[go: nahoru, domu]

US20230157371A1 - Electronic Cigarette - Google Patents

Electronic Cigarette Download PDF

Info

Publication number
US20230157371A1
US20230157371A1 US17/562,007 US202117562007A US2023157371A1 US 20230157371 A1 US20230157371 A1 US 20230157371A1 US 202117562007 A US202117562007 A US 202117562007A US 2023157371 A1 US2023157371 A1 US 2023157371A1
Authority
US
United States
Prior art keywords
electronic cigarette
diaphragm
smoking port
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/562,007
Inventor
Jinyang Li
Rui Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Holdings Shenzhen Co Ltd
Original Assignee
AAC Acoustic Technologies Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Acoustic Technologies Shenzhen Co Ltd filed Critical AAC Acoustic Technologies Shenzhen Co Ltd
Assigned to AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) CO., LTD. reassignment AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, Jinyang, ZHANG, RUI
Publication of US20230157371A1 publication Critical patent/US20230157371A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors

Definitions

  • the present disclosure relates to sensor, and more particularly, to an electronic cigarette.
  • the electronic cigarette is powered by the battery inside the electronic cigarette.
  • consumers want to use the electronic cigarette they can trigger the electronic cigarette to turn on by sound.
  • this method has disadvantages. If the consumer is in a KTV, bar or other noisy environment, the noise from the surrounding environment is easy to cause interference to the electronic cigarette, causing the electronic cigarette switch to be turned on by mistake.
  • electronic cigarettes use electret differential pressure sensors as the switch function to start the electronic cigarettes, but these electret sensors generally have the following problems: the electronic cigarettes having the electret sensor cannot be performed by surface mounting process, which resulting the production efficiency of the electronic cigarettes is low; the performance consistency of the electronic cigarettes is poor; the electronic cigarette is sensitive to temperature, it will have a large performance change after high temperature; the electronic cigarettes having the electret sensor have a large size.
  • the embodiments of the present disclosure provide a new electronic cigarette.
  • the electronic cigarette has the advantages of simple installation, high reliability, high sensitivity and small size.
  • the present disclosure provides an electronic cigarette comprising a housing having a smoking port passing through an upper end of the housing, an atomizer received in the housing and spaced apart from the smoking port, an e-liquid chamber located between the atomizer and the smoking port, and a MEMS sensor located in the housing and on an lower end of the housing.
  • the housing comprises a through hole passing through the lower end thereof, and an air passage communicating with the smoking port.
  • the MEMS sensor comprises a cover having a first opening communicating with the smoking port by the air passage, a printed circuit board forming an accommodating room cooperatively with the cover, and a MEMS chip received in the accommodating room.
  • the printed circuit board comprises a second opening communicating to an outside by the through hole.
  • the printed circuit board comprises a plurality of conductive terminals therein, and the MEMS chip is directly electrically connected to the conductive terminals.
  • the printed circuit board comprises a plurality of conductive terminals therein, the MEMS sensor further comprising an ASIC chip fixing on the printed circuit board, and the MEMS chip is electrically connected to the conductive terminal through the ASIC chip.
  • the cover of the MEMS sensor is a metal cover.
  • the MEMS chip comprises a back plate and a diaphragm spaced apart from the back plate, a plurality of perforations disposed on the back plate.
  • the back plate is proximal to the smoking port than the diaphragm.
  • two pressures coining from the first opening and the second opening respectively simultaneously act on the diaphragm to form a pressure difference, the pressure difference making the diaphragm move to increase an output capacitance value to drive the atomizer work.
  • the diaphragm is proximal to the smoking port than the back plate.
  • two pressures coining from the first opening and the second opening respectively simultaneously act on the diaphragm to form a pressure difference, the pressure difference making the diaphragm move to reduce an output capacitance value to drive the atomizer work.
  • FIG. 1 is an illustrative cross-sectional view of the electronic cigarette of the present disclosure.
  • FIG. 2 is an illustrative cross-sectional view of the MEMS sensor of the electronic cigarette in accordance with a first embodiment of the present disclosure.
  • FIG. 3 is an illustrative cross-sectional view of the MEMS sensor of the electronic cigarette in accordance with a second embodiment of the present disclosure.
  • the present disclosure provides an electronic cigarette 100 .
  • the electronic cigarette 100 comprises a housing 1 having a smoking port 11 passing through an upper end thereof, an atomizer 2 received in the housing 1 and spaced apart from the smoking port 11 , an e-liquid chamber 3 located between the atomizer 2 and the smoking port 11 , and a MEMS sensor 4 located in the housing 1 and on an lower end of the housing 1 .
  • Smoke oil is injected into the e-liquid chamber 3 .
  • a through hole 12 is provided passing through the lower end of the housing 1 .
  • the MEMS sensor 4 comprises a cover 41 having a first opening 411 , a printed circuit board 42 forming an accommodating room 40 cooperatively with the cover 41 , and a MEMS chip 43 received in the accommodating room 40 .
  • the printed circuit board 42 comprises a second opening 421 communicating to an outside by the through hole 12 .
  • the housing 1 further comprises an air passage 13 communicating the smoking port 11 and the first opening 411 .
  • the printed circuit board 42 comprises a plurality of conductive terminals 422 therein, and the MEMS chip 43 is directly welded and fixed with the conductive terminals 422 to realize electrical connection.
  • the cover 41 of the MEMS sensor 4 is a metal cover.
  • the MEMS chip 43 comprises a back plate 431 and a diaphragm 432 spaced apart from the back plate 431 .
  • a plurality of perforations 4311 is disposed on the back plate 431 .
  • the back plate 431 is proximal to the smoking port 11 than the diaphragm 432 .
  • the diaphragm 432 also can be proximal to the smoking port 11 than the back plate 431 .
  • the diaphragm 432 also can comprise a plurality of perforations thereon.
  • a microprocessor can be set on the printed circuit board 42 , when a person inhales from the smoking port, and referring to the FIG. 1 , an arrow direction in FIG. 1 is the direction of air flow during inhalation. Due to a pressure difference formed by two pressures simultaneously act on the diaphragm coining from the first opening and the second opening respectively, the diaphragm is drove to move to a direction proximal to the smoking port. And the back plate is set closer to the smoking port at this time, a capacitance between the back plate and the diaphragm will increase, and the MEMS sensor will output a corresponding electrical signal. After the signal is processed, the microprocessor will receive the signal and output another corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • the diaphragm when the diaphragm is set closer to the smoking port at this time, due to the pressure difference formed by the two pressures simultaneously act on the diaphragm, the diaphragm is drove to move to a direction proximal to the smoking port.
  • the capacitance between the back plate and the diaphragm will reduce, and the MEMS sensor will output the corresponding electrical signal.
  • the microprocessor After the signal is processed, the microprocessor will receive the signal and output another corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • the MEMS sensor 4 ′ comprises a cover 41 ′ having a first opening 411 ′, a printed circuit board 42 ′ forming an accommodating room 40 ′ cooperatively with the cover 41 ′, and a MEMS chip 43 ′ and an ASIC chip 44 ′ received in the accommodating room 40 ′.
  • the printed circuit board 42 ′ comprises a second opening 421 ′ communicating to an outside by the through hole.
  • the printed circuit board 42 ′ comprises a plurality of conductive terminals 422 ′ therein, and the MEMS chip 43 ′ is electrically connected to the conductive terminals 422 ′ through the ASIC chip 44 ′.
  • the cover 41 ′ of the MEMS sensor 4 ′ is a metal cover.
  • the MEMS chip 43 ′ comprises a back plate 431 ′ and diaphragm 432 ′ spaced apart from the back plate 431 ′.
  • a plurality of perforations 4311 ′ is disposed on the back plate 431 ′.
  • the back plate 431 ′ is proximal to the smoking port than the diaphragm 432 ′.
  • the diaphragm 432 ′ also can be proximal to the smoking port than the back plate 431 ′.
  • the diaphragm 432 ′ also can comprise a plurality of perforations thereon.
  • a microprocessor can be set on the printed circuit board 42 ′, or the microprocessor can be integrated on the ASIC chip 44 ′.
  • the diaphragm is drove to move to a direction proximal to the smoking port.
  • the back plate is set closer to the smoking port at this time, a capacitance between the back plate and the diaphragm will increase, and the ASIC chip detects this change and outputs an electrical signal.
  • the microprocessor will receive the signal and output a corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • the diaphragm when the diaphragm is set closer to the smoking port at this time, due to the pressure difference formed by the two pressures simultaneously act on the diaphragm, the diaphragm is drove to move to a direction proximal to the smoking port.
  • the capacitance between the back plate and the diaphragm will reduce, and the ASIC chip detects this change and outputs an electrical signal.
  • the microprocessor After the signal is processed, the microprocessor will receive the signal and output another corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • the MEMS sensor can be directly welded and fixed in the housing of the electronic cigarette.
  • the electronic cigarette has the advantages of easy installation, high production efficiency, stable structure, good consistency, high temperature resistance, and small size.

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

The present disclosure provides an electronic cigarette includes a housing, an atomizer spaced apart from the smoking port, an e-liquid chamber located between the atomizer and the smoking port, and a MEMS sensor located in the housing. The housing includes a smoking port passing through an upper end thereof, a through hole passing through a lower end thereof, and an air passage communicating with the smoking port. The MEMS sensor includes a cover having a first opening, a printed circuit board, and a MEMS chip received in the accommodating room formed by the cover and the printed circuit board. The printed circuit board includes a second opening communicating to an outside by the through hole.

Description

    FIELD OF THE PRESENT DISCLOSURE
  • The present disclosure relates to sensor, and more particularly, to an electronic cigarette.
  • DESCRIPTION OF RELATED ART
  • At present, about 1.1 billion people in the world smoke. Because tobacco contains nicotine, smoking is extremely harmful to health. With the continuous improvement of living standards, more and more people begin to pay attention to health problems. As a substitute for cigarettes, electronic cigarettes have become popular among consumers.
  • The electronic cigarette is powered by the battery inside the electronic cigarette. When consumers want to use the electronic cigarette, they can trigger the electronic cigarette to turn on by sound. However, this method has disadvantages. If the consumer is in a KTV, bar or other noisy environment, the noise from the surrounding environment is easy to cause interference to the electronic cigarette, causing the electronic cigarette switch to be turned on by mistake.
  • In related art, electronic cigarettes use electret differential pressure sensors as the switch function to start the electronic cigarettes, but these electret sensors generally have the following problems: the electronic cigarettes having the electret sensor cannot be performed by surface mounting process, which resulting the production efficiency of the electronic cigarettes is low; the performance consistency of the electronic cigarettes is poor; the electronic cigarette is sensitive to temperature, it will have a large performance change after high temperature; the electronic cigarettes having the electret sensor have a large size.
  • Therefore, it is desired to provide a new electronic cigarette which can overcome the aforesaid problems.
  • SUMMARY
  • In view of the above, the embodiments of the present disclosure provide a new electronic cigarette. By the present disclosure, the electronic cigarette has the advantages of simple installation, high reliability, high sensitivity and small size.
  • The present disclosure provides an electronic cigarette comprising a housing having a smoking port passing through an upper end of the housing, an atomizer received in the housing and spaced apart from the smoking port, an e-liquid chamber located between the atomizer and the smoking port, and a MEMS sensor located in the housing and on an lower end of the housing. The housing comprises a through hole passing through the lower end thereof, and an air passage communicating with the smoking port. The MEMS sensor comprises a cover having a first opening communicating with the smoking port by the air passage, a printed circuit board forming an accommodating room cooperatively with the cover, and a MEMS chip received in the accommodating room. The printed circuit board comprises a second opening communicating to an outside by the through hole.
  • As an improvement, the printed circuit board comprises a plurality of conductive terminals therein, and the MEMS chip is directly electrically connected to the conductive terminals.
  • As an improvement, the printed circuit board comprises a plurality of conductive terminals therein, the MEMS sensor further comprising an ASIC chip fixing on the printed circuit board, and the MEMS chip is electrically connected to the conductive terminal through the ASIC chip.
  • As an improvement, the cover of the MEMS sensor is a metal cover.
  • As an improvement, the MEMS chip comprises a back plate and a diaphragm spaced apart from the back plate, a plurality of perforations disposed on the back plate.
  • As an improvement, the back plate is proximal to the smoking port than the diaphragm.
  • As an improvement, two pressures coining from the first opening and the second opening respectively simultaneously act on the diaphragm to form a pressure difference, the pressure difference making the diaphragm move to increase an output capacitance value to drive the atomizer work.
  • As an improvement, the diaphragm is proximal to the smoking port than the back plate.
  • As an improvement, two pressures coining from the first opening and the second opening respectively simultaneously act on the diaphragm to form a pressure difference, the pressure difference making the diaphragm move to reduce an output capacitance value to drive the atomizer work.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many aspects of the exemplary embodiments can be better understood with reference to the following drawing. The components in the drawing are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • FIG. 1 is an illustrative cross-sectional view of the electronic cigarette of the present disclosure.
  • FIG. 2 is an illustrative cross-sectional view of the MEMS sensor of the electronic cigarette in accordance with a first embodiment of the present disclosure.
  • FIG. 3 is an illustrative cross-sectional view of the MEMS sensor of the electronic cigarette in accordance with a second embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
  • The present disclosure will hereinafter be described in detail with reference to exemplary embodiments. To make the technical problems to be solved, technical solutions and beneficial effects of the present disclosure more apparent, the present disclosure is described in further detail together with the figures and the embodiments. It should be understood the specific embodiments described hereby are only to explain the disclosure, not intended to limit the disclosure.
  • Referring to the FIG. 1 , the present disclosure provides an electronic cigarette 100. The electronic cigarette 100 comprises a housing 1 having a smoking port 11 passing through an upper end thereof, an atomizer 2 received in the housing 1 and spaced apart from the smoking port 11, an e-liquid chamber 3 located between the atomizer 2 and the smoking port 11, and a MEMS sensor 4 located in the housing 1 and on an lower end of the housing 1. Smoke oil is injected into the e-liquid chamber 3. A through hole 12 is provided passing through the lower end of the housing 1.
  • Referring to the FIG. 2 , the present disclosure provides the MEMS sensor 4 of the electronic cigarette 100 in accordance with a first embodiment. The MEMS sensor 4 comprises a cover 41 having a first opening 411, a printed circuit board 42 forming an accommodating room 40 cooperatively with the cover 41, and a MEMS chip 43 received in the accommodating room 40. The printed circuit board 42 comprises a second opening 421 communicating to an outside by the through hole 12. The housing 1 further comprises an air passage 13 communicating the smoking port 11 and the first opening 411. The printed circuit board 42 comprises a plurality of conductive terminals 422 therein, and the MEMS chip 43 is directly welded and fixed with the conductive terminals 422 to realize electrical connection. The cover 41 of the MEMS sensor 4 is a metal cover.
  • The MEMS chip 43 comprises a back plate 431 and a diaphragm 432 spaced apart from the back plate 431. A plurality of perforations 4311 is disposed on the back plate 431. The back plate 431 is proximal to the smoking port 11 than the diaphragm 432. In other embodiments, the diaphragm 432 also can be proximal to the smoking port 11 than the back plate 431. And in other embodiments, the diaphragm 432 also can comprise a plurality of perforations thereon.
  • A microprocessor can be set on the printed circuit board 42, when a person inhales from the smoking port, and referring to the FIG. 1 , an arrow direction in FIG. 1 is the direction of air flow during inhalation. Due to a pressure difference formed by two pressures simultaneously act on the diaphragm coining from the first opening and the second opening respectively, the diaphragm is drove to move to a direction proximal to the smoking port. And the back plate is set closer to the smoking port at this time, a capacitance between the back plate and the diaphragm will increase, and the MEMS sensor will output a corresponding electrical signal. After the signal is processed, the microprocessor will receive the signal and output another corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • Similarly, when the diaphragm is set closer to the smoking port at this time, due to the pressure difference formed by the two pressures simultaneously act on the diaphragm, the diaphragm is drove to move to a direction proximal to the smoking port. The capacitance between the back plate and the diaphragm will reduce, and the MEMS sensor will output the corresponding electrical signal. After the signal is processed, the microprocessor will receive the signal and output another corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • Referring to the FIG. 3 , the present disclosure provides the MEMS sensor 4′ of the electronic cigarette 100 in accordance with a second embodiment. The MEMS sensor 4′ comprises a cover 41′ having a first opening 411′, a printed circuit board 42′ forming an accommodating room 40′ cooperatively with the cover 41′, and a MEMS chip 43′ and an ASIC chip 44′ received in the accommodating room 40′. The printed circuit board 42′ comprises a second opening 421′ communicating to an outside by the through hole. The printed circuit board 42′ comprises a plurality of conductive terminals 422′ therein, and the MEMS chip 43′ is electrically connected to the conductive terminals 422′ through the ASIC chip 44′. The cover 41′ of the MEMS sensor 4′ is a metal cover.
  • The MEMS chip 43′ comprises a back plate 431′ and diaphragm 432′ spaced apart from the back plate 431′. A plurality of perforations 4311′ is disposed on the back plate 431′. The back plate 431′ is proximal to the smoking port than the diaphragm 432′. In other embodiments, the diaphragm 432′ also can be proximal to the smoking port than the back plate 431′. And in other embodiments, the diaphragm 432′ also can comprise a plurality of perforations thereon.
  • A microprocessor can be set on the printed circuit board 42′, or the microprocessor can be integrated on the ASIC chip 44′. When a person inhales from the smoking port, due to a pressure difference formed by two pressures simultaneously act on the diaphragm coining from the first opening and the second opening respectively, the diaphragm is drove to move to a direction proximal to the smoking port. And the back plate is set closer to the smoking port at this time, a capacitance between the back plate and the diaphragm will increase, and the ASIC chip detects this change and outputs an electrical signal. After the signal is processed, the microprocessor will receive the signal and output a corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • Similarly, when the diaphragm is set closer to the smoking port at this time, due to the pressure difference formed by the two pressures simultaneously act on the diaphragm, the diaphragm is drove to move to a direction proximal to the smoking port. The capacitance between the back plate and the diaphragm will reduce, and the ASIC chip detects this change and outputs an electrical signal. After the signal is processed, the microprocessor will receive the signal and output another corresponding signal to drive the atomizer to work. Thereby the smoke is generated, and the smoke is flowed into the person's mouth along the air passage.
  • Comparing with the related art, in the electronic cigarette of present disclosure, the MEMS sensor can be directly welded and fixed in the housing of the electronic cigarette. The electronic cigarette has the advantages of easy installation, high production efficiency, stable structure, good consistency, high temperature resistance, and small size.
  • It is to be understood, however, that even though numerous characteristics and advantages of the present exemplary embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms where the appended claims are expressed.

Claims (9)

What is claimed is:
1. An electronic cigarette, comprising:
a housing comprising:
a smoking port passing through an upper end thereof;
a through hole passing through a lower end thereof; and
an air passage communicating with the smoking port;
an atomizer received in the housing and spaced apart from the smoking port;
an e-liquid chamber located between the atomizer and the smoking port; and
a MEMS sensor located in the housing and on the lower end of the housing, the MEMS sensor comprising:
a cover having a first opening communicating with the smoking port by the air passage;
a printed circuit board forming an accommodating room cooperatively with the cover, the printed circuit board comprising a second opening communicating to an outside by the through hole; and
a MEMS chip received in the accommodating room.
2. The electronic cigarette as described in claim 1, wherein the printed circuit board comprises a plurality of conductive terminals therein, and the MEMS chip is directly electrically connected to the conductive terminals.
3. The electronic cigarette as described in claim 1, wherein the printed circuit board comprises a plurality of conductive terminals therein, the MEMS sensor further comprising an ASIC chip fixing on the printed circuit board, and the MEMS chip is electrically connected to the conductive terminal through the ASIC chip.
4. The electronic cigarette as described in claim 1, wherein the cover of the MEMS sensor is a metal cover.
5. The electronic cigarette as described in claim 1, wherein the MEMS chip comprises a back plate and a diaphragm spaced apart from the back plate, a plurality of perforations disposed on the back plate.
6. The electronic cigarette as described in claim 5, wherein the back plate is proximal to the smoking port than the diaphragm.
7. The electronic cigarette as described in claim 6, wherein two pressures coining from the first opening and the second opening respectively simultaneously act on the diaphragm to form a pressure difference, the pressure difference making the diaphragm move to increase an output capacitance value to drive the atomizer work.
8. The electronic cigarette as described in claim 5, wherein the diaphragm is proximal to the smoking port than the back plate.
9. The electronic cigarette as described in claim 8, wherein two pressures coining from the first opening and the second opening respectively simultaneously act on the diaphragm to form a pressure difference, the pressure difference making the diaphragm move to reduce an output capacitance value to drive the atomizer work.
US17/562,007 2021-11-24 2021-12-27 Electronic Cigarette Pending US20230157371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122910651.2U CN216453371U (en) 2021-11-24 2021-11-24 Electronic cigarette
CN202122910651.2 2021-11-24

Publications (1)

Publication Number Publication Date
US20230157371A1 true US20230157371A1 (en) 2023-05-25

Family

ID=81398339

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/562,007 Pending US20230157371A1 (en) 2021-11-24 2021-12-27 Electronic Cigarette

Country Status (2)

Country Link
US (1) US20230157371A1 (en)
CN (1) CN216453371U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218959123U (en) * 2022-12-29 2023-05-02 瑞声声学科技(深圳)有限公司 MEMS sensor, MEMS microphone and electronic cigarette
CN219613055U (en) * 2023-03-03 2023-09-01 瑞声声学科技(深圳)有限公司 Electronic cigarette
WO2024207150A1 (en) * 2023-04-03 2024-10-10 瑞声声学科技(深圳)有限公司 Electronic cigarette
WO2024207151A1 (en) * 2023-04-03 2024-10-10 瑞声声学科技(深圳)有限公司 Electronic cigarette

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130276544A1 (en) * 2012-04-20 2013-10-24 Rosemount Aerospace Inc. Stress isolated mems structures and methods of manufacture
US20140150810A1 (en) * 2011-08-04 2014-06-05 Fontem Holdings 1 B.V. Electronic cigarette with capacitor sensor
US20150001651A1 (en) * 2013-06-28 2015-01-01 Stmicroelectronics S.R.I. Mems device having a suspended diaphragm and manufacturing process thereof
US20160142829A1 (en) * 2014-11-13 2016-05-19 Invensense, Inc. Integrated package forming wide sense gap micro electro-mechanical system microphone and methodologies for fabricating the same
US20170010166A1 (en) * 2015-07-09 2017-01-12 AAC Technologies Pte. Ltd. Pressure sensing device
US20170041717A1 (en) * 2014-08-26 2017-02-09 Goertek Inc. Silicon speaker
US20170347710A1 (en) * 2014-12-25 2017-12-07 Fontem Holdings 1 B.V. Electronic smoking device with aerosol measurement
US20190104767A1 (en) * 2016-02-11 2019-04-11 Juul Labs, Inc. Vaporizer devices with blow discrimination
US20210076141A1 (en) * 2019-09-09 2021-03-11 Shin Sung C&T Co., Ltd. Mems acoustic sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140150810A1 (en) * 2011-08-04 2014-06-05 Fontem Holdings 1 B.V. Electronic cigarette with capacitor sensor
US20130276544A1 (en) * 2012-04-20 2013-10-24 Rosemount Aerospace Inc. Stress isolated mems structures and methods of manufacture
US20150001651A1 (en) * 2013-06-28 2015-01-01 Stmicroelectronics S.R.I. Mems device having a suspended diaphragm and manufacturing process thereof
US20170041717A1 (en) * 2014-08-26 2017-02-09 Goertek Inc. Silicon speaker
US20160142829A1 (en) * 2014-11-13 2016-05-19 Invensense, Inc. Integrated package forming wide sense gap micro electro-mechanical system microphone and methodologies for fabricating the same
US20170347710A1 (en) * 2014-12-25 2017-12-07 Fontem Holdings 1 B.V. Electronic smoking device with aerosol measurement
US20170010166A1 (en) * 2015-07-09 2017-01-12 AAC Technologies Pte. Ltd. Pressure sensing device
US20190104767A1 (en) * 2016-02-11 2019-04-11 Juul Labs, Inc. Vaporizer devices with blow discrimination
US20210076141A1 (en) * 2019-09-09 2021-03-11 Shin Sung C&T Co., Ltd. Mems acoustic sensor

Also Published As

Publication number Publication date
CN216453371U (en) 2022-05-10

Similar Documents

Publication Publication Date Title
US20230157371A1 (en) Electronic Cigarette
US20170000190A1 (en) Electronic cigarette device
CN209728476U (en) Electronic cigarette switch
CN211091901U (en) Sensing and controller comprising circuit board and electronic cigarette applied to sensing and controller
EP4039114B1 (en) Air flow sensor and electronic cigarette
CN111449297A (en) Electron cigarette miaow head and electron cigarette
CN111035071A (en) Electronic cigarette capable of automatically adjusting smoke amount
CN209117240U (en) A kind of airflow sensing sensor
CN216931920U (en) Air pressure sensor and electronic cigarette
US20230225396A1 (en) E-cigarette
WO2024198263A1 (en) Airflow sensor, and electronic atomizer and control method therefor
CN211407669U (en) Integrated sensing and controller with base ring and electronic cigarette with integrated sensing and controller
EP3742465B1 (en) An air pressure switch, power supply device and e-cigarettes containing the same
CN211407668U (en) Internal-stabilization type integrated sensing and controller and electronic cigarette product applying same
CN214257962U (en) Electronic cigarette sensor device
CN213215349U (en) Airflow sensor for electronic cigarette and electronic cigarette
CN207939732U (en) Electret microphone
CN212661075U (en) Airflow sensor for electronic cigarette and electronic cigarette
CN212414754U (en) Sensing device and electronic cigarette
WO2022247074A1 (en) Electronic cigarette air pressure sensor and electronic cigarette
CN209117091U (en) A kind of airflow sensing sensor
CN210573316U (en) Fastening type integrated sensing and controller and electronic cigarette product applying same
CN211323054U (en) Electronic cigarette
CN108156564A (en) Electret microphone
CN210353149U (en) Side air inlet rotary type aerial fog generating device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, JINYANG;ZHANG, RUI;REEL/FRAME:058477/0789

Effective date: 20211224

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED