[go: nahoru, domu]

US20150376609A1 - Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations - Google Patents

Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations Download PDF

Info

Publication number
US20150376609A1
US20150376609A1 US14/752,641 US201514752641A US2015376609A1 US 20150376609 A1 US20150376609 A1 US 20150376609A1 US 201514752641 A US201514752641 A US 201514752641A US 2015376609 A1 US2015376609 A1 US 2015376609A1
Authority
US
United States
Prior art keywords
sequence
nucleic acid
cell
oligonucleotides
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/752,641
Inventor
Benjamin Hindson
Christopher Hindson
Michael Schnall-Levin
Kevin Ness
Mirna Jarosz
Serge Saxonov
Paul Hardenbol
Rajiv Bharadwaj
Grace Zheng
Phillip Belgrader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
10X Genomics Inc
Original Assignee
10X Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 10X Genomics Inc filed Critical 10X Genomics Inc
Priority to US14/752,641 priority Critical patent/US20150376609A1/en
Assigned to 10X GENOMICS, INC. reassignment 10X GENOMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAROSZ, MIRNA, HARDENBOL, PAUL, BELGRADER, PHILLIP, BHARADWAJ, RAJIV, HINDSON, BENJAMIN, HINDSON, Christopher, NESS, KEVIN, SAXONOV, SERGE, ZHENG, GRACE, SCHNALL-LEVIN, MICHAEL
Publication of US20150376609A1 publication Critical patent/US20150376609A1/en
Priority to US15/717,871 priority patent/US9951386B2/en
Priority to US15/832,547 priority patent/US10760124B2/en
Priority to US15/831,847 priority patent/US20180094313A1/en
Priority to US15/832,183 priority patent/US10030267B2/en
Priority to US15/831,726 priority patent/US10208343B2/en
Priority to US15/847,752 priority patent/US10480028B2/en
Priority to US15/872,499 priority patent/US10041116B2/en
Priority to US15/980,473 priority patent/US10253364B2/en
Priority to US16/045,474 priority patent/US10344329B2/en
Priority to US16/138,448 priority patent/US10337061B2/en
Priority to US16/144,832 priority patent/US10457986B2/en
Priority to US16/212,441 priority patent/US10752949B2/en
Priority to US16/231,142 priority patent/US10584381B2/en
Priority to US16/231,185 priority patent/US10400280B2/en
Priority to US16/294,769 priority patent/US10450607B2/en
Assigned to 10X GENOMICS, INC. reassignment 10X GENOMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHENG, Xinying
Priority to US16/435,417 priority patent/US10752950B2/en
Priority to US16/570,898 priority patent/US20200199669A1/en
Priority to US16/998,425 priority patent/US11035002B2/en
Priority to US16/998,414 priority patent/US11021749B2/en
Priority to US17/314,526 priority patent/US11359239B2/en
Priority to US17/392,610 priority patent/US20220098659A1/en
Priority to US17/860,880 priority patent/US11629344B2/en
Priority to US17/986,764 priority patent/US11713457B2/en
Priority to US18/207,023 priority patent/US20230348897A1/en
Priority to US18/367,638 priority patent/US20240002837A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B20/00Methods specially adapted for identifying library members
    • C40B20/04Identifying library members by means of a tag, label, or other readable or detectable entity associated with the library members, e.g. decoding processes
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • C40B50/16Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support involving encoding steps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/191Modifications characterised by incorporating an adaptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2535/00Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
    • C12Q2535/122Massive parallel sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/149Sequential reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/149Particles, e.g. beads
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/159Microreactors, e.g. emulsion PCR or sequencing, droplet PCR, microcapsules, i.e. non-liquid containers with a range of different permeability's for different reaction components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/179Nucleic acid detection characterized by the use of physical, structural and functional properties the label being a nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/629Detection means characterised by use of a special device being a microfluidic device

Definitions

  • Nucleic acid sequencing can be used to obtain information in a wide variety of biomedical contexts, including diagnostics, prognostics, biotechnology, and forensic biology. Sequencing may involve basic methods including Maxam-Gilbert sequencing and chain-termination methods, or de novo sequencing methods including shotgun sequencing and bridge PCR, or next-generation methods including polony sequencing, 454 pyrosequencing, Illumina sequencing, SOLiD sequencing, Ion Torrent semiconductor sequencing, HeliScope single molecule sequencing, SMRT® sequencing, and others.
  • compositions and systems for analyzing individual cells or small populations of cells including the analysis and attribution of nucleic acids from and to these individual cells or cell populations.
  • An aspect of the disclosure provides a method of analyzing nucleic acids from cells that includes providing nucleic acids derived from an individual cell into a discrete partition; generating one or more first nucleic acid sequences derived from the nucleic acids within the discrete partition, which one or more first nucleic acid sequences have attached thereto oligonucleotides that comprise a common nucleic acid barcode sequence; generating a characterization of the one or more first nucleic acid sequences or one or more second nucleic acid sequences derived from the one or more first nucleic acid sequences, which one or more second nucleic acid sequences comprise the common barcode sequence; and identifying the one or more first nucleic acid sequences or one or more second nucleic acid sequences as being derived from the individual cell based, at least in part, upon a presence of the common nucleic acid barcode sequence in the generated characterization.
  • the discrete partition is a discrete droplet.
  • the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition. In some embodiments, at least 10,000, at least 100,000 or at least 500,000 of the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition.
  • the oligonucleotides are provided attached to a bead, where each oligonucleotide on a bead comprises the same barcode sequence, and the bead is co-partitioned with the individual cell into the discrete partition.
  • the oligonucleotides are releasably attached to the bead.
  • the bead comprises a degradable bead.
  • generating the characterization comprises sequencing the one or more first nucleic acid sequences or the one or more second nucleic acid sequences.
  • the method may also include assembling a contiguous nucleic acid sequence for at least a portion of a genome of the individual cell from sequences of the one or more first nucleic acid sequences or the one or more second nucleic acid sequences.
  • the method may also include characterizing the individual cell based upon the nucleic acid sequence for at least a portion of the genome of the individual cell.
  • the nucleic acids are released from the individual cell in the discrete partition.
  • the nucleic acids comprise ribonucleic acid (RNA), such as, for example, messenger RNA (mRNA).
  • RNA ribonucleic acid
  • mRNA messenger RNA
  • generating one or more first nucleic acid sequences includes subjecting the nucleic acids to reverse transcription under conditions that yield the one or more first nucleic acid sequences.
  • the reverse transcription occurs in the discrete partition.
  • the oligonucleotides are provided in the discrete partition and include a poly-T sequence.
  • the reverse transcription comprises hybridizing the poly-T sequence to at least a portion of each of the nucleic acids and extending the poly-T sequence in template directed fashion.
  • the oligonucleotides include an anchoring sequence that facilitates hybridization of the poly-T sequence.
  • the oligonucleotides include a random priming sequence that can be, for example, a random hexamer.
  • the reverse transcription comprises hybridizing the random priming sequence to at least a portion of each of the nucleic acids and extending the random priming sequence in template directed fashion.
  • a given one of the one or more first nucleic acid sequences has sequence complementarity to at least a portion of a given one of the nucleic acids.
  • the discrete partition at most includes the individual cell among a plurality of cells.
  • the oligonucleotides include a unique molecular sequence segment.
  • the method can include identifying an individual nucleic acid sequence of the one or more first nucleic acid sequences or of the one or more second nucleic acid sequences as derived from a given nucleic acid of the nucleic acids based, at least in part, upon a presence of the unique molecular sequence segment.
  • the method includes determining an amount of the given nucleic acid based upon a presence of the unique molecular sequence segment.
  • the method includes, prior to generating the characterization, adding one or more additional sequences to the one or more first nucleic acid sequences to generate the one or more second nucleic acid sequences.
  • the method includes adding a first additional nucleic acid sequence to the one or more first nucleic acid sequences with the aid of a switch oligonucleotide.
  • the switch oligonucleotide hybridizes to at least a portion of the one or more first nucleic acid sequences and is extended in a template directed fashion to couple the first additional nucleic acid sequence to the one or more first nucleic acid sequences.
  • the method includes amplifying the one of more first nucleic acid sequences coupled to the first additional nucleic acid sequence. In some embodiments, the amplifying occurs in the discrete partition. In some embodiments, the amplifying occurs after releasing the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence from the discrete partition.
  • the method includes adding one or more second additional nucleic acid sequences to the one or more first nucleic acid sequences coupled to the first additional sequence to generate the one or more second nucleic acid sequences.
  • the adding the one or more second additional sequences includes removing a portion of each of the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence and coupling thereto the one or more second additional nucleic acid sequences.
  • the removing is completed via shearing of the one or more first nucleic acid sequences coupled (e.g., ligated) to the first additional nucleic acid sequence.
  • the method includes subjecting the one or more first nucleic acid sequences to transcription to generate one or more RNA fragments. In some embodiments, the transcription occurs after releasing the one or more first nucleic acid sequences from the discrete partition. In some embodiments, the oligonucleotides include a T7 promoter sequence. In some embodiments, prior to generating the characterization, the method includes removing a portion of each of the one or more RNA sequences and coupling an additional sequence to the one or more RNA sequences. In some embodiments, prior to generating the characterization, the method includes subjecting the one or more RNA sequences coupled to the additional sequence to reverse transcription to generate the one or more second nucleic acid sequences.
  • the method includes amplifying the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes subjecting the one or more RNA sequences to reverse transcription to generate one or more DNA sequences. In some embodiments, prior to generating the characterization, the method includes removing a portion of each of the one or more DNA sequences and coupling one or more additional sequences to the one or more DNA sequences to generate the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes amplifying the one or more second nucleic acid sequences.
  • the nucleic acids include complementary (cDNA) generated from reverse transcription of RNA from the individual cell.
  • the oligonucleotides include a priming sequence and are provided in the discrete partition.
  • the priming sequence includes a random N-mer.
  • generating the one or more first nucleic acid sequences includes hybridizing the priming sequence to the cDNA and extending the priming sequence in template directed fashion.
  • the discrete partition includes switch oligonucleotides comprising a complement sequence of the oligonucleotides.
  • generating the one or more first nucleic acid sequences includes hybridizing the switch oligonucleotides to at least a portion of nucleic acid fragments derived from the nucleic acids and extending the switch oligonucleotides in template directed fashion.
  • generating the one or more first nucleic acid sequences includes attaching the oligonucleotides to the one or more first nucleic acid sequences.
  • the one or more first nucleic acid sequences are nucleic acid fragments derived from the nucleic acids.
  • generating the one or more first nucleic acid sequences includes coupling (e.g., ligating) the oligonucleotides to the nucleic acids.
  • a plurality of partitions comprises the discrete partition. In some embodiments, the plurality of partitions, on average, comprises less than one cell per partition. In some embodiments, less than 25% of partitions of the plurality of partitions do not comprise a cell. In some embodiments, the plurality of partitions comprises discrete partitions each having at least one partitioned cell. In some embodiments, fewer than 25%, fewer than 20%, fewer than 15%, fewer than 10%, fewer than 5% or fewer than 1% of the discrete partitions comprise more than one cell. In some embodiments, at least a subset of the discrete partitions comprises a bead.
  • the discrete partitions include partitioned nucleic acid barcode sequences. In some embodiments, the discrete partitions include at least 1,000, at least 10,000, or at least 100,000 different partitioned nucleic acid barcode sequences. In some embodiments, the plurality of partitions comprises at least 1,000, at least 10,000 or at least 100,000 partitions.
  • the disclosure provides a method of characterizing cells in a population of a plurality of different cell types that includes providing nucleic acids from individual cells in the population into discrete partitions; attaching oligonucleotides that comprise a common nucleic acid barcode sequence to one or more fragments of the nucleic acids from the individual cells within the discrete partitions, where a plurality of different partitions comprise different common nucleic acid barcode sequences; and characterizing the one or more fragments of the nucleic acids from the plurality of discrete partitions, and attributing the one or more fragments to individual cells based, at least in part, upon the presence of a common barcode sequence; and characterizing a plurality of individual cells in the population based upon the characterization of the one or more fragments in the plurality of discrete partitions.
  • the method includes fragmenting the nucleic acids.
  • the discrete partitions are droplets.
  • the characterizing the one or more fragments of the nucleic acids includes sequencing ribosomal deoxyribonucleic acid from the individual cells, and the characterizing the cells comprises identifying a cell genus, species, strain or variant.
  • the individual cells are derived from a microbiome sample.
  • the individual cells are derived from a human tissue sample.
  • the individual cells are derived from circulating cells in a mammal.
  • the individual cells are derived from a forensic sample.
  • the nucleic acids are released from the individual cells in the discrete partitions.
  • An additional aspect of the disclosure provides a method of characterizing an individual cell or population of cells that includes incubating a cell with a plurality of different cell surface feature binding group types, where each different cell surface binding group type is capable of binding to a different cell surface feature, and where each different cell surface binding group type comprises a reporter oligonucleotide associated therewith, under conditions that allow binding between one or more cell surface feature binding groups and its respective cell surface feature, if present; partitioning the cell into a partition that comprises a plurality of oligonucleotides comprising a barcode sequence; attaching the barcode sequence to oligonucleotide reporter groups present in the partition; sequencing the oligonucleotide reporter groups and attached barcodes; and characterizing cell surface features present on the cell based upon reporter oligonucleotides that are sequenced.
  • An additional aspect of the disclosure provides a composition comprising a plurality of partitions, each of the plurality of partitions comprising an individual cell and a population of oligonucleotides that comprise a common nucleic acid barcode sequence.
  • the plurality of partitions comprises droplets in an emulsion.
  • the population of oligonucleotides within each of the plurality of partitions is coupled to a bead disposed within each of the plurality of partitions.
  • the individual cell has associated therewith a plurality of different cell surface feature binding groups associated with their respective cell surface features and each different type of cell surface feature binding group includes an oligonucleotide reporter group comprising a different nucleotide sequence.
  • the plurality of different cell surface feature binding groups includes a plurality of different antibodies or antibody fragments having a binding affinity for a plurality of different cell surface features.
  • FIG. 1 schematically illustrates a microfluidic channel structure for partitioning individual or small groups of cells.
  • FIG. 2 schematically illustrates a microfluidic channel structure for co-partitioning cells and beads or microcapsules comprising additional reagents.
  • FIG. 3 schematically illustrates an example process for amplification and barcoding of cell's nucleic acids.
  • FIG. 4 provides a schematic illustration of use of barcoding of cell's nucleic acids in attributing sequence data to individual cells or groups of cells for use in their characterization.
  • FIG. 5 provides a schematic illustrating cells associated with labeled cell-binding ligands.
  • FIG. 6 provides a schematic illustration of an example workflow for performing RNA analysis using the methods described herein.
  • FIG. 7 provides a schematic illustration of an example barcoded oligonucleotide structure for use in analysis of ribonucleic (RNA) using the methods described herein.
  • FIG. 8 provides an image of individual cells co-partitioned along with individual barcode bearing beads
  • FIG. 9A-E provides schematic illustration of example barcoded oligonucleotide structures for use in analysis of RNA and example operations for performing RNA analysis.
  • FIG. 10 provides schematic illustration of example barcoded oligonucleotide structure for use in example analysis of RNA and use of a sequence for in vitro transcription.
  • FIG. 11 provides schematic illustration of an example barcoded oligonucleotide structure for use in analysis of RNA and example operations for performing RNA analysis.
  • FIG. 12A-B provides schematic illustration of example barcoded oligonucleotide structure for use in analysis of RNA.
  • FIG. 13A-C provides illustrations of example yields from template switch reverse transcription and PCR in partitions.
  • FIG. 14A-B provides illustrations of example yields from reverse transcription and cDNA amplification in partitions with various cell numbers.
  • FIG. 15 provides an illustration of example yields from cDNA synthesis and real-time quantitative PCR at various input cell concentrations and also the effect of varying primer concentration on yield at a fixed cell input concentration.
  • FIG. 16 provides an illustration of example yields from in vitro transcription.
  • FIG. 17 shows an example computer control system that is programmed or otherwise configured to implement methods provided herein.
  • Advanced nucleic acid sequencing technologies have yielded daunting results in sequencing biological materials, including providing substantial sequence information on individual organisms, and relatively pure biological samples.
  • these systems have not proven effective at being able to identify and characterize sub-populations of cells in biological samples that may represent a smaller minority of the overall make up of the sample, but for which individualized sequence information could prove even more valuable.
  • nucleic acid sequencing technologies derive the nucleic acids that they sequence from collections of cells derived from tissue or other samples.
  • the cells can be processed, en masse, to extract the genetic material that represents an average of the population of cells, which can then be processed into sequencing ready DNA libraries that are configured for a given sequencing technology.
  • the nucleic acids derived from the cells may include DNA, or RNA, including, e.g., mRNA, total RNA, or the like, that may be processed to produce cDNA for sequencing, e.g., using any of a variety of RNA-seq methods.
  • RNA-seq methods e.g.
  • such ensemble sample preparation methods also are, from the outset, predisposed to primarily identifying and characterizing the majority constituents in the sample of cells, and are not designed to be able to pick out the minority constituents, e.g., genetic material contributed by one cell, a few cells, or a small percentage of total cells in the sample.
  • the minority constituents e.g., genetic material contributed by one cell, a few cells, or a small percentage of total cells in the sample.
  • an ensemble approach would be predisposed to presenting potentially grossly inaccurate data from cell populations that are non-homogeneous in terms of expression levels.
  • an ensemble method would indicate low level expression for the entire population.
  • PCR based amplification can preferentially amplify the majority DNA in place of the minority DNA, both as a function of comparative exponential amplification (the repeated doubling of the higher concentration quickly outpaces that of the smaller fraction) and as a function of sequestration of amplification reagents and resources (as the larger fraction is amplified, it preferentially utilizes primers and other amplification reagents).
  • single molecule sequencing systems like the Pacific Biosciences SMRT Sequencing system can have sample input DNA requirements of from 500 nanograms (ng) to upwards of 10 micrograms ( ⁇ g), which is far larger than what can be derived from individual cells or even small subpopulations of cells.
  • ng nanograms
  • ⁇ g micrograms
  • other NGS systems can be optimized for starting amounts of sample DNA in the sample of from approximately 50 ng to about 1 ⁇ g.
  • the methods and systems provide advantages of being able to provide the attribution advantages of the non-amplified single molecule methods with the high throughput of the other next generation systems, with the additional advantages of being able to process and sequence extremely low amounts of input nucleic acids derivable from individual cells or small collections of cells.
  • the methods described herein compartmentalize the analysis of individual cells or small populations of cells, including e.g., nucleic acids from individual cells or small groups of cells, and then allow that analysis to be attributed back to the individual cell or small group of cells from which the nucleic acids were derived.
  • This can be accomplished regardless of whether the cell population represents a 50/50 mix of cell types, a 90/10 mix of cell types, or virtually any ratio of cell types, as well as a complete heterogeneous mix of different cell types, or any mixture between these.
  • Differing cell types may include cells or biologic organisms from different tissue types of an individual, from different individuals, from differing genera, species, strains, variants, or any combination of any or all of the foregoing.
  • differing cell types may include normal and tumor tissue from an individual, multiple different bacterial species, strains and/or variants from environmental, forensic, microbiome or other samples, or any of a variety of other mixtures of cell types.
  • the methods and systems described herein provide for the compartmentalization, depositing or partitioning of the nucleic acid contents of individual cells from a sample material containing cells, into discrete compartments or partitions (referred to interchangeably herein as partitions), where each partition maintains separation of its own contents from the contents of other partitions.
  • Unique identifiers e.g., barcodes
  • the partitions refer to containers or vessels (such as wells, microwells, tubes, through ports in nanoarray substrates, e.g., BioTrove nanoarrays, or other containers).
  • the compartments or partitions comprise partitions that are flowable within fluid streams.
  • These partitions may be comprised of, e.g., microcapsules or micro-vesicles that have an outer barrier surrounding an inner fluid center or core, or they may be a porous matrix that is capable of entraining and/or retaining materials within its matrix.
  • these partitions comprise droplets of aqueous fluid within a non-aqueous continuous phase, e.g., an oil phase.
  • allocating individual cells to discrete partitions may generally be accomplished by introducing a flowing stream of cells in an aqueous fluid into a flowing stream of a non-aqueous fluid, such that droplets are generated at the junction of the two streams.
  • aqueous cell-containing stream at a certain concentration level of cells, one can control the level of occupancy of the resulting partitions in terms of numbers of cells.
  • the flows and channel architectures are controlled as to ensure a desired number of singly occupied partitions, less than a certain level of unoccupied partitions and less than a certain level of multiply occupied partitions.
  • the systems and methods are used to ensure that the substantial majority of occupied partitions (partitions containing one or more microcapsules) include no more than 1 cell per occupied partition.
  • the partitioning process is controlled such that fewer than 25% of the occupied partitions contain more than one cell, and in many cases, fewer than 20% of the occupied partitions have more than one cell, while in some cases, fewer than 10% or even fewer than 5% of the occupied partitions include more than one cell per partition.
  • the flow of one or more of the cells, or other fluids directed into the partitioning zone are controlled such that, in many cases, no more than 50% of the generated partitions are unoccupied, i.e., including less than 1 cell, no more than 25% of the generated partitions, no more than 10% of the generated partitions, may be unoccupied. Further, in some aspects, these flows are controlled so as to present non-poissonian distribution of single occupied partitions while providing lower levels of unoccupied partitions.
  • the above noted ranges of unoccupied partitions can be achieved while still providing any of the single occupancy rates described above.
  • the use of the systems and methods described herein creates resulting partitions that have multiple occupancy rates of from less than 25%, less than 20%, less than 15%, less than 10%, and in many cases, less than 5%, while having unoccupied partitions of from less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, and in some cases, less than 5%.
  • the above-described occupancy rates are also applicable to partitions that include both cells and beads carrying the barcode oligonucleotides.
  • a substantial percentage of the overall occupied partitions will include both a bead and a cell.
  • At least 50% of the partitions can be so occupied, at least 60%, at least 70%, at least 80% or even at least 90% of the partitions can be so occupied.
  • multiply occupied partitions e.g., containing two, three, four or more cells and/or beads within a single partition.
  • the flow characteristics of the cell and/or bead containing fluids and partitioning fluids may be controlled to provide for such multiply occupied partitions.
  • the flow parameters may be controlled to provide a desired occupancy rate at greater than 50% of the partitions, greater than 75%, and in some cases greater than 80%, 90%, 95%, or higher.
  • the multiple beads within a single partition may comprise different reagents associated therewith.
  • the flow and frequency of the different beads into the channel or junction may be controlled to provide for the desired ratio of microcapsules from each source, while ensuring the desired pairing or combination of such beads into a partition with the desired number of cells.
  • the partitions described herein are often characterized by having extremely small volumes, e.g., less than 10 less than 5 ⁇ L, less than 1 ⁇ L, less than 900 picoliters (pL), less than 800 pL, less than 700 pL, less than 600 pL, less than 500 pL, less than 400 pL, less than 300 pL, less than 200 pL, less than 100 pL, less than 50 pL, less than 20 pL, less than 10 pL, less than 1 pL, less than 500 nanoliters (nL), or even less than 100 nL, 50 nL, or even less.
  • extremely small volumes e.g., less than 10 less than 5 ⁇ L, less than 1 ⁇ L, less than 900 picoliters (pL), less than 800 pL, less than 700 pL, less than 600 pL, less than 500 pL, less than 400 pL, less than 300 pL, less than 200 pL, less than
  • the droplets may have overall volumes that are less than 1000 pL, less than 900 pL, less than 800 pL, less than 700 pL, less than 600 pL, less than 500 pL, less than 400 pL, less than 300 pL, less than 200 pL, less than 100 pL, less than 50 pL, less than 20 pL, less than 10 pL, or even less than 1 pL.
  • sample fluid volume e.g., including co-partitioned cells
  • the sample fluid volume within the partitions may be less than 90% of the above described volumes, less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, or even less than 10% the above described volumes.
  • partitioning species may generate a population of partitions.
  • any suitable number of partitions can be generated to generate the population of partitions.
  • a population of partitions may be generated that comprises at least about 1,000 partitions, at least about 5,000 partitions, at least about 10,000 partitions, at least about 50,000 partitions, at least about 100,000 partitions, at least about 500,000 partitions, at least about 1,000,000 partitions, at least about 5,000,000 partitions at least about 10,000,000 partitions, at least about 50,000,000 partitions, at least about 100,000,000 partitions, at least about 500,000,000 partitions or at least about 1,000,000,000 partitions.
  • the population of partitions may comprise both unoccupied partitions (e.g., empty partitions) and occupied partitions
  • microfluidic channel networks are particularly suited for generating partitions as described herein.
  • microfluidic devices include those described in detail in Provisional U.S. Patent Application No. 61/977,804, filed Apr. 4, 2014, the full disclosure of which is incorporated herein by reference in its entirety for all purposes.
  • Alternative mechanisms may also be employed in the partitioning of individual cells, including porous membranes through which aqueous mixtures of cells are extruded into non-aqueous fluids.
  • Such systems are generally available from, e.g., Nanomi, Inc.
  • FIG. 1 An example of a simplified microfluidic channel structure for partitioning individual cells is illustrated in FIG. 1 .
  • the majority of occupied partitions include no more than one cell per occupied partition and, in some cases, some of the generated partitions are unoccupied.
  • some of the occupied partitions may include more than one cell.
  • the partitioning process may be controlled such that fewer than 25% of the occupied partitions contain more than one cell, and in many cases, fewer than 20% of the occupied partitions have more than one cell, while in some cases, fewer than 10% or even fewer than 5% of the occupied partitions include more than one cell per partition.
  • the channel structure can include channel segments 102 , 104 , 106 and 108 communicating at a channel junction 110 .
  • a first aqueous fluid 112 that includes suspended cells 114 may be transported along channel segment 102 into junction 110 , while a second fluid 116 that is immiscible with the aqueous fluid 112 is delivered to the junction 110 from channel segments 104 and 106 to create discrete droplets 118 of the aqueous fluid including individual cells 114 , flowing into channel segment 108 .
  • this second fluid 116 comprises an oil, such as a fluorinated oil, that includes a fluorosurfactant for stabilizing the resulting droplets, e g, inhibiting subsequent coalescence of the resulting droplets.
  • a fluorinated oil such as a fluorinated oil
  • fluorosurfactant for stabilizing the resulting droplets, e g, inhibiting subsequent coalescence of the resulting droplets.
  • cells may be encapsulated within a microcapsule that comprises an outer shell or layer or porous matrix in which is entrained one or more individual cells or small groups of cells, and may include other reagents.
  • Encapsulation of cells may be carried out by a variety of processes. In general, such processes combine an aqueous fluid containing the cells to be analyzed with a polymeric precursor material that may be capable of being formed into a gel or other solid or semi-solid matrix upon application of a particular stimulus to the polymer precursor.
  • Such stimuli include, e.g., thermal stimuli (either heating or cooling), photo-stimuli (e.g., through photo-curing), chemical stimuli (e.g., through crosslinking, polymerization initiation of the precursor (e.g., through added initiators), or the like.
  • microcapsules comprising cells may be carried out by a variety of methods.
  • air knife droplet or aerosol generators may be used to dispense droplets of precursor fluids into gelling solutions in order to form microcapsules that include individual cells or small groups of cells.
  • membrane based encapsulation systems such as those available from, e.g., Nanomi, Inc., may be used to generate microcapsules as described herein.
  • microfluidic systems like that shown in FIG. 1 may be readily used in encapsulating cells as described herein.
  • FIG. 1 may be readily used in encapsulating cells as described herein.
  • non-aqueous fluid 116 may also include an initiator to cause polymerization and/or crosslinking of the polymer precursor to form the microcapsule that includes the entrained cells.
  • initiator to cause polymerization and/or crosslinking of the polymer precursor to form the microcapsule that includes the entrained cells.
  • particularly useful polymer precursor/initiator pairs include those described in, e.g., U.S. Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, the full disclosures of which are hereby incorporated herein by reference in their entireties for all purposes.
  • the activation agent may comprise a cross-linking agent, or a chemical that activates a cross-linking agent within the formed droplets.
  • the activation agent may comprise a polymerization initiator.
  • the polymer precursor comprises a mixture of acrylamide monomer with a N,N′-bis-(acryloyl)cystamine (BAC) comonomer
  • an agent such as tetraethylmethylenediamine (TEMED) may be provided within the second fluid streams in channel segments 104 and 106 , which initiates the copolymerization of the acrylamide and BAC into a cross-linked polymer network or, hydrogel.
  • TEMED tetraethylmethylenediamine
  • the TEMED may diffuse from the second fluid 116 into the aqueous first fluid 112 comprising the linear polyacrylamide, which will activate the crosslinking of the polyacrylamide within the droplets, resulting in the formation of the gel, e.g., hydrogel, microcapsules 118 , as solid or semi-solid beads or particles entraining the cells 114 .
  • the gel e.g., hydrogel, microcapsules 118
  • solid or semi-solid beads or particles entraining the cells 114 e.g., hydrogel, microcapsules 118
  • other ‘activatable’ encapsulation compositions may also be employed in the context of the methods and compositions described herein.
  • encapsulated cells can be selectively releasable from the microcapsule, e.g., through passage of time, or upon application of a particular stimulus, that degrades the microcapsule sufficiently to allow the cell, or its contents to be released from the microcapsule, e.g., into an additional partition, such as a droplet.
  • degradation of the microcapsule may be accomplished through the introduction of an appropriate reducing agent, such as DTT or the like, to cleave disulfide bonds that cross link the polymer matrix
  • an appropriate reducing agent such as DTT or the like
  • encapsulated cells or cell populations provide certain potential advantages of being storable, and more portable than droplet based partitioned cells. Furthermore, in some cases, it may be desirable to allow cells to be analyzed to incubate for a select period of time, in order to characterize changes in such cells over time, either in the presence or absence of different stimuli.
  • encapsulation of individual cells may allow for longer incubation than simple partitioning in emulsion droplets, although in some cases, droplet partitioned cells may also be incubated form different periods of time, e.g., at least 10 seconds, at least 30 seconds, at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 5 hours, or at least 10 hours or more.
  • the encapsulation of cells may constitute the partitioning of the cells into which other reagents are co-partitioned.
  • encapsulated cells may be readily deposited into other partitions, e.g., droplets, as described above.
  • the cells may be partitioned along with lysis reagents in order to release the contents of the cells within the partition.
  • the lysis agents can be contacted with the cell suspension concurrently with, or immediately prior to the introduction of the cells into the partitioning junction/droplet generation zone, e.g., through an additional channel or channels upstream of channel junction 110 .
  • lysis agents include bioactive reagents, such as lysis enzymes that are used for lysis of different cell types, e.g., gram positive or negative bacteria, plants, yeast, mammalian, etc., such as lysozymes, achromopeptidase, lysostaphin, labiase, kitalase, lyticase, and a variety of other lysis enzymes available from, e.g., Sigma-Aldrich, Inc. (St Louis, Mo.), as well as other commercially available lysis enzymes.
  • Other lysis agents may additionally or alternatively be co-partitioned with the cells to cause the release of the cell's contents into the partitions.
  • surfactant based lysis solutions may be used to lyse cells, although these may be less desirable for emulsion based systems where the surfactants can interfere with stable emulsions.
  • lysis solutions may include non-ionic surfactants such as, for example, TritonX-100 and Tween 20.
  • lysis solutions may include ionic surfactants such as, for example, sarcosyl and sodium dodecyl sulfate (SDS).
  • lysis methods that employ other methods may be used, such as electroporation, thermal, acoustic or mechanical cellular disruption may also be used in certain cases, e.g., non-emulsion based partitioning such as encapsulation of cells that may be in addition to or in place of droplet partitioning, where any pore size of the encapsulate is sufficiently small to retain nucleic acid fragments of a desired size, following cellular disruption.
  • non-emulsion based partitioning such as encapsulation of cells that may be in addition to or in place of droplet partitioning, where any pore size of the encapsulate is sufficiently small to retain nucleic acid fragments of a desired size, following cellular disruption.
  • reagents can also be co-partitioned with the cells, including, for example, DNase and RNase inactivating agents or inhibitors, such as proteinase K, chelating agents, such as EDTA, and other reagents employed in removing or otherwise reducing negative activity or impact of different cell lysate components on subsequent processing of nucleic acids.
  • DNase and RNase inactivating agents or inhibitors such as proteinase K
  • chelating agents such as EDTA
  • the cells may be exposed to an appropriate stimulus to release the cells or their contents from a co-partitioned microcapsule.
  • a chemical stimulus may be co-partitioned along with an encapsulated cell to allow for the degradation of the microcapsule and release of the cell or its contents into the larger partition.
  • this stimulus may be the same as the stimulus described elsewhere herein for release of oligonucleotides from their respective bead or partition.
  • this may be a different and non-overlapping stimulus, in order to allow an encapsulated cell to be released into a partition at a different time from the release of oligonucleotides into the same partition.
  • Additional reagents may also be co-partitioned with the cells, such as endonucleases to fragment the cell's DNA, DNA polymerase enzymes and dNTPs used to amplify the cell's nucleic acid fragments and to attach the barcode oligonucleotides to the amplified fragments.
  • Additional reagents may also include reverse transcriptase enzymes, including enzymes with terminal transferase activity, primers and oligonucleotides, and switch oligonucleotides (also referred to herein as “switch oligos”) which can be used for template switching. In some cases, template switching can be used to increase the length of a cDNA.
  • cDNA can be generated from reverse transcription of a template, e.g., cellular mRNA, where a reverse transcriptase with terminal transferase activity can add additional nucleotides, e.g., polyC, to the cDNA that are not encoded by the template, such, as at an end of the cDNA.
  • Switch oligos can include sequences complementary to the additional nucleotides, e.g. polyG.
  • the additional nucleotides (e.g., polyC) on the cDNA can hybridize to the sequences complementary to the additional nucleotides (e.g., polyG) on the switch oligo, whereby the switch oligo can be used by the reverse transcriptase as template to further extend the cDNA.
  • Switch oligos may comprise deoxyribonucleic acids, ribonucleic acids, modified nucleic acids including locked nucleic acids (LNA), or any combination.
  • the length of a switch oligo may be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
  • the length of a switch oligo may be at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
  • the length of a switch oligo may be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
  • the nucleic acids contained therein may be further processed within the partitions.
  • the nucleic acid contents of individual cells are generally provided with unique identifiers such that, upon characterization of those nucleic acids they may be attributed as having been derived from the same cell or cells.
  • the ability to attribute characteristics to individual cells or groups of cells is provided by the assignment of unique identifiers specifically to an individual cell or groups of cells, which is another advantageous aspect of the methods and systems described herein.
  • unique identifiers e.g., in the form of nucleic acid barcodes are assigned or associated with individual cells or populations of cells, in order to tag or label the cell's components (and as a result, its characteristics) with the unique identifiers.
  • These unique identifiers are then used to attribute the cell's components and characteristics to an individual cell or group of cells. In some aspects, this is carried out by co-partitioning the individual cells or groups of cells with the unique identifiers.
  • the unique identifiers are provided in the form of oligonucleotides that comprise nucleic acid barcode sequences that may be attached to or otherwise associated with the nucleic acid contents of individual cells, or to other components of the cells, and particularly to fragments of those nucleic acids.
  • the oligonucleotides are partitioned such that as between oligonucleotides in a given partition, the nucleic acid barcode sequences contained therein are the same, but as between different partitions, the oligonucleotides can, and do have differing barcode sequences, or at least represent a large number of different barcode sequences across all of the partitions in a given analysis.
  • only one nucleic acid barcode sequence can be associated with a given partition, although in some cases, two or more different barcode sequences may be present.
  • the nucleic acid barcode sequences can include from 6 to about 20 or more nucleotides within the sequence of the oligonucleotides.
  • the length of a barcode sequence may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer.
  • the length of a barcode sequence may be at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer.
  • the length of a barcode sequence may be at most 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or shorter.
  • nucleotides may be completely contiguous, i.e., in a single stretch of adjacent nucleotides, or they may be separated into two or more separate subsequences that are separated by 1 or more nucleotides.
  • separated barcode subsequences can be from about 4 to about 16 nucleotides in length.
  • the barcode subsequence may be 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer.
  • the barcode subsequence may be at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer.
  • the barcode subsequence may be at most 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or shorter.
  • the co-partitioned oligonucleotides can also comprise other functional sequences useful in the processing of the nucleic acids from the co-partitioned cells. These sequences include, e.g., targeted or random/universal amplification primer sequences for amplifying the genomic DNA from the individual cells within the partitions while attaching the associated barcode sequences, sequencing primers or primer recognition sites, hybridization or probing sequences, e.g., for identification of presence of the sequences or for pulling down barcoded nucleic acids, or any of a number of other potential functional sequences.
  • sequences include, e.g., targeted or random/universal amplification primer sequences for amplifying the genomic DNA from the individual cells within the partitions while attaching the associated barcode sequences, sequencing primers or primer recognition sites, hybridization or probing sequences, e.g., for identification of presence of the sequences or for pulling down barcoded nucleic acids, or any of a number of other potential functional sequences.
  • oligonucleotides may also be employed, including, e.g., coalescence of two or more droplets, where one droplet contains oligonucleotides, or microdispensing of oligonucleotides into partitions, e.g., droplets within microfluidic systems.
  • beads, microparticles or microcapsules that each include large numbers of the above described oligonucleotides releasably attached to the beads, where all of the oligonucleotides attached to a particular bead will include the same nucleic acid barcode sequence, but where a large number of diverse barcode sequences are represented across the population of beads used.
  • hydrogel beads e.g., comprising polyacrylamide polymer matrices
  • hydrogel beads are used as a solid support and delivery vehicle for the oligonucleotides into the partitions, as they are capable of carrying large numbers of oligonucleotide molecules, and may be configured to release those oligonucleotides upon exposure to a particular stimulus, as described elsewhere herein.
  • the population of beads will provide a diverse barcode sequence library that includes at least 1,000 different barcode sequences, at least 5,000 different barcode sequences, at least 10,000 different barcode sequences, at least at least 50,000 different barcode sequences, at least 100,000 different barcode sequences, at least 1,000,000 different barcode sequences, at least 5,000,000 different barcode sequences, or at least 10,000,000 different barcode sequences. Additionally, each bead can be provided with large numbers of oligonucleotide molecules attached.
  • the number of molecules of oligonucleotides including the barcode sequence on an individual bead can be at least 1,000 oligonucleotide molecules, at least 5,000 oligonucleotide molecules, at least 10,000 oligonucleotide molecules, at least 50,000 oligonucleotide molecules, at least 100,000 oligonucleotide molecules, at least 500,000 oligonucleotides, at least 1,000,000 oligonucleotide molecules, at least 5,000,000 oligonucleotide molecules, at least 10,000,000 oligonucleotide molecules, at least 50,000,000 oligonucleotide molecules, at least 100,000,000 oligonucleotide molecules, and in some cases at least 1 billion oligonucleotide molecules.
  • the resulting population of partitions can also include a diverse barcode library that includes at least 1,000 different barcode sequences, at least 5,000 different barcode sequences, at least 10,000 different barcode sequences, at least at least 50,000 different barcode sequences, at least 100,000 different barcode sequences, at least 1,000,000 different barcode sequences, at least 5,000,000 different barcode sequences, or at least 10,000,000 different barcode sequences.
  • each partition of the population can include at least 1,000 oligonucleotide molecules, at least 5,000 oligonucleotide molecules, at least 10,000 oligonucleotide molecules, at least 50,000 oligonucleotide molecules, at least 100,000 oligonucleotide molecules, at least 500,000 oligonucleotides, at least 1,000,000 oligonucleotide molecules, at least 5,000,000 oligonucleotide molecules, at least 10,000,000 oligonucleotide molecules, at least 50,000,000 oligonucleotide molecules, at least 100,000,000 oligonucleotide molecules, and in some cases at least 1 billion oligonucleotide molecules.
  • a mixed, but known barcode sequences set may provide greater assurance of identification in the subsequent processing, e.g., by providing a stronger address or attribution of the barcodes to a given partition, as a duplicate or independent confirmation of the output from a given partition.
  • the oligonucleotides are releasable from the beads upon the application of a particular stimulus to the beads.
  • the stimulus may be a photo-stimulus, e.g., through cleavage of a photo-labile linkage that releases the oligonucleotides.
  • a thermal stimulus may be used, where elevation of the temperature of the beads environment will result in cleavage of a linkage or other release of the oligonucleotides form the beads.
  • a chemical stimulus is used that cleaves a linkage of the oligonucleotides to the beads, or otherwise results in release of the oligonucleotides from the beads.
  • compositions include the polyacrylamide matrices described above for encapsulation of cells, and may be degraded for release of the attached oligonucleotides through exposure to a reducing agent, such as DTT.
  • the beads including the attached oligonucleotides are co-partitioned with the individual cells, such that a single bead and a single cell are contained within an individual partition.
  • single cell/single bead occupancy is the most desired state, it will be appreciated that multiply occupied partitions (either in terms of cells, beads or both), or unoccupied partitions (either in terms of cells, beads or both) will often be present.
  • An example of a microfluidic channel structure for co-partitioning cells and beads comprising barcode oligonucleotides is schematically illustrated in FIG. 2 .
  • a substantial percentage of the overall occupied partitions will include both a bead and a cell and, in some cases, some of the partitions that are generated will be unoccupied. In some cases, some of the partitions may have beads and cells that are not partitioned 1:1. In some cases, it may be desirable to provide multiply occupied partitions, e.g., containing two, three, four or more cells and/or beads within a single partition.
  • channel segments 202 , 204 , 206 , 208 and 210 are provided in fluid communication at channel junction 212 .
  • An aqueous stream comprising the individual cells 214 , is flowed through channel segment 202 toward channel junction 212 . As described above, these cells may be suspended within an aqueous fluid, or may have been pre-encapsulated, prior to the partitioning process.
  • an aqueous stream comprising the barcode carrying beads 216 , is flowed through channel segment 204 toward channel junction 212 .
  • a non-aqueous partitioning fluid 216 is introduced into channel junction 212 from each of side channels 206 and 208 , and the combined streams are flowed into outlet channel 210 .
  • the two combined aqueous streams from channel segments 202 and 204 are combined, and partitioned into droplets 218 , that include co-partitioned cells 214 and beads 216 .
  • each of the fluids combining at channel junction 212 can optimize the combination and partitioning to achieve a desired occupancy level of beads, cells or both, within the partitions 218 that are generated.
  • lysis agents e.g., cell lysis enzymes
  • the bead stream e.g., flowing through channel segment 204
  • Additional reagents may also be added to the partition in this configuration, such as endonucleases to fragment the cell's DNA, DNA polymerase enzyme and dNTPs used to amplify the cell's nucleic acid fragments and to attach the barcode oligonucleotides to the amplified fragments.
  • a chemical stimulus such as DTT, may be used to release the barcodes from their respective beads into the partition.
  • the chemical stimulus along with the cell-containing stream in channel segment 202 , such that release of the barcodes only occurs after the two streams have been combined, e.g., within the partitions 218 .
  • introduction of a common chemical stimulus e.g., that both releases the oligonucleotides form their beads, and releases cells from their microcapsules may generally be provided from a separate additional side channel (not shown) upstream of or connected to channel junction 212 .
  • reagents may be co-partitioned along with the cells, beads, lysis agents and chemical stimuli, including, for example, protective reagents, like proteinase K, chelators, nucleic acid extension, replication, transcription or amplification reagents such as polymerases, reverse transcriptases, transposases which can be used for transposon based methods (e.g., Nextera), nucleoside triphosphates or NTP analogues, primer sequences and additional cofactors such as divalent metal ions used in such reactions, ligation reaction reagents, such as ligase enzymes and ligation sequences, dyes, labels, or other tagging reagents.
  • protective reagents like proteinase K, chelators, nucleic acid extension, replication, transcription or amplification reagents such as polymerases, reverse transcriptases, transposases which can be used for transposon based methods (e.g., Nextera), nucleoside triphosphat
  • the channel networks can be fluidly coupled to appropriate fluidic components.
  • the inlet channel segments e.g., channel segments 202 , 204 , 206 and 208 are fluidly coupled to appropriate sources of the materials they are to deliver to channel junction 212 .
  • channel segment 202 will be fluidly coupled to a source of an aqueous suspension of cells 214 to be analyzed, while channel segment 204 would be fluidly coupled to a source of an aqueous suspension of beads 216 .
  • Channel segments 206 and 208 would then be fluidly connected to one or more sources of the non-aqueous fluid.
  • outlets may include any of a variety of different fluidic components, from simple reservoirs defined in or connected to a body structure of a microfluidic device, to fluid conduits that deliver fluids from off-device sources, manifolds, or the like.
  • the outlet channel segment 210 may be fluidly coupled to a receiving vessel or conduit for the partitioned cells. Again, this may be a reservoir defined in the body of a microfluidic device, or it may be a fluidic conduit for delivering the partitioned cells to a subsequent process operation, instrument or component.
  • FIG. 8 shows images of individual Jurkat cells co-partitioned along with barcode oligonucleotide containing beads in aqueous droplets in an aqueous in oil emulsion.
  • individual cells may be readily co-partitioned with individual beads.
  • optimization of individual cell loading may be carried out by a number of methods, including by providing dilutions of cell populations into the microfluidic system in order to achieve the desired cell loading per partition as described elsewhere herein.
  • fragmentation may be accomplished through the co-partitioning of shearing enzymes, such as endonucleases, in order to fragment the nucleic acids into smaller fragments.
  • shearing enzymes such as endonucleases
  • endonucleases may include restriction endonucleases, including type II and type IIs restriction endonucleases as well as other nucleic acid cleaving enzymes, such as nicking endonucleases, and the like.
  • fragmentation may not be desired, and full length nucleic acids may be retained within the partitions, or in the case of encapsulated cells or cell contents, fragmentation may be carried out prior to partitioning, e.g., through enzymatic methods, e.g., those described herein, or through mechanical methods, e.g., mechanical, acoustic or other shearing.
  • the oligonucleotides disposed upon the bead may be used to barcode and amplify fragments of those nucleic acids.
  • a particularly elegant process for use of these barcode oligonucleotides in amplifying and barcoding fragments of sample nucleic acids is described in detail in U.S. Provisional Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, and previously incorporated by reference.
  • the oligonucleotides present on the beads that are co-partitioned with the cells are released from their beads into the partition with the cell's nucleic acids.
  • the oligonucleotides can include, along with the barcode sequence, a primer sequence at its 5′ end.
  • This primer sequence may be a random oligonucleotide sequence intended to randomly prime numerous different regions on the cell's nucleic acids, or it may be a specific primer sequence targeted to prime upstream of a specific targeted region of the cell's genome.
  • the primer portion of the oligonucleotide can anneal to a complementary region of the cell's nucleic acid.
  • Extension reaction reagents e.g., DNA polymerase, nucleoside triphosphates, co-factors (e.g., Mg2+ or Mn2+), that are also co-partitioned with the cells and beads, then extend the primer sequence using the cell's nucleic acid as a template, to produce a complementary fragment to the strand of the cell's nucleic acid to which the primer annealed, which complementary fragment includes the oligonucleotide and its associated barcode sequence.
  • Annealing and extension of multiple primers to different portions of the cell's nucleic acids will result in a large pool of overlapping complementary fragments of the nucleic acid, each possessing its own barcode sequence indicative of the partition in which it was created.
  • these complementary fragments may themselves be used as a template primed by the oligonucleotides present in the partition to produce a complement of the complement that again, includes the barcode sequence.
  • this replication process is configured such that when the first complement is duplicated, it produces two complementary sequences at or near its termini, to allow formation of a hairpin structure or partial hairpin structure, the reduces the ability of the molecule to be the basis for producing further iterative copies.
  • the cell's nucleic acids may include any desired nucleic acids within the cell including, for example, the cell's DNA, e.g., genomic DNA, RNA, e.g., messenger RNA, and the like.
  • the methods and systems described herein are used in characterizing expressed mRNA, including, e.g., the presence and quantification of such mRNA, and may include RNA sequencing processes as the characterization process.
  • the reagents partitioned along with the cells may include reagents for the conversion of mRNA into cDNA, e.g., reverse transcriptase enzymes and reagents, to facilitate sequencing processes where DNA sequencing is employed.
  • the nucleic acids to be characterized comprise RNA, e.g., mRNA, schematic illustration of one example of this is shown in FIG. 3 .
  • oligonucleotides that include a barcode sequence are co-partitioned in, e.g., a droplet 302 in an emulsion, along with a sample nucleic acid 304 .
  • the oligonucleotides 308 may be provided on a bead 306 that is co-partitioned with the sample nucleic acid 304 , which oligonucleotides are releasable from the bead 306 , as shown in panel A.
  • the oligonucleotides 308 include a barcode sequence 312 , in addition to one or more functional sequences, e.g., sequences 310 , 314 and 316 .
  • oligonucleotide 308 is shown as comprising barcode sequence 312 , as well as sequence 310 that may function as an attachment or immobilization sequence for a given sequencing system, e.g., a P5 sequence used for attachment in flow cells of an Illumina Hiseq® or Miseq® system.
  • the oligonucleotides also include a primer sequence 316 , which may include a random or targeted N-mer for priming replication of portions of the sample nucleic acid 304 .
  • oligonucleotide 308 is also included within oligonucleotide 308 .
  • sequence 314 may provide a sequencing priming region, such as a “read1” or R1 priming region, that is used to prime polymerase mediated, template directed sequencing by synthesis reactions in sequencing systems.
  • the functional sequences may be selected to be compatible with a variety of different sequencing systems, e.g., 454 Sequencing, Ion Torrent Proton or PGM, Illumina X10, etc., and the requirements thereof.
  • the barcode sequence 312 , immobilization sequence 310 and R1 sequence 314 may be common to all of the oligonucleotides attached to a given bead.
  • the primer sequence 316 may vary for random N-mer primers, or may be common to the oligonucleotides on a given bead for certain targeted applications.
  • the functional sequences may include primer sequences useful for RNA-seq applications.
  • the oligonucleotides may include poly-T primers for priming reverse transcription of RNA for RNA-seq.
  • oligonucleotides in a given partition e.g., included on an individual bead, may include multiple types of primer sequences in addition to the common barcode sequences, such as both DNA-sequencing and RNA sequencing primers, e.g., poly-T primer sequences included within the oligonucleotides coupled to the bead.
  • a single partitioned cell may be both subjected to DNA and RNA sequencing processes.
  • the oligonucleotides can prime the sample nucleic acid as shown in panel B, which allows for extension of the oligonucleotides 308 and 308 a using polymerase enzymes and other extension reagents also co-partitioned with the bead 306 and sample nucleic acid 304 .
  • panel C following extension of the oligonucleotides that, for random N-mer primers, would anneal to multiple different regions of the sample nucleic acid 304 ; multiple overlapping complements or fragments of the nucleic acid are created, e.g., fragments 318 and 320 .
  • sequence portions that are complementary to portions of sample nucleic acid e.g., sequences 322 and 324
  • these constructs are generally referred to herein as comprising fragments of the sample nucleic acid 304 , having the attached barcode sequences.
  • the barcoded nucleic acid fragments may then be subjected to characterization, e.g., through sequence analysis, or they may be further amplified in the process, as shown in panel D.
  • additional oligonucleotides e.g., oligonucleotide 308 b , also released from bead 306 , may prime the fragments 318 and 320 . This shown in for fragment 318 .
  • the oligonucleotide anneals with the fragment 318 , and is extended to create a complement 326 to at least a portion of fragment 318 which includes sequence 328 , that comprises a duplicate of a portion of the sample nucleic acid sequence. Extension of the oligonucleotide 308 b continues until it has replicated through the oligonucleotide portion 308 of fragment 318 .
  • the oligonucleotides may be configured to prompt a stop in the replication by the polymerase at a desired point, e.g., after replicating through sequences 316 and 314 of oligonucleotide 308 that is included within fragment 318 .
  • this may be accomplished by different methods, including, for example, the incorporation of different nucleotides and/or nucleotide analogues that are not capable of being processed by the polymerase enzyme used.
  • this may include the inclusion of uracil containing nucleotides within the sequence region 312 to prevent a non-uracil tolerant polymerase to cease replication of that region.
  • a fragment 326 is created that includes the full-length oligonucleotide 308 b at one end, including the barcode sequence 312 , the attachment sequence 310 , the R1 primer region 314 , and the random N-mer sequence 316 b .
  • the complement 316 ′ to the random N-mer of the first oligonucleotide 308 may be included the complement 316 ′ to the random N-mer of the first oligonucleotide 308 , as well as a complement to all or a portion of the R1 sequence, shown as sequence 314 ′.
  • the R1 sequence 314 and its complement 314 ′ are then able to hybridize together to form a partial hairpin structure 328 .
  • sequence 316 ′ which is the complement to random N-mer 316
  • sequence 316 b which is the complement to random N-mer 316
  • the N-mers would be common among oligonucleotides within a given partition.
  • partial hairpin structures By forming these partial hairpin structures, it allows for the removal of first level duplicates of the sample sequence from further replication, e.g., preventing iterative copying of copies.
  • the partial hairpin structure also provides a useful structure for subsequent processing of the created fragments, e.g., fragment 326 .
  • the amplification of the cell's nucleic acids is carried out until the barcoded overlapping fragments within the partition constitute at least 1 ⁇ coverage of the particular portion or all of the cell's genome, at least 2 ⁇ , at least 3 ⁇ , at least 4 ⁇ , at least 5 ⁇ , at least 10 ⁇ , at least 20 ⁇ , at least 40 ⁇ or more coverage of the genome or its relevant portion of interest.
  • barcoded fragments may be directly sequenced on an appropriate sequencing system, e.g., an Illumina Hiseq®, Miseq® or X10 system, or they may be subjected to additional processing, such as further amplification, attachment of other functional sequences, e.g., second sequencing primers, for reverse reads, sample index sequences, and the like.
  • an appropriate sequencing system e.g., an Illumina Hiseq®, Miseq® or X10 system
  • additional processing such as further amplification, attachment of other functional sequences, e.g., second sequencing primers, for reverse reads, sample index sequences, and the like.
  • All of the fragments from multiple different partitions may then be pooled for sequencing on high throughput sequencers as described herein, where the pooled fragments comprise a large number of fragments derived from the nucleic acids of different cells or small cell populations, but where the fragments from the nucleic acids of a given cell will share the same barcode sequence.
  • the sequence of that fragment may be attributed back to that cell or those cells based upon the presence of the barcode, which will also aid in applying the various sequence fragments from multiple partitions to assembly of individual genomes for different cells. This is schematically illustrated in FIG. 4 .
  • a first nucleic acid 404 from a first cell 400 , and a second nucleic acid 406 from a second cell 402 are each partitioned along with their own sets of barcode oligonucleotides as described above.
  • the nucleic acids may comprise a chromosome, entire genome or other large nucleic acid from the cells.
  • each cell's nucleic acids 404 and 406 is then processed to separately provide overlapping set of second fragments of the first fragment(s), e.g., second fragment sets 408 and 410 .
  • This processing also provides the second fragments with a barcode sequence that is the same for each of the second fragments derived from a particular first fragment.
  • the barcode sequence for second fragment set 408 is denoted by “1” while the barcode sequence for fragment set 410 is denoted by “2”.
  • a diverse library of barcodes may be used to differentially barcode large numbers of different fragment sets. However, it is not necessary for every second fragment set from a different first fragment to be barcoded with different barcode sequences. In fact, in many cases, multiple different first fragments may be processed concurrently to include the same barcode sequence. Diverse barcode libraries are described in detail elsewhere herein.
  • the barcoded fragments may then be pooled for sequencing using, for example, sequence by synthesis technologies available from Illumina or Ion Torrent division of Thermo-Fisher, Inc.
  • sequence reads 412 can be attributed to their respective fragment set, e.g., as shown in aggregated reads 414 and 416 , at least in part based upon the included barcodes, and in some cases, in part based upon the sequence of the fragment itself.
  • the attributed sequence reads for each fragment set are then assembled to provide the assembled sequence for each cell's nucleic acids, e.g., sequences 418 and 420 , which in turn, may be attributed to individual cells, e.g., cells 400 and 402 .
  • the methods and systems described herein may have much broader applicability, including the ability to characterize other aspects of individual cells or cell populations, by allowing for the allocation of reagents to individual cells, and providing for the attributable analysis or characterization of those cells in response to those reagents. These methods and systems are particularly valuable in being able to characterize cells for, e.g., research, diagnostic, pathogen identification, and many other purposes.
  • cell surface features e.g., cell surface proteins like cluster of differentiation or CD proteins, have significant diagnostic relevance in characterization of diseases like cancer.
  • the methods and systems described herein may be used to characterize cell features, such as cell surface features, e.g., proteins, receptors, etc.
  • the methods described herein may be used to attach reporter molecules to these cell features, that when partitioned as described above, may be barcoded and analyzed, e.g., using DNA sequencing technologies, to ascertain the presence, and in some cases, relative abundance or quantity of such cell features within an individual cell or population of cells.
  • a library of potential cell binding ligands e.g., antibodies, antibody fragments, cell surface receptor binding molecules, or the like, maybe provided associated with a first set of nucleic acid reporter molecules, e.g., where a different reporter oligonucleotide sequence is associated with a specific ligand, and therefore capable of binding to a specific cell surface feature.
  • different members of the library may be characterized by the presence of a different oligonucleotide sequence label, e.g., an antibody to a first type of cell surface protein or receptor would have associated with it a first known reporter oligonucleotide sequence, while an antibody to a second receptor protein would have a different known reporter oligonucleotide sequence associated with it.
  • the cells Prior to co-partitioning, the cells would be incubated with the library of ligands, that may represent antibodies to a broad panel of different cell surface features, e.g., receptors, proteins, etc., and which include their associated reporter oligonucleotides.
  • Unbound ligands are washed from the cells, and the cells are then co-partitioned along with the barcode oligonucleotides described above.
  • the partitions will include the cell or cells, as well as the bound ligands and their known, associated reporter oligonucleotides.
  • reporter oligonucleotides Without the need for lysing the cells within the partitions, one could then subject the reporter oligonucleotides to the barcoding operations described above for cellular nucleic acids, to produce barcoded, reporter oligonucleotides, where the presence of the reporter oligonucleotides can be indicative of the presence of the particular cell surface feature, and the barcode sequence will allow the attribution of the range of different cell surface features to a given individual cell or population of cells based upon the barcode sequence that was co-partitioned with that cell or population of cells. As a result, one may generate a cell-by-cell profile of the cell surface features within a broader population of cells. This aspect of the methods and systems described herein, is described in greater detail below.
  • FIG. 5 This example is schematically illustrated in FIG. 5 .
  • a population of cells represented by cells 502 and 504 are incubated with a library of cell surface associated reagents, e.g., antibodies, cell surface binding proteins, ligands or the like, where each different type of binding group includes an associated nucleic acid reporter molecule associated with it, shown as ligands and associated reporter molecules 506 , 508 , 510 and 512 (with the reporter molecules being indicated by the differently shaded circles).
  • ligands and associated reporter molecules can become associated or coupled with the cell surface.
  • Individual cells are then partitioned into separate partitions, e.g., droplets 514 and 516 , along with their associated ligand/reporter molecules, as well as an individual barcode oligonucleotide bead as described elsewhere herein, e.g., beads 522 and 524 , respectively.
  • the barcoded oligonucleotides are released from the beads and used to attach the barcode sequence the reporter molecules present within each partition with a barcode that is common to a given partition, but which varies widely among different partitions. For example, as shown in FIG.
  • the reporter molecules that associate with cell 502 in partition 514 are barcoded with barcode sequence 518
  • the reporter molecules associated with cell 504 in partition 516 are barcoded with barcode 520 .
  • a library of oligonucleotides that reflects the surface ligands of the cell, as reflected by the reporter molecule, but which is substantially attributable to an individual cell by virtue of a common barcode sequence, allowing a single cell level profiling of the surface characteristics of the cell.
  • this process is not limited to cell surface receptors but may be used to identify the presence of a wide variety of specific cell structures, chemistries or other characteristics.
  • a particularly valuable application of the single cell analysis processes described herein is in the sequencing and characterization of cancer cells.
  • conventional analytical techniques including the ensemble sequencing processes alluded to above, are not highly adept at picking small variations in genomic make-up of cancer cells, particularly where those exist in a sea of normal tissue cells.
  • wide variations can exist and can be masked by the ensemble approaches to sequencing (See, e.g., Patel, et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science DOI: 10.1126/science.1254257 (Published online Jun. 12, 2014).
  • Cancer cells may be derived from solid tumors, hematological malignancies, cell lines, or obtained as circulating tumor cells, and subjected to the partitioning processes described above. Upon analysis, one can identify individual cell sequences as deriving from a single cell or small group of cells, and distinguish those over normal tissue cell sequences. Further, as described in co-pending U.S. Provisional Patent Application No. 62/017,808, filed Jun. 26, 2014, the full disclosures of which is hereby incorporated herein by reference in its entirety for all purposes, one may also obtain phased sequence information from each cell, allowing clearer characterization of the haplotype variants within a cancer cell.
  • fetal health or abnormality through the analysis of fetal cells is a difficult task using conventional techniques.
  • relatively invasive procedures such as amniocentesis obtaining fetal cell samples can employ harvesting those cells from the maternal circulation.
  • circulating fetal cells make up an extremely small fraction of the overall cellular population of that circulation.
  • complex analyses are performed in order to characterize what of the obtained data is likely derived from fetal cells as opposed to maternal cells.
  • the single cell characterization methods and systems described herein one can attribute genetic make up to individual cells, and categorize those cells as maternal or fetal based upon their respective genetic make-up.
  • the genetic sequence of fetal cells may be used to identify any of a number of genetic disorders, including, e.g., aneuploidy such as Down syndrome, Edwards syndrome, and Patau syndrome.
  • samples may, by their nature, be made up of diverse populations of cells and other material that “contaminate” the sample, relative to the cells for which the sample is being tested, e.g., environmental indicator organisms, toxic organisms, and the like for, e.g., environmental and food safety testing, victim and/or perpetrator cells in forensic analysis for sexual assault, and other violent crimes, and the like.
  • neural cells can include long interspersed nuclear elements (LINEs), or ‘jumping’ genes that can move around the genome, which cause each neuron to differ from its neighbor cells.
  • LINEs long interspersed nuclear elements
  • research has shown that the number of LINEs in human brain exceeds that of other tissues, e.g., heart and liver tissue, with between 80 and 300 unique insertions (See, e.g., Coufal, N. G. et al. Nature 460, 1127-1131 (2009)).
  • These differences have been postulated as being related to a person's susceptibility to neuro-logical disorders (see, e.g., Muotri, A. R. et al. Nature 468, 443-446 (2010)), or provide the brain with a diversity with which to respond to challenges.
  • the methods described herein may be used in the sequencing and characterization of individual neural cells.
  • the single cell analysis methods described herein are also useful in the analysis of gene expression, as noted above, both in terms of identification of RNA transcripts and their quantitation.
  • the barcode oligonucleotides may be configured to prime, replicate and consequently yield barcoded fragments of RNA from individual cells.
  • the barcode oligonucleotides may include mRNA specific priming sequences, e.g., poly-T primer segments that allow priming and replication of mRNA in a reverse transcription reaction or other targeted priming sequences.
  • random RNA priming may be carried out using random N-mer primer segments of the barcode oligonucleotides.
  • FIG. 6 provides a schematic of one example method for RNA expression analysis in individual cells using the methods described herein.
  • a cell containing sample is sorted for viable cells, which are quantified and diluted for subsequent partitioning.
  • the individual cells separately co-partitioned with gel beads bearing the barcoding oligonucleotides as described herein.
  • the cells are lysed and the barcoded oligonucleotides released into the partitions at operation 606 , where they interact with and hybridize to the mRNA at operation 608 , e.g., by virtue of a poly-T primer sequence, which is complementary to the poly-A tail of the mRNA.
  • a reverse transcription reaction is carried out at operation 610 to synthesize a cDNA transcript of the mRNA that includes the barcode sequence.
  • the barcoded cDNA transcripts are then subjected to additional amplification at operation 612 , e.g., using a PCR process, purification at operation 614 , before they are placed on a nucleic acid sequencing system for determination of the cDNA sequence and its associated barcode sequence(s).
  • operations 602 through 608 can occur while the reagents remain in their original droplet or partition, while operations 612 through 616 can occur in bulk (e.g., outside of the partition).
  • a partition is a droplet in an emulsion
  • the emulsion can be broken and the contents of the droplet pooled in order to complete operations 612 through 616 .
  • barcode oligonucleotides may be digested with exonucleases after the emulsion is broken. Exonuclease activity can be inhibited by ethylenediaminetetraacetic acid (EDTA) following primer digestion.
  • operation 610 may be performed either within the partitions based upon co-partitioning of the reverse transcription mixture, e.g., reverse transcriptase and associated reagents, or it may be performed in bulk.
  • the structure of the barcode oligonucleotides may include a number of sequence elements in addition to the oligonucleotide barcode sequence.
  • a barcode oligonucleotide for use in RNA analysis as described above is shown in FIG. 7 .
  • the overall oligonucleotide 702 is coupled to a bead 704 by a releasable linkage 706 , such as a disulfide linker.
  • the oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 708 , which may include one or more of a sequencer specific flow cell attachment sequence, e.g., a P5 sequence for Illumina sequencing systems, as well as sequencing primer sequences, e.g., a R1 primer for Illumina sequencing systems.
  • a barcode sequence 710 is included within the structure for use in barcoding the sample RNA.
  • An mRNA specific priming sequence, such as poly-T sequence 712 is also included in the oligonucleotide structure.
  • An anchoring sequence segment 714 may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA.
  • This anchoring sequence can include a random short sequence of nucleotides, e.g., 1-mer, 2-mer, 3-mer or longer sequence, which will ensure that the poly-T segment is more likely to hybridize at the sequence end of the poly-A tail of the mRNA.
  • An additional sequence segment 716 may be provided within the oligonucleotide sequence. In some cases, this additional sequence provides a unique molecular sequence segment, e.g., as a random sequence (e.g., such as a random N-mer sequence) that varies across individual oligonucleotides coupled to a single bead, whereas barcode sequence 710 can be constant among oligonucleotides tethered to an individual bead.
  • This unique sequence serves to provide a unique identifier of the starting mRNA molecule that was captured, in order to allow quantitation of the number of original expressed RNA.
  • individual bead can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • This unique molecular sequence segment may include from 5 to about 8 or more nucleotides within the sequence of the oligonucleotides.
  • the unique molecular sequence segment can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or longer. In some cases, the unique molecular sequence segment can be at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or longer. In some cases, the unique molecular sequence segment can be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or shorter.
  • a cell is co-partitioned along with a barcode bearing bead and lysed while the barcoded oligonucleotides are released from the bead.
  • the poly-T portion of the released barcode oligonucleotide then hybridizes to the poly-A tail of the mRNA.
  • the poly-T segment then primes the reverse transcription of the mRNA to produce a cDNA transcript of the mRNA, but which includes each of the sequence segments 708 - 716 of the barcode oligonucleotide.
  • the oligonucleotide 702 includes an anchoring sequence 714 , it will more likely hybridize to and prime reverse transcription at the sequence end of the poly-A tail of the mRNA.
  • all of the cDNA transcripts of the individual mRNA molecules will include a common barcode sequence segment 710 .
  • the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence. This provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell.
  • the transcripts are then amplified, cleaned up and sequenced to identify the sequence of the cDNA transcript of the mRNA, as well as to sequence the barcode segment and the unique sequence segment.
  • a poly-T primer sequence As noted elsewhere herein, while a poly-T primer sequence is described, other targeted or random priming sequences may also be used in priming the reverse transcription reaction. Likewise, although described as releasing the barcoded oligonucleotides into the partition along with the contents of the lysed cells, it will be appreciated that in some cases, the gel bead bound oligonucleotides may be used to hybridize ad capture the mRNA on the solid phase of the gel beads, in order to facilitate the separation of the RNA from other cell contents.
  • FIG. 9A An additional example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis, is shown in FIG. 9A .
  • the overall oligonucleotide 902 can be coupled to a bead 904 by a releasable linkage 906 , such as a disulfide linker.
  • the oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 908 , which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence for Illumina sequencing systems, as well as functional sequence 910 , which may include sequencing primer sequences, e.g., a R1 primer binding site for Illumina sequencing systems.
  • a barcode sequence 912 is included within the structure for use in barcoding the sample RNA.
  • An RNA specific (e.g., mRNA specific) priming sequence, such as poly-T sequence 914 is also included in the oligonucleotide structure.
  • An anchoring sequence segment (not shown) may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA.
  • An additional sequence segment 916 may be provided within the oligonucleotide sequence.
  • This additional sequence can provide a unique molecular sequence segment, e.g., as a random N-mer sequence that varies across individual oligonucleotides coupled to a single bead, whereas barcode sequence 912 can be constant among oligonucleotides tethered to an individual bead.
  • this unique sequence can serve to provide a unique identifier of the starting mRNA molecule that was captured, in order to allow quantitation of the number of original expressed RNA, e.g., mRNA counting.
  • individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • a cell is co-partitioned along with a barcode bearing bead, switch oligo 924 , and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion).
  • a partition e.g., a droplet in an emulsion
  • the cell is lysed while the barcoded oligonucleotides 902 are released from the bead (e.g., via the action of the reducing agent) and the poly-T segment 914 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 that is released from the cell.
  • the poly-T segment 914 is extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908 , 912 , 910 , 916 and 914 of the barcode oligonucleotide.
  • Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC).
  • the switch oligo 924 may then hybridize with the additional bases added to the cDNA transcript and facilitate template switching.
  • a sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template.
  • all of the cDNA transcripts of the individual mRNA molecules will include a common barcode sequence segment 912 . However, by including the unique random N-mer sequence 916 , the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence.
  • this provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell.
  • the cDNA transcript 922 is then amplified with primers 926 (e.g., PCR primers) in operation 954 .
  • primers 926 e.g., PCR primers
  • the amplified product is then purified (e.g., via solid phase reversible immobilization (SPRI)) in operation 956 .
  • SPRI solid phase reversible immobilization
  • the amplified product is then sheared, ligated to additional functional sequences, and further amplified (e.g., via PCR).
  • the functional sequences may include a sequencer specific flow cell attachment sequence 930 , e.g., a P7 sequence for Illumina sequencing systems, as well as functional sequence 928 , which may include a sequencing primer binding site, e.g., for a R2 primer for Illumina sequencing systems, as well as functional sequence 932 , which may include a sample index, e.g., an i7 sample index sequence for Illumina sequencing systems.
  • operations 950 and 952 can occur in the partition, while operations 954 , 956 and 958 can occur in bulk solution (e.g., in a pooled mixture outside of the partition).
  • a partition is a droplet in an emulsion
  • the emulsion can be broken and the contents of the droplet pooled in order to complete operations 954 , 956 and 958 .
  • operation 954 may be completed in the partition.
  • barcode oligonucleotides may be digested with exonucleases after the emulsion is broken. Exonuclease activity can be inhibited by ethylenediaminetetraacetic acid (EDTA) following primer digestion.
  • EDTA ethylenediaminetetraacetic acid
  • RNA e.g., cellular RNA
  • functional sequence 908 may be a P7 sequence and functional sequence 910 may be a R2 primer binding site.
  • the functional sequence 930 may be a P5 sequence
  • functional sequence 928 may be a R1 primer binding site
  • functional sequence 932 may be an i5 sample index sequence for Illumina sequencing systems.
  • the configuration of the constructs generated by such a barcode oligonucleotide can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
  • FIG. 9B Shown in FIG. 9B is another example method for RNA analysis, including cellular mRNA analysis.
  • the switch oligo 924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion).
  • the switch oligo 924 may be labeled with an additional tag 934 , e.g. biotin.
  • the cell is lysed while the barcoded oligonucleotides 902 (e.g., as shown in FIG. 9A ) are released from the bead (e.g., via the action of the reducing agent).
  • sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site. In other cases, sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site.
  • the poly-T segment 914 of the released barcode oligonucleotide hybridizes to the poly-A tail of mRNA 920 that is released from the cell.
  • the poly-T segment 914 is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908 , 912 , 910 , 916 and 914 of the barcode oligonucleotide.
  • Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC).
  • the switch oligo 924 may then hybridize with the cDNA transcript and facilitate template switching.
  • a sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template.
  • an isolation operation 960 can be used to isolate the cDNA transcript 922 from the reagents and oligonucleotides in the partition.
  • the additional tag 934 e.g.
  • biotin can be contacted with an interacting tag 936 , e.g., streptavidin, which may be attached to a magnetic bead 938 .
  • an interacting tag 936 e.g., streptavidin
  • the cDNA can be isolated with a pull-down operation (e.g., via magnetic separation, centrifugation) before amplification (e.g., via PCR) in operation 955 , followed by purification (e.g., via solid phase reversible immobilization (SPRI)) in operation 957 and further processing (shearing, ligation of sequences 928 , 932 and 930 and subsequent amplification (e.g., via PCR)) in operation 959 .
  • a pull-down operation e.g., via magnetic separation, centrifugation
  • purification e.g., via solid phase reversible immobilization (SPRI)
  • further processing shearing, ligation of sequences 928 , 932
  • sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence.
  • sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence.
  • operations 951 and 953 can occur in the partition, while operations 960 , 955 , 957 and 959 can occur in bulk solution (e.g., in a pooled mixture outside of the partition).
  • a partition is a droplet in an emulsion
  • the emulsion can be broken and the contents of the droplet pooled in order to complete operation 960 .
  • the operations 955 , 957 , and 959 can then be carried out following operation 960 after the transcripts are pooled for processing.
  • FIG. 9C Shown in FIG. 9C is another example method for RNA analysis, including cellular mRNA analysis.
  • the switch oligo 924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs in a partition (e.g., a droplet in an emulsion).
  • a partition e.g., a droplet in an emulsion
  • the cell is lysed while the barcoded oligonucleotides 902 (e.g., as shown in FIG. 9A ) are released from the bead (e.g., via the action of the reducing agent).
  • sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site.
  • sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site.
  • the poly-T segment 914 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 that is released from the cell.
  • the poly-T segment 914 is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908 , 912 , 910 , 916 and 914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC).
  • the switch oligo 924 may then hybridize with the cDNA transcript and facilitate template switching.
  • a sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template.
  • mRNA 920 and cDNA transcript 922 are denatured in operation 962 .
  • a second strand is extended from a primer 940 having an additional tag 942 , e.g. biotin, and hybridized to the cDNA transcript 922 .
  • the biotin labeled second strand can be contacted with an interacting tag 936 , e.g.
  • streptavidin which may be attached to a magnetic bead 938 .
  • the cDNA can be isolated with a pull-down operation (e.g., via magnetic separation, centrifugation) before amplification (e.g., via polymerase chain reaction (PCR)) in operation 965 , followed by purification (e.g., via solid phase reversible immobilization (SPRI)) in operation 967 and further processing (shearing, ligation of sequences 928 , 932 and 930 and subsequent amplification (e.g., via PCR)) in operation 969 .
  • PCR polymerase chain reaction
  • SPRI solid phase reversible immobilization
  • sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence.
  • sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence.
  • operations 961 and 963 can occur in the partition, while operations 962 , 964 , 965 , 967 , and 969 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operations 962 , 964 , 965 , 967 and 969 .
  • FIG. 9D Shown in FIG. 9D is another example method for RNA analysis, including cellular mRNA analysis.
  • the switch oligo 924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs.
  • the cell is lysed while the barcoded oligonucleotides 902 (e.g., as shown in FIG. 9A ) are released from the bead (e.g., via the action of the reducing agent).
  • sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site.
  • sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site.
  • the poly-T segment 914 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 that is released from the cell.
  • the poly-T segment 914 is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908 , 912 , 910 , 916 and 914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC).
  • the switch oligo 924 may then hybridize with the cDNA transcript and facilitate template switching.
  • a sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template.
  • the mRNA 920 , cDNA transcript 922 and switch oligo 924 can be denatured, and the cDNA transcript 922 can be hybridized with a capture oligonucleotide 944 labeled with an additional tag 946 , e.g. biotin.
  • biotin-labeled capture oligonucleotide 944 which is hybridized to the cDNA transcript, can be contacted with an interacting tag 936 , e.g. streptavidin, which may be attached to a magnetic bead 938 .
  • an interacting tag 936 e.g. streptavidin
  • the cDNA transcript can be amplified (e.g., via PCR) with primers 926 at operation 975 , followed by purification (e.g., via solid phase reversible immobilization (SPRI)) in operation 977 and further processing (shearing, ligation of sequences 928 , 932 and 930 and subsequent amplification (e.g., via PCR)) in operation 979 .
  • SPRI solid phase reversible immobilization
  • sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence.
  • sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence.
  • operations 971 and 973 can occur in the partition, while operations 966 , 975 , 977 (purification), and 979 can occur in bulk (e.g., outside the partition).
  • the emulsion can be broken and the contents of the droplet pooled in order to complete operations 966 , 975 , 977 and 979 .
  • FIG. 9E Shown in FIG. 9E is another example method for RNA analysis, including cellular RNA analysis.
  • an individual cell is co-partitioned along with a barcode bearing bead, a switch oligo 990 , and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion).
  • a partition e.g., a droplet in an emulsion.
  • the cell is lysed while the barcoded oligonucleotides (e.g., 902 as shown in FIG. 9A ) are released from the bead (e.g., via the action of the reducing agent).
  • the barcoded oligonucleotides e.g., 902 as shown in FIG. 9A
  • sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site. In other cases, sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site.
  • the poly-T segment of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 released from the cell.
  • the poly-T segment is then extended in a reverse transcription reaction to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908 , 912 , 910 , 916 and 914 of the barcode oligonucleotide.
  • Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC).
  • the switch oligo 990 may then hybridize with the cDNA transcript and facilitate template switching.
  • a sequence complementary to the switch oligo sequence and including a T7 promoter sequence, can be incorporated into the cDNA transcript 922 .
  • a second strand is synthesized and at operation 970 the T7 promoter sequence can be used by T7 polymerase to produce RNA transcripts in in vitro transcription.
  • the RNA transcripts can be purified (e.g., via solid phase reversible immobilization (SPRI)), reverse transcribed to form DNA transcripts, and a second strand can be synthesized for each of the DNA transcripts.
  • the RNA transcripts can be contacted with a DNase (e.g., DNAase I) to break down residual DNA.
  • a DNase e.g., DNAase I
  • the DNA transcripts are then fragmented and ligated to additional functional sequences, such as sequences 928 , 932 and 930 and, in some cases, further amplified (e.g., via PCR).
  • sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence.
  • sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence.
  • the DNA transcripts can be contacted with an RNase to break down residual RNA.
  • operations 981 and 983 can occur in the partition, while operations 968 , 970 , 985 and 987 can occur in bulk (e.g., outside the partition).
  • a partition is a droplet in an emulsion
  • the emulsion can be broken and the contents of the droplet pooled in order to complete operations 968 , 970 , 985 and 987 .
  • RNA analysis including messenger RNA (mRNA, including mRNA obtained from a cell) analysis
  • mRNA messenger RNA
  • FIG. 10 Another example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis is shown in FIG. 10 .
  • the overall oligonucleotide 1002 is coupled to a bead 1004 by a releasable linkage 1006 , such as a disulfide linker.
  • the oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1008 , which may include a sequencer specific flow cell attachment sequence, e.g., a P7 sequence, as well as functional sequence 1010 , which may include sequencing primer sequences, e.g., a R2 primer binding site.
  • functional sequence 1008 which may include a sequencer specific flow cell attachment sequence, e.g., a P7 sequence
  • a barcode sequence 1012 is included within the structure for use in barcoding the sample RNA.
  • An RNA specific (e.g., mRNA specific) priming sequence, such as poly-T sequence 1014 may be included in the oligonucleotide structure.
  • An anchoring sequence segment (not shown) may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA.
  • An additional sequence segment 1016 may be provided within the oligonucleotide sequence. This additional sequence can provide a unique molecular sequence segment, as described elsewhere herein.
  • An additional functional sequence 1020 may be included for in vitro transcription, e.g., a T7 RNA polymerase promoter sequence.
  • individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • a cell is co-partitioned along with a barcode bearing bead, and other reagents such as reverse transcriptase, reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion).
  • a partition e.g., a droplet in an emulsion.
  • the cell is lysed while the barcoded oligonucleotides 1002 are released (e.g., via the action of the reducing agent) from the bead, and the poly-T segment 1014 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 1020 .
  • the poly-T segment is then extended in a reverse transcription reaction using the mRNA as template to produce a cDNA transcript 1022 of the mRNA and also includes each of the sequence segments 1020 , 1008 , 1012 , 1010 , 1016 , and 1014 of the barcode oligonucleotide.
  • all of the cDNA transcripts of the individual mRNA molecules will include a common barcode sequence segment 1012 .
  • the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence.
  • this provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell.
  • a second strand is synthesized and at operation 1056 the T7 promoter sequence can be used by T7 polymerase to produce RNA transcripts in in vitro transcription.
  • the transcripts are fragmented (e.g., sheared), ligated to additional functional sequences, and reverse transcribed.
  • the functional sequences may include a sequencer specific flow cell attachment sequence 1030 , e.g., a P5 sequence, as well as functional sequence 1028 , which may include sequencing primers, e.g., a R1 primer binding sequence, as well as functional sequence 1032 , which may include a sample index, e.g., an i5 sample index sequence.
  • the RNA transcripts can be reverse transcribed to DNA, the DNA amplified (e.g., via PCR), and sequenced to identify the sequence of the cDNA transcript of the mRNA, as well as to sequence the barcode segment and the unique sequence segment.
  • operations 1050 and 1052 can occur in the partition, while operations 1054 , 1056 , 1058 and 1060 can occur in bulk (e.g., outside the partition).
  • operations 1054 , 1056 , 1058 and 1060 can occur in bulk (e.g., outside the partition).
  • the emulsion can be broken and the contents of the droplet pooled in order to complete operations 1054 , 1056 , 1058 and 1060 .
  • functional sequence 1008 may be a P5 sequence and functional sequence 1010 may be a R1 primer binding site.
  • functional sequence 1030 may be a P7 sequence
  • functional sequence 1028 may be a R2 primer binding site
  • functional sequence 1032 may be an i7 sample index sequence.
  • RNA analysis including messenger RNA (mRNA, including mRNA obtained from a cell) analysis is shown in FIG. 11 .
  • the overall oligonucleotide 1102 is coupled to a bead 1104 by a releasable linkage 1106 , such as a disulfide linker.
  • the oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1108 , which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well as functional sequence 1110 , which may include sequencing primer sequences, e.g., a R1 primer binding site.
  • sequence 1108 is a P7 sequence and sequence 1110 is a R2 primer binding site.
  • a barcode sequence 1112 is included within the structure for use in barcoding the sample RNA.
  • An additional sequence segment 1116 may be provided within the oligonucleotide sequence. In some cases, this additional sequence can provide a unique molecular sequence segment, as described elsewhere herein.
  • An additional sequence 1114 may be included to facilitate template switching, e.g., polyG.
  • individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • a cell is co-partitioned along with a barcode bearing bead, poly-T sequence, and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion).
  • a partition e.g., a droplet in an emulsion.
  • the cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent) and the poly-T sequence hybridizes to the poly-A tail of mRNA 1120 released from the cell.
  • the poly-T sequence is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 1122 complementary to the mRNA.
  • Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC).
  • the additional bases added to the cDNA transcript, e.g., polyC can then to hybridize with 1114 of the barcoded oligonucleotide. This can facilitate template switching and a sequence complementary to the barcode oligonucleotide can be incorporated into the cDNA transcript.
  • the transcripts can be further processed (e.g., amplified, portions removed, additional sequences added, etc.) and characterized as described elsewhere herein, e.g., by sequencing.
  • the configuration of the constructs generated by such a method can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
  • FIG. 12A An additional example of a barcode oligonucleotide for use in RNA analysis, including cellular RNA analysis is shown in FIG. 12A .
  • the overall oligonucleotide 1202 is coupled to a bead 1204 by a releasable linkage 1206 , such as a disulfide linker.
  • the oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1208 , which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well as functional sequence 1210 , which may include sequencing primer sequences, e.g., a R1 primer binding site.
  • sequence 1208 is a P7 sequence and sequence 1210 is a R2 primer binding site.
  • a barcode sequence 1212 is included within the structure for use in barcoding the sample RNA.
  • An additional sequence segment 1216 may be provided within the oligonucleotide sequence. In some cases, this additional sequence can provide a unique molecular sequence segment, as described elsewhere herein.
  • individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • a cell is co-partitioned along with a barcode bearing bead and other reagents such as RNA ligase and a reducing agent into a partition (e.g. a droplet in an emulsion).
  • a partition e.g. a droplet in an emulsion.
  • the cell is lysed while the barcoded oligonucleotides are released (e.g., via the action of the reducing agent) from the bead.
  • the barcoded oligonucleotides can then be ligated to the 5′ end of mRNA transcripts while in the partitions by RNA ligase.
  • Subsequent operations may include purification (e.g., via solid phase reversible immobilization (SPRI)) and further processing (shearing, ligation of functional sequences, and subsequent amplification (e.g., via PCR)), and these operations may occur in bulk (e.g., outside the partition).
  • SPRI solid phase reversible immobilization
  • further processing e.g., ligation of functional sequences, and subsequent amplification
  • subsequent operations may occur in bulk (e.g., outside the partition).
  • a partition is a droplet in an emulsion
  • the emulsion can be broken and the contents of the droplet pooled for the additional operations.
  • FIG. 12B An additional example of a barcode oligonucleotide for use in RNA analysis, including cellular RNA analysis is shown in FIG. 12B .
  • the overall oligonucleotide 1222 is coupled to a bead 1224 by a releasable linkage 1226 , such as a disulfide linker.
  • the oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1228 , which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well as functional sequence 1230 , which may include sequencing primer sequences, e.g., a R1 primer binding site.
  • sequence 1228 is a P7 sequence and sequence 1230 is a R2 primer binding site.
  • a barcode sequence 1232 is included within the structure for use in barcoding the sample RNA.
  • a priming sequence 1234 (e.g., a random priming sequence) can also be included in the oligonucleotide structure, e.g., a random hexamer.
  • An additional sequence segment 1236 may be provided within the oligonucleotide sequence. In some cases, this additional sequence provides a unique molecular sequence segment, as described elsewhere herein.
  • individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • a cell is co-partitioned along with a barcode bearing bead and additional reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion).
  • the cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent).
  • sequence 1228 is a P7 sequence and sequence 1230 is a R2 primer binding site.
  • sequence 1228 is a P5 sequence and sequence 1230 is a R1 primer binding site.
  • the priming sequence 1234 of random hexamers can randomly hybridize cellular mRNA.
  • the random hexamer sequence can then be extended in a reverse transcription reaction using mRNA from the cell as a template to produce a cDNA transcript complementary to the mRNA and also includes each of the sequence segments 1228 , 1232 , 1230 , 1236 , and 1234 of the barcode oligonucleotide.
  • Subsequent operations may include purification (e.g., via solid phase reversible immobilization (SPRI)), further processing (shearing, ligation of functional sequences, and subsequent amplification (e.g., via PCR)), and these operations may occur in bulk (e.g., outside the partition).
  • SPRI solid phase reversible immobilization
  • a partition is a droplet in an emulsion
  • the emulsion can be broken and the contents of the droplet pooled for additional operations.
  • Additional reagents that may be co-partitioned along with the barcode bearing bead may include oligonucleotides to block ribosomal RNA (rRNA) and nucleases to digest genomic DNA and cDNA from cells.
  • rRNA removal agents may be applied during additional processing operations.
  • the configuration of the constructs generated by such a method can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
  • the priming sequence 1234 may be a random N-mer.
  • sequence 1228 is a P7 sequence and sequence 1230 is a R2 primer binding site.
  • sequence 1228 is a P5 sequence and sequence 1230 is a R1 primer binding site.
  • the individual cell is co-partitioned along with a barcode bearing bead, poly-T sequence, and other reagents such as reverse transcriptase, polymerase, a reducing agent and dNTPs into a partition (e.g., droplet in an emulsion).
  • the cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent) and the poly-T sequence hybridizes to the poly-A tail of cellular mRNA.
  • a reverse transcription reaction using the mRNA as template, cDNA transcripts of cellular mRNA can be produced.
  • the RNA can then be degraded with an RNase.
  • the priming sequence 1234 in the barcoded oligonucleotide can then randomly hybridize to the cDNA transcripts.
  • the oligonucleotides can be extended using polymerase enzymes and other extension reagents co-partitioned with the bead and cell similar to as shown in FIG.
  • amplification products e.g., barcoded fragments
  • the barcoded nucleic acid fragments may, in some cases subjected to further processing (e.g., amplification, addition of additional sequences, clean up processes, etc. as described elsewhere herein) characterized, e.g., through sequence analysis.
  • sequencing signals can come from full length RNA.
  • the processes and systems described herein may also be used to characterize individual cells as a way to provide an overall profile of a cellular, or other organismal population.
  • a variety of applications require the evaluation of the presence and quantification of different cell or organism types within a population of cells, including, for example, microbiome analysis and characterization, environmental testing, food safety testing, epidemiological analysis, e.g., in tracing contamination or the like.
  • the analysis processes described above may be used to individually characterize, sequence and/or identify large numbers of individual cells within a population. This characterization may then be used to assemble an overall profile of the originating population, which can provide important prognostic and diagnostic information.
  • shifts in human microbiomes including, e.g., gut, buccal, epidermal microbiomes, etc.
  • single cell analysis methods and systems described herein one can again, characterize, sequence and identify individual cells in an overall population, and identify shifts within that population that may be indicative of diagnostic ally relevant factors.
  • sequencing of bacterial 16S ribosomal RNA genes has been used as a highly accurate method for taxonomic classification of bacteria.
  • Using the targeted amplification and sequencing processes described above can provide identification of individual cells within a population of cells.
  • identification and diagnosis of infection or potential infection may also benefit from the single cell analyses described herein, e.g., to identify microbial species present in large mixes of other cells or other biological material, cells and/or nucleic acids, including the environments described above, as well as any other diagnostically relevant environments, e.g., cerebrospinal fluid, blood, fecal or intestinal samples, or the like.
  • the foregoing analyses may also be particularly useful in the characterization of potential drug resistance of different cells, e.g., cancer cells, bacterial pathogens, etc., through the analysis of distribution and profiling of different resistance markers/mutations across cell populations in a given sample. Additionally, characterization of shifts in these markers/mutations across populations of cells over time can provide valuable insight into the progression, alteration, prevention, and treatment of a variety of diseases characterized by such drug resistance issues.
  • any of a variety of individual biological organisms, or components of organisms are encompassed within this description, including, for example, cells, viruses, organelles, cellular inclusions, vesicles, or the like. Additionally, where referring to cells, it will be appreciated that such reference includes any type of cell, including without limitation prokaryotic cells, eukaryotic cells, bacterial, fungal, plant, mammalian, or other animal cell types, mycoplasmas, normal tissue cells, tumor cells, or any other cell type, whether derived from single cell or multicellular organisms.
  • analysis of different environmental samples to profile the microbial organisms, viruses, or other biological contaminants that are present within such samples can provide important information about disease epidemiology, and potentially aid in forecasting disease outbreaks, epidemics an pandemics.
  • a sample is provided that contains cells that are to be analyzed and characterized as to their cell surface proteins.
  • a library of antibodies, antibody fragments, or other molecules having a binding affinity to the cell surface proteins or antigens (or other cell features) for which the cell is to be characterized also referred to herein as cell surface feature binding groups.
  • binding groups can include a reporter molecule that is indicative of the cell surface feature to which the binding group binds.
  • a binding group type that is specific to one type of cell surface feature will comprise a first reporter molecule, while a binding group type that is specific to a different cell surface feature will have a different reporter molecule associated with it.
  • these reporter molecules will comprise oligonucleotide sequences. Oligonucleotide based reporter molecules provide advantages of being able to generate significant diversity in terms of sequence, while also being readily attachable to most biomolecules, e.g., antibodies, etc., as well as being readily detected, e.g., using sequencing or array technologies.
  • the binding groups include oligonucleotides attached to them.
  • a first binding group type e.g., antibodies to a first type of cell surface feature
  • a reporter oligonucleotide that has a first nucleotide sequence.
  • Different binding group types e.g., antibodies having binding affinity for other, different cell surface features
  • reporter oligonucleotides that comprise different nucleotide sequences, e.g., having a partially or completely different nucleotide sequence.
  • the reporter oligonucleotide sequence may be known and readily identifiable as being associated with the known cell surface feature binding group.
  • oligonucleotides may be directly coupled to the binding group, or they may be attached to a bead, molecular lattice, e.g., a linear, globular, cross-linked, or other polymer, or other framework that is attached or otherwise associated with the binding group, which allows attachment of multiple reporter oligonucleotides to a single binding group.
  • molecular lattice e.g., a linear, globular, cross-linked, or other polymer, or other framework that is attached or otherwise associated with the binding group, which allows attachment of multiple reporter oligonucleotides to a single binding group.
  • reporter molecules can comprise the same sequence, or a particular binding group will include a known set of reporter oligonucleotide sequences.
  • the reporter molecules can be different and attributable to the particular binding group.
  • Attachment of the reporter groups to the binding groups may be achieved through any of a variety of direct or indirect, covalent or non-covalent associations or attachments.
  • oligonucleotide reporter groups associated with antibody based binding groups such oligonucleotides may be covalently attached to a portion of an antibody or antibody fragment using chemical conjugation techniques (e.g., Lightning-Link® antibody labeling kits available from Innova Biosciences), as well as other non-covalent attachment mechanisms, e.g., using biotinylated antibodies and oligonucleotides (or beads that include one or more biotinylated linker, coupled to oligonucleotides) with an avidin or streptavidin linker.
  • chemical conjugation techniques e.g., Lightning-Link® antibody labeling kits available from Innova Biosciences
  • other non-covalent attachment mechanisms e.g., using biotinylated antibodies and oligonucleotides (or beads that include one or more biotinylated
  • Antibody and oligonucleotide biotinylation techniques are available (See, e.g., Fang, et al., Fluoride - Cleavable Biotinylation Phosphoramidite for 5′- end - Labeling and Affinity Purification of Synthetic Oligonucleotides , Nucleic Acids Res. Jan. 15, 2003; 31(2):708-715, DNA 3′ End Biotinylation Kit, available from Thermo Scientific, the full disclosures of which are incorporated herein by reference in their entirety for all purposes).
  • protein and peptide biotinylation techniques have been developed and are readily available (See, e.g., U.S. Pat. No. 6,265,552, the full disclosures of which are incorporated herein by reference in their entirety for all purposes).
  • the reporter oligonucleotides may be provided having any of a range of different lengths, depending upon the diversity of reporter molecules desired or a given analysis, the sequence detection scheme employed, and the like. In some cases, these reporter sequences can be greater than about 5 nucleotides in length, greater than about 10 nucleotides in length, greater than about 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150 or even 200 nucleotides in length. In some cases, these reporter nucleotides may be less than about 250 nucleotides in length, less than about 200, 180, 150, 120 100, 90, 80, 70, 60, 50, 40, or even 30 nucleotides in length.
  • the reporter oligonucleotides may be selected to provide barcoded products that are already sized, and otherwise configured to be analyzed on a sequencing system. For example, these sequences may be provided at a length that ideally creates sequenceable products of a desired length for particular sequencing systems. Likewise, these reporter oligonucleotides may include additional sequence elements, in addition to the reporter sequence, such as sequencer attachment sequences, sequencing primer sequences, amplification primer sequences, or the complements to any of these.
  • a cell-containing sample is incubated with the binding molecules and their associated reporter oligonucleotides, for any of the cell surface features desired to be analyzed.
  • the cells are washed to remove unbound binding groups.
  • the cells are partitioned into separate partitions, e.g., droplets, along with the barcode carrying beads described above, where each partition includes a limited number of cells, e.g., in some cases, a single cell.
  • the barcoded replicates of the reporter molecules may additionally include functional sequences, such as primer sequences, attachment sequences or the like.
  • the barcoded reporter oligonucleotides are then subjected to sequence analysis to identify which reporter oligonucleotides bound to the cells within the partitions. Further, by also sequencing the associated barcode sequence, one can identify that a given cell surface feature likely came from the same cell as other, different cell surface features, whose reporter sequences include the same barcode sequence, i.e., they were derived from the same partition.
  • a cell surface profile of individual cells Based upon the reporter molecules that emanate from an individual partition based upon the presence of the barcode sequence, one may then create a cell surface profile of individual cells from a population of cells. Profiles of individual cells or populations of cells may be compared to profiles from other cells, e.g., ‘normal’ cells, to identify variations in cell surface features, which may provide diagnostically relevant information. In particular, these profiles may be particularly useful in the diagnosis of a variety of disorders that are characterized by variations in cell surface receptors, such as cancer and other disorders.
  • microfluidic devices used for partitioning the cells as described above.
  • Such microfluidic devices can comprise channel networks for carrying out the partitioning process like those set forth in FIGS. 1 and 2 . Examples of particularly useful microfluidic devices are described in U.S. Provisional Patent Application No. 61/977,804, filed Apr. 4, 2014, and incorporated herein by reference in its entirety for all purposes. Briefly, these microfluidic devices can comprise channel networks, such as those described herein, for partitioning cells into separate partitions, and co-partitioning such cells with oligonucleotide barcode library members, e.g., disposed on beads.
  • channel networks can be disposed within a solid body, e.g., a glass, semiconductor or polymer body structure in which the channels are defined, where those channels communicate at their termini with reservoirs for receiving the various input fluids, and for the ultimate deposition of the partitioned cells, etc., from the output of the channel networks.
  • a reservoir fluidly coupled to channel 202 may be provided with an aqueous suspension of cells 214
  • a reservoir coupled to channel 204 may be provided with an aqueous suspension of beads 216 carrying the oligonucleotides.
  • Channel segments 206 and 208 may be provided with a non-aqueous solution, e.g., an oil, into which the aqueous fluids are partitioned as droplets at the channel junction 212 .
  • a non-aqueous solution e.g., an oil
  • an outlet reservoir may be fluidly coupled to channel 210 into which the partitioned cells and beads can be delivered and from which they may be harvested.
  • the channel segments may be coupled to any of a variety of different fluid sources or receiving components, including tubing, manifolds, or fluidic components of other systems.
  • kits for analyzing individual cells or small populations of cells may include one, two, three, four, five or more, up to all of partitioning fluids, including both aqueous buffers and non-aqueous partitioning fluids or oils, nucleic acid barcode libraries that are releasably associated with beads, as described herein, microfluidic devices, reagents for disrupting cells amplifying nucleic acids, and providing additional functional sequences on fragments of cellular nucleic acids or replicates thereof, as well as instructions for using any of the foregoing in the methods described herein.
  • FIG. 17 shows a computer system 1701 that is programmed or otherwise configured to implement methods of the disclosure including nucleic acid sequencing methods, interpretation of nucleic acid sequencing data and analysis of cellular nucleic acids, such as RNA (e.g., mRNA), and characterization of cells from sequencing data.
  • the computer system 1701 can be an electronic device of a user or a computer system that is remotely located with respect to the electronic device.
  • the electronic device can be a mobile electronic device.
  • the computer system 1701 includes a central processing unit (CPU, also “processor” and “computer processor” herein) 1705 , which can be a single core or multi core processor, or a plurality of processors for parallel processing.
  • the computer system 1701 also includes memory or memory location 1710 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 1715 (e.g., hard disk), communication interface 1720 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 1725 , such as cache, other memory, data storage and/or electronic display adapters.
  • the memory 1710 , storage unit 1715 , interface 1720 and peripheral devices 1725 are in communication with the CPU 1705 through a communication bus (solid lines), such as a motherboard.
  • the storage unit 1715 can be a data storage unit (or data repository) for storing data.
  • the computer system 1701 can be operatively coupled to a computer network (“network”) 1730 with the aid of the communication interface 1720 .
  • the network 1730 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet.
  • the network 1730 in some cases is a telecommunication and/or data network.
  • the network 1730 can include one or more computer servers, which can enable distributed computing, such as cloud computing.
  • the network 1730 in some cases with the aid of the computer system 1701 , can implement a peer-to-peer network, which may enable devices coupled to the computer system 1701 to behave as a client or a server.
  • the CPU 1705 can execute a sequence of machine-readable instructions, which can be embodied in a program or software.
  • the instructions may be stored in a memory location, such as the memory 1710 .
  • the instructions can be directed to the CPU 1705 , which can subsequently program or otherwise configure the CPU 1705 to implement methods of the present disclosure. Examples of operations performed by the CPU 1705 can include fetch, decode, execute, and writeback.
  • the CPU 1705 can be part of a circuit, such as an integrated circuit.
  • a circuit such as an integrated circuit.
  • One or more other components of the system 1701 can be included in the circuit.
  • the circuit is an application specific integrated circuit (ASIC).
  • the storage unit 1715 can store files, such as drivers, libraries and saved programs.
  • the storage unit 1715 can store user data, e.g., user preferences and user programs.
  • the computer system 1701 in some cases can include one or more additional data storage units that are external to the computer system 1701 , such as located on a remote server that is in communication with the computer system 1701 through an intranet or the Internet.
  • the computer system 1701 can communicate with one or more remote computer systems through the network 1730 .
  • the computer system 1701 can communicate with a remote computer system of a user.
  • remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), or personal digital assistants.
  • the user can access the computer system 1701 via the network 1730 .
  • Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 1701 , such as, for example, on the memory 1710 or electronic storage unit 1715 .
  • the machine executable or machine readable code can be provided in the form of software.
  • the code can be executed by the processor 1705 .
  • the code can be retrieved from the storage unit 1715 and stored on the memory 1710 for ready access by the processor 1705 .
  • the electronic storage unit 1715 can be precluded, and machine-executable instructions are stored on memory 1710 .
  • the code can be pre-compiled and configured for use with a machine having a processor adapted to execute the code, or can be compiled during runtime.
  • the code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.
  • aspects of the systems and methods provided herein can be embodied in programming.
  • Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium.
  • Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk.
  • “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server.
  • another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links.
  • a machine readable medium such as computer-executable code
  • a tangible storage medium such as computer-executable code
  • Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings.
  • Volatile storage media include dynamic memory, such as main memory of such a computer platform.
  • Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system.
  • Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications.
  • RF radio frequency
  • IR infrared
  • Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data.
  • Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
  • the computer system 1701 can include or be in communication with an electronic display 1735 that comprises a user interface (UI) 1740 for providing, for example, results of nucleic acid sequencing, analysis of nucleic acid sequencing data, characterization of nucleic acid sequencing samples, cell characterizations, etc.
  • UI user interface
  • Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.
  • Methods and systems of the present disclosure can be implemented by way of one or more algorithms.
  • An algorithm can be implemented by way of software upon execution by the central processing unit 1705 .
  • the algorithm can, for example, initiate nucleic acid sequencing, process nucleic acid sequencing data, interpret nucleic acid sequencing results, characterize nucleic acid samples, characterize cells, etc.
  • reverse transcription with template switching and cDNA amplification is performed in emulsion droplets with operations as shown in FIG. 9A .
  • the reaction mixture that is partitioned for reverse transcription and cDNA amplification includes 1,000 cells or 10,000 cells or 10 ng of RNA, beads bearing barcoded oligonucleotides/0.2% Tx-100/5 ⁇ Kapa buffer, 2 ⁇ Kapa HS HiFi Ready Mix, 4 ⁇ M switch oligo, and Smartscribe. Where cells are present, the mixture is partitioned such that a majority or all of the droplets comprise a single cell and single bead.
  • the cells are lysed while the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of mRNA that is released from the cell as in operation 950 .
  • the poly-T segment is extended in a reverse transcription reaction as in operation 952 and the cDNA transcript is amplified as in operation 954 .
  • the thermal cycling conditions are 42° C. for 130 minutes; 98° C. for 2 min; and 35 cycles of the following 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 6 min. Following thermal cycling, the emulsion is broken and the transcripts are purified with Dynabeads and 0.6 ⁇ SPRI as in operation 956 .
  • the yield from template switch reverse transcription and PCR in emulsions is shown for 1,000 cells in FIG. 13A and 10,000 cells in FIG. 13C and 10 ng of RNA in FIG. 13B (Smartscribe line).
  • the cDNA transcripts from RT and PCR performed in emulsions for 10 ng RNA is sheared and ligated to functional sequences, cleaned up with 0.8 ⁇ SPRI, and is further amplified by PCR as in operation 958 .
  • the amplification product is cleaned up with 0.8 ⁇ SPRI.
  • the yield from this processing is shown in FIG. 13B (SSII line).
  • reverse transcription with template switching and cDNA amplification is performed in emulsion droplets with operations as shown in FIG. 9A .
  • the reaction mixture that is partitioned for reverse transcription and cDNA amplification includes Jurkat cells, beads bearing barcoded oligonucleotides/0.2% TritonX-100/5 ⁇ Kapa buffer, 2 ⁇ Kapa HS HiFi Ready Mix, 4 ⁇ M switch oligo, and Smartscribe.
  • the mixture is partitioned such that a majority or all of the droplets comprise a single cell and single bead.
  • the cells are lysed while the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of mRNA that is released from the cell as in operation 950 .
  • the poly-T segment is extended in a reverse transcription reaction as in operation 952 and the cDNA transcript is amplified as in operation 954 .
  • the thermal cycling conditions are 42° C. for 130 minutes; 98° C. for 2 min; and 35 cycles of the following 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 6 min.
  • reverse transcription is performed in emulsion droplets and cDNA amplification is performed in bulk in a manner similar to that as shown in FIG. 9C .
  • the reaction mixture that is partitioned for reverse transcription includes beads bearing barcoded oligonucleotides, 10 ng Jurkat RNA (e.g., Jurkat mRNA), 5 ⁇ First-Strand buffer, and Smartscribe.
  • the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of the RNA as in operation 961 .
  • the poly-T segment is extended in a reverse transcription reaction as in operation 963 .
  • the thermal cycling conditions for reverse transcription are one cycle at 42° C. for 2 hours and one cycle at 70° C. for 10 min. Following thermal cycling, the emulsion is broken and RNA and cDNA transcripts are denatured as in operation 962 . A second strand is then synthesized by primer extension with a primer having a biotin tag as in operation 964 .
  • the reaction conditions for this primer extension include cDNA transcript as the first strand and biotinylated extension primer ranging in concentration from 0.5-3.0 ⁇ M.
  • the thermal cycling conditions are one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min.
  • the second strand is pulled down with Dynabeads MyOne Streptavidin C1 and T1, and cleaned-up with Agilent SureSelect XT buffers.
  • the second strand is pre-amplified via PCR as in operation 965 with the following cycling conditions—one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min.
  • the yield for various concentrations of biotinylated primer (0.5 ⁇ M, 1.0 ⁇ M, 2.0 ⁇ M, and 3.0 ⁇ M) is shown in FIG. 15 .
  • the mixture that is partitioned for reverse transcription includes beads bearing barcoded oligonucleotides which also include a T7 RNA polymerase promoter sequence, 10 ng human RNA (e.g., human mRNA), 5 ⁇ First-Strand buffer, and Smartscribe.
  • the mixture is partitioned such that a majority or all of the droplets comprise a single bead.
  • the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of the RNA as in operation 1050 .
  • the poly-T segment is extended in a reverse transcription reaction as in operation 1052 .
  • the thermal cycling conditions are one cycle at 42° C. for 2 hours and one cycle at 70° C. for 10 min. Following thermal cycling, the emulsion is broken and the remaining operations are performed in bulk.
  • a second strand is then synthesized by primer extension as in operation 1054 .
  • the reaction conditions for this primer extension include cDNA transcript as template and extension primer.
  • the thermal cycling conditions are one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min. Following this primer extension, the second strand is purified with 0.6 ⁇ SPRI.
  • in vitro transcription is then performed to produce RNA transcripts. In vitro transcription is performed overnight, and the transcripts are purified with 0.6 ⁇ SPRI. The RNA yields from in vitro transcription are shown in FIG. 16 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Plant Pathology (AREA)
  • Structural Engineering (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Methods, compositions and systems for analyzing individual cells or cell populations through the partitioned analysis of contents of individual cells or cell populations. Individual cells or cell populations are co-partitioned with processing reagents for accessing cellular contents, and for uniquely identifying the contents of a given cell or cell population, and subsequently analyzing the cell's contents and characterizing it as having derived from an individual cell or cell population, including analysis and characterization of the cell's nucleic acids through sequencing.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 62/017,558 filed Jun. 26, 2014 and U.S. Provisional Patent Application No. 62/061,567 filed Oct. 8, 2014 each of which applications is herein incorporated by reference in its entirety for all purposes.
  • BACKGROUND
  • Significant advances in analyzing and characterizing biological and biochemical materials and systems have led to unprecedented advances in understanding the mechanisms of life, health, disease and treatment. Among these advances, technologies that target and characterize the genomic make up of biological systems have yielded some of the most groundbreaking results, including advances in the use and exploitation of genetic amplification technologies, and nucleic acid sequencing technologies.
  • Nucleic acid sequencing can be used to obtain information in a wide variety of biomedical contexts, including diagnostics, prognostics, biotechnology, and forensic biology. Sequencing may involve basic methods including Maxam-Gilbert sequencing and chain-termination methods, or de novo sequencing methods including shotgun sequencing and bridge PCR, or next-generation methods including polony sequencing, 454 pyrosequencing, Illumina sequencing, SOLiD sequencing, Ion Torrent semiconductor sequencing, HeliScope single molecule sequencing, SMRT® sequencing, and others.
  • Despite these advances in biological characterization, many challenges still remain unaddressed, or relatively poorly addressed by the solutions currently being offered. The present disclosure provides novel solutions and approaches to addressing many of the shortcomings of existing technologies.
  • BRIEF SUMMARY
  • Provided herein are methods, compositions and systems for analyzing individual cells or small populations of cells, including the analysis and attribution of nucleic acids from and to these individual cells or cell populations.
  • An aspect of the disclosure provides a method of analyzing nucleic acids from cells that includes providing nucleic acids derived from an individual cell into a discrete partition; generating one or more first nucleic acid sequences derived from the nucleic acids within the discrete partition, which one or more first nucleic acid sequences have attached thereto oligonucleotides that comprise a common nucleic acid barcode sequence; generating a characterization of the one or more first nucleic acid sequences or one or more second nucleic acid sequences derived from the one or more first nucleic acid sequences, which one or more second nucleic acid sequences comprise the common barcode sequence; and identifying the one or more first nucleic acid sequences or one or more second nucleic acid sequences as being derived from the individual cell based, at least in part, upon a presence of the common nucleic acid barcode sequence in the generated characterization.
  • In some embodiments, the discrete partition is a discrete droplet. In some embodiments, the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition. In some embodiments, at least 10,000, at least 100,000 or at least 500,000 of the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition.
  • In some embodiments, the oligonucleotides are provided attached to a bead, where each oligonucleotide on a bead comprises the same barcode sequence, and the bead is co-partitioned with the individual cell into the discrete partition. In some embodiments, the oligonucleotides are releasably attached to the bead. In some embodiments, the bead comprises a degradable bead. In some embodiments, prior to or during generating the one or more first nucleic acid sequences the method includes releasing the oligonucleotides from the bead via degradation of the bead. In some embodiments, prior to generating the characterization, the method includes releasing the one or more first nucleic acid sequences from the discrete partition.
  • In some embodiments, generating the characterization comprises sequencing the one or more first nucleic acid sequences or the one or more second nucleic acid sequences. The method may also include assembling a contiguous nucleic acid sequence for at least a portion of a genome of the individual cell from sequences of the one or more first nucleic acid sequences or the one or more second nucleic acid sequences. Moreover, the method may also include characterizing the individual cell based upon the nucleic acid sequence for at least a portion of the genome of the individual cell.
  • In some embodiments, the nucleic acids are released from the individual cell in the discrete partition. In some embodiments, the nucleic acids comprise ribonucleic acid (RNA), such as, for example, messenger RNA (mRNA). In some embodiments, generating one or more first nucleic acid sequences includes subjecting the nucleic acids to reverse transcription under conditions that yield the one or more first nucleic acid sequences. In some embodiments, the reverse transcription occurs in the discrete partition. In some embodiments, the oligonucleotides are provided in the discrete partition and include a poly-T sequence. In some embodiments, the reverse transcription comprises hybridizing the poly-T sequence to at least a portion of each of the nucleic acids and extending the poly-T sequence in template directed fashion. In some embodiments, the oligonucleotides include an anchoring sequence that facilitates hybridization of the poly-T sequence. In some embodiments, the oligonucleotides include a random priming sequence that can be, for example, a random hexamer. In some embodiments, the reverse transcription comprises hybridizing the random priming sequence to at least a portion of each of the nucleic acids and extending the random priming sequence in template directed fashion.
  • In some embodiments, a given one of the one or more first nucleic acid sequences has sequence complementarity to at least a portion of a given one of the nucleic acids. In some embodiments, the discrete partition at most includes the individual cell among a plurality of cells. In some embodiments, the oligonucleotides include a unique molecular sequence segment. In some embodiments, the method can include identifying an individual nucleic acid sequence of the one or more first nucleic acid sequences or of the one or more second nucleic acid sequences as derived from a given nucleic acid of the nucleic acids based, at least in part, upon a presence of the unique molecular sequence segment. In some embodiments, the method includes determining an amount of the given nucleic acid based upon a presence of the unique molecular sequence segment.
  • In some embodiments, the method includes, prior to generating the characterization, adding one or more additional sequences to the one or more first nucleic acid sequences to generate the one or more second nucleic acid sequences. In some embodiments, the method includes adding a first additional nucleic acid sequence to the one or more first nucleic acid sequences with the aid of a switch oligonucleotide. In some embodiments, the switch oligonucleotide hybridizes to at least a portion of the one or more first nucleic acid sequences and is extended in a template directed fashion to couple the first additional nucleic acid sequence to the one or more first nucleic acid sequences. In some embodiments, the method includes amplifying the one of more first nucleic acid sequences coupled to the first additional nucleic acid sequence. In some embodiments, the amplifying occurs in the discrete partition. In some embodiments, the amplifying occurs after releasing the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence from the discrete partition.
  • In some embodiments, after the amplifying, the method includes adding one or more second additional nucleic acid sequences to the one or more first nucleic acid sequences coupled to the first additional sequence to generate the one or more second nucleic acid sequences. In some embodiments, the adding the one or more second additional sequences includes removing a portion of each of the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence and coupling thereto the one or more second additional nucleic acid sequences. In some embodiments, the removing is completed via shearing of the one or more first nucleic acid sequences coupled (e.g., ligated) to the first additional nucleic acid sequence.
  • In some embodiments, prior to generating the characterization, the method includes subjecting the one or more first nucleic acid sequences to transcription to generate one or more RNA fragments. In some embodiments, the transcription occurs after releasing the one or more first nucleic acid sequences from the discrete partition. In some embodiments, the oligonucleotides include a T7 promoter sequence. In some embodiments, prior to generating the characterization, the method includes removing a portion of each of the one or more RNA sequences and coupling an additional sequence to the one or more RNA sequences. In some embodiments, prior to generating the characterization, the method includes subjecting the one or more RNA sequences coupled to the additional sequence to reverse transcription to generate the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes amplifying the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes subjecting the one or more RNA sequences to reverse transcription to generate one or more DNA sequences. In some embodiments, prior to generating the characterization, the method includes removing a portion of each of the one or more DNA sequences and coupling one or more additional sequences to the one or more DNA sequences to generate the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes amplifying the one or more second nucleic acid sequences.
  • In some embodiments, the nucleic acids include complementary (cDNA) generated from reverse transcription of RNA from the individual cell. In some embodiments, the oligonucleotides include a priming sequence and are provided in the discrete partition. In some embodiments, the priming sequence includes a random N-mer. In some embodiments, generating the one or more first nucleic acid sequences includes hybridizing the priming sequence to the cDNA and extending the priming sequence in template directed fashion.
  • In some embodiments, the discrete partition includes switch oligonucleotides comprising a complement sequence of the oligonucleotides. In some embodiments, generating the one or more first nucleic acid sequences includes hybridizing the switch oligonucleotides to at least a portion of nucleic acid fragments derived from the nucleic acids and extending the switch oligonucleotides in template directed fashion. In some embodiments, generating the one or more first nucleic acid sequences includes attaching the oligonucleotides to the one or more first nucleic acid sequences. In some embodiments, the one or more first nucleic acid sequences are nucleic acid fragments derived from the nucleic acids. In some embodiments, generating the one or more first nucleic acid sequences includes coupling (e.g., ligating) the oligonucleotides to the nucleic acids.
  • In some embodiments, a plurality of partitions comprises the discrete partition. In some embodiments, the plurality of partitions, on average, comprises less than one cell per partition. In some embodiments, less than 25% of partitions of the plurality of partitions do not comprise a cell. In some embodiments, the plurality of partitions comprises discrete partitions each having at least one partitioned cell. In some embodiments, fewer than 25%, fewer than 20%, fewer than 15%, fewer than 10%, fewer than 5% or fewer than 1% of the discrete partitions comprise more than one cell. In some embodiments, at least a subset of the discrete partitions comprises a bead. In some embodiments, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% of the discrete partitions comprise at least one cell and at least one bead. In some embodiments, the discrete partitions include partitioned nucleic acid barcode sequences. In some embodiments, the discrete partitions include at least 1,000, at least 10,000, or at least 100,000 different partitioned nucleic acid barcode sequences. In some embodiments, the plurality of partitions comprises at least 1,000, at least 10,000 or at least 100,000 partitions.
  • In another aspect, the disclosure provides a method of characterizing cells in a population of a plurality of different cell types that includes providing nucleic acids from individual cells in the population into discrete partitions; attaching oligonucleotides that comprise a common nucleic acid barcode sequence to one or more fragments of the nucleic acids from the individual cells within the discrete partitions, where a plurality of different partitions comprise different common nucleic acid barcode sequences; and characterizing the one or more fragments of the nucleic acids from the plurality of discrete partitions, and attributing the one or more fragments to individual cells based, at least in part, upon the presence of a common barcode sequence; and characterizing a plurality of individual cells in the population based upon the characterization of the one or more fragments in the plurality of discrete partitions.
  • In some embodiments, the method includes fragmenting the nucleic acids. In some embodiments, the discrete partitions are droplets. In some embodiments, the characterizing the one or more fragments of the nucleic acids includes sequencing ribosomal deoxyribonucleic acid from the individual cells, and the characterizing the cells comprises identifying a cell genus, species, strain or variant. In some embodiments, the individual cells are derived from a microbiome sample. In some embodiments, the individual cells are derived from a human tissue sample. In some embodiments, the individual cells are derived from circulating cells in a mammal. In some embodiments, the individual cells are derived from a forensic sample. In some embodiments, the nucleic acids are released from the individual cells in the discrete partitions.
  • An additional aspect of the disclosure provides a method of characterizing an individual cell or population of cells that includes incubating a cell with a plurality of different cell surface feature binding group types, where each different cell surface binding group type is capable of binding to a different cell surface feature, and where each different cell surface binding group type comprises a reporter oligonucleotide associated therewith, under conditions that allow binding between one or more cell surface feature binding groups and its respective cell surface feature, if present; partitioning the cell into a partition that comprises a plurality of oligonucleotides comprising a barcode sequence; attaching the barcode sequence to oligonucleotide reporter groups present in the partition; sequencing the oligonucleotide reporter groups and attached barcodes; and characterizing cell surface features present on the cell based upon reporter oligonucleotides that are sequenced.
  • An additional aspect of the disclosure provides a composition comprising a plurality of partitions, each of the plurality of partitions comprising an individual cell and a population of oligonucleotides that comprise a common nucleic acid barcode sequence. In some embodiments, the plurality of partitions comprises droplets in an emulsion. In some embodiments, the population of oligonucleotides within each of the plurality of partitions is coupled to a bead disposed within each of the plurality of partitions. In some embodiments, the individual cell has associated therewith a plurality of different cell surface feature binding groups associated with their respective cell surface features and each different type of cell surface feature binding group includes an oligonucleotide reporter group comprising a different nucleotide sequence. In some embodiments, the plurality of different cell surface feature binding groups includes a plurality of different antibodies or antibody fragments having a binding affinity for a plurality of different cell surface features.
  • Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in the art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings (also “Figure” and “FIG.” herein), of which:
  • FIG. 1 schematically illustrates a microfluidic channel structure for partitioning individual or small groups of cells.
  • FIG. 2 schematically illustrates a microfluidic channel structure for co-partitioning cells and beads or microcapsules comprising additional reagents.
  • FIG. 3 schematically illustrates an example process for amplification and barcoding of cell's nucleic acids.
  • FIG. 4 provides a schematic illustration of use of barcoding of cell's nucleic acids in attributing sequence data to individual cells or groups of cells for use in their characterization.
  • FIG. 5 provides a schematic illustrating cells associated with labeled cell-binding ligands.
  • FIG. 6 provides a schematic illustration of an example workflow for performing RNA analysis using the methods described herein.
  • FIG. 7 provides a schematic illustration of an example barcoded oligonucleotide structure for use in analysis of ribonucleic (RNA) using the methods described herein.
  • FIG. 8 provides an image of individual cells co-partitioned along with individual barcode bearing beads
  • FIG. 9A-E provides schematic illustration of example barcoded oligonucleotide structures for use in analysis of RNA and example operations for performing RNA analysis.
  • FIG. 10 provides schematic illustration of example barcoded oligonucleotide structure for use in example analysis of RNA and use of a sequence for in vitro transcription.
  • FIG. 11 provides schematic illustration of an example barcoded oligonucleotide structure for use in analysis of RNA and example operations for performing RNA analysis.
  • FIG. 12A-B provides schematic illustration of example barcoded oligonucleotide structure for use in analysis of RNA.
  • FIG. 13A-C provides illustrations of example yields from template switch reverse transcription and PCR in partitions.
  • FIG. 14A-B provides illustrations of example yields from reverse transcription and cDNA amplification in partitions with various cell numbers.
  • FIG. 15 provides an illustration of example yields from cDNA synthesis and real-time quantitative PCR at various input cell concentrations and also the effect of varying primer concentration on yield at a fixed cell input concentration.
  • FIG. 16 provides an illustration of example yields from in vitro transcription.
  • FIG. 17 shows an example computer control system that is programmed or otherwise configured to implement methods provided herein.
  • DETAILED DESCRIPTION
  • While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.
  • Where values are described as ranges, it will be understood that such disclosure includes the disclosure of all possible sub-ranges within such ranges, as well as specific numerical values that fall within such ranges irrespective of whether a specific numerical value or specific sub-range is expressly stated.
  • I. Single Cell Analysis
  • Advanced nucleic acid sequencing technologies have yielded monumental results in sequencing biological materials, including providing substantial sequence information on individual organisms, and relatively pure biological samples. However, these systems have not proven effective at being able to identify and characterize sub-populations of cells in biological samples that may represent a smaller minority of the overall make up of the sample, but for which individualized sequence information could prove even more valuable.
  • Most nucleic acid sequencing technologies derive the nucleic acids that they sequence from collections of cells derived from tissue or other samples. The cells can be processed, en masse, to extract the genetic material that represents an average of the population of cells, which can then be processed into sequencing ready DNA libraries that are configured for a given sequencing technology. As will be appreciated, although often discussed in terms of DNA or nucleic acids, the nucleic acids derived from the cells may include DNA, or RNA, including, e.g., mRNA, total RNA, or the like, that may be processed to produce cDNA for sequencing, e.g., using any of a variety of RNA-seq methods. Following from this processing, absent a cell specific marker, attribution of genetic material as being contributed by a subset of cells or all cells in a sample is virtually impossible in such an ensemble approach.
  • In addition to the inability to attribute characteristics to particular subsets of populations of cells, such ensemble sample preparation methods also are, from the outset, predisposed to primarily identifying and characterizing the majority constituents in the sample of cells, and are not designed to be able to pick out the minority constituents, e.g., genetic material contributed by one cell, a few cells, or a small percentage of total cells in the sample. Likewise, where analyzing expression levels, e.g., of mRNA, an ensemble approach would be predisposed to presenting potentially grossly inaccurate data from cell populations that are non-homogeneous in terms of expression levels. In some cases, where expression is high in a small minority of the cells in an analyzed population, and absent in the majority of the cells of the population, an ensemble method would indicate low level expression for the entire population.
  • This original majority bias is further magnified, and even overwhelming, through processing operations used in building up the sequencing libraries from these samples. In particular, most next generation sequencing technologies rely upon the geometric amplification of nucleic acid fragments, such as the polymerase chain reaction, in order to produce sufficient DNA for the sequencing library. However, such geometric amplification is biased toward amplification of majority constituents in a sample, and may not preserve the starting ratios of such minority and majority components. By way of example, if a sample includes 95% DNA from a particular cell type in a sample, e.g., host tissue cells, and 5% DNA from another cell type, e.g., cancer cells, PCR based amplification can preferentially amplify the majority DNA in place of the minority DNA, both as a function of comparative exponential amplification (the repeated doubling of the higher concentration quickly outpaces that of the smaller fraction) and as a function of sequestration of amplification reagents and resources (as the larger fraction is amplified, it preferentially utilizes primers and other amplification reagents).
  • While some of these difficulties may be addressed by utilizing different sequencing systems, such as single molecule systems that don't require amplification, the single molecule systems, as well as the ensemble sequencing methods of other next generation sequencing systems, can also have requirements for sufficiently large input DNA requirements. In particular, single molecule sequencing systems like the Pacific Biosciences SMRT Sequencing system can have sample input DNA requirements of from 500 nanograms (ng) to upwards of 10 micrograms (μg), which is far larger than what can be derived from individual cells or even small subpopulations of cells. Likewise, other NGS systems can be optimized for starting amounts of sample DNA in the sample of from approximately 50 ng to about 1 μg.
  • II. Compartmentalization and Characterization of Cells
  • Disclosed herein, however, are methods and systems for characterizing nucleic acids from small populations of cells, and in some cases, for characterizing nucleic acids from individual cells, especially in the context of larger populations of cells. The methods and systems provide advantages of being able to provide the attribution advantages of the non-amplified single molecule methods with the high throughput of the other next generation systems, with the additional advantages of being able to process and sequence extremely low amounts of input nucleic acids derivable from individual cells or small collections of cells.
  • In particular, the methods described herein compartmentalize the analysis of individual cells or small populations of cells, including e.g., nucleic acids from individual cells or small groups of cells, and then allow that analysis to be attributed back to the individual cell or small group of cells from which the nucleic acids were derived. This can be accomplished regardless of whether the cell population represents a 50/50 mix of cell types, a 90/10 mix of cell types, or virtually any ratio of cell types, as well as a complete heterogeneous mix of different cell types, or any mixture between these. Differing cell types may include cells or biologic organisms from different tissue types of an individual, from different individuals, from differing genera, species, strains, variants, or any combination of any or all of the foregoing. For example, differing cell types may include normal and tumor tissue from an individual, multiple different bacterial species, strains and/or variants from environmental, forensic, microbiome or other samples, or any of a variety of other mixtures of cell types.
  • In one aspect, the methods and systems described herein, provide for the compartmentalization, depositing or partitioning of the nucleic acid contents of individual cells from a sample material containing cells, into discrete compartments or partitions (referred to interchangeably herein as partitions), where each partition maintains separation of its own contents from the contents of other partitions. Unique identifiers, e.g., barcodes, may be previously, subsequently or concurrently delivered to the partitions that hold the compartmentalized or partitioned cells, in order to allow for the later attribution of the characteristics of the individual cells to the particular compartment.
  • As used herein, in some aspects, the partitions refer to containers or vessels (such as wells, microwells, tubes, through ports in nanoarray substrates, e.g., BioTrove nanoarrays, or other containers). In many some aspects, however, the compartments or partitions comprise partitions that are flowable within fluid streams. These partitions may be comprised of, e.g., microcapsules or micro-vesicles that have an outer barrier surrounding an inner fluid center or core, or they may be a porous matrix that is capable of entraining and/or retaining materials within its matrix. In some aspects, however, these partitions comprise droplets of aqueous fluid within a non-aqueous continuous phase, e.g., an oil phase. A variety of different vessels are described in, for example, U.S. patent application Ser. No. 13/966,150, filed Aug. 13, 2013, the full disclosure of which is incorporated herein by reference in its entirety for all purposes. Likewise, emulsion systems for creating stable droplets in non-aqueous or oil continuous phases are described in detail in, e.g., U.S. Patent Publication No. 2010/0105112, the full disclosure of which is incorporated herein by reference in its entirety for all purposes.
  • In the case of droplets in an emulsion, allocating individual cells to discrete partitions may generally be accomplished by introducing a flowing stream of cells in an aqueous fluid into a flowing stream of a non-aqueous fluid, such that droplets are generated at the junction of the two streams. By providing the aqueous cell-containing stream at a certain concentration level of cells, one can control the level of occupancy of the resulting partitions in terms of numbers of cells. In some cases, where single cell partitions are desired, it may be desirable to control the relative flow rates of the fluids such that, on average, the partitions contain less than one cell per partition, in order to ensure that those partitions that are occupied, are primarily singly occupied. Likewise, one may wish to control the flow rate to provide that a higher percentage of partitions are occupied, e.g., allowing for only a small percentage of unoccupied partitions. In some aspects, the flows and channel architectures are controlled as to ensure a desired number of singly occupied partitions, less than a certain level of unoccupied partitions and less than a certain level of multiply occupied partitions.
  • In many cases, the systems and methods are used to ensure that the substantial majority of occupied partitions (partitions containing one or more microcapsules) include no more than 1 cell per occupied partition. In some cases, the partitioning process is controlled such that fewer than 25% of the occupied partitions contain more than one cell, and in many cases, fewer than 20% of the occupied partitions have more than one cell, while in some cases, fewer than 10% or even fewer than 5% of the occupied partitions include more than one cell per partition.
  • Additionally or alternatively, in many cases, it is desirable to avoid the creation of excessive numbers of empty partitions. While this may be accomplished by providing sufficient numbers of cells into the partitioning zone, the poissonian distribution would expectedly increase the number of partitions that would include multiple cells. As such, in accordance with aspects described herein, the flow of one or more of the cells, or other fluids directed into the partitioning zone are controlled such that, in many cases, no more than 50% of the generated partitions are unoccupied, i.e., including less than 1 cell, no more than 25% of the generated partitions, no more than 10% of the generated partitions, may be unoccupied. Further, in some aspects, these flows are controlled so as to present non-poissonian distribution of single occupied partitions while providing lower levels of unoccupied partitions. Restated, in some aspects, the above noted ranges of unoccupied partitions can be achieved while still providing any of the single occupancy rates described above. For example, in many cases, the use of the systems and methods described herein creates resulting partitions that have multiple occupancy rates of from less than 25%, less than 20%, less than 15%, less than 10%, and in many cases, less than 5%, while having unoccupied partitions of from less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, and in some cases, less than 5%.
  • As will be appreciated, the above-described occupancy rates are also applicable to partitions that include both cells and beads carrying the barcode oligonucleotides. In particular, in some aspects, a substantial percentage of the overall occupied partitions will include both a bead and a cell. In particular, it may be desirable to provide that at least 50% of the partitions are occupied by at least one cell and at least one bead, or at least 75% of the partitions may be so occupied, or even at least 80% or at least 90% of the partitions may be so occupied. Further, in those cases where it is desired to provide a single cell and a single bead within a partition, at least 50% of the partitions can be so occupied, at least 60%, at least 70%, at least 80% or even at least 90% of the partitions can be so occupied.
  • Although described in terms of providing substantially singly occupied partitions, above, in certain cases, it is desirable to provide multiply occupied partitions, e.g., containing two, three, four or more cells and/or beads within a single partition. Accordingly, as noted above, the flow characteristics of the cell and/or bead containing fluids and partitioning fluids may be controlled to provide for such multiply occupied partitions. In particular, the flow parameters may be controlled to provide a desired occupancy rate at greater than 50% of the partitions, greater than 75%, and in some cases greater than 80%, 90%, 95%, or higher.
  • Additionally, in many cases, the multiple beads within a single partition may comprise different reagents associated therewith. In such cases, it may be advantageous to introduce different beads into a common channel or droplet generation junction, from different bead sources, i.e., containing different associated reagents, through different channel inlets into such common channel or droplet generation junction. In such cases, the flow and frequency of the different beads into the channel or junction may be controlled to provide for the desired ratio of microcapsules from each source, while ensuring the desired pairing or combination of such beads into a partition with the desired number of cells.
  • The partitions described herein are often characterized by having extremely small volumes, e.g., less than 10 less than 5 μL, less than 1 μL, less than 900 picoliters (pL), less than 800 pL, less than 700 pL, less than 600 pL, less than 500 pL, less than 400 pL, less than 300 pL, less than 200 pL, less than 100 pL, less than 50 pL, less than 20 pL, less than 10 pL, less than 1 pL, less than 500 nanoliters (nL), or even less than 100 nL, 50 nL, or even less.
  • For example, in the case of droplet based partitions, the droplets may have overall volumes that are less than 1000 pL, less than 900 pL, less than 800 pL, less than 700 pL, less than 600 pL, less than 500 pL, less than 400 pL, less than 300 pL, less than 200 pL, less than 100 pL, less than 50 pL, less than 20 pL, less than 10 pL, or even less than 1 pL. Where co-partitioned with beads, it will be appreciated that the sample fluid volume, e.g., including co-partitioned cells, within the partitions may be less than 90% of the above described volumes, less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, or even less than 10% the above described volumes.
  • As is described elsewhere herein, partitioning species may generate a population of partitions. In such cases, any suitable number of partitions can be generated to generate the population of partitions. For example, in a method described herein, a population of partitions may be generated that comprises at least about 1,000 partitions, at least about 5,000 partitions, at least about 10,000 partitions, at least about 50,000 partitions, at least about 100,000 partitions, at least about 500,000 partitions, at least about 1,000,000 partitions, at least about 5,000,000 partitions at least about 10,000,000 partitions, at least about 50,000,000 partitions, at least about 100,000,000 partitions, at least about 500,000,000 partitions or at least about 1,000,000,000 partitions. Moreover, the population of partitions may comprise both unoccupied partitions (e.g., empty partitions) and occupied partitions
  • In certain cases, microfluidic channel networks are particularly suited for generating partitions as described herein. Examples of such microfluidic devices include those described in detail in Provisional U.S. Patent Application No. 61/977,804, filed Apr. 4, 2014, the full disclosure of which is incorporated herein by reference in its entirety for all purposes. Alternative mechanisms may also be employed in the partitioning of individual cells, including porous membranes through which aqueous mixtures of cells are extruded into non-aqueous fluids. Such systems are generally available from, e.g., Nanomi, Inc.
  • An example of a simplified microfluidic channel structure for partitioning individual cells is illustrated in FIG. 1. As described elsewhere herein, in some cases, the majority of occupied partitions include no more than one cell per occupied partition and, in some cases, some of the generated partitions are unoccupied. In some cases, though, some of the occupied partitions may include more than one cell. In some cases, the partitioning process may be controlled such that fewer than 25% of the occupied partitions contain more than one cell, and in many cases, fewer than 20% of the occupied partitions have more than one cell, while in some cases, fewer than 10% or even fewer than 5% of the occupied partitions include more than one cell per partition. As shown, the channel structure can include channel segments 102, 104, 106 and 108 communicating at a channel junction 110. In operation, a first aqueous fluid 112 that includes suspended cells 114, may be transported along channel segment 102 into junction 110, while a second fluid 116 that is immiscible with the aqueous fluid 112 is delivered to the junction 110 from channel segments 104 and 106 to create discrete droplets 118 of the aqueous fluid including individual cells 114, flowing into channel segment 108.
  • In some aspects, this second fluid 116 comprises an oil, such as a fluorinated oil, that includes a fluorosurfactant for stabilizing the resulting droplets, e g, inhibiting subsequent coalescence of the resulting droplets. Examples of particularly useful partitioning fluids and fluorosurfactants are described for example, in U.S. Patent Publication No. 2010/0105112, the full disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.
  • In other aspects, in addition to or as an alternative to droplet based partitioning, cells may be encapsulated within a microcapsule that comprises an outer shell or layer or porous matrix in which is entrained one or more individual cells or small groups of cells, and may include other reagents. Encapsulation of cells may be carried out by a variety of processes. In general, such processes combine an aqueous fluid containing the cells to be analyzed with a polymeric precursor material that may be capable of being formed into a gel or other solid or semi-solid matrix upon application of a particular stimulus to the polymer precursor. Such stimuli include, e.g., thermal stimuli (either heating or cooling), photo-stimuli (e.g., through photo-curing), chemical stimuli (e.g., through crosslinking, polymerization initiation of the precursor (e.g., through added initiators), or the like.
  • Preparation of microcapsules comprising cells may be carried out by a variety of methods. For example, air knife droplet or aerosol generators may be used to dispense droplets of precursor fluids into gelling solutions in order to form microcapsules that include individual cells or small groups of cells. Likewise, membrane based encapsulation systems, such as those available from, e.g., Nanomi, Inc., may be used to generate microcapsules as described herein. In some aspects, microfluidic systems like that shown in FIG. 1 may be readily used in encapsulating cells as described herein. In particular, and with reference to FIG. 1, the aqueous fluid comprising the cells and the polymer precursor material is flowed into channel junction 110, where it is partitioned into droplets 118 comprising the individual cells 114, through the flow of non-aqueous fluid 116. In the case of encapsulation methods, non-aqueous fluid 116 may also include an initiator to cause polymerization and/or crosslinking of the polymer precursor to form the microcapsule that includes the entrained cells. Examples of particularly useful polymer precursor/initiator pairs include those described in, e.g., U.S. Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, the full disclosures of which are hereby incorporated herein by reference in their entireties for all purposes.
  • For example, in the case where the polymer precursor material comprises a linear polymer material, e.g., a linear polyacrylamide, PEG, or other linear polymeric material, the activation agent may comprise a cross-linking agent, or a chemical that activates a cross-linking agent within the formed droplets. Likewise, for polymer precursors that comprise polymerizable monomers, the activation agent may comprise a polymerization initiator. For example, in certain cases, where the polymer precursor comprises a mixture of acrylamide monomer with a N,N′-bis-(acryloyl)cystamine (BAC) comonomer, an agent such as tetraethylmethylenediamine (TEMED) may be provided within the second fluid streams in channel segments 104 and 106, which initiates the copolymerization of the acrylamide and BAC into a cross-linked polymer network or, hydrogel.
  • Upon contact of the second fluid stream 116 with the first fluid stream 112 at junction 110 in the formation of droplets, the TEMED may diffuse from the second fluid 116 into the aqueous first fluid 112 comprising the linear polyacrylamide, which will activate the crosslinking of the polyacrylamide within the droplets, resulting in the formation of the gel, e.g., hydrogel, microcapsules 118, as solid or semi-solid beads or particles entraining the cells 114. Although described in terms of polyacrylamide encapsulation, other ‘activatable’ encapsulation compositions may also be employed in the context of the methods and compositions described herein. For example, formation of alginate droplets followed by exposure to divalent metal ions, e.g., Ca2+, can be used as an encapsulation process using the described processes. Likewise, agarose droplets may also be transformed into capsules through temperature based gelling, e.g., upon cooling, or the like. As will be appreciated, in some cases, encapsulated cells can be selectively releasable from the microcapsule, e.g., through passage of time, or upon application of a particular stimulus, that degrades the microcapsule sufficiently to allow the cell, or its contents to be released from the microcapsule, e.g., into an additional partition, such as a droplet. For example, in the case of the polyacrylamide polymer described above, degradation of the microcapsule may be accomplished through the introduction of an appropriate reducing agent, such as DTT or the like, to cleave disulfide bonds that cross link the polymer matrix (See, e.g., U.S. Provisional Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, the full disclosures of which are hereby incorporated herein by reference in their entirety for all purposes.
  • As will be appreciated, encapsulated cells or cell populations provide certain potential advantages of being storable, and more portable than droplet based partitioned cells. Furthermore, in some cases, it may be desirable to allow cells to be analyzed to incubate for a select period of time, in order to characterize changes in such cells over time, either in the presence or absence of different stimuli. In such cases, encapsulation of individual cells may allow for longer incubation than simple partitioning in emulsion droplets, although in some cases, droplet partitioned cells may also be incubated form different periods of time, e.g., at least 10 seconds, at least 30 seconds, at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 5 hours, or at least 10 hours or more. As alluded to above, the encapsulation of cells may constitute the partitioning of the cells into which other reagents are co-partitioned. Alternatively, encapsulated cells may be readily deposited into other partitions, e.g., droplets, as described above.
  • In accordance with certain aspects, the cells may be partitioned along with lysis reagents in order to release the contents of the cells within the partition. In such cases, the lysis agents can be contacted with the cell suspension concurrently with, or immediately prior to the introduction of the cells into the partitioning junction/droplet generation zone, e.g., through an additional channel or channels upstream of channel junction 110. Examples of lysis agents include bioactive reagents, such as lysis enzymes that are used for lysis of different cell types, e.g., gram positive or negative bacteria, plants, yeast, mammalian, etc., such as lysozymes, achromopeptidase, lysostaphin, labiase, kitalase, lyticase, and a variety of other lysis enzymes available from, e.g., Sigma-Aldrich, Inc. (St Louis, Mo.), as well as other commercially available lysis enzymes. Other lysis agents may additionally or alternatively be co-partitioned with the cells to cause the release of the cell's contents into the partitions. For example, in some cases, surfactant based lysis solutions may be used to lyse cells, although these may be less desirable for emulsion based systems where the surfactants can interfere with stable emulsions. In some cases, lysis solutions may include non-ionic surfactants such as, for example, TritonX-100 and Tween 20. In some cases, lysis solutions may include ionic surfactants such as, for example, sarcosyl and sodium dodecyl sulfate (SDS). Similarly, lysis methods that employ other methods may be used, such as electroporation, thermal, acoustic or mechanical cellular disruption may also be used in certain cases, e.g., non-emulsion based partitioning such as encapsulation of cells that may be in addition to or in place of droplet partitioning, where any pore size of the encapsulate is sufficiently small to retain nucleic acid fragments of a desired size, following cellular disruption.
  • In addition to the lysis agents co-partitioned with the cells described above, other reagents can also be co-partitioned with the cells, including, for example, DNase and RNase inactivating agents or inhibitors, such as proteinase K, chelating agents, such as EDTA, and other reagents employed in removing or otherwise reducing negative activity or impact of different cell lysate components on subsequent processing of nucleic acids. In addition, in the case of encapsulated cells, the cells may be exposed to an appropriate stimulus to release the cells or their contents from a co-partitioned microcapsule. For example, in some cases, a chemical stimulus may be co-partitioned along with an encapsulated cell to allow for the degradation of the microcapsule and release of the cell or its contents into the larger partition. In some cases, this stimulus may be the same as the stimulus described elsewhere herein for release of oligonucleotides from their respective bead or partition. In alternative aspects, this may be a different and non-overlapping stimulus, in order to allow an encapsulated cell to be released into a partition at a different time from the release of oligonucleotides into the same partition.
  • Additional reagents may also be co-partitioned with the cells, such as endonucleases to fragment the cell's DNA, DNA polymerase enzymes and dNTPs used to amplify the cell's nucleic acid fragments and to attach the barcode oligonucleotides to the amplified fragments. Additional reagents may also include reverse transcriptase enzymes, including enzymes with terminal transferase activity, primers and oligonucleotides, and switch oligonucleotides (also referred to herein as “switch oligos”) which can be used for template switching. In some cases, template switching can be used to increase the length of a cDNA. In one example of template switching, cDNA can be generated from reverse transcription of a template, e.g., cellular mRNA, where a reverse transcriptase with terminal transferase activity can add additional nucleotides, e.g., polyC, to the cDNA that are not encoded by the template, such, as at an end of the cDNA. Switch oligos can include sequences complementary to the additional nucleotides, e.g. polyG. The additional nucleotides (e.g., polyC) on the cDNA can hybridize to the sequences complementary to the additional nucleotides (e.g., polyG) on the switch oligo, whereby the switch oligo can be used by the reverse transcriptase as template to further extend the cDNA. Switch oligos may comprise deoxyribonucleic acids, ribonucleic acids, modified nucleic acids including locked nucleic acids (LNA), or any combination.
  • In some cases, the length of a switch oligo may be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250 nucleotides or longer.
  • In some cases, the length of a switch oligo may be at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249 or 250 nucleotides or longer.
  • In some cases, the length of a switch oligo may be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249 or 250 nucleotides.
  • Once the contents of the cells are released into their respective partitions, the nucleic acids contained therein may be further processed within the partitions. In accordance with the methods and systems described herein, the nucleic acid contents of individual cells are generally provided with unique identifiers such that, upon characterization of those nucleic acids they may be attributed as having been derived from the same cell or cells. The ability to attribute characteristics to individual cells or groups of cells is provided by the assignment of unique identifiers specifically to an individual cell or groups of cells, which is another advantageous aspect of the methods and systems described herein. In particular, unique identifiers, e.g., in the form of nucleic acid barcodes are assigned or associated with individual cells or populations of cells, in order to tag or label the cell's components (and as a result, its characteristics) with the unique identifiers. These unique identifiers are then used to attribute the cell's components and characteristics to an individual cell or group of cells. In some aspects, this is carried out by co-partitioning the individual cells or groups of cells with the unique identifiers. In some aspects, the unique identifiers are provided in the form of oligonucleotides that comprise nucleic acid barcode sequences that may be attached to or otherwise associated with the nucleic acid contents of individual cells, or to other components of the cells, and particularly to fragments of those nucleic acids. The oligonucleotides are partitioned such that as between oligonucleotides in a given partition, the nucleic acid barcode sequences contained therein are the same, but as between different partitions, the oligonucleotides can, and do have differing barcode sequences, or at least represent a large number of different barcode sequences across all of the partitions in a given analysis. In some aspects, only one nucleic acid barcode sequence can be associated with a given partition, although in some cases, two or more different barcode sequences may be present.
  • The nucleic acid barcode sequences can include from 6 to about 20 or more nucleotides within the sequence of the oligonucleotides. In some cases, the length of a barcode sequence may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer. In some cases, the length of a barcode sequence may be at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer. In some cases, the length of a barcode sequence may be at most 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or shorter. These nucleotides may be completely contiguous, i.e., in a single stretch of adjacent nucleotides, or they may be separated into two or more separate subsequences that are separated by 1 or more nucleotides. In some cases, separated barcode subsequences can be from about 4 to about 16 nucleotides in length. In some cases, the barcode subsequence may be 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer. In some cases, the barcode subsequence may be at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer. In some cases, the barcode subsequence may be at most 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or shorter.
  • The co-partitioned oligonucleotides can also comprise other functional sequences useful in the processing of the nucleic acids from the co-partitioned cells. These sequences include, e.g., targeted or random/universal amplification primer sequences for amplifying the genomic DNA from the individual cells within the partitions while attaching the associated barcode sequences, sequencing primers or primer recognition sites, hybridization or probing sequences, e.g., for identification of presence of the sequences or for pulling down barcoded nucleic acids, or any of a number of other potential functional sequences. Again, co-partitioning of oligonucleotides and associated barcodes and other functional sequences, along with sample materials is described in, for example, U.S. Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, as well as U.S. patent application Ser. No. 14/175,935, filed Feb. 7, 2014, the full disclosures of which are incorporated herein by reference in their entireties for all purposes. As will be appreciated other mechanisms of co-partitioning oligonucleotides may also be employed, including, e.g., coalescence of two or more droplets, where one droplet contains oligonucleotides, or microdispensing of oligonucleotides into partitions, e.g., droplets within microfluidic systems.
  • Briefly, in one example, beads, microparticles or microcapsules are provided that each include large numbers of the above described oligonucleotides releasably attached to the beads, where all of the oligonucleotides attached to a particular bead will include the same nucleic acid barcode sequence, but where a large number of diverse barcode sequences are represented across the population of beads used. In particularly useful examples, hydrogel beads, e.g., comprising polyacrylamide polymer matrices, are used as a solid support and delivery vehicle for the oligonucleotides into the partitions, as they are capable of carrying large numbers of oligonucleotide molecules, and may be configured to release those oligonucleotides upon exposure to a particular stimulus, as described elsewhere herein. In some cases, the population of beads will provide a diverse barcode sequence library that includes at least 1,000 different barcode sequences, at least 5,000 different barcode sequences, at least 10,000 different barcode sequences, at least at least 50,000 different barcode sequences, at least 100,000 different barcode sequences, at least 1,000,000 different barcode sequences, at least 5,000,000 different barcode sequences, or at least 10,000,000 different barcode sequences. Additionally, each bead can be provided with large numbers of oligonucleotide molecules attached. In particular, the number of molecules of oligonucleotides including the barcode sequence on an individual bead can be at least 1,000 oligonucleotide molecules, at least 5,000 oligonucleotide molecules, at least 10,000 oligonucleotide molecules, at least 50,000 oligonucleotide molecules, at least 100,000 oligonucleotide molecules, at least 500,000 oligonucleotides, at least 1,000,000 oligonucleotide molecules, at least 5,000,000 oligonucleotide molecules, at least 10,000,000 oligonucleotide molecules, at least 50,000,000 oligonucleotide molecules, at least 100,000,000 oligonucleotide molecules, and in some cases at least 1 billion oligonucleotide molecules.
  • Moreover, when the population of beads is partitioned, the resulting population of partitions can also include a diverse barcode library that includes at least 1,000 different barcode sequences, at least 5,000 different barcode sequences, at least 10,000 different barcode sequences, at least at least 50,000 different barcode sequences, at least 100,000 different barcode sequences, at least 1,000,000 different barcode sequences, at least 5,000,000 different barcode sequences, or at least 10,000,000 different barcode sequences. Additionally, each partition of the population can include at least 1,000 oligonucleotide molecules, at least 5,000 oligonucleotide molecules, at least 10,000 oligonucleotide molecules, at least 50,000 oligonucleotide molecules, at least 100,000 oligonucleotide molecules, at least 500,000 oligonucleotides, at least 1,000,000 oligonucleotide molecules, at least 5,000,000 oligonucleotide molecules, at least 10,000,000 oligonucleotide molecules, at least 50,000,000 oligonucleotide molecules, at least 100,000,000 oligonucleotide molecules, and in some cases at least 1 billion oligonucleotide molecules.
  • In some cases, it may be desirable to incorporate multiple different barcodes within a given partition, either attached to a single or multiple beads within the partition. For example, in some cases, a mixed, but known barcode sequences set may provide greater assurance of identification in the subsequent processing, e.g., by providing a stronger address or attribution of the barcodes to a given partition, as a duplicate or independent confirmation of the output from a given partition.
  • The oligonucleotides are releasable from the beads upon the application of a particular stimulus to the beads. In some cases, the stimulus may be a photo-stimulus, e.g., through cleavage of a photo-labile linkage that releases the oligonucleotides. In other cases, a thermal stimulus may be used, where elevation of the temperature of the beads environment will result in cleavage of a linkage or other release of the oligonucleotides form the beads. In still other cases, a chemical stimulus is used that cleaves a linkage of the oligonucleotides to the beads, or otherwise results in release of the oligonucleotides from the beads. Examples of this type of system are described in U.S. patent application Ser. No. 13/966,150, filed Aug. 13, 2013, as well as U.S. Provisional Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, the full disclosures of which are hereby incorporated herein by reference n their entireties for all purposes. In one case, such compositions include the polyacrylamide matrices described above for encapsulation of cells, and may be degraded for release of the attached oligonucleotides through exposure to a reducing agent, such as DTT.
  • In accordance with the methods and systems described herein, the beads including the attached oligonucleotides are co-partitioned with the individual cells, such that a single bead and a single cell are contained within an individual partition. As noted above, while single cell/single bead occupancy is the most desired state, it will be appreciated that multiply occupied partitions (either in terms of cells, beads or both), or unoccupied partitions (either in terms of cells, beads or both) will often be present. An example of a microfluidic channel structure for co-partitioning cells and beads comprising barcode oligonucleotides is schematically illustrated in FIG. 2. As described elsewhere herein, in some aspects, a substantial percentage of the overall occupied partitions will include both a bead and a cell and, in some cases, some of the partitions that are generated will be unoccupied. In some cases, some of the partitions may have beads and cells that are not partitioned 1:1. In some cases, it may be desirable to provide multiply occupied partitions, e.g., containing two, three, four or more cells and/or beads within a single partition. As shown, channel segments 202, 204, 206, 208 and 210 are provided in fluid communication at channel junction 212. An aqueous stream comprising the individual cells 214, is flowed through channel segment 202 toward channel junction 212. As described above, these cells may be suspended within an aqueous fluid, or may have been pre-encapsulated, prior to the partitioning process.
  • Concurrently, an aqueous stream comprising the barcode carrying beads 216, is flowed through channel segment 204 toward channel junction 212. A non-aqueous partitioning fluid 216 is introduced into channel junction 212 from each of side channels 206 and 208, and the combined streams are flowed into outlet channel 210. Within channel junction 212, the two combined aqueous streams from channel segments 202 and 204 are combined, and partitioned into droplets 218, that include co-partitioned cells 214 and beads 216. As noted previously, by controlling the flow characteristics of each of the fluids combining at channel junction 212, as well as controlling the geometry of the channel junction, one can optimize the combination and partitioning to achieve a desired occupancy level of beads, cells or both, within the partitions 218 that are generated.
  • In some cases, lysis agents, e.g., cell lysis enzymes, may be introduced into the partition with the bead stream, e.g., flowing through channel segment 204, such that lysis of the cell only commences at or after the time of partitioning. Additional reagents may also be added to the partition in this configuration, such as endonucleases to fragment the cell's DNA, DNA polymerase enzyme and dNTPs used to amplify the cell's nucleic acid fragments and to attach the barcode oligonucleotides to the amplified fragments. As noted above, in many cases, a chemical stimulus, such as DTT, may be used to release the barcodes from their respective beads into the partition. In such cases, it may be particularly desirable to provide the chemical stimulus along with the cell-containing stream in channel segment 202, such that release of the barcodes only occurs after the two streams have been combined, e.g., within the partitions 218. Where the cells are encapsulated, however, introduction of a common chemical stimulus, e.g., that both releases the oligonucleotides form their beads, and releases cells from their microcapsules may generally be provided from a separate additional side channel (not shown) upstream of or connected to channel junction 212.
  • As will be appreciated, a number of other reagents may be co-partitioned along with the cells, beads, lysis agents and chemical stimuli, including, for example, protective reagents, like proteinase K, chelators, nucleic acid extension, replication, transcription or amplification reagents such as polymerases, reverse transcriptases, transposases which can be used for transposon based methods (e.g., Nextera), nucleoside triphosphates or NTP analogues, primer sequences and additional cofactors such as divalent metal ions used in such reactions, ligation reaction reagents, such as ligase enzymes and ligation sequences, dyes, labels, or other tagging reagents.
  • The channel networks, e.g., as described herein, can be fluidly coupled to appropriate fluidic components. For example, the inlet channel segments, e.g., channel segments 202, 204, 206 and 208 are fluidly coupled to appropriate sources of the materials they are to deliver to channel junction 212. For example, channel segment 202 will be fluidly coupled to a source of an aqueous suspension of cells 214 to be analyzed, while channel segment 204 would be fluidly coupled to a source of an aqueous suspension of beads 216. Channel segments 206 and 208 would then be fluidly connected to one or more sources of the non-aqueous fluid. These sources may include any of a variety of different fluidic components, from simple reservoirs defined in or connected to a body structure of a microfluidic device, to fluid conduits that deliver fluids from off-device sources, manifolds, or the like. Likewise, the outlet channel segment 210 may be fluidly coupled to a receiving vessel or conduit for the partitioned cells. Again, this may be a reservoir defined in the body of a microfluidic device, or it may be a fluidic conduit for delivering the partitioned cells to a subsequent process operation, instrument or component.
  • FIG. 8 shows images of individual Jurkat cells co-partitioned along with barcode oligonucleotide containing beads in aqueous droplets in an aqueous in oil emulsion. As illustrated, individual cells may be readily co-partitioned with individual beads. As will be appreciated, optimization of individual cell loading may be carried out by a number of methods, including by providing dilutions of cell populations into the microfluidic system in order to achieve the desired cell loading per partition as described elsewhere herein.
  • In operation, once lysed, the nucleic acid contents of the individual cells are then available for further processing within the partitions, including, e.g., fragmentation, amplification and barcoding, as well as attachment of other functional sequences. As noted above, fragmentation may be accomplished through the co-partitioning of shearing enzymes, such as endonucleases, in order to fragment the nucleic acids into smaller fragments. These endonucleases may include restriction endonucleases, including type II and type IIs restriction endonucleases as well as other nucleic acid cleaving enzymes, such as nicking endonucleases, and the like. In some cases, fragmentation may not be desired, and full length nucleic acids may be retained within the partitions, or in the case of encapsulated cells or cell contents, fragmentation may be carried out prior to partitioning, e.g., through enzymatic methods, e.g., those described herein, or through mechanical methods, e.g., mechanical, acoustic or other shearing.
  • Once co-partitioned, and the cells are lysed to release their nucleic acids, the oligonucleotides disposed upon the bead may be used to barcode and amplify fragments of those nucleic acids. A particularly elegant process for use of these barcode oligonucleotides in amplifying and barcoding fragments of sample nucleic acids is described in detail in U.S. Provisional Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, and previously incorporated by reference. Briefly, in one aspect, the oligonucleotides present on the beads that are co-partitioned with the cells, are released from their beads into the partition with the cell's nucleic acids. The oligonucleotides can include, along with the barcode sequence, a primer sequence at its 5′ end. This primer sequence may be a random oligonucleotide sequence intended to randomly prime numerous different regions on the cell's nucleic acids, or it may be a specific primer sequence targeted to prime upstream of a specific targeted region of the cell's genome.
  • Once released, the primer portion of the oligonucleotide can anneal to a complementary region of the cell's nucleic acid. Extension reaction reagents, e.g., DNA polymerase, nucleoside triphosphates, co-factors (e.g., Mg2+ or Mn2+), that are also co-partitioned with the cells and beads, then extend the primer sequence using the cell's nucleic acid as a template, to produce a complementary fragment to the strand of the cell's nucleic acid to which the primer annealed, which complementary fragment includes the oligonucleotide and its associated barcode sequence. Annealing and extension of multiple primers to different portions of the cell's nucleic acids will result in a large pool of overlapping complementary fragments of the nucleic acid, each possessing its own barcode sequence indicative of the partition in which it was created. In some cases, these complementary fragments may themselves be used as a template primed by the oligonucleotides present in the partition to produce a complement of the complement that again, includes the barcode sequence. In some cases, this replication process is configured such that when the first complement is duplicated, it produces two complementary sequences at or near its termini, to allow formation of a hairpin structure or partial hairpin structure, the reduces the ability of the molecule to be the basis for producing further iterative copies. As described herein, the cell's nucleic acids may include any desired nucleic acids within the cell including, for example, the cell's DNA, e.g., genomic DNA, RNA, e.g., messenger RNA, and the like. For example, in some cases, the methods and systems described herein are used in characterizing expressed mRNA, including, e.g., the presence and quantification of such mRNA, and may include RNA sequencing processes as the characterization process. Alternatively or additionally, the reagents partitioned along with the cells may include reagents for the conversion of mRNA into cDNA, e.g., reverse transcriptase enzymes and reagents, to facilitate sequencing processes where DNA sequencing is employed. In some cases, where the nucleic acids to be characterized comprise RNA, e.g., mRNA, schematic illustration of one example of this is shown in FIG. 3.
  • As shown, oligonucleotides that include a barcode sequence are co-partitioned in, e.g., a droplet 302 in an emulsion, along with a sample nucleic acid 304. As noted elsewhere herein, the oligonucleotides 308 may be provided on a bead 306 that is co-partitioned with the sample nucleic acid 304, which oligonucleotides are releasable from the bead 306, as shown in panel A. The oligonucleotides 308 include a barcode sequence 312, in addition to one or more functional sequences, e.g., sequences 310, 314 and 316. For example, oligonucleotide 308 is shown as comprising barcode sequence 312, as well as sequence 310 that may function as an attachment or immobilization sequence for a given sequencing system, e.g., a P5 sequence used for attachment in flow cells of an Illumina Hiseq® or Miseq® system. As shown, the oligonucleotides also include a primer sequence 316, which may include a random or targeted N-mer for priming replication of portions of the sample nucleic acid 304. Also included within oligonucleotide 308 is a sequence 314 which may provide a sequencing priming region, such as a “read1” or R1 priming region, that is used to prime polymerase mediated, template directed sequencing by synthesis reactions in sequencing systems. As will be appreciated, the functional sequences may be selected to be compatible with a variety of different sequencing systems, e.g., 454 Sequencing, Ion Torrent Proton or PGM, Illumina X10, etc., and the requirements thereof. In many cases, the barcode sequence 312, immobilization sequence 310 and R1 sequence 314 may be common to all of the oligonucleotides attached to a given bead. The primer sequence 316 may vary for random N-mer primers, or may be common to the oligonucleotides on a given bead for certain targeted applications.
  • As will be appreciated, in some cases, the functional sequences may include primer sequences useful for RNA-seq applications. For example, in some cases, the oligonucleotides may include poly-T primers for priming reverse transcription of RNA for RNA-seq. In still other cases, oligonucleotides in a given partition, e.g., included on an individual bead, may include multiple types of primer sequences in addition to the common barcode sequences, such as both DNA-sequencing and RNA sequencing primers, e.g., poly-T primer sequences included within the oligonucleotides coupled to the bead. In such cases, a single partitioned cell may be both subjected to DNA and RNA sequencing processes.
  • Based upon the presence of primer sequence 316, the oligonucleotides can prime the sample nucleic acid as shown in panel B, which allows for extension of the oligonucleotides 308 and 308 a using polymerase enzymes and other extension reagents also co-partitioned with the bead 306 and sample nucleic acid 304. As shown in panel C, following extension of the oligonucleotides that, for random N-mer primers, would anneal to multiple different regions of the sample nucleic acid 304; multiple overlapping complements or fragments of the nucleic acid are created, e.g., fragments 318 and 320. Although including sequence portions that are complementary to portions of sample nucleic acid, e.g., sequences 322 and 324, these constructs are generally referred to herein as comprising fragments of the sample nucleic acid 304, having the attached barcode sequences.
  • The barcoded nucleic acid fragments may then be subjected to characterization, e.g., through sequence analysis, or they may be further amplified in the process, as shown in panel D. For example, additional oligonucleotides, e.g., oligonucleotide 308 b, also released from bead 306, may prime the fragments 318 and 320. This shown in for fragment 318. In particular, again, based upon the presence of the random N-mer primer 316 b in oligonucleotide 308 b (which in many cases can be different from other random N-mers in a given partition, e.g., primer sequence 316), the oligonucleotide anneals with the fragment 318, and is extended to create a complement 326 to at least a portion of fragment 318 which includes sequence 328, that comprises a duplicate of a portion of the sample nucleic acid sequence. Extension of the oligonucleotide 308 b continues until it has replicated through the oligonucleotide portion 308 of fragment 318. As noted elsewhere herein, and as illustrated in panel D, the oligonucleotides may be configured to prompt a stop in the replication by the polymerase at a desired point, e.g., after replicating through sequences 316 and 314 of oligonucleotide 308 that is included within fragment 318. As described herein, this may be accomplished by different methods, including, for example, the incorporation of different nucleotides and/or nucleotide analogues that are not capable of being processed by the polymerase enzyme used. For example, this may include the inclusion of uracil containing nucleotides within the sequence region 312 to prevent a non-uracil tolerant polymerase to cease replication of that region. As a result a fragment 326 is created that includes the full-length oligonucleotide 308 b at one end, including the barcode sequence 312, the attachment sequence 310, the R1 primer region 314, and the random N-mer sequence 316 b. At the other end of the sequence may be included the complement 316′ to the random N-mer of the first oligonucleotide 308, as well as a complement to all or a portion of the R1 sequence, shown as sequence 314′. The R1 sequence 314 and its complement 314′ are then able to hybridize together to form a partial hairpin structure 328. As will be appreciated because the random N-mers differ among different oligonucleotides, these sequences and their complements would not be expected to participate in hairpin formation, e.g., sequence 316′, which is the complement to random N-mer 316, would not be expected to be complementary to random N-mer sequence 316 b. This would not be the case for other applications, e.g., targeted primers, where the N-mers would be common among oligonucleotides within a given partition.
  • By forming these partial hairpin structures, it allows for the removal of first level duplicates of the sample sequence from further replication, e.g., preventing iterative copying of copies. The partial hairpin structure also provides a useful structure for subsequent processing of the created fragments, e.g., fragment 326.
  • In general, the amplification of the cell's nucleic acids is carried out until the barcoded overlapping fragments within the partition constitute at least 1× coverage of the particular portion or all of the cell's genome, at least 2×, at least 3×, at least 4×, at least 5×, at least 10×, at least 20×, at least 40× or more coverage of the genome or its relevant portion of interest. Once the barcoded fragments are produced, they may be directly sequenced on an appropriate sequencing system, e.g., an Illumina Hiseq®, Miseq® or X10 system, or they may be subjected to additional processing, such as further amplification, attachment of other functional sequences, e.g., second sequencing primers, for reverse reads, sample index sequences, and the like.
  • All of the fragments from multiple different partitions may then be pooled for sequencing on high throughput sequencers as described herein, where the pooled fragments comprise a large number of fragments derived from the nucleic acids of different cells or small cell populations, but where the fragments from the nucleic acids of a given cell will share the same barcode sequence. In particular, because each fragment is coded as to its partition of origin, and consequently its single cell or small population of cells, the sequence of that fragment may be attributed back to that cell or those cells based upon the presence of the barcode, which will also aid in applying the various sequence fragments from multiple partitions to assembly of individual genomes for different cells. This is schematically illustrated in FIG. 4. As shown in one example, a first nucleic acid 404 from a first cell 400, and a second nucleic acid 406 from a second cell 402 are each partitioned along with their own sets of barcode oligonucleotides as described above. The nucleic acids may comprise a chromosome, entire genome or other large nucleic acid from the cells.
  • Within each partition, each cell's nucleic acids 404 and 406 is then processed to separately provide overlapping set of second fragments of the first fragment(s), e.g., second fragment sets 408 and 410. This processing also provides the second fragments with a barcode sequence that is the same for each of the second fragments derived from a particular first fragment. As shown, the barcode sequence for second fragment set 408 is denoted by “1” while the barcode sequence for fragment set 410 is denoted by “2”. A diverse library of barcodes may be used to differentially barcode large numbers of different fragment sets. However, it is not necessary for every second fragment set from a different first fragment to be barcoded with different barcode sequences. In fact, in many cases, multiple different first fragments may be processed concurrently to include the same barcode sequence. Diverse barcode libraries are described in detail elsewhere herein.
  • The barcoded fragments, e.g., from fragment sets 408 and 410, may then be pooled for sequencing using, for example, sequence by synthesis technologies available from Illumina or Ion Torrent division of Thermo-Fisher, Inc. Once sequenced, the sequence reads 412 can be attributed to their respective fragment set, e.g., as shown in aggregated reads 414 and 416, at least in part based upon the included barcodes, and in some cases, in part based upon the sequence of the fragment itself. The attributed sequence reads for each fragment set are then assembled to provide the assembled sequence for each cell's nucleic acids, e.g., sequences 418 and 420, which in turn, may be attributed to individual cells, e.g., cells 400 and 402.
  • While described in terms of analyzing the genetic material present within cells, the methods and systems described herein may have much broader applicability, including the ability to characterize other aspects of individual cells or cell populations, by allowing for the allocation of reagents to individual cells, and providing for the attributable analysis or characterization of those cells in response to those reagents. These methods and systems are particularly valuable in being able to characterize cells for, e.g., research, diagnostic, pathogen identification, and many other purposes. By way of example, a wide range of different cell surface features, e.g., cell surface proteins like cluster of differentiation or CD proteins, have significant diagnostic relevance in characterization of diseases like cancer.
  • In one particularly useful application, the methods and systems described herein may be used to characterize cell features, such as cell surface features, e.g., proteins, receptors, etc. In particular, the methods described herein may be used to attach reporter molecules to these cell features, that when partitioned as described above, may be barcoded and analyzed, e.g., using DNA sequencing technologies, to ascertain the presence, and in some cases, relative abundance or quantity of such cell features within an individual cell or population of cells.
  • In a particular example, a library of potential cell binding ligands, e.g., antibodies, antibody fragments, cell surface receptor binding molecules, or the like, maybe provided associated with a first set of nucleic acid reporter molecules, e.g., where a different reporter oligonucleotide sequence is associated with a specific ligand, and therefore capable of binding to a specific cell surface feature. In some aspects, different members of the library may be characterized by the presence of a different oligonucleotide sequence label, e.g., an antibody to a first type of cell surface protein or receptor would have associated with it a first known reporter oligonucleotide sequence, while an antibody to a second receptor protein would have a different known reporter oligonucleotide sequence associated with it. Prior to co-partitioning, the cells would be incubated with the library of ligands, that may represent antibodies to a broad panel of different cell surface features, e.g., receptors, proteins, etc., and which include their associated reporter oligonucleotides. Unbound ligands are washed from the cells, and the cells are then co-partitioned along with the barcode oligonucleotides described above. As a result, the partitions will include the cell or cells, as well as the bound ligands and their known, associated reporter oligonucleotides.
  • Without the need for lysing the cells within the partitions, one could then subject the reporter oligonucleotides to the barcoding operations described above for cellular nucleic acids, to produce barcoded, reporter oligonucleotides, where the presence of the reporter oligonucleotides can be indicative of the presence of the particular cell surface feature, and the barcode sequence will allow the attribution of the range of different cell surface features to a given individual cell or population of cells based upon the barcode sequence that was co-partitioned with that cell or population of cells. As a result, one may generate a cell-by-cell profile of the cell surface features within a broader population of cells. This aspect of the methods and systems described herein, is described in greater detail below.
  • This example is schematically illustrated in FIG. 5. As shown, a population of cells, represented by cells 502 and 504 are incubated with a library of cell surface associated reagents, e.g., antibodies, cell surface binding proteins, ligands or the like, where each different type of binding group includes an associated nucleic acid reporter molecule associated with it, shown as ligands and associated reporter molecules 506, 508, 510 and 512 (with the reporter molecules being indicated by the differently shaded circles). Where the cell expresses the surface features that are bound by the library, the ligands and their associated reporter molecules can become associated or coupled with the cell surface. Individual cells are then partitioned into separate partitions, e.g., droplets 514 and 516, along with their associated ligand/reporter molecules, as well as an individual barcode oligonucleotide bead as described elsewhere herein, e.g., beads 522 and 524, respectively. As with other examples described herein, the barcoded oligonucleotides are released from the beads and used to attach the barcode sequence the reporter molecules present within each partition with a barcode that is common to a given partition, but which varies widely among different partitions. For example, as shown in FIG. 5, the reporter molecules that associate with cell 502 in partition 514 are barcoded with barcode sequence 518, while the reporter molecules associated with cell 504 in partition 516 are barcoded with barcode 520. As a result, one is provided with a library of oligonucleotides that reflects the surface ligands of the cell, as reflected by the reporter molecule, but which is substantially attributable to an individual cell by virtue of a common barcode sequence, allowing a single cell level profiling of the surface characteristics of the cell. As will be appreciated, this process is not limited to cell surface receptors but may be used to identify the presence of a wide variety of specific cell structures, chemistries or other characteristics.
  • III. Applications of Single Cell Analysis
  • There are a wide variety of different applications of the single cell processing and analysis methods and systems described herein, including analysis of specific individual ells, analysis of different cell types within populations of differing cell types, analysis and characterization of large populations of cells for environmental, human health, epidemiological forensic, or any of a wide variety of different applications.
  • A particularly valuable application of the single cell analysis processes described herein is in the sequencing and characterization of cancer cells. In particular, conventional analytical techniques, including the ensemble sequencing processes alluded to above, are not highly adept at picking small variations in genomic make-up of cancer cells, particularly where those exist in a sea of normal tissue cells. Further, even as between tumor cells, wide variations can exist and can be masked by the ensemble approaches to sequencing (See, e.g., Patel, et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science DOI: 10.1126/science.1254257 (Published online Jun. 12, 2014). Cancer cells may be derived from solid tumors, hematological malignancies, cell lines, or obtained as circulating tumor cells, and subjected to the partitioning processes described above. Upon analysis, one can identify individual cell sequences as deriving from a single cell or small group of cells, and distinguish those over normal tissue cell sequences. Further, as described in co-pending U.S. Provisional Patent Application No. 62/017,808, filed Jun. 26, 2014, the full disclosures of which is hereby incorporated herein by reference in its entirety for all purposes, one may also obtain phased sequence information from each cell, allowing clearer characterization of the haplotype variants within a cancer cell. The single cell analysis approach is particularly useful for systems and methods involving low quantities of input nucleic acids, as described in co-pending U.S. Provisional Patent Application No. 62/017,580, filed Jun. 26, 2014, the full disclosures of which is hereby incorporated herein by reference in its entirety for all purposes.
  • As with cancer cell analysis, the analysis and diagnosis of fetal health or abnormality through the analysis of fetal cells is a difficult task using conventional techniques. In particular, in the absence of relatively invasive procedures, such as amniocentesis obtaining fetal cell samples can employ harvesting those cells from the maternal circulation. As will be appreciated, such circulating fetal cells make up an extremely small fraction of the overall cellular population of that circulation. As a result complex analyses are performed in order to characterize what of the obtained data is likely derived from fetal cells as opposed to maternal cells. By employing the single cell characterization methods and systems described herein, however, one can attribute genetic make up to individual cells, and categorize those cells as maternal or fetal based upon their respective genetic make-up. Further, the genetic sequence of fetal cells may be used to identify any of a number of genetic disorders, including, e.g., aneuploidy such as Down syndrome, Edwards syndrome, and Patau syndrome.
  • The ability to characterize individual cells from larger diverse populations of cells is also of significant value in both environmental testing as well as in forensic analysis, where samples may, by their nature, be made up of diverse populations of cells and other material that “contaminate” the sample, relative to the cells for which the sample is being tested, e.g., environmental indicator organisms, toxic organisms, and the like for, e.g., environmental and food safety testing, victim and/or perpetrator cells in forensic analysis for sexual assault, and other violent crimes, and the like.
  • Additional useful applications of the above described single cell sequencing and characterization processes are in the field of neuroscience research and diagnosis. In particular, neural cells can include long interspersed nuclear elements (LINEs), or ‘jumping’ genes that can move around the genome, which cause each neuron to differ from its neighbor cells. Research has shown that the number of LINEs in human brain exceeds that of other tissues, e.g., heart and liver tissue, with between 80 and 300 unique insertions (See, e.g., Coufal, N. G. et al. Nature 460, 1127-1131 (2009)). These differences have been postulated as being related to a person's susceptibility to neuro-logical disorders (see, e.g., Muotri, A. R. et al. Nature 468, 443-446 (2010)), or provide the brain with a diversity with which to respond to challenges. As such, the methods described herein may be used in the sequencing and characterization of individual neural cells.
  • The single cell analysis methods described herein are also useful in the analysis of gene expression, as noted above, both in terms of identification of RNA transcripts and their quantitation. In particular, using the single cell level analysis methods described herein, one can isolate and analyze the RNA transcripts present in individual cells, populations of cells, or subsets of populations of cells. In particular, in some cases, the barcode oligonucleotides may be configured to prime, replicate and consequently yield barcoded fragments of RNA from individual cells. For example, in some cases, the barcode oligonucleotides may include mRNA specific priming sequences, e.g., poly-T primer segments that allow priming and replication of mRNA in a reverse transcription reaction or other targeted priming sequences. Alternatively or additionally, random RNA priming may be carried out using random N-mer primer segments of the barcode oligonucleotides.
  • FIG. 6 provides a schematic of one example method for RNA expression analysis in individual cells using the methods described herein. As shown, at operation 602 a cell containing sample is sorted for viable cells, which are quantified and diluted for subsequent partitioning. At operation 604, the individual cells separately co-partitioned with gel beads bearing the barcoding oligonucleotides as described herein. The cells are lysed and the barcoded oligonucleotides released into the partitions at operation 606, where they interact with and hybridize to the mRNA at operation 608, e.g., by virtue of a poly-T primer sequence, which is complementary to the poly-A tail of the mRNA. Using the poly-T barcode oligonucleotide as a priming sequence, a reverse transcription reaction is carried out at operation 610 to synthesize a cDNA transcript of the mRNA that includes the barcode sequence. The barcoded cDNA transcripts are then subjected to additional amplification at operation 612, e.g., using a PCR process, purification at operation 614, before they are placed on a nucleic acid sequencing system for determination of the cDNA sequence and its associated barcode sequence(s). In some cases, as shown, operations 602 through 608 can occur while the reagents remain in their original droplet or partition, while operations 612 through 616 can occur in bulk (e.g., outside of the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operations 612 through 616. In some cases, barcode oligonucleotides may be digested with exonucleases after the emulsion is broken. Exonuclease activity can be inhibited by ethylenediaminetetraacetic acid (EDTA) following primer digestion. In some cases, operation 610 may be performed either within the partitions based upon co-partitioning of the reverse transcription mixture, e.g., reverse transcriptase and associated reagents, or it may be performed in bulk.
  • As noted elsewhere herein, the structure of the barcode oligonucleotides may include a number of sequence elements in addition to the oligonucleotide barcode sequence. One example of a barcode oligonucleotide for use in RNA analysis as described above is shown in FIG. 7. As shown, the overall oligonucleotide 702 is coupled to a bead 704 by a releasable linkage 706, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 708, which may include one or more of a sequencer specific flow cell attachment sequence, e.g., a P5 sequence for Illumina sequencing systems, as well as sequencing primer sequences, e.g., a R1 primer for Illumina sequencing systems. A barcode sequence 710 is included within the structure for use in barcoding the sample RNA. An mRNA specific priming sequence, such as poly-T sequence 712 is also included in the oligonucleotide structure. An anchoring sequence segment 714 may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA. This anchoring sequence can include a random short sequence of nucleotides, e.g., 1-mer, 2-mer, 3-mer or longer sequence, which will ensure that the poly-T segment is more likely to hybridize at the sequence end of the poly-A tail of the mRNA. An additional sequence segment 716 may be provided within the oligonucleotide sequence. In some cases, this additional sequence provides a unique molecular sequence segment, e.g., as a random sequence (e.g., such as a random N-mer sequence) that varies across individual oligonucleotides coupled to a single bead, whereas barcode sequence 710 can be constant among oligonucleotides tethered to an individual bead. This unique sequence serves to provide a unique identifier of the starting mRNA molecule that was captured, in order to allow quantitation of the number of original expressed RNA. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual bead can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead. This unique molecular sequence segment may include from 5 to about 8 or more nucleotides within the sequence of the oligonucleotides. In some cases, the unique molecular sequence segment can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or longer. In some cases, the unique molecular sequence segment can be at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or longer. In some cases, the unique molecular sequence segment can be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or shorter.
  • In operation, and with reference to FIGS. 6 and 7, a cell is co-partitioned along with a barcode bearing bead and lysed while the barcoded oligonucleotides are released from the bead. The poly-T portion of the released barcode oligonucleotide then hybridizes to the poly-A tail of the mRNA. The poly-T segment then primes the reverse transcription of the mRNA to produce a cDNA transcript of the mRNA, but which includes each of the sequence segments 708-716 of the barcode oligonucleotide. Again, because the oligonucleotide 702 includes an anchoring sequence 714, it will more likely hybridize to and prime reverse transcription at the sequence end of the poly-A tail of the mRNA. Within any given partition, all of the cDNA transcripts of the individual mRNA molecules will include a common barcode sequence segment 710. However, by including the unique random N-mer sequence, the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence. This provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell. As noted above, the transcripts are then amplified, cleaned up and sequenced to identify the sequence of the cDNA transcript of the mRNA, as well as to sequence the barcode segment and the unique sequence segment.
  • As noted elsewhere herein, while a poly-T primer sequence is described, other targeted or random priming sequences may also be used in priming the reverse transcription reaction. Likewise, although described as releasing the barcoded oligonucleotides into the partition along with the contents of the lysed cells, it will be appreciated that in some cases, the gel bead bound oligonucleotides may be used to hybridize ad capture the mRNA on the solid phase of the gel beads, in order to facilitate the separation of the RNA from other cell contents.
  • An additional example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis, is shown in FIG. 9A. As shown, the overall oligonucleotide 902 can be coupled to a bead 904 by a releasable linkage 906, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 908, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence for Illumina sequencing systems, as well as functional sequence 910, which may include sequencing primer sequences, e.g., a R1 primer binding site for Illumina sequencing systems. A barcode sequence 912 is included within the structure for use in barcoding the sample RNA. An RNA specific (e.g., mRNA specific) priming sequence, such as poly-T sequence 914 is also included in the oligonucleotide structure. An anchoring sequence segment (not shown) may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA. An additional sequence segment 916 may be provided within the oligonucleotide sequence. This additional sequence can provide a unique molecular sequence segment, e.g., as a random N-mer sequence that varies across individual oligonucleotides coupled to a single bead, whereas barcode sequence 912 can be constant among oligonucleotides tethered to an individual bead. As described elsewhere herein, this unique sequence can serve to provide a unique identifier of the starting mRNA molecule that was captured, in order to allow quantitation of the number of original expressed RNA, e.g., mRNA counting. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • In an example method of cellular RNA (e.g., mRNA) analysis and in reference to FIG. 9A, a cell is co-partitioned along with a barcode bearing bead, switch oligo 924, and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). In operation 950, the cell is lysed while the barcoded oligonucleotides 902 are released from the bead (e.g., via the action of the reducing agent) and the poly-T segment 914 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 that is released from the cell. Next, in operation 952 the poly-T segment 914 is extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908, 912, 910, 916 and 914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). The switch oligo 924 may then hybridize with the additional bases added to the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template. Within any given partition, all of the cDNA transcripts of the individual mRNA molecules will include a common barcode sequence segment 912. However, by including the unique random N-mer sequence 916, the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence. As described elsewhere herein, this provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell. Following operation 952, the cDNA transcript 922 is then amplified with primers 926 (e.g., PCR primers) in operation 954. Next, the amplified product is then purified (e.g., via solid phase reversible immobilization (SPRI)) in operation 956. At operation 958, the amplified product is then sheared, ligated to additional functional sequences, and further amplified (e.g., via PCR). The functional sequences may include a sequencer specific flow cell attachment sequence 930, e.g., a P7 sequence for Illumina sequencing systems, as well as functional sequence 928, which may include a sequencing primer binding site, e.g., for a R2 primer for Illumina sequencing systems, as well as functional sequence 932, which may include a sample index, e.g., an i7 sample index sequence for Illumina sequencing systems. In some cases, operations 950 and 952 can occur in the partition, while operations 954, 956 and 958 can occur in bulk solution (e.g., in a pooled mixture outside of the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operations 954, 956 and 958. In some cases, operation 954 may be completed in the partition. In some cases, barcode oligonucleotides may be digested with exonucleases after the emulsion is broken. Exonuclease activity can be inhibited by ethylenediaminetetraacetic acid (EDTA) following primer digestion. Although described in terms of specific sequence references used for certain sequencing systems, e.g., Illumina systems, it will be understood that the reference to these sequences is for illustration purposes only, and the methods described herein may be configured for use with other sequencing systems incorporating specific priming, attachment, index, and other operational sequences used in those systems, e.g., systems available from Ion Torrent, Oxford Nanopore, Genia, Pacific Biosciences, Complete Genomics, and the like.
  • In an alternative example of a barcode oligonucleotide for use in RNA (e.g., cellular RNA) analysis as shown in FIG. 9A, functional sequence 908 may be a P7 sequence and functional sequence 910 may be a R2 primer binding site. Moreover, the functional sequence 930 may be a P5 sequence, functional sequence 928 may be a R1 primer binding site, and functional sequence 932 may be an i5 sample index sequence for Illumina sequencing systems. The configuration of the constructs generated by such a barcode oligonucleotide can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
  • Shown in FIG. 9B is another example method for RNA analysis, including cellular mRNA analysis. In this method, the switch oligo 924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). The switch oligo 924 may be labeled with an additional tag 934, e.g. biotin. In operation 951, the cell is lysed while the barcoded oligonucleotides 902 (e.g., as shown in FIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases, sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site. In other cases, sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site. Next, the poly-T segment 914 of the released barcode oligonucleotide hybridizes to the poly-A tail of mRNA 920 that is released from the cell. In operation 953, the poly-T segment 914 is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908, 912, 910, 916 and 914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). The switch oligo 924 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template. Next, an isolation operation 960 can be used to isolate the cDNA transcript 922 from the reagents and oligonucleotides in the partition. The additional tag 934, e.g. biotin, can be contacted with an interacting tag 936, e.g., streptavidin, which may be attached to a magnetic bead 938. At operation 960 the cDNA can be isolated with a pull-down operation (e.g., via magnetic separation, centrifugation) before amplification (e.g., via PCR) in operation 955, followed by purification (e.g., via solid phase reversible immobilization (SPRI)) in operation 957 and further processing (shearing, ligation of sequences 928, 932 and 930 and subsequent amplification (e.g., via PCR)) in operation 959. In some cases where sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site, sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence. In some cases where sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site, sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence. In some cases, as shown, operations 951 and 953 can occur in the partition, while operations 960, 955, 957 and 959 can occur in bulk solution (e.g., in a pooled mixture outside of the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operation 960. The operations 955, 957, and 959 can then be carried out following operation 960 after the transcripts are pooled for processing.
  • Shown in FIG. 9C is another example method for RNA analysis, including cellular mRNA analysis. In this method, the switch oligo 924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs in a partition (e.g., a droplet in an emulsion). In operation 961, the cell is lysed while the barcoded oligonucleotides 902 (e.g., as shown in FIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases, sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site. In other cases, sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site. Next, the poly-T segment 914 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 that is released from the cell. Next, in operation 963 the poly-T segment 914 is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908, 912, 910, 916 and 914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). The switch oligo 924 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template. Following operation 961 and operation 963, mRNA 920 and cDNA transcript 922 are denatured in operation 962. At operation 964, a second strand is extended from a primer 940 having an additional tag 942, e.g. biotin, and hybridized to the cDNA transcript 922. Also in operation 964, the biotin labeled second strand can be contacted with an interacting tag 936, e.g. streptavidin, which may be attached to a magnetic bead 938. The cDNA can be isolated with a pull-down operation (e.g., via magnetic separation, centrifugation) before amplification (e.g., via polymerase chain reaction (PCR)) in operation 965, followed by purification (e.g., via solid phase reversible immobilization (SPRI)) in operation 967 and further processing (shearing, ligation of sequences 928, 932 and 930 and subsequent amplification (e.g., via PCR)) in operation 969. In some cases where sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site, sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence. In some cases where sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site, sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence. In some cases, operations 961 and 963 can occur in the partition, while operations 962, 964, 965, 967, and 969 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operations 962, 964, 965, 967 and 969.
  • Shown in FIG. 9D is another example method for RNA analysis, including cellular mRNA analysis. In this method, the switch oligo 924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs. In operation 971, the cell is lysed while the barcoded oligonucleotides 902 (e.g., as shown in FIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases, sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site. In other cases, sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site. Next the poly-T segment 914 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 that is released from the cell. Next in operation 973, the poly-T segment 914 is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908, 912, 910, 916 and 914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). The switch oligo 924 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into the cDNA transcript 922 via extension of the cDNA transcript 922 using the switch oligo 924 as a template. In operation 966, the mRNA 920, cDNA transcript 922 and switch oligo 924 can be denatured, and the cDNA transcript 922 can be hybridized with a capture oligonucleotide 944 labeled with an additional tag 946, e.g. biotin. In this operation, the biotin-labeled capture oligonucleotide 944, which is hybridized to the cDNA transcript, can be contacted with an interacting tag 936, e.g. streptavidin, which may be attached to a magnetic bead 938. Following separation from other species (e.g., excess barcoded oligonucleotides) using a pull-down operation (e.g., via magnetic separation, centrifugation), the cDNA transcript can be amplified (e.g., via PCR) with primers 926 at operation 975, followed by purification (e.g., via solid phase reversible immobilization (SPRI)) in operation 977 and further processing (shearing, ligation of sequences 928, 932 and 930 and subsequent amplification (e.g., via PCR)) in operation 979. In some cases where sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site, sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence. In other cases where sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site, sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence. In some cases, operations 971 and 973 can occur in the partition, while operations 966, 975, 977 (purification), and 979 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operations 966, 975, 977 and 979.
  • Shown in FIG. 9E is another example method for RNA analysis, including cellular RNA analysis. In this method, an individual cell is co-partitioned along with a barcode bearing bead, a switch oligo 990, and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). In operation 981, the cell is lysed while the barcoded oligonucleotides (e.g., 902 as shown in FIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases, sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site. In other cases, sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site. Next, the poly-T segment of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 920 released from the cell. Next at operation 983, the poly-T segment is then extended in a reverse transcription reaction to produce a cDNA transcript 922 complementary to the mRNA and also includes each of the sequence segments 908, 912, 910, 916 and 914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). The switch oligo 990 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence and including a T7 promoter sequence, can be incorporated into the cDNA transcript 922. At operation 968, a second strand is synthesized and at operation 970 the T7 promoter sequence can be used by T7 polymerase to produce RNA transcripts in in vitro transcription. At operation 985 the RNA transcripts can be purified (e.g., via solid phase reversible immobilization (SPRI)), reverse transcribed to form DNA transcripts, and a second strand can be synthesized for each of the DNA transcripts. In some cases, prior to purification, the RNA transcripts can be contacted with a DNase (e.g., DNAase I) to break down residual DNA. At operation 987 the DNA transcripts are then fragmented and ligated to additional functional sequences, such as sequences 928, 932 and 930 and, in some cases, further amplified (e.g., via PCR). In some cases where sequence 908 is a P7 sequence and sequence 910 is a R2 primer binding site, sequence 930 is a P5 sequence and sequence 928 is a R1 primer binding site and sequence 932 is an i5 sample index sequence. In some cases where sequence 908 is a P5 sequence and sequence 910 is a R1 primer binding site, sequence 930 is a P7 sequence and sequence 928 is a R2 primer binding site and sequence 932 is an i7 sample index sequence. In some cases, prior to removing a portion of the DNA transcripts, the DNA transcripts can be contacted with an RNase to break down residual RNA. In some cases, operations 981 and 983 can occur in the partition, while operations 968, 970, 985 and 987 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operations 968, 970, 985 and 987.
  • Another example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis is shown in FIG. 10. As shown, the overall oligonucleotide 1002 is coupled to a bead 1004 by a releasable linkage 1006, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1008, which may include a sequencer specific flow cell attachment sequence, e.g., a P7 sequence, as well as functional sequence 1010, which may include sequencing primer sequences, e.g., a R2 primer binding site. A barcode sequence 1012 is included within the structure for use in barcoding the sample RNA. An RNA specific (e.g., mRNA specific) priming sequence, such as poly-T sequence 1014 may be included in the oligonucleotide structure. An anchoring sequence segment (not shown) may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA. An additional sequence segment 1016 may be provided within the oligonucleotide sequence. This additional sequence can provide a unique molecular sequence segment, as described elsewhere herein. An additional functional sequence 1020 may be included for in vitro transcription, e.g., a T7 RNA polymerase promoter sequence. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • In an example method of cellular RNA analysis and in reference to FIG. 10, a cell is co-partitioned along with a barcode bearing bead, and other reagents such as reverse transcriptase, reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). In operation 1050, the cell is lysed while the barcoded oligonucleotides 1002 are released (e.g., via the action of the reducing agent) from the bead, and the poly-T segment 1014 of the released barcode oligonucleotide then hybridizes to the poly-A tail of mRNA 1020. Next at operation 1052, the poly-T segment is then extended in a reverse transcription reaction using the mRNA as template to produce a cDNA transcript 1022 of the mRNA and also includes each of the sequence segments 1020, 1008, 1012, 1010, 1016, and 1014 of the barcode oligonucleotide. Within any given partition, all of the cDNA transcripts of the individual mRNA molecules will include a common barcode sequence segment 1012. However, by including the unique random N-mer sequence, the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence. As described elsewhere herein, this provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell. At operation 1054 a second strand is synthesized and at operation 1056 the T7 promoter sequence can be used by T7 polymerase to produce RNA transcripts in in vitro transcription. At operation 1058 the transcripts are fragmented (e.g., sheared), ligated to additional functional sequences, and reverse transcribed. The functional sequences may include a sequencer specific flow cell attachment sequence 1030, e.g., a P5 sequence, as well as functional sequence 1028, which may include sequencing primers, e.g., a R1 primer binding sequence, as well as functional sequence 1032, which may include a sample index, e.g., an i5 sample index sequence. At operation 1060 the RNA transcripts can be reverse transcribed to DNA, the DNA amplified (e.g., via PCR), and sequenced to identify the sequence of the cDNA transcript of the mRNA, as well as to sequence the barcode segment and the unique sequence segment. In some cases, operations 1050 and 1052 can occur in the partition, while operations 1054, 1056, 1058 and 1060 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to complete operations 1054, 1056, 1058 and 1060.
  • In an alternative example of a barcode oligonucleotide for use in RNA (e.g., cellular RNA) analysis as shown in FIG. 10, functional sequence 1008 may be a P5 sequence and functional sequence 1010 may be a R1 primer binding site. Moreover, the functional sequence 1030 may be a P7 sequence, functional sequence 1028 may be a R2 primer binding site, and functional sequence 1032 may be an i7 sample index sequence.
  • An additional example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis is shown in FIG. 11. As shown, the overall oligonucleotide 1102 is coupled to a bead 1104 by a releasable linkage 1106, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1108, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well as functional sequence 1110, which may include sequencing primer sequences, e.g., a R1 primer binding site. In some cases, sequence 1108 is a P7 sequence and sequence 1110 is a R2 primer binding site. A barcode sequence 1112 is included within the structure for use in barcoding the sample RNA. An additional sequence segment 1116 may be provided within the oligonucleotide sequence. In some cases, this additional sequence can provide a unique molecular sequence segment, as described elsewhere herein. An additional sequence 1114 may be included to facilitate template switching, e.g., polyG. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
  • In an example method of cellular mRNA analysis and in reference to FIG. 11, a cell is co-partitioned along with a barcode bearing bead, poly-T sequence, and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). In operation 1150, the cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent) and the poly-T sequence hybridizes to the poly-A tail of mRNA 1120 released from the cell. Next, in operation 1152, the poly-T sequence is then extended in a reverse transcription reaction using the mRNA as a template to produce a cDNA transcript 1122 complementary to the mRNA. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). The additional bases added to the cDNA transcript, e.g., polyC, can then to hybridize with 1114 of the barcoded oligonucleotide. This can facilitate template switching and a sequence complementary to the barcode oligonucleotide can be incorporated into the cDNA transcript. The transcripts can be further processed (e.g., amplified, portions removed, additional sequences added, etc.) and characterized as described elsewhere herein, e.g., by sequencing. The configuration of the constructs generated by such a method can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
  • An additional example of a barcode oligonucleotide for use in RNA analysis, including cellular RNA analysis is shown in FIG. 12A. As shown, the overall oligonucleotide 1202 is coupled to a bead 1204 by a releasable linkage 1206, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1208, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well as functional sequence 1210, which may include sequencing primer sequences, e.g., a R1 primer binding site. In some cases, sequence 1208 is a P7 sequence and sequence 1210 is a R2 primer binding site. A barcode sequence 1212 is included within the structure for use in barcoding the sample RNA. An additional sequence segment 1216 may be provided within the oligonucleotide sequence. In some cases, this additional sequence can provide a unique molecular sequence segment, as described elsewhere herein. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead. In an example method of cellular RNA analysis using this barcode, a cell is co-partitioned along with a barcode bearing bead and other reagents such as RNA ligase and a reducing agent into a partition (e.g. a droplet in an emulsion). The cell is lysed while the barcoded oligonucleotides are released (e.g., via the action of the reducing agent) from the bead. The barcoded oligonucleotides can then be ligated to the 5′ end of mRNA transcripts while in the partitions by RNA ligase. Subsequent operations may include purification (e.g., via solid phase reversible immobilization (SPRI)) and further processing (shearing, ligation of functional sequences, and subsequent amplification (e.g., via PCR)), and these operations may occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled for the additional operations.
  • An additional example of a barcode oligonucleotide for use in RNA analysis, including cellular RNA analysis is shown in FIG. 12B. As shown, the overall oligonucleotide 1222 is coupled to a bead 1224 by a releasable linkage 1226, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such as functional sequence 1228, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well as functional sequence 1230, which may include sequencing primer sequences, e.g., a R1 primer binding site. In some cases, sequence 1228 is a P7 sequence and sequence 1230 is a R2 primer binding site. A barcode sequence 1232 is included within the structure for use in barcoding the sample RNA. A priming sequence 1234 (e.g., a random priming sequence) can also be included in the oligonucleotide structure, e.g., a random hexamer. An additional sequence segment 1236 may be provided within the oligonucleotide sequence. In some cases, this additional sequence provides a unique molecular sequence segment, as described elsewhere herein. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead. In an example method of cellular mRNA analysis using the barcode oligonucleotide of FIG. 12B, a cell is co-partitioned along with a barcode bearing bead and additional reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). The cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent). In some cases, sequence 1228 is a P7 sequence and sequence 1230 is a R2 primer binding site. In other cases, sequence 1228 is a P5 sequence and sequence 1230 is a R1 primer binding site. The priming sequence 1234 of random hexamers can randomly hybridize cellular mRNA. The random hexamer sequence can then be extended in a reverse transcription reaction using mRNA from the cell as a template to produce a cDNA transcript complementary to the mRNA and also includes each of the sequence segments 1228, 1232, 1230, 1236, and 1234 of the barcode oligonucleotide. Subsequent operations may include purification (e.g., via solid phase reversible immobilization (SPRI)), further processing (shearing, ligation of functional sequences, and subsequent amplification (e.g., via PCR)), and these operations may occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled for additional operations. Additional reagents that may be co-partitioned along with the barcode bearing bead may include oligonucleotides to block ribosomal RNA (rRNA) and nucleases to digest genomic DNA and cDNA from cells. Alternatively, rRNA removal agents may be applied during additional processing operations. The configuration of the constructs generated by such a method can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
  • The single cell analysis methods described herein may also be useful in the analysis of the whole transcriptome. Referring back to the barcode of FIG. 12B, the priming sequence 1234 may be a random N-mer. In some cases, sequence 1228 is a P7 sequence and sequence 1230 is a R2 primer binding site. In other cases, sequence 1228 is a P5 sequence and sequence 1230 is a R1 primer binding site. In an example method of whole transcriptome analysis using this barcode, the individual cell is co-partitioned along with a barcode bearing bead, poly-T sequence, and other reagents such as reverse transcriptase, polymerase, a reducing agent and dNTPs into a partition (e.g., droplet in an emulsion). In an operation of this method, the cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent) and the poly-T sequence hybridizes to the poly-A tail of cellular mRNA. In a reverse transcription reaction using the mRNA as template, cDNA transcripts of cellular mRNA can be produced. The RNA can then be degraded with an RNase. The priming sequence 1234 in the barcoded oligonucleotide can then randomly hybridize to the cDNA transcripts. The oligonucleotides can be extended using polymerase enzymes and other extension reagents co-partitioned with the bead and cell similar to as shown in FIG. 3 to generate amplification products (e.g., barcoded fragments), similar to the example amplification product shown in FIG. 3 (panel F). The barcoded nucleic acid fragments may, in some cases subjected to further processing (e.g., amplification, addition of additional sequences, clean up processes, etc. as described elsewhere herein) characterized, e.g., through sequence analysis. In this operation, sequencing signals can come from full length RNA.
  • Although operations with various barcode designs have been discussed individually, individual beads can include barcode oligonucleotides of various designs for simultaneous use.
  • In addition to characterizing individual cells or cell sub-populations from larger populations, the processes and systems described herein may also be used to characterize individual cells as a way to provide an overall profile of a cellular, or other organismal population. A variety of applications require the evaluation of the presence and quantification of different cell or organism types within a population of cells, including, for example, microbiome analysis and characterization, environmental testing, food safety testing, epidemiological analysis, e.g., in tracing contamination or the like. In particular, the analysis processes described above may be used to individually characterize, sequence and/or identify large numbers of individual cells within a population. This characterization may then be used to assemble an overall profile of the originating population, which can provide important prognostic and diagnostic information.
  • For example, shifts in human microbiomes, including, e.g., gut, buccal, epidermal microbiomes, etc., have been identified as being both diagnostic and prognostic of different conditions or general states of health. Using the single cell analysis methods and systems described herein, one can again, characterize, sequence and identify individual cells in an overall population, and identify shifts within that population that may be indicative of diagnostic ally relevant factors. By way of example, sequencing of bacterial 16S ribosomal RNA genes has been used as a highly accurate method for taxonomic classification of bacteria. Using the targeted amplification and sequencing processes described above can provide identification of individual cells within a population of cells. One may further quantify the numbers of different cells within a population to identify current states or shifts in states over time. See, e.g., Morgan et al, PLoS Comput. Biol., Ch. 12, December 2012, 8(12):e1002808, and Ram et al., Syst. Biol. Reprod. Med., June 2011, 57(3):162-170, each of which is incorporated herein by reference in its entirety for all purposes. Likewise, identification and diagnosis of infection or potential infection may also benefit from the single cell analyses described herein, e.g., to identify microbial species present in large mixes of other cells or other biological material, cells and/or nucleic acids, including the environments described above, as well as any other diagnostically relevant environments, e.g., cerebrospinal fluid, blood, fecal or intestinal samples, or the like.
  • The foregoing analyses may also be particularly useful in the characterization of potential drug resistance of different cells, e.g., cancer cells, bacterial pathogens, etc., through the analysis of distribution and profiling of different resistance markers/mutations across cell populations in a given sample. Additionally, characterization of shifts in these markers/mutations across populations of cells over time can provide valuable insight into the progression, alteration, prevention, and treatment of a variety of diseases characterized by such drug resistance issues.
  • Although described in terms of cells, it will be appreciated that any of a variety of individual biological organisms, or components of organisms are encompassed within this description, including, for example, cells, viruses, organelles, cellular inclusions, vesicles, or the like. Additionally, where referring to cells, it will be appreciated that such reference includes any type of cell, including without limitation prokaryotic cells, eukaryotic cells, bacterial, fungal, plant, mammalian, or other animal cell types, mycoplasmas, normal tissue cells, tumor cells, or any other cell type, whether derived from single cell or multicellular organisms.
  • Similarly, analysis of different environmental samples to profile the microbial organisms, viruses, or other biological contaminants that are present within such samples, can provide important information about disease epidemiology, and potentially aid in forecasting disease outbreaks, epidemics an pandemics.
  • As described above, the methods, systems and compositions described herein may also be used for analysis and characterization of other aspects of individual cells or populations of cells. In one example process, a sample is provided that contains cells that are to be analyzed and characterized as to their cell surface proteins. Also provided is a library of antibodies, antibody fragments, or other molecules having a binding affinity to the cell surface proteins or antigens (or other cell features) for which the cell is to be characterized (also referred to herein as cell surface feature binding groups). For ease of discussion, these affinity groups are referred to herein as binding groups. The binding groups can include a reporter molecule that is indicative of the cell surface feature to which the binding group binds. In particular, a binding group type that is specific to one type of cell surface feature will comprise a first reporter molecule, while a binding group type that is specific to a different cell surface feature will have a different reporter molecule associated with it. In some aspects, these reporter molecules will comprise oligonucleotide sequences. Oligonucleotide based reporter molecules provide advantages of being able to generate significant diversity in terms of sequence, while also being readily attachable to most biomolecules, e.g., antibodies, etc., as well as being readily detected, e.g., using sequencing or array technologies. In the example process, the binding groups include oligonucleotides attached to them. Thus, a first binding group type, e.g., antibodies to a first type of cell surface feature, will have associated with it a reporter oligonucleotide that has a first nucleotide sequence. Different binding group types, e.g., antibodies having binding affinity for other, different cell surface features, will have associated therewith reporter oligonucleotides that comprise different nucleotide sequences, e.g., having a partially or completely different nucleotide sequence. In some cases, for each type of cell surface feature binding group, e.g., antibody or antibody fragment, the reporter oligonucleotide sequence may be known and readily identifiable as being associated with the known cell surface feature binding group. These oligonucleotides may be directly coupled to the binding group, or they may be attached to a bead, molecular lattice, e.g., a linear, globular, cross-linked, or other polymer, or other framework that is attached or otherwise associated with the binding group, which allows attachment of multiple reporter oligonucleotides to a single binding group.
  • In the case of multiple reporter molecules coupled to a single binding group, such reporter molecules can comprise the same sequence, or a particular binding group will include a known set of reporter oligonucleotide sequences. As between different binding groups, e.g., specific for different cell surface features, the reporter molecules can be different and attributable to the particular binding group.
  • Attachment of the reporter groups to the binding groups may be achieved through any of a variety of direct or indirect, covalent or non-covalent associations or attachments. For example, in the case of oligonucleotide reporter groups associated with antibody based binding groups, such oligonucleotides may be covalently attached to a portion of an antibody or antibody fragment using chemical conjugation techniques (e.g., Lightning-Link® antibody labeling kits available from Innova Biosciences), as well as other non-covalent attachment mechanisms, e.g., using biotinylated antibodies and oligonucleotides (or beads that include one or more biotinylated linker, coupled to oligonucleotides) with an avidin or streptavidin linker. Antibody and oligonucleotide biotinylation techniques are available (See, e.g., Fang, et al., Fluoride-Cleavable Biotinylation Phosphoramidite for 5′-end-Labeling and Affinity Purification of Synthetic Oligonucleotides, Nucleic Acids Res. Jan. 15, 2003; 31(2):708-715, DNA 3′ End Biotinylation Kit, available from Thermo Scientific, the full disclosures of which are incorporated herein by reference in their entirety for all purposes). Likewise, protein and peptide biotinylation techniques have been developed and are readily available (See, e.g., U.S. Pat. No. 6,265,552, the full disclosures of which are incorporated herein by reference in their entirety for all purposes).
  • The reporter oligonucleotides may be provided having any of a range of different lengths, depending upon the diversity of reporter molecules desired or a given analysis, the sequence detection scheme employed, and the like. In some cases, these reporter sequences can be greater than about 5 nucleotides in length, greater than about 10 nucleotides in length, greater than about 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150 or even 200 nucleotides in length. In some cases, these reporter nucleotides may be less than about 250 nucleotides in length, less than about 200, 180, 150, 120 100, 90, 80, 70, 60, 50, 40, or even 30 nucleotides in length. In many cases, the reporter oligonucleotides may be selected to provide barcoded products that are already sized, and otherwise configured to be analyzed on a sequencing system. For example, these sequences may be provided at a length that ideally creates sequenceable products of a desired length for particular sequencing systems. Likewise, these reporter oligonucleotides may include additional sequence elements, in addition to the reporter sequence, such as sequencer attachment sequences, sequencing primer sequences, amplification primer sequences, or the complements to any of these.
  • In operation, a cell-containing sample is incubated with the binding molecules and their associated reporter oligonucleotides, for any of the cell surface features desired to be analyzed. Following incubation, the cells are washed to remove unbound binding groups. Following washing, the cells are partitioned into separate partitions, e.g., droplets, along with the barcode carrying beads described above, where each partition includes a limited number of cells, e.g., in some cases, a single cell. Upon releasing the barcodes from the beads, they will prime the amplification and barcoding of the reporter oligonucleotides. As noted above, the barcoded replicates of the reporter molecules may additionally include functional sequences, such as primer sequences, attachment sequences or the like.
  • The barcoded reporter oligonucleotides are then subjected to sequence analysis to identify which reporter oligonucleotides bound to the cells within the partitions. Further, by also sequencing the associated barcode sequence, one can identify that a given cell surface feature likely came from the same cell as other, different cell surface features, whose reporter sequences include the same barcode sequence, i.e., they were derived from the same partition.
  • Based upon the reporter molecules that emanate from an individual partition based upon the presence of the barcode sequence, one may then create a cell surface profile of individual cells from a population of cells. Profiles of individual cells or populations of cells may be compared to profiles from other cells, e.g., ‘normal’ cells, to identify variations in cell surface features, which may provide diagnostically relevant information. In particular, these profiles may be particularly useful in the diagnosis of a variety of disorders that are characterized by variations in cell surface receptors, such as cancer and other disorders.
  • IV. Devices and Systems
  • Also provided herein are the microfluidic devices used for partitioning the cells as described above. Such microfluidic devices can comprise channel networks for carrying out the partitioning process like those set forth in FIGS. 1 and 2. Examples of particularly useful microfluidic devices are described in U.S. Provisional Patent Application No. 61/977,804, filed Apr. 4, 2014, and incorporated herein by reference in its entirety for all purposes. Briefly, these microfluidic devices can comprise channel networks, such as those described herein, for partitioning cells into separate partitions, and co-partitioning such cells with oligonucleotide barcode library members, e.g., disposed on beads. These channel networks can be disposed within a solid body, e.g., a glass, semiconductor or polymer body structure in which the channels are defined, where those channels communicate at their termini with reservoirs for receiving the various input fluids, and for the ultimate deposition of the partitioned cells, etc., from the output of the channel networks. By way of example, and with reference to FIG. 2, a reservoir fluidly coupled to channel 202 may be provided with an aqueous suspension of cells 214, while a reservoir coupled to channel 204 may be provided with an aqueous suspension of beads 216 carrying the oligonucleotides. Channel segments 206 and 208 may be provided with a non-aqueous solution, e.g., an oil, into which the aqueous fluids are partitioned as droplets at the channel junction 212. Finally, an outlet reservoir may be fluidly coupled to channel 210 into which the partitioned cells and beads can be delivered and from which they may be harvested. As will be appreciated, while described as reservoirs, it will be appreciated that the channel segments may be coupled to any of a variety of different fluid sources or receiving components, including tubing, manifolds, or fluidic components of other systems.
  • Also provided are systems that control flow of these fluids through the channel networks e.g., through applied pressure differentials, centrifugal force, electrokinetic pumping, capillary or gravity flow, or the like.
  • V. Kits
  • Also provided herein are kits for analyzing individual cells or small populations of cells. The kits may include one, two, three, four, five or more, up to all of partitioning fluids, including both aqueous buffers and non-aqueous partitioning fluids or oils, nucleic acid barcode libraries that are releasably associated with beads, as described herein, microfluidic devices, reagents for disrupting cells amplifying nucleic acids, and providing additional functional sequences on fragments of cellular nucleic acids or replicates thereof, as well as instructions for using any of the foregoing in the methods described herein.
  • VI. Computer Control Systems
  • The present disclosure provides computer control systems that are programmed to implement methods of the disclosure. FIG. 17 shows a computer system 1701 that is programmed or otherwise configured to implement methods of the disclosure including nucleic acid sequencing methods, interpretation of nucleic acid sequencing data and analysis of cellular nucleic acids, such as RNA (e.g., mRNA), and characterization of cells from sequencing data. The computer system 1701 can be an electronic device of a user or a computer system that is remotely located with respect to the electronic device. The electronic device can be a mobile electronic device.
  • The computer system 1701 includes a central processing unit (CPU, also “processor” and “computer processor” herein) 1705, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 1701 also includes memory or memory location 1710 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 1715 (e.g., hard disk), communication interface 1720 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 1725, such as cache, other memory, data storage and/or electronic display adapters. The memory 1710, storage unit 1715, interface 1720 and peripheral devices 1725 are in communication with the CPU 1705 through a communication bus (solid lines), such as a motherboard. The storage unit 1715 can be a data storage unit (or data repository) for storing data. The computer system 1701 can be operatively coupled to a computer network (“network”) 1730 with the aid of the communication interface 1720. The network 1730 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. The network 1730 in some cases is a telecommunication and/or data network. The network 1730 can include one or more computer servers, which can enable distributed computing, such as cloud computing. The network 1730, in some cases with the aid of the computer system 1701, can implement a peer-to-peer network, which may enable devices coupled to the computer system 1701 to behave as a client or a server.
  • The CPU 1705 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as the memory 1710. The instructions can be directed to the CPU 1705, which can subsequently program or otherwise configure the CPU 1705 to implement methods of the present disclosure. Examples of operations performed by the CPU 1705 can include fetch, decode, execute, and writeback.
  • The CPU 1705 can be part of a circuit, such as an integrated circuit. One or more other components of the system 1701 can be included in the circuit. In some cases, the circuit is an application specific integrated circuit (ASIC).
  • The storage unit 1715 can store files, such as drivers, libraries and saved programs. The storage unit 1715 can store user data, e.g., user preferences and user programs. The computer system 1701 in some cases can include one or more additional data storage units that are external to the computer system 1701, such as located on a remote server that is in communication with the computer system 1701 through an intranet or the Internet.
  • The computer system 1701 can communicate with one or more remote computer systems through the network 1730. For instance, the computer system 1701 can communicate with a remote computer system of a user. Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), or personal digital assistants. The user can access the computer system 1701 via the network 1730.
  • Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 1701, such as, for example, on the memory 1710 or electronic storage unit 1715. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by the processor 1705. In some cases, the code can be retrieved from the storage unit 1715 and stored on the memory 1710 for ready access by the processor 1705. In some situations, the electronic storage unit 1715 can be precluded, and machine-executable instructions are stored on memory 1710.
  • The code can be pre-compiled and configured for use with a machine having a processor adapted to execute the code, or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.
  • Aspects of the systems and methods provided herein, such as the computer system 1701, can be embodied in programming. Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk. “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.
  • Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
  • The computer system 1701 can include or be in communication with an electronic display 1735 that comprises a user interface (UI) 1740 for providing, for example, results of nucleic acid sequencing, analysis of nucleic acid sequencing data, characterization of nucleic acid sequencing samples, cell characterizations, etc. Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.
  • Methods and systems of the present disclosure can be implemented by way of one or more algorithms. An algorithm can be implemented by way of software upon execution by the central processing unit 1705. The algorithm can, for example, initiate nucleic acid sequencing, process nucleic acid sequencing data, interpret nucleic acid sequencing results, characterize nucleic acid samples, characterize cells, etc.
  • VII. Examples Example I Cellular RNA Analysis Using Emulsions
  • In an example, reverse transcription with template switching and cDNA amplification (via PCR) is performed in emulsion droplets with operations as shown in FIG. 9A. The reaction mixture that is partitioned for reverse transcription and cDNA amplification (via PCR) includes 1,000 cells or 10,000 cells or 10 ng of RNA, beads bearing barcoded oligonucleotides/0.2% Tx-100/5× Kapa buffer, 2× Kapa HS HiFi Ready Mix, 4 μM switch oligo, and Smartscribe. Where cells are present, the mixture is partitioned such that a majority or all of the droplets comprise a single cell and single bead. The cells are lysed while the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of mRNA that is released from the cell as in operation 950. The poly-T segment is extended in a reverse transcription reaction as in operation 952 and the cDNA transcript is amplified as in operation 954. The thermal cycling conditions are 42° C. for 130 minutes; 98° C. for 2 min; and 35 cycles of the following 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 6 min. Following thermal cycling, the emulsion is broken and the transcripts are purified with Dynabeads and 0.6×SPRI as in operation 956.
  • The yield from template switch reverse transcription and PCR in emulsions is shown for 1,000 cells in FIG. 13A and 10,000 cells in FIG. 13C and 10 ng of RNA in FIG. 13B (Smartscribe line). The cDNA transcripts from RT and PCR performed in emulsions for 10 ng RNA is sheared and ligated to functional sequences, cleaned up with 0.8×SPRI, and is further amplified by PCR as in operation 958. The amplification product is cleaned up with 0.8×SPRI. The yield from this processing is shown in FIG. 13B (SSII line).
  • Example II Cellular RNA Analysis Using Emulsions
  • In another example, reverse transcription with template switching and cDNA amplification (via PCR) is performed in emulsion droplets with operations as shown in FIG. 9A. The reaction mixture that is partitioned for reverse transcription and cDNA amplification (via PCR) includes Jurkat cells, beads bearing barcoded oligonucleotides/0.2% TritonX-100/5× Kapa buffer, 2× Kapa HS HiFi Ready Mix, 4 μM switch oligo, and Smartscribe. The mixture is partitioned such that a majority or all of the droplets comprise a single cell and single bead. The cells are lysed while the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of mRNA that is released from the cell as in operation 950. The poly-T segment is extended in a reverse transcription reaction as in operation 952 and the cDNA transcript is amplified as in operation 954. The thermal cycling conditions are 42° C. for 130 minutes; 98° C. for 2 min; and 35 cycles of the following 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 6 min. Following thermal cycling, the emulsion is broken and the transcripts are cleaned-up with Dynabeads and 0.6×SPRI as in operation 956. The yield from reactions with various cell numbers (625 cells, 1,250 cells, 2,500 cells, 5,000 cells, and 10,000 cells) is shown in FIG. 14A. These yields are confirmed with GADPH qPCR assay results shown in FIG. 14B.
  • Example III RNA Analysis Using Emulsions
  • In another example, reverse transcription is performed in emulsion droplets and cDNA amplification is performed in bulk in a manner similar to that as shown in FIG. 9C. The reaction mixture that is partitioned for reverse transcription includes beads bearing barcoded oligonucleotides, 10 ng Jurkat RNA (e.g., Jurkat mRNA), 5× First-Strand buffer, and Smartscribe. The barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of the RNA as in operation 961. The poly-T segment is extended in a reverse transcription reaction as in operation 963. The thermal cycling conditions for reverse transcription are one cycle at 42° C. for 2 hours and one cycle at 70° C. for 10 min. Following thermal cycling, the emulsion is broken and RNA and cDNA transcripts are denatured as in operation 962. A second strand is then synthesized by primer extension with a primer having a biotin tag as in operation 964. The reaction conditions for this primer extension include cDNA transcript as the first strand and biotinylated extension primer ranging in concentration from 0.5-3.0 μM. The thermal cycling conditions are one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min. Following primer extension, the second strand is pulled down with Dynabeads MyOne Streptavidin C1 and T1, and cleaned-up with Agilent SureSelect XT buffers. The second strand is pre-amplified via PCR as in operation 965 with the following cycling conditions—one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min. The yield for various concentrations of biotinylated primer (0.5 μM, 1.0 μM, 2.0 μM, and 3.0 μM) is shown in FIG. 15.
  • Example IV RNA Analysis Using Emulsions
  • In another example, in vitro transcription by T7 polymerase is used to produce RNA transcripts as shown in FIG. 10. The mixture that is partitioned for reverse transcription includes beads bearing barcoded oligonucleotides which also include a T7 RNA polymerase promoter sequence, 10 ng human RNA (e.g., human mRNA), 5× First-Strand buffer, and Smartscribe. The mixture is partitioned such that a majority or all of the droplets comprise a single bead. The barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of the RNA as in operation 1050. The poly-T segment is extended in a reverse transcription reaction as in operation 1052. The thermal cycling conditions are one cycle at 42° C. for 2 hours and one cycle at 70° C. for 10 min. Following thermal cycling, the emulsion is broken and the remaining operations are performed in bulk. A second strand is then synthesized by primer extension as in operation 1054. The reaction conditions for this primer extension include cDNA transcript as template and extension primer. The thermal cycling conditions are one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min. Following this primer extension, the second strand is purified with 0.6×SPRI. As in operation 1056, in vitro transcription is then performed to produce RNA transcripts. In vitro transcription is performed overnight, and the transcripts are purified with 0.6×SPRI. The RNA yields from in vitro transcription are shown in FIG. 16.
  • While some embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (74)

1. A method of analyzing nucleic acids from cells, comprising:
(a) providing nucleic acids derived from an individual cell and oligonucleotides having a common barcode sequence into a discrete partition, wherein the oligonucleotides are releasably attached to a bead;
(b) generating one or more first nucleic acid sequences derived from the nucleic acids within the discrete partition, which one or more first nucleic acid sequences have attached thereto oligonucleotides that comprise the common nucleic acid barcode sequence;
(c) generating a characterization of the one or more first nucleic acid sequences or one or more second nucleic acid sequences derived from the one or more first nucleic acid sequences, which one or more second nucleic acid sequences comprise the common barcode sequence; and
(d) identifying the one or more first nucleic acid sequences or one or more second nucleic acid sequences as being derived from the individual cell based, at least in part, upon a presence of the common nucleic acid barcode sequence in the characterization generated in (c).
2. The method of claim 1, wherein the discrete partition is a discrete droplet.
3. The method of claim 1, wherein, in (a), the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition.
4. The method of claim 3, wherein, in (a), at least 10,000 of the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition.
5.-8. (canceled)
9. The method of claim 1, wherein the bead comprises a degradable bead.
10. The method of claim 9, further comprising, prior to or during (b), releasing the oligonucleotides from the bead via degradation of the bead.
11. The method of claim 1, further comprising, prior to (c), releasing the one or more first nucleic acid sequences from the discrete partition.
12. The method of claim 1, wherein (c) comprises sequencing the one or more first nucleic acid sequences or the one or more second nucleic acid sequences.
13. The method of claim 12, further comprising assembling a contiguous nucleic acid sequence for at least a portion of a genome of the individual cell from sequences of the one or more first nucleic acid sequences or the one or more second nucleic acid sequences.
14. (canceled)
15. The method of claim 1, wherein the nucleic acids are released from the individual cell in the discrete partition.
16. The method of claim 1, wherein the nucleic acids comprise ribonucleic acid (RNA).
17. The method of claim 16, wherein the RNA is messenger RNA (mRNA).
18. The method of claim 16, wherein (b) further comprises subjecting the nucleic acids to reverse transcription under conditions that yield the one or more first nucleic acid sequences.
19. The method of claim 18, wherein the reverse transcription occurs in the discrete partition.
20. The method of claim 18, wherein the oligonucleotides comprise a poly-T sequence.
21. The method of claim 20, wherein the reverse transcription comprises hybridizing the poly-T sequence to at least a portion of each of the nucleic acids and extending the poly-T sequence in template directed fashion.
22. The method of claim 21, wherein the oligonucleotides further comprise an anchoring sequence that facilitates hybridization of the poly-T sequence.
23. The method of claim 1, wherein the oligonucleotides further comprise a random priming sequence.
24. (canceled)
25. The method of claim 23, wherein the reverse transcription comprises hybridizing the random priming sequence to at least a portion of each of the nucleic acids and extending the random priming sequence in template directed fashion.
26. The method of claim 1, wherein a given one of the one or more first nucleic acid sequences has sequence complementarity to at least a portion of a given one of the nucleic acids.
27. The method of claim 1, wherein the discrete partition at most includes the individual cell among a plurality of cells.
28. The method of claim 1, wherein the oligonucleotides further comprise a unique molecular sequence segment.
29. The method of claim 28, further comprising identifying an individual nucleic acid sequence of the one or more first nucleic acid sequences or of the one or more second nucleic acid sequences as derived from a given nucleic acid of the nucleic acids based, at least in part, upon a presence of the unique molecular sequence segment.
30. The method of claim 29, further comprising determining an amount of the given nucleic acid based upon a presence of the unique molecular sequence segment.
31. The method of claim 1, further comprising, prior to (c), adding one or more additional sequences to the one or more first nucleic acid sequences to generate the one or more second nucleic acid sequences.
32. The method of claim 31, further comprising adding a first additional nucleic acid sequence to the one or more first nucleic acid sequences with the aid of a switch oligonucleotide.
33. The method of claim 32, wherein the switch oligonucleotide hybridizes to at least a portion of the one or more first nucleic acid sequences and is extended in a template directed fashion to couple the first additional nucleic acid sequence to the one or more first nucleic acid sequences.
34. The method of claim 33, further comprising amplifying the one of more first nucleic acid sequences coupled to the first additional nucleic acid sequence.
35. (canceled)
36. (canceled)
37. The method of claim 34, further comprising, after the amplifying, adding one or more second additional nucleic acid sequences to the one or more first nucleic acid sequences coupled to the first additional sequence to generate the one or more second nucleic acid sequences.
38. The method of claim 37, wherein the adding the one or more second additional sequences comprises removing a portion of each of the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence and coupling thereto the one or more second additional nucleic acid sequences.
39. The method of claim 38, wherein the removing is completed via shearing of the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence.
40. (canceled)
41. The method of claim 18, further comprising, prior to (c), subjecting the one or more first nucleic acid sequences to transcription to generate one or more RNA fragments.
42. The method of claim 41, wherein the transcription occurs after releasing the one or more first nucleic acid sequences from the discrete partition.
43. The method of claim 41, wherein the oligonucleotides further comprise a T7 promoter sequence.
44. The method of claim 43, further comprising, prior to (c), removing a portion of each of the one or more RNA sequences and coupling an additional sequence to the one or more RNA sequences.
45. The method of claim 44, further comprising, prior to (c), subjecting the one or more RNA sequences coupled to the additional sequence to reverse transcription to generate the one or more second nucleic acid sequences.
46. The method of claim 45, further comprising, prior to (c), amplifying the one or more second nucleic acid sequences.
47. The method of claim 41, further comprising, prior to (c), subjecting the one or more RNA sequences to reverse transcription to generate one or more DNA sequences.
48. The method of claim 47, further comprising, prior to (c), removing a portion of each of the one or more DNA sequences and coupling one or more additional sequences to the one or more DNA sequences to generate the one or more second nucleic acid sequences.
49. The method of claim 48, further comprising, prior to (c), amplifying the one or more second nucleic acid sequences.
50. The method of claim 1, wherein the nucleic acids comprise complementary (cDNA) generated from reverse transcription of RNA from the individual cell.
51. The method of claim 1, wherein the oligonucleotides further comprise a priming sequence.
52. (canceled)
53. The method of claim 51, wherein (b) comprises hybridizing the priming sequence to the nucleic acids and extending the priming sequence in template directed fashion.
54. The method of claim 1, wherein the discrete partition comprises switch oligonucleotides comprising a complement sequence of the oligonucleotides.
55. The method of claim 54, wherein (b) comprises hybridizing the switch oligonucleotides to at least a portion of nucleic acid fragments derived from the nucleic acids and extending the switch oligonucleotides in template directed fashion.
56. (canceled)
57. (canceled)
58. The method of claim 1, wherein the (b) comprises coupling the oligonucleotides to the nucleic acids.
59. (canceled)
60. The method of claim 1, wherein a plurality of partitions comprises the discrete partition.
61. The method of claim 60, wherein, on average, the plurality of partitions comprises less than one cell per partition.
62. The method of claim 60, wherein less than 25% of partitions of the plurality of partitions do not comprise a cell.
63. (canceled)
64. The method of claim 60, wherein fewer than 25% of partitions of the plurality of partitions comprise more than one cell.
65. The method of claim 60, wherein at least a subset of the plurality of partitions comprises a bead.
66. (canceled)
67. (canceled)
68. The method of claim 60, wherein the plurality of partitions comprises at least 1,000 different partitioned nucleic acid barcode sequences.
69. (canceled)
70. (canceled)
71. The method of claim 60, wherein the plurality of partitions comprises at least 1,000 partitions.
72. (canceled)
73. (canceled)
74. A method of characterizing cells in a population of a plurality of different cell types, comprising:
(a) providing nucleic acids from individual cells in the population into discrete partitions;
(b) attaching oligonucleotides that comprise a common nucleic acid barcode sequence to one or more fragments of the nucleic acids from the individual cells within the discrete partitions, wherein a plurality of different partitions comprise different common nucleic acid barcode sequences;
(c) characterizing the one or more fragments of the nucleic acids from the plurality of discrete partitions, and attributing the one or more fragments to individual cells based, at least in part, upon the presence of a common barcode sequence; and
(d) characterizing a plurality of individual cells in the population based upon the characterization of the one or more fragments in the plurality of discrete partitions.
75.-82. (canceled)
83. A method of characterizing an individual cell or population of cells, comprising:
(a) incubating a cell with a plurality of different cell surface feature binding group types, wherein each different cell surface binding group type is capable of binding to a different cell surface feature, and wherein each different cell surface binding group type comprises a reporter oligonucleotide associated therewith, under conditions that allow binding between one or more cell surface feature binding groups and its respective cell surface feature, if present;
(b) partitioning the cell into a partition that comprises a plurality of oligonucleotides comprising a barcode sequence;
(c) attaching the barcode sequence to oligonucleotide reporter groups present in the partition;
(d) sequencing the oligonucleotide reporter groups and attached barcodes; and
(e) characterizing cell surface features present on the cell based upon reporter oligonucleotides that are sequenced.
84.-88. (canceled)
US14/752,641 2012-08-14 2015-06-26 Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations Abandoned US20150376609A1 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
US14/752,641 US20150376609A1 (en) 2014-06-26 2015-06-26 Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US15/717,871 US9951386B2 (en) 2014-06-26 2017-09-27 Methods and systems for processing polynucleotides
US15/832,547 US10760124B2 (en) 2014-06-26 2017-12-05 Methods and systems for processing polynucleotides
US15/831,847 US20180094313A1 (en) 2014-06-26 2017-12-05 Methods and systems for processing polynucleotides
US15/832,183 US10030267B2 (en) 2014-06-26 2017-12-05 Methods and systems for processing polynucleotides
US15/831,726 US10208343B2 (en) 2014-06-26 2017-12-05 Methods and systems for processing polynucleotides
US15/847,752 US10480028B2 (en) 2014-06-26 2017-12-19 Methods and systems for processing polynucleotides
US15/872,499 US10041116B2 (en) 2014-06-26 2018-01-16 Methods and systems for processing polynucleotides
US15/980,473 US10253364B2 (en) 2012-12-14 2018-05-15 Method and systems for processing polynucleotides
US16/045,474 US10344329B2 (en) 2014-06-26 2018-07-25 Methods and systems for processing polynucleotides
US16/138,448 US10337061B2 (en) 2014-06-26 2018-09-21 Methods and systems for processing polynucleotides
US16/144,832 US10457986B2 (en) 2014-06-26 2018-09-27 Methods and systems for processing polynucleotides
US16/212,441 US10752949B2 (en) 2012-08-14 2018-12-06 Methods and systems for processing polynucleotides
US16/231,142 US10584381B2 (en) 2012-08-14 2018-12-21 Methods and systems for processing polynucleotides
US16/231,185 US10400280B2 (en) 2012-08-14 2018-12-21 Methods and systems for processing polynucleotides
US16/294,769 US10450607B2 (en) 2012-08-14 2019-03-06 Methods and systems for processing polynucleotides
US16/435,417 US10752950B2 (en) 2012-08-14 2019-06-07 Methods and systems for processing polynucleotides
US16/570,898 US20200199669A1 (en) 2014-06-26 2019-09-13 Methods and Systems for Processing Polynucleotides
US16/998,425 US11035002B2 (en) 2012-08-14 2020-08-20 Methods and systems for processing polynucleotides
US16/998,414 US11021749B2 (en) 2012-08-14 2020-08-20 Methods and systems for processing polynucleotides
US17/314,526 US11359239B2 (en) 2012-08-14 2021-05-07 Methods and systems for processing polynucleotides
US17/392,610 US20220098659A1 (en) 2012-08-14 2021-08-03 Methods and systems for processing polynucleotides
US17/860,880 US11629344B2 (en) 2014-06-26 2022-07-08 Methods and systems for processing polynucleotides
US17/986,764 US11713457B2 (en) 2014-06-26 2022-11-14 Methods and systems for processing polynucleotides
US18/207,023 US20230348897A1 (en) 2014-06-26 2023-06-07 Methods and systems for processing polynucleotides
US18/367,638 US20240002837A1 (en) 2014-06-26 2023-09-13 Methods and systems for processing polynucleotides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462017558P 2014-06-26 2014-06-26
US201462061567P 2014-10-08 2014-10-08
US14/752,641 US20150376609A1 (en) 2014-06-26 2015-06-26 Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/392,557 Continuation-In-Part US10227648B2 (en) 2012-12-14 2016-12-28 Methods and systems for processing polynucleotides
US16/052,431 Continuation US10273541B2 (en) 2012-08-14 2018-08-01 Methods and systems for processing polynucleotides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/717,871 Continuation-In-Part US9951386B2 (en) 2012-08-14 2017-09-27 Methods and systems for processing polynucleotides

Publications (1)

Publication Number Publication Date
US20150376609A1 true US20150376609A1 (en) 2015-12-31

Family

ID=54929862

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/752,641 Abandoned US20150376609A1 (en) 2012-08-14 2015-06-26 Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US17/860,880 Active US11629344B2 (en) 2014-06-26 2022-07-08 Methods and systems for processing polynucleotides
US17/986,764 Active US11713457B2 (en) 2014-06-26 2022-11-14 Methods and systems for processing polynucleotides
US18/207,023 Pending US20230348897A1 (en) 2014-06-26 2023-06-07 Methods and systems for processing polynucleotides
US18/367,638 Pending US20240002837A1 (en) 2014-06-26 2023-09-13 Methods and systems for processing polynucleotides

Family Applications After (4)

Application Number Title Priority Date Filing Date
US17/860,880 Active US11629344B2 (en) 2014-06-26 2022-07-08 Methods and systems for processing polynucleotides
US17/986,764 Active US11713457B2 (en) 2014-06-26 2022-11-14 Methods and systems for processing polynucleotides
US18/207,023 Pending US20230348897A1 (en) 2014-06-26 2023-06-07 Methods and systems for processing polynucleotides
US18/367,638 Pending US20240002837A1 (en) 2014-06-26 2023-09-13 Methods and systems for processing polynucleotides

Country Status (10)

Country Link
US (5) US20150376609A1 (en)
EP (3) EP4053292A1 (en)
JP (3) JP6838969B2 (en)
KR (2) KR20230070325A (en)
CN (2) CN113249435B (en)
AU (1) AU2015279548B2 (en)
CA (1) CA2953374A1 (en)
IL (1) IL249617A0 (en)
MX (1) MX2016016902A (en)
WO (1) WO2015200893A2 (en)

Cited By (264)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567645B2 (en) 2013-08-28 2017-02-14 Cellular Research, Inc. Massively parallel single cell analysis
US9644204B2 (en) 2013-02-08 2017-05-09 10X Genomics, Inc. Partitioning and processing of analytes and other species
US9689024B2 (en) 2012-08-14 2017-06-27 10X Genomics, Inc. Methods for droplet-based sample preparation
US9694361B2 (en) 2014-04-10 2017-07-04 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9708659B2 (en) 2009-12-15 2017-07-18 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US9727810B2 (en) 2015-02-27 2017-08-08 Cellular Research, Inc. Spatially addressable molecular barcoding
WO2017139690A1 (en) * 2016-02-11 2017-08-17 10X Genomics, Inc. Cell population analysis using single nucleotide polymorphisms from single cell transcriptomes
CN107222286A (en) * 2017-08-09 2017-09-29 无锡北斗星通信息科技有限公司 A kind of method of network directional shielding
WO2017218486A1 (en) * 2016-06-14 2017-12-21 Mission Bio, Inc. Methods and compositions for emulsification of solid supports in deformable beads
WO2018017949A1 (en) * 2016-07-22 2018-01-25 Verily Life Sciences Llc Quantitative massively parallel proteomics
US9905005B2 (en) 2013-10-07 2018-02-27 Cellular Research, Inc. Methods and systems for digitally counting features on arrays
US9938558B2 (en) 2015-06-25 2018-04-10 Ascus Biosciences, Inc. Methods, apparatuses, and systems for analyzing microorganism strains from complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2018075693A1 (en) * 2016-10-19 2018-04-26 10X Genomics, Inc. Methods and systems for barcoding nucleic acid molecules from individual cells or cell populations
WO2018115852A1 (en) * 2016-12-23 2018-06-28 Cs Genetics Limited Reagents and methods for molecular barcoding of nucleic acids of single cells
WO2018119447A2 (en) 2016-12-22 2018-06-28 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2018134907A1 (en) * 2017-01-18 2018-07-26 株式会社日立ハイテクノロジーズ Device and method for extracting multiple biomolecules from single cell
WO2018140966A1 (en) 2017-01-30 2018-08-02 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
WO2018144813A1 (en) * 2017-02-02 2018-08-09 New York Genome Center Methods and compositions for identifying or quantifying targets in a biological sample
WO2018200867A1 (en) 2017-04-26 2018-11-01 10X Genomics, Inc. Mmlv reverse transcriptase variants
WO2018203141A1 (en) 2017-05-05 2018-11-08 Scipio Bioscience Methods for trapping and barcoding discrete biological units in hydrogel
WO2018213643A1 (en) 2017-05-18 2018-11-22 10X Genomics, Inc. Methods and systems for sorting droplets and beads
WO2018218226A1 (en) * 2017-05-26 2018-11-29 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
WO2018222548A1 (en) * 2017-05-29 2018-12-06 President And Fellows Of Harvard College A method of amplifying single cell transcriptome
WO2018236615A1 (en) 2017-06-20 2018-12-27 10X Genomics, Inc. Methods and systems for improved droplet stabilization
WO2019028166A1 (en) * 2017-08-01 2019-02-07 Illumina, Inc. Hydrogel beads for nucleotide sequencing
US10202641B2 (en) 2016-05-31 2019-02-12 Cellular Research, Inc. Error correction in amplification of samples
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10227648B2 (en) 2012-12-14 2019-03-12 10X Genomics, Inc. Methods and systems for processing polynucleotides
CN109526228A (en) * 2017-05-26 2019-03-26 10X基因组学有限公司 The chromatinic single cell analysis of transposase accessibility
WO2019071039A1 (en) 2017-10-04 2019-04-11 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods and systems for nuclecic acid preparation and chromatin analysis
WO2019084328A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods for preparing nucleic acid molecules
WO2019084165A1 (en) 2017-10-27 2019-05-02 10X Genomics, Inc. Methods and systems for sample preparation and analysis
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Microfluidic channel networks for partitioning
US10287623B2 (en) 2014-10-29 2019-05-14 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US10293006B2 (en) 2016-01-07 2019-05-21 Ascus Biosciences, Inc. Microbial compositions for improving milk production in ruminants
WO2019099751A1 (en) 2017-11-15 2019-05-23 10X Genomics, Inc. Functionalized gel beads
WO2019099908A1 (en) 2017-11-17 2019-05-23 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US10301677B2 (en) 2016-05-25 2019-05-28 Cellular Research, Inc. Normalization of nucleic acid libraries
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
US20190177800A1 (en) * 2017-12-08 2019-06-13 10X Genomics, Inc. Methods and compositions for labeling cells
WO2019113235A1 (en) 2017-12-06 2019-06-13 10X Genomics, Inc. Methods and systems for processing nucleic acid molecules
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2019118355A1 (en) 2017-12-12 2019-06-20 10X Genomics, Inc. Systems and methods for single cell processing
WO2019126789A1 (en) 2017-12-22 2019-06-27 10X Genomics, Inc. Systems and methods for processing nucleic acid molecules from one or more cells
US10338066B2 (en) 2016-09-26 2019-07-02 Cellular Research, Inc. Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US10347365B2 (en) 2017-02-08 2019-07-09 10X Genomics, Inc. Systems and methods for visualizing a pattern in a dataset
US10345219B2 (en) 2011-08-01 2019-07-09 Celsee Diagnostics, Inc. Cell capture system and method of use
US10350601B2 (en) 2013-03-13 2019-07-16 Celsee Diagnostics, Inc. System and method for capturing and analyzing cells
US10357771B2 (en) 2017-08-22 2019-07-23 10X Genomics, Inc. Method of producing emulsions
WO2019148042A1 (en) 2018-01-26 2019-08-01 10X Genomics, Inc. Compositions and methods for sample processing
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US10391493B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
WO2019165318A1 (en) 2018-02-22 2019-08-29 10X Genomics, Inc. Ligation mediated analysis of nucleic acids
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
WO2019169028A1 (en) 2018-02-28 2019-09-06 10X Genomics, Inc. Transcriptome sequencing through random ligation
WO2019191321A1 (en) 2018-03-28 2019-10-03 10X Genomics, Inc. Nucleic acid enrichment within partitions
WO2019195166A1 (en) 2018-04-06 2019-10-10 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
WO2019217758A1 (en) 2018-05-10 2019-11-14 10X Genomics, Inc. Methods and systems for molecular library generation
US10480022B2 (en) 2010-04-05 2019-11-19 Prognosys Biosciences, Inc. Spatially encoded biological assays
US10501739B2 (en) * 2017-10-18 2019-12-10 Mission Bio, Inc. Method, systems and apparatus for single cell analysis
US10509022B2 (en) 2013-03-13 2019-12-17 Celsee Diagnostics, Inc. System for imaging captured cells
WO2020005991A1 (en) 2018-06-25 2020-01-02 10X Genomics, Inc. Methods and systems for cell and bead processing
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533229B2 (en) 2013-05-31 2020-01-14 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
WO2020023931A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2020028882A1 (en) 2018-08-03 2020-02-06 10X Genomics, Inc. Methods and systems to minimize barcode exchange
WO2020041148A1 (en) 2018-08-20 2020-02-27 10X Genomics, Inc. Methods and systems for detection of protein-dna interactions using proximity ligation
WO2020047004A2 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Methods of generating an array
WO2020047005A1 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Resolving spatial arrays
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10619186B2 (en) 2015-09-11 2020-04-14 Cellular Research, Inc. Methods and compositions for library normalization
KR20200039623A (en) * 2017-05-26 2020-04-16 에이비비트로 엘엘씨 High-throughput polynucleotide library sequencing and transcript analysis
US10633693B1 (en) 2019-04-16 2020-04-28 Celsee Diagnostics, Inc. System and method for leakage control in a particle capture system
US10640763B2 (en) 2016-05-31 2020-05-05 Cellular Research, Inc. Molecular indexing of internal sequences
US10650912B2 (en) 2015-01-13 2020-05-12 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
US10669570B2 (en) 2017-06-05 2020-06-02 Becton, Dickinson And Company Sample indexing for single cells
WO2020113079A1 (en) 2018-11-27 2020-06-04 10X Genomics, Inc. Systems and methods for inferring cell status
WO2020123318A1 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Resolving spatial arrays using deconvolution
US10697000B2 (en) 2015-02-24 2020-06-30 10X Genomics, Inc. Partition processing methods and systems
US10697010B2 (en) 2015-02-19 2020-06-30 Becton, Dickinson And Company High-throughput single-cell analysis combining proteomic and genomic information
WO2020142779A1 (en) 2019-01-06 2020-07-09 10X Genomics, Inc. Methods and systems for enrichment of barcodes
US10718007B2 (en) 2013-01-26 2020-07-21 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10722880B2 (en) 2017-01-13 2020-07-28 Cellular Research, Inc. Hydrophilic coating of fluidic channels
WO2020168013A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Methods for processing nucleic acid molecules
WO2020167866A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transposon loading
WO2020167862A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transfer of reagents between droplets
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2020176788A1 (en) 2019-02-28 2020-09-03 10X Genomics, Inc. Profiling of biological analytes with spatially barcoded oligonucleotide arrays
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
WO2020185791A1 (en) 2019-03-11 2020-09-17 10X Genomics, Inc. Systems and methods for processing optically tagged beads
WO2020190509A1 (en) 2019-03-15 2020-09-24 10X Genomics, Inc. Methods for using spatial arrays for single cell sequencing
WO2020198532A1 (en) 2019-03-27 2020-10-01 10X Genomics, Inc. Systems and methods for processing rna from cells
WO2020198071A1 (en) 2019-03-22 2020-10-01 10X Genomics, Inc. Three-dimensional spatial analysis
WO2020206174A1 (en) 2019-04-03 2020-10-08 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10822643B2 (en) 2016-05-02 2020-11-03 Cellular Research, Inc. Accurate molecular barcoding
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10839939B2 (en) 2014-06-26 2020-11-17 10X Genomics, Inc. Processes and systems for nucleic acid sequence assembly
US10844419B2 (en) 2015-06-25 2020-11-24 Native Microbials, Inc. Methods, apparatuses, and systems for analyzing microorganism strains from complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
US10851399B2 (en) 2015-06-25 2020-12-01 Native Microbials, Inc. Methods, apparatuses, and systems for microorganism strain analysis of complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
WO2020243579A1 (en) 2019-05-30 2020-12-03 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
US10900032B2 (en) 2019-05-07 2021-01-26 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US10941396B2 (en) 2012-02-27 2021-03-09 Becton, Dickinson And Company Compositions and kits for molecular counting
WO2021046475A1 (en) 2019-09-06 2021-03-11 10X Genomics, Inc. Systems and methods for barcoding cells and cell beads
WO2021055864A1 (en) * 2019-09-20 2021-03-25 Illumina, Inc. Methods and compositions for identifying ligands on arrays using indexes and barcodes
WO2021072314A1 (en) 2019-10-11 2021-04-15 10X Genomics, Inc. Methods for analyte detection and analysis
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
WO2021091611A1 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
WO2021097255A1 (en) 2019-11-13 2021-05-20 10X Genomics, Inc. Generating capture probes for spatial analysis
US11030276B2 (en) 2013-12-16 2021-06-08 10X Genomics, Inc. Methods and apparatus for sorting data
US11044924B2 (en) 2017-04-28 2021-06-29 Native Microbials, Inc. Methods for supporting grain intensive and or energy intensive diets in ruminants by administration of a synthetic bioensemble of microbes or purified strains therefor
WO2021133845A1 (en) 2019-12-23 2021-07-01 10X Genomics, Inc. Reversible fixing reagents and methods of use thereof
WO2021133842A1 (en) 2019-12-23 2021-07-01 10X Genomics, Inc. Compositions and methods for using fixed biological samples in partition-based assays
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US11084036B2 (en) 2016-05-13 2021-08-10 10X Genomics, Inc. Microfluidic systems and methods of use
US11085036B2 (en) 2018-10-26 2021-08-10 Illumina, Inc. Modulating polymer beads for DNA processing
WO2021163630A1 (en) 2020-02-13 2021-08-19 10X Genomics, Inc. Systems and methods for joint interactive visualization of gene expression and dna chromatin accessibility
WO2021163611A1 (en) 2020-02-13 2021-08-19 10X Genomics, Inc. Methods for characterizing cells using gene expression and chromatin accessibility
US11098304B2 (en) * 2015-11-04 2021-08-24 Atreca, Inc. Combinatorial sets of nucleic acid barcodes for analysis of nucleic acids associated with single cells
WO2021168287A1 (en) 2020-02-21 2021-08-26 10X Genomics, Inc. Methods and compositions for integrated in situ spatial assay
WO2021174051A1 (en) 2020-02-28 2021-09-02 10X Genomics, Inc. Method for isolating nuclei and cells from tissues
US11123735B2 (en) 2019-10-10 2021-09-21 1859, Inc. Methods and systems for microfluidic screening
US11124823B2 (en) 2015-06-01 2021-09-21 Becton, Dickinson And Company Methods for RNA quantification
US11135584B2 (en) 2014-11-05 2021-10-05 10X Genomics, Inc. Instrument systems for integrated sample processing
WO2021207610A1 (en) 2020-04-10 2021-10-14 10X Genomics, Inc. Cold protease treatment method for preparing biological samples
WO2021212042A1 (en) 2020-04-16 2021-10-21 10X Genomics, Inc. Compositions and methods for use with fixed samples
US11162132B2 (en) 2015-04-10 2021-11-02 Spatial Transcriptomics Ab Spatially distinguished, multiplex nucleic acid analysis of biological specimens
US11164659B2 (en) 2016-11-08 2021-11-02 Becton, Dickinson And Company Methods for expression profile classification
WO2021222302A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for increasing cell recovery efficiency
WO2021222301A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for analysis and identification of barcode multiplets
WO2021226290A1 (en) 2020-05-05 2021-11-11 10X Genomics, Inc. Methods for identification of antigen-binding molecules
US11180752B2 (en) 2018-02-13 2021-11-23 Illumina, Inc. DNA sequencing using hydrogel beads
EP3919626A1 (en) 2017-12-08 2021-12-08 10X Genomics, Inc. Methods and compositions for labeling cells
WO2021247618A1 (en) 2020-06-02 2021-12-09 10X Genomics, Inc. Enrichment of nucleic acid sequences
WO2022006455A1 (en) 2020-07-02 2022-01-06 10X Genomics, Inc. Systems and methods for detection of low-abundance molecular barcodes from a sequencing library
WO2022035729A1 (en) 2020-08-10 2022-02-17 Dimensiongen Devices and methods for multi-dimensional genome analysis
US11274343B2 (en) 2015-02-24 2022-03-15 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequence coverage
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US11286515B2 (en) 2013-06-25 2022-03-29 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
WO2022066760A1 (en) 2020-09-23 2022-03-31 10X Genomics, Inc. Selective enzymatic gelation
WO2022076912A1 (en) 2020-10-09 2022-04-14 10X Genomics, Inc. Methods and compositions for analyzing antigen binding molecules
WO2022076914A1 (en) 2020-10-09 2022-04-14 10X Genomics, Inc. Methods and compositions for profiling immune repertoire
WO2022081643A2 (en) 2020-10-13 2022-04-21 10X Genomics, Inc. Compositions and methods for generating recombinant antigen binding molecules from single cells
US11319583B2 (en) 2017-02-01 2022-05-03 Becton, Dickinson And Company Selective amplification using blocking oligonucleotides
US11332790B2 (en) 2019-12-23 2022-05-17 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
WO2022103712A1 (en) 2020-11-13 2022-05-19 10X Genomics, Inc. Nano-partitions (encapsulated nucleic acid processing enzymes) for cell-lysis and multiple reactions in partition-based assays
US11352659B2 (en) 2011-04-13 2022-06-07 Spatial Transcriptomics Ab Methods of detecting analytes
US11359226B2 (en) 2018-04-20 2022-06-14 Illumina, Inc. Contiguity particle formation and methods of use
US11358137B2 (en) 2018-12-26 2022-06-14 Industrial Technology Research Institute Tubular structure for producing droplets and method for producing droplets
US11365441B2 (en) 2019-05-22 2022-06-21 Mission Bio, Inc. Method and apparatus for simultaneous targeted sequencing of DNA, RNA and protein
US11365409B2 (en) 2018-05-03 2022-06-21 Becton, Dickinson And Company Molecular barcoding on opposite transcript ends
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
US11371076B2 (en) 2019-01-16 2022-06-28 Becton, Dickinson And Company Polymerase chain reaction normalization through primer titration
WO2022147296A1 (en) 2020-12-30 2022-07-07 10X Genomics, Inc. Cleavage of capture probes for spatial analysis
WO2022150662A1 (en) 2021-01-08 2022-07-14 10X Genomics, Inc. Methods for generating antigen-binding molecules from single cells
US11390914B2 (en) 2015-04-23 2022-07-19 Becton, Dickinson And Company Methods and compositions for whole transcriptome amplification
US11397882B2 (en) 2016-05-26 2022-07-26 Becton, Dickinson And Company Molecular label counting adjustment methods
WO2022178304A1 (en) 2021-02-19 2022-08-25 10X Genomics, Inc. High-throughput methods for analyzing and affinity-maturing an antigen-binding molecule
CN114958996A (en) * 2021-05-12 2022-08-30 浙江大学 Ultrahigh-flux single-cell sequencing reagent combination
WO2022182662A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Compositions and methods for mapping antigen-binding molecule affinity to antigen regions of interest
WO2022182682A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
WO2022182785A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Drug screening methods
WO2022182672A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Single cell glycan profiling
WO2022182664A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. A method for epitope binning of novel monoclonal antibodies
EP3998338A4 (en) * 2019-07-11 2022-09-14 Tokyo University of Science Foundation Method for amplifying nucleic acid using solid-phase carrier
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
WO2022221428A1 (en) 2021-04-14 2022-10-20 10X Genomics, Inc. Compositions and methods for single cell analyte detection and analysis
US11492660B2 (en) 2018-12-13 2022-11-08 Becton, Dickinson And Company Selective extension in single cell whole transcriptome analysis
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
US11513126B2 (en) 2017-10-31 2022-11-29 Encodia, Inc. Kits for analysis using nucleic acid encoding and/or label
US11514575B2 (en) 2019-10-01 2022-11-29 10X Genomics, Inc. Systems and methods for identifying morphological patterns in tissue samples
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
WO2022256313A1 (en) 2021-06-01 2022-12-08 10X Genomics, Inc. Validation of a unique molecular identifier associated with a nucleic acid sequence of interest
WO2022256345A1 (en) 2021-06-01 2022-12-08 10X Genomics, Inc. Methods and systems for engineering antibodies, and antigen-binding fragments thereof, to have altered characteristics
WO2022265965A1 (en) 2021-06-14 2022-12-22 10X Genomics, Inc. Reverse transcriptase variants for improved performance
US11535882B2 (en) 2015-03-30 2022-12-27 Becton, Dickinson And Company Methods and compositions for combinatorial barcoding
WO2022271908A1 (en) 2021-06-23 2022-12-29 10X Genomics, Inc. Chop-fix method and chopping device for preparing biological samples
EP3870704A4 (en) * 2018-10-25 2023-01-11 Illumina, Inc. Methods and compositions for identifying ligands on arrays using indexes and barcodes
WO2023009988A1 (en) 2021-07-26 2023-02-02 10X Genomics, Inc. Nucleic acid processing via circularization
WO2023022925A1 (en) 2021-08-17 2023-02-23 10X Genomics, Inc. Compositions, systems and methods for enzyme optimization
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US11608524B1 (en) * 2018-10-25 2023-03-21 Wisconsin Alumni Research Foundation Methods of analyzing cells
US11608497B2 (en) 2016-11-08 2023-03-21 Becton, Dickinson And Company Methods for cell label classification
WO2023060110A1 (en) 2021-10-05 2023-04-13 10X Genomics, Inc. Methods of immune cell analysis
WO2023059646A1 (en) 2021-10-06 2023-04-13 10X Genomics, Inc. Systems and methods for evaluating biological samples
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11634709B2 (en) 2019-04-30 2023-04-25 Encodia, Inc. Methods for preparing analytes and related kits
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US11649497B2 (en) 2020-01-13 2023-05-16 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and RNA
WO2023086824A1 (en) 2021-11-10 2023-05-19 10X Genomics, Inc. Methods for identification of antigen-binding molecules
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
US11661625B2 (en) 2020-05-14 2023-05-30 Becton, Dickinson And Company Primers for immune repertoire profiling
US11661631B2 (en) 2019-01-23 2023-05-30 Becton, Dickinson And Company Oligonucleotides associated with antibodies
US11667954B2 (en) 2019-07-01 2023-06-06 Mission Bio, Inc. Method and apparatus to normalize quantitative readouts in single-cell experiments
WO2023114310A1 (en) 2021-12-15 2023-06-22 10X Genomics, Inc. Methods for improving sensitivity of immune profiling using oligo-tagged antigens
WO2023114203A1 (en) 2021-12-13 2023-06-22 Cornell University Genotyping of targeted loci with single-cell chromatin accessibility
WO2023114473A2 (en) 2021-12-16 2023-06-22 10X Genomics, Inc. Recombinant reverse transcriptase variants for improved performance
US11724256B2 (en) 2019-06-14 2023-08-15 Bio-Rad Laboratories, Inc. System and method for automated single cell processing and analyses
US11739443B2 (en) 2020-11-20 2023-08-29 Becton, Dickinson And Company Profiling of highly expressed and lowly expressed proteins
US11773436B2 (en) 2019-11-08 2023-10-03 Becton, Dickinson And Company Using random priming to obtain full-length V(D)J information for immune repertoire sequencing
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
WO2023201235A2 (en) 2022-04-12 2023-10-19 10X Genomics, Inc. Compositions and methods for generating and characterizing recombinant antigen binding molecules
WO2023212532A1 (en) 2022-04-26 2023-11-02 10X Genomics, Inc. Systems and methods for evaluating biological samples
EP4272764A1 (en) 2022-05-03 2023-11-08 Scipio Bioscience Method of complexing biological units with particles
WO2023215861A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Reagents for characterizing antigen-binding molecules from immune cells
WO2023215612A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Analysis of antigen and antigen receptor interactions
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
WO2023225259A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Compositions and methods for characterizing antigen binding molecules from single cells
WO2023225294A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Improved major histocompatibility complex molecules
WO2023225201A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Compositions and methods for characterizing t cell, or t cell-like, receptors from single cells
WO2023235596A1 (en) 2022-06-03 2023-12-07 10X Genomics, Inc. Systems and methods for determining antigen binding specificity of antigen binding molecules
WO2023235570A1 (en) 2022-06-03 2023-12-07 10X Genomics, Inc. Methods and compositions for the identification of antigen binding molecules using lipoparticle-based antigen mapping
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
WO2023250422A1 (en) 2022-06-23 2023-12-28 10X Genomics, Inc. Compositions and methods for characterizing multispecific antigen binding molecules from single cells
EP4299755A2 (en) 2018-02-05 2024-01-03 The Board of Trustees of the Leland Stanford Junior University Systems and methods for multiplexed measurements in single and ensemble cells
WO2024006392A1 (en) 2022-06-29 2024-01-04 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
WO2024006734A1 (en) 2022-06-27 2024-01-04 10X Genomics, Inc. Methods for preparing and using mhc multimer reagents compositions
EP4090466A4 (en) * 2020-01-13 2024-01-17 Fluent Biosciences Inc. Methods and systems for single cell gene profiling
WO2024015378A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Methods and systems for characterizing antigen-binding molecules expressed by immune cells
WO2024015733A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Improved methods and systems for identification and characterization of antigen-binding molecules from single cells
WO2024015862A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Methods for characterization of antigen-binding molecules from biological samples
WO2024015856A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Compositions and methods for characterizing binding characteristics of antigen binding molecules from single cells
US11891647B2 (en) 2016-12-28 2024-02-06 Native Microbials, Inc. Methods, apparatuses, and systems for analyzing complete microorganism strains in complex heterogeneous communities, determining functional relationships and interactions thereof, and identifying and synthesizing bioreactive modificators based thereon
US20240044877A1 (en) * 2018-02-22 2024-02-08 10X Genomics, Inc. Systems and methods for sample analysis
US11898206B2 (en) 2017-05-19 2024-02-13 10X Genomics, Inc. Systems and methods for clonotype screening
WO2024044703A1 (en) 2022-08-24 2024-02-29 10X Genomics, Inc. Compositions and methods for antigenic epitope mapping in biological samples
WO2024050299A1 (en) 2022-08-29 2024-03-07 10X Genomics, Inc. Improved methods and compositions for characterization of antigen-binding molecules from single cells
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11932882B2 (en) 2019-12-11 2024-03-19 10X Genomics, Inc. Reverse transcriptase variants
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
US11946095B2 (en) 2017-12-19 2024-04-02 Becton, Dickinson And Company Particles associated with oligonucleotides
US11954614B2 (en) 2017-02-08 2024-04-09 10X Genomics, Inc. Systems and methods for visualizing a pattern in a dataset
WO2024076908A1 (en) 2022-10-03 2024-04-11 10X Genomics, Inc. Compositions and methods for analyzing genomic insertion sites of exogenous nucleic acids
US11959922B2 (en) 2016-05-02 2024-04-16 Encodia, Inc. Macromolecule analysis employing nucleic acid encoding
US11965208B2 (en) 2019-04-19 2024-04-23 Becton, Dickinson And Company Methods of associating phenotypical data and single cell sequencing data
US12018313B2 (en) 2016-12-28 2024-06-25 Native Microbials, Inc. Methods, apparatuses, and systems for microorganism strain analysis of complex heterogeneous communities with tracer analytics, determination of functional relationships and interactions thereof, and synthesis of microbial ensembles
US12054764B2 (en) * 2017-04-14 2024-08-06 The Broad Institute, Inc. High-throughput screens for exploring biological functions of microscale biological systems
US12065688B2 (en) 2018-08-20 2024-08-20 10X Genomics, Inc. Compositions and methods for cellular processing
US12071617B2 (en) 2019-02-14 2024-08-27 Becton, Dickinson And Company Hybrid targeted and whole transcriptome amplification
US12076701B2 (en) 2020-01-31 2024-09-03 10X Genomics, Inc. Capturing oligonucleotides in spatial transcriptomics
US12084715B1 (en) 2020-11-05 2024-09-10 10X Genomics, Inc. Methods and systems for reducing artifactual antisense products
US12112833B2 (en) 2020-02-04 2024-10-08 10X Genomics, Inc. Systems and methods for index hopping filtering
US12123878B2 (en) 2017-05-02 2024-10-22 Encodia, Inc. Macromolecule analysis employing nucleic acid encoding

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US8772046B2 (en) 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
WO2010009365A1 (en) 2008-07-18 2010-01-21 Raindance Technologies, Inc. Droplet libraries
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
WO2011100604A2 (en) 2010-02-12 2011-08-18 Raindance Technologies, Inc. Digital analyte analysis
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
EP3736281A1 (en) 2011-02-18 2020-11-11 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
EP2714970B1 (en) 2011-06-02 2017-04-19 Raindance Technologies, Inc. Enzyme quantification
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
EP2882872B1 (en) 2012-08-13 2021-10-06 The Regents of The University of California Methods and systems for detecting biological components
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
EP3161157B1 (en) 2014-06-24 2024-03-27 Bio-Rad Laboratories, Inc. Digital pcr barcoding
WO2016126871A2 (en) 2015-02-04 2016-08-11 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
WO2017117358A1 (en) * 2015-12-30 2017-07-06 Bio-Rad Laboratories, Inc. Digital protein quantification
JP7179329B2 (en) * 2016-01-14 2022-11-29 ヨーロピアン モレキュラー バイオロジー ラボラトリー Microfluidic analysis of ligand-induced cellular expression
CA3021735A1 (en) * 2016-04-19 2017-10-26 President And Fellows Of Harvard College Immobilization-based systems and methods for genetic analysis and other applications
EP3464633A4 (en) * 2016-05-25 2020-01-01 Bio-Rad Laboratories, Inc. Digital proximity assay
EP3686287A1 (en) 2016-06-28 2020-07-29 Hifibio Method for transcriptome analysis of single cells
WO2018138237A1 (en) 2017-01-27 2018-08-02 Roche Diagnostics Gmbh Barcoded dna for long range sequencing
JP7332586B2 (en) * 2017-09-19 2023-08-23 ハイファイバイオ エスアエス Particle sorting in microfluidic systems
GB201810571D0 (en) * 2018-06-27 2018-08-15 Cs Genetics Ltd Reagents and methods for the analysis of circulating microparticles
WO2020014331A1 (en) * 2018-07-13 2020-01-16 Coral Genomics, Inc. Methods for analyzing cells
GB2582850A (en) * 2019-02-13 2020-10-07 Biosearch Tech Inc Molecular barcodes for single cell sequencing, compositions and methods thereof
WO2021146184A1 (en) 2020-01-13 2021-07-22 Fluent Biosciences Inc. Single cell sequencing
CA3175931A1 (en) 2020-03-16 2021-09-23 Fluent Biosciences Inc. Multi-omic analysis in monodisperse droplets
US20210301329A1 (en) * 2020-03-24 2021-09-30 Cellecta, Inc. Single Cell Genetic Analysis
US20230019117A1 (en) * 2021-07-15 2023-01-19 Fluent Biosciences Inc. Decentralized workflows for single cell analysis
WO2024081212A1 (en) * 2022-10-10 2024-04-18 10X Genomics, Inc. In vitro transcription of spatially captured nucleic acids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136734A1 (en) * 2011-04-05 2012-10-11 Tracesa Ltd. Fluid identification system and production and use thereof

Family Cites Families (815)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2797149A (en) 1953-01-08 1957-06-25 Technicon International Ltd Methods of and apparatus for analyzing liquids containing crystalloid and non-crystalloid constituents
US3047367A (en) 1959-12-01 1962-07-31 Technicon Instr Automatic analysis with fluid segmentation
US3479141A (en) 1967-05-17 1969-11-18 Technicon Corp Method and apparatus for analysis
US4124638A (en) 1977-09-12 1978-11-07 Hansen John N Solubilizable polyacrylamide gels containing disulfide cross-linkages
US4253846A (en) 1979-11-21 1981-03-03 Technicon Instruments Corporation Method and apparatus for automated analysis of fluid samples
GB2097692B (en) 1981-01-10 1985-05-22 Shaw Stewart P D Combining chemical reagents
DE3230289A1 (en) 1982-08-14 1984-02-16 Bayer Ag, 5090 Leverkusen PRODUCTION OF PHARMACEUTICAL OR COSMETIC DISPERSIONS
US4582802A (en) 1983-09-30 1986-04-15 The United States Of America As Represented By The Department Of Health And Human Services Stimulation of enzymatic ligation of DNA by high concentrations of nonspecific polymers
JPS60227826A (en) 1984-04-27 1985-11-13 Sogo Yatsukou Kk Graft capsule responding to ph
KR890003947B1 (en) 1985-12-11 1989-10-13 가부시기가이샤 시마즈세이사구쇼 Apparatus for cell fusion
US4916070A (en) 1986-04-14 1990-04-10 The General Hospital Corporation Fibrin-specific antibodies and method of screening for the antibodies
US5618711A (en) 1986-08-22 1997-04-08 Hoffmann-La Roche Inc. Recombinant expression vectors and purification methods for Thermus thermophilus DNA polymerase
US4872895A (en) 1986-12-11 1989-10-10 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating articles which include high silica glass bodies
US5202231A (en) 1987-04-01 1993-04-13 Drmanac Radoje T Method of sequencing of genomes by hybridization of oligonucleotide probes
US5525464A (en) 1987-04-01 1996-06-11 Hyseq, Inc. Method of sequencing by hybridization of oligonucleotide probes
US5149625A (en) 1987-08-11 1992-09-22 President And Fellows Of Harvard College Multiplex analysis of DNA
US5137829A (en) 1987-10-05 1992-08-11 Washington University DNA transposon TN5SEQ1
US5185099A (en) 1988-04-20 1993-02-09 Institut National De Recherche Chimique Appliquee Visco-elastic, isotropic materials based on water, fluorinate sufactants and fluorinated oils, process for their preparation, and their use in various fields, such as optics, pharmacology and electrodynamics
US5237016A (en) 1989-01-05 1993-08-17 Siska Diagnostics, Inc. End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
US6176962B1 (en) 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5756334A (en) 1990-04-26 1998-05-26 New England Biolabs, Inc. Thermostable DNA polymerase from 9°N-7 and methods for producing the same
JP3392863B2 (en) 1990-07-24 2003-03-31 エフ.ホフマン ― ラ ロシュ アーゲー Reduction of non-specific amplification in in vitro nucleic acid amplification using modified nucleobases
US5489523A (en) 1990-12-03 1996-02-06 Stratagene Exonuclease-deficient thermostable Pyrococcus furiosus DNA polymerase I
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
US5270183A (en) 1991-02-08 1993-12-14 Beckman Research Institute Of The City Of Hope Device and method for the automated cycling of solutions between two or more temperatures
US5994056A (en) 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
AU667051B2 (en) 1991-07-04 1996-03-07 Dako Denmark A/S Water-soluble, polymer-based reagents and conjugates comprising moieties derived from divinyl sulfone
DK0597960T3 (en) 1991-08-10 1999-09-13 Medical Res Council Treatment of cell populations
AU669489B2 (en) 1991-09-18 1996-06-13 Affymax Technologies N.V. Method of synthesizing diverse collections of oligomers
US5413924A (en) 1992-02-13 1995-05-09 Kosak; Kenneth M. Preparation of wax beads containing a reagent for release by heating
WO1993019205A1 (en) 1992-03-19 1993-09-30 The Regents Of The University Of California Multiple tag labeling method for dna sequencing
US5587128A (en) 1992-05-01 1996-12-24 The Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification devices
AU677781B2 (en) 1992-05-01 1997-05-08 Trustees Of The University Of Pennsylvania, The Microfabricated sperm handling devices
US5840865A (en) 1992-09-14 1998-11-24 Institute Of Molecular Biology And Biotechnology/Forth Eukaryotic transposable element
US5897783A (en) 1992-09-24 1999-04-27 Amersham International Plc Magnetic separation method
US5569364A (en) 1992-11-05 1996-10-29 Soane Biosciences, Inc. Separation media for electrophoresis
CA2155186A1 (en) 1993-02-01 1994-08-18 Kevin M. Ulmer Methods and apparatus for dna sequencing
WO1994019101A1 (en) 1993-02-16 1994-09-01 Alliance Pharmaceutical Corp. Method of microemulsifying fluorinated oils
NZ265555A (en) 1993-04-19 1997-09-22 Medisorb Technologies Internat Biodegradable microparticle compositions of antisense oligodeoxyribonucleotides
US5456986A (en) 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
EP0636413B1 (en) 1993-07-28 2001-11-14 PE Corporation (NY) Nucleic acid amplification reaction apparatus and method
WO1995004069A1 (en) 1993-07-30 1995-02-09 Affymax Technologies N.V. Biotinylation of proteins
EP0723549B1 (en) 1993-08-30 2003-12-17 Promega Corporation Nucleic acid purification compositions and methods
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US20030044777A1 (en) 1993-10-28 2003-03-06 Kenneth L. Beattie Flowthrough devices for multiple discrete binding reactions
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5558071A (en) 1994-03-07 1996-09-24 Combustion Electromagnetics, Inc. Ignition system power converter and controller
US5648211A (en) 1994-04-18 1997-07-15 Becton, Dickinson And Company Strand displacement amplification using thermophilic enzymes
ATE190727T1 (en) 1994-05-11 2000-04-15 Genera Tech Ltd METHOD FOR CAPTURE A LIGAND FROM A LIQUID AND DEVICE FOR PERFORMING SAME
US5705628A (en) 1994-09-20 1998-01-06 Whitehead Institute For Biomedical Research DNA purification and isolation using magnetic particles
US6406848B1 (en) 1997-05-23 2002-06-18 Lynx Therapeutics, Inc. Planar arrays of microparticle-bound polynucleotides
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
WO1996029629A2 (en) 1995-03-01 1996-09-26 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US5700642A (en) 1995-05-22 1997-12-23 Sri International Oligonucleotide sizing using immobilized cleavable primers
HUP9900910A2 (en) 1995-06-07 1999-07-28 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
CA2222581C (en) 1995-06-07 2004-05-11 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US5872010A (en) 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US6057149A (en) 1995-09-15 2000-05-02 The University Of Michigan Microscale devices and reactions in microscale devices
US5851769A (en) 1995-09-27 1998-12-22 The Regents Of The University Of California Quantitative DNA fiber mapping
US5736330A (en) 1995-10-11 1998-04-07 Luminex Corporation Method and compositions for flow cytometric determination of DNA sequences
US6051377A (en) 1995-11-30 2000-04-18 Pharmaseq, Inc. Multiplex assay for nucleic acids employing transponders
US5736332A (en) 1995-11-30 1998-04-07 Mandecki; Wlodek Method of determining the sequence of nucleic acids employing solid-phase particles carrying transponders
US6001571A (en) 1995-11-30 1999-12-14 Mandecki; Wlodek Multiplex assay for nucleic acids employing transponders
US6355198B1 (en) 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
WO1997039359A1 (en) 1996-04-15 1997-10-23 Dade International Inc. Apparatus and method for analysis
CA2255774C (en) 1996-05-29 2008-03-18 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
US5846727A (en) 1996-06-06 1998-12-08 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Microsystem for rapid DNA sequencing
EP0912238B1 (en) 1996-07-15 2001-10-10 CalCiTech Ltd. Production of powders
US5965443A (en) 1996-09-09 1999-10-12 Wisconsin Alumni Research Foundation System for in vitro transposition
US6133436A (en) 1996-11-06 2000-10-17 Sequenom, Inc. Beads bound to a solid support and to nucleic acids
US5900481A (en) 1996-11-06 1999-05-04 Sequenom, Inc. Bead linkers for immobilizing nucleic acids to solid supports
US6379929B1 (en) 1996-11-20 2002-04-30 The Regents Of The University Of Michigan Chip-based isothermal amplification devices and methods
US5958703A (en) 1996-12-03 1999-09-28 Glaxo Group Limited Use of modified tethers in screening compound libraries
US20020172965A1 (en) 1996-12-13 2002-11-21 Arcaris, Inc. Methods for measuring relative amounts of nucleic acids in a complex mixture and retrieval of specific sequences therefrom
US20050042625A1 (en) 1997-01-15 2005-02-24 Xzillion Gmbh & Co. Mass label linked hybridisation probes
US6297006B1 (en) 1997-01-16 2001-10-02 Hyseq, Inc. Methods for sequencing repetitive sequences and for determining the order of sequence subfragments
US20020034737A1 (en) 1997-03-04 2002-03-21 Hyseq, Inc. Methods and compositions for detection or quantification of nucleic acid species
AU762888B2 (en) 1997-02-12 2003-07-10 Us Genomics Methods and products for analyzing polymers
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US6327410B1 (en) 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US20030027203A1 (en) 1997-03-24 2003-02-06 Fields Robert E. Biomolecular processor
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6143496A (en) 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
ES2271994T3 (en) 1997-05-02 2007-04-16 Gen-Probe Incorporated TWO-STEP HYBRIDIZATION AND CAPTURE OF A POLINUCLEOTIDE.
AU734957B2 (en) 1997-05-16 2001-06-28 Alberta Research Council Inc. Microfluidic system and methods of use
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
US20040241759A1 (en) 1997-06-16 2004-12-02 Eileen Tozer High throughput screening of libraries
DE69838521T2 (en) 1997-07-07 2008-05-21 Medical Research Council Method for increasing the concentration of nucleic acid molecules
GB9714716D0 (en) 1997-07-11 1997-09-17 Brax Genomics Ltd Characterising nucleic acids
FI103809B (en) 1997-07-14 1999-09-30 Finnzymes Oy An in vitro method for producing templates for DNA sequencing
US20050037397A1 (en) 2001-03-28 2005-02-17 Nanosphere, Inc. Bio-barcode based detection of target analytes
US6974669B2 (en) 2000-03-28 2005-12-13 Nanosphere, Inc. Bio-barcodes based on oligonucleotide-modified nanoparticles
US6368871B1 (en) 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
AU8908198A (en) 1997-08-15 1999-03-08 Hyseq, Inc. Methods and compositions for detection or quantification of nucleic acid species
WO1999014368A2 (en) 1997-09-15 1999-03-25 Whitehead Institute For Biomedical Research Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
US20020092767A1 (en) 1997-09-19 2002-07-18 Aclara Biosciences, Inc. Multiple array microfluidic device units
US7214298B2 (en) 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
EP1029244A4 (en) 1997-10-02 2003-07-23 Aclara Biosciences Inc Capillary assays involving separation of free and bound species
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
EP1028970A1 (en) 1997-10-10 2000-08-23 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6485944B1 (en) 1997-10-10 2002-11-26 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
HUP0003986A3 (en) 1997-10-14 2001-04-28 Luminex Corp Austin Precision fluorescently dyed particles and methods of making and using same
US6660149B1 (en) 1997-10-24 2003-12-09 Beckman Coulter, Inc. Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis
CA2313047A1 (en) 1997-12-04 1999-12-16 Nicholas Thomas Multiple assay method
AU1726199A (en) 1997-12-31 1999-07-19 Chiron Corporation Metastatic cancer regulated gene
CA2321262A1 (en) 1998-02-19 1999-08-26 President And Fellows Of Harvard College Monovalent, multivalent, and multimeric mhc binding domain fusion proteins and conjugates, and uses therefor
US6207384B1 (en) 1998-03-27 2001-03-27 The General Hospital Corporation Systematic identification of essential genes by in vitro transposon mutagenesis
US6022716A (en) 1998-04-10 2000-02-08 Genset Sa High throughput DNA sequencing vector
AU3555599A (en) 1998-04-13 1999-11-01 Luminex Corporation Liquid labeling with fluorescent microparticles
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US5997636A (en) 1998-05-01 1999-12-07 Instrumentation Technology Associates, Inc. Method and apparatus for growing crystals
US6123798A (en) 1998-05-06 2000-09-26 Caliper Technologies Corp. Methods of fabricating polymeric structures incorporating microscale fluidic elements
US6534262B1 (en) 1998-05-14 2003-03-18 Whitehead Institute For Biomedical Research Solid phase technique for selectively isolating nucleic acids
US6306590B1 (en) 1998-06-08 2001-10-23 Caliper Technologies Corp. Microfluidic matrix localization apparatus and methods
US7060431B2 (en) 1998-06-24 2006-06-13 Illumina, Inc. Method of making and decoding of array sensors with microspheres
DE69931497T2 (en) 1998-08-07 2007-05-03 Cellay LLC, Cambridge GEL MICRO-DROPS FOR GENETIC ANALYSIS
US6159736A (en) 1998-09-23 2000-12-12 Wisconsin Alumni Research Foundation Method for making insertional mutations using a Tn5 synaptic complex
AR021833A1 (en) 1998-09-30 2002-08-07 Applied Research Systems METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID
WO2000022436A1 (en) 1998-10-13 2000-04-20 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6489096B1 (en) 1998-10-15 2002-12-03 Princeton University Quantitative analysis of hybridization patterns and intensities in oligonucleotide arrays
SE9803614L (en) 1998-10-19 2000-04-20 Muhammed Mamoun Method and apparatus for producing nanoparticles
WO2000026412A1 (en) 1998-11-02 2000-05-11 Kenneth Loren Beattie Nucleic acid analysis using sequence-targeted tandem hybridization
US6569631B1 (en) 1998-11-12 2003-05-27 3-Dimensional Pharmaceuticals, Inc. Microplate thermal shift assay for ligand development using 5-(4″dimethylaminophenyl)-2-(4′-phenyl)oxazole derivative fluorescent dyes
US5942609A (en) 1998-11-12 1999-08-24 The Porkin-Elmer Corporation Ligation assembly and detection of polynucleotides on solid-support
US6465193B2 (en) 1998-12-11 2002-10-15 The Regents Of The University Of California Targeted molecular bar codes and methods for using the same
NO986133D0 (en) 1998-12-23 1998-12-23 Preben Lexow Method of DNA Sequencing
GB9900298D0 (en) 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
US6416642B1 (en) 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6635419B1 (en) 1999-02-16 2003-10-21 Applera Corporation Polynucleotide sequencing method
US20030027214A1 (en) 1999-02-17 2003-02-06 Kamb Carl Alexander Methods for substrate-ligand interaction screening
EP2177627B1 (en) 1999-02-23 2012-05-02 Caliper Life Sciences, Inc. Manipulation of microparticles in microfluidic systems
US7615373B2 (en) 1999-02-25 2009-11-10 Virginia Commonwealth University Intellectual Property Foundation Electroprocessed collagen and tissue engineering
US6171850B1 (en) 1999-03-08 2001-01-09 Caliper Technologies Corp. Integrated devices and systems for performing temperature controlled reactions and analyses
US6303343B1 (en) 1999-04-06 2001-10-16 Caliper Technologies Corp. Inefficient fast PCR
US6908737B2 (en) 1999-04-15 2005-06-21 Vitra Bioscience, Inc. Systems and methods of conducting multiplexed experiments
AU4476900A (en) 1999-04-20 2000-11-02 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
AU4806100A (en) 1999-04-28 2000-11-10 Board Of Trustees Of The Leland Stanford Junior University P element derived vector and methods for its use
EP1192447A2 (en) 1999-05-12 2002-04-03 Aclara BioSciences, Inc. Multiplexed fluorescent detection in microfluidic devices
WO2000070095A2 (en) * 1999-05-17 2000-11-23 Dade Behring Inc. Homogeneous isothermal amplification and detection of nucleic acids using a template switch oligonucleotide
US20020051971A1 (en) 1999-05-21 2002-05-02 John R. Stuelpnagel Use of microfluidic systems in the detection of target analytes using microsphere arrays
US6846622B1 (en) 1999-05-26 2005-01-25 Oregon Health & Science University Tagged epitope protein transposable element
US20030124509A1 (en) 1999-06-03 2003-07-03 Kenis Paul J.A. Laminar flow patterning and articles made thereby
US6372813B1 (en) 1999-06-25 2002-04-16 Motorola Methods and compositions for attachment of biomolecules to solid supports, hydrogels, and hydrogel arrays
WO2001002850A1 (en) 1999-07-06 2001-01-11 Caliper Technologies Corp. Microfluidic systems and methods for determining modulator kinetics
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
US6524456B1 (en) 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
WO2001013086A2 (en) 1999-08-13 2001-02-22 Brandeis University Detection of nucleic acids
WO2001014589A2 (en) 1999-08-20 2001-03-01 Luminex Corporation Liquid array technology
ATE414171T1 (en) 1999-08-27 2008-11-15 Matrix Technologies Corp METHOD FOR IMMOBILIZING OLIGONUCLEOTIDES ON SOLID SUPPORT MATERIAL
US6982146B1 (en) 1999-08-30 2006-01-03 The United States Of America As Represented By The Department Of Health And Human Services High speed parallel molecular nucleic acid sequencing
WO2001027610A2 (en) 1999-10-13 2001-04-19 Signature Bioscience, Inc. System and method for detecting and identifying molecular events in a test sample
US6958225B2 (en) 1999-10-27 2005-10-25 Affymetrix, Inc. Complexity management of genomic DNA
AU1100201A (en) 1999-10-28 2001-05-08 Board Of Trustees Of The Leland Stanford Junior University Methods of in vivo gene transfer using a sleeping beauty transposon system
JP4721603B2 (en) 1999-11-08 2011-07-13 栄研化学株式会社 Mutation and / or polymorphism detection method
US6432290B1 (en) 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US20010051348A1 (en) 2000-01-28 2001-12-13 Lee Chee Wee Novel ligands and methods for preparing same
KR20020089357A (en) 2000-02-23 2002-11-29 자이오믹스, 인코포레이티드 Chips having elevated sample surfaces
CA2399199A1 (en) 2000-02-23 2001-08-30 Ring-Ling Chien Multi-reservoir pressure control system
IL134830A0 (en) 2000-03-01 2001-05-20 Chay 13 Medical Res Group N V Peptides and immunostimulatory and anti-bacterial pharmaceutical compositions containing them
AU2001252201A1 (en) 2000-03-14 2001-09-24 Amylin Pharmaceuticals, Inc. Effects of glucagon-like peptide-1 (7-36) on antro-pyloro-duodenal motility
US6376191B1 (en) 2000-03-22 2002-04-23 Mergen, Ltd. Microarray-based analysis of polynucleotide sequence variations
EP1285106A2 (en) 2000-03-31 2003-02-26 Micronics, Inc. Protein crystallization in microfluidic structures
EP1275005A1 (en) 2000-04-06 2003-01-15 Caliper Technologies Corporation Methods and devices for achieving long incubation times in high-throughput systems
EP1313879A2 (en) 2000-04-10 2003-05-28 Matthew Ashby Methods for the survey and genetic analysis of populations
US6481453B1 (en) 2000-04-14 2002-11-19 Nanostream, Inc. Microfluidic branch metering systems and methods
US6800298B1 (en) 2000-05-11 2004-10-05 Clemson University Biological lubricant composition and method of applying lubricant composition
US20060008799A1 (en) 2000-05-22 2006-01-12 Hong Cai Rapid haplotyping by single molecule detection
WO2001089675A2 (en) 2000-05-24 2001-11-29 Micronics, Inc. Jet vortex mixer
US6645432B1 (en) 2000-05-25 2003-11-11 President & Fellows Of Harvard College Microfluidic systems including three-dimensionally arrayed channel networks
US20060263888A1 (en) 2000-06-02 2006-11-23 Honeywell International Inc. Differential white blood count on a disposable card
US6632606B1 (en) 2000-06-12 2003-10-14 Aclara Biosciences, Inc. Methods for single nucleotide polymorphism detection
ES2259666T3 (en) 2000-06-21 2006-10-16 Bioarray Solutions Ltd MOLECULAR ANALYSIS OF MULTIPLE ANALYTICS USING SERIES OF RANDOM PARTICLES WITH APPLICATION SPECIFICITY.
WO2002011888A2 (en) 2000-08-07 2002-02-14 Nanostream, Inc. Fluidic mixer in microfluidic system
US6610499B1 (en) 2000-08-31 2003-08-26 The Regents Of The University Of California Capillary array and related methods
US6773566B2 (en) 2000-08-31 2004-08-10 Nanolytics, Inc. Electrostatic actuators for microfluidics and methods for using same
US6670153B2 (en) 2000-09-14 2003-12-30 Caliper Technologies Corp. Microfluidic devices and methods for performing temperature mediated reactions
EP2299256A3 (en) 2000-09-15 2012-10-10 California Institute Of Technology Microfabricated crossflow devices and methods
EP1322936A2 (en) 2000-10-03 2003-07-02 California Institute Of Technology Microfluidic devices and methods of use
MXPA02005717A (en) 2000-10-10 2003-10-14 Diversa Corp High throughput or capillary-based screening for a bioactivity or biomolecule.
US7045283B2 (en) * 2000-10-18 2006-05-16 The Regents Of The University Of California Methods of high-throughput screening for internalizing antibodies
JP2002155305A (en) 2000-11-14 2002-05-31 Akira Kawasaki Equipment and method for manufacturing monodispersed particle, and monodispersed particle manufactured by the manufacturing method
US6492154B2 (en) 2001-01-31 2002-12-10 Applera Corporation Isolated human kinase proteins, nucleic acid molecules encoding human kinase proteins, and uses thereof
CA2332186A1 (en) 2001-02-08 2002-08-08 Her Majesty In Right Of Canada As Represented By The Minister Of Agricul Ture And Agri-Food Canada Replicative in vivo gene targeting
US7670559B2 (en) 2001-02-15 2010-03-02 Caliper Life Sciences, Inc. Microfluidic systems with enhanced detection systems
WO2002068383A2 (en) 2001-02-22 2002-09-06 Anika Therapeutics, Inc. Thiol-modified hyaluronan
EP1447127B1 (en) 2001-02-23 2007-07-04 Japan Science and Technology Agency Apparatus for producing emulsion
US20150329617A1 (en) 2001-03-14 2015-11-19 Dynal Biotech Asa Novel MHC molecule constructs, and methods of employing these constructs for diagnosis and therapy, and uses of MHC molecules
US7211654B2 (en) 2001-03-14 2007-05-01 Regents Of The University Of Michigan Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports
US20060040286A1 (en) 2001-03-28 2006-02-23 Nanosphere, Inc. Bio-barcode based detection of target analytes
US20020172622A1 (en) 2001-04-03 2002-11-21 Weigl Bernhard H. Microfluidic device for concentrating particles in a concentrating solution
US7138267B1 (en) 2001-04-04 2006-11-21 Epicentre Technologies Corporation Methods and compositions for amplifying DNA clone copy number
US20030027221A1 (en) 2001-04-06 2003-02-06 Scott Melissa E. High-throughput screening assays by encapsulation
US7572642B2 (en) 2001-04-18 2009-08-11 Ambrigen, Llc Assay based on particles, which specifically bind with targets in spatially distributed characteristic patterns
AU2002314820B2 (en) 2001-05-26 2008-01-24 One Cell Systems, Inc. Secretion of Molecules by Encapsulated Cells
US6880576B2 (en) 2001-06-07 2005-04-19 Nanostream, Inc. Microfluidic devices for methods development
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7262063B2 (en) 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
US6613523B2 (en) 2001-06-29 2003-09-02 Agilent Technologies, Inc. Method of DNA sequencing using cleavable tags
US7077152B2 (en) 2001-07-07 2006-07-18 Nanostream, Inc. Microfluidic metering systems and methods
IL159957A0 (en) 2001-07-20 2004-06-20 California Inst Of Techn Protein and nucleic expression systems
US6767731B2 (en) 2001-08-27 2004-07-27 Intel Corporation Electron induced fluorescent method for nucleic acid sequencing
US20030148335A1 (en) * 2001-10-10 2003-08-07 Li Shen Detecting targets by unique identifier nucleotide tags
US7297485B2 (en) 2001-10-15 2007-11-20 Qiagen Gmbh Method for nucleic acid amplification that results in low amplification bias
JP2005509872A (en) 2001-10-19 2005-04-14 ウエスト バージニア ユニバーシティ リサーチ コーポレーション A microfluidic system for proteomic analysis
US6783647B2 (en) 2001-10-19 2004-08-31 Ut-Battelle, Llc Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
US20030149307A1 (en) 2001-10-24 2003-08-07 Baxter International Inc. Process for the preparation of polyethylene glycol bis amine
EP1446274A4 (en) 2001-10-26 2010-06-30 Aclara Biosciences Inc System and method for injection molded micro-replication of micro-fluidic substrates
EP1448789A4 (en) 2001-10-30 2007-01-03 Nanomics Biosystems Pty Ltd Device and methods for directed synthesis of chemical libraries
US7262056B2 (en) 2001-11-08 2007-08-28 Mirus Bio Corporation Enhancing intermolecular integration of nucleic acids using integrator complexes
GB0127564D0 (en) 2001-11-16 2002-01-09 Medical Res Council Emulsion compositions
EP1456409B1 (en) 2001-11-28 2010-02-24 Bio-Rad Laboratories, Inc. Parallel polymorphism scoring by amplification and error correction
US7335153B2 (en) 2001-12-28 2008-02-26 Bio Array Solutions Ltd. Arrays of microparticles and methods of preparation thereof
AU2003210438A1 (en) 2002-01-04 2003-07-24 Board Of Regents, The University Of Texas System Droplet-based microfluidic oligonucleotide synthesis engine
AU2003202026A1 (en) 2002-01-16 2003-09-02 Dynal Biotech Asa Method for isolating nucleic acids and protein from a single sample
KR100459870B1 (en) 2002-02-22 2004-12-04 한국과학기술원 CONSTRUCTION OF NOVEL STRAINS CONTAINING MINIMIZING GENOME BY Tn5-COUPLED Cre/loxP EXCISION SYSTEM
ATE397096T1 (en) 2002-03-20 2008-06-15 Innovativebio Biz CONTROLLED PERMEABILITY MICROCapsules CONTAINING A NUCLEIC ACID AMPLIFICATION REACTION MIXTURE AND THEIR USE AS A REACTION VESSEL FOR PARALLEL REACTIONS
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
EP2278338B1 (en) 2002-05-09 2020-08-26 The University of Chicago Device and method for pressure-driven plug transport and reaction
US7527966B2 (en) 2002-06-26 2009-05-05 Transgenrx, Inc. Gene regulation in transgenic animals using a transposon-based vector
JP2006507921A (en) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Method and apparatus for fluid dispersion
CA2493808A1 (en) 2002-07-24 2004-01-29 Ptc Therapeutics, Inc. Methods for identifying small molecules that modulate premature translation termination and nonsense mediated mrna decay
IL151660A0 (en) 2002-09-09 2003-04-10 Univ Ben Gurion Method for isolating and culturing unculturable microorganisms
AU2002329063A1 (en) 2002-09-30 2004-04-23 F.Hoffmann-La Roche Ag Oligonucleotides for genotyping thymidylate synthase gene
US20040081962A1 (en) 2002-10-23 2004-04-29 Caifu Chen Methods for synthesizing complementary DNA
US6979713B2 (en) 2002-11-25 2005-12-27 3M Innovative Properties Company Curable compositions and abrasive articles therefrom
US20050266582A1 (en) 2002-12-16 2005-12-01 Modlin Douglas N Microfluidic system with integrated permeable membrane
US20040248299A1 (en) 2002-12-27 2004-12-09 Sumedha Jayasena RNA interference
DE602004021902D1 (en) 2003-01-17 2009-08-20 Univ Boston haplotype analysis
DE602004036672C5 (en) 2003-01-29 2012-11-29 454 Life Sciences Corporation Nucleic acid amplification based on bead emulsion
EP1594973B1 (en) 2003-02-10 2011-12-07 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Transposon-based targeting system
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
US7316903B2 (en) 2003-03-28 2008-01-08 United States Of America As Represented By The Department Of Health And Human Services Detection of nucleic acid sequence variations using phase Mu transposase
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
WO2004087204A2 (en) 2003-04-04 2004-10-14 Pfizer Products Inc. Microfluidized oil-in-water emulsions and vaccine compositions
US20100035254A1 (en) 2003-04-08 2010-02-11 Pacific Biosciences Of California, Inc. Composition and method for nucleic acid sequencing
EP2266687A3 (en) 2003-04-10 2011-06-29 The President and Fellows of Harvard College Formation and control of fluidic species
WO2004102204A1 (en) 2003-05-16 2004-11-25 Global Technologies (Nz) Ltd Method and apparatus for mixing sample and reagent in a suspension fluid
DE112004001376D2 (en) 2003-05-19 2006-04-13 Knoell Hans Forschung Ev Apparatus and method for structuring liquids and for metering reaction liquids to liquid compartments embedded in separation medium
WO2004105734A1 (en) 2003-05-28 2004-12-09 Valorisation Recherche, Societe En Commandite Method of preparing microcapsules
GB0313170D0 (en) 2003-06-09 2003-07-16 Qinetiq Ltd Method and apparatus for spore disruption and/or detection
US20070160503A1 (en) 2003-06-13 2007-07-12 Palaniappan Sethu Microfluidic systems for size based removal of red blood cells and platelets from blood
CN101001960A (en) 2003-06-27 2007-07-18 西北大学 Bio-barcode based detection of target analytes
GB2403475B (en) 2003-07-01 2008-02-06 Oxitec Ltd Stable integrands
GB0315438D0 (en) 2003-07-02 2003-08-06 Univ Manchester Analysis of mixed cell populations
US8048627B2 (en) 2003-07-05 2011-11-01 The Johns Hopkins University Method and compositions for detection and enumeration of genetic variations
JP4630870B2 (en) 2003-08-27 2011-02-09 プレジデント アンド フェロウズ オブ ハーバード カレッジ Electronic control of fluid species
CA2542512A1 (en) 2003-09-04 2005-03-17 Nathan Ravi Hydrogel nanocompsites for ophthalmic applications
WO2005023427A1 (en) 2003-09-05 2005-03-17 Stokes Bio Limited A microfluidic analysis system
US7354706B2 (en) 2003-09-09 2008-04-08 The Regents Of The University Of Colorado, A Body Corporate Use of photopolymerization for amplification and detection of a molecular recognition event
US20090004739A1 (en) 2003-09-22 2009-01-01 Taku Demura Efficient Method of Preparing Dna Inverted Repeat
KR101111231B1 (en) 2003-09-25 2012-02-17 비바리스 Microwell array chip and its manufacturing method
WO2005047521A2 (en) 2003-11-10 2005-05-26 Investigen, Inc. Methods of preparing nucleic acid for detection
EP1691792A4 (en) 2003-11-24 2008-05-28 Yeda Res & Dev Compositions and methods for in vitro sorting of molecular and cellular libraries
US20050136417A1 (en) 2003-12-19 2005-06-23 Affymetrix, Inc. Amplification of nucleic acids
WO2005062881A2 (en) 2003-12-24 2005-07-14 Transgenrx, Inc. Gene therapy using transposon-based vectors
ES2432040T3 (en) 2004-01-28 2013-11-29 454 Life Sciences Corporation Nucleic acid amplification with continuous flow emulsion
US20050181379A1 (en) 2004-02-18 2005-08-18 Intel Corporation Method and device for isolating and positioning single nucleic acid molecules
US20100216153A1 (en) 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
CA2557841A1 (en) 2004-02-27 2005-09-09 President And Fellows Of Harvard College Polony fluorescent in situ sequencing beads
KR100552706B1 (en) 2004-03-12 2006-02-20 삼성전자주식회사 Method and apparatus for nucleic acid amplification
EP1757357B1 (en) 2004-03-23 2013-04-24 Japan Science and Technology Agency Method and device for producing micro-droplets
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
WO2005099419A2 (en) 2004-04-13 2005-10-27 President And Fellows Of Harvard College Manipulation and/or detection of biological samples or other objects
US20050250147A1 (en) 2004-05-10 2005-11-10 Macevicz Stephen C Digital profiling of polynucleotide populations
WO2006047183A2 (en) 2004-10-21 2006-05-04 New England Biolabs, Inc. Recombinant dna nicking endonuclease and uses thereof
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
US7700281B2 (en) 2004-06-30 2010-04-20 Usb Corporation Hot start nucleic acid amplification
US7968085B2 (en) 2004-07-05 2011-06-28 Ascendis Pharma A/S Hydrogel formulations
CN1648671B (en) 2005-02-06 2012-09-26 成都夸常医学工业有限公司 Detecting method for multiple reactor analytic chip and analytic chip and detector
US7608434B2 (en) 2004-08-04 2009-10-27 Wisconsin Alumni Research Foundation Mutated Tn5 transposase proteins and the use thereof
WO2006030993A1 (en) 2004-09-14 2006-03-23 Jin-Ho Choy Information code system using dna sequences
US7892731B2 (en) 2004-10-01 2011-02-22 Radix Biosolutions, Ltd. System and method for inhibiting the decryption of a nucleic acid probe sequence used for the detection of a specific nucleic acid
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US9492400B2 (en) 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
WO2006051552A2 (en) 2004-11-15 2006-05-18 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Directed evolution and selection using in vitro compartmentalization
US7329493B2 (en) 2004-12-22 2008-02-12 Asiagen Corporation One-tube nested PCR for detecting Mycobacterium tuberculosis
JP5165383B2 (en) 2004-12-23 2013-03-21 アイ−スタツト・コーポレイシヨン Molecular diagnostic system and method
WO2006078841A1 (en) 2005-01-21 2006-07-27 President And Fellows Of Harvard College Systems and methods for forming fluidic droplets encapsulated in particles such as colloidal particles
EP1841879A4 (en) 2005-01-25 2009-05-27 Population Genetics Technologi Isothermal dna amplification
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
US7407757B2 (en) 2005-02-10 2008-08-05 Population Genetics Technologies Genetic analysis by sequence-specific sorting
EP1871903B1 (en) 2005-02-18 2011-12-21 Canon U.S. Life Sciences, Inc. Devices and methods for identifying genomic dna of organisms
WO2006088123A1 (en) 2005-02-21 2006-08-24 Kagoshima University Method for purifying biodiesel fuel
US20070054119A1 (en) 2005-03-04 2007-03-08 Piotr Garstecki Systems and methods of forming particles
EP2248578B1 (en) 2005-03-04 2012-06-06 President and Fellows of Harvard College Method for forming multiple emulsions
US9040237B2 (en) 2005-03-04 2015-05-26 Intel Corporation Sensor arrays and nucleic acid sequencing applications
JP2006289250A (en) 2005-04-08 2006-10-26 Kao Corp Micro mixer and fluid mixing method using the same
US8407013B2 (en) 2005-06-07 2013-03-26 Peter K. Rogan AB initio generation of single copy genomic probes
CA2611671C (en) 2005-06-15 2013-10-08 Callida Genomics, Inc. Single molecule arrays for genetic and chemical analysis
JP2006349060A (en) 2005-06-16 2006-12-28 Ntn Corp Ball screw
WO2007002490A2 (en) 2005-06-22 2007-01-04 The Research Foundation Of State University Of New York Massively parallel 2-dimensional capillary electrophoresis
WO2007002567A2 (en) 2005-06-23 2007-01-04 Nanosphere, Inc. Selective isolation and concentration of nucleic acids from complex samples
EP2392657B1 (en) 2005-07-05 2013-09-25 The Chemo-Sero-Therapeutic Research Institute Modified transposon vector and its use
JP5051490B2 (en) 2005-07-08 2012-10-17 独立行政法人産業技術総合研究所 Inorganic microcapsule encapsulating macro-biomaterial and method for producing the same
US20070020640A1 (en) 2005-07-21 2007-01-25 Mccloskey Megan L Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
FR2888912B1 (en) 2005-07-25 2007-08-24 Commissariat Energie Atomique METHOD FOR CONTROLLING COMMUNICATION BETWEEN TWO ZONES BY ELECTROWRINKING, DEVICE COMPRISING ISOLABLE ZONES AND OTHERS AND METHOD FOR PRODUCING SUCH DEVICE
WO2007018601A1 (en) 2005-08-02 2007-02-15 Rubicon Genomics, Inc. Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
DE102005037401B4 (en) 2005-08-08 2007-09-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Formation of an emulsion in a fluidic microsystem
WO2007024840A2 (en) 2005-08-22 2007-03-01 Critical Therapeutics, Inc. Method of quantitating nucleic acids by flow cytometry microparticle-based array
US7556776B2 (en) 2005-09-08 2009-07-07 President And Fellows Of Harvard College Microfluidic manipulation of fluids and reactions
JP2007074967A (en) 2005-09-13 2007-03-29 Canon Inc Identifier probe and method for amplifying nucleic acid by using the same
CA2622719A1 (en) 2005-09-16 2007-07-26 The Regents Of The University Of California A colorimetric bio-barcode amplification assay for analyte detection
US7960104B2 (en) 2005-10-07 2011-06-14 Callida Genomics, Inc. Self-assembled single molecule arrays and uses thereof
US20070111241A1 (en) 2005-10-14 2007-05-17 Nezih Cereb System and method for accessing, tracking, and editing sequence analysis and software to accomplish the same
US7709544B2 (en) 2005-10-25 2010-05-04 Massachusetts Institute Of Technology Microstructure synthesis by flow lithography and polymerization
US20070190543A1 (en) 2005-11-14 2007-08-16 Applera Corporation Coded Molecules for Detecting Target Analytes
US20070134277A1 (en) 2005-12-09 2007-06-14 Children's Medical Center Corporation Pharmaceutical formulation for sulfur-containing drugs in liquid dosage forms
US20070141584A1 (en) 2005-12-20 2007-06-21 Roberts Douglas N Methods for assessment of native chromatin on microarrays
US7932037B2 (en) 2007-12-05 2011-04-26 Perkinelmer Health Sciences, Inc. DNA assays using amplicon probes on encoded particles
JP2009536313A (en) 2006-01-11 2009-10-08 レインダンス テクノロジーズ, インコーポレイテッド Microfluidic devices and methods for use in nanoreactor formation and control
WO2007087312A2 (en) 2006-01-23 2007-08-02 Population Genetics Technologies Ltd. Molecular counting
EP1987162A4 (en) 2006-01-23 2009-11-25 Population Genetics Technologi Nucleic acid analysis using sequence tokens
EP2004316B8 (en) 2006-01-27 2011-04-13 President and Fellows of Harvard College Fluidic droplet coalescence
ES2595373T3 (en) 2006-02-02 2016-12-29 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive genetic test by digital analysis
WO2007092538A2 (en) 2006-02-07 2007-08-16 President And Fellows Of Harvard College Methods for making nucleotide probes for sequencing and synthesis
GB0603251D0 (en) 2006-02-17 2006-03-29 Isis Innovation DNA conformation
EP1994180A4 (en) 2006-02-24 2009-11-25 Callida Genomics Inc High throughput genome sequencing on dna arrays
SG170028A1 (en) 2006-02-24 2011-04-29 Callida Genomics Inc High throughput genome sequencing on dna arrays
WO2007111937A1 (en) 2006-03-23 2007-10-04 Applera Corporation Directed enrichment of genomic dna for high-throughput sequencing
JP4921829B2 (en) 2006-03-30 2012-04-25 株式会社東芝 Fine particle production apparatus, emulsifier holding part, fine particle production method, and molecular film production method
WO2007114794A1 (en) 2006-03-31 2007-10-11 Nam Trung Nguyen Active control for droplet-based microfluidics
JP2009538123A (en) 2006-04-19 2009-11-05 アプライド バイオシステムズ, エルエルシー Reagents, methods and libraries for gel-free bead-based sequencing
US7811603B2 (en) 2006-05-09 2010-10-12 The Regents Of The University Of California Microfluidic device for forming monodisperse lipoplexes
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
US7941279B2 (en) 2006-05-22 2011-05-10 Nanostring Technologies, Inc. Systems and methods for analyzing nanoreporters
RU2321638C2 (en) 2006-05-23 2008-04-10 Закрытое акционерное общество "Молекулярно-медицинские технологии" Method for preparing multifunctional multichip, multichip for successive or parallel screening biopolymers, method for analysis of biopolymers and set for realization of method
WO2007140015A2 (en) 2006-05-26 2007-12-06 Althea Technologies, Inc Biochemical analysis of partitioned cells
FR2901717A1 (en) 2006-05-30 2007-12-07 Centre Nat Rech Scient METHOD FOR TREATING DROPS IN A MICROFLUIDIC CIRCUIT
CN101675169B (en) 2006-06-14 2018-01-02 维里纳塔健康公司 Rare cell analysis is carried out using sample splitting and DNA labels
EP2038427A4 (en) 2006-06-19 2010-07-07 Univ Johns Hopkins Single-molecule pcr on microparticles in water-in-oil emulsions
US20080076909A1 (en) 2006-06-30 2008-03-27 Applera Corporation Emulsion pcr and amplicon capture
EP1878501A1 (en) 2006-07-14 2008-01-16 Roche Diagnostics GmbH Instrument for heating and cooling
US8394590B2 (en) 2006-08-02 2013-03-12 California Institute Of Technology Capture agents and related methods and systems for detecting and/or sorting targets
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
EP2064346B1 (en) 2006-09-06 2013-11-06 Canon U.S. Life Sciences, Inc. Chip and cartridge design configuration for performing micro-fluidic assays
AU2007302586B2 (en) 2006-09-25 2013-06-27 Archer-Daniels-Midland Company Superabsorbent surface-treated carboxyalkylated polysaccharides and process for producing same
US7935518B2 (en) 2006-09-27 2011-05-03 Alessandra Luchini Smart hydrogel particles for biomarker harvesting
US20080166720A1 (en) 2006-10-06 2008-07-10 The Regents Of The University Of California Method and apparatus for rapid nucleic acid analysis
WO2008052138A2 (en) 2006-10-25 2008-05-02 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated dna analysis system using same
US7910354B2 (en) 2006-10-27 2011-03-22 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
ES2679996T3 (en) 2006-11-15 2018-09-03 Biospherex Llc Multi-label sequencing and ecogenomic analysis
AU2007321907A1 (en) 2006-11-20 2008-05-29 Nativis, Inc. Apparatus and method for transducing an in vitro or mammalian system with a low-frequency signal
US20080242560A1 (en) 2006-11-21 2008-10-02 Gunderson Kevin L Methods for generating amplified nucleic acid arrays
US7866543B2 (en) 2006-11-21 2011-01-11 International Business Machines Corporation Security and privacy enforcement for discovery services in a network of electronic product code information repositories
US8598328B2 (en) 2006-12-13 2013-12-03 National University Corporation Nagoya University Tol1 factor transposase and DNA introduction system using the same
EP2653861B1 (en) 2006-12-14 2014-08-13 Life Technologies Corporation Method for sequencing a nucleic acid using large-scale FET arrays
US8338166B2 (en) 2007-01-04 2012-12-25 Lawrence Livermore National Security, Llc Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
JP2008167722A (en) 2007-01-15 2008-07-24 Konica Minolta Medical & Graphic Inc Nucleic acid isolation method by heating on magnetic support
US7844658B2 (en) 2007-01-22 2010-11-30 Comcast Cable Holdings, Llc System and method for providing an application to a device
US20080176768A1 (en) 2007-01-23 2008-07-24 Honeywell Honeywell International Hydrogel microarray with embedded metal nanoparticles
WO2008093098A2 (en) 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
US8003312B2 (en) 2007-02-16 2011-08-23 The Board Of Trustees Of The Leland Stanford Junior University Multiplex cellular assays using detectable cell barcodes
FI20075124A0 (en) 2007-02-21 2007-02-21 Valtion Teknillinen Method and test kit for detection of nucleotide variations
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US20080228268A1 (en) 2007-03-15 2008-09-18 Uluru, Inc. Method of Formation of Viscous, Shape Conforming Gels and Their Uses as Medical Prosthesis
US7943330B2 (en) 2007-03-23 2011-05-17 Academia Sinica Tailored glycoproteomic methods for the sequencing, mapping and identification of cellular glycoproteins
WO2008121342A2 (en) 2007-03-28 2008-10-09 President And Fellows Of Harvard College Emulsions and techniques for formation
US9222936B2 (en) 2007-04-18 2015-12-29 Solulink, Inc. Methods and/or use of oligonucleotide conjugates for suppressing background due to cross-hybridization
WO2008134153A1 (en) 2007-04-23 2008-11-06 Advanced Liquid Logic, Inc. Bead-based multiplexed analytical methods and instrumentation
CN101293191B (en) 2007-04-25 2011-11-09 中国科学院过程工程研究所 Agarose gelatin microsphere preparation method
WO2008135512A2 (en) 2007-05-02 2008-11-13 Jerzy Paszkowski Dna amplification method
US20080295909A1 (en) 2007-05-24 2008-12-04 Locascio Laurie E Microfluidic Device for Passive Sorting and Storage of Liquid Plugs Using Capillary Force
EP2164985A4 (en) 2007-06-01 2014-05-14 454 Life Sciences Corp System and meth0d for identification of individual samples from a multiplex mixture
US8476382B2 (en) 2007-06-05 2013-07-02 Eugenia Kumacheva Multiple continuous microfluidic reactors for the scaled up synthesis of gel or polymer particles
WO2009005680A1 (en) 2007-06-29 2009-01-08 President And Fellows Of Harvard College Methods and apparatus for manipulation of fluidic species
US20090068170A1 (en) 2007-07-13 2009-03-12 President And Fellows Of Harvard College Droplet-based selection
WO2009015296A1 (en) * 2007-07-24 2009-01-29 The Regents Of The University Of California Microfabricated dropley generator
US20130084243A1 (en) 2010-01-27 2013-04-04 Liliane Goetsch Igf-1r specific antibodies useful in the detection and diagnosis of cellular proliferative disorders
CA2696843A1 (en) 2007-08-15 2009-02-19 Opgen, Inc. Method, system and software arrangement for comparative analysis and phylogeny with whole-genome optical maps
US8563527B2 (en) 2007-08-20 2013-10-22 Pharmain Corporation Oligonucleotide core carrier compositions for delivery of nucleic acid-containing therapeutic agents, methods of making and using the same
US8268564B2 (en) 2007-09-26 2012-09-18 President And Fellows Of Harvard College Methods and applications for stitched DNA barcodes
WO2009048532A2 (en) 2007-10-05 2009-04-16 President And Fellows Of Harvard College Formation of particles for ultrasound application, drug release, and other uses, and microfluidic methods of preparation
US20090099040A1 (en) 2007-10-15 2009-04-16 Sigma Aldrich Company Degenerate oligonucleotides and their uses
US20100086914A1 (en) 2008-10-03 2010-04-08 Roche Molecular Systems, Inc. High resolution, high throughput hla genotyping by clonal sequencing
WO2009055732A1 (en) * 2007-10-26 2009-04-30 Rosetta Inpharmatics Llc Cdna synthesis using non-random primers
US8334013B2 (en) 2007-11-02 2012-12-18 Stc.Unm Mesoporous metal oxide microspheres and method for forming same
WO2009061372A1 (en) 2007-11-02 2009-05-14 President And Fellows Of Harvard College Systems and methods for creating multi-phase entities, including particles and/or fluids
US8592150B2 (en) 2007-12-05 2013-11-26 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
CN101918590B (en) 2007-12-10 2013-03-27 高晓莲 Sequencing of nucleic acids
US7771944B2 (en) 2007-12-14 2010-08-10 The Board Of Trustees Of The University Of Illinois Methods for determining genetic haplotypes and DNA mapping
US9797010B2 (en) 2007-12-21 2017-10-24 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
EP4450642A2 (en) 2008-01-17 2024-10-23 Sequenom, Inc. Single molecule nucleic acid sequence analysis processes and compositions
KR20090081260A (en) 2008-01-23 2009-07-28 삼성전자주식회사 Assay method of microarray hybridization
US8501922B2 (en) 2008-02-07 2013-08-06 Pacific Biosciences Of California, Inc. CIS reactive oxygen quenchers integrated into linkers
JP5468271B2 (en) 2008-02-08 2014-04-09 花王株式会社 Method for producing fine particle dispersion
US20090203531A1 (en) 2008-02-12 2009-08-13 Nurith Kurn Method for Archiving and Clonal Expansion
CA2710807C (en) 2008-03-11 2015-09-08 Kyeong Man Hong Method for measuring chromosome, gene or specific nucleotide sequence copy numbers using snp array
CN101241126A (en) 2008-03-14 2008-08-13 东华大学 Biological bar code detecting probe preparation method
US9011777B2 (en) 2008-03-21 2015-04-21 Lawrence Livermore National Security, Llc Monodisperse microdroplet generation and stopping without coalescence
US8961902B2 (en) 2008-04-23 2015-02-24 Bioscale, Inc. Method and apparatus for analyte processing
US9068181B2 (en) 2008-05-23 2015-06-30 The General Hospital Corporation Microfluidic droplet encapsulation
DE102008025656B4 (en) 2008-05-28 2016-07-28 Genxpro Gmbh Method for the quantitative analysis of nucleic acids, markers therefor and their use
GB0810051D0 (en) 2008-06-02 2008-07-09 Oxford Biodynamics Ltd Method of diagnosis
WO2009148598A1 (en) 2008-06-05 2009-12-10 President And Fellows Of Harvard College Polymersomes, colloidosomes, liposomes, and other species associated with fluidic droplets
WO2010003132A1 (en) 2008-07-02 2010-01-07 Illumina Cambridge Ltd. Using populations of beads for the fabrication of arrays on surfaces
CA2730292C (en) 2008-07-11 2016-06-14 Eth Zurich Degradable microcapsules
WO2010009365A1 (en) 2008-07-18 2010-01-21 Raindance Technologies, Inc. Droplet libraries
US10722562B2 (en) 2008-07-23 2020-07-28 Immudex Aps Combinatorial analysis and repair
US20100062494A1 (en) 2008-08-08 2010-03-11 President And Fellows Of Harvard College Enzymatic oligonucleotide pre-adenylation
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
WO2010033200A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Creation of libraries of droplets and related species
US8709762B2 (en) 2010-03-02 2014-04-29 Bio-Rad Laboratories, Inc. System for hot-start amplification via a multiple emulsion
US9417190B2 (en) 2008-09-23 2016-08-16 Bio-Rad Laboratories, Inc. Calibrations and controls for droplet-based assays
US20120252015A1 (en) 2011-02-18 2012-10-04 Bio-Rad Laboratories Methods and compositions for detecting genetic material
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
US9764322B2 (en) 2008-09-23 2017-09-19 Bio-Rad Laboratories, Inc. System for generating droplets with pressure monitoring
US9127312B2 (en) 2011-02-09 2015-09-08 Bio-Rad Laboratories, Inc. Analysis of nucleic acids
CA2735899A1 (en) 2008-09-25 2010-04-01 Cephalon, Inc. Liquid formulations of bendamustine
US8361299B2 (en) 2008-10-08 2013-01-29 Sage Science, Inc. Multichannel preparative electrophoresis system
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
EP2508529B1 (en) 2008-10-24 2013-08-28 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
US20100113296A1 (en) 2008-11-05 2010-05-06 Joel Myerson Methods And Kits For Nucleic Acid Analysis
ES2781754T3 (en) * 2008-11-07 2020-09-07 Adaptive Biotechnologies Corp Methods for monitoring conditions by sequence analysis
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US20100203647A1 (en) 2008-11-21 2010-08-12 The Rockefeller University Chemical Reporters of Protein Acylation
EP2352852A4 (en) 2008-12-02 2012-10-24 Bio Rad Laboratories Chromatin structure detection
EP3150724A1 (en) 2008-12-19 2017-04-05 President and Fellows of Harvard College Particle-assisted nucleic acid sequencing
WO2010075570A2 (en) 2008-12-24 2010-07-01 New York University Methods, computer-accessible medium, and systems for score-driven whole-genome shotgun sequence assemble
KR101065807B1 (en) 2009-01-23 2011-09-19 충남대학교산학협력단 Preparation method for micro-capsule using a microfluidic chip system
US9347092B2 (en) 2009-02-25 2016-05-24 Roche Molecular System, Inc. Solid support for high-throughput nucleic acid analysis
JP5457222B2 (en) 2009-02-25 2014-04-02 エフ.ホフマン−ラ ロシュ アーゲー Miniaturized high-throughput nucleic acid analysis
JP5909095B2 (en) 2009-03-13 2016-04-26 プレジデント アンド フェローズ オブ ハーバード カレッジ Scale up microfluidic devices
WO2010104604A1 (en) 2009-03-13 2010-09-16 President And Fellows Of Harvard College Method for the controlled creation of emulsions, including multiple emulsions
EP2230312A1 (en) 2009-03-19 2010-09-22 Helmholtz-Zentrum für Infektionsforschung GmbH Probe compound for detecting and isolating enzymes and means and methods using the same
US8528589B2 (en) 2009-03-23 2013-09-10 Raindance Technologies, Inc. Manipulation of microfluidic droplets
DK2414548T3 (en) 2009-03-30 2015-12-21 Illumina Inc Gene expression in single cells
KR101829182B1 (en) * 2009-04-02 2018-03-29 플루이다임 코포레이션 Multi-primer amplification method for barcoding of target nucleic acids
US9085798B2 (en) 2009-04-30 2015-07-21 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
EP2427572B1 (en) 2009-05-01 2013-08-28 Illumina, Inc. Sequencing methods
US9334531B2 (en) 2010-12-17 2016-05-10 Life Technologies Corporation Nucleic acid amplification
FR2945545B1 (en) 2009-05-14 2011-08-05 Univ Aix Marseille Ii METHOD FOR DETECTION OF PROCARYOTE DNA EXTRACTED FROM A SAMPLE SAMPLE
FR2945819B1 (en) 2009-05-19 2011-06-17 Commissariat Energie Atomique DEVICE AND METHOD FOR ISOLATING BIOLOGICAL OR CHEMICAL TARGETS
US8574835B2 (en) 2009-05-29 2013-11-05 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US9524369B2 (en) 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
EP2443236B1 (en) 2009-06-15 2015-05-13 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
EP2446278B1 (en) 2009-06-26 2021-11-17 President and Fellows of Harvard College Fluid injection
US20110028412A1 (en) 2009-08-03 2011-02-03 Cappellos, Inc. Herbal enhanced analgesic formulations
US20110033548A1 (en) 2009-08-05 2011-02-10 E.I. Du Pont De Nemours And Company Degradable crosslinked aminated dextran microspheres and methods of use
US8298767B2 (en) 2009-08-20 2012-10-30 Population Genetics Technologies Ltd Compositions and methods for intramolecular nucleic acid rearrangement
WO2011027268A2 (en) 2009-09-01 2011-03-10 Koninklijke Philips Electronics N.V. Devices and methods for microarray selection
CA3021714C (en) 2009-09-02 2021-03-09 Bio-Rad Laboratories, Inc. System for mixing fluids by coalescence of multiple emulsions
KR20120089661A (en) 2009-09-02 2012-08-13 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Multiple emulsions created using jetting and other techniques
US9625454B2 (en) 2009-09-04 2017-04-18 The Research Foundation For The State University Of New York Rapid and continuous analyte processing in droplet microfluidic devices
GB0918564D0 (en) 2009-10-22 2009-12-09 Plasticell Ltd Nested cell encapsulation
CA2778816C (en) 2009-10-27 2018-07-31 President And Fellows Of Harvard College Droplet creation techniques
US10207240B2 (en) 2009-11-03 2019-02-19 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
CN107028886A (en) 2009-11-04 2017-08-11 不列颠哥伦比亚大学 Lipid particle and related methods containing nucleic acid
CA2767028A1 (en) 2009-11-25 2011-06-03 Quantalife, Inc. Methods and compositions for detecting genetic material
EP2504448B1 (en) 2009-11-25 2016-10-19 Bio-Rad Laboratories, Inc. Methods and compositions for detecting genetic material
US9023769B2 (en) 2009-11-30 2015-05-05 Complete Genomics, Inc. cDNA library for nucleic acid sequencing
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
AU2010330936B2 (en) 2009-12-17 2014-05-22 Keygene N.V. Restriction enzyme based whole genome sequencing
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
WO2011100604A2 (en) 2010-02-12 2011-08-18 Raindance Technologies, Inc. Digital analyte analysis
JP5901046B2 (en) 2010-02-19 2016-04-06 国立大学法人 千葉大学 Novel alternative splicing variant of OATP1B3 mRNA
US20110257889A1 (en) 2010-02-24 2011-10-20 Pacific Biosciences Of California, Inc. Sequence assembly and consensus sequence determination
WO2011106314A2 (en) 2010-02-25 2011-09-01 Advanced Liquid Logic, Inc. Method of making nucleic acid libraries
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
EP2549986B1 (en) 2010-03-24 2019-10-30 Northeastern University Multi-compartmental macrophage delivery
JP2013524171A (en) 2010-03-25 2013-06-17 クァンタライフ・インコーポレーテッド Droplet generation for drop-based assays
FR2958186A1 (en) 2010-03-30 2011-10-07 Ecole Polytech DEVICE FOR FORMING DROPS IN A MICROFLUID CIRCUIT.
KR101866401B1 (en) 2010-04-05 2018-06-11 프로그노시스 바이오사이언스, 인코포레이티드 Spatially encoded biological assays
US9255291B2 (en) 2010-05-06 2016-02-09 Bioo Scientific Corporation Oligonucleotide ligation methods for improving data quality and throughput using massively parallel sequencing
US20110287947A1 (en) 2010-05-18 2011-11-24 University Of Southern California Tethered Conformation Capture
EP2575773A4 (en) 2010-05-26 2014-06-25 Selecta Biosciences Inc Synthetic nanocarrier combination vaccines
US20120000777A1 (en) 2010-06-04 2012-01-05 The Regents Of The University Of California Devices and methods for forming double emulsion droplet compositions and polymer particles
CN103119439A (en) 2010-06-08 2013-05-22 纽亘技术公司 Methods and composition for multiplex sequencing
US8703493B2 (en) 2010-06-15 2014-04-22 Src, Inc. Location analysis using fire retardant-protected nucleic acid-labeled tags
US20120003657A1 (en) 2010-07-02 2012-01-05 Samuel Myllykangas Targeted sequencing library preparation by genomic dna circularization
US20120238738A1 (en) 2010-07-19 2012-09-20 New England Biolabs, Inc. Oligonucleotide Adapters: Compositions and Methods of Use
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
CN103202812B (en) 2010-08-09 2015-10-28 南京大学 A kind of method of protein nano grain for the preparation of sending pharmacological active substance in body
WO2012019765A1 (en) 2010-08-10 2012-02-16 European Molecular Biology Laboratory (Embl) Methods and systems for tracking samples and sample combinations
WO2012037358A1 (en) 2010-09-16 2012-03-22 The University Of North Carolina At Chapel Hill Asymmetric bifunctional silyl monomers and particles thereof as prodrugs and delivery vehicles for pharmaceutical, chemical and biological agents
CN102409048B (en) 2010-09-21 2013-10-23 深圳华大基因科技服务有限公司 DNA index library building method based on high throughput sequencing
ES2523140T3 (en) 2010-09-21 2014-11-21 Population Genetics Technologies Ltd. Increased confidence in allele identifications with molecular count
US9187783B2 (en) 2010-10-04 2015-11-17 Genapsys, Inc. Systems and methods for automated reusable parallel biological reactions
US9999886B2 (en) 2010-10-07 2018-06-19 The Regents Of The University Of California Methods and systems for on demand droplet generation and impedance based detection
US10392726B2 (en) 2010-10-08 2019-08-27 President And Fellows Of Harvard College High-throughput immune sequencing
DK2625320T3 (en) 2010-10-08 2019-07-01 Harvard College HIGH-THROUGHPUT SINGLE COVERAGE CODING
CN102050953B (en) 2010-10-18 2012-11-07 武汉理工大学 Method for preparing reducible and degradable supermolecule hydrogel
EP2633069B1 (en) 2010-10-26 2015-07-01 Illumina, Inc. Sequencing methods
US20130225623A1 (en) 2010-10-27 2013-08-29 Mount Sinai School Of Medicine Methods of Treating Psychiatric or Neurological Disorders with MGLUR Antagonists
CA3215088A1 (en) 2010-11-01 2012-05-10 Bio-Rad Laboratories, Inc. System for forming emulsions
US9074251B2 (en) 2011-02-10 2015-07-07 Illumina, Inc. Linking sequence reads using paired code tags
US8829171B2 (en) 2011-02-10 2014-09-09 Illumina, Inc. Linking sequence reads using paired code tags
EP2635679B1 (en) 2010-11-05 2017-04-19 Illumina, Inc. Linking sequence reads using paired code tags
WO2012083225A2 (en) 2010-12-16 2012-06-21 Gigagen, Inc. System and methods for massively parallel analysis of nycleic acids in single cells
WO2012088348A2 (en) 2010-12-23 2012-06-28 Sequenom, Inc. Fetal genetic variation detection
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
US20120191366A1 (en) 2011-01-20 2012-07-26 Nathaniel Pearson Methods and Apparatus for Assigning a Meaningful Numeric Value to Genomic Variants, and Searching and Assessing Same
US8765455B2 (en) 2011-01-27 2014-07-01 Lawrence Livermore National Security, Llc Chip-based droplet sorting
GB201101429D0 (en) 2011-01-27 2011-03-16 Biocompatibles Uk Ltd Drug delivery system
ES2568910T3 (en) 2011-01-28 2016-05-05 Illumina, Inc. Oligonucleotide replacement for libraries labeled at two ends and addressed
EP2670863B1 (en) 2011-01-31 2018-06-27 H. Hoffnabb-La Roche Ag Methods of identifying multiple epitopes in cells
JP6017458B2 (en) 2011-02-02 2016-11-02 ユニヴァーシティ・オブ・ワシントン・スルー・イッツ・センター・フォー・コマーシャリゼーション Mass parallel continuity mapping
US9266104B2 (en) 2011-02-11 2016-02-23 Raindance Technologies, Inc. Thermocycling device for nucleic acid amplification and methods of use
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
EP3736281A1 (en) 2011-02-18 2020-11-11 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
EP2678326B1 (en) 2011-02-25 2017-08-02 University of Massachusetts Medical School Monomers and polymers for functional polycarbonates and poly (ester-carbonates) and peg-co-polycarbonate hydrogels
CA2824431A1 (en) 2011-02-25 2012-08-30 Illumina, Inc. Methods and systems for haplotype determination
CN103502218B (en) 2011-03-04 2016-08-17 生命科技公司 Compounds and methods for for conjugating biomolecules
US9215162B2 (en) 2011-03-09 2015-12-15 Annai Systems Inc. Biological data networks and methods therefor
JP2014509865A (en) 2011-03-18 2014-04-24 バイオ−ラッド・ラボラトリーズ・インコーポレーテッド Multiplexed digital assay using a combination of signals
US9260753B2 (en) 2011-03-24 2016-02-16 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
WO2012150317A1 (en) 2011-05-05 2012-11-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Linear dna amplification
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
JP2014516514A (en) 2011-04-14 2014-07-17 コンプリート・ジェノミックス・インコーポレイテッド Processing and analysis of complex nucleic acid sequence data
WO2012149042A2 (en) * 2011-04-25 2012-11-01 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
US9957558B2 (en) 2011-04-28 2018-05-01 Life Technologies Corporation Methods and compositions for multiplex PCR
SG10201900183VA (en) 2011-04-28 2019-05-30 Univ Leland Stanford Junior Identification of polynucleotides associated with a sample
WO2012157684A1 (en) 2011-05-16 2012-11-22 地方独立行政法人 大阪府立病院機構 Method for assessing progression of clinical state of malignant neoplasm by quantitative detection of dna in blood
CN108524510A (en) 2011-05-16 2018-09-14 皇家飞利浦有限公司 bio-orthogonal drug activation
US9005935B2 (en) 2011-05-23 2015-04-14 Agilent Technologies, Inc. Methods and compositions for DNA fragmentation and tagging by transposases
EP2714254B1 (en) 2011-05-23 2017-09-06 President and Fellows of Harvard College Control of emulsions, including multiple emulsions
US9617598B2 (en) 2011-05-27 2017-04-11 President And Fellows Of Harvard College Methods of amplifying whole genome of a single cell
EP2714970B1 (en) 2011-06-02 2017-04-19 Raindance Technologies, Inc. Enzyme quantification
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US9150916B2 (en) 2011-06-24 2015-10-06 Beat Christen Compositions and methods for identifying the essential genome of an organism
US8927218B2 (en) 2011-06-27 2015-01-06 Flir Systems, Inc. Methods and compositions for segregating target nucleic acid from mixed nucleic acid samples
WO2013006824A2 (en) 2011-07-07 2013-01-10 Life Technologies Corporation Polymer particles, nucleic acid polymer particles and methods of making and using the same
US20130017978A1 (en) 2011-07-11 2013-01-17 Finnzymes Oy Methods and transposon nucleic acids for generating a dna library
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
US9605304B2 (en) 2011-07-20 2017-03-28 The Hong Kong Polytechnic University Ultra-stable oligonucleotide-gold and-silver nanoparticle conjugates and method of their preparation
US20130189700A1 (en) 2011-07-25 2013-07-25 Bio-Rad Laboratories, Inc. Breakage of an emulsion containing nucleic acid
WO2013019751A1 (en) 2011-07-29 2013-02-07 Bio-Rad Laboratories, Inc., Library characterization by digital assay
CA2844056A1 (en) 2011-08-04 2013-02-07 Sage Science, Inc. Systems and methods for processing fluids
WO2013022961A1 (en) 2011-08-08 2013-02-14 3The Broad Institute Compositions and methods for co-amplifying subsequences of a nucleic acid fragment sequence
US8846883B2 (en) 2011-08-16 2014-09-30 University Of Southhampton Oligonucleotide ligation
WO2013035114A1 (en) 2011-09-08 2013-03-14 Decode Genetics Ehf Tp53 genetic variants predictive of cancer
US9725765B2 (en) * 2011-09-09 2017-08-08 The Board Of Trustees Of The Leland Stanford Junior University Methods for obtaining a sequence
EP3964285A1 (en) 2011-09-26 2022-03-09 Thermo Fisher Scientific Geneart GmbH High efficiency, small volume nucleic acid synthesis
US11389800B2 (en) 2011-09-28 2022-07-19 President And Fellows Of Harvard College Systems and methods for droplet production and/or fluidic manipulation
US9514272B2 (en) 2011-10-12 2016-12-06 Complete Genomics, Inc. Identification of DNA fragments and structural variations
US9469874B2 (en) 2011-10-18 2016-10-18 The Regents Of The University Of California Long-range barcode labeling-sequencing
US20130109576A1 (en) 2011-10-28 2013-05-02 Anthony P. Shuber Methods for detecting mutations
US9385791B2 (en) 2011-11-04 2016-07-05 Intel Corporation Signaling for configuration of downlink coordinated multipoint communications
JP6083713B2 (en) 2011-11-16 2017-02-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Microfluidic device with deformable valve
US10689643B2 (en) 2011-11-22 2020-06-23 Active Motif, Inc. Targeted transposition for use in epigenetic studies
US9938524B2 (en) 2011-11-22 2018-04-10 Active Motif, Inc. Multiplex isolation of protein-associated nucleic acids
CN104245917B (en) 2011-12-03 2017-07-21 Emd密理博公司 Miniature culture system and method for Microfluidic cell culture
EP4108782B1 (en) 2011-12-22 2023-06-07 President and Fellows of Harvard College Compositions and methods for analyte detection
US20150125865A1 (en) 2011-12-23 2015-05-07 Gigagen, Inc. Methods And Apparatuses For Droplet Mixing
EP4116338A1 (en) 2012-02-09 2023-01-11 Life Technologies Corporation Hydrophilic polymeric particles and methods for making same
EP2814984A4 (en) 2012-02-14 2015-07-29 Univ Johns Hopkins Mirna analysis methods
CA2864287C (en) 2012-02-15 2021-01-12 Wisconsin Alumni Research Foundation Dithioamine reducing agents
WO2013123125A1 (en) 2012-02-17 2013-08-22 President And Fellows Of Harvard College Assembly of nucleic acid sequences in emulsions
DK3363901T3 (en) 2012-02-17 2021-02-22 Hutchinson Fred Cancer Res Compositions and methods for accurately identifying mutations
WO2013126741A1 (en) 2012-02-24 2013-08-29 Raindance Technologies, Inc. Labeling and sample preparation for sequencing
EP3495503A1 (en) 2012-03-05 2019-06-12 President and Fellows of Harvard College Systems and methods for epigenetic sequencing
NO2694769T3 (en) 2012-03-06 2018-03-03
US9552458B2 (en) 2012-03-16 2017-01-24 The Research Institute At Nationwide Children's Hospital Comprehensive analysis pipeline for discovery of human genetic variation
US20150125904A1 (en) 2012-03-30 2015-05-07 Massachusetts Institute Of Technology Probe incorporation mediated by enzymes
CN102622634B (en) 2012-03-31 2014-04-23 中国农业科学院果树研究所 Method for preparing bar code identities of apple germplasm resources
EP2647426A1 (en) 2012-04-03 2013-10-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Replication of distributed nucleic acid molecules with preservation of their relative distribution through hybridization-based binding
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
BR112014025695B1 (en) 2012-04-16 2021-08-03 Biological Dynamics, Inc NUCLEIC ACID SAMPLE PREPARATION
US20130296173A1 (en) 2012-04-23 2013-11-07 Complete Genomics, Inc. Pre-anchor wash
CN104736722B (en) 2012-05-21 2018-08-07 斯克利普斯研究所 Sample preparation methods
EP2861761A1 (en) 2012-06-15 2015-04-22 Adaptive Biotechnologies Corporation Uniquely tagged rearranged adaptive immune receptor genes in a complex gene set
DK2861760T3 (en) 2012-06-15 2020-03-09 Univ Texas High capacity sequencing of multiple prints of a single cell
US20150247182A1 (en) 2012-07-24 2015-09-03 Adaptive Biotechnologies Corp. Single cell analysis using sequence tags
US10174310B2 (en) 2012-08-08 2019-01-08 Roche Sequencing Solutions, Inc. Increasing dynamic range for identifying multiple epitopes in cells
EP2882872B1 (en) 2012-08-13 2021-10-06 The Regents of The University of California Methods and systems for detecting biological components
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20140378322A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US20150005200A1 (en) 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
CN113528634A (en) * 2012-08-14 2021-10-22 10X基因组学有限公司 Microcapsule compositions and methods
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20140378345A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
US20220098659A1 (en) 2012-08-14 2022-03-31 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20140378349A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
US20150005199A1 (en) 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
EP2898096B1 (en) 2012-09-21 2024-02-14 The Broad Institute, Inc. Methods for labeling of rnas
US9644199B2 (en) 2012-10-01 2017-05-09 Agilent Technologies, Inc. Immobilized transposase complexes for DNA fragmentation and tagging
GB201217772D0 (en) 2012-10-04 2012-11-14 Base4 Innovation Ltd Sequencing method
FR2996545B1 (en) 2012-10-08 2016-03-25 Ecole Polytech MICROFLUIDIC METHOD FOR PROCESSING AND ANALYZING A SOLUTION CONTAINING BIOLOGICAL MATERIAL, AND CORRESPONDING MICROFLUIDIC CIRCUIT
FR2996544B1 (en) 2012-10-08 2015-03-13 Ecole Polytech MICROFLUIDIC CIRCUIT FOR COMBINING DROPS OF MULTIPLE FLUIDS AND CORRESPONDING MICROFLUIDIC PROCESS.
EP3252174B1 (en) 2012-10-15 2020-07-01 Life Technologies Corporation Compositions, methods, systems and kits for target nucleic acid enrichment
EP2909337B1 (en) 2012-10-17 2019-01-09 Spatial Transcriptomics AB Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
CA2889862C (en) 2012-11-05 2021-02-16 Rubicon Genomics, Inc. Barcoding nucleic acids
EP2917366B1 (en) 2012-11-06 2017-08-02 Oxford Nanopore Technologies Limited Quadruplex method
WO2014074611A1 (en) 2012-11-07 2014-05-15 Good Start Genetics, Inc. Methods and systems for identifying contamination in samples
WO2014109845A1 (en) 2012-12-03 2014-07-17 Yilin Zhang Single-stranded polynucleotide amplification methods
MX2015007549A (en) 2012-12-12 2017-01-20 Broad Inst Inc Engineering of systems, methods and optimized guide compositions for sequence manipulation.
EP2931899A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP3567116A1 (en) 2012-12-14 2019-11-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP2749653A1 (en) 2012-12-28 2014-07-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Molecular coding for analysis of composition of macromolecules and molecular complexes
EP2752664A1 (en) 2013-01-07 2014-07-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Label-free method for the detection of analytes
US9683230B2 (en) 2013-01-09 2017-06-20 Illumina Cambridge Limited Sample preparation on a solid support
EP2994749A4 (en) 2013-01-17 2017-07-19 Edico Genome Corp. Bioinformatics systems, apparatuses, and methods executed on an integrated circuit processing platform
KR101984699B1 (en) 2013-01-24 2019-05-31 삼성전자주식회사 Micro-fluidic system for analysis of nucleic acid
EP2948703B1 (en) 2013-01-25 2019-03-13 Bio-Rad Laboratories, Inc. System and method for performing droplet inflation
US10381106B2 (en) 2013-01-28 2019-08-13 Hasso-Plattner-Institut Fuer Softwaresystemtechnik Gmbh Efficient genomic read alignment in an in-memory database
US11110458B2 (en) 2013-02-01 2021-09-07 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
KR20200140929A (en) 2013-02-08 2020-12-16 10엑스 제노믹스, 인크. Polynucleotide barcode generation
EP2964390B1 (en) 2013-03-06 2018-12-26 President and Fellows of Harvard College Use of devices for forming relatively monodisperse droplets
EP3418398B1 (en) 2013-03-08 2020-05-13 Bio-Rad Laboratories, Inc. Compositions for polymerase chain reaction assays
DK3553175T3 (en) 2013-03-13 2021-08-23 Illumina Inc PROCEDURE FOR MAKING A NUCLEIC ACID SEQUENCE LIBRARY
WO2014152155A1 (en) 2013-03-14 2014-09-25 The Broad Institute, Inc. Massively multiplexed rna sequencing
US9273349B2 (en) 2013-03-14 2016-03-01 Affymetrix, Inc. Detection of nucleic acids
US9328382B2 (en) 2013-03-15 2016-05-03 Complete Genomics, Inc. Multiple tagging of individual long DNA fragments
US9816088B2 (en) 2013-03-15 2017-11-14 Abvitro Llc Single cell bar-coding for antibody discovery
US20140274729A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Methods, compositions and kits for generation of stranded rna or dna libraries
EP2971080B1 (en) 2013-03-15 2018-01-03 Expedeon, S.L. Methods for amplification and sequencing using thermostable tthprimpol
US20140272996A1 (en) 2013-03-15 2014-09-18 Bio-Rad Laboratories, Inc. Droplet generator with collection tube
EP2972366B1 (en) 2013-03-15 2020-06-17 Prognosys Biosciences, Inc. Methods for detecting peptide/mhc/tcr binding
AU2014233373B2 (en) 2013-03-15 2019-10-24 Verinata Health, Inc. Generating cell-free DNA libraries directly from blood
WO2014165559A2 (en) 2013-04-02 2014-10-09 Raindance Technologies, Inc. Systems and methods for handling microfluidic droplets
WO2014182835A1 (en) 2013-05-09 2014-11-13 Bio-Rad Laboratories, Inc. Magnetic immuno digital pcr assay
SG11201508985VA (en) 2013-05-23 2015-12-30 Univ Leland Stanford Junior Transposition into native chromatin for personal epigenomics
WO2014200767A1 (en) 2013-06-12 2014-12-18 The General Hospital Corporation Methods, kits, and systems for multiplexed detection of target molecules and uses thereof
US20160122753A1 (en) 2013-06-12 2016-05-05 Tarjei Mikkelsen High-throughput rna-seq
CN107995927B (en) 2013-06-17 2021-07-30 布罗德研究所有限公司 Delivery and use of CRISPR-CAS systems, vectors and compositions for liver targeting and therapy
US20160208323A1 (en) 2013-06-21 2016-07-21 The Broad Institute, Inc. Methods for Shearing and Tagging DNA for Chromatin Immunoprecipitation and Sequencing
LT3013983T (en) 2013-06-25 2023-05-10 Prognosys Biosciences, Inc. Spatially encoded biological assays using a microfluidic device
KR102212234B1 (en) 2013-06-27 2021-02-05 10엑스 제노믹스, 인크. Compositions and methods for sample processing
US9840718B2 (en) 2013-07-12 2017-12-12 University Of South Alabama Minimal piggyBac vectors for genome integration
CN103394410B (en) 2013-07-25 2016-04-20 博奥生物集团有限公司 A kind of intelligent magnetic frame of position-adjustable
GB2516684A (en) 2013-07-30 2015-02-04 Sphere Fluidics Ltd Microfluidic devices and systems
KR102536833B1 (en) 2013-08-28 2023-05-26 벡톤 디킨슨 앤드 컴퍼니 Massively parallel single cell analysis
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US9381217B2 (en) * 2013-09-09 2016-07-05 Georgia Tech Research Corporation Microgels for encapsulation of cells and other biologic agents
US20160231324A1 (en) 2013-09-24 2016-08-11 The Regents Of The University Of California Encapsulated sensors and sensing systems for bioassays and diagnostics and methods for making and using them
GB201317301D0 (en) 2013-09-30 2013-11-13 Linnarsson Sten Method for capturing and encoding nucleic acid from a plurality of single cells
US10266904B2 (en) 2013-10-09 2019-04-23 Stc.Unm Synthetic long read DNA sequencing
US9937495B2 (en) 2013-10-28 2018-04-10 Massachusetts Institute Of Technology Hydrogel microstructures with immiscible fluid isolation for small reaction volumes
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US20140315755A1 (en) 2013-12-26 2014-10-23 Tao Chen Genome-wide Antisense Oligonucleotide and RNAi
CN114717291A (en) * 2013-12-30 2022-07-08 阿特雷卡公司 Analysis of nucleic acids associated with single cells using nucleic acid barcodes
KR101464100B1 (en) 2014-01-29 2014-11-21 성균관대학교산학협력단 Fusion nano liposome-fluorescence labeled nucleic acid for in vivo application, uses thereof and preparation method thereof
EP3102691B1 (en) 2014-02-03 2019-09-11 Thermo Fisher Scientific Baltics UAB Method for controlled dna fragmentation
US9822396B2 (en) 2014-02-13 2017-11-21 Bio-Rad Laboratories, Inc. Chromosome conformation capture in partitions
EP3110975B1 (en) 2014-02-27 2021-07-07 Jumpcode Genomics, Inc. Methods for analysis of somatic mobile elements, and uses thereof
AU2015243445B2 (en) 2014-04-10 2020-05-28 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9790476B2 (en) 2014-04-15 2017-10-17 Illumina, Inc. Modified transposases for improved insertion sequence bias and increased DNA input tolerance
US20150298091A1 (en) 2014-04-21 2015-10-22 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
JP6853667B2 (en) 2014-04-21 2021-03-31 プレジデント アンド フェローズ オブ ハーバード カレッジ Systems and methods for barcoding nucleic acids
US10975371B2 (en) 2014-04-29 2021-04-13 Illumina, Inc. Nucleic acid sequence analysis from single cells
WO2015179706A1 (en) 2014-05-23 2015-11-26 Fluidigm Corporation Haploidome determination by digitized transposons
SG10202005892SA (en) 2014-06-06 2020-07-29 Herlev Hospital Determining antigen recognition through barcoding of mhc multimers
US10704080B2 (en) 2014-06-11 2020-07-07 Samplix Aps Nucleotide sequence exclusion enrichment by droplet sorting (NEEDLS)
US9534215B2 (en) 2014-06-11 2017-01-03 Life Technologies Corporation Systems and methods for substrate enrichment
EP4270006A3 (en) 2014-06-13 2024-01-10 Immudex ApS General detection and isolation of specific cells by binding of labeled molecules
US10480021B2 (en) 2014-06-23 2019-11-19 Yale University Methods for closed chromatin mapping and DNA methylation analysis for single cells
EP3161157B1 (en) 2014-06-24 2024-03-27 Bio-Rad Laboratories, Inc. Digital pcr barcoding
WO2015200891A1 (en) 2014-06-26 2015-12-30 10X Technologies, Inc. Processes and systems for nucleic acid sequence assembly
EP3161161A4 (en) 2014-06-26 2018-02-28 10X Genomics, Inc. Methods and compositions for sample analysis
CN113249435B (en) 2014-06-26 2024-09-03 10X基因组学有限公司 Method for analyzing nucleic acid from single cell or cell population
MX2016016904A (en) 2014-06-26 2017-03-27 10X Genomics Inc Analysis of nucleic acid sequences.
US10017759B2 (en) 2014-06-26 2018-07-10 Illumina, Inc. Library preparation of tagged nucleic acid
US9982295B2 (en) 2014-07-18 2018-05-29 Illumina, Inc. Non-invasive prenatal diagnosis of fetal genetic condition using cellular DNA and cell free DNA
US20160024558A1 (en) 2014-07-23 2016-01-28 10X Genomics, Inc. Nucleic acid binding proteins and uses thereof
CN105335116B (en) 2014-07-30 2018-11-09 联想(北京)有限公司 A kind of display control method and electronic equipment
WO2016033251A2 (en) 2014-08-26 2016-03-03 Nugen Technologies, Inc. Compositions and methods for targeted nucleic acid sequence enrichment and high efficiency library generation
JP2017532024A (en) 2014-09-09 2017-11-02 ザ・ブロード・インスティテュート・インコーポレイテッド Droplet-based methods and instruments for composite single cell nucleic acid analysis
CA2961210A1 (en) 2014-09-15 2016-03-24 Abvitro, Inc. High-throughput nucleotide library sequencing
KR102643955B1 (en) 2014-10-17 2024-03-07 일루미나 케임브리지 리미티드 Contiguity preserving transposition
AU2015339148B2 (en) 2014-10-29 2022-03-10 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
US20180320241A1 (en) 2014-12-19 2018-11-08 Roche Sequencing Solutions, Inc. Methods for identifying multiple epitopes in selected sub-populations of cells
WO2016114970A1 (en) 2015-01-12 2016-07-21 10X Genomics, Inc. Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same
CN107209814B (en) 2015-01-13 2021-10-15 10X基因组学有限公司 System and method for visualizing structural variation and phase information
WO2016126882A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
WO2016126871A2 (en) 2015-02-04 2016-08-11 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
AU2016219480B2 (en) 2015-02-09 2021-11-11 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
KR20200020997A (en) 2015-02-10 2020-02-26 일루미나, 인코포레이티드 The method and the composition for analyzing the cellular constituent
WO2016138148A1 (en) 2015-02-24 2016-09-01 10X Genomics, Inc. Methods for targeted nucleic acid sequence coverage
US10697000B2 (en) 2015-02-24 2020-06-30 10X Genomics, Inc. Partition processing methods and systems
EP3262192B1 (en) 2015-02-27 2020-09-16 Becton, Dickinson and Company Spatially addressable molecular barcoding
EP3268462B1 (en) 2015-03-11 2021-08-11 The Broad Institute, Inc. Genotype and phenotype coupling
EP3271713B1 (en) 2015-03-18 2021-05-05 The Broad Institute, Inc. Massively parallel on-chip coalescence of microemulsions
US20160289769A1 (en) 2015-03-30 2016-10-06 Verily Life Sciences Llc Methods for Combining Single Cell Profiling with Combinatorial Nanoparticle Conjugate Library Screening and In Vivo Diagnostic System
EP4321627A3 (en) 2015-04-10 2024-04-17 10x Genomics Sweden AB Spatially distinguished, multiplex nucleic acid analysis of biological specimens
CA2983122A1 (en) 2015-04-17 2016-10-20 President And Fellows Of Harvard College Barcoding systems and methods for gene sequencing and other applications
CN107250447B (en) 2015-04-20 2020-05-05 深圳华大生命科学研究院 Long fragment DNA library construction method
EP3708256B1 (en) 2015-04-22 2022-11-30 Stilla Technologies Contact-less priming method for loading a solution in a microfluidic device and associated system
US20160314242A1 (en) 2015-04-23 2016-10-27 10X Genomics, Inc. Sample indexing methods and compositions for sequencing applications
KR20180008493A (en) 2015-05-18 2018-01-24 10엑스 제노믹스, 인크. Portable solid phase compositions for use in biochemical reactions and assays
CN107532218A (en) 2015-05-18 2018-01-02 10X基因组学有限公司 Stabilize reducing agent and its application method
WO2016191380A1 (en) 2015-05-26 2016-12-01 Pacific Biosciences Of California, Inc. De novo diploid genome assembly and haplotype sequence reconstruction
WO2016187717A1 (en) 2015-05-26 2016-12-01 Exerkine Corporation Exosomes useful for genome editing
WO2016191618A1 (en) 2015-05-27 2016-12-01 Jianbiao Zheng Methods of inserting molecular barcodes
WO2016207647A1 (en) 2015-06-24 2016-12-29 Oxford Biodynamics Limited Epigenetic chromosome interactions
AU2016297510B2 (en) 2015-07-17 2021-09-09 President And Fellows Of Harvard College Methods of amplifying nucleic acid sequences
CA2995305A1 (en) 2015-08-12 2017-02-16 Cemm Forschungszentrum Fur Molekulare Medizin Gmbh Methods for studying nucleic acids
WO2017034970A1 (en) 2015-08-21 2017-03-02 The General Hospital Corporation Combinatorial single molecule analysis of chromatin
AU2016326737B2 (en) 2015-09-24 2023-01-12 Abvitro Llc Affinity-oligonucleotide conjugates and uses thereof
WO2017066231A1 (en) 2015-10-13 2017-04-20 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
US10900031B2 (en) 2015-10-19 2021-01-26 Zhejiang Annoroad Bio-Technology Co. Ltd. Method for constructing high-resolution single cell Hi-C library with a lot of information
WO2017070056A1 (en) 2015-10-20 2017-04-27 10X Genomics, Inc. Methods and systems for high throughput single cell genetic manipulation
WO2017075294A1 (en) 2015-10-28 2017-05-04 The Board Institute Inc. Assays for massively combinatorial perturbation profiling and cellular circuit reconstruction
US11092607B2 (en) 2015-10-28 2021-08-17 The Board Institute, Inc. Multiplex analysis of single cell constituents
US11098304B2 (en) 2015-11-04 2021-08-24 Atreca, Inc. Combinatorial sets of nucleic acid barcodes for analysis of nucleic acids associated with single cells
CN114774529A (en) 2015-11-19 2022-07-22 10X基因组学有限公司 Transformable marking compositions, methods and processes incorporating same
WO2017096158A1 (en) 2015-12-04 2017-06-08 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
WO2017117358A1 (en) 2015-12-30 2017-07-06 Bio-Rad Laboratories, Inc. Digital protein quantification
US20170260584A1 (en) 2016-02-11 2017-09-14 10X Genomics, Inc. Cell population analysis using single nucleotide polymorphisms from single cell transcriptomes
EP3414341A4 (en) 2016-02-11 2019-10-09 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
CN109196115A (en) 2016-03-01 2019-01-11 通用测序技术公司 Nucleic acid target source is tracked in the method and kit for nucleic acid sequencing
WO2017156336A1 (en) 2016-03-10 2017-09-14 The Board Of Trustees Of The Leland Stanford Junior University Transposase-mediated imaging of the accessible genome
CN109312402A (en) 2016-04-11 2019-02-05 得克萨斯州大学系统董事会 For detecting the method and composition of single T cell receptor affinity and sequence
CN109311010B (en) 2016-04-15 2022-05-17 哈佛学院院长及董事 System and method for collecting droplets or other entities
CA3021735A1 (en) 2016-04-19 2017-10-26 President And Fellows Of Harvard College Immobilization-based systems and methods for genetic analysis and other applications
WO2017197343A2 (en) 2016-05-12 2017-11-16 10X Genomics, Inc. Microfluidic on-chip filters
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
EP3497219A4 (en) 2016-08-10 2020-08-19 President and Fellows of Harvard College Methods of de novo assembly of barcoded genomic dna fragments
US10688494B2 (en) 2016-08-23 2020-06-23 10X Genomics, Inc. Microfluidic surface-mediated emulsion stability control
WO2018044831A1 (en) 2016-08-30 2018-03-08 Integrated Dna Technologies, Inc. Cleavable hairpin primers
WO2018045186A1 (en) 2016-08-31 2018-03-08 President And Fellows Of Harvard College Methods of combining the detection of biomolecules into a single assay using fluorescent in situ sequencing
CN109923214A (en) 2016-08-31 2019-06-21 哈佛学院董事及会员团体 The method of full-length genome digital amplification
US20180080021A1 (en) 2016-09-17 2018-03-22 The Board Of Trustees Of The Leland Stanford Junior University Simultaneous sequencing of rna and dna from the same sample
CA3034924A1 (en) 2016-09-26 2018-03-29 Cellular Research, Inc. Measurement of protein expression using reagents with barcoded oligonucleotide sequences
SG11201903519UA (en) 2016-10-19 2019-05-30 10X Genomics Inc Methods and systems for barcoding nucleic acid molecules from individual cells or cell populations
GB201619458D0 (en) 2016-11-17 2017-01-04 Spatial Transcriptomics Ab Method for spatial tagging and analysing nucleic acids in a biological specimen
US11434483B2 (en) 2016-12-07 2022-09-06 Mgi Tech Co., Ltd. Method for constructing single cell sequencing library and use thereof
US11021738B2 (en) 2016-12-19 2021-06-01 Bio-Rad Laboratories, Inc. Droplet tagging contiguity preserved tagmented DNA
EP3571308A4 (en) 2016-12-21 2020-08-19 The Regents of The University of California Single cell genomic sequencing using hydrogel based droplets
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20190177800A1 (en) 2017-12-08 2019-06-13 10X Genomics, Inc. Methods and compositions for labeling cells
KR102551666B1 (en) 2016-12-29 2023-07-04 일루미나, 인코포레이티드 An assay system for orthogonal access to and tagging of biomolecules within cell compartments
EP4095263A1 (en) 2017-01-06 2022-11-30 Editas Medicine, Inc. Methods of assessing nuclease cleavage
CA3050127A1 (en) 2017-01-12 2018-07-19 Massachusetts Institute Of Technology Methods for analyzing t cell receptors and b cell receptors
EP4310183A3 (en) 2017-01-30 2024-02-21 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
FI3583214T3 (en) * 2017-02-02 2023-12-19 New York Genome Center Inc Methods and compositions for identifying or quantifying targets in a biological sample
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US10347365B2 (en) 2017-02-08 2019-07-09 10X Genomics, Inc. Systems and methods for visualizing a pattern in a dataset
GB201704402D0 (en) 2017-03-20 2017-05-03 Blacktrace Holdings Ltd Single cell DNA sequencing
KR20190133711A (en) 2017-03-24 2019-12-03 싱가포르국립대학교 Multiple Detection Method of Molecules
CA3059370C (en) 2017-04-12 2022-05-10 Karius, Inc. Methods for concurrent analysis of dna and rna in mixed samples
WO2018191701A1 (en) 2017-04-14 2018-10-18 The Broad Institute, Inc. High-throughput screens for exploring biological functions of microscale biological systems
US20180312822A1 (en) 2017-04-26 2018-11-01 10X Genomics, Inc. Mmlv reverse transcriptase variants
EP4435113A1 (en) 2017-05-18 2024-09-25 10x Genomics, Inc. Methods and systems for sorting droplets and beads
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
EP3625715A4 (en) 2017-05-19 2021-03-17 10X Genomics, Inc. Systems and methods for analyzing datasets
US10914729B2 (en) 2017-05-22 2021-02-09 The Trustees Of Princeton University Methods for detecting protein binding sequences and tagging nucleic acids
US20180340169A1 (en) 2017-05-26 2018-11-29 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
CA3059559A1 (en) 2017-06-05 2018-12-13 Becton, Dickinson And Company Sample indexing for single cells
WO2018226546A1 (en) 2017-06-05 2018-12-13 10X Genomics, Inc. Gaskets for the distribution of pressures in a microfluidic system
CN110799679A (en) 2017-06-20 2020-02-14 10X基因组学有限公司 Method and system for improving droplet stabilization
US12040053B2 (en) 2017-06-21 2024-07-16 Bluedot, Llc Methods for generating sequencer-specific nucleic acid barcodes that reduce demultiplexing errors
CN108336542B (en) 2017-06-23 2020-02-21 番禺得意精密电子工业有限公司 Electrical connector
AU2018312560B2 (en) 2017-08-01 2022-03-10 Illumina, Inc. Hydrogel beads for nucleotide sequencing
US9946577B1 (en) 2017-08-14 2018-04-17 10X Genomics, Inc. Systems and methods for distributed resource management
US10821442B2 (en) 2017-08-22 2020-11-03 10X Genomics, Inc. Devices, systems, and kits for forming droplets
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
EP3691703A1 (en) 2017-10-04 2020-08-12 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US20190127731A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods for preparing nucleic acid molecules
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Microfluidic channel networks for partitioning
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods and systems for nuclecic acid preparation and chromatin analysis
WO2019084328A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods for preparing nucleic acid molecules
CN111479631B (en) 2017-10-27 2022-02-22 10X基因组学有限公司 Methods and systems for sample preparation and analysis
CN111051523B (en) 2017-11-15 2024-03-19 10X基因组学有限公司 Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019113235A1 (en) 2017-12-06 2019-06-13 10X Genomics, Inc. Methods and systems for processing nucleic acid molecules
CN111699388B (en) 2017-12-12 2024-08-02 10X基因组学有限公司 Systems and methods for single cell processing
CN111712579B (en) 2017-12-22 2024-10-15 10X基因组学有限公司 Systems and methods for processing nucleic acid molecules from one or more cells
WO2019148042A1 (en) 2018-01-26 2019-08-01 10X Genomics, Inc. Compositions and methods for sample processing
CN112004920B (en) 2018-02-05 2024-08-02 斯坦福大学托管董事会 Systems and methods for multiplex measurement of single cells and pooled cells
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
WO2019165318A1 (en) 2018-02-22 2019-08-29 10X Genomics, Inc. Ligation mediated analysis of nucleic acids
WO2019169028A1 (en) 2018-02-28 2019-09-06 10X Genomics, Inc. Transcriptome sequencing through random ligation
WO2019169347A1 (en) 2018-03-02 2019-09-06 10X Genomics, Inc. Systems and apparatus for holding plates
WO2019191321A1 (en) 2018-03-28 2019-10-03 10X Genomics, Inc. Nucleic acid enrichment within partitions
WO2019195166A1 (en) 2018-04-06 2019-10-10 10X Genomics, Inc. Systems and methods for quality control in single cell processing
WO2019217758A1 (en) 2018-05-10 2019-11-14 10X Genomics, Inc. Methods and systems for molecular library generation
US20190345636A1 (en) 2018-05-10 2019-11-14 10X Genomics, Inc. Methods and systems for molecular library generation
US20190352717A1 (en) 2018-05-18 2019-11-21 10X Genomics, Inc. Targeted non-invasive prenatal testing
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
WO2020006183A1 (en) 2018-06-28 2020-01-02 10X Genomics, Inc. Systems and methods for visualization of single-cell resolution characteristics
US20200033366A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
SG11202101164TA (en) 2018-08-03 2021-03-30 10X Genomics Inc Methods and systems to minimize barcode exchange
US12065688B2 (en) 2018-08-20 2024-08-20 10X Genomics, Inc. Compositions and methods for cellular processing
WO2020041148A1 (en) 2018-08-20 2020-02-27 10X Genomics, Inc. Methods and systems for detection of protein-dna interactions using proximity ligation
US20200105373A1 (en) 2018-09-28 2020-04-02 10X Genomics, Inc. Systems and methods for cellular analysis using nucleic acid sequencing
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
WO2020142779A1 (en) 2019-01-06 2020-07-09 10X Genomics, Inc. Methods and systems for enrichment of barcodes
WO2020167866A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transposon loading
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
WO2020167862A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transfer of reagents between droplets
WO2020168013A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Methods for processing nucleic acid molecules
EP3938537A1 (en) 2019-03-11 2022-01-19 10X Genomics, Inc. Systems and methods for processing optically tagged beads
SG11202110592QA (en) 2019-03-27 2021-10-28 10X Genomics Inc Systems and methods for processing rna from cells
EP4025709A1 (en) 2019-09-06 2022-07-13 10X Genomics, Inc. Systems and methods for barcoding cells and cell beads
US20210190770A1 (en) 2019-12-23 2021-06-24 10X Genomics, Inc. Compositions and methods for using fixed biological samples in partition-based assays
EP4081777A1 (en) 2019-12-23 2022-11-02 10X Genomics, Inc. Reversible fixing reagents and methods of use thereof
US20210270703A1 (en) 2020-02-28 2021-09-02 10X Genomics, Inc. Method for isolating nuclei and cells from tissues
WO2021207610A1 (en) 2020-04-10 2021-10-14 10X Genomics, Inc. Cold protease treatment method for preparing biological samples
EP4136227A1 (en) 2020-04-16 2023-02-22 10X Genomics, Inc. Compositions and methods for use with fixed samples
WO2021222302A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for increasing cell recovery efficiency
WO2021222301A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for analysis and identification of barcode multiplets
WO2022103712A1 (en) 2020-11-13 2022-05-19 10X Genomics, Inc. Nano-partitions (encapsulated nucleic acid processing enzymes) for cell-lysis and multiple reactions in partition-based assays
EP4298239A1 (en) 2021-02-23 2024-01-03 10X Genomics, Inc. Drug screening methods
EP4298244A1 (en) 2021-02-23 2024-01-03 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136734A1 (en) * 2011-04-05 2012-10-11 Tracesa Ltd. Fluid identification system and production and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hirsch et al. (2002) "Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation." Analytical of Biochemistry 308(2):343-357 *
Ramsköld et al. (2012) "Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells" Nature Biotechnology 30(8):777-782 *

Cited By (552)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047394B2 (en) 2009-12-15 2018-08-14 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US10202646B2 (en) 2009-12-15 2019-02-12 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US12060607B2 (en) 2009-12-15 2024-08-13 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US10392661B2 (en) 2009-12-15 2019-08-27 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US10059991B2 (en) 2009-12-15 2018-08-28 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US9816137B2 (en) 2009-12-15 2017-11-14 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US11993814B2 (en) 2009-12-15 2024-05-28 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US9708659B2 (en) 2009-12-15 2017-07-18 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US11970737B2 (en) 2009-12-15 2024-04-30 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US10619203B2 (en) 2009-12-15 2020-04-14 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US9845502B2 (en) 2009-12-15 2017-12-19 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US10662467B2 (en) 2010-04-05 2020-05-26 Prognosys Biosciences, Inc. Spatially encoded biological assays
US10480022B2 (en) 2010-04-05 2019-11-19 Prognosys Biosciences, Inc. Spatially encoded biological assays
US11479809B2 (en) 2011-04-13 2022-10-25 Spatial Transcriptomics Ab Methods of detecting analytes
US11352659B2 (en) 2011-04-13 2022-06-07 Spatial Transcriptomics Ab Methods of detecting analytes
US11788122B2 (en) 2011-04-13 2023-10-17 10X Genomics Sweden Ab Methods of detecting analytes
US11795498B2 (en) 2011-04-13 2023-10-24 10X Genomics Sweden Ab Methods of detecting analytes
US10746648B2 (en) 2011-08-01 2020-08-18 Bio-Rad Laboratories, Inc. Cell capture and method of use
US10436700B1 (en) 2011-08-01 2019-10-08 Celsee Diagnostics, Inc. Cell capture system and method of use
US11237096B2 (en) 2011-08-01 2022-02-01 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US11275015B2 (en) 2011-08-01 2022-03-15 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US10591404B1 (en) 2011-08-01 2020-03-17 Celsee Diagnostics, Inc. Cell capture system and method of use
US11946855B2 (en) 2011-08-01 2024-04-02 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10564090B2 (en) 2011-08-01 2020-02-18 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US11073468B2 (en) 2011-08-01 2021-07-27 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10533936B1 (en) 2011-08-01 2020-01-14 Celsee Diagnostics, Inc. Cell capture system and method of use
US10782226B1 (en) 2011-08-01 2020-09-22 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10481077B1 (en) 2011-08-01 2019-11-19 Celsee Diagnostics, Inc. Cell capture system and method of use
US12066373B2 (en) 2011-08-01 2024-08-20 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US10641700B2 (en) 2011-08-01 2020-05-05 Celsee Diagnostics, Inc. Cell capture system and method of use
US11635365B2 (en) 2011-08-01 2023-04-25 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10416070B1 (en) 2011-08-01 2019-09-17 Celsee Diagnostics, Inc. Cell capture system and method of use
US10794817B1 (en) 2011-08-01 2020-10-06 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10408737B1 (en) 2011-08-01 2019-09-10 Celsee Diagnostics, Inc. Cell capture system and method of use
US11231355B2 (en) 2011-08-01 2022-01-25 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10408736B1 (en) 2011-08-01 2019-09-10 Celsee Diagnostics, Inc. Cell capture system and method of use
US10401277B2 (en) 2011-08-01 2019-09-03 Celsee Diagnostics, Inc. Cell capture system and method of use
US10914672B2 (en) 2011-08-01 2021-02-09 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US12044614B2 (en) 2011-08-01 2024-07-23 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US11300496B2 (en) 2011-08-01 2022-04-12 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10345219B2 (en) 2011-08-01 2019-07-09 Celsee Diagnostics, Inc. Cell capture system and method of use
US10921237B2 (en) 2011-08-01 2021-02-16 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US11634708B2 (en) 2012-02-27 2023-04-25 Becton, Dickinson And Company Compositions and kits for molecular counting
US10941396B2 (en) 2012-02-27 2021-03-09 Becton, Dickinson And Company Compositions and kits for molecular counting
US11078522B2 (en) 2012-08-14 2021-08-03 10X Genomics, Inc. Capsule array devices and methods of use
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752950B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10053723B2 (en) 2012-08-14 2018-08-21 10X Genomics, Inc. Capsule array devices and methods of use
US12037634B2 (en) 2012-08-14 2024-07-16 10X Genomics, Inc. Capsule array devices and methods of use
US9695468B2 (en) 2012-08-14 2017-07-04 10X Genomics, Inc. Methods for droplet-based sample preparation
US9689024B2 (en) 2012-08-14 2017-06-27 10X Genomics, Inc. Methods for droplet-based sample preparation
US10450607B2 (en) 2012-08-14 2019-10-22 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11035002B2 (en) 2012-08-14 2021-06-15 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11441179B2 (en) 2012-08-14 2022-09-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10584381B2 (en) 2012-08-14 2020-03-10 10X Genomics, Inc. Methods and systems for processing polynucleotides
US12098423B2 (en) 2012-08-14 2024-09-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10597718B2 (en) 2012-08-14 2020-03-24 10X Genomics, Inc. Methods and systems for sample processing polynucleotides
US10669583B2 (en) 2012-08-14 2020-06-02 10X Genomics, Inc. Method and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US10626458B2 (en) 2012-08-14 2020-04-21 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11359239B2 (en) 2012-08-14 2022-06-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11021749B2 (en) 2012-08-14 2021-06-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10253364B2 (en) 2012-12-14 2019-04-09 10X Genomics, Inc. Method and systems for processing polynucleotides
US11421274B2 (en) 2012-12-14 2022-08-23 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10612090B2 (en) 2012-12-14 2020-04-07 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9856530B2 (en) 2012-12-14 2018-01-02 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11473138B2 (en) 2012-12-14 2022-10-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10227648B2 (en) 2012-12-14 2019-03-12 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10676789B2 (en) 2012-12-14 2020-06-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11345951B2 (en) 2013-01-26 2022-05-31 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10975422B2 (en) 2013-01-26 2021-04-13 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10718007B2 (en) 2013-01-26 2020-07-21 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US11193121B2 (en) 2013-02-08 2021-12-07 10X Genomics, Inc. Partitioning and processing of analytes and other species
US10150964B2 (en) 2013-02-08 2018-12-11 10X Genomics, Inc. Partitioning and processing of analytes and other species
US9644204B2 (en) 2013-02-08 2017-05-09 10X Genomics, Inc. Partitioning and processing of analytes and other species
US11199532B2 (en) 2013-03-13 2021-12-14 Bio-Rad Laboratories, Inc. System for imaging captured cells
US12030051B2 (en) 2013-03-13 2024-07-09 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10350601B2 (en) 2013-03-13 2019-07-16 Celsee Diagnostics, Inc. System and method for capturing and analyzing cells
US10690650B2 (en) 2013-03-13 2020-06-23 Bio-Rad Laboratories, Inc. System for imaging captured cells
US10509022B2 (en) 2013-03-13 2019-12-17 Celsee Diagnostics, Inc. System for imaging captured cells
US11358147B2 (en) 2013-05-31 2022-06-14 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10512914B2 (en) 2013-05-31 2019-12-24 Celsee Diagnostics, Inc. System for isolating and analyzing cells in a single-cell format
US10851426B2 (en) 2013-05-31 2020-12-01 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US11052396B2 (en) 2013-05-31 2021-07-06 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10449543B2 (en) 2013-05-31 2019-10-22 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10533229B2 (en) 2013-05-31 2020-01-14 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US11821024B2 (en) 2013-06-25 2023-11-21 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
US11753674B2 (en) 2013-06-25 2023-09-12 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
US11359228B2 (en) 2013-06-25 2022-06-14 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
US11618918B2 (en) 2013-06-25 2023-04-04 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
US11286515B2 (en) 2013-06-25 2022-03-29 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
US9567646B2 (en) 2013-08-28 2017-02-14 Cellular Research, Inc. Massively parallel single cell analysis
US10151003B2 (en) 2013-08-28 2018-12-11 Cellular Research, Inc. Massively Parallel single cell analysis
US9598736B2 (en) 2013-08-28 2017-03-21 Cellular Research, Inc. Massively parallel single cell analysis
US10253375B1 (en) 2013-08-28 2019-04-09 Becton, Dickinson And Company Massively parallel single cell analysis
US10208356B1 (en) 2013-08-28 2019-02-19 Becton, Dickinson And Company Massively parallel single cell analysis
US11702706B2 (en) 2013-08-28 2023-07-18 Becton, Dickinson And Company Massively parallel single cell analysis
US11618929B2 (en) 2013-08-28 2023-04-04 Becton, Dickinson And Company Massively parallel single cell analysis
US10954570B2 (en) 2013-08-28 2021-03-23 Becton, Dickinson And Company Massively parallel single cell analysis
US10927419B2 (en) 2013-08-28 2021-02-23 Becton, Dickinson And Company Massively parallel single cell analysis
US9567645B2 (en) 2013-08-28 2017-02-14 Cellular Research, Inc. Massively parallel single cell analysis
US9637799B2 (en) 2013-08-28 2017-05-02 Cellular Research, Inc. Massively parallel single cell analysis
US10131958B1 (en) 2013-08-28 2018-11-20 Cellular Research, Inc. Massively parallel single cell analysis
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US9905005B2 (en) 2013-10-07 2018-02-27 Cellular Research, Inc. Methods and systems for digitally counting features on arrays
US11853389B2 (en) 2013-12-16 2023-12-26 10X Genomics, Inc. Methods and apparatus for sorting data
US11030276B2 (en) 2013-12-16 2021-06-08 10X Genomics, Inc. Methods and apparatus for sorting data
US10150117B2 (en) 2014-04-10 2018-12-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US12005454B2 (en) 2014-04-10 2024-06-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9694361B2 (en) 2014-04-10 2017-07-04 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10343166B2 (en) 2014-04-10 2019-07-09 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10071377B2 (en) 2014-04-10 2018-09-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10344329B2 (en) 2014-06-26 2019-07-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10030267B2 (en) 2014-06-26 2018-07-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11713457B2 (en) 2014-06-26 2023-08-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10760124B2 (en) 2014-06-26 2020-09-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10208343B2 (en) 2014-06-26 2019-02-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10337061B2 (en) 2014-06-26 2019-07-02 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10457986B2 (en) 2014-06-26 2019-10-29 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10041116B2 (en) 2014-06-26 2018-08-07 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10839939B2 (en) 2014-06-26 2020-11-17 10X Genomics, Inc. Processes and systems for nucleic acid sequence assembly
US10480028B2 (en) 2014-06-26 2019-11-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11133084B2 (en) 2014-06-26 2021-09-28 10X Genomics, Inc. Systems and methods for nucleic acid sequence assembly
US10287623B2 (en) 2014-10-29 2019-05-14 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US11135584B2 (en) 2014-11-05 2021-10-05 10X Genomics, Inc. Instrument systems for integrated sample processing
US11414688B2 (en) 2015-01-12 2022-08-16 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10557158B2 (en) 2015-01-12 2020-02-11 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10650912B2 (en) 2015-01-13 2020-05-12 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
US10697010B2 (en) 2015-02-19 2020-06-30 Becton, Dickinson And Company High-throughput single-cell analysis combining proteomic and genomic information
US11098358B2 (en) 2015-02-19 2021-08-24 Becton, Dickinson And Company High-throughput single-cell analysis combining proteomic and genomic information
US10697000B2 (en) 2015-02-24 2020-06-30 10X Genomics, Inc. Partition processing methods and systems
US11603554B2 (en) 2015-02-24 2023-03-14 10X Genomics, Inc. Partition processing methods and systems
US11274343B2 (en) 2015-02-24 2022-03-15 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequence coverage
USRE48913E1 (en) 2015-02-27 2022-02-01 Becton, Dickinson And Company Spatially addressable molecular barcoding
US10002316B2 (en) 2015-02-27 2018-06-19 Cellular Research, Inc. Spatially addressable molecular barcoding
US9727810B2 (en) 2015-02-27 2017-08-08 Cellular Research, Inc. Spatially addressable molecular barcoding
US11535882B2 (en) 2015-03-30 2022-12-27 Becton, Dickinson And Company Methods and compositions for combinatorial barcoding
US11162132B2 (en) 2015-04-10 2021-11-02 Spatial Transcriptomics Ab Spatially distinguished, multiplex nucleic acid analysis of biological specimens
US11613773B2 (en) 2015-04-10 2023-03-28 Spatial Transcriptomics Ab Spatially distinguished, multiplex nucleic acid analysis of biological specimens
US11390912B2 (en) 2015-04-10 2022-07-19 Spatial Transcriptomics Ab Spatially distinguished, multiplex nucleic acid analysis of biological specimens
US11739372B2 (en) 2015-04-10 2023-08-29 Spatial Transcriptomics Ab Spatially distinguished, multiplex nucleic acid analysis of biological specimens
US11299774B2 (en) 2015-04-10 2022-04-12 Spatial Transcriptomics Ab Spatially distinguished, multiplex nucleic acid analysis of biological specimens
US11390914B2 (en) 2015-04-23 2022-07-19 Becton, Dickinson And Company Methods and compositions for whole transcriptome amplification
US11124823B2 (en) 2015-06-01 2021-09-21 Becton, Dickinson And Company Methods for RNA quantification
US9938558B2 (en) 2015-06-25 2018-04-10 Ascus Biosciences, Inc. Methods, apparatuses, and systems for analyzing microorganism strains from complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
US10844419B2 (en) 2015-06-25 2020-11-24 Native Microbials, Inc. Methods, apparatuses, and systems for analyzing microorganism strains from complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
US10851399B2 (en) 2015-06-25 2020-12-01 Native Microbials, Inc. Methods, apparatuses, and systems for microorganism strain analysis of complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
US10870877B2 (en) 2015-06-25 2020-12-22 Native Microbials, Inc. Methods, apparatuses and systems for analyzing microorganism strains from complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
US10619186B2 (en) 2015-09-11 2020-04-14 Cellular Research, Inc. Methods and compositions for library normalization
US11332776B2 (en) 2015-09-11 2022-05-17 Becton, Dickinson And Company Methods and compositions for library normalization
US11098304B2 (en) * 2015-11-04 2021-08-24 Atreca, Inc. Combinatorial sets of nucleic acid barcodes for analysis of nucleic acids associated with single cells
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
US11873528B2 (en) 2015-12-04 2024-01-16 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11624085B2 (en) 2015-12-04 2023-04-11 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11473125B2 (en) 2015-12-04 2022-10-18 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US10448657B2 (en) 2016-01-07 2019-10-22 Ascus Biosciences, Inc. Cow food and methods of husbandry for increased milk production
US10645952B2 (en) 2016-01-07 2020-05-12 Ascus Biosciences, Inc. Microbial compositions and methods of use for improving milk production
US10398154B2 (en) 2016-01-07 2019-09-03 Ascus Biosciences, Inc. Microbial compositions and methods of use for improving milk production
US11910808B2 (en) 2016-01-07 2024-02-27 Native Microbials, Inc. Ruminant compositions
US10966437B2 (en) 2016-01-07 2021-04-06 Native Microbials, Inc. Microbial compositions and methods of use for improving milk production
US11291219B2 (en) 2016-01-07 2022-04-05 Native Microbials, Inc. Microbial compositions and methods of use for improving milk production
US10701955B2 (en) 2016-01-07 2020-07-07 Ascus Biosciences, Inc. Ruminant compositions
US10293006B2 (en) 2016-01-07 2019-05-21 Ascus Biosciences, Inc. Microbial compositions for improving milk production in ruminants
US10448658B2 (en) 2016-01-07 2019-10-22 Ascus Biosciences, Inc. Cow food and methods of husbandry for increased milk production
US11910809B2 (en) 2016-01-07 2024-02-27 Native Microbials, Inc. Microbial compositions and methods of use for improving milk production
WO2017139690A1 (en) * 2016-02-11 2017-08-17 10X Genomics, Inc. Cell population analysis using single nucleotide polymorphisms from single cell transcriptomes
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US12019077B2 (en) 2016-05-02 2024-06-25 Encodia, Inc. Macromolecule analysis employing nucleic acid encoding
US11959922B2 (en) 2016-05-02 2024-04-16 Encodia, Inc. Macromolecule analysis employing nucleic acid encoding
US12019078B2 (en) 2016-05-02 2024-06-25 Encodia, Inc. Macromolecule analysis employing nucleic acid encoding
US10822643B2 (en) 2016-05-02 2020-11-03 Cellular Research, Inc. Accurate molecular barcoding
US11084036B2 (en) 2016-05-13 2021-08-10 10X Genomics, Inc. Microfluidic systems and methods of use
US11845986B2 (en) 2016-05-25 2023-12-19 Becton, Dickinson And Company Normalization of nucleic acid libraries
US10301677B2 (en) 2016-05-25 2019-05-28 Cellular Research, Inc. Normalization of nucleic acid libraries
US11397882B2 (en) 2016-05-26 2022-07-26 Becton, Dickinson And Company Molecular label counting adjustment methods
US11525157B2 (en) 2016-05-31 2022-12-13 Becton, Dickinson And Company Error correction in amplification of samples
US10202641B2 (en) 2016-05-31 2019-02-12 Cellular Research, Inc. Error correction in amplification of samples
US11220685B2 (en) 2016-05-31 2022-01-11 Becton, Dickinson And Company Molecular indexing of internal sequences
US10640763B2 (en) 2016-05-31 2020-05-05 Cellular Research, Inc. Molecular indexing of internal sequences
WO2017218486A1 (en) * 2016-06-14 2017-12-21 Mission Bio, Inc. Methods and compositions for emulsification of solid supports in deformable beads
WO2018017949A1 (en) * 2016-07-22 2018-01-25 Verily Life Sciences Llc Quantitative massively parallel proteomics
US10809266B2 (en) 2016-07-22 2020-10-20 Verily Life Sciences Llc Quantitative massively parallel proteomics
US11467157B2 (en) 2016-09-26 2022-10-11 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11782059B2 (en) 2016-09-26 2023-10-10 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US10338066B2 (en) 2016-09-26 2019-07-02 Cellular Research, Inc. Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11460468B2 (en) 2016-09-26 2022-10-04 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
EP4026905A1 (en) * 2016-10-19 2022-07-13 10X Genomics, Inc. Methods for barcoding nucleic acid molecules from individual cells or cell populations
WO2018075693A1 (en) * 2016-10-19 2018-04-26 10X Genomics, Inc. Methods and systems for barcoding nucleic acid molecules from individual cells or cell populations
US11608497B2 (en) 2016-11-08 2023-03-21 Becton, Dickinson And Company Methods for cell label classification
US11164659B2 (en) 2016-11-08 2021-11-02 Becton, Dickinson And Company Methods for expression profile classification
EP3559265B1 (en) 2016-12-22 2022-04-13 10X Genomics, Inc. Method for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11732302B2 (en) 2016-12-22 2023-08-22 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10793905B2 (en) 2016-12-22 2020-10-06 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP4043582A1 (en) 2016-12-22 2022-08-17 10X Genomics, Inc. Methods and systems for processing polynucleotides
CN113801916A (en) * 2016-12-22 2021-12-17 10X基因组学有限公司 Methods and systems for processing polynucleotides
EP3978622A1 (en) 2016-12-22 2022-04-06 10X Genomics, Inc. Composition for processing polynucleotides
WO2018119447A2 (en) 2016-12-22 2018-06-28 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323278B2 (en) 2016-12-22 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP3896171A1 (en) 2016-12-22 2021-10-20 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11180805B2 (en) 2016-12-22 2021-11-23 10X Genomics, Inc Methods and systems for processing polynucleotides
CN110214193A (en) * 2016-12-22 2019-09-06 10X基因组学有限公司 For processing the method and system of polynucleotides
US10858702B2 (en) 2016-12-22 2020-12-08 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP3913067A1 (en) 2016-12-22 2021-11-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11248267B2 (en) 2016-12-22 2022-02-15 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP3559265A4 (en) * 2016-12-22 2020-07-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10480029B2 (en) 2016-12-22 2019-11-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US12110549B2 (en) 2016-12-22 2024-10-08 10X Genomics, Inc. Methods and systems for processing polynucleotides
US12084716B2 (en) 2016-12-22 2024-09-10 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10954562B2 (en) 2016-12-22 2021-03-23 10X Genomics, Inc. Methods and systems for processing polynucleotides
US12084714B2 (en) 2016-12-23 2024-09-10 Cs Genetics Limited Reagents and methods for molecular barcoding of nucleic acids of single cells
EP4265723A3 (en) * 2016-12-23 2024-01-10 CS Genetics Limited Reagents and methods for molecular barcoding of nucleic acids of single cells
WO2018115852A1 (en) * 2016-12-23 2018-06-28 Cs Genetics Limited Reagents and methods for molecular barcoding of nucleic acids of single cells
EP3957744A1 (en) * 2016-12-23 2022-02-23 CS Genetics Limited Reagents and methods for molecular barcoding of nucleic acids of single cells
US11845924B1 (en) 2016-12-23 2023-12-19 Cs Genetics Limited Methods of preparing nucleic acid samples for sequencing
US12018313B2 (en) 2016-12-28 2024-06-25 Native Microbials, Inc. Methods, apparatuses, and systems for microorganism strain analysis of complex heterogeneous communities with tracer analytics, determination of functional relationships and interactions thereof, and synthesis of microbial ensembles
US11891647B2 (en) 2016-12-28 2024-02-06 Native Microbials, Inc. Methods, apparatuses, and systems for analyzing complete microorganism strains in complex heterogeneous communities, determining functional relationships and interactions thereof, and identifying and synthesizing bioreactive modificators based thereon
US10722880B2 (en) 2017-01-13 2020-07-28 Cellular Research, Inc. Hydrophilic coating of fluidic channels
WO2018134907A1 (en) * 2017-01-18 2018-07-26 株式会社日立ハイテクノロジーズ Device and method for extracting multiple biomolecules from single cell
US11193122B2 (en) 2017-01-30 2021-12-07 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
EP4029939A1 (en) 2017-01-30 2022-07-20 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
CN110214186A (en) * 2017-01-30 2019-09-06 10X基因组学有限公司 Method and system for the unicellular bar coding based on droplet
EP4310183A2 (en) 2017-01-30 2024-01-24 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
WO2018140966A1 (en) 2017-01-30 2018-08-02 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10428326B2 (en) 2017-01-30 2019-10-01 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US11319583B2 (en) 2017-02-01 2022-05-03 Becton, Dickinson And Company Selective amplification using blocking oligonucleotides
EP3583214A4 (en) * 2017-02-02 2020-12-23 New York Genome Center, Inc. Methods and compositions for identifying or quantifying targets in a biological sample
WO2018144813A1 (en) * 2017-02-02 2018-08-09 New York Genome Center Methods and compositions for identifying or quantifying targets in a biological sample
EP4324931A3 (en) * 2017-02-02 2024-05-29 New York Genome Center, Inc. Methods and compositions for identifying or quantifying targets in a biological sample
US12071656B2 (en) 2017-02-02 2024-08-27 New York Genome Center, Inc. Methods and compositions for identifying or quantifying targets in a biological sample
CN110475864A (en) * 2017-02-02 2019-11-19 纽约基因组研究中心公司 For identification or the method and composition of quantization target in the biological sample
CN110475864B (en) * 2017-02-02 2024-01-12 纽约基因组研究中心公司 Methods and compositions for identifying or quantifying targets in biological samples
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US11954614B2 (en) 2017-02-08 2024-04-09 10X Genomics, Inc. Systems and methods for visualizing a pattern in a dataset
US10347365B2 (en) 2017-02-08 2019-07-09 10X Genomics, Inc. Systems and methods for visualizing a pattern in a dataset
US12054764B2 (en) * 2017-04-14 2024-08-06 The Broad Institute, Inc. High-throughput screens for exploring biological functions of microscale biological systems
EP4375376A2 (en) 2017-04-26 2024-05-29 10X Genomics, Inc. Mmlv reverse transcriptase variants
WO2018200867A1 (en) 2017-04-26 2018-11-01 10X Genomics, Inc. Mmlv reverse transcriptase variants
US11871767B2 (en) 2017-04-28 2024-01-16 Native Microbials, Inc. Microbial compositions and methods for ruminant health and performance
US11044924B2 (en) 2017-04-28 2021-06-29 Native Microbials, Inc. Methods for supporting grain intensive and or energy intensive diets in ruminants by administration of a synthetic bioensemble of microbes or purified strains therefor
US12123878B2 (en) 2017-05-02 2024-10-22 Encodia, Inc. Macromolecule analysis employing nucleic acid encoding
CN111148846A (en) * 2017-05-05 2020-05-12 西比欧生物科学公司 Method for capturing and barcoding discrete biological units in hydrogels
JP2020518292A (en) * 2017-05-05 2020-06-25 スキピオ バイオサイエンス Method for capturing and barcoding individual biological units in hydrogels
WO2018203141A1 (en) 2017-05-05 2018-11-08 Scipio Bioscience Methods for trapping and barcoding discrete biological units in hydrogel
EP4345159A2 (en) 2017-05-05 2024-04-03 Scipio Bioscience Methods for trapping and barcoding discrete biological units in hydrogel
JP7197567B2 (en) 2017-05-05 2022-12-27 スキピオ バイオサイエンス Methods for Capturing and Barcoding Discrete Biological Units in Hydrogels
EP4435113A1 (en) 2017-05-18 2024-09-25 10x Genomics, Inc. Methods and systems for sorting droplets and beads
EP4215616A1 (en) 2017-05-18 2023-07-26 10X Genomics, Inc. Methods and systems for sorting droplets and beads
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
WO2018213643A1 (en) 2017-05-18 2018-11-22 10X Genomics, Inc. Methods and systems for sorting droplets and beads
US11660601B2 (en) 2017-05-18 2023-05-30 10X Genomics, Inc. Methods for sorting particles
US11898206B2 (en) 2017-05-19 2024-02-13 10X Genomics, Inc. Systems and methods for clonotype screening
JP2020523034A (en) * 2017-05-26 2020-08-06 アブビトロ リミテッド ライアビリティ カンパニー High-throughput polynucleotide library sequencing and transcriptome analysis
EP4230746A2 (en) 2017-05-26 2023-08-23 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10927370B2 (en) 2017-05-26 2021-02-23 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11155810B2 (en) 2017-05-26 2021-10-26 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10844372B2 (en) 2017-05-26 2020-11-24 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
KR102550778B1 (en) * 2017-05-26 2023-07-03 에이비비트로 엘엘씨 High-throughput polynucleotide library sequencing and transcriptome analysis
US12049667B2 (en) * 2017-05-26 2024-07-30 Abvitro Llc High-throughput polynucleotide library sequencing and transcriptome analysis
WO2018218226A1 (en) * 2017-05-26 2018-11-29 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11773389B2 (en) 2017-05-26 2023-10-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11198866B2 (en) 2017-05-26 2021-12-14 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
CN109526228A (en) * 2017-05-26 2019-03-26 10X基因组学有限公司 The chromatinic single cell analysis of transposase accessibility
JP7308187B2 (en) 2017-05-26 2023-07-13 アブビトロ リミテッド ライアビリティ カンパニー High-throughput polynucleotide library sequencing and transcriptome analysis methods
KR20200039623A (en) * 2017-05-26 2020-04-16 에이비비트로 엘엘씨 High-throughput polynucleotide library sequencing and transcript analysis
WO2018222548A1 (en) * 2017-05-29 2018-12-06 President And Fellows Of Harvard College A method of amplifying single cell transcriptome
US12084712B2 (en) 2017-06-05 2024-09-10 Becton, Dickinson And Company Sample indexing for single cells
JP2020522262A (en) * 2017-06-05 2020-07-30 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Sample index addition for single cells
JP7536450B2 (en) 2017-06-05 2024-08-20 ベクトン・ディキンソン・アンド・カンパニー Single cell sample indexing
US10676779B2 (en) 2017-06-05 2020-06-09 Becton, Dickinson And Company Sample indexing for single cells
EP4345172A3 (en) * 2017-06-05 2024-07-03 Becton, Dickinson and Company Sample indexing for single cells
US10669570B2 (en) 2017-06-05 2020-06-02 Becton, Dickinson And Company Sample indexing for single cells
WO2018236615A1 (en) 2017-06-20 2018-12-27 10X Genomics, Inc. Methods and systems for improved droplet stabilization
WO2019028166A1 (en) * 2017-08-01 2019-02-07 Illumina, Inc. Hydrogel beads for nucleotide sequencing
US20220411859A1 (en) * 2017-08-01 2022-12-29 Illumina, Inc. Hydrogel beads for nucleotide sequencing
CN111094585A (en) * 2017-08-01 2020-05-01 伊鲁米纳公司 Hydrogel beads for nucleotide sequencing
CN107222286A (en) * 2017-08-09 2017-09-29 无锡北斗星通信息科技有限公司 A kind of method of network directional shielding
US10583440B2 (en) 2017-08-22 2020-03-10 10X Genomics, Inc. Method of producing emulsions
US11565263B2 (en) 2017-08-22 2023-01-31 10X Genomics, Inc. Droplet forming devices and system with differential surface properties
US10357771B2 (en) 2017-08-22 2019-07-23 10X Genomics, Inc. Method of producing emulsions
US10610865B2 (en) 2017-08-22 2020-04-07 10X Genomics, Inc. Droplet forming devices and system with differential surface properties
US10549279B2 (en) 2017-08-22 2020-02-04 10X Genomics, Inc. Devices having a plurality of droplet formation regions
US10898900B2 (en) 2017-08-22 2021-01-26 10X Genomics, Inc. Method of producing emulsions
US10766032B2 (en) 2017-08-22 2020-09-08 10X Genomics, Inc. Devices having a plurality of droplet formation regions
US10821442B2 (en) 2017-08-22 2020-11-03 10X Genomics, Inc. Devices, systems, and kits for forming droplets
US11865542B2 (en) 2017-08-29 2024-01-09 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10391492B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10391493B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US11358146B2 (en) 2017-08-29 2022-06-14 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10821440B2 (en) 2017-08-29 2020-11-03 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11504714B2 (en) 2017-08-29 2022-11-22 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11441172B2 (en) 2017-10-04 2022-09-13 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2019071039A1 (en) 2017-10-04 2019-04-11 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US11884964B2 (en) 2017-10-04 2024-01-30 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10501739B2 (en) * 2017-10-18 2019-12-10 Mission Bio, Inc. Method, systems and apparatus for single cell analysis
US11781129B2 (en) * 2017-10-18 2023-10-10 Mission Bio, Inc. Method, systems and apparatus for single cell analysis
US11725231B2 (en) 2017-10-26 2023-08-15 10X Genomics, Inc. Methods and systems for nucleic acid preparation and chromatin analysis
WO2019084328A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods for preparing nucleic acid molecules
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Microfluidic channel networks for partitioning
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods and systems for nuclecic acid preparation and chromatin analysis
US11833515B2 (en) 2017-10-26 2023-12-05 10X Genomics, Inc. Microfluidic channel networks for partitioning
US11584954B2 (en) 2017-10-27 2023-02-21 10X Genomics, Inc. Methods and systems for sample preparation and analysis
EP4241882A2 (en) 2017-10-27 2023-09-13 10X Genomics, Inc. Methods for sample preparation and analysis
WO2019084165A1 (en) 2017-10-27 2019-05-02 10X Genomics, Inc. Methods and systems for sample preparation and analysis
US11513126B2 (en) 2017-10-31 2022-11-29 Encodia, Inc. Kits for analysis using nucleic acid encoding and/or label
US11782062B2 (en) 2017-10-31 2023-10-10 Encodia, Inc. Kits for analysis using nucleic acid encoding and/or label
US10876147B2 (en) 2017-11-15 2020-12-29 10X Genomics, Inc. Functionalized gel beads
US11884962B2 (en) 2017-11-15 2024-01-30 10X Genomics, Inc. Functionalized gel beads
WO2019099751A1 (en) 2017-11-15 2019-05-23 10X Genomics, Inc. Functionalized gel beads
US10745742B2 (en) 2017-11-15 2020-08-18 10X Genomics, Inc. Functionalized gel beads
EP3954782A1 (en) 2017-11-15 2022-02-16 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019099908A1 (en) 2017-11-17 2019-05-23 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
EP4212629A1 (en) 2017-11-17 2023-07-19 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US11365438B2 (en) 2017-11-30 2022-06-21 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019113235A1 (en) 2017-12-06 2019-06-13 10X Genomics, Inc. Methods and systems for processing nucleic acid molecules
EP4403644A2 (en) 2017-12-08 2024-07-24 10X Genomics, Inc. Methods and compositions for labeling cells
EP3919626A1 (en) 2017-12-08 2021-12-08 10X Genomics, Inc. Methods and compositions for labeling cells
US20190177800A1 (en) * 2017-12-08 2019-06-13 10X Genomics, Inc. Methods and compositions for labeling cells
CN111699388A (en) * 2017-12-12 2020-09-22 10X基因组学有限公司 Systems and methods for single cell processing
WO2019118355A1 (en) 2017-12-12 2019-06-20 10X Genomics, Inc. Systems and methods for single cell processing
US20200378961A1 (en) * 2017-12-12 2020-12-03 10X Genomics, Inc. Systems and methods for single cell processing
US11946095B2 (en) 2017-12-19 2024-04-02 Becton, Dickinson And Company Particles associated with oligonucleotides
WO2019126789A1 (en) 2017-12-22 2019-06-27 10X Genomics, Inc. Systems and methods for processing nucleic acid molecules from one or more cells
US12104200B2 (en) 2017-12-22 2024-10-01 10X Genomics, Inc Systems and methods for processing nucleic acid molecules from one or more cells
WO2019148042A1 (en) 2018-01-26 2019-08-01 10X Genomics, Inc. Compositions and methods for sample processing
EP4299755A2 (en) 2018-02-05 2024-01-03 The Board of Trustees of the Leland Stanford Junior University Systems and methods for multiplexed measurements in single and ensemble cells
US11739440B2 (en) 2018-02-12 2023-08-29 10X Genomics, Inc. Methods and systems for analysis of chromatin
US11002731B2 (en) 2018-02-12 2021-05-11 10X Genomics, Inc. Methods and systems for antigen screening
US11255847B2 (en) 2018-02-12 2022-02-22 10X Genomics, Inc. Methods and systems for analysis of cell lineage
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
US10816543B2 (en) 2018-02-12 2020-10-27 10X Genomics, Inc. Methods and systems for analysis of major histocompatability complex
US10725027B2 (en) 2018-02-12 2020-07-28 10X Genomics, Inc. Methods and systems for analysis of chromatin
US12049712B2 (en) 2018-02-12 2024-07-30 10X Genomics, Inc. Methods and systems for analysis of chromatin
US11131664B2 (en) 2018-02-12 2021-09-28 10X Genomics, Inc. Methods and systems for macromolecule labeling
US10928386B2 (en) 2018-02-12 2021-02-23 10X Genomics, Inc. Methods and systems for characterizing multiple analytes from individual cells or cell populations
US11180752B2 (en) 2018-02-13 2021-11-23 Illumina, Inc. DNA sequencing using hydrogel beads
US12092635B2 (en) 2018-02-22 2024-09-17 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
WO2021041974A1 (en) 2018-02-22 2021-03-04 10X Genomics, Inc. Ligation mediated analysis of nucleic acids
US11852628B2 (en) 2018-02-22 2023-12-26 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
WO2019165318A1 (en) 2018-02-22 2019-08-29 10X Genomics, Inc. Ligation mediated analysis of nucleic acids
US20240044877A1 (en) * 2018-02-22 2024-02-08 10X Genomics, Inc. Systems and methods for sample analysis
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
WO2019169028A1 (en) 2018-02-28 2019-09-06 10X Genomics, Inc. Transcriptome sequencing through random ligation
US12054773B2 (en) 2018-02-28 2024-08-06 10X Genomics, Inc. Transcriptome sequencing through random ligation
US20210047677A1 (en) * 2018-03-28 2021-02-18 10X Genomics, Inc. Nucleic acid enrichment within partitions
WO2019191321A1 (en) 2018-03-28 2019-10-03 10X Genomics, Inc. Nucleic acid enrichment within partitions
CN112262218A (en) * 2018-04-06 2021-01-22 10X基因组学有限公司 System and method for quality control in single cell processing
WO2019195166A1 (en) 2018-04-06 2019-10-10 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11155881B2 (en) 2018-04-06 2021-10-26 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11359226B2 (en) 2018-04-20 2022-06-14 Illumina, Inc. Contiguity particle formation and methods of use
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
US11365409B2 (en) 2018-05-03 2022-06-21 Becton, Dickinson And Company Molecular barcoding on opposite transcript ends
US12049621B2 (en) 2018-05-10 2024-07-30 10X Genomics, Inc. Methods and systems for molecular composition generation
WO2019217758A1 (en) 2018-05-10 2019-11-14 10X Genomics, Inc. Methods and systems for molecular library generation
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US12117378B2 (en) 2018-06-25 2024-10-15 10X Genomics, Inc. Methods and systems for cell and bead processing
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
WO2020005991A1 (en) 2018-06-25 2020-01-02 10X Genomics, Inc. Methods and systems for cell and bead processing
WO2020023931A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US11873530B1 (en) 2018-07-27 2024-01-16 10X Genomics, Inc. Systems and methods for metabolome analysis
WO2020028882A1 (en) 2018-08-03 2020-02-06 10X Genomics, Inc. Methods and systems to minimize barcode exchange
WO2020041148A1 (en) 2018-08-20 2020-02-27 10X Genomics, Inc. Methods and systems for detection of protein-dna interactions using proximity ligation
US12065688B2 (en) 2018-08-20 2024-08-20 10X Genomics, Inc. Compositions and methods for cellular processing
WO2020047004A2 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Methods of generating an array
WO2020047005A1 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Resolving spatial arrays
WO2020047007A2 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Methods for generating spatially barcoded arrays
WO2020047002A1 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic dna in a biological sample
WO2020047010A2 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Increasing spatial array resolution
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
US11608524B1 (en) * 2018-10-25 2023-03-21 Wisconsin Alumni Research Foundation Methods of analyzing cells
EP3870704A4 (en) * 2018-10-25 2023-01-11 Illumina, Inc. Methods and compositions for identifying ligands on arrays using indexes and barcodes
US11085036B2 (en) 2018-10-26 2021-08-10 Illumina, Inc. Modulating polymer beads for DNA processing
US11999945B2 (en) 2018-10-26 2024-06-04 Illumina, Inc. Modulating polymer beads for DNA processing
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
US11636921B2 (en) 2018-11-27 2023-04-25 10X Genomics, Inc. Systems and methods for inferring cell status
WO2020113079A1 (en) 2018-11-27 2020-06-04 10X Genomics, Inc. Systems and methods for inferring cell status
US11933957B1 (en) 2018-12-10 2024-03-19 10X Genomics, Inc. Imaging system hardware
WO2020123320A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Imaging system hardware
WO2020123301A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Generating spatial arrays with gradients
WO2020123309A1 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Resolving spatial arrays by proximity-based deconvolution
WO2020123305A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Generating capture probes for spatial analysis
WO2020123319A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Methods of using master / copy arrays for spatial detection
WO2020123311A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Resolving spatial arrays using deconvolution
WO2020123316A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Methods for determining a location of a biological analyte in a biological sample
WO2020123317A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc Three-dimensional spatial analysis
WO2020123318A1 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Resolving spatial arrays using deconvolution
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US12024741B2 (en) 2018-12-10 2024-07-02 10X Genomics, Inc. Imaging system hardware
CN113767177A (en) * 2018-12-10 2021-12-07 10X基因组学有限公司 Generating capture probes for spatial analysis
US11492660B2 (en) 2018-12-13 2022-11-08 Becton, Dickinson And Company Selective extension in single cell whole transcriptome analysis
US11358137B2 (en) 2018-12-26 2022-06-14 Industrial Technology Research Institute Tubular structure for producing droplets and method for producing droplets
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
WO2020142779A1 (en) 2019-01-06 2020-07-09 10X Genomics, Inc. Methods and systems for enrichment of barcodes
US11753675B2 (en) 2019-01-06 2023-09-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
US11371076B2 (en) 2019-01-16 2022-06-28 Becton, Dickinson And Company Polymerase chain reaction normalization through primer titration
US11661631B2 (en) 2019-01-23 2023-05-30 Becton, Dickinson And Company Oligonucleotides associated with antibodies
US11584953B2 (en) 2019-02-12 2023-02-21 10X Genomics, Inc. Methods for processing nucleic acid molecules
WO2020168013A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
WO2020167866A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transposon loading
WO2020167862A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transfer of reagents between droplets
US12071617B2 (en) 2019-02-14 2024-08-27 Becton, Dickinson And Company Hybrid targeted and whole transcriptome amplification
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
WO2020176788A1 (en) 2019-02-28 2020-09-03 10X Genomics, Inc. Profiling of biological analytes with spatially barcoded oligonucleotide arrays
US11920183B2 (en) 2019-03-11 2024-03-05 10X Genomics, Inc. Systems and methods for processing optically tagged beads
WO2020185791A1 (en) 2019-03-11 2020-09-17 10X Genomics, Inc. Systems and methods for processing optically tagged beads
WO2020190509A1 (en) 2019-03-15 2020-09-24 10X Genomics, Inc. Methods for using spatial arrays for single cell sequencing
WO2020198071A1 (en) 2019-03-22 2020-10-01 10X Genomics, Inc. Three-dimensional spatial analysis
WO2020198532A1 (en) 2019-03-27 2020-10-01 10X Genomics, Inc. Systems and methods for processing rna from cells
WO2020206174A1 (en) 2019-04-03 2020-10-08 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10947581B2 (en) 2019-04-16 2021-03-16 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US11866766B2 (en) 2019-04-16 2024-01-09 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US10633693B1 (en) 2019-04-16 2020-04-28 Celsee Diagnostics, Inc. System and method for leakage control in a particle capture system
US11814671B2 (en) 2019-04-16 2023-11-14 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US11965208B2 (en) 2019-04-19 2024-04-23 Becton, Dickinson And Company Methods of associating phenotypical data and single cell sequencing data
US11634709B2 (en) 2019-04-30 2023-04-25 Encodia, Inc. Methods for preparing analytes and related kits
US11578322B2 (en) 2019-05-07 2023-02-14 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11833507B2 (en) 2019-05-07 2023-12-05 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US10900032B2 (en) 2019-05-07 2021-01-26 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US11365441B2 (en) 2019-05-22 2022-06-21 Mission Bio, Inc. Method and apparatus for simultaneous targeted sequencing of DNA, RNA and protein
US11965213B2 (en) 2019-05-30 2024-04-23 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
WO2020243579A1 (en) 2019-05-30 2020-12-03 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
US12131805B2 (en) 2019-05-31 2024-10-29 10X Genomics, Inc. Sequencing methods
US11724256B2 (en) 2019-06-14 2023-08-15 Bio-Rad Laboratories, Inc. System and method for automated single cell processing and analyses
US11667954B2 (en) 2019-07-01 2023-06-06 Mission Bio, Inc. Method and apparatus to normalize quantitative readouts in single-cell experiments
EP3998338A4 (en) * 2019-07-11 2022-09-14 Tokyo University of Science Foundation Method for amplifying nucleic acid using solid-phase carrier
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
WO2021046475A1 (en) 2019-09-06 2021-03-11 10X Genomics, Inc. Systems and methods for barcoding cells and cell beads
WO2021055864A1 (en) * 2019-09-20 2021-03-25 Illumina, Inc. Methods and compositions for identifying ligands on arrays using indexes and barcodes
US11514575B2 (en) 2019-10-01 2022-11-29 10X Genomics, Inc. Systems and methods for identifying morphological patterns in tissue samples
US11123735B2 (en) 2019-10-10 2021-09-21 1859, Inc. Methods and systems for microfluidic screening
US11351544B2 (en) 2019-10-10 2022-06-07 1859, Inc. Methods and systems for microfluidic screening
US11247209B2 (en) 2019-10-10 2022-02-15 1859, Inc. Methods and systems for microfluidic screening
US11919000B2 (en) 2019-10-10 2024-03-05 1859, Inc. Methods and systems for microfluidic screening
US11351543B2 (en) 2019-10-10 2022-06-07 1859, Inc. Methods and systems for microfluidic screening
WO2021072314A1 (en) 2019-10-11 2021-04-15 10X Genomics, Inc. Methods for analyte detection and analysis
EP4194855A1 (en) 2019-10-11 2023-06-14 10X Genomics, Inc. Methods for analyte detection and analysis
US11592447B2 (en) 2019-11-08 2023-02-28 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
WO2021091611A1 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
US11808769B2 (en) 2019-11-08 2023-11-07 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
US11773436B2 (en) 2019-11-08 2023-10-03 Becton, Dickinson And Company Using random priming to obtain full-length V(D)J information for immune repertoire sequencing
WO2021097255A1 (en) 2019-11-13 2021-05-20 10X Genomics, Inc. Generating capture probes for spatial analysis
US11932882B2 (en) 2019-12-11 2024-03-19 10X Genomics, Inc. Reverse transcriptase variants
US11560593B2 (en) 2019-12-23 2023-01-24 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
US11981965B2 (en) 2019-12-23 2024-05-14 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
US11332790B2 (en) 2019-12-23 2022-05-17 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
US12117439B2 (en) 2019-12-23 2024-10-15 10X Genomics, Inc. Compositions and methods for using fixed biological samples
WO2021133842A1 (en) 2019-12-23 2021-07-01 10X Genomics, Inc. Compositions and methods for using fixed biological samples in partition-based assays
US11505828B2 (en) 2019-12-23 2022-11-22 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
US11795507B2 (en) 2019-12-23 2023-10-24 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
WO2021133845A1 (en) 2019-12-23 2021-07-01 10X Genomics, Inc. Reversible fixing reagents and methods of use thereof
US11649497B2 (en) 2020-01-13 2023-05-16 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and RNA
EP4090466A4 (en) * 2020-01-13 2024-01-17 Fluent Biosciences Inc. Methods and systems for single cell gene profiling
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
US12076701B2 (en) 2020-01-31 2024-09-03 10X Genomics, Inc. Capturing oligonucleotides in spatial transcriptomics
US12112833B2 (en) 2020-02-04 2024-10-08 10X Genomics, Inc. Systems and methods for index hopping filtering
WO2021163611A1 (en) 2020-02-13 2021-08-19 10X Genomics, Inc. Methods for characterizing cells using gene expression and chromatin accessibility
WO2021163630A1 (en) 2020-02-13 2021-08-19 10X Genomics, Inc. Systems and methods for joint interactive visualization of gene expression and dna chromatin accessibility
WO2021168287A1 (en) 2020-02-21 2021-08-26 10X Genomics, Inc. Methods and compositions for integrated in situ spatial assay
WO2021174051A1 (en) 2020-02-28 2021-09-02 10X Genomics, Inc. Method for isolating nuclei and cells from tissues
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
WO2021207610A1 (en) 2020-04-10 2021-10-14 10X Genomics, Inc. Cold protease treatment method for preparing biological samples
WO2021212042A1 (en) 2020-04-16 2021-10-21 10X Genomics, Inc. Compositions and methods for use with fixed samples
WO2021222301A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for analysis and identification of barcode multiplets
WO2021222302A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for increasing cell recovery efficiency
WO2021226290A1 (en) 2020-05-05 2021-11-11 10X Genomics, Inc. Methods for identification of antigen-binding molecules
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
US11661625B2 (en) 2020-05-14 2023-05-30 Becton, Dickinson And Company Primers for immune repertoire profiling
WO2021247618A1 (en) 2020-06-02 2021-12-09 10X Genomics, Inc. Enrichment of nucleic acid sequences
WO2022006455A1 (en) 2020-07-02 2022-01-06 10X Genomics, Inc. Systems and methods for detection of low-abundance molecular barcodes from a sequencing library
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
WO2022035729A1 (en) 2020-08-10 2022-02-17 Dimensiongen Devices and methods for multi-dimensional genome analysis
WO2022066760A1 (en) 2020-09-23 2022-03-31 10X Genomics, Inc. Selective enzymatic gelation
EP4410956A2 (en) 2020-09-23 2024-08-07 10X Genomics, Inc. Selective enzymatic gelation
WO2022076912A1 (en) 2020-10-09 2022-04-14 10X Genomics, Inc. Methods and compositions for analyzing antigen binding molecules
WO2022076914A1 (en) 2020-10-09 2022-04-14 10X Genomics, Inc. Methods and compositions for profiling immune repertoire
WO2022081643A2 (en) 2020-10-13 2022-04-21 10X Genomics, Inc. Compositions and methods for generating recombinant antigen binding molecules from single cells
US12084715B1 (en) 2020-11-05 2024-09-10 10X Genomics, Inc. Methods and systems for reducing artifactual antisense products
WO2022103712A1 (en) 2020-11-13 2022-05-19 10X Genomics, Inc. Nano-partitions (encapsulated nucleic acid processing enzymes) for cell-lysis and multiple reactions in partition-based assays
US11739443B2 (en) 2020-11-20 2023-08-29 Becton, Dickinson And Company Profiling of highly expressed and lowly expressed proteins
WO2022147296A1 (en) 2020-12-30 2022-07-07 10X Genomics, Inc. Cleavage of capture probes for spatial analysis
WO2022150662A1 (en) 2021-01-08 2022-07-14 10X Genomics, Inc. Methods for generating antigen-binding molecules from single cells
WO2022178304A1 (en) 2021-02-19 2022-08-25 10X Genomics, Inc. High-throughput methods for analyzing and affinity-maturing an antigen-binding molecule
WO2022182682A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
WO2022182662A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Compositions and methods for mapping antigen-binding molecule affinity to antigen regions of interest
US11952626B2 (en) 2021-02-23 2024-04-09 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
WO2022182664A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. A method for epitope binning of novel monoclonal antibodies
WO2022182672A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Single cell glycan profiling
WO2022182785A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Drug screening methods
WO2022221428A1 (en) 2021-04-14 2022-10-20 10X Genomics, Inc. Compositions and methods for single cell analyte detection and analysis
CN114958996A (en) * 2021-05-12 2022-08-30 浙江大学 Ultrahigh-flux single-cell sequencing reagent combination
WO2022256313A1 (en) 2021-06-01 2022-12-08 10X Genomics, Inc. Validation of a unique molecular identifier associated with a nucleic acid sequence of interest
WO2022256345A1 (en) 2021-06-01 2022-12-08 10X Genomics, Inc. Methods and systems for engineering antibodies, and antigen-binding fragments thereof, to have altered characteristics
WO2022265965A1 (en) 2021-06-14 2022-12-22 10X Genomics, Inc. Reverse transcriptase variants for improved performance
WO2022271908A1 (en) 2021-06-23 2022-12-29 10X Genomics, Inc. Chop-fix method and chopping device for preparing biological samples
WO2023009988A1 (en) 2021-07-26 2023-02-02 10X Genomics, Inc. Nucleic acid processing via circularization
WO2023022925A1 (en) 2021-08-17 2023-02-23 10X Genomics, Inc. Compositions, systems and methods for enzyme optimization
WO2023060110A1 (en) 2021-10-05 2023-04-13 10X Genomics, Inc. Methods of immune cell analysis
WO2023059646A1 (en) 2021-10-06 2023-04-13 10X Genomics, Inc. Systems and methods for evaluating biological samples
WO2023086824A1 (en) 2021-11-10 2023-05-19 10X Genomics, Inc. Methods for identification of antigen-binding molecules
WO2023114203A1 (en) 2021-12-13 2023-06-22 Cornell University Genotyping of targeted loci with single-cell chromatin accessibility
WO2023114310A1 (en) 2021-12-15 2023-06-22 10X Genomics, Inc. Methods for improving sensitivity of immune profiling using oligo-tagged antigens
WO2023114473A2 (en) 2021-12-16 2023-06-22 10X Genomics, Inc. Recombinant reverse transcriptase variants for improved performance
WO2023201235A2 (en) 2022-04-12 2023-10-19 10X Genomics, Inc. Compositions and methods for generating and characterizing recombinant antigen binding molecules
WO2023212532A1 (en) 2022-04-26 2023-11-02 10X Genomics, Inc. Systems and methods for evaluating biological samples
WO2023214353A1 (en) 2022-05-03 2023-11-09 Scipio Bioscience Method of complexing biological units with particles
EP4272764A1 (en) 2022-05-03 2023-11-08 Scipio Bioscience Method of complexing biological units with particles
WO2023215612A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Analysis of antigen and antigen receptor interactions
WO2023215861A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Reagents for characterizing antigen-binding molecules from immune cells
WO2023225259A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Compositions and methods for characterizing antigen binding molecules from single cells
WO2023225294A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Improved major histocompatibility complex molecules
WO2023225201A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Compositions and methods for characterizing t cell, or t cell-like, receptors from single cells
WO2023235570A1 (en) 2022-06-03 2023-12-07 10X Genomics, Inc. Methods and compositions for the identification of antigen binding molecules using lipoparticle-based antigen mapping
WO2023235596A1 (en) 2022-06-03 2023-12-07 10X Genomics, Inc. Systems and methods for determining antigen binding specificity of antigen binding molecules
WO2023250422A1 (en) 2022-06-23 2023-12-28 10X Genomics, Inc. Compositions and methods for characterizing multispecific antigen binding molecules from single cells
WO2024006734A1 (en) 2022-06-27 2024-01-04 10X Genomics, Inc. Methods for preparing and using mhc multimer reagents compositions
WO2024006392A1 (en) 2022-06-29 2024-01-04 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
WO2024015378A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Methods and systems for characterizing antigen-binding molecules expressed by immune cells
WO2024015733A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Improved methods and systems for identification and characterization of antigen-binding molecules from single cells
WO2024015862A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Methods for characterization of antigen-binding molecules from biological samples
WO2024015856A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Compositions and methods for characterizing binding characteristics of antigen binding molecules from single cells
US12130291B2 (en) 2022-08-11 2024-10-29 Encodia, Inc. Kits for analysis using nucleic acid encoding and/or label
WO2024044703A1 (en) 2022-08-24 2024-02-29 10X Genomics, Inc. Compositions and methods for antigenic epitope mapping in biological samples
WO2024050299A1 (en) 2022-08-29 2024-03-07 10X Genomics, Inc. Improved methods and compositions for characterization of antigen-binding molecules from single cells
WO2024076908A1 (en) 2022-10-03 2024-04-11 10X Genomics, Inc. Compositions and methods for analyzing genomic insertion sites of exogenous nucleic acids
US12129463B2 (en) 2023-03-22 2024-10-29 Encodia, Inc. Methods and kits using nucleic acid encoding and/or label
US12125260B2 (en) 2023-07-20 2024-10-22 10X Genomics, Inc. Systems and methods for identifying morphological patterns in tissue samples

Also Published As

Publication number Publication date
AU2015279548B2 (en) 2020-02-27
KR20230070325A (en) 2023-05-22
EP3889325A1 (en) 2021-10-06
CN113249435B (en) 2024-09-03
CA2953374A1 (en) 2015-12-30
KR20170020704A (en) 2017-02-23
US20230348897A1 (en) 2023-11-02
JP2021072863A (en) 2021-05-13
MX2016016902A (en) 2017-03-27
JP2017522867A (en) 2017-08-17
WO2015200893A3 (en) 2016-03-17
EP3161160A2 (en) 2017-05-03
CN106795553A (en) 2017-05-31
CN106795553B (en) 2021-06-04
AU2015279548A1 (en) 2017-01-12
JP2023099197A (en) 2023-07-11
JP6838969B2 (en) 2021-03-03
EP3161160A4 (en) 2018-01-10
US20220340968A1 (en) 2022-10-27
EP4053292A1 (en) 2022-09-07
US11629344B2 (en) 2023-04-18
CN113249435A (en) 2021-08-13
WO2015200893A2 (en) 2015-12-30
KR102531677B1 (en) 2023-05-10
US20230087127A1 (en) 2023-03-23
EP3161160B1 (en) 2021-10-13
IL249617A0 (en) 2017-02-28
JP7329552B2 (en) 2023-08-18
US11713457B2 (en) 2023-08-01
WO2015200893A9 (en) 2016-04-21
US20240002837A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US11713457B2 (en) Methods and systems for processing polynucleotides
US11359239B2 (en) Methods and systems for processing polynucleotides
US10457986B2 (en) Methods and systems for processing polynucleotides
US10752949B2 (en) Methods and systems for processing polynucleotides
US10273541B2 (en) Methods and systems for processing polynucleotides

Legal Events

Date Code Title Description
AS Assignment

Owner name: 10X GENOMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HINDSON, BENJAMIN;HINDSON, CHRISTOPHER;SCHNALL-LEVIN, MICHAEL;AND OTHERS;SIGNING DATES FROM 20150705 TO 20150727;REEL/FRAME:036313/0207

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: 10X GENOMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHENG, XINYING;REEL/FRAME:049055/0536

Effective date: 20190424

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION