cloud |
US20150254419A1 (en) | 2014-03-06 | 2015-09-10 | Boston Scientific Scimed, Inc. | Medical devices for mapping cardiac tissue and methods for displaying mapping data |
WO2015138465A1 (en) | 2014-03-10 | 2015-09-17 | Metamodix, Inc. | External anchoring configurations for modular gastrointestinal prostheses |
US20150265341A1 (en) | 2014-03-18 | 2015-09-24 | Boston Scientific Scimed, Inc. | Electrophysiology system |
US20150265348A1 (en) | 2014-03-18 | 2015-09-24 | Boston Scientific Scimed, Inc. | Electrophysiology system |
US9956035B2 (en) | 2014-03-27 | 2018-05-01 | Biosense Webster (Israel) Ltd. | Temperature measurement in catheter |
US20150342672A1 (en) | 2014-05-30 | 2015-12-03 | Boston Scientific Scimed, Inc. | Double micro-electrode catheter |
JP2017529169A (en) | 2014-10-13 | 2017-10-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Tissue diagnosis and treatment using mini-electrodes |
EP4316361A3 (en) | 2014-10-24 | 2024-05-01 | Boston Scientific Scimed Inc. | Medical devices with a flexible electrode assembly coupled to an ablation tip |
US9314208B1 (en) | 2014-10-28 | 2016-04-19 | Biosense Webster (Israel) Ltd. | Basket catheter with microelectrode array distal tip |
WO2016100917A1 (en) | 2014-12-18 | 2016-06-23 | Boston Scientific Scimed Inc. | Real-time morphology analysis for lesion assessment |
US9622897B1 (en) | 2016-03-03 | 2017-04-18 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
-
2010
- 2010-02-09 EP EP10705690.5A patent/EP2395934B1/en active Active
- 2010-02-09 WO PCT/US2010/023574 patent/WO2010093603A1/en active Application Filing
- 2010-02-09 JP JP2011549323A patent/JP5693471B2/en active Active
- 2010-02-09 US US12/702,396 patent/US8945117B2/en active Active
-
2015
- 2015-02-03 US US14/613,155 patent/US20150148796A1/en not_active Abandoned
-
2019
- 2019-03-29 US US16/370,394 patent/US11684416B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745928A (en) * | 1984-01-13 | 1988-05-24 | American Hospital Supply Corporation | Right heart ejection fraction and cardiac output catheter |
US5114423A (en) * | 1989-05-15 | 1992-05-19 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter assembly with heated balloon |
US5456682A (en) * | 1991-11-08 | 1995-10-10 | Ep Technologies, Inc. | Electrode and associated systems using thermally insulated temperature sensing elements |
US5277201A (en) * | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5415654A (en) * | 1993-10-05 | 1995-05-16 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
US6514249B1 (en) * | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
US6723094B1 (en) * | 1998-12-18 | 2004-04-20 | Kai Desinger | Electrode assembly for a surgical instrument provided for carrying out an electrothermal coagulation of tissue |
US6673067B1 (en) * | 2000-01-31 | 2004-01-06 | Gholam A. Peyman | System and method for thermally and chemically treating cells at sites of interest in the body to impede cell proliferation |
US20050288667A1 (en) * | 2002-05-03 | 2005-12-29 | Scimed Life Systems, Inc. | Ablation systems including insulated energy transmitting elements |
US20050028866A1 (en) * | 2003-08-07 | 2005-02-10 | Jatco Ltd | Linear solenoid valve control device |
US20100011409A1 (en) * | 2008-07-09 | 2010-01-14 | Novell, Inc. | Non-interactive information card token generation |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11684416B2 (en) | 2009-02-11 | 2023-06-27 | Boston Scientific Scimed, Inc. | Insulated ablation catheter devices and methods of use |
US9861802B2 (en) | 2012-08-09 | 2018-01-09 | University Of Iowa Research Foundation | Catheters, catheter systems, and methods for puncturing through a tissue structure |
US9724170B2 (en) | 2012-08-09 | 2017-08-08 | University Of Iowa Research Foundation | Catheters, catheter systems, and methods for puncturing through a tissue structure and ablating a tissue region |
US11426573B2 (en) | 2012-08-09 | 2022-08-30 | University Of Iowa Research Foundation | Catheters, catheter systems, and methods for puncturing through a tissue structure and ablating a tissue region |
US11589919B2 (en) | 2014-01-06 | 2023-02-28 | Boston Scientific Scimed, Inc. | Apparatus and methods for renal denervation ablation |
US10517672B2 (en) | 2014-01-06 | 2019-12-31 | Farapulse, Inc. | Apparatus and methods for renal denervation ablation |
US11259869B2 (en) | 2014-05-07 | 2022-03-01 | Farapulse, Inc. | Methods and apparatus for selective tissue ablation |
US10433906B2 (en) | 2014-06-12 | 2019-10-08 | Farapulse, Inc. | Method and apparatus for rapid and selective transurethral tissue ablation |
US10624693B2 (en) | 2014-06-12 | 2020-04-21 | Farapulse, Inc. | Method and apparatus for rapid and selective tissue ablation with cooling |
US11241282B2 (en) | 2014-06-12 | 2022-02-08 | Boston Scientific Scimed, Inc. | Method and apparatus for rapid and selective transurethral tissue ablation |
US11622803B2 (en) | 2014-06-12 | 2023-04-11 | Boston Scientific Scimed, Inc. | Method and apparatus for rapid and selective tissue ablation with cooling |
US11589768B2 (en) | 2014-10-13 | 2023-02-28 | Boston Scientific Scimed Inc. | Tissue diagnosis and treatment using mini-electrodes |
US10835314B2 (en) | 2014-10-14 | 2020-11-17 | Farapulse, Inc. | Method and apparatus for rapid and safe pulmonary vein cardiac ablation |
US9999465B2 (en) | 2014-10-14 | 2018-06-19 | Iowa Approach, Inc. | Method and apparatus for rapid and safe pulmonary vein cardiac ablation |
US10842561B2 (en) | 2016-01-05 | 2020-11-24 | Farapulse, Inc. | Systems, devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
US10512779B2 (en) | 2016-01-05 | 2019-12-24 | Farapulse, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US11589921B2 (en) | 2016-01-05 | 2023-02-28 | Boston Scientific Scimed, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US10172673B2 (en) | 2016-01-05 | 2019-01-08 | Farapulse, Inc. | Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
US10660702B2 (en) | 2016-01-05 | 2020-05-26 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
US10322286B2 (en) | 2016-01-05 | 2019-06-18 | Farapulse, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US10433908B2 (en) | 2016-01-05 | 2019-10-08 | Farapulse, Inc. | Systems, devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
US10709891B2 (en) | 2016-01-05 | 2020-07-14 | Farapulse, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US11020179B2 (en) | 2016-01-05 | 2021-06-01 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
US10507302B2 (en) | 2016-06-16 | 2019-12-17 | Farapulse, Inc. | Systems, apparatuses, and methods for guide wire delivery |
US11432870B2 (en) | 2016-10-04 | 2022-09-06 | Avent, Inc. | Cooled RF probes |
US10016232B1 (en) | 2017-04-27 | 2018-07-10 | Iowa Approach, Inc. | Systems, devices, and methods for signal generation |
US9987081B1 (en) | 2017-04-27 | 2018-06-05 | Iowa Approach, Inc. | Systems, devices, and methods for signal generation |
US11357978B2 (en) | 2017-04-27 | 2022-06-14 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for signal generation |
US10617867B2 (en) | 2017-04-28 | 2020-04-14 | Farapulse, Inc. | Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue |
US11833350B2 (en) | 2017-04-28 | 2023-12-05 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue |
US10130423B1 (en) | 2017-07-06 | 2018-11-20 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
US10617467B2 (en) | 2017-07-06 | 2020-04-14 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
US10893905B2 (en) | 2017-09-12 | 2021-01-19 | Farapulse, Inc. | Systems, apparatuses, and methods for ventricular focal ablation |
US12042208B2 (en) | 2018-05-03 | 2024-07-23 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for ablation using surgical clamps |
US11020180B2 (en) | 2018-05-07 | 2021-06-01 | Farapulse, Inc. | Epicardial ablation catheter |
US10512505B2 (en) | 2018-05-07 | 2019-12-24 | Farapulse, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US11033236B2 (en) | 2018-05-07 | 2021-06-15 | Farapulse, Inc. | Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation |
US10709502B2 (en) | 2018-05-07 | 2020-07-14 | Farapulse, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US10687892B2 (en) | 2018-09-20 | 2020-06-23 | Farapulse, Inc. | Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
US10688305B1 (en) | 2019-09-17 | 2020-06-23 | Farapulse, Inc. | Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation |
US10625080B1 (en) | 2019-09-17 | 2020-04-21 | Farapulse, Inc. | Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation |
US11738200B2 (en) | 2019-09-17 | 2023-08-29 | Boston Scientific Scimed, Inc. | Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation |
US11065047B2 (en) | 2019-11-20 | 2021-07-20 | Farapulse, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US11684408B2 (en) | 2019-11-20 | 2023-06-27 | Boston Scientific Scimed, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US11497541B2 (en) | 2019-11-20 | 2022-11-15 | Boston Scientific Scimed, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US11931090B2 (en) | 2019-11-20 | 2024-03-19 | Boston Scientific Scimed, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US10842572B1 (en) | 2019-11-25 | 2020-11-24 | Farapulse, Inc. | Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines |
US12121720B2 (en) | 2022-05-13 | 2024-10-22 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for signal generation |
Also Published As
Publication number | Publication date |
---|---|
JP2012517301A (en) | 2012-08-02 |
US20190223951A1 (en) | 2019-07-25 |
EP2395934B1 (en) | 2019-04-17 |
JP5693471B2 (en) | 2015-04-01 |
US20100204691A1 (en) | 2010-08-12 |
US11684416B2 (en) | 2023-06-27 |
US8945117B2 (en) | 2015-02-03 |
WO2010093603A1 (en) | 2010-08-19 |
EP2395934A1 (en) | 2011-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11684416B2 (en) | Insulated ablation catheter devices and methods of use | |
US20240058058A1 (en) | Ablation catheter designs and methods with enhanced diagnostic capabilities | |
US6171275B1 (en) | Irrigated split tip electrode catheter | |
US10813687B2 (en) | Cooled ablation catheter devices and methods of use | |
US20210282846A1 (en) | Irrigated ablation electrode assemblies | |
JP6716249B2 (en) | Catheter with irrigated tip electrode having porous substrate and high density surface microelectrodes | |
EP2217167B1 (en) | Cooled ablation catheter devices | |
US5843152A (en) | Catheter system having a ball electrode | |
IL271651A (en) | Catheter adapted for direct tissue contact | |
JP7516630B2 (en) | Method for manufacturing a catheter having improved temperature response | |
US20140031818A1 (en) | Methods and devices for reducing bubble formations in fluid delivery devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENCINI, ROBERT F.;REEL/FRAME:034959/0630 Effective date: 20150204 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |