US20190273659A1 - System and Method for Commissioning Mesh Network-Capable Devices within a Building Automation and Control System - Google Patents
System and Method for Commissioning Mesh Network-Capable Devices within a Building Automation and Control System Download PDFInfo
- Publication number
- US20190273659A1 US20190273659A1 US15/910,338 US201815910338A US2019273659A1 US 20190273659 A1 US20190273659 A1 US 20190273659A1 US 201815910338 A US201815910338 A US 201815910338A US 2019273659 A1 US2019273659 A1 US 2019273659A1
- Authority
- US
- United States
- Prior art keywords
- nodes
- node
- space
- group address
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000012545 processing Methods 0.000 claims description 60
- 230000006870 function Effects 0.000 claims description 48
- 238000013507 mapping Methods 0.000 claims description 8
- 238000013461 design Methods 0.000 abstract description 13
- 238000004891 communication Methods 0.000 description 34
- 230000015654 memory Effects 0.000 description 26
- 230000006855 networking Effects 0.000 description 19
- 230000008569 process Effects 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000036651 mood Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/19—Controlling the light source by remote control via wireless transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/198—Grouping of control procedures or address assignation to light sources
- H05B47/199—Commissioning of light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/198—Grouping of control procedures or address assignation to light sources
- H05B47/1985—Creation of lighting zones or scenes
Definitions
- the present invention relates to building automation and control in general, and, more particularly, to a mesh network commissioning system and method.
- Communication building automation refers to the use of computer and information technology to control commercial building systems, such as lighting, HVAC, audio-visual, smoke detection, security, and shading, among others. Using specialized hardware and control logic, building devices can monitor their environment and can be controlled automatically. Although commercial automation has been available at some level of sophistication for some time, it steadily becomes more practical, both from a technological and cost perspective.
- Lighting automation in particular, has evolved over time.
- Lighting systems now exist in which luminaires that comprise sensors, lamps, and control logic are networked together, in what is sometimes referred to as “connected lighting” or networked “smart lighting.”
- the sensors that are associated with the luminaires collect data about the local environment, such as data related to occupancy and data related to ambient lighting in the vicinity of the luminaires.
- the networked luminaires communicate with each other, in some cases sharing the sensor data, and adjust the light output of the lamps via the control logic, with some level of coordination across the networked luminaires and other types of connected devices that are networked with one another.
- Mesh networks are presently available that enable a plurality of network-capable devices to form a network and share data with one another as a plurality of provisioned mesh-network nodes.
- a mesh network by itself does not address the daunting challenge of installing the hundreds, or thousands, of such devices on each building floor, in regard to how they should behave in the presence of one another.
- an installation technician has to somehow program each device in each building space to behave according to one or more operational scenarios, each of which possibly involving many devices. This is particularly challenging, considering that different building spaces have different devices that can operate according to different scenarios, and that somehow these considerations must be applied to a decentralized system of mesh nodes.
- a commissioning system and method disclosed herein applies a design configuration, for a building automation and control system, to a mesh network (e.g., Bluetooth®, etc.) of network-capable nodes.
- a cloud-based server system works in concert with an installing device, such as a smartphone or tablet executing an installer application, to apply the relevant configuration of scenarios and spaces, as defined in the design configuration during the design phase, to each mesh node in the mesh network.
- the commissioning system of the illustrative embodiment accomplishes this by first transforming the defined scenarios and spaces, which essentially represent a logical configuration of the building automation and control system.
- the commissioning system transforms the defined scenarios and spaces into a network-centric configuration.
- the system decomposes the network-centric configuration into a physical configuration of each mesh node, resulting in a set of parameters for each mesh node.
- the system transmits the set of parameters, including one or more group addresses, to the applicable mesh node, for each affected mesh node in the network.
- the transformation and decomposition operations can be performed by a cloud service's data-processing system, or by the installing device, or by a combination of the two.
- the commissioning system and method of the illustrative embodiment eliminates, or at least greatly reduces, mistakes that are related to the configuring of connected devices.
- a first illustrative method for commissioning a plurality of nodes in a data network comprises: retrieving, by a data-processing system, configuration data from a database, wherein the configuration data represents (i) the placement of each of a plurality of devices in relation to a first space within a building, wherein the first space is user defined in the database, and (ii) a first scenario assigned to the first space; providing, by the data-processing system through an intermediary device, a non-empty set of unicast network addresses to a respective first set of nodes in the plurality of nodes, such that each node in the first set of nodes is configured to regard each respective unicast address as an address that uniquely identifies the node in the data network; receiving, by the data-processing system from the intermediary device, information that maps each node in a subset of the first set of nodes to each respective node in a second set of nodes, wherein the second set of nodes corresponds to at least some of the plurality of devices
- a second illustrative method for commissioning a plurality of nodes in a data network comprises: receiving, by a first device, configuration data in a database from a first server computer, wherein the configuration data represents (i) the placement of each of a plurality of devices in relation to a first space within a building, wherein the first space is user defined in the database, and (ii) a first scenario assigned to the first space; transmitting, by the first device, a non-empty set of unicast network addresses to a respective non-empty first set of nodes in the plurality of nodes, such that each node in the first set of nodes is configured to regard each respective unicast address as an address that uniquely identifies the node in the data network; mapping, by the first device, each node in a subset of the first set of nodes to each respective node in a second set of nodes, wherein the second set of nodes corresponds to at least some of the plurality of devices whose placements are represented in the database; generating,
- FIG. 1 depicts telecommunications system 100 , in accordance with an illustrative embodiment of the present invention.
- FIG. 2 depicts at least some of the nodes within mesh data network 131 in telecommunications system 100 .
- FIG. 3 depicts components of wireless device 122 according to the illustrative embodiment.
- FIG. 4 depicts components of node 201 - m according to the illustrative embodiment.
- FIG. 5 depicts operations of method 500 according to the illustrative embodiment, by which browser device 102 performs various functions that are related to designing an automation and control system for building 200 .
- FIG. 6 depicts salient operations of method 600 according to the commissioning system of the illustrative embodiment, by which various functions are performed related to installing nodes 201 - 1 through 201 -M in mesh network 131 .
- FIG. 7 depicts salient sub-operations within operation 607 , by which data-processing system 111 transforms the scenarios and spaces, as representing a logical configuration, into a network-centric configuration.
- FIG. 8 depicts salient sub-operations within operation 609 , by which data-processing system 111 takes the network-centric configuration obtained in accordance with operation 607 and decomposes it into a physical configuration of each mesh node
- FIG. 9 depicts at least some of the nodes within mesh data network 131 , which participate in a mesh node commissioning process in accordance with the illustrative embodiment.
- FIG. 10 depicts operations of method 1000 according to the illustrative embodiment, by which each mesh node 201 - m performs various functions related to interacting with other nodes in network 131 .
- the phrase “based on” is defined as “being dependent on” in contrast to “being independent of”.
- the value of Y is dependent on the value of X when the value of Y is different for two or more values of X.
- the value of Y is independent of the value of X when the value of Y is the same for all values of X. Being “based on” includes both functions and relations.
- control For the purposes of this specification, the infinitive “to control” and its inflected forms (e.g., “controlling”, “controlled”, etc.) should be given the ordinary and customary meaning that the terms would have to a person of ordinary skill in the art at the time of the invention.
- controller is defined as hardware or hardware and software that perform mathematical and/or logical operations and that control other devices based, at least in part, on the operations performed.
- Lamp is defined as a device for providing illumination, comprising an electric bulb and its holder.
- Luminaire is defined as a lighting unit comprising a lamp and a controller for controlling the lamp.
- Map For the purposes of this specification, the infinitive “to map” and its inflected forms (e.g., “mapping”, “mapped”, etc.) should be given the ordinary and customary meaning that the terms would have to a person of ordinary skill in the art at the time of the invention.
- Network address is defined as a numerical label assigned to each device (e.g., sensor node, actor node, configuring node, etc.) participating in a computer (or data) network.
- IP address Internet Protocol address
- IP address is a numerical label assigned to each device participating in a computer network that uses the Internet Protocol for communication.
- Scenario is defined as a predefined, collective behavior of one or more devices.
- space is defined as a continuous area within a building premises.
- a space is a controllable unit to which one or more scenarios can be applied.
- FIG. 1 depicts telecommunications system 100 , in accordance with the illustrative embodiment of the present invention.
- System 100 comprises: design data-networking system 101 , browser device 102 , cloud server system 111 , server computer 112 , installation data-networking system 121 comprising mesh data network 131 , and wireless device 122 .
- the aforementioned elements are interrelated as shown.
- telecommunications system 100 comprises a collection of links and nodes that enable telecommunication between devices, in well-known fashion.
- telecommunications system 100 comprises the Internet, while in some other embodiments of the present invention, system 100 comprises the Public Switched Telephone Network (PSTN), while in still some other embodiments of the present invention, system 100 comprises a private data network.
- PSTN Public Switched Telephone Network
- system 100 can comprise one or more of the above-mentioned networks and/or other telecommunications networks, without limitation.
- telecommunications system 100 can comprise elements that are capable of wired and/or wireless communication, without limitation.
- Data networking system 101 is a collection of software and hardware that is used by a software application that is executed by browser device 102 , by interacting with cloud server system 111 .
- Networking system 101 comprises one or more computers having non-transitory memory, processing components, and communication components, including browser device 102 .
- Data networking system 101 enables communication between browser device 102 and cloud server system 111 , including server computer 112 .
- networking system 101 comprises one or both of wired Ethernet, and WiFi.
- data networking system 101 can be based on one or more different types of wired and/or wireless network technology standards, in addition to or instead of those mentioned above, such as Bluetooth mesh networking, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, for example and without limitation.
- Bluetooth mesh networking Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, for example and without limitation.
- BLE Bluetooth Low Energy
- Browser device 102 is a personal (desktop) computer executing a web application that is browser-based, in accordance with the illustrative embodiment.
- the web application enables the design of a collection of network-capable devices (e.g., lights, switches, sensors, etc.) prior to an installation process.
- the designer application enables the design of and uploading of floor plans to a building configuration database maintained by server computer 112 , including the defining of spaces on the floor plans. These operations include those depicted in FIG. 5 .
- the designer application also enables the assignment of scenarios to the spaces defined and the fine-tuning of the assigned scenarios (e.g., light levels, timings, scenes, etc.).
- device 102 is a different type of data-processing system, or executes a designer application that is different than a browser-based application, or both.
- Cloud-based server system 111 which is a data-processing system, is a collection of software and hardware that is used to manage the configuration database stored by server computer 112 , by interacting with browser device 102 within data networking system 101 and wireless device 122 within data networking system 121 .
- System 111 is also used to manage user accounts (e.g., designers, installers, contractors, etc.) and projects (e.g., buildings, configurations, etc.).
- System 111 comprises one or more computers having non-transitory memory, processing components, and communication components, including server computer 112 .
- server computer 112 comprises one or more processors, memories, and network interface modules, which are interconnected and interoperate in well-known fashion.
- cloud server system 111 also performs the transformation and decomposition operations described below and in regard to FIGS. 6 through 8 . These operations can be performed by server computer 112 within cloud server system 111 or by a different server computer within system 111 .
- cloud server system 111 performs transformation, but not decomposition, while in some other alternative embodiments, cloud server system 111 performs decomposition, but not transformation, while in still some other alternative embodiments, both transformation and decomposition are performed elsewhere (e.g., by installing device 122 , etc.).
- system 111 comprises one or both of wired Ethernet and WiFi networks.
- system 111 may use a mobile data communication in accordance with a cellular network standard (e.g., 3G, 4G, 5G, LTE, GSM, etc.) to communicate with device 102 and/or device 122 , thereby avoiding usage of the WiFi network of the local premises.
- a cellular network standard e.g., 3G, 4G, 5G, LTE, GSM, etc.
- the data-processing system depicted as cloud-based server system 111 is part of a cloud-based service.
- the data-processing system performing the operations associated with system 111 as described can comprise one or more computing devices that are not part of any cloud-based system and that perform said operations.
- Data networking system 121 is a collection of software and hardware that is used by an installer application that is executed by wireless device 122 , by interacting with cloud server system 111 .
- Networking system 121 comprises one or more computers having non-transitory memory, processing components, and communication components, including wireless device 122 .
- Data networking system 121 enables communication between wireless device 122 and cloud server system 111 , including server computer 112 .
- System 121 further comprises mesh data network 131 , which enables communication amongst wireless device 122 and other devices as described below and in regard to FIG. 2 .
- networking system 121 comprises one or more of wired Ethernet, WiFi, mobile data networks (e.g., 3G, 4G, 5G, LTE, GSM, etc.) and Bluetooth Mesh networks.
- system 121 communicates via one or more other radio telecommunications protocols other than or in addition to those already mentioned, such as, but not limited to, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on.
- Wireless device 122 is illustratively a smartphone with at least packet data capability provided and supported by the network in which it operates, namely data networking system 121 , and that is configured to execute a software application (e.g., an “app”) for installing one or more of the smart devices (e.g., lights, switches, sensors, etc.) in the design described above and in regard to device 102 .
- a software application e.g., an “app”
- the installer application enables the identification of mesh nodes, which are described below and in regard to FIG. 2 , and the communication of their identities over a personal area network (e.g., Bluetooth®, etc.).
- the installer application also enables the distribution and application of design configuration, from server computer 112 to each mesh node.
- Wireless device 122 is described in detail below and in FIG. 3 , and at least some of the operations performed by wireless device 122 described below and in FIG. 6 .
- device 122 is a different type of data-processing system, or executes an installer application that is different than a device-based app, or both.
- wireless device 122 can be referred to by a variety of alternative names such as, while not being limited to, a mobile station, a wireless transmit/receive unit (WTRU), a user equipment (UE), a wireless terminal, a cell phone, or a fixed or mobile subscriber unit.
- WTRU wireless transmit/receive unit
- UE user equipment
- Wireless device 122 can be any other type of device (e.g., a tablet, etc.) that is capable of operating in a wireless network environment, mobility-oriented or otherwise.
- device 122 comprises, or is itself, an Ethernet-to-Bluetooth gateway.
- device 122 is wireless in the sense that it has and it uses a Bluetooth radio on one end of its gateway function, while the other end of the gateway function can interface to Ethernet cable (i.e., a wired interface).
- FIG. 2 depicts at least some of the nodes within mesh data network 131 , in accordance with the illustrative embodiment.
- the depicted nodes are depicted according to how they are situated within building 200 , according to a floor plan, such as one handled by the designer application described earlier.
- Building 200 is equipped with network nodes 201 - 1 through 201 -M, wherein M is a positive integer (e.g., M equal to 18 as depicted, etc.). As depicted in FIG.
- nodes 201 - 1 through 201 - 9 are light fixtures (or “luminaires” and denoted by “L”)
- nodes 201 - 10 through 201 - 14 are switches (denoted by “S”)
- nodes 201 - 15 through 201 - 17 are ambient light sensors (ALS, denoted by “A”)
- node 201 - 18 is an occupancy sensor (denoted by “O”).
- the networked nodes communicate wirelessly with one another via transmitted signals 202 - 1 , 202 - 2 , and so forth. In some alternative embodiments of the present invention, however, one or more of the depicted elements can communicate via wired connections.
- Mesh data network 131 enables communication between wireless device 122 and network nodes 201 - 1 through 201 -M. To this end, the nodes within network 131 distribute data (e.g., the packet-based messages, etc.) in accordance with Bluetooth mesh networking.
- a “mesh network” is a network topology in which each node relays data for the network. The nodes that are involved cooperate in the distribution of data in the network.
- a mesh network can relay messages using either a flooding technique or a routing technique.
- network 131 communicates via one or more other radio telecommunications protocols other than or in addition to Bluetooth mesh networking such as, but not limited to, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on.
- wireless device 122 and at least some network nodes 201 - 1 through 201 -M in some embodiments can be connected directly and non-wirelessly to one other, at least for some purposes and/or for some portion of time, such as through Universal Serial Bus (USB), FireWireTM, or ThunderboltTM, for example and without limitation.
- USB Universal Serial Bus
- FireWireTM FireWireTM
- ThunderboltTM ThunderboltTM
- nodes 201 - 1 through 201 -M constitute an automation and control system—more specifically, a networked lighting system—in a commercial building, such as an office space or a retail space.
- a networked lighting system in a commercial building, such as an office space or a retail space.
- the nodes can also be applied to a different type of building, such as a home, or to include the environment surrounding the building, or to any environment in which automated control can be applied.
- building 200 can be a different type of structure with a roof and walls, or can instead be a defined area that comprises multiple sub-areas (e.g., open space, one or more conference rooms, one or more corridors, one or more closed offices, etc.). At least a portion of the area and/or sub-areas can be defined by something other than a roof and/or walls (e.g., a tent, an outdoor pavilion, a covered parking lot, a stadium or arena, etc.).
- a tent e.g., an outdoor pavilion, a covered parking lot, a stadium or arena, etc.
- the luminaire nodes as well as the nodes in general, can be positioned in any geometry or geometries with respect to one another, provided that each node is within communication range of one or more of the other nodes.
- nodes 201 - 1 through 201 -M are luminaires comprising lamps that provide light to, and serve as light sources for, their environment within building 200 ; also, some of the nodes are switches and sensors for controlling the luminaires.
- the nodes can be devices that are other than luminaires, switches, and sensors.
- one or more of the luminaires can be other types of nodes, such as sound systems or sprinklers, that provide a different type of output than light, such as sound or water.
- Wireless device 122 is a wireless telecommunications terminal that is configured to transmit and/or receive communications wirelessly. It is an apparatus that comprises memory, processing components, telecommunication components, and user interface components (e.g., display, speaker, keyboard, microphone, etc.). Wireless device 122 comprises the hardware and software necessary to be compliant with the protocol standards used in the wireless networks in which it operates and to perform the processes described below and in the accompanying figures. For example and without limitation, wireless device 122 is capable of:
- Each node 201 - m is an apparatus that comprises memory, processing components, and communication components.
- Node 201 - m is configured to transmit signals 202 - m that convey control-related information, such as packet-based messages.
- Node 201 - m is described in detail below and in FIG. 4 .
- FIG. 3 depicts the salient components of wireless device 122 according to the illustrative embodiment.
- Wireless device 122 is also referred to as the “installing device.”
- Wireless device 122 is based on a data-processing apparatus whose hardware platform comprises: controller 303 , memory 304 , and radio communications module 305 , interconnected as shown.
- Controller 303 is a processing device, such as a microcontroller or microprocessor with a controller interface, which are well known in the art. Controller 303 is configured such that, when operating in conjunction with the other components of wireless device 122 , controller 303 executes software, processes data, and telecommunicates according to the operations described herein, including those depicted in FIG. 6 .
- Memory 304 is non-transitory and non-volatile computer storage memory technology that is well known in the art (e.g., flash memory, etc.). Memory 304 is configured to store operating system 311 , application software 312 , and database 313 .
- the operating system is a collection of software that manages, in well-known fashion, wireless device 122 's hardware resources and provides common services for computer programs, such as those that constitute the application software.
- the application software that is executed by controller 303 according to the illustrative embodiment enables wireless device 122 to perform the functions disclosed herein.
- Radio communications module 305 is configured to enable wireless device 122 to telecommunicate with other devices, by receiving signals therefrom and/or transmitting signals thereto via receiver 321 and transmitter 322 , respectively. In order to communicate with devices outside of mesh network 131 , radio communications module 305 communicates in accordance with WiFi or other applicable standard. In order to communicate with other devices within mesh network 131 , module 305 communicates in accordance with Bluetooth mesh networking.
- radio communications module 305 communicates via one or more other radio telecommunications protocols other than or in addition to WiFi and Bluetooth mesh networking, such as, but not limited to, a cellular network standard (e.g., LTE, GSM, etc.), Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on.
- a cellular network standard e.g., LTE, GSM, etc.
- Z-Wave e.g., ZigBee, Thread
- Wi-Fi e.g., Wi-Fi
- BLE Bluetooth Low Energy
- Receiver 321 is a component that enables wireless device 122 to telecommunicate with other components and systems by receiving signals that convey information therefrom. It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than one receiver 321 .
- Transmitter 322 is a component that enables wireless device 122 to telecommunicate with other components and systems by transmitting signals that convey information thereto.
- transmitter 322 is configured to transmit packets comprising the information described below and in FIGS. 6 through 8 . It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than one transmitter 322 .
- wireless device 122 uses radio communications module 305 in order to telecommunicate wirelessly with external devices. It will clear to those skilled in the art, however, after reading the present disclosure, how to make use and use various embodiments of the present invention in which wireless device 122 communicates via a wired protocol (e.g., X10, KNX, etc.) over physical media (e.g., cable, wire, etc.) with one or more external devices, either in addition to or instead of the wireless capability provided by radio communications module 305 .
- a wired protocol e.g., X10, KNX, etc.
- physical media e.g., cable, wire, etc.
- wireless device 122 In generating and transmitting one or more packets that convey a message within mesh network 131 , along with including its own network address as the source address in the message, wireless device 122 is said to originate the message. As described below, wireless device 122 is further capable of forwarding a message that has been originated by a different node.
- FIG. 4 depicts the salient components of node 201 - m according to the illustrative embodiment.
- Node 201 - m is also referred to as the “installed device.”
- Node 201 - m is based on a data-processing apparatus whose hardware platform comprises at least some of: sensor unit 401 - 1 through 401 -J, wherein J is a positive integer, actor unit 402 - 1 through 402 -K, wherein K is a positive integer, controller 403 , memory 404 , and radio communications module 405 , interconnected as shown.
- Each luminaire node 201 - 1 through 201 - 9 includes a sensor unit (e.g., ambient light sensor, occupancy sensor, etc.), a controllable lamp (i.e., an actor unit), and a controller, although some luminaires might not include a sensor unit.
- Each switch node 201 - 10 through 201 - 15 might or might not include a controller; those switches without a controller are stateless and send messages indicating a transition (i.e., “switch on”, “switch off”).
- sensors for example, might be present that include a sensor unit and a controller, but not an actor unit (e.g., lamp, etc.).
- actor unit e.g., lamp, etc.
- Sensor unit 401 - j is an apparatus that comprises memory, processing components, and communication components, and is configured to gather information about the environment that is accessible by the sensor unit.
- Each sensor is configured to monitor a particular physical condition in well-known fashion (e.g., temperature, ambient light, humidity, occupancy, etc.).
- nodes 201 - 15 through 201 - 17 comprise an ambient light sensor and node 201 - 18 comprises an occupancy sensor.
- Each sensor unit is configured to report a state of the condition by providing input signals to controller 403 , wherein the values of the input signals are representative of the states being reported.
- a given sensor unit 401 - j can report discrete input signal values and/or a continuum of states and can report states at particular times and/or continuously.
- a change in state which is determined by controller 403 as described below, can occur based one or more sensor units detecting changes in the following, in any combination:
- Actor unit 402 - k wherein k has a value between 1 and K, inclusive, is an apparatus that comprises memory, processing components, and communication components, and is capable of doing something in the course of being affected by signals originating externally to the actor component, such as from controller 403 , as described in detail below.
- Each actor unit acts upon its environment in well-known fashion.
- Actor unit 402 - k is configured to receive, transmit, process, and/or relay signals conveying data, as well as being configured to affect a condition, physical or otherwise, in its environment, for example by generating a control signal.
- actor unit 402 - 1 of each node 201 - 1 through 201 - 9 is a lamp whose output is modifiable by controller logic executed by controller 403 .
- actor unit 402 - k can provide a different function than controlling a lamp to give light according to a configurable light output.
- the condition being affected can be:
- node 201 - m can comprise any combination of and any number of actor functions.
- node 201 - m that comprises one or more actor functions can be in a variety of forms, such as a luminaire in a lighting system, a media player as part of an audio/video system, a heater and/or ceiling fan as part of an environment control system, an outgoing-email server as part of a messaging system, an actor in a water sprinkler system, a pump, a robot or robotic arm, a pan/tilt camera, a switch, a motor, a servo mechanism, and so on.
- Controller 403 is a processing device, such as a microcontroller or microprocessor with a controller interface, which are well known in the art. Controller 403 is configured such that, when operating in conjunction with the other components of node 201 - m , controller 403 executes software, processes data, and telecommunicates according to the operations described herein, including those depicted in FIG. 10 .
- Memory 404 is non-transitory and non-volatile computer storage memory technology that is well known in the art (e.g., flash memory, etc.). Memory 404 is configured to store operating system 411 , application software 412 , and database 413 .
- the operating system is a collection of software that manages, in well-known fashion, node 201 - m 's hardware resources and provides common services for computer programs, such as those that constitute the application software.
- the application software that is executed by controller 403 according to the illustrative embodiment enables node 201 - m to perform the functions disclosed herein.
- Radio communications module 405 is configured to enable node 201 - m to telecommunicate with other devices and systems, including other mesh network nodes, by receiving signals therefrom and/or transmitting signals thereto via receiver 421 and transmitter 422 , respectively.
- Radio communications module 405 communicates in accordance with Bluetooth mesh networking.
- radio communications module 405 communicates via one or more other radio telecommunications protocols other than or in addition to Bluetooth mesh networking such as, but not limited to, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on.
- Receiver 421 is a component that enables node 201 - m to telecommunicate with other components and systems by receiving signals that convey information therefrom. It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than one receiver 421 .
- Transmitter 422 is a component that enables node 201 - m to telecommunicate with other components and systems by transmitting signals that convey information thereto.
- transmitter 422 is configured to transmit packets comprising the information described below and in FIGS. 6 through 10 . It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than one transmitter 422 .
- node 201 - m uses radio communications module 405 in order to telecommunicate wirelessly with external devices. It will clear to those skilled in the art, however, after reading the present disclosure, how to make use and use various embodiments of the present invention in which node 201 - m communicates via a wired protocol (e.g., X10, KNX, etc.) over physical media (e.g., cable, wire, etc.) with one or more external devices, either in addition to or instead of the wireless capability provided by radio communications module 405 .
- a wired protocol e.g., X10, KNX, etc.
- physical media e.g., cable, wire, etc.
- node 201 - m In generating and transmitting one or more packets that convey a message within mesh network 131 , along with including its own network address as the source address in the message, node 201 - m is said to originate the message. As described below, node 201 - m is further capable of forwarding a message that has been originated by a different node.
- FIG. 5 depicts salient operations of method 500 according to the illustrative embodiment, by which browser device 102 performs various functions that are related to designing an automation and control system for building 200 .
- browser device 102 is featured here as performing the operations associated with method 500 .
- a different device e.g., wireless device 122 , etc. performs method 500 .
- browser device 102 In accordance with operation 501 , and based on user input into the designer application, browser device 102 generates and transmits signals to initialize the building configuration database maintained by server computer 112 . In some embodiments, an account and a project are first created within which to organize design information.
- browser device 102 In accordance with operation 503 , and based on user input into the designer application, browser device 102 generates and transmits signals to configure a floor plan and to define one or more design “spaces” within the floor plan.
- a ceiling (with lights and sensors) as reflected when looking down on a floor is displayed through the browser app to the user, and is used by the user as a canvas for planning and configuring a lighting and sensor system.
- the user is able to identify the spaces in relation to the floor plan, and device 102 generates and transmits signals corresponding to the user's actions.
- at some of the spaces overlap with one or more of the other spaces.
- browser device 102 In accordance with operation 505 , and based on user input into the designer application, browser device 102 generates and transmits signals to arrange the placement of light fixtures, sensors, and switches, in relation to the one or more spaces identified in operation 503 . As a result, a relationship is established in the database between each defined space and the placement (virtual representation) of a plurality of devices within the space on the floorplan. At this point, the database does not necessarily possess, nor does it require, knowledge of the actual devices that are or will be installed at the placements identified and arranged in accordance with operation 505 .
- browser device 102 In accordance with operation 507 , and based on user input into the designer application, browser device 102 generates and transmits signals to configure one or more scenarios to be assigned to each space defined in operation 503 .
- a “daylight harvesting” option can be configured to augment the aforementioned switch, occupancy, and vacancy scenarios, in which an ambient light sensing function is utilized to adjust the light output of the fixtures, once the yet-to-be commissioned devices are operating as part of a mesh network.
- FIG. 6 depicts salient operations of method 600 according to the commissioning system of the illustrative embodiment, the commissioning system comprising data-processing system 111 and wireless device 122 , by which various functions are performed related to installing nodes 201 - 1 through 201 -M in mesh network 131 .
- the commissioning system generates and transmits the appropriate signals that implement the described operations, based on user input into an installer software application (or “app”) executing on device 122 .
- data-processing system 111 is featured here as performing the operations associated with method 600 , wherein wireless device 122 serves in part as an intermediary device, in that it relays messages between system 111 and one or more mesh nodes in network 131 .
- wireless device 122 serves in part as an intermediary device, in that it relays messages between system 111 and one or more mesh nodes in network 131 .
- a different device performs method 600 .
- wireless device 122 can perform at least some of the operations associated with method 600 .
- data-processing system 111 retrieves configuration data stored in a database in a memory within system 111 .
- the database including configuration data, was previously created as part of the design process described above and with regard to FIG. 5 .
- the received configuration data identifies the placement of each of a plurality of devices in relation to each space defined in the database, including a first space and a second space.
- the received configuration data also identifies one or more scenarios (e.g., a first scenario, a second scenario, etc.) assigned to each space. With this information, it can be inferred that devices at certain placements will be subject to certain scenarios.
- wireless device 122 receives the configuration data from data-processing system 111 .
- data-processing system 111 provisions one or more network-capable devices that it is capable of communicating with via wireless device 122 , in order to form a mesh network.
- network addresses have not yet been provided to the network-capable devices; consequently, the network-capable devices are not yet in communication with one another. It is through this process that a network-capable device becomes a node in the mesh network, capable of communicating with other nodes in the mesh network and, of particular significance, capable of transferring some of the information described below, such as group addresses and other operational parameters.
- Wireless device 122 is capable of communicating with the one or more network-capable devices when it is within communication range of the devices. Accordingly, device 122 can serve as an intermediary in provisioning the devices, while under the control of a user (e.g., technician, etc.) when the user and device 122 are on-site and within range of the devices (e.g., in the same room, on the same building floor, etc.).
- a user e.g., technician, etc.
- provisioning includes data-processing system 111 assigning and providing, via wireless device 122 to each network-capable device, a unique unicast address, along with a network key.
- the unicast address is transmitted in such a way that the recipient node is configured to regard the address as one that uniquely identifies the node in the data network.
- wireless device 122 performs additional operations (e.g., assigning, etc.) instead of relaying messages between data-processing system 111 and the network-capable devices.
- additional operations e.g., assigning, etc.
- one or more of the unicast addresses have been preassigned.
- each network node can be discovered over the mesh network by reading composition data that is transmitted amongst the network nodes.
- Composition data is defined in the Mesh Profile Specification.
- the functionality is determined by the model or models that the node supports, which are also defined in the aforementioned Specification.
- data-processing system 111 receives, from wireless device 122 , information that maps each mesh node to its virtual representation (i.e., its placement as described earlier) on the floor plan in the configuration data received in accordance with operation 601 .
- the commissioning system maps each node in a subset (e.g., proper subset, improper subset, etc.) of the provisioned first set of nodes to each respective node in a second set of nodes in mesh network 131 , wherein the second set of nodes corresponds to at least some of the plurality of devices whose placements are represented in the database.
- the provisioned network nodes are also known to be associated with the space or spaces as well.
- Mapping can involve one or more techniques such as, while not being limited to, utilizing one or more of i) received signal strength indication (RSSI) measurements, ii) Time of Flight (TOF) measurements, iii) other types of sensor readings, and so on.
- RSSI received signal strength indication
- TOF Time of Flight
- the installation app executing on wireless device 122 receives signals from its user interface the indicate a selection of which identified mesh network node matches a device whose placement is represented on a floorplan in the configuration database.
- mesh network 131 had been previously provisioned and the mesh nodes have had their unicast addresses and network keys already assigned.
- the identification and mapping process associated with operation 605 additionally involves learning each mesh node's previously-assigned unicast address and then mapping the identified node to its virtual representation as described above.
- data-processing system 111 takes the scenarios and spaces, as representing a logical configuration, and transforms them into a network-centric configuration. Operation 607 is described in detail and in regard to FIG. 7 .
- data-processing system 111 applies the relevant configuration to each mesh node in accordance with the protocol standard of the mesh network (e.g., Bluetooth®, etc.).
- system 111 takes the network-centric configuration, obtained in accordance with operation 607 , and decomposes it into a physical configuration of each mesh node, resulting in a set of parameters for each mesh node, which system 111 then provides, via wireless device 122 , to the applicable mesh node or nodes.
- Operation 609 is described in detail and in regard to FIG. 8 .
- an example of a mesh node commissioning process including transformation- and decomposition-related operations from FIGS. 7 and 8 , respectively, is described below and in regard to FIG. 9 .
- the commissioning system can fine tune one or more parameters that have been generated for the mesh nodes as part of operation 609 . For example, based on user input into the installer app, one or both of data-processing system 111 and wireless device 122 can update the reflected light level as measured by one or more sensor-equipped mesh nodes.
- FIG. 7 depicts salient sub-operations within operation 607 , by which data-processing system 111 transforms the scenarios and spaces, which represent essentially a logical configuration of building 200 's automation and control system, into a network-centric configuration.
- data-processing system 111 generates group addresses.
- a “group address” is defined in the Bluetooth Mesh Profile Specification, Section 3.4.2.4.
- Data-processing system 111 generates a group address based on one or more of i) the particular space with which the second set of nodes (in mesh network 131 ) is associated, as established by mapping operation 605 , and/or ii) the functions that are performed by the second set of nodes in performing a particular scenario assigned to the particular space.
- the act itself of generating the group address can be based on the space and/or functions performed, or the value of the group address (e.g., denoting a Fixed Group address, denoting other usage, etc.) can be based on the space and/or functions performed, or both.
- data-processing system 111 can generate a first group address that is dependent on a first space and functions performed in conjunction with a first scenario assigned to the first space, or system 111 can generate a second group address that is dependent on a first space and functions performed in conjunction with a second scenario assigned to the first space, or system 111 can generate a third group address that is dependent on a second space and functions performed in conjunction with a scenario assigned to the second space.
- Group addresses are what at least some nodes (e.g., sensors, etc.) publish to, once mesh network 131 becomes operational. Consequently, a first group address might be created for a first sensor to publish to in a first space, a second group address might be created for a second sensor to publish to in a second space (or in the first space, for that matter), and so on.
- data-processing system 111 assigns nodes to one or more groups that correspond to the group addresses generated in accordance with operation 701 .
- Data-processing system 111 assigned a node to a group address based on one or more of i) the particular space with which the node is associated, as established by mapping operation 605 , and/or ii) the functions that are performed by the node in performing a particular scenario assigned to the particular space.
- the assignment a node to a group or groups reflects to which group(s) the node is subscribed.
- Control of operation execution then proceeds to operation 609 .
- FIG. 8 depicts salient sub-operations within operation 609 , by which data-processing system 111 takes the network-centric configuration obtained in accordance with operation 607 and decomposes it into a physical configuration of each mesh node, resulting in a set of parameters for each mesh node
- data-processing system 111 determines a set of parameters for each mesh node 201 - m in the mesh network 131 , based on i) the nodes that have been assigned to each group, in accordance with operation 703 , and/or ii) the function or functions to be performed by each mesh node 201 - m .
- parameters There are various types of parameters, as will now be described.
- Data-processing system 111 can determine parameters that are related to publications and subscriptions, including those related to groups that a mesh node publishes to and/or groups that a mesh node is subscribed to.
- the concept of “publish-subscribe” is described in Mesh Profile Specification, Section 2.3.8.
- Data-processing system 111 can determine parameters that are related to security, including application groups and subnets.
- security is described in Mesh Profile Specification, Section 2.3.9.
- Data-processing system 111 can determine additional parameters for each model.
- the detailed set of parameters are generally described in various sections of the Mesh Profile Specification, cited earlier in this disclosure, and the Bluetooth Mesh Model Specification, Revision v1.0, dated Jul. 13, 2017 (the “Mesh Model Specification”), which is incorporated herein by reference. Some of the parameters are as follows:
- data-processing system 111 directs wireless device 122 to transmit, in one or more messages, the assigned group address (e.g., first group address, second group address, etc.) and other parameters determined in accordance with operation 801 to the applicable node as identified (and addressed) by its unicast address.
- Device 122 transmits these messages in accordance with the mesh network protocol.
- device 122 For each node being commissioned in the second set of nodes in mesh network 131 , device 122 transmits the node-specific set of parameters.
- Device 122 transmits the assigned group addresses in such a way that each mesh node stores its group address and, going forward, each subscribing node is responsive to one or more received messages that contain, in the destination address field of the received message, the stored group address.
- FIG. 9 depicts at least some of the nodes within mesh data network 131 , which participate in a mesh node commissioning process in accordance with the illustrative embodiment and described below.
- a conference room within building 200 is equipped with luminaires 201 - 3 , 201 - 6 , and 201 - 9 ; the conference room is also equipped with ambient light sensors 201 - 15 through 201 - 17 and occupancy sensor 201 - 18 .
- a scenario of occupancy processing with daylight harvesting is to be applied to the conference room and, more specifically, to the network-capable luminaires and sensors.
- a first aspect of the commissioning process involves transformation, as described above and in FIG. 7 , in which the “conference room” space and the “occupancy with daylight harvesting” scenario is to be transformed into a network-centric configuration.
- the abstract concept of “spaces” and “scenarios” has to be transformed into a real network of nodes with necessary functions: in this case, the luminaires and sensors identified above.
- data-processing system 111 generates a first group address for the occupancy function and a second group address for the ambient-light-sensing (ALS) function.
- Occupancy group 901 will be for the whole conference room.
- Ambient light sensing will use three separate sensors for three zones: sensor 201 - 15 near the windows, sensor 201 - 16 in the middle, and sensor 201 - 17 far from the window.
- data-processing system 111 assigns luminaires 201 - 3 , 201 - 6 , and 201 - 9 to the groups.
- each luminaire will be a member of two groups: occupancy group 901 and one of the ALS groups.
- luminaire 201 - 9 belongs to ALS group 902
- luminaire 201 - 6 belongs to ALS group 903
- luminaire 201 - 3 belongs to ALS group 904 .
- the areas defined by elements 901 through 904 as drawn coincide with the spaces that have been defined by the user in designing the conference room lighting control, although this is not always the case.
- a second aspect of the commissioning process involves decomposition, as described above and in FIG. 8 .
- Data-processing system 111 decomposes the network-centric configuration into a set of parameters for each node that system 111 generates in accordance with operation 801 , such as the group that a node publishes to, the group or groups that a node is subscribed to, the publishing cadence, the application security keys that are used, and so on.
- system 111 provides, via wireless device 122 acting as a relay, each set of parameters generated to the applicable node—in this case, luminaires 201 - 3 , 201 - 6 , and 201 - 9 and sensors 201 - 15 through 201 - 18 .
- FIG. 10 depicts salient operations of method 1000 according to the illustrative embodiment, by which each mesh node 201 - m performs various functions related to interacting with other nodes in network 131 .
- luminaire 201 - 3 is featured here as performing the operations associated with method 1000 .
- other mesh nodes are capable of performing method 600 concurrently with luminaire 201 - 3 and with one another.
- luminaire 201 - 3 receives one or more group addresses and other parameters that are transmitted by wireless device 122 in accordance with operation 803 .
- luminaire 201 - 3 might receive group addresses corresponding to groups 901 and 904 , to which luminaire 201 - 3 is subscribed as described above and in FIG. 9 .
- luminaire 201 - 3 stores the one or more group addresses and other parameters that are received in accordance with operation 1001 .
- luminaire 201 - 3 receives a control-related message from another mesh node.
- the message might originate from ambient light sensor 201 - 17 and contain a group address for group 904 , or from occupancy sensor 201 - 18 and contain a group address for group 901 .
- luminaire 201 - 3 acts on the message received in accordance with operation 1005 , only if the destination address in the received message is the stored group address—in this case, the addresses for groups 901 and 904 .
- luminaire 201 - 3 might turn on its lamp or adjust its light output, based on the message containing a subscribed-to group address.
- Luminaire 201 - 3 continues to monitor for additional control-related messages and, if appropriate, to act on them (e.g., turn on lamp, turn off lamp, dim lamp, etc.).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Selective Calling Equipment (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
- The present invention relates to building automation and control in general, and, more particularly, to a mesh network commissioning system and method.
- “Commercial building automation,” or “commercial automation,” refers to the use of computer and information technology to control commercial building systems, such as lighting, HVAC, audio-visual, smoke detection, security, and shading, among others. Using specialized hardware and control logic, building devices can monitor their environment and can be controlled automatically. Although commercial automation has been available at some level of sophistication for some time, it steadily becomes more practical, both from a technological and cost perspective.
- Lighting automation, in particular, has evolved over time. Lighting systems now exist in which luminaires that comprise sensors, lamps, and control logic are networked together, in what is sometimes referred to as “connected lighting” or networked “smart lighting.” In such a network, the sensors that are associated with the luminaires collect data about the local environment, such as data related to occupancy and data related to ambient lighting in the vicinity of the luminaires. The networked luminaires communicate with each other, in some cases sharing the sensor data, and adjust the light output of the lamps via the control logic, with some level of coordination across the networked luminaires and other types of connected devices that are networked with one another.
- There can be large numbers of such connected devices within a building, numbering in the hundreds, or even thousands, of devices sharing data with one another. Consequently, there are various issues to consider in planning and implementing a system of connected devices, so that the devices are installed and operate in a coordinated way.
- Mesh networks are presently available that enable a plurality of network-capable devices to form a network and share data with one another as a plurality of provisioned mesh-network nodes. However, a mesh network by itself does not address the daunting challenge of installing the hundreds, or thousands, of such devices on each building floor, in regard to how they should behave in the presence of one another. For example, in at least some installation procedures in the prior art, an installation technician has to somehow program each device in each building space to behave according to one or more operational scenarios, each of which possibly involving many devices. This is particularly challenging, considering that different building spaces have different devices that can operate according to different scenarios, and that somehow these considerations must be applied to a decentralized system of mesh nodes.
- As part of a commissioning process, the present invention enables network-capable devices, which are connected to one another as provisioned nodes within a mesh network, to interoperate with one another without at least some of the disadvantages in the prior art. In accordance with the illustrative embodiment of the present invention, a commissioning system and method disclosed herein applies a design configuration, for a building automation and control system, to a mesh network (e.g., Bluetooth®, etc.) of network-capable nodes. As part of the commissioning system, a cloud-based server system works in concert with an installing device, such as a smartphone or tablet executing an installer application, to apply the relevant configuration of scenarios and spaces, as defined in the design configuration during the design phase, to each mesh node in the mesh network.
- The commissioning system of the illustrative embodiment accomplishes this by first transforming the defined scenarios and spaces, which essentially represent a logical configuration of the building automation and control system. The commissioning system transforms the defined scenarios and spaces into a network-centric configuration. Then, the system decomposes the network-centric configuration into a physical configuration of each mesh node, resulting in a set of parameters for each mesh node. The system then transmits the set of parameters, including one or more group addresses, to the applicable mesh node, for each affected mesh node in the network. The transformation and decomposition operations can be performed by a cloud service's data-processing system, or by the installing device, or by a combination of the two.
- By performing the transformation and decomposition of scenarios and spaces into a physical configuration of each mesh node, the commissioning system and method of the illustrative embodiment eliminates, or at least greatly reduces, mistakes that are related to the configuring of connected devices.
- A first illustrative method for commissioning a plurality of nodes in a data network comprises: retrieving, by a data-processing system, configuration data from a database, wherein the configuration data represents (i) the placement of each of a plurality of devices in relation to a first space within a building, wherein the first space is user defined in the database, and (ii) a first scenario assigned to the first space; providing, by the data-processing system through an intermediary device, a non-empty set of unicast network addresses to a respective first set of nodes in the plurality of nodes, such that each node in the first set of nodes is configured to regard each respective unicast address as an address that uniquely identifies the node in the data network; receiving, by the data-processing system from the intermediary device, information that maps each node in a subset of the first set of nodes to each respective node in a second set of nodes, wherein the second set of nodes corresponds to at least some of the plurality of devices whose placements are represented in the database; generating, by the data-processing system, a first group address that is based on (i) the first space and (ii) functions performed by the second set of nodes in performing the first scenario assigned to the first space; and providing, by the data-processing system through the intermediary device, the first group address to the second set of nodes as identified by their respective unicast addresses, wherein the first group address is transmitted such that each subscribing node in the second set of nodes is configured to be responsive to one or more received messages containing the first group address in the destination address field of the one or more received messages.
- A second illustrative method for commissioning a plurality of nodes in a data network comprises: receiving, by a first device, configuration data in a database from a first server computer, wherein the configuration data represents (i) the placement of each of a plurality of devices in relation to a first space within a building, wherein the first space is user defined in the database, and (ii) a first scenario assigned to the first space; transmitting, by the first device, a non-empty set of unicast network addresses to a respective non-empty first set of nodes in the plurality of nodes, such that each node in the first set of nodes is configured to regard each respective unicast address as an address that uniquely identifies the node in the data network; mapping, by the first device, each node in a subset of the first set of nodes to each respective node in a second set of nodes, wherein the second set of nodes corresponds to at least some of the plurality of devices whose placements are represented in the database; generating, by the first device, a first group address that is based on (i) the first space and (ii) functions performed by the second set of nodes in performing the first scenario assigned to the first space; and transmitting, by the first device, the first group address to the second set of nodes as identified by their respective unicast addresses, wherein the first group address is transmitted such that each subscribing node in the second set of nodes is configured to be responsive to one or more received messages containing the first group address in the destination address field of the one or more received messages.
-
FIG. 1 depictstelecommunications system 100, in accordance with an illustrative embodiment of the present invention. -
FIG. 2 depicts at least some of the nodes withinmesh data network 131 intelecommunications system 100. -
FIG. 3 depicts components ofwireless device 122 according to the illustrative embodiment. -
FIG. 4 depicts components of node 201-m according to the illustrative embodiment. -
FIG. 5 depicts operations ofmethod 500 according to the illustrative embodiment, by whichbrowser device 102 performs various functions that are related to designing an automation and control system for building 200. -
FIG. 6 depicts salient operations ofmethod 600 according to the commissioning system of the illustrative embodiment, by which various functions are performed related to installing nodes 201-1 through 201-M inmesh network 131. -
FIG. 7 depicts salient sub-operations withinoperation 607, by which data-processing system 111 transforms the scenarios and spaces, as representing a logical configuration, into a network-centric configuration. -
FIG. 8 depicts salient sub-operations withinoperation 609, by which data-processing system 111 takes the network-centric configuration obtained in accordance withoperation 607 and decomposes it into a physical configuration of each mesh node -
FIG. 9 depicts at least some of the nodes withinmesh data network 131, which participate in a mesh node commissioning process in accordance with the illustrative embodiment. -
FIG. 10 depicts operations ofmethod 1000 according to the illustrative embodiment, by which each mesh node 201-m performs various functions related to interacting with other nodes innetwork 131. - Based on—For the purposes of this specification, the phrase “based on” is defined as “being dependent on” in contrast to “being independent of”. The value of Y is dependent on the value of X when the value of Y is different for two or more values of X. The value of Y is independent of the value of X when the value of Y is the same for all values of X. Being “based on” includes both functions and relations.
- Control—For the purposes of this specification, the infinitive “to control” and its inflected forms (e.g., “controlling”, “controlled”, etc.) should be given the ordinary and customary meaning that the terms would have to a person of ordinary skill in the art at the time of the invention.
- Controller—For the purposes of this specification, the term “controller” is defined as hardware or hardware and software that perform mathematical and/or logical operations and that control other devices based, at least in part, on the operations performed.
- Generate—For the purposes of this specification, the infinitive “to generate” and its inflected forms (e.g., “generating”, “generated”, etc.) should be given the ordinary and customary meaning that the terms would have to a person of ordinary skill in the art at the time of the invention.
- Lamp—For the purposes of this specification, the term “lamp” is defined as a device for providing illumination, comprising an electric bulb and its holder.
- Luminaire—For the purposes of this specification, the term “luminaire” is defined as a lighting unit comprising a lamp and a controller for controlling the lamp.
- Map—For the purposes of this specification, the infinitive “to map” and its inflected forms (e.g., “mapping”, “mapped”, etc.) should be given the ordinary and customary meaning that the terms would have to a person of ordinary skill in the art at the time of the invention.
- Network address—For the purposes of this specification, the term “network address,” or “computer network address,” is defined as a numerical label assigned to each device (e.g., sensor node, actor node, configuring node, etc.) participating in a computer (or data) network. For example, an Internet Protocol address (IP address) is a numerical label assigned to each device participating in a computer network that uses the Internet Protocol for communication.
- Scenario—For the purposes of this specification, the term “scenario” is defined as a predefined, collective behavior of one or more devices.
- Space—For the purposes of this specification, the term “space” is defined as a continuous area within a building premises. In this context, a space is a controllable unit to which one or more scenarios can be applied.
- Receive—For the purposes of this specification, the infinitive “to receive” and its inflected forms (e.g., “receiving”, “received”, etc.) should be given the ordinary and customary meaning that the terms would have to a person of ordinary skill in the art at the time of the invention.
- Transmit—For the purposes of this specification, the infinitive “to transmit” and its inflected forms (e.g., “transmitting”, “transmitted”, etc.) should be given the ordinary and customary meaning that the terms would have to a person of ordinary skill in the art at the time of the invention.
- To facilitate explanation and understanding of the present invention, the following description sets forth several details. However, it will be clear to those having ordinary skill in the art, after reading the present disclosure, that the present invention may be practiced without these specific details, or with an equivalent solution or configuration. Furthermore, some structures, devices, and operations that are well known in the art are depicted in block diagram form in the accompanying figures in order to keep salient aspects of the present invention from being unnecessarily obscured.
-
FIG. 1 depictstelecommunications system 100, in accordance with the illustrative embodiment of the present invention.System 100 comprises: design data-networking system 101,browser device 102,cloud server system 111,server computer 112, installation data-networking system 121 comprisingmesh data network 131, andwireless device 122. The aforementioned elements are interrelated as shown. - In addition to what is described below and in regard to the depicted elements,
telecommunications system 100 comprises a collection of links and nodes that enable telecommunication between devices, in well-known fashion. To this end, in some embodiments of the present invention,telecommunications system 100 comprises the Internet, while in some other embodiments of the present invention,system 100 comprises the Public Switched Telephone Network (PSTN), while in still some other embodiments of the present invention,system 100 comprises a private data network. It will be clear to those with ordinary skill in the art, after reading this disclosure, that in some embodiments of thepresent invention system 100 can comprise one or more of the above-mentioned networks and/or other telecommunications networks, without limitation. Furthermore, it will be clear to those will ordinary skill in the art, after reading this disclosure, thattelecommunications system 100 can comprise elements that are capable of wired and/or wireless communication, without limitation. -
Data networking system 101 is a collection of software and hardware that is used by a software application that is executed bybrowser device 102, by interacting withcloud server system 111.Networking system 101 comprises one or more computers having non-transitory memory, processing components, and communication components, includingbrowser device 102.Data networking system 101 enables communication betweenbrowser device 102 andcloud server system 111, includingserver computer 112. To this end,networking system 101 comprises one or both of wired Ethernet, and WiFi. However, as those who are skilled in the art will appreciate after reading this specification,data networking system 101 can be based on one or more different types of wired and/or wireless network technology standards, in addition to or instead of those mentioned above, such as Bluetooth mesh networking, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, for example and without limitation. -
Browser device 102 is a personal (desktop) computer executing a web application that is browser-based, in accordance with the illustrative embodiment. The web application enables the design of a collection of network-capable devices (e.g., lights, switches, sensors, etc.) prior to an installation process. In particular, the designer application enables the design of and uploading of floor plans to a building configuration database maintained byserver computer 112, including the defining of spaces on the floor plans. These operations include those depicted inFIG. 5 . The designer application also enables the assignment of scenarios to the spaces defined and the fine-tuning of the assigned scenarios (e.g., light levels, timings, scenes, etc.). In some embodiments of the present invention,device 102 is a different type of data-processing system, or executes a designer application that is different than a browser-based application, or both. - Cloud-based
server system 111, which is a data-processing system, is a collection of software and hardware that is used to manage the configuration database stored byserver computer 112, by interacting withbrowser device 102 withindata networking system 101 andwireless device 122 withindata networking system 121.System 111 is also used to manage user accounts (e.g., designers, installers, contractors, etc.) and projects (e.g., buildings, configurations, etc.).System 111 comprises one or more computers having non-transitory memory, processing components, and communication components, includingserver computer 112. As a computing device,server computer 112 comprises one or more processors, memories, and network interface modules, which are interconnected and interoperate in well-known fashion. - In accordance with the illustrative embodiment,
cloud server system 111 also performs the transformation and decomposition operations described below and in regard toFIGS. 6 through 8 . These operations can be performed byserver computer 112 withincloud server system 111 or by a different server computer withinsystem 111. In some alternative embodiments of the present invention,cloud server system 111 performs transformation, but not decomposition, while in some other alternative embodiments,cloud server system 111 performs decomposition, but not transformation, while in still some other alternative embodiments, both transformation and decomposition are performed elsewhere (e.g., by installingdevice 122, etc.). - In order for devices within
cloud server system 111 to communicate with devices in other networks (e.g.,devices system 111 comprises one or both of wired Ethernet and WiFi networks. However, as those who are skilled in the art will appreciate after reading this specification, a different combination of wired and/or wireless networks can be used within and bysystem 111 in order to enable communication. For example and without limitation,cloud server system 111 may use a mobile data communication in accordance with a cellular network standard (e.g., 3G, 4G, 5G, LTE, GSM, etc.) to communicate withdevice 102 and/ordevice 122, thereby avoiding usage of the WiFi network of the local premises. - As described, the data-processing system depicted as cloud-based
server system 111 is part of a cloud-based service. As those who are skilled in the art will appreciate after reading this specification, in some alternative embodiments of the present invention, the data-processing system performing the operations associated withsystem 111 as described can comprise one or more computing devices that are not part of any cloud-based system and that perform said operations. -
Data networking system 121 is a collection of software and hardware that is used by an installer application that is executed bywireless device 122, by interacting withcloud server system 111.Networking system 121 comprises one or more computers having non-transitory memory, processing components, and communication components, includingwireless device 122.Data networking system 121 enables communication betweenwireless device 122 andcloud server system 111, includingserver computer 112.System 121 further comprisesmesh data network 131, which enables communication amongstwireless device 122 and other devices as described below and in regard toFIG. 2 . - In order to enable communication amongst the various devices,
networking system 121 comprises one or more of wired Ethernet, WiFi, mobile data networks (e.g., 3G, 4G, 5G, LTE, GSM, etc.) and Bluetooth Mesh networks. In some other embodiments,system 121 communicates via one or more other radio telecommunications protocols other than or in addition to those already mentioned, such as, but not limited to, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on. -
Wireless device 122 is illustratively a smartphone with at least packet data capability provided and supported by the network in which it operates, namelydata networking system 121, and that is configured to execute a software application (e.g., an “app”) for installing one or more of the smart devices (e.g., lights, switches, sensors, etc.) in the design described above and in regard todevice 102. In particular, the installer application enables the identification of mesh nodes, which are described below and in regard toFIG. 2 , and the communication of their identities over a personal area network (e.g., Bluetooth®, etc.). The installer application also enables the distribution and application of design configuration, fromserver computer 112 to each mesh node.Wireless device 122 is described in detail below and inFIG. 3 , and at least some of the operations performed bywireless device 122 described below and inFIG. 6 . - In some embodiments of the present invention,
device 122 is a different type of data-processing system, or executes an installer application that is different than a device-based app, or both. For example and without limitation,wireless device 122 can be referred to by a variety of alternative names such as, while not being limited to, a mobile station, a wireless transmit/receive unit (WTRU), a user equipment (UE), a wireless terminal, a cell phone, or a fixed or mobile subscriber unit.Wireless device 122 can be any other type of device (e.g., a tablet, etc.) that is capable of operating in a wireless network environment, mobility-oriented or otherwise. - In some embodiments of the present invention,
device 122 comprises, or is itself, an Ethernet-to-Bluetooth gateway. In such embodiments,device 122 is wireless in the sense that it has and it uses a Bluetooth radio on one end of its gateway function, while the other end of the gateway function can interface to Ethernet cable (i.e., a wired interface). -
FIG. 2 depicts at least some of the nodes withinmesh data network 131, in accordance with the illustrative embodiment. The depicted nodes are depicted according to how they are situated within building 200, according to a floor plan, such as one handled by the designer application described earlier. Building 200 is equipped with network nodes 201-1 through 201-M, wherein M is a positive integer (e.g., M equal to 18 as depicted, etc.). As depicted inFIG. 2 , nodes 201-1 through 201-9 are light fixtures (or “luminaires” and denoted by “L”), nodes 201-10 through 201-14 are switches (denoted by “S”), nodes 201-15 through 201-17 are ambient light sensors (ALS, denoted by “A”), and node 201-18 is an occupancy sensor (denoted by “O”). The networked nodes communicate wirelessly with one another via transmitted signals 202-1, 202-2, and so forth. In some alternative embodiments of the present invention, however, one or more of the depicted elements can communicate via wired connections. -
Mesh data network 131 enables communication betweenwireless device 122 and network nodes 201-1 through 201-M. To this end, the nodes withinnetwork 131 distribute data (e.g., the packet-based messages, etc.) in accordance with Bluetooth mesh networking. A “mesh network” is a network topology in which each node relays data for the network. The nodes that are involved cooperate in the distribution of data in the network. A mesh network can relay messages using either a flooding technique or a routing technique. - In some other embodiments,
network 131 communicates via one or more other radio telecommunications protocols other than or in addition to Bluetooth mesh networking such as, but not limited to, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on. Furthermore, as those who are skilled in the art will appreciate after reading this specification,wireless device 122 and at least some network nodes 201-1 through 201-M in some embodiments can be connected directly and non-wirelessly to one other, at least for some purposes and/or for some portion of time, such as through Universal Serial Bus (USB), FireWire™, or Thunderbolt™, for example and without limitation. - In accordance with the illustrative embodiment, nodes 201-1 through 201-M constitute an automation and control system—more specifically, a networked lighting system—in a commercial building, such as an office space or a retail space. As those who are skilled in the art will appreciate after reading this specification, however, the nodes can also be applied to a different type of building, such as a home, or to include the environment surrounding the building, or to any environment in which automated control can be applied.
- Furthermore, building 200 can be a different type of structure with a roof and walls, or can instead be a defined area that comprises multiple sub-areas (e.g., open space, one or more conference rooms, one or more corridors, one or more closed offices, etc.). At least a portion of the area and/or sub-areas can be defined by something other than a roof and/or walls (e.g., a tent, an outdoor pavilion, a covered parking lot, a stadium or arena, etc.).
- As those who are skilled in the art will appreciate after reading this specification, the luminaire nodes, as well as the nodes in general, can be positioned in any geometry or geometries with respect to one another, provided that each node is within communication range of one or more of the other nodes.
- In accordance with the illustrative embodiment, some of nodes 201-1 through 201-M are luminaires comprising lamps that provide light to, and serve as light sources for, their environment within building 200; also, some of the nodes are switches and sensors for controlling the luminaires. As those who are skilled in the art will appreciate after reading this specification, however, at least some of the nodes can be devices that are other than luminaires, switches, and sensors. For example, one or more of the luminaires can be other types of nodes, such as sound systems or sprinklers, that provide a different type of output than light, such as sound or water.
-
Wireless device 122 is a wireless telecommunications terminal that is configured to transmit and/or receive communications wirelessly. It is an apparatus that comprises memory, processing components, telecommunication components, and user interface components (e.g., display, speaker, keyboard, microphone, etc.).Wireless device 122 comprises the hardware and software necessary to be compliant with the protocol standards used in the wireless networks in which it operates and to perform the processes described below and in the accompanying figures. For example and without limitation,wireless device 122 is capable of: -
- i. handling an incoming or outgoing telephone call or other communication (e.g., application-specific data, SMS text, email, media stream, etc.),
- ii. provisioning one more devices into mesh network nodes 201-1 through 201-M, and
- iv. installing one or more of network nodes 201-1 through 201-M, based on the configuration database maintained by
server computer 112.
Wireless device 122 is described in detail below and inFIG. 3 .
- Each node 201-m, wherein m has a value between 1 and M, inclusive, is an apparatus that comprises memory, processing components, and communication components. Node 201-m is configured to transmit signals 202-m that convey control-related information, such as packet-based messages. Luminaire 201-m, for m=1 through 9, is also configured to provide light at an output that is based, at least in part, on the content of one or more messages received from one or more other nodes. Sensor node 201-m, for m=15 through 18, is also configured to sense one or more physical conditions (i.e., ambient light, occupancy) and can transmit messages based on the one or more physical conditions sensed. Node 201-m is described in detail below and in
FIG. 4 . -
FIG. 3 depicts the salient components ofwireless device 122 according to the illustrative embodiment.Wireless device 122 is also referred to as the “installing device.”Wireless device 122 is based on a data-processing apparatus whose hardware platform comprises:controller 303,memory 304, andradio communications module 305, interconnected as shown. -
Controller 303 is a processing device, such as a microcontroller or microprocessor with a controller interface, which are well known in the art.Controller 303 is configured such that, when operating in conjunction with the other components ofwireless device 122,controller 303 executes software, processes data, and telecommunicates according to the operations described herein, including those depicted inFIG. 6 . -
Memory 304 is non-transitory and non-volatile computer storage memory technology that is well known in the art (e.g., flash memory, etc.).Memory 304 is configured to storeoperating system 311,application software 312, anddatabase 313. The operating system is a collection of software that manages, in well-known fashion,wireless device 122's hardware resources and provides common services for computer programs, such as those that constitute the application software. The application software that is executed bycontroller 303 according to the illustrative embodiment enableswireless device 122 to perform the functions disclosed herein. - It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than one
memory 304; or comprise subdivided segments ofmemory 304; or comprise a plurality of memory technologies that collectively store the operating system, application software, and database. -
Radio communications module 305 is configured to enablewireless device 122 to telecommunicate with other devices, by receiving signals therefrom and/or transmitting signals thereto viareceiver 321 andtransmitter 322, respectively. In order to communicate with devices outside ofmesh network 131,radio communications module 305 communicates in accordance with WiFi or other applicable standard. In order to communicate with other devices withinmesh network 131,module 305 communicates in accordance with Bluetooth mesh networking. In some other embodiments,radio communications module 305 communicates via one or more other radio telecommunications protocols other than or in addition to WiFi and Bluetooth mesh networking, such as, but not limited to, a cellular network standard (e.g., LTE, GSM, etc.), Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on. -
Receiver 321 is a component that enableswireless device 122 to telecommunicate with other components and systems by receiving signals that convey information therefrom. It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than onereceiver 321. -
Transmitter 322 is a component that enableswireless device 122 to telecommunicate with other components and systems by transmitting signals that convey information thereto. For example and without limitation,transmitter 322 is configured to transmit packets comprising the information described below and inFIGS. 6 through 8 . It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than onetransmitter 322. - In accordance with the illustrative embodiment,
wireless device 122 usesradio communications module 305 in order to telecommunicate wirelessly with external devices. It will clear to those skilled in the art, however, after reading the present disclosure, how to make use and use various embodiments of the present invention in whichwireless device 122 communicates via a wired protocol (e.g., X10, KNX, etc.) over physical media (e.g., cable, wire, etc.) with one or more external devices, either in addition to or instead of the wireless capability provided byradio communications module 305. - In generating and transmitting one or more packets that convey a message within
mesh network 131, along with including its own network address as the source address in the message,wireless device 122 is said to originate the message. As described below,wireless device 122 is further capable of forwarding a message that has been originated by a different node. -
FIG. 4 depicts the salient components of node 201-m according to the illustrative embodiment. Node 201-m is also referred to as the “installed device.” Node 201-m is based on a data-processing apparatus whose hardware platform comprises at least some of: sensor unit 401-1 through 401-J, wherein J is a positive integer, actor unit 402-1 through 402-K, wherein K is a positive integer,controller 403,memory 404, andradio communications module 405, interconnected as shown. - Various nodes within
mesh network 131 can comprise different combinations of sensors, actors, controllers, memory, and communications modules. Each luminaire node 201-1 through 201-9, for example, includes a sensor unit (e.g., ambient light sensor, occupancy sensor, etc.), a controllable lamp (i.e., an actor unit), and a controller, although some luminaires might not include a sensor unit. Each switch node 201-10 through 201-15, for example, might or might not include a controller; those switches without a controller are stateless and send messages indicating a transition (i.e., “switch on”, “switch off”). Furthermore, some sensors, for example, might be present that include a sensor unit and a controller, but not an actor unit (e.g., lamp, etc.). As those who are skilled in the art will appreciate after reading this specification, different configurations of mesh nodes are possible, wherein each node is based on one or more of the components that are described below. - Sensor unit 401-j, wherein j has a value between 1 and J, inclusive, is an apparatus that comprises memory, processing components, and communication components, and is configured to gather information about the environment that is accessible by the sensor unit. Each sensor is configured to monitor a particular physical condition in well-known fashion (e.g., temperature, ambient light, humidity, occupancy, etc.). For example, nodes 201-15 through 201-17 comprise an ambient light sensor and node 201-18 comprises an occupancy sensor.
- Each sensor unit is configured to report a state of the condition by providing input signals to
controller 403, wherein the values of the input signals are representative of the states being reported. A given sensor unit 401-j can report discrete input signal values and/or a continuum of states and can report states at particular times and/or continuously. A change in state, which is determined bycontroller 403 as described below, can occur based one or more sensor units detecting changes in the following, in any combination: -
- i. environmental probes (e.g., temperature, ambient light, motion, infrared signature, humidity, etc.).
- ii. electrical inputs (i.e., binary, analog, bus), including from a switch.
- iii. signals received via radio (e.g., proximity beacons, etc.).
- iv. a state of the internal logic, woken up periodically based on time or on an external event.
For example and without limitation, a state change can correspond to a switch being actuated, occupancy being detected, a timer or counter reaching a predefined value, and so on.
- Actor unit 402-k, wherein k has a value between 1 and K, inclusive, is an apparatus that comprises memory, processing components, and communication components, and is capable of doing something in the course of being affected by signals originating externally to the actor component, such as from
controller 403, as described in detail below. Each actor unit acts upon its environment in well-known fashion. - Actor unit 402-k is configured to receive, transmit, process, and/or relay signals conveying data, as well as being configured to affect a condition, physical or otherwise, in its environment, for example by generating a control signal. In accordance with the illustrative embodiment, actor unit 402-1 of each node 201-1 through 201-9 is a lamp whose output is modifiable by controller logic executed by
controller 403. - As those who are skilled in the art will appreciate after reading this disclosure, actor unit 402-k can provide a different function than controlling a lamp to give light according to a configurable light output. For example and without limitation, the condition being affected can be:
-
- i. lighting, which can be adjusted (e.g., turning on or off, changing light output, changing brightness, changing color or mood, changing illuminance, displaying a picture or pattern, etc.).
- ii. sound, which can be adjusted (e.g., increasing or decreasing volume, changing playlist or mood, turning on/off, selecting signal source, etc.).
- iii. room climate, which can be controlled (e.g., increasing or decreasing temperature, humidity, air fragrance, fan speed, etc.).
- iv. an alert, which can be generated (e.g., of an email, of an SMS message, etc.).
- v. monitoring by a camera, which can be panned or tilted.
- vi. office meeting/presentation settings (e.g., selecting one or more of signal source, streaming application, multimedia to play, audio language, subtitles, chapter, play/pause/stop, rewind/fast forward, etc.).
- vii. connected/smart video monitor features (e.g., selecting application to be launched, navigating through on-screen menus, etc.).
- viii. virtual keyboard—navigation on virtual keyboard displayed by other device (e.g., video monitor, set-top box, etc.).
- ix. control of shades/window coverings/blinds.
- x. access control (e.g., unlocking/locking doors, opening/shutting doors, authorizing access to selected rooms or zones, etc.).
- Furthermore, node 201-m can comprise any combination of and any number of actor functions. As those who are skilled in the art will appreciate, after reading this disclosure, node 201-m that comprises one or more actor functions can be in a variety of forms, such as a luminaire in a lighting system, a media player as part of an audio/video system, a heater and/or ceiling fan as part of an environment control system, an outgoing-email server as part of a messaging system, an actor in a water sprinkler system, a pump, a robot or robotic arm, a pan/tilt camera, a switch, a motor, a servo mechanism, and so on.
-
Controller 403 is a processing device, such as a microcontroller or microprocessor with a controller interface, which are well known in the art.Controller 403 is configured such that, when operating in conjunction with the other components of node 201-m,controller 403 executes software, processes data, and telecommunicates according to the operations described herein, including those depicted inFIG. 10 . -
Memory 404 is non-transitory and non-volatile computer storage memory technology that is well known in the art (e.g., flash memory, etc.).Memory 404 is configured to storeoperating system 411,application software 412, anddatabase 413. The operating system is a collection of software that manages, in well-known fashion, node 201-m's hardware resources and provides common services for computer programs, such as those that constitute the application software. The application software that is executed bycontroller 403 according to the illustrative embodiment enables node 201-m to perform the functions disclosed herein. - It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than one
memory 404; or comprise subdivided segments ofmemory 404; or comprise a plurality of memory technologies that collectively store the operating system, application software, and database. -
Radio communications module 405 is configured to enable node 201-m to telecommunicate with other devices and systems, including other mesh network nodes, by receiving signals therefrom and/or transmitting signals thereto viareceiver 421 andtransmitter 422, respectively.Radio communications module 405 communicates in accordance with Bluetooth mesh networking. In some other embodiments,radio communications module 405 communicates via one or more other radio telecommunications protocols other than or in addition to Bluetooth mesh networking such as, but not limited to, Z-Wave, ZigBee, Thread, Wi-Fi, straight Bluetooth Low Energy (BLE), classic Bluetooth, and so on. -
Receiver 421 is a component that enables node 201-m to telecommunicate with other components and systems by receiving signals that convey information therefrom. It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than onereceiver 421. -
Transmitter 422 is a component that enables node 201-m to telecommunicate with other components and systems by transmitting signals that convey information thereto. For example and without limitation,transmitter 422 is configured to transmit packets comprising the information described below and inFIGS. 6 through 10 . It will be clear to those having ordinary skill in the art how to make and use alternative embodiments that comprise more than onetransmitter 422. - In accordance with the illustrative embodiment, node 201-m uses
radio communications module 405 in order to telecommunicate wirelessly with external devices. It will clear to those skilled in the art, however, after reading the present disclosure, how to make use and use various embodiments of the present invention in which node 201-m communicates via a wired protocol (e.g., X10, KNX, etc.) over physical media (e.g., cable, wire, etc.) with one or more external devices, either in addition to or instead of the wireless capability provided byradio communications module 405. - In generating and transmitting one or more packets that convey a message within
mesh network 131, along with including its own network address as the source address in the message, node 201-m is said to originate the message. As described below, node 201-m is further capable of forwarding a message that has been originated by a different node. - Operations of
Browser Device 102 in Designing a Building Automation and Control System: -
FIG. 5 depicts salient operations ofmethod 500 according to the illustrative embodiment, by whichbrowser device 102 performs various functions that are related to designing an automation and control system for building 200. - In regard to
method 500, as well as to the other methods depicted in the flowcharts and message flow diagrams contained herein, it will be clear to those having ordinary skill in the art, after reading the present disclosure, how to make and use alternative embodiments of the disclosed methods in which the recited operations, sub-operations, and messages are differently sequenced, grouped, or sub-divided—all within the scope of the present invention. It will be further clear to those skilled in the art, after reading the present disclosure, how to make and use alternative embodiments of the disclosed methods wherein some of the described operations, sub-operations, and messages are optional, are omitted, or are performed by other elements and/or systems than the illustrative devices associated with the respective methods. - In accordance with the illustrative embodiment,
browser device 102 is featured here as performing the operations associated withmethod 500. As those who are skilled in the art will appreciate after reading this specification, in some alternative embodiments a different device (e.g.,wireless device 122, etc.) performsmethod 500. - In accordance with
operation 501, and based on user input into the designer application,browser device 102 generates and transmits signals to initialize the building configuration database maintained byserver computer 112. In some embodiments, an account and a project are first created within which to organize design information. - In accordance with
operation 503, and based on user input into the designer application,browser device 102 generates and transmits signals to configure a floor plan and to define one or more design “spaces” within the floor plan. In some embodiments, a ceiling (with lights and sensors) as reflected when looking down on a floor is displayed through the browser app to the user, and is used by the user as a canvas for planning and configuring a lighting and sensor system. The user is able to identify the spaces in relation to the floor plan, anddevice 102 generates and transmits signals corresponding to the user's actions. In some embodiments of the present invention, at some of the spaces overlap with one or more of the other spaces. - In accordance with
operation 505, and based on user input into the designer application,browser device 102 generates and transmits signals to arrange the placement of light fixtures, sensors, and switches, in relation to the one or more spaces identified inoperation 503. As a result, a relationship is established in the database between each defined space and the placement (virtual representation) of a plurality of devices within the space on the floorplan. At this point, the database does not necessarily possess, nor does it require, knowledge of the actual devices that are or will be installed at the placements identified and arranged in accordance withoperation 505. - In accordance with
operation 507, and based on user input into the designer application,browser device 102 generates and transmits signals to configure one or more scenarios to be assigned to each space defined inoperation 503. The following are scenarios that can be associated with each space, for example and without limitation: -
- i. a “switch” (or “manual on/manual off”) scenario. A light (without a controller) responds to a switch that transmits an “on” or “off” notification, as part of a scenario comprising these switch-related functions.
- ii. an “occupancy” (or “automatic on/automatic off”) scenario. One or more lights (with controllers) respond to an occupancy sensor or sensors that transmit an “on” notification and, later, automatically turn themselves off based on the occupancy sensors not having detected occupancy for a predetermined length of time, as part of this scenario comprising these occupancy-related functions.
- iii. a “vacancy” (or “manual on/automatic off”) scenario. One or more lights (with controllers) respond to a switch or switches that transmit an “on” notification and, later, automatically turn themselves off based on occupancy sensors not having detected occupancy for a predetermined length of time, as part of a scenario comprising these vacancy-related functions.
- iv. a “scenes” scenario. Scenes are memorized lighting level presets (e.g., for audio-visual presentation, after-hours cleaning of office spaces, etc.)
- Additionally, a “daylight harvesting” option can be configured to augment the aforementioned switch, occupancy, and vacancy scenarios, in which an ambient light sensing function is utilized to adjust the light output of the fixtures, once the yet-to-be commissioned devices are operating as part of a mesh network.
- As a result of associating one or more scenarios with one or more of the defined spaces in the database, a relationship is established in the database between each space and one or more scenarios assigned to the space.
- Operations for Installing the Nodes in the Designed Automation and Control System:
-
FIG. 6 depicts salient operations ofmethod 600 according to the commissioning system of the illustrative embodiment, the commissioning system comprising data-processing system 111 andwireless device 122, by which various functions are performed related to installing nodes 201-1 through 201-M inmesh network 131. For at least some of the operations described below, the commissioning system generates and transmits the appropriate signals that implement the described operations, based on user input into an installer software application (or “app”) executing ondevice 122. - In accordance with the illustrative embodiment, data-
processing system 111 is featured here as performing the operations associated withmethod 600, whereinwireless device 122 serves in part as an intermediary device, in that it relays messages betweensystem 111 and one or more mesh nodes innetwork 131. As those who are skilled in the art will appreciate after reading this specification, in some alternative embodiments a different device performsmethod 600. For example, in some embodiments of the present invention,wireless device 122 can perform at least some of the operations associated withmethod 600. - In accordance with
operation 601, data-processing system 111 retrieves configuration data stored in a database in a memory withinsystem 111. The database, including configuration data, was previously created as part of the design process described above and with regard toFIG. 5 . The received configuration data identifies the placement of each of a plurality of devices in relation to each space defined in the database, including a first space and a second space. The received configuration data also identifies one or more scenarios (e.g., a first scenario, a second scenario, etc.) assigned to each space. With this information, it can be inferred that devices at certain placements will be subject to certain scenarios. In some alternative embodiments,wireless device 122 receives the configuration data from data-processing system 111. - In accordance with
operation 603, data-processing system 111 provisions one or more network-capable devices that it is capable of communicating with viawireless device 122, in order to form a mesh network. Prior to this point, network addresses have not yet been provided to the network-capable devices; consequently, the network-capable devices are not yet in communication with one another. It is through this process that a network-capable device becomes a node in the mesh network, capable of communicating with other nodes in the mesh network and, of particular significance, capable of transferring some of the information described below, such as group addresses and other operational parameters. -
Wireless device 122 is capable of communicating with the one or more network-capable devices when it is within communication range of the devices. Accordingly,device 122 can serve as an intermediary in provisioning the devices, while under the control of a user (e.g., technician, etc.) when the user anddevice 122 are on-site and within range of the devices (e.g., in the same room, on the same building floor, etc.). - Within a Bluetooth® context, the provisioning of the network-capable devices is described in the Bluetooth Mesh Profile Specification, Revision v1.0, dated Jul. 13, 2017 (the “Mesh Profile Specification”), which is incorporated herein by reference. In general, provisioning includes data-
processing system 111 assigning and providing, viawireless device 122 to each network-capable device, a unique unicast address, along with a network key. The unicast address is transmitted in such a way that the recipient node is configured to regard the address as one that uniquely identifies the node in the data network. In some alternative embodiments of the present invention,wireless device 122 performs additional operations (e.g., assigning, etc.) instead of relaying messages between data-processing system 111 and the network-capable devices. In some other embodiments of the present invention, one or more of the unicast addresses have been preassigned. - In some embodiments of the present invention, the functionality of each network node can be discovered over the mesh network by reading composition data that is transmitted amongst the network nodes. Composition data is defined in the Mesh Profile Specification. The functionality is determined by the model or models that the node supports, which are also defined in the aforementioned Specification.
- In accordance with
operation 605, data-processing system 111 receives, fromwireless device 122, information that maps each mesh node to its virtual representation (i.e., its placement as described earlier) on the floor plan in the configuration data received in accordance withoperation 601. The commissioning system maps each node in a subset (e.g., proper subset, improper subset, etc.) of the provisioned first set of nodes to each respective node in a second set of nodes inmesh network 131, wherein the second set of nodes corresponds to at least some of the plurality of devices whose placements are represented in the database. At this point, not only the placements of a plurality of devices are known to be associated with a particular space or spaces, but the provisioned network nodes are also known to be associated with the space or spaces as well. - Mapping can involve one or more techniques such as, while not being limited to, utilizing one or more of i) received signal strength indication (RSSI) measurements, ii) Time of Flight (TOF) measurements, iii) other types of sensor readings, and so on. In accordance with the illustrative embodiment, the installation app executing on
wireless device 122 receives signals from its user interface the indicate a selection of which identified mesh network node matches a device whose placement is represented on a floorplan in the configuration database. - In some embodiments,
mesh network 131 had been previously provisioned and the mesh nodes have had their unicast addresses and network keys already assigned. In such embodiments, the identification and mapping process associated withoperation 605 additionally involves learning each mesh node's previously-assigned unicast address and then mapping the identified node to its virtual representation as described above. - In accordance with
operation 607, data-processing system 111 takes the scenarios and spaces, as representing a logical configuration, and transforms them into a network-centric configuration.Operation 607 is described in detail and in regard toFIG. 7 . - In accordance with
operation 609, data-processing system 111 applies the relevant configuration to each mesh node in accordance with the protocol standard of the mesh network (e.g., Bluetooth®, etc.). In this operation,system 111 takes the network-centric configuration, obtained in accordance withoperation 607, and decomposes it into a physical configuration of each mesh node, resulting in a set of parameters for each mesh node, whichsystem 111 then provides, viawireless device 122, to the applicable mesh node or nodes.Operation 609 is described in detail and in regard toFIG. 8 . Also, an example of a mesh node commissioning process, including transformation- and decomposition-related operations fromFIGS. 7 and 8 , respectively, is described below and in regard toFIG. 9 . - Additionally, the commissioning system can fine tune one or more parameters that have been generated for the mesh nodes as part of
operation 609. For example, based on user input into the installer app, one or both of data-processing system 111 andwireless device 122 can update the reflected light level as measured by one or more sensor-equipped mesh nodes. - Operations in Transforming Scenarios and Spaces:
-
FIG. 7 depicts salient sub-operations withinoperation 607, by which data-processing system 111 transforms the scenarios and spaces, which represent essentially a logical configuration of building 200's automation and control system, into a network-centric configuration. - In accordance with
operation 701, data-processing system 111 generates group addresses. A “group address” is defined in the Bluetooth Mesh Profile Specification, Section 3.4.2.4. Data-processing system 111 generates a group address based on one or more of i) the particular space with which the second set of nodes (in mesh network 131) is associated, as established bymapping operation 605, and/or ii) the functions that are performed by the second set of nodes in performing a particular scenario assigned to the particular space. - The act itself of generating the group address can be based on the space and/or functions performed, or the value of the group address (e.g., denoting a Fixed Group address, denoting other usage, etc.) can be based on the space and/or functions performed, or both. For example, data-
processing system 111 can generate a first group address that is dependent on a first space and functions performed in conjunction with a first scenario assigned to the first space, orsystem 111 can generate a second group address that is dependent on a first space and functions performed in conjunction with a second scenario assigned to the first space, orsystem 111 can generate a third group address that is dependent on a second space and functions performed in conjunction with a scenario assigned to the second space. - Group addresses are what at least some nodes (e.g., sensors, etc.) publish to, once
mesh network 131 becomes operational. Consequently, a first group address might be created for a first sensor to publish to in a first space, a second group address might be created for a second sensor to publish to in a second space (or in the first space, for that matter), and so on. - In accordance with
operation 703, data-processing system 111 assigns nodes to one or more groups that correspond to the group addresses generated in accordance withoperation 701. Data-processing system 111 assigned a node to a group address based on one or more of i) the particular space with which the node is associated, as established bymapping operation 605, and/or ii) the functions that are performed by the node in performing a particular scenario assigned to the particular space. The assignment a node to a group or groups reflects to which group(s) the node is subscribed. - Control of operation execution then proceeds to
operation 609. - Operations in Generating Parameters for Each Mesh Node:
-
FIG. 8 depicts salient sub-operations withinoperation 609, by which data-processing system 111 takes the network-centric configuration obtained in accordance withoperation 607 and decomposes it into a physical configuration of each mesh node, resulting in a set of parameters for each mesh node - In accordance with
operation 801, data-processing system 111 determines a set of parameters for each mesh node 201-m in themesh network 131, based on i) the nodes that have been assigned to each group, in accordance withoperation 703, and/or ii) the function or functions to be performed by each mesh node 201-m. There are various types of parameters, as will now be described. - Data-
processing system 111 can determine parameters that are related to publications and subscriptions, including those related to groups that a mesh node publishes to and/or groups that a mesh node is subscribed to. The concept of “publish-subscribe” is described in Mesh Profile Specification, Section 2.3.8. - Data-
processing system 111 can determine parameters that are related to security, including application groups and subnets. The concept of “security” is described in Mesh Profile Specification, Section 2.3.9. - Data-
processing system 111 can determine additional parameters for each model. In a Bluetooth® context, the detailed set of parameters are generally described in various sections of the Mesh Profile Specification, cited earlier in this disclosure, and the Bluetooth Mesh Model Specification, Revision v1.0, dated Jul. 13, 2017 (the “Mesh Model Specification”), which is incorporated herein by reference. Some of the parameters are as follows: -
- i. Network layer parameters (e.g., retransmissions, TTL values, relays, proxies, etc.),
- ii. Dimming ranges and defaults for light fixtures,
- iii. Levels and timings for light controllers,
- iv. Ranges and reporting cadence for sensors,
- v. Scenes,
- vi. Time value and propagation, and
- vii. Schedulers.
- In accordance with
operation 803, data-processing system 111 directswireless device 122 to transmit, in one or more messages, the assigned group address (e.g., first group address, second group address, etc.) and other parameters determined in accordance withoperation 801 to the applicable node as identified (and addressed) by its unicast address.Device 122 transmits these messages in accordance with the mesh network protocol. For each node being commissioned in the second set of nodes inmesh network 131,device 122 transmits the node-specific set of parameters.Device 122 transmits the assigned group addresses in such a way that each mesh node stores its group address and, going forward, each subscribing node is responsive to one or more received messages that contain, in the destination address field of the received message, the stored group address. - Example of a Mesh Node Commissioning Process:
-
FIG. 9 depicts at least some of the nodes withinmesh data network 131, which participate in a mesh node commissioning process in accordance with the illustrative embodiment and described below. In the example, a conference room within building 200 is equipped with luminaires 201-3, 201-6, and 201-9; the conference room is also equipped with ambient light sensors 201-15 through 201-17 and occupancy sensor 201-18. A scenario of occupancy processing with daylight harvesting is to be applied to the conference room and, more specifically, to the network-capable luminaires and sensors. - A first aspect of the commissioning process involves transformation, as described above and in
FIG. 7 , in which the “conference room” space and the “occupancy with daylight harvesting” scenario is to be transformed into a network-centric configuration. The abstract concept of “spaces” and “scenarios” has to be transformed into a real network of nodes with necessary functions: in this case, the luminaires and sensors identified above. - As the conference room is a smaller part of building 200, it is necessary to generate group addresses that sensors 201-15 through 201-18 will be publishing to. In the example, and in accordance with
operation 701, data-processing system 111 generates a first group address for the occupancy function and a second group address for the ambient-light-sensing (ALS) function.Occupancy group 901 will be for the whole conference room. Ambient light sensing will use three separate sensors for three zones: sensor 201-15 near the windows, sensor 201-16 in the middle, and sensor 201-17 far from the window. - In accordance with
operation 703, data-processing system 111 assigns luminaires 201-3, 201-6, and 201-9 to the groups. In the example, each luminaire will be a member of two groups:occupancy group 901 and one of the ALS groups. In particular, luminaire 201-9 belongs toALS group 902, luminaire 201-6 belongs toALS group 903, and luminaire 201-3 belongs toALS group 904. Conveniently, the areas defined byelements 901 through 904 as drawn coincide with the spaces that have been defined by the user in designing the conference room lighting control, although this is not always the case. - A second aspect of the commissioning process involves decomposition, as described above and in
FIG. 8 . Data-processing system 111 decomposes the network-centric configuration into a set of parameters for each node thatsystem 111 generates in accordance withoperation 801, such as the group that a node publishes to, the group or groups that a node is subscribed to, the publishing cadence, the application security keys that are used, and so on. There are also parameters defining the node's behavior from the network perspective, such as whether the node is a relay or not, the number of times that a relay node retransmits, whether the node is a proxy node that allows smartphones connecting to the network, and so on. In accordance withoperation 803,system 111 provides, viawireless device 122 acting as a relay, each set of parameters generated to the applicable node—in this case, luminaires 201-3, 201-6, and 201-9 and sensors 201-15 through 201-18. - Operations of Mesh Node 201-m while Interacting with Other Mesh Nodes:
-
FIG. 10 depicts salient operations ofmethod 1000 according to the illustrative embodiment, by which each mesh node 201-m performs various functions related to interacting with other nodes innetwork 131. - In accordance with the illustrative embodiment, luminaire 201-3 is featured here as performing the operations associated with
method 1000. As those who are skilled in the art will appreciate after reading this specification, other mesh nodes are capable of performingmethod 600 concurrently with luminaire 201-3 and with one another. - In accordance with
operation 1001, luminaire 201-3 receives one or more group addresses and other parameters that are transmitted bywireless device 122 in accordance withoperation 803. For example, luminaire 201-3 might receive group addresses corresponding togroups FIG. 9 . - In accordance with
operation 1003, luminaire 201-3 stores the one or more group addresses and other parameters that are received in accordance withoperation 1001. - In accordance with
operation 1005, and after entering a monitoring mode, luminaire 201-3 receives a control-related message from another mesh node. The message might originate from ambient light sensor 201-17 and contain a group address forgroup 904, or from occupancy sensor 201-18 and contain a group address forgroup 901. - In accordance with
operation 1007, luminaire 201-3 acts on the message received in accordance withoperation 1005, only if the destination address in the received message is the stored group address—in this case, the addresses forgroups - Luminaire 201-3 continues to monitor for additional control-related messages and, if appropriate, to act on them (e.g., turn on lamp, turn off lamp, dim lamp, etc.).
- It is to be understood that the disclosure teaches just one example of the illustrative embodiment and that many variations of the invention can easily be devised by those skilled in the art after reading this disclosure and that the scope of the present invention is to be determined by the following claims.
Claims (20)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/910,338 US10382284B1 (en) | 2018-03-02 | 2018-03-02 | System and method for commissioning mesh network-capable devices within a building automation and control system |
PCT/US2019/019365 WO2019168778A1 (en) | 2018-03-02 | 2019-02-25 | Commissioning mesh network-capable devices within a building automation and control system |
EP19710234.6A EP3760010B1 (en) | 2018-03-02 | 2019-02-25 | Commissioning mesh network-capable devices within a building automation and control system |
US16/453,879 US11172564B2 (en) | 2018-03-02 | 2019-06-26 | Method for commissioning mesh network-capable devices, including mapping of provisioned nodes |
US17/480,486 US11678426B2 (en) | 2018-03-02 | 2021-09-21 | Commissioning mesh network-capable devices, based on functions associated with a scenario assigned to a space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/910,338 US10382284B1 (en) | 2018-03-02 | 2018-03-02 | System and method for commissioning mesh network-capable devices within a building automation and control system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/453,879 Continuation US11172564B2 (en) | 2018-03-02 | 2019-06-26 | Method for commissioning mesh network-capable devices, including mapping of provisioned nodes |
Publications (2)
Publication Number | Publication Date |
---|---|
US10382284B1 US10382284B1 (en) | 2019-08-13 |
US20190273659A1 true US20190273659A1 (en) | 2019-09-05 |
Family
ID=65724553
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/910,338 Active US10382284B1 (en) | 2018-03-02 | 2018-03-02 | System and method for commissioning mesh network-capable devices within a building automation and control system |
US16/453,879 Active 2038-06-21 US11172564B2 (en) | 2018-03-02 | 2019-06-26 | Method for commissioning mesh network-capable devices, including mapping of provisioned nodes |
US17/480,486 Active US11678426B2 (en) | 2018-03-02 | 2021-09-21 | Commissioning mesh network-capable devices, based on functions associated with a scenario assigned to a space |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/453,879 Active 2038-06-21 US11172564B2 (en) | 2018-03-02 | 2019-06-26 | Method for commissioning mesh network-capable devices, including mapping of provisioned nodes |
US17/480,486 Active US11678426B2 (en) | 2018-03-02 | 2021-09-21 | Commissioning mesh network-capable devices, based on functions associated with a scenario assigned to a space |
Country Status (3)
Country | Link |
---|---|
US (3) | US10382284B1 (en) |
EP (1) | EP3760010B1 (en) |
WO (1) | WO2019168778A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113448951A (en) * | 2021-09-02 | 2021-09-28 | 深圳市信润富联数字科技有限公司 | Data processing method, device, equipment and computer readable storage medium |
CN116108042A (en) * | 2023-04-11 | 2023-05-12 | 北京淘友天下技术有限公司 | Data processing method, device, electronic equipment, storage medium and program product |
US11716389B1 (en) * | 2022-09-28 | 2023-08-01 | SILVAIR Sp. z o.o. | Visualization of wireless signal propagation in a networked lighting control system |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10382284B1 (en) | 2018-03-02 | 2019-08-13 | SILVAIR Sp. z o.o. | System and method for commissioning mesh network-capable devices within a building automation and control system |
DK3806970T3 (en) * | 2018-06-12 | 2022-10-31 | Lego As | Modular toy construction system with interactive toy construction elements |
CN113170005B (en) | 2018-09-13 | 2023-08-08 | 瑞典爱立信有限公司 | Method and device for supporting selective forwarding of messages in a network of communicatively coupled communication devices |
US11405293B2 (en) * | 2018-09-21 | 2022-08-02 | Kyndryl, Inc. | System and method for managing IT asset inventories using low power, short range network technologies |
WO2020094536A1 (en) * | 2018-11-05 | 2020-05-14 | Signify Holding B.V. | Adapting a lighting control interface based on an analysis of conversational input |
US11036377B1 (en) * | 2019-04-08 | 2021-06-15 | Synapse Wireless, Inc. | Systems and methods for enabling efficient commissioning of lights using a mobile device |
US10542610B1 (en) | 2019-08-28 | 2020-01-21 | Silvar Sp. z o.o. | Coordinated processing of published sensor values within a distributed network |
CN110582150B (en) * | 2019-09-03 | 2021-06-22 | 无锡金顺照明科技有限公司 | Ambient light and music control system and method |
US11561533B2 (en) * | 2020-09-30 | 2023-01-24 | Rockwell Automation Technologies, Inc. | Streamlining the commission of network identifiers |
CN112291386B (en) * | 2020-11-13 | 2022-03-29 | 珠海雷特科技股份有限公司 | Bluetooth address allocation method of intelligent lamp, computer device and computer readable storage medium |
CN115996228B (en) * | 2023-03-22 | 2023-05-30 | 睿至科技集团有限公司 | Energy data processing method and system based on Internet of things |
Family Cites Families (141)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4969147A (en) | 1987-11-10 | 1990-11-06 | Echelon Systems Corporation | Network and intelligent cell for providing sensing, bidirectional communications and control |
US4918690A (en) | 1987-11-10 | 1990-04-17 | Echelon Systems Corp. | Network and intelligent cell for providing sensing, bidirectional communications and control |
US5963253A (en) * | 1997-01-17 | 1999-10-05 | Raytheon Company | Light sensor and thresholding method for minimizing transmission of redundant data |
US6437692B1 (en) | 1998-06-22 | 2002-08-20 | Statsignal Systems, Inc. | System and method for monitoring and controlling remote devices |
US6891838B1 (en) | 1998-06-22 | 2005-05-10 | Statsignal Ipc, Llc | System and method for monitoring and controlling residential devices |
US6353853B1 (en) | 1998-10-26 | 2002-03-05 | Triatek, Inc. | System for management of building automation systems through an HTML client program |
US6834208B2 (en) | 1999-12-30 | 2004-12-21 | Microsoft Corporation | Method and apparatus for providing distributed control of a home automation and control system |
US6580950B1 (en) | 2000-04-28 | 2003-06-17 | Echelon Corporation | Internet based home communications system |
US6873610B1 (en) | 2000-05-01 | 2005-03-29 | Mobular Technologies, Inc. | System and method for efficiently accessing affiliated network addresses from a wireless device |
US6756998B1 (en) | 2000-10-19 | 2004-06-29 | Destiny Networks, Inc. | User interface and method for home automation system |
US6792319B1 (en) | 2000-10-19 | 2004-09-14 | Destiny Networks, Inc. | Home automation system and method |
US6909921B1 (en) | 2000-10-19 | 2005-06-21 | Destiny Networks, Inc. | Occupancy sensor and method for home automation system |
US6912429B1 (en) | 2000-10-19 | 2005-06-28 | Destiny Networks, Inc. | Home automation system and method |
US20030083087A1 (en) * | 2001-10-30 | 2003-05-01 | Ekl Randy L. | Systems and methods for implementing calls using pre-established multicast groups in a multicast IP network |
US6667690B2 (en) | 2002-01-22 | 2003-12-23 | Carrier Corporation | System and method for configuration of HVAC network |
US7092772B2 (en) | 2002-04-17 | 2006-08-15 | Black & Decker Inc. | Home automation system |
US7889051B1 (en) * | 2003-09-05 | 2011-02-15 | The Watt Stopper Inc | Location-based addressing lighting and environmental control system, device and method |
US10200504B2 (en) | 2007-06-12 | 2019-02-05 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US10382452B1 (en) | 2007-06-12 | 2019-08-13 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
GB2428821B (en) | 2004-03-16 | 2008-06-04 | Icontrol Networks Inc | Premises management system |
US10339791B2 (en) | 2007-06-12 | 2019-07-02 | Icontrol Networks, Inc. | Security network integrated with premise security system |
US7860495B2 (en) | 2004-08-09 | 2010-12-28 | Siemens Industry Inc. | Wireless building control architecture |
US7817994B2 (en) | 2004-09-20 | 2010-10-19 | Robert Bosch Gmbh | Secure control of wireless sensor network via the internet |
US7382271B2 (en) | 2004-09-29 | 2008-06-03 | Siemens Building Technologies, Inc. | Automated position detection for wireless building automation devices |
US7555658B2 (en) | 2004-09-30 | 2009-06-30 | Regents Of The University Of California | Embedded electronics building blocks for user-configurable monitor/control networks |
US7139239B2 (en) | 2004-10-05 | 2006-11-21 | Siemens Building Technologies, Inc. | Self-healing control network for building automation systems |
WO2006059833A1 (en) * | 2004-12-03 | 2006-06-08 | Dci Co., Ltd. | Home automation device and its control method |
US20090066473A1 (en) | 2005-03-11 | 2009-03-12 | Koninklijke Philips Electronics, N.V. | Commissioning wireless network devices according to an installation plan |
US7859401B2 (en) | 2005-03-22 | 2010-12-28 | Koninklijke Philips Electronics N.V. | Addressing scheme for smart wireless medical sensor networks |
US7826450B2 (en) * | 2005-04-25 | 2010-11-02 | Infineon Technologies Ag | Multicast/broadcast extension to a point-to-point unicast-only packet switch system |
US10333731B2 (en) | 2005-06-09 | 2019-06-25 | Whirlpool Corporation | Methods and apparatus for communicatively coupling internal components within appliances, and appliances with external components and accessories |
US20070060147A1 (en) | 2005-07-25 | 2007-03-15 | Shin Young S | Apparatus for transmitting data packets between wireless sensor networks over internet, wireless sensor network domain name server, and data packet transmission method using the same |
US8050801B2 (en) | 2005-08-22 | 2011-11-01 | Trane International Inc. | Dynamically extensible and automatically configurable building automation system and architecture |
US8134942B2 (en) | 2005-08-24 | 2012-03-13 | Avaak, Inc. | Communication protocol for low-power network applications and a network of sensors using the same |
US20090222541A1 (en) | 2005-11-08 | 2009-09-03 | Nortel Networks Limited | Dynamic sensor network registry |
US20070127475A1 (en) * | 2005-12-05 | 2007-06-07 | Ravi Kuchibhotla | Method and apparatus for switching nodes to a new packet data connection point |
KR100725943B1 (en) | 2006-01-02 | 2007-06-11 | 삼성전자주식회사 | Home automation system capable of controlling electric devices corresponding to set surrounding environmental condition and method thereof |
US7486193B2 (en) | 2006-02-06 | 2009-02-03 | Cooper Technologies Company | Occupancy sensor network |
US8725845B2 (en) | 2006-03-16 | 2014-05-13 | Exceptional Innovation Llc | Automation control system having a configuration tool |
US8209398B2 (en) | 2006-03-16 | 2012-06-26 | Exceptional Innovation Llc | Internet protocol based media streaming solution |
US8155142B2 (en) | 2006-03-16 | 2012-04-10 | Exceptional Innovation Llc | Network based digital access point device |
US8001219B2 (en) | 2006-03-16 | 2011-08-16 | Exceptional Innovation, Llc | User control interface for convergence and automation system |
US20070232288A1 (en) | 2006-03-30 | 2007-10-04 | Mcfarland Norman R | Service tool for wireless automation systems |
WO2007124453A2 (en) | 2006-04-20 | 2007-11-01 | Exceptional Innovation Llc | Touch screen for convergence and automation system |
US8427979B1 (en) * | 2006-07-27 | 2013-04-23 | Mobitrum Corporation | Method and system for dynamic information exchange on location aware mesh network devices |
US8023440B2 (en) | 2006-08-30 | 2011-09-20 | Siemens Industry, Inc. | Binding wireless devices in a building automation system |
US7986718B2 (en) * | 2006-09-15 | 2011-07-26 | Itron, Inc. | Discovery phase in a frequency hopping network |
JP4213176B2 (en) | 2006-11-16 | 2009-01-21 | シャープ株式会社 | Sensor device, server node, sensor network system, communication path construction method, control program, and recording medium |
US7680745B2 (en) | 2007-01-29 | 2010-03-16 | 4Homemedia, Inc. | Automatic configuration and control of devices using metadata |
US8687536B2 (en) * | 2007-02-23 | 2014-04-01 | Qualcomm Incorporated | Method and apparatus to create multicast groups based on proximity |
US10389736B2 (en) | 2007-06-12 | 2019-08-20 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US8681676B2 (en) | 2007-10-30 | 2014-03-25 | Honeywell International Inc. | System and method for providing simultaneous connectivity between devices in an industrial control and automation or other system |
KR20090056481A (en) | 2007-11-30 | 2009-06-03 | 한국전자통신연구원 | Apparatus and method for connecting heterogeneous network in sensor network |
IL189891A (en) * | 2008-03-03 | 2013-06-27 | Alvarion Ltd | Method for broadcasting/multicasting transmissions in wireless networks |
US8364319B2 (en) | 2008-04-21 | 2013-01-29 | Inncom International Inc. | Smart wall box |
US8275471B2 (en) | 2009-11-06 | 2012-09-25 | Adura Technologies, Inc. | Sensor interface for wireless control |
US9253707B2 (en) * | 2008-06-04 | 2016-02-02 | Koninklijke Philips N.V. | Network interface unit for a node in a wireless multi-hop network, and a method of establishing a network path between nodes in a wireless multi-hop network |
US20100010975A1 (en) * | 2008-07-10 | 2010-01-14 | Morris Robert P | Methods And Systems For Resolving A Query Region To A Network Identifier |
US8392606B2 (en) * | 2008-09-23 | 2013-03-05 | Synapse Wireless, Inc. | Wireless networks and methods using multiple valid network identifiers |
MY148159A (en) * | 2008-11-14 | 2013-03-15 | Mimos Berhad | A method and system for encapsulating multicast packets into unicast packets |
US9325573B2 (en) * | 2008-12-09 | 2016-04-26 | Schneider Electric Buildings Ab | Building control system |
US8786440B2 (en) * | 2009-10-02 | 2014-07-22 | Checkpoint Systems, Inc. | Calibration of beamforming nodes in a configurable monitoring device system |
KR20120098682A (en) | 2009-10-12 | 2012-09-05 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Method of associating or re-associating devices in a control network |
US8219660B2 (en) | 2010-02-26 | 2012-07-10 | Trane International Inc. | Simultaneous connectivity and management across multiple building automation system networks |
US8793022B2 (en) | 2010-02-26 | 2014-07-29 | Trane International, Inc. | Automated air source and VAV box association |
US8774094B2 (en) * | 2010-09-10 | 2014-07-08 | Weixiang Chen | Hybrid routing and forwarding solution for a wireless sensor network |
US8356845B2 (en) | 2010-09-14 | 2013-01-22 | John Harbert Bernard | Scoop device with articulated-arm sifting action |
US8510255B2 (en) | 2010-09-14 | 2013-08-13 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US10564613B2 (en) * | 2010-11-19 | 2020-02-18 | Hubbell Incorporated | Control system and method for managing wireless and wired components |
WO2012080893A1 (en) * | 2010-12-15 | 2012-06-21 | Koninklijke Philips Electronics N.V. | Control unit, node and method for addressing multicast transmissions in a wireless network |
EP2656692B1 (en) * | 2010-12-22 | 2016-11-16 | Philips Lighting Holding B.V. | Control of network lighting systems |
AU2011359604B2 (en) | 2011-02-16 | 2014-05-22 | Kortek Industries Pty Ltd | Wireless power, light and automation control |
US20120224522A1 (en) * | 2011-03-04 | 2012-09-06 | Electronics And Telecommunications Research Institute | Method and apparatus for managing multicast service |
DE102011081188A1 (en) | 2011-08-18 | 2013-02-21 | Tridonic Gmbh & Co Kg | Analysis and address assignment of wireless building networks |
US20130085615A1 (en) | 2011-09-30 | 2013-04-04 | Siemens Industry, Inc. | System and device for patient room environmental control and method of controlling environmental conditions in a patient room |
WO2013063495A1 (en) | 2011-10-28 | 2013-05-02 | Qualcomm Incorporated | Commissioning system for smart buildings |
WO2013067569A1 (en) | 2011-11-07 | 2013-05-16 | Xitel Pty. Limited | Adaptable wireless power, light and automation system |
EP2597815B1 (en) | 2011-11-23 | 2019-07-24 | Siemens Schweiz AG | Method for identification of devices included in a communication network |
US9374874B1 (en) | 2012-02-24 | 2016-06-21 | Synapse Wireless, Inc. | Lighting control systems and methods |
US20130291100A1 (en) | 2012-04-30 | 2013-10-31 | Sundaram S. Ganapathy | Detection And Prevention Of Machine-To-Machine Hijacking Attacks |
US8710983B2 (en) | 2012-05-07 | 2014-04-29 | Integrated Security Corporation | Intelligent sensor network |
US9197843B2 (en) * | 2012-07-19 | 2015-11-24 | Fabriq, Ltd. | Concurrent commissioning and geolocation system |
WO2014024072A2 (en) * | 2012-08-06 | 2014-02-13 | Koninklijke Philips N.V. | Out-of-the-box commissioning of a lighting control system |
US9703274B2 (en) | 2012-10-12 | 2017-07-11 | Telefonaktiebolaget L M Ericsson (Publ) | Method for synergistic occupancy sensing in commercial real estates |
US8806209B2 (en) | 2012-12-22 | 2014-08-12 | Wigwag, Llc | Provisioning of electronic devices |
AU2014229102A1 (en) | 2013-03-15 | 2015-10-01 | Hayward Industries, Inc. | System and method for dynamic device discovery and address assignment |
US9182275B2 (en) | 2013-04-01 | 2015-11-10 | Silver Spring Networks | Distributing light intensity readings in a wireless mesh |
US9612585B2 (en) | 2013-05-28 | 2017-04-04 | Abl Ip Holding Llc | Distributed building control system |
US9867260B2 (en) | 2013-06-26 | 2018-01-09 | Savant Systems, Llc | Lighting controller |
EP3053379A4 (en) | 2013-09-30 | 2017-05-03 | Schneider Electric Industries SAS | Cloud-authenticated site resource management devices, apparatuses, methods and systems |
US9999116B2 (en) * | 2014-01-10 | 2018-06-12 | Philips Lighting Holding B.V. | Tablet-based commissioning tool for addressable lighting |
EP3095217A4 (en) | 2014-01-17 | 2017-11-08 | Qualcomm Incorporated | Forwarding messages in a communication network |
US9210192B1 (en) | 2014-09-08 | 2015-12-08 | Belkin International Inc. | Setup of multiple IOT devices |
GB2518469B (en) * | 2014-04-02 | 2016-03-16 | Photonstar Led Ltd | Wireless nodes with security key |
EP3132595B1 (en) | 2014-04-16 | 2019-09-18 | ABB Inc. | System and method for automated and semiautomated configuration of facility automation and control equipment |
US10197979B2 (en) | 2014-05-30 | 2019-02-05 | Vivint, Inc. | Determining occupancy with user provided information |
US9348824B2 (en) * | 2014-06-18 | 2016-05-24 | Sonos, Inc. | Device group identification |
WO2016043635A1 (en) * | 2014-09-16 | 2016-03-24 | Telefonaktiebolaget L M Ericsson (Publ) | Sensor system of master and slave sensors, and method therein |
WO2016046005A2 (en) * | 2014-09-25 | 2016-03-31 | Philips Lighting Holding B.V. | Control of networked lighting devices |
ES2751694T3 (en) * | 2014-09-29 | 2020-04-01 | Cardo Systems Ltd | Ad-hoc communication network and communication method |
US9560727B2 (en) * | 2014-10-06 | 2017-01-31 | Fabriq, Ltd. | Apparatus and method for creating functional wireless lighting groups |
EP3205185B1 (en) | 2014-10-10 | 2018-02-28 | Philips Lighting Holding B.V. | Light effect control |
US20160170389A1 (en) | 2014-12-12 | 2016-06-16 | Samsung Electro-Mechanics Co., Ltd. | Smart home control apparatus, smart home control method and smart home control system |
EP3237811B1 (en) | 2014-12-22 | 2021-01-27 | Trane International Inc. | Occupancy sensing and building control using mobile devices |
US9680646B2 (en) | 2015-02-05 | 2017-06-13 | Apple Inc. | Relay service for communication between controllers and accessories |
US9516474B2 (en) | 2015-02-06 | 2016-12-06 | Siemens Industry, Inc. | Passive indoor occupancy detection and location tracking |
US10218794B2 (en) | 2015-02-25 | 2019-02-26 | SILVAIR Sp. z o.o. | System and method for decision-making based on source addresses |
US9945574B1 (en) | 2015-03-31 | 2018-04-17 | Google Llc | Devices and methods for setting the configuration of a smart home controller based on air pressure data |
CN107787469A (en) | 2015-05-04 | 2018-03-09 | 江森自控科技公司 | Multifunctional household control system with control system maincenter and distance sensor |
US10365619B2 (en) | 2015-06-16 | 2019-07-30 | Abb Schweiz Ag | Technologies for optimally individualized building automation |
US9654564B2 (en) | 2015-06-24 | 2017-05-16 | Qualcomm Incorporated | Controlling an IoT device using a remote control device via a remote control proxy device |
EP3320756B1 (en) * | 2015-07-06 | 2022-12-21 | Signify Holding B.V. | Occupancy messaging in wireless networked lighting system |
US10295210B2 (en) | 2015-07-13 | 2019-05-21 | British Gas Trading Limited | User interface for an environmental control system |
WO2017042153A1 (en) * | 2015-09-08 | 2017-03-16 | Philips Lighting Holding B.V. | Commissioning of lighting devices |
AU2016339067B2 (en) * | 2015-10-13 | 2022-03-10 | Schneider Electric Industries Sas | Centralized management of a software defined automation system |
US10231108B2 (en) | 2015-12-11 | 2019-03-12 | Google Llc | Virtual addressing for mesh networks |
US10211660B2 (en) * | 2016-02-08 | 2019-02-19 | Cree, Inc. | LED lighting device with adaptive profiles for controlling power consumption |
US9655215B1 (en) * | 2016-02-11 | 2017-05-16 | Ketra, Inc. | System and method for ensuring minimal control delay to grouped illumination devices configured within a wireless network |
US10057966B2 (en) * | 2016-04-05 | 2018-08-21 | Ilumisys, Inc. | Connected lighting system |
US10359746B2 (en) * | 2016-04-12 | 2019-07-23 | SILVAIR Sp. z o.o. | System and method for space-driven building automation and control including actor nodes subscribed to a set of addresses including addresses that are representative of spaces within a building to be controlled |
WO2018009579A1 (en) * | 2016-07-05 | 2018-01-11 | Lutron Electronics Co., Inc. | Controlling groups of electrical loads via multicast and/or unicast messages |
US9883570B1 (en) * | 2016-07-20 | 2018-01-30 | Abl Ip Holding Llc | Protocol for lighting control via a wireless network |
US10355921B2 (en) * | 2016-07-20 | 2019-07-16 | Abl Ip Holding Llc | Protocol for out of band commissioning of lighting network element |
US9820361B1 (en) * | 2016-07-20 | 2017-11-14 | Abl Ip Holding Llc | Wireless lighting control system |
US10057931B2 (en) * | 2016-07-21 | 2018-08-21 | Abl Ip Holding Llc | Out of band diagnostics and maintenance |
US9949350B2 (en) * | 2016-07-21 | 2018-04-17 | Abl Ip Holding Llc | Use of position data to determine a group monitor |
WO2018024489A1 (en) * | 2016-08-02 | 2018-02-08 | Philips Lighting Holding B.V. | Reliable reporting in wireless mesh network |
WO2018024528A1 (en) | 2016-08-05 | 2018-02-08 | Philips Lighting Holding B.V. | Building automation system with commissioning device |
CN110268805B (en) * | 2016-10-21 | 2022-07-19 | 路创技术有限责任公司 | Load control system for controlling an electrical load group |
DE112018000969T5 (en) * | 2017-02-23 | 2019-10-31 | Osram Gmbh | A NODE FOR A MULTIPLE SPEED COMMUNICATION NETWORK, A RELATED LIGHTING SYSTEM, A METHOD OF UPDATING THE SOFTWARE OF LIGHTING MODULES, AND A COMPUTER PROGRAM PRODUCT |
US10218529B2 (en) | 2017-07-11 | 2019-02-26 | Philipp Roosli | Automation system for deployment in a building |
CN111742528B (en) * | 2018-01-29 | 2023-05-30 | 昕诺飞控股有限公司 | Synchronous control of node subnetworks in wireless networks |
US10143067B1 (en) * | 2018-01-30 | 2018-11-27 | SILVAIR Sp. z o.o. | Networked lighting system and method |
US10382284B1 (en) | 2018-03-02 | 2019-08-13 | SILVAIR Sp. z o.o. | System and method for commissioning mesh network-capable devices within a building automation and control system |
US20190356762A1 (en) * | 2018-05-15 | 2019-11-21 | Xeleum Lighting | Wireless lighting control network |
US10797905B2 (en) * | 2018-05-29 | 2020-10-06 | Silvair Sp. z o.o | Synchronization of controller states in a distributed control system |
US10813001B1 (en) * | 2018-06-19 | 2020-10-20 | Synapse Wireless, Inc. | Multicast messaging based on distance estimation of network devices |
CN112913332A (en) * | 2018-08-21 | 2021-06-04 | 路创技术有限责任公司 | Controlling an electrical load group |
CN113170005B (en) * | 2018-09-13 | 2023-08-08 | 瑞典爱立信有限公司 | Method and device for supporting selective forwarding of messages in a network of communicatively coupled communication devices |
US10656008B2 (en) * | 2018-10-23 | 2020-05-19 | Sway sp. z o.o. | System and method for discovering the topology of devices within a building automation and control system |
CN114025312A (en) * | 2021-11-09 | 2022-02-08 | 上海遨有信息技术有限公司 | Method and system for broadcasting downlink route |
-
2018
- 2018-03-02 US US15/910,338 patent/US10382284B1/en active Active
-
2019
- 2019-02-25 WO PCT/US2019/019365 patent/WO2019168778A1/en unknown
- 2019-02-25 EP EP19710234.6A patent/EP3760010B1/en active Active
- 2019-06-26 US US16/453,879 patent/US11172564B2/en active Active
-
2021
- 2021-09-21 US US17/480,486 patent/US11678426B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113448951A (en) * | 2021-09-02 | 2021-09-28 | 深圳市信润富联数字科技有限公司 | Data processing method, device, equipment and computer readable storage medium |
US11716389B1 (en) * | 2022-09-28 | 2023-08-01 | SILVAIR Sp. z o.o. | Visualization of wireless signal propagation in a networked lighting control system |
US11863629B1 (en) * | 2022-09-28 | 2024-01-02 | SILVAIR Sp. z o.o. | Visualization of wireless signal propagation in a networked lighting control system with luminaires |
CN116108042A (en) * | 2023-04-11 | 2023-05-12 | 北京淘友天下技术有限公司 | Data processing method, device, electronic equipment, storage medium and program product |
Also Published As
Publication number | Publication date |
---|---|
EP3760010B1 (en) | 2023-06-07 |
US10382284B1 (en) | 2019-08-13 |
US11678426B2 (en) | 2023-06-13 |
EP3760010A1 (en) | 2021-01-06 |
WO2019168778A1 (en) | 2019-09-06 |
US11172564B2 (en) | 2021-11-09 |
US20220007486A1 (en) | 2022-01-06 |
US20190319849A1 (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11678426B2 (en) | Commissioning mesh network-capable devices, based on functions associated with a scenario assigned to a space | |
US11782403B2 (en) | Space-driven building automation and control, including the configuring of one or more network nodes to an address that is representative of a space | |
US10656008B2 (en) | System and method for discovering the topology of devices within a building automation and control system | |
EP3787234B1 (en) | Coordinated processing of published sensor values within a distributed network | |
US10143067B1 (en) | Networked lighting system and method | |
US11095471B2 (en) | Home-automation system and method for constituting the topology of a home-automation system | |
US11483173B2 (en) | Smart adaptation of the functionalities of a remote control in a local area network | |
US11218549B2 (en) | Synchronization of controller states in a distributed control system, including synchronization across luminaire nodes having controllers | |
US20210006427A1 (en) | Method of configuration and/or of maintenance of a home-automation system for a building and associated home-automation system configuration device | |
CN111742610A (en) | Debugging method and device using controlled joining mode | |
US9774519B2 (en) | Peer-to-Peer building automation system without knowledge being required of network topology | |
US10218794B2 (en) | System and method for decision-making based on source addresses | |
US11863629B1 (en) | Visualization of wireless signal propagation in a networked lighting control system with luminaires | |
US20230022137A1 (en) | Networked Sensors Integrated with Heating, Ventilation, and Air Conditioning (HVAC) Systems | |
Christopoulos et al. | Building Automation Systems in the World |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SILVAIR SP. Z O.O., POLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SLUPIK, SZYMON;GEMBALA, ADAM;WITALINSKI, MACIEJ;AND OTHERS;SIGNING DATES FROM 20180223 TO 20180226;REEL/FRAME:045089/0938 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |