US3842824A - Notched surgical pin and breaking tool therefor - Google Patents
Notched surgical pin and breaking tool therefor Download PDFInfo
- Publication number
- US3842824A US3842824A US00342442A US34244273A US3842824A US 3842824 A US3842824 A US 3842824A US 00342442 A US00342442 A US 00342442A US 34244273 A US34244273 A US 34244273A US 3842824 A US3842824 A US 3842824A
- Authority
- US
- United States
- Prior art keywords
- pin
- section
- notch
- notches
- series
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000005452 bending Methods 0.000 claims description 15
- 238000005520 cutting process Methods 0.000 claims description 7
- 238000003780 insertion Methods 0.000 abstract description 4
- 230000037431 insertion Effects 0.000 abstract description 4
- 206010017076 Fracture Diseases 0.000 description 10
- 208000010392 Bone Fractures Diseases 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 210000000689 upper leg Anatomy 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000035876 healing Effects 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 206010020100 Hip fracture Diseases 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 244000203593 Piper nigrum Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8605—Heads, i.e. proximal ends projecting from bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8863—Apparatus for shaping or cutting osteosynthesis equipment by medical personnel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/74—Devices for the head or neck or trochanter of the femur
- A61B17/742—Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/03—Automatic limiting or abutting means, e.g. for safety
- A61B2090/037—Automatic limiting or abutting means, e.g. for safety with a frangible part, e.g. by reduced diameter
Definitions
- ABSTRACT A surgical pin formed of rigid material for joining bone sections in an area of fracture. Following insertion of the pin into the bone sections, a breaking tool in the form of a handle-equipped tube is fitted over the free end portion of the pin and the pin is then broken externally of the bone and along a transverse plane defined in part by any one of a series of notches formed in the pin. The notches of the series are angularly offset about the axis of the pin to provide an arrangement which facilitates breaking of the pin only at a selected notch.
- the present invention is concerned with a device, or a combination of devices, which eliminate the need for making the usual incision during a surgical pinning operation and, in consequence, greatly reduce the length of time required for healing.
- a device or a combination of devices, which eliminate the need for making the usual incision during a surgical pinning operation and, in consequence, greatly reduce the length of time required for healing.
- the surgical technique permitted by the structure of the present invention may reduce the period of such confinement.
- the surgical technique is a blind one to the extent that no incision is formed to expose the bone. Furthermore, there is no direct view of the surgical pin at the point where it enters the femur. The pin is inserted into the bone by a threading action and the excess portion of it removed with minimal damage to soft tissue and, because of the reduced operating time, at substantially lower risk to the patient.
- a characteristic feature of the pin is the provision of a longitudinal series of notches or weakened portions which define predetermined planes of transverse weakness.
- each of the notches extends transversely through a side portion of the pin and is radially angularly offset relative to adjacent notches of the series.
- Each notch extends inwardly to a base line which is substantially parallel with a diameter of the pin. If the pin is then subjected to localized bending forces in a plane normal to the base line, fracture of the pin at the selected notch will readily occur.
- Localization of the'bending forces is achieved by utilizing a tool which has a tubular body portion slidably receiving the pin. As the tubular body is pivoted laterally to bend the pin, pin fracture occurs in a transverse plane passing through the selected notch.
- FIG. 1 is a somewhat simplified sectional view illustrating the step of breaking off the excess portion of a hip pin following insertion thereof;
- FIG. 2 is a side elevational view of a pin embodying the present invention
- FIG. 3 is an enlarged front elevational view of the pin taken along line 3-3 of FIG. 2;
- FIGS. 4-7 are cross sectional views of the pin taken along lines 4-7 of FIG. 2;
- FIG. 8 is a side elevational view of a tube breaking tool embodying the present invention.
- the numeral 10 generally designates a surgical pin embodying this invention.
- the pin 10 is straight and is of substantially uniform diameter throughout its entire extent except for the extreme front end 11 which is pointed and provided with one or more cutting edges 12. Three such edges are shown in FIG. 3.
- the pin is provided with threads 13.
- the threads 13 are preferably rolled threads where the exterior diameter of the threads are equal to or greater in diameter than the diameter of the remaining elongated part of the pin 10. Such specific thread formation while not essential to proper function does add additional strength to the pin 10.
- the intermediate portion 14 of the pin is provided with a series of longitudinally shaped weakened portions or notches 15-20, inclusive.
- the notches are preferably spaced apart a distance within the range of approximately one fourth to one half of an inch and, as most clearly shown in FIGS. 4-7, each notch extends inwardly from one side of the pin to a transverse line short of the axis 21 of the pin.
- notch 15 extends downwardly from the top side of the pin to a line 15a spaced above axis 21.
- each of the notches is radially angularly offset relative to the notch or notches adjacent thereto.
- notch 16 is offset degrees from notch 15
- notch 17 is staggered 90 degrees relative to notches 16 and 18.
- Notches 19 and 20 are identical to notches 15 and 16 except that they are disposed a greater distance from the front end of the pin.
- An offset of 90 degrees has been found particularly effective although other angular variations, say degrees, might conceivably be used.
- a total of six notches are shown, it is to be understood that a greater or smaller number might be provided in the series.
- FIG. 8 illustrates the breaking tool 22 used for fracturing pin 10 at any selected notch.
- the tool comprises a rigid tube 23 equipped at one end with a handle 24.
- the opposite end of the tube terminates in a free edge 25 extending in a plane generally perpendicular to the axis of the tube.
- the bore 26 is slightly larger than the diameter of pin therefore, the tool may be easily slipped over the rear end of the pin as indicated in FIG.
- Pin 10 may be formed of titanium or any other suitable material which has similar properties of strength, fracturability in response to bending forces, and acceptability, without undue reaction, by the body of the patient.
- the pin must not be brittle to the extent that brittleness suggests a lack of strength. However, it must be capable of fracturing in response to concentrated or localized bending forces exerted in the manner which will now be described.
- FIG. 1 illustrates three pins 10a, 10b and 10c inserted through the neck of femur 27 to secure the head 28 of the femur in position following a fracture at 29.
- Pins 10a and 10b are already fully in place, having been implanted by a procedure which involves the steps of first drilling through the tissue and into both sections of the bone, then (before removal of the drill) slipping a guide tube (not shown) over the exposed end of the drill until the tube contacts the bone, then withdrawing the drill and inserting pin 10 through the guide tube and into the hole in the bone.
- the pins are fixed in place by a threading operation.
- the pin 10 acts as its own drill.
- the pin 10 is then inserted through the tissue to the bone and an instrument (not shown) clamps the end of the pin and by turning the instrument the pin is threaded through the bone for proper insertion. With such procedure the pin furnishes its own mechanical holding strength.
- each notch or weakened portion becomes the line about which the bending force is exerted upon the pin.
- the metal pin and its notches are readily visible on an image intensifier screen and from the intensified image a surgeon may readily determine the direction of proper movement of the handle 24 to cause spreading of the selected notch, flexure of the pin about the base line of that notch, and fracture of the pin in that localized area.Because of the angular staggering of the notches, breakage of the pin at some point other than at the selected notch is extremely unlikely.
- breakage of pin 10c at the adjacent notch disposed just beneath the surface of the bone would not occur because the lifting action of the handle necessary to produce fracture of the selected notch in the manner illustrated is not the movement necessary to cause fracture of the notch beneath the bone surface.
- handle 24 would have to be moved in a different direction, specifically, one at degrees to the direction indicated.
- the surgeon may select a proper notch for the breaking that will allow enough of the pin to extend beyond the femur 27 so that when it is desired to remove the pin 10 upon mending of the bone there is a sufficient exposed portion to be grasped by a tool to remove the pin.
- a surgical pin for use in joining bone section said pin being formed of a rigid material capable of fracturing when exposed to localized bending forces of predetermined magnitude and being of circular cross section along substantially its entire length, said pin having a pointed forward end, and having first, second and third sections, said first section extending from said pointed end to said second section, said second section extending from said first section to said third section, said third section extending from said second section to the rearward end of said pin, said first section including a threaded portion adjacent said pointed end and otherwise being uninterrupted along its length, said third section also being uninterrupted along its length, said first and third sections being at least as long as said second section, said second section being interrupted by a series of longitudinally spaced transverse notches, the bottom of each notch defining a chord of the circular cross section and the notch reducing the mass of the pin opposite the notch forming a weakened section, each notch having a maximum depth to said chord less than the radius of said pin, whereby localized bending force at any selected notch of said series causes break
- a surgical pin for use in joining bone sections said pin being formed of a rigid material capable of fracturing when exposed to localized bending forces of predetermined magnitude, said pin being pointed at its forward end and having an intermediate portion provided with a series of longitudinally spaced notches, each of said notches extending transversely to a side portion of said pin and being radially angularly offset relative to adjacent notches of said series, whereby the notches of said series are staggered to permit pin breakage at any selected notch, by localized bending of said pin at such selected notch, without at the same time risking pin fracture at a different point therealong.
- each of the successive notches of said series is radially angularly offset approximately degrees from the preceding notch.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Surgical Instruments (AREA)
Abstract
A surgical pin formed of rigid material for joining bone sections in an area of fracture. Following insertion of the pin into the bone sections, a breaking tool in the form of a handleequipped tube is fitted over the free end portion of the pin and the pin is then broken externally of the bone and along a transverse plane defined in part by any one of a series of notches formed in the pin. The notches of the series are angularly offset about the axis of the pin to provide an arrangement which facilitates breaking of the pin only at a selected notch.
Description
[111 3,842,824 [451 Oct. 22, 1974 I NOTCHED SURGICAL PIN AND BREAKING TOOL THEREFOR [76] Inventor: Alonzo J. Neut'eld, 1650 Parkway Dr., Glendale, Calif. 91206 [22] Filed: Mar. 19, 1973 [21] Appl. No.: 342,442
[52] U.S. C1 128/92 BA, 128/83 [51] Int. Cl. A611 5/04 [58] Field of Search 128/92 BA, 92 R, 92 A, 128/92 BB, 92 CA, 92 EB, 83; 85/10, 11,22, 21
[56] References Cited UNITED STATES PATENTS 515,952 3/1894 Curtis .l 85/10 R 657,513 9/1900 Chase 85/10 R 2,081,293 5/1937 Davis 128/92 BA 2,270,188 l/1942 Longfellowm. 128/92 BA 2,376,936 5/1945 Pfeffer 85/10 R 3,351,054 11/1967 Florek 128/83 FOREIGN PATENTS OR APPLICATIONS 1,031,128 6/1953 France 128/92 BA 92,385 5/1938 Sweden 128/92 BA Primary Examiner-Richard A. Gaudet Assistant Examiner-J. Yasko Attorney, Agent, or Firm-Huebner & Worrel 5 7] ABSTRACT A surgical pin formed of rigid material for joining bone sections in an area of fracture. Following insertion of the pin into the bone sections, a breaking tool in the form of a handle-equipped tube is fitted over the free end portion of the pin and the pin is then broken externally of the bone and along a transverse plane defined in part by any one of a series of notches formed in the pin. The notches of the series are angularly offset about the axis of the pin to provide an arrangement which facilitates breaking of the pin only at a selected notch.
9 Claims, 8 Drawing Figures NOTCHED SURGICAL PIN AND BREAKING TOOL THEREFOR BACKGROUND OF THE INVENTION The use of metal pins to hold bone sections together as they heal is a well known practice, particularly for fractures near the upper joint of the femur, commonly called hip fractures. The usual procedure is to form an incision, drill a hole into the exposed bone to receive a hip pin, insert the threaded pin into the hole, and then, with a suitable shearing tool, cut away the remainder of the pin in a severing action which resembles a conventional wire-cutting operation. For such a pincutting step, it is essential that the jaws of the cutting instrument be as close as possible to the bone; therefore, a relatively large incision must be made. Because such an incision extends through a substantial amount of muscle and ligament structure, a prolonged period of recuperation, is required simply to allow ,healing of the soft tissue. Especially where the patient is elderly, as is often the case with hip fractures, extended periods of complete immobilization may be accompanied by a risk of pneumonia and other serious complications.
SUMMARY OF THE INVENTION The present invention is concerned with a device, or a combination of devices, which eliminate the need for making the usual incision during a surgical pinning operation and, in consequence, greatly reduce the length of time required for healing. Where in the past bed confinement for seven or eight weeks has been quite common, in order to permit healing about the area of incision, the surgical technique permitted by the structure of the present invention may reduce the period of such confinement.
The surgical technique is a blind one to the extent that no incision is formed to expose the bone. Furthermore, there is no direct view of the surgical pin at the point where it enters the femur. The pin is inserted into the bone by a threading action and the excess portion of it removed with minimal damage to soft tissue and, because of the reduced operating time, at substantially lower risk to the patient.
A characteristic feature of the pin is the provision of a longitudinal series of notches or weakened portions which define predetermined planes of transverse weakness. Most desirably, each of the notches extends transversely through a side portion of the pin and is radially angularly offset relative to adjacent notches of the series. Each notch extends inwardly to a base line which is substantially parallel with a diameter of the pin. If the pin is then subjected to localized bending forces in a plane normal to the base line, fracture of the pin at the selected notch will readily occur.
Localization of the'bending forces is achieved by utilizing a tool which has a tubular body portion slidably receiving the pin. As the tubular body is pivoted laterally to bend the pin, pin fracture occurs in a transverse plane passing through the selected notch.
Other advantages and objects of the invention will become more apparent as the specification proceeds.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a somewhat simplified sectional view illustrating the step of breaking off the excess portion of a hip pin following insertion thereof;
FIG. 2 is a side elevational view of a pin embodying the present invention;
FIG. 3 is an enlarged front elevational view of the pin taken along line 3-3 of FIG. 2;
FIGS. 4-7 are cross sectional views of the pin taken along lines 4-7 of FIG. 2;
FIG. 8 is a side elevational view of a tube breaking tool embodying the present invention.
BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description, the invention will be described in conjunction with a hip pinning operation as illustrative of one operative procedure for which the structure of the invention is especially well suited. It is to be understood, however, that no limitations are to be inferred from the particular operative procedure selected and that the structure of this invention is believed to have utility for a wide range of surgical procedures in which bone sections are to be joined by one or more pins.
Referring to FIG. 2, the numeral 10 generally designates a surgical pin embodying this invention. The pin 10 is straight and is of substantially uniform diameter throughout its entire extent except for the extreme front end 11 which is pointed and provided with one or more cutting edges 12. Three such edges are shown in FIG. 3. Directly behind the pointed front end, the pin is provided with threads 13. The threads 13 are preferably rolled threads where the exterior diameter of the threads are equal to or greater in diameter than the diameter of the remaining elongated part of the pin 10. Such specific thread formation while not essential to proper function does add additional strength to the pin 10.
The intermediate portion 14 of the pin is provided with a series of longitudinally shaped weakened portions or notches 15-20, inclusive. The notches are preferably spaced apart a distance within the range of approximately one fourth to one half of an inch and, as most clearly shown in FIGS. 4-7, each notch extends inwardly from one side of the pin to a transverse line short of the axis 21 of the pin. Thus, notch 15 extends downwardly from the top side of the pin to a line 15a spaced above axis 21.
Of particular significance is the fact that each of the notches is radially angularly offset relative to the notch or notches adjacent thereto. Thus, notch 16 is offset degrees from notch 15, and notch 17 is staggered 90 degrees relative to notches 16 and 18. Notches 19 and 20 are identical to notches 15 and 16 except that they are disposed a greater distance from the front end of the pin. An offset of 90 degrees has been found particularly effective although other angular variations, say degrees, might conceivably be used. Also, while a total of six notches are shown, it is to be understood that a greater or smaller number might be provided in the series.
FIG. 8 illustrates the breaking tool 22 used for fracturing pin 10 at any selected notch. The tool comprises a rigid tube 23 equipped at one end with a handle 24. The opposite end of the tube terminates in a free edge 25 extending in a plane generally perpendicular to the axis of the tube. The bore 26 is slightly larger than the diameter of pin therefore, the tool may be easily slipped over the rear end of the pin as indicated in FIG.
FIG. 1 illustrates three pins 10a, 10b and 10c inserted through the neck of femur 27 to secure the head 28 of the femur in position following a fracture at 29. Pins 10a and 10b are already fully in place, having been implanted by a procedure which involves the steps of first drilling through the tissue and into both sections of the bone, then (before removal of the drill) slipping a guide tube (not shown) over the exposed end of the drill until the tube contacts the bone, then withdrawing the drill and inserting pin 10 through the guide tube and into the hole in the bone. The pins are fixed in place by a threading operation.
Another surgical procedure which is used is that the pin 10 acts as its own drill. In such case, after a small incision is made in the tissue, the pin 10 is then inserted through the tissue to the bone and an instrument (not shown) clamps the end of the pin and by turning the instrument the pin is threaded through the bone for proper insertion. With such procedure the pin furnishes its own mechanical holding strength.
After each pin is securely in place, a substantial portion of it projects outwardly from the bone and through the patients muscle and skin. The surgeon then simply slips tube 23 of tool 22 over the exposed end of the pin and, using an image intensifier to view the movement of the parts, urges the tube 23 towards the bone until the free end of the tube is aligned with the first notch external to bone 27. Handle 24 is then urged laterally in the manner indicated by arrow 30 in FIG. 1. Bending movement of 15 degrees or less in a direction which tends to spread the selected notch is all that is needed to break the pin. The rear end portion of the pin is extracted through the small hole in the patients soft tissue, leaving the pin in place in the manner generally represented by pins 10a and 10b in FIG. 1.
It will be observed that the transverse line at the base of each notch or weakened portion becomes the line about which the bending force is exerted upon the pin. The metal pin and its notches are readily visible on an image intensifier screen and from the intensified image a surgeon may readily determine the direction of proper movement of the handle 24 to cause spreading of the selected notch, flexure of the pin about the base line of that notch, and fracture of the pin in that localized area.Because of the angular staggering of the notches, breakage of the pin at some point other than at the selected notch is extremely unlikely. Thus, breakage of pin 10c at the adjacent notch disposed just beneath the surface of the bone would not occur because the lifting action of the handle necessary to produce fracture of the selected notch in the manner illustrated is not the movement necessary to cause fracture of the notch beneath the bone surface. To cause fracture of the pin at the notch within the bone, handle 24 would have to be moved in a different direction, specifically, one at degrees to the direction indicated.
By having a plurality of notches the surgeon may select a proper notch for the breaking that will allow enough of the pin to extend beyond the femur 27 so that when it is desired to remove the pin 10 upon mending of the bone there is a sufficient exposed portion to be grasped by a tool to remove the pin.
While in the foregoing we have disclosed an embodiment of the invention in considerable detail for purposes of illustration, it will be understood by those skilled in the art that many of these details may be varied without departing from the spirit and scope of the invention.
I claim:
1. A surgical pin for use in joining bone section, said pin being formed of a rigid material capable of fracturing when exposed to localized bending forces of predetermined magnitude and being of circular cross section along substantially its entire length, said pin having a pointed forward end, and having first, second and third sections, said first section extending from said pointed end to said second section, said second section extending from said first section to said third section, said third section extending from said second section to the rearward end of said pin, said first section including a threaded portion adjacent said pointed end and otherwise being uninterrupted along its length, said third section also being uninterrupted along its length, said first and third sections being at least as long as said second section, said second section being interrupted by a series of longitudinally spaced transverse notches, the bottom of each notch defining a chord of the circular cross section and the notch reducing the mass of the pin opposite the notch forming a weakened section, each notch having a maximum depth to said chord less than the radius of said pin, whereby localized bending force at any selected notch of said series causes break off of said pin generally along the weakened section of said selected notch, said third section being of a length accessible outside the bone surface of a patient in the region where the pin is installed for manipulation and discarding after break off, said third section having a diameter throughout its length no greater than that of said second section whereby said second and third sections are adapted to receive a break off tool.
2. The surgical pin of claim 1 in which said pointed end of said pin is provided with cutting edges.
3. A surgical pin for use in joining bone sections, said pin being formed of a rigid material capable of fracturing when exposed to localized bending forces of predetermined magnitude, said pin being pointed at its forward end and having an intermediate portion provided with a series of longitudinally spaced notches, each of said notches extending transversely to a side portion of said pin and being radially angularly offset relative to adjacent notches of said series, whereby the notches of said series are staggered to permit pin breakage at any selected notch, by localized bending of said pin at such selected notch, without at the same time risking pin fracture at a different point therealong.
4. The structure of claim 3 in which said pointed end of said pin is provided with cutting edges.
5. The structure of claim 3 in which said pin is roll threaded immediately adjacent said pointed end.
8. The structure of claim 3 in which each of the successive notches of said series is radially angularly offset approximately degrees from the preceding notch.
9. The structure of claim 3 in which said notches of said series are longitudinally spaced apart a distance within the range of one fourth to one half of an inch.
Claims (9)
1. A surgical pin for use in joining bone section, said pin being formed of a rigid material capable of fracturing when exposed to Localized bending forces of predetermined magnitude and being of circular cross section along substantially its entire length, said pin having a pointed forward end, and having first, second and third sections, said first section extending from said pointed end to said second section, said second section extending from said first section to said third section, said third section extending from said second section to the rearward end of said pin, said first section including a threaded portion adjacent said pointed end and otherwise being uninterrupted along its length, said third section also being uninterrupted along its length, said first and third sections being at least as long as said second section, said second section being interrupted by a series of longitudinally spaced transverse notches, the bottom of each notch defining a chord of the circular cross section and the notch reducing the mass of the pin opposite the notch forming a weakened section, each notch having a maximum depth to said chord less than the radius of said pin, whereby localized bending force at any selected notch of said series causes break off of said pin generally along the weakened section of said selected notch, said third section being of a length accessible outside the bone surface of a patient in the region where the pin is installed for manipulation and discarding after break off, said third section having a diameter throughout its length no greater than that of said second section whereby said second and third sections are adapted to receive a break off tool.
2. The surgical pin of claim 1 in which said pointed end of said pin is provided with cutting edges.
3. A surgical pin for use in joining bone sections, said pin being formed of a rigid material capable of fracturing when exposed to localized bending forces of predetermined magnitude, said pin being pointed at its forward end and having an intermediate portion provided with a series of longitudinally spaced notches, each of said notches extending transversely to a side portion of said pin and being radially angularly offset relative to adjacent notches of said series, whereby the notches of said series are staggered to permit pin breakage at any selected notch, by localized bending of said pin at such selected notch, without at the same time risking pin fracture at a different point therealong.
4. The structure of claim 3 in which said pointed end of said pin is provided with cutting edges.
5. The structure of claim 3 in which said pin is roll threaded immediately adjacent said pointed end.
6. The structure of claim 3 in which each notch extends to an inner base line substantially parallel with a diameter of said pin, said localized bending of said pin to produce breakage thereof occurring about the base line of a selected notch.
7. The structure of claim 6 in which each notch has a maximum depth to the base line thereof less than the radius of said pin.
8. The structure of claim 3 in which each of the successive notches of said series is radially angularly offset approximately 90 degrees from the preceding notch.
9. The structure of claim 3 in which said notches of said series are longitudinally spaced apart a distance within the range of one fourth to one half of an inch.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00342442A US3842824A (en) | 1973-03-19 | 1973-03-19 | Notched surgical pin and breaking tool therefor |
CA187,538A CA1010603A (en) | 1973-03-19 | 1973-12-06 | Notched surgical pin and breaking tool therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00342442A US3842824A (en) | 1973-03-19 | 1973-03-19 | Notched surgical pin and breaking tool therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US3842824A true US3842824A (en) | 1974-10-22 |
Family
ID=23341847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00342442A Expired - Lifetime US3842824A (en) | 1973-03-19 | 1973-03-19 | Notched surgical pin and breaking tool therefor |
Country Status (2)
Country | Link |
---|---|
US (1) | US3842824A (en) |
CA (1) | CA1010603A (en) |
Cited By (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0196409A1 (en) * | 1985-03-19 | 1986-10-08 | GebràDer Sulzer Aktiengesellschaft | Cap- or dishlike articulation endoprosthesis |
US4640271A (en) * | 1985-11-07 | 1987-02-03 | Zimmer, Inc. | Bone screw |
US4719907A (en) * | 1987-03-18 | 1988-01-19 | Orthospec, Inc. | Orthopedic pin placement guide |
EP0270704A1 (en) * | 1986-12-12 | 1988-06-15 | Aesculap Ag | Anchoring element for fastening an osteosynthesis plate to a bone |
US4869242A (en) * | 1988-07-29 | 1989-09-26 | Galluzzo Mose A | Bone fixation pin and method of using the same |
USRE33348E (en) * | 1985-11-07 | 1990-09-25 | Zimmer, Inc. | Bone screw |
US5180388A (en) * | 1990-06-28 | 1993-01-19 | American Cyanamid Company | Bone pinning system |
US5488042A (en) * | 1992-03-13 | 1996-01-30 | Arch Development Corporation | Method for protection against genotoxic mutagenesis |
US5628766A (en) * | 1995-06-29 | 1997-05-13 | Johnson; Lanny L. | Method of using a mini-screw to anchor a suture |
US5643321A (en) * | 1994-11-10 | 1997-07-01 | Innovasive Devices | Suture anchor assembly and methods |
US5649963A (en) * | 1994-11-10 | 1997-07-22 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5725529A (en) * | 1990-09-25 | 1998-03-10 | Innovasive Devices, Inc. | Bone fastener |
US5800440A (en) * | 1997-03-18 | 1998-09-01 | Johnson & Johnson Professional, Inc. | Device for inserting a surgical pin |
US5814071A (en) * | 1994-11-10 | 1998-09-29 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5860978A (en) * | 1990-09-25 | 1999-01-19 | Innovasive Devices, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US5935129A (en) * | 1997-03-07 | 1999-08-10 | Innovasive Devices, Inc. | Methods and apparatus for anchoring objects to bone |
US6004327A (en) * | 1993-08-03 | 1999-12-21 | Stryker Technologies Corporation | Ratcheting compression device |
EP1195144A1 (en) * | 2000-10-05 | 2002-04-10 | Euro.Medic. | Screw with rupturable insertion element for osteosynthesis techniques |
US20020045902A1 (en) * | 1999-08-09 | 2002-04-18 | Bonutti Peter M. | Method of securing tissue |
FR2821131A1 (en) * | 2001-02-22 | 2002-08-23 | Spine Next Sa | FIXING SCREWS |
US6527794B1 (en) | 1999-08-10 | 2003-03-04 | Ethicon, Inc. | Self-locking suture anchor |
US6616694B1 (en) | 1996-11-21 | 2003-09-09 | Ethicon, Inc. | Apparatus for anchoring autologous or artificial tendon grafts in bone |
US20040039389A1 (en) * | 2000-11-13 | 2004-02-26 | West Hugh S. | Apparatus and methods for independently conditioning and pre-tensioning a plurality of ligament grafts during joint repair surgery |
US6723107B1 (en) | 1999-04-19 | 2004-04-20 | Orthopaedic Biosystems Ltd. | Method and apparatus for suturing |
US20040153103A1 (en) * | 1998-12-30 | 2004-08-05 | Schwartz Herbert E. | Soft tissue locking device |
US6984237B2 (en) | 2002-05-22 | 2006-01-10 | Orthopaedic Biosystems Ltd., Inc. | Suture passing surgical instrument |
US20060009765A1 (en) * | 2004-07-06 | 2006-01-12 | Jonathan Martinek | Instrument kit and method for performing meniscal repair |
US7074203B1 (en) | 1990-09-25 | 2006-07-11 | Depuy Mitek, Inc. | Bone anchor and deployment device therefor |
US20060241695A1 (en) | 2000-03-13 | 2006-10-26 | Bonutti Peter M | Method of using ultrasonic vibration to secure body tissue with fastening element |
US7153312B1 (en) | 1999-12-02 | 2006-12-26 | Smith & Nephew Inc. | Closure device and method for tissue repair |
US20080039845A1 (en) * | 2006-02-07 | 2008-02-14 | Bonutti Peter M | Methods and devices for intracorporeal bonding of implants with thermal energy |
US20080147127A1 (en) * | 2001-10-18 | 2008-06-19 | Fxdevices, Llc | Bone screw system and method |
US20090149890A1 (en) * | 2007-12-05 | 2009-06-11 | Martin Daniel L | Flexible bone screw |
US7601165B2 (en) | 2006-09-29 | 2009-10-13 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable suture loop |
US7608098B1 (en) | 2004-11-09 | 2009-10-27 | Biomet Sports Medicine, Llc | Bone fixation device |
US7608092B1 (en) | 2004-02-20 | 2009-10-27 | Biomet Sports Medicince, LLC | Method and apparatus for performing meniscus repair |
US7651509B2 (en) | 1999-12-02 | 2010-01-26 | Smith & Nephew, Inc. | Methods and devices for tissue repair |
US7749250B2 (en) | 2006-02-03 | 2010-07-06 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US7857830B2 (en) | 2006-02-03 | 2010-12-28 | Biomet Sports Medicine, Llc | Soft tissue repair and conduit device |
US7867264B2 (en) | 2000-11-16 | 2011-01-11 | Ethicon, Inc. | Apparatus and method for attaching soft tissue to bone |
US7896907B2 (en) | 1999-07-23 | 2011-03-01 | Ethicon, Inc. | System and method for attaching soft tissue to bone |
US7905904B2 (en) | 2006-02-03 | 2011-03-15 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US7905903B2 (en) | 2006-02-03 | 2011-03-15 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US7909851B2 (en) | 2006-02-03 | 2011-03-22 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US7914539B2 (en) | 2004-11-09 | 2011-03-29 | Biomet Sports Medicine, Llc | Tissue fixation device |
US7959650B2 (en) | 2006-09-29 | 2011-06-14 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US8034090B2 (en) | 2004-11-09 | 2011-10-11 | Biomet Sports Medicine, Llc | Tissue fixation device |
US8088130B2 (en) | 2006-02-03 | 2012-01-03 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8118836B2 (en) | 2004-11-05 | 2012-02-21 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8128658B2 (en) | 2004-11-05 | 2012-03-06 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US8137382B2 (en) | 2004-11-05 | 2012-03-20 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US8251998B2 (en) | 2006-08-16 | 2012-08-28 | Biomet Sports Medicine, Llc | Chondral defect repair |
US8298262B2 (en) | 2006-02-03 | 2012-10-30 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US8303604B2 (en) | 2004-11-05 | 2012-11-06 | Biomet Sports Medicine, Llc | Soft tissue repair device and method |
US8317825B2 (en) | 2004-11-09 | 2012-11-27 | Biomet Sports Medicine, Llc | Soft tissue conduit device and method |
US8343227B2 (en) | 2009-05-28 | 2013-01-01 | Biomet Manufacturing Corp. | Knee prosthesis assembly with ligament link |
US8361113B2 (en) | 2006-02-03 | 2013-01-29 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8496705B2 (en) | 1996-11-21 | 2013-07-30 | DePuy Mitek, LLCR | Method of anchoring autologous or artificial tendon grafts in bone |
US8496657B2 (en) | 2006-02-07 | 2013-07-30 | P Tech, Llc. | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
US8500818B2 (en) | 2006-09-29 | 2013-08-06 | Biomet Manufacturing, Llc | Knee prosthesis assembly with ligament link |
US8506597B2 (en) | 2011-10-25 | 2013-08-13 | Biomet Sports Medicine, Llc | Method and apparatus for interosseous membrane reconstruction |
US8562645B2 (en) | 2006-09-29 | 2013-10-22 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US8562647B2 (en) | 2006-09-29 | 2013-10-22 | Biomet Sports Medicine, Llc | Method and apparatus for securing soft tissue to bone |
US8574235B2 (en) | 2006-02-03 | 2013-11-05 | Biomet Sports Medicine, Llc | Method for trochanteric reattachment |
US8597327B2 (en) | 2006-02-03 | 2013-12-03 | Biomet Manufacturing, Llc | Method and apparatus for sternal closure |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
US8623051B2 (en) | 2005-06-24 | 2014-01-07 | Smith & Nephew, Inc. | Tissue repair device |
US8652171B2 (en) | 2006-02-03 | 2014-02-18 | Biomet Sports Medicine, Llc | Method and apparatus for soft tissue fixation |
US8652172B2 (en) | 2006-02-03 | 2014-02-18 | Biomet Sports Medicine, Llc | Flexible anchors for tissue fixation |
US8672969B2 (en) | 2006-09-29 | 2014-03-18 | Biomet Sports Medicine, Llc | Fracture fixation device |
US20140163570A1 (en) * | 2012-12-12 | 2014-06-12 | Wright Medical Technology, Inc. | Alignment guide with embedded features for intra-operative fluoro-checks |
US8771352B2 (en) | 2011-05-17 | 2014-07-08 | Biomet Sports Medicine, Llc | Method and apparatus for tibial fixation of an ACL graft |
US8801783B2 (en) | 2006-09-29 | 2014-08-12 | Biomet Sports Medicine, Llc | Prosthetic ligament system for knee joint |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
US8840645B2 (en) | 2004-11-05 | 2014-09-23 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US20140296928A1 (en) * | 2010-08-02 | 2014-10-02 | Tongji University | Separable pedicle screw |
US20150012050A1 (en) * | 2013-07-03 | 2015-01-08 | Biomet Manufacturing, Llc | Bone fusion device |
US8936621B2 (en) | 2006-02-03 | 2015-01-20 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US8968364B2 (en) | 2006-02-03 | 2015-03-03 | Biomet Sports Medicine, Llc | Method and apparatus for fixation of an ACL graft |
US8998949B2 (en) | 2004-11-09 | 2015-04-07 | Biomet Sports Medicine, Llc | Soft tissue conduit device |
US9017381B2 (en) | 2007-04-10 | 2015-04-28 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US20150150656A1 (en) * | 2008-12-01 | 2015-06-04 | Straumann Holding Ag | Fixation pin |
US9060767B2 (en) | 2003-04-30 | 2015-06-23 | P Tech, Llc | Tissue fastener and methods for using same |
US9078644B2 (en) | 2006-09-29 | 2015-07-14 | Biomet Sports Medicine, Llc | Fracture fixation device |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
US9138222B2 (en) | 2000-03-13 | 2015-09-22 | P Tech, Llc | Method and device for securing body tissue |
US9149267B2 (en) | 2006-02-03 | 2015-10-06 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9149281B2 (en) | 2002-03-20 | 2015-10-06 | P Tech, Llc | Robotic system for engaging a fastener with body tissue |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US9226828B2 (en) | 2004-10-26 | 2016-01-05 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9259217B2 (en) | 2012-01-03 | 2016-02-16 | Biomet Manufacturing, Llc | Suture Button |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9271713B2 (en) | 2006-02-03 | 2016-03-01 | Biomet Sports Medicine, Llc | Method and apparatus for tensioning a suture |
US9314241B2 (en) | 2011-11-10 | 2016-04-19 | Biomet Sports Medicine, Llc | Apparatus for coupling soft tissue to a bone |
US9314235B2 (en) | 2003-02-05 | 2016-04-19 | Smith & Nephew, Inc. | Tissue anchor and insertion tool |
US9357991B2 (en) | 2011-11-03 | 2016-06-07 | Biomet Sports Medicine, Llc | Method and apparatus for stitching tendons |
US9370350B2 (en) | 2011-11-10 | 2016-06-21 | Biomet Sports Medicine, Llc | Apparatus for coupling soft tissue to a bone |
US9381013B2 (en) | 2011-11-10 | 2016-07-05 | Biomet Sports Medicine, Llc | Method for coupling soft tissue to a bone |
US9439642B2 (en) | 2006-02-07 | 2016-09-13 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US9538998B2 (en) | 2006-02-03 | 2017-01-10 | Biomet Sports Medicine, Llc | Method and apparatus for fracture fixation |
US9615822B2 (en) | 2014-05-30 | 2017-04-11 | Biomet Sports Medicine, Llc | Insertion tools and method for soft anchor |
ES2617585A1 (en) * | 2015-12-16 | 2017-06-19 | Rodolfo ESCUDERO VALVERDE | Bender, rotator and surgical needle impactor (Machine-translation by Google Translate, not legally binding) |
US9700291B2 (en) | 2014-06-03 | 2017-07-11 | Biomet Sports Medicine, Llc | Capsule retractor |
US9750496B2 (en) | 2002-08-27 | 2017-09-05 | P Tech, Llc | System for securing a portion of a body |
US9750492B2 (en) | 2006-08-04 | 2017-09-05 | Depuy Mitek, Llc | Suture anchor system with tension relief mechanism |
US9757119B2 (en) | 2013-03-08 | 2017-09-12 | Biomet Sports Medicine, Llc | Visual aid for identifying suture limbs arthroscopically |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
US9788825B2 (en) | 2006-08-04 | 2017-10-17 | Depuy Mitek, Llc | Suture anchor with relief mechanism |
US9801708B2 (en) | 2004-11-05 | 2017-10-31 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9861355B2 (en) | 2004-06-16 | 2018-01-09 | Smith & Nephew, Inc. | Suture passing |
US9888916B2 (en) | 2004-03-09 | 2018-02-13 | P Tech, Llc | Method and device for securing body tissue |
US9888915B2 (en) | 2011-02-14 | 2018-02-13 | Smith & Nephew, Inc. | Method and device for suture removal |
US9918827B2 (en) | 2013-03-14 | 2018-03-20 | Biomet Sports Medicine, Llc | Scaffold for spring ligament repair |
US9918826B2 (en) | 2006-09-29 | 2018-03-20 | Biomet Sports Medicine, Llc | Scaffold for spring ligament repair |
US9936943B1 (en) | 2014-08-07 | 2018-04-10 | Nicholas MANCINI | Suture passing surgical device with atraumatic grasper preventing accidental perforations |
US9955980B2 (en) | 2015-02-24 | 2018-05-01 | Biomet Sports Medicine, Llc | Anatomic soft tissue repair |
WO2018077387A1 (en) * | 2016-10-25 | 2018-05-03 | Swemac Innovation Ab | Osseous pin, guide sleeve therefor, extraction member therefor and kit |
US10039543B2 (en) | 2014-08-22 | 2018-08-07 | Biomet Sports Medicine, Llc | Non-sliding soft anchor |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
US10136886B2 (en) | 2013-12-20 | 2018-11-27 | Biomet Sports Medicine, Llc | Knotless soft tissue devices and techniques |
RU2687754C1 (en) * | 2017-12-18 | 2019-05-16 | Федеральное Государственное бюджетное образовательное учреждение высшего образования Дагестанский государственный медицинский университет Министерства здравоохранения Российской Федерации | Device for femoral neck osteosynthesis |
US10517587B2 (en) | 2006-02-03 | 2019-12-31 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US10682133B2 (en) | 2016-10-31 | 2020-06-16 | Smith & Nephew, Inc. | Suture passer and grasper instrument and method |
US10765420B2 (en) | 2014-04-24 | 2020-09-08 | Smith & Nephew, Inc. | Suture passer |
US10912551B2 (en) | 2015-03-31 | 2021-02-09 | Biomet Sports Medicine, Llc | Suture anchor with soft anchor of electrospun fibers |
US11246638B2 (en) | 2006-05-03 | 2022-02-15 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US11253296B2 (en) | 2006-02-07 | 2022-02-22 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11259792B2 (en) | 2006-02-03 | 2022-03-01 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US11259794B2 (en) | 2006-09-29 | 2022-03-01 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US11278331B2 (en) | 2006-02-07 | 2022-03-22 | P Tech Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US11311287B2 (en) | 2006-02-03 | 2022-04-26 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US12096928B2 (en) | 2009-05-29 | 2024-09-24 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
-
1973
- 1973-03-19 US US00342442A patent/US3842824A/en not_active Expired - Lifetime
- 1973-12-06 CA CA187,538A patent/CA1010603A/en not_active Expired
Cited By (366)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0196409A1 (en) * | 1985-03-19 | 1986-10-08 | GebràDer Sulzer Aktiengesellschaft | Cap- or dishlike articulation endoprosthesis |
US4640271A (en) * | 1985-11-07 | 1987-02-03 | Zimmer, Inc. | Bone screw |
USRE33348E (en) * | 1985-11-07 | 1990-09-25 | Zimmer, Inc. | Bone screw |
EP0270704A1 (en) * | 1986-12-12 | 1988-06-15 | Aesculap Ag | Anchoring element for fastening an osteosynthesis plate to a bone |
US4719907A (en) * | 1987-03-18 | 1988-01-19 | Orthospec, Inc. | Orthopedic pin placement guide |
US4869242A (en) * | 1988-07-29 | 1989-09-26 | Galluzzo Mose A | Bone fixation pin and method of using the same |
US5180388A (en) * | 1990-06-28 | 1993-01-19 | American Cyanamid Company | Bone pinning system |
US6302886B1 (en) | 1990-09-24 | 2001-10-16 | Innovasive Devices, Inc. | Method and apparatus for preventing migration of sutures through transosseous tunnels |
US7651495B2 (en) | 1990-09-24 | 2010-01-26 | Ethicon, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US20050038437A1 (en) * | 1990-09-24 | 2005-02-17 | Ethicon, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US6830572B2 (en) | 1990-09-24 | 2004-12-14 | Depuy Mitex, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US8062295B2 (en) | 1990-09-24 | 2011-11-22 | Depuy Mitek, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US5725529A (en) * | 1990-09-25 | 1998-03-10 | Innovasive Devices, Inc. | Bone fastener |
US7074203B1 (en) | 1990-09-25 | 2006-07-11 | Depuy Mitek, Inc. | Bone anchor and deployment device therefor |
US5860978A (en) * | 1990-09-25 | 1999-01-19 | Innovasive Devices, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US5488042A (en) * | 1992-03-13 | 1996-01-30 | Arch Development Corporation | Method for protection against genotoxic mutagenesis |
US6004327A (en) * | 1993-08-03 | 1999-12-21 | Stryker Technologies Corporation | Ratcheting compression device |
US5814071A (en) * | 1994-11-10 | 1998-09-29 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5797963A (en) * | 1994-11-10 | 1998-08-25 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5643321A (en) * | 1994-11-10 | 1997-07-01 | Innovasive Devices | Suture anchor assembly and methods |
US5649963A (en) * | 1994-11-10 | 1997-07-22 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5628766A (en) * | 1995-06-29 | 1997-05-13 | Johnson; Lanny L. | Method of using a mini-screw to anchor a suture |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US7637949B2 (en) | 1996-11-21 | 2009-12-29 | Innovasive Devices, Inc. | Method for anchoring autologous or artificial tendon grafts in bone |
US8100969B2 (en) | 1996-11-21 | 2012-01-24 | Depuy Mitek, Inc. | Methods for anchoring autologous or artificial tendon grafts using first and second bone anchors |
US6616694B1 (en) | 1996-11-21 | 2003-09-09 | Ethicon, Inc. | Apparatus for anchoring autologous or artificial tendon grafts in bone |
US20100121450A1 (en) * | 1996-11-21 | 2010-05-13 | Hart Rickey D | Method for anchoring autologous or artificial tendon grafts in bone |
US8496705B2 (en) | 1996-11-21 | 2013-07-30 | DePuy Mitek, LLCR | Method of anchoring autologous or artificial tendon grafts in bone |
US20040097943A1 (en) * | 1996-11-21 | 2004-05-20 | Hart Rickey D. | Apparatus for anchoring autologous or artificial tendon grafts in bone |
US5935129A (en) * | 1997-03-07 | 1999-08-10 | Innovasive Devices, Inc. | Methods and apparatus for anchoring objects to bone |
US5800440A (en) * | 1997-03-18 | 1998-09-01 | Johnson & Johnson Professional, Inc. | Device for inserting a surgical pin |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US8323315B2 (en) | 1998-12-30 | 2012-12-04 | Depuy Mitek, Inc. | Suture locking device |
US20080091237A1 (en) * | 1998-12-30 | 2008-04-17 | Schwartz Herbert E | Suture locking device |
US20040153103A1 (en) * | 1998-12-30 | 2004-08-05 | Schwartz Herbert E. | Soft tissue locking device |
US8512374B2 (en) | 1998-12-30 | 2013-08-20 | Depuy Mitek, Llc | Soft tissue locking device |
US6723107B1 (en) | 1999-04-19 | 2004-04-20 | Orthopaedic Biosystems Ltd. | Method and apparatus for suturing |
US8518091B2 (en) | 1999-07-23 | 2013-08-27 | Depuy Mitek, Llc | System and method for attaching soft tissue to bone |
US7896907B2 (en) | 1999-07-23 | 2011-03-01 | Ethicon, Inc. | System and method for attaching soft tissue to bone |
US8491600B2 (en) | 1999-07-23 | 2013-07-23 | Depuy Mitek, Llc | System and method for attaching soft tissue to bone |
US20050203521A1 (en) * | 1999-08-09 | 2005-09-15 | Bonutti Peter M. | Method of securing tissue |
US20020045902A1 (en) * | 1999-08-09 | 2002-04-18 | Bonutti Peter M. | Method of securing tissue |
US8128669B2 (en) * | 1999-08-09 | 2012-03-06 | P Tech, Llc. | Method of securing tissue |
US20050149029A1 (en) * | 1999-08-09 | 2005-07-07 | Bonutti Peter M. | Method of securing tissue |
US6860885B2 (en) * | 1999-08-09 | 2005-03-01 | Bonutti Ip, Llc | Method of securing tissue |
US8845699B2 (en) | 1999-08-09 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Method of securing tissue |
US7481831B2 (en) * | 1999-08-09 | 2009-01-27 | Marctec, Llc. | Method of securing tissue |
US7081126B2 (en) | 1999-08-10 | 2006-07-25 | Ethicon, Inc. | Self-locking suture anchor |
US9510816B2 (en) | 1999-08-10 | 2016-12-06 | Depuy Mitek, Llc | Self-locking suture anchor |
US6527794B1 (en) | 1999-08-10 | 2003-03-04 | Ethicon, Inc. | Self-locking suture anchor |
US6660023B2 (en) | 1999-08-10 | 2003-12-09 | Ethicon, Inc. | Self-locking suture anchor |
US20050090862A1 (en) * | 1999-08-10 | 2005-04-28 | Ethicon, Inc. | Self-locking suture anchor |
US20090099598A1 (en) * | 1999-08-10 | 2009-04-16 | Depuy Mitek, Inc. | Self-locking suture anchor |
US20050149122A1 (en) * | 1999-08-10 | 2005-07-07 | Mcdevitt Dennis | Self-locking suture anchor |
US7887551B2 (en) | 1999-12-02 | 2011-02-15 | Smith & Nephew, Inc. | Soft tissue attachment and repair |
US9295461B2 (en) | 1999-12-02 | 2016-03-29 | Smith & Nephew, Inc. | Methods for tissue repair |
US8366744B2 (en) | 1999-12-02 | 2013-02-05 | Smith & Nephew, Inc. | Apparatus for tissue repair |
US8512375B2 (en) | 1999-12-02 | 2013-08-20 | Smith & Nephew, Inc. | Closure device and method for tissue repair |
US9833231B2 (en) | 1999-12-02 | 2017-12-05 | Smith & Nephew, Inc. | Apparatus for tissue repair |
US7651509B2 (en) | 1999-12-02 | 2010-01-26 | Smith & Nephew, Inc. | Methods and devices for tissue repair |
US9545251B2 (en) | 1999-12-02 | 2017-01-17 | Smith & Nephew, Inc. | Apparatus for tissue repair |
US7153312B1 (en) | 1999-12-02 | 2006-12-26 | Smith & Nephew Inc. | Closure device and method for tissue repair |
US9220494B2 (en) | 1999-12-02 | 2015-12-29 | Smith & Nephew, Inc. | Methods for tissue repair |
US9492160B2 (en) | 1999-12-02 | 2016-11-15 | Smith & Nephew, Inc. | Closure device and method for tissue repair |
US8747439B2 (en) | 2000-03-13 | 2014-06-10 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US9067362B2 (en) | 2000-03-13 | 2015-06-30 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US9138222B2 (en) | 2000-03-13 | 2015-09-22 | P Tech, Llc | Method and device for securing body tissue |
US20060241695A1 (en) | 2000-03-13 | 2006-10-26 | Bonutti Peter M | Method of using ultrasonic vibration to secure body tissue with fastening element |
US9986994B2 (en) | 2000-03-13 | 2018-06-05 | P Tech, Llc | Method and device for securing body tissue |
US9884451B2 (en) | 2000-03-13 | 2018-02-06 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
EP1195144A1 (en) * | 2000-10-05 | 2002-04-10 | Euro.Medic. | Screw with rupturable insertion element for osteosynthesis techniques |
FR2814937A1 (en) * | 2000-10-05 | 2002-04-12 | Euro Medic | SCREW DEVICE WITH BREAKABLE INSERTION MODULE FOR OSTEOSYNTHESIS TECHNIQUES |
US7118578B2 (en) * | 2000-11-13 | 2006-10-10 | Hs West Investments, Llc | Apparatus and methods for independently conditioning and pre-tensioning a plurality of ligament grafts during joint repair surgery |
US20040039389A1 (en) * | 2000-11-13 | 2004-02-26 | West Hugh S. | Apparatus and methods for independently conditioning and pre-tensioning a plurality of ligament grafts during joint repair surgery |
US9757114B2 (en) | 2000-11-16 | 2017-09-12 | Depuy Mitek, Llc | Apparatus and method for attaching soft tissue to bone |
US7867264B2 (en) | 2000-11-16 | 2011-01-11 | Ethicon, Inc. | Apparatus and method for attaching soft tissue to bone |
US8834543B2 (en) | 2000-11-16 | 2014-09-16 | Depuy Mitek, Llc | Apparatus and method for attaching soft tissue to bone |
AU2002238684B2 (en) * | 2001-02-22 | 2006-12-21 | Abbott Spine | Fixing screw |
FR2821131A1 (en) * | 2001-02-22 | 2002-08-23 | Spine Next Sa | FIXING SCREWS |
WO2002065929A1 (en) * | 2001-02-22 | 2002-08-29 | Spine Next | Fixing screw |
AU2002238684B9 (en) * | 2001-02-22 | 2007-05-10 | Abbott Spine | Fixing screw |
US20040116932A1 (en) * | 2001-02-22 | 2004-06-17 | Keyvan Mazda | Fixing screw |
US20080147127A1 (en) * | 2001-10-18 | 2008-06-19 | Fxdevices, Llc | Bone screw system and method |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
US9585725B2 (en) | 2002-03-20 | 2017-03-07 | P Tech, Llc | Robotic arthroplasty system |
US10959791B2 (en) | 2002-03-20 | 2021-03-30 | P Tech, Llc | Robotic surgery |
US10869728B2 (en) | 2002-03-20 | 2020-12-22 | P Tech, Llc | Robotic surgery |
US9808318B2 (en) | 2002-03-20 | 2017-11-07 | P Tech, Llc | Robotic arthroplasty system |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US9149281B2 (en) | 2002-03-20 | 2015-10-06 | P Tech, Llc | Robotic system for engaging a fastener with body tissue |
US10368953B2 (en) | 2002-03-20 | 2019-08-06 | P Tech, Llc | Robotic system for fastening layers of body tissue together and method thereof |
US10265128B2 (en) | 2002-03-20 | 2019-04-23 | P Tech, Llc | Methods of using a robotic spine system |
US9271741B2 (en) | 2002-03-20 | 2016-03-01 | P Tech, Llc | Robotic ultrasonic energy system |
US9877793B2 (en) | 2002-03-20 | 2018-01-30 | P Tech, Llc | Robotic arthroplasty system |
US10932869B2 (en) | 2002-03-20 | 2021-03-02 | P Tech, Llc | Robotic surgery |
US9271779B2 (en) | 2002-03-20 | 2016-03-01 | P Tech, Llc | Methods of using a robotic spine system |
US9629687B2 (en) | 2002-03-20 | 2017-04-25 | P Tech, Llc | Robotic arthroplasty system |
US9486227B2 (en) | 2002-03-20 | 2016-11-08 | P Tech, Llc | Robotic retractor system |
US9192395B2 (en) | 2002-03-20 | 2015-11-24 | P Tech, Llc | Robotic fastening system |
US10052098B2 (en) | 2002-05-22 | 2018-08-21 | Orthopaedic Biosystems Ltd., Inc. | Suture passing surgical instrument |
US8690898B2 (en) | 2002-05-22 | 2014-04-08 | Smith & Nephew, Inc. | Suture passing surgical instrument |
US6984237B2 (en) | 2002-05-22 | 2006-01-10 | Orthopaedic Biosystems Ltd., Inc. | Suture passing surgical instrument |
US9750496B2 (en) | 2002-08-27 | 2017-09-05 | P Tech, Llc | System for securing a portion of a body |
US9314235B2 (en) | 2003-02-05 | 2016-04-19 | Smith & Nephew, Inc. | Tissue anchor and insertion tool |
US9060767B2 (en) | 2003-04-30 | 2015-06-23 | P Tech, Llc | Tissue fastener and methods for using same |
US9962162B2 (en) | 2003-04-30 | 2018-05-08 | P Tech, Llc | Tissue fastener and methods for using same |
US7608092B1 (en) | 2004-02-20 | 2009-10-27 | Biomet Sports Medicince, LLC | Method and apparatus for performing meniscus repair |
US8221454B2 (en) | 2004-02-20 | 2012-07-17 | Biomet Sports Medicine, Llc | Apparatus for performing meniscus repair |
US9888916B2 (en) | 2004-03-09 | 2018-02-13 | P Tech, Llc | Method and device for securing body tissue |
US9861355B2 (en) | 2004-06-16 | 2018-01-09 | Smith & Nephew, Inc. | Suture passing |
US8133231B2 (en) | 2004-07-06 | 2012-03-13 | Tyco Healthcare Group Lp | Instrument kit and method for performing meniscal repair |
US20060009765A1 (en) * | 2004-07-06 | 2006-01-12 | Jonathan Martinek | Instrument kit and method for performing meniscal repair |
US7632284B2 (en) * | 2004-07-06 | 2009-12-15 | Tyco Healthcare Group Lp | Instrument kit and method for performing meniscal repair |
US9867706B2 (en) | 2004-10-26 | 2018-01-16 | P Tech, Llc | Tissue fastening system |
US9579129B2 (en) | 2004-10-26 | 2017-02-28 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US11457958B2 (en) | 2004-10-26 | 2022-10-04 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US11992205B2 (en) | 2004-10-26 | 2024-05-28 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9226828B2 (en) | 2004-10-26 | 2016-01-05 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US10813764B2 (en) | 2004-10-26 | 2020-10-27 | P Tech, Llc | Expandable introducer system and methods |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US9980761B2 (en) | 2004-10-26 | 2018-05-29 | P Tech, Llc | Tissue fixation system and method |
US9545268B2 (en) | 2004-10-26 | 2017-01-17 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9999449B2 (en) | 2004-10-26 | 2018-06-19 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US11013542B2 (en) | 2004-10-26 | 2021-05-25 | P Tech, Llc | Tissue fixation system and method |
US10238378B2 (en) | 2004-10-26 | 2019-03-26 | P Tech, Llc | Tissue fixation system and method |
US9814453B2 (en) | 2004-10-26 | 2017-11-14 | P Tech, Llc | Deformable fastener system |
US8118836B2 (en) | 2004-11-05 | 2012-02-21 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9801708B2 (en) | 2004-11-05 | 2017-10-31 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8128658B2 (en) | 2004-11-05 | 2012-03-06 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US9504460B2 (en) | 2004-11-05 | 2016-11-29 | Biomet Sports Medicine, LLC. | Soft tissue repair device and method |
US8303604B2 (en) | 2004-11-05 | 2012-11-06 | Biomet Sports Medicine, Llc | Soft tissue repair device and method |
US11109857B2 (en) | 2004-11-05 | 2021-09-07 | Biomet Sports Medicine, Llc | Soft tissue repair device and method |
US9572655B2 (en) | 2004-11-05 | 2017-02-21 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8840645B2 (en) | 2004-11-05 | 2014-09-23 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8137382B2 (en) | 2004-11-05 | 2012-03-20 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US8551140B2 (en) | 2004-11-05 | 2013-10-08 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US10265064B2 (en) | 2004-11-05 | 2019-04-23 | Biomet Sports Medicine, Llc | Soft tissue repair device and method |
US7914539B2 (en) | 2004-11-09 | 2011-03-29 | Biomet Sports Medicine, Llc | Tissue fixation device |
US8998949B2 (en) | 2004-11-09 | 2015-04-07 | Biomet Sports Medicine, Llc | Soft tissue conduit device |
US8034090B2 (en) | 2004-11-09 | 2011-10-11 | Biomet Sports Medicine, Llc | Tissue fixation device |
US8317825B2 (en) | 2004-11-09 | 2012-11-27 | Biomet Sports Medicine, Llc | Soft tissue conduit device and method |
US7608098B1 (en) | 2004-11-09 | 2009-10-27 | Biomet Sports Medicine, Llc | Bone fixation device |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
US9980717B2 (en) | 2005-02-22 | 2018-05-29 | P Tech, Llc | Device and method for securing body tissue |
US8623051B2 (en) | 2005-06-24 | 2014-01-07 | Smith & Nephew, Inc. | Tissue repair device |
US9173653B2 (en) | 2005-06-24 | 2015-11-03 | Smith & Nephew, Inc. | Tissue repair device |
US10376259B2 (en) | 2005-10-05 | 2019-08-13 | P Tech, Llc | Deformable fastener system |
US10441269B1 (en) | 2005-10-05 | 2019-10-15 | P Tech, Llc | Deformable fastener system |
US11219446B2 (en) | 2005-10-05 | 2022-01-11 | P Tech, Llc | Deformable fastener system |
US8337525B2 (en) | 2006-02-03 | 2012-12-25 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US10973507B2 (en) | 2006-02-03 | 2021-04-13 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9173651B2 (en) | 2006-02-03 | 2015-11-03 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US12096931B2 (en) | 2006-02-03 | 2024-09-24 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9149267B2 (en) | 2006-02-03 | 2015-10-06 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US12064101B2 (en) | 2006-02-03 | 2024-08-20 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US11998185B2 (en) | 2006-02-03 | 2024-06-04 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US11896210B2 (en) | 2006-02-03 | 2024-02-13 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9271713B2 (en) | 2006-02-03 | 2016-03-01 | Biomet Sports Medicine, Llc | Method and apparatus for tensioning a suture |
US11819205B2 (en) | 2006-02-03 | 2023-11-21 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US9005287B2 (en) | 2006-02-03 | 2015-04-14 | Biomet Sports Medicine, Llc | Method for bone reattachment |
US8968364B2 (en) | 2006-02-03 | 2015-03-03 | Biomet Sports Medicine, Llc | Method and apparatus for fixation of an ACL graft |
US11786236B2 (en) | 2006-02-03 | 2023-10-17 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US8936621B2 (en) | 2006-02-03 | 2015-01-20 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US11730464B2 (en) | 2006-02-03 | 2023-08-22 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US11723648B2 (en) | 2006-02-03 | 2023-08-15 | Biomet Sports Medicine, Llc | Method and apparatus for soft tissue fixation |
US11617572B2 (en) | 2006-02-03 | 2023-04-04 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US11589859B2 (en) | 2006-02-03 | 2023-02-28 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US11471147B2 (en) | 2006-02-03 | 2022-10-18 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9402621B2 (en) | 2006-02-03 | 2016-08-02 | Biomet Sports Medicine, LLC. | Method for tissue fixation |
US11446019B2 (en) | 2006-02-03 | 2022-09-20 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US11317907B2 (en) | 2006-02-03 | 2022-05-03 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US11311287B2 (en) | 2006-02-03 | 2022-04-26 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US9414833B2 (en) | 2006-02-03 | 2016-08-16 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US11284884B2 (en) | 2006-02-03 | 2022-03-29 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US11259792B2 (en) | 2006-02-03 | 2022-03-01 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US11116495B2 (en) | 2006-02-03 | 2021-09-14 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US11065103B2 (en) | 2006-02-03 | 2021-07-20 | Biomet Sports Medicine, Llc | Method and apparatus for fixation of an ACL graft |
US8932331B2 (en) | 2006-02-03 | 2015-01-13 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US9468433B2 (en) | 2006-02-03 | 2016-10-18 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US11039826B2 (en) | 2006-02-03 | 2021-06-22 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US7749250B2 (en) | 2006-02-03 | 2010-07-06 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US10987099B2 (en) | 2006-02-03 | 2021-04-27 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US9492158B2 (en) | 2006-02-03 | 2016-11-15 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US7857830B2 (en) | 2006-02-03 | 2010-12-28 | Biomet Sports Medicine, Llc | Soft tissue repair and conduit device |
US9498204B2 (en) | 2006-02-03 | 2016-11-22 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US7905904B2 (en) | 2006-02-03 | 2011-03-15 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US10932770B2 (en) | 2006-02-03 | 2021-03-02 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US9510821B2 (en) | 2006-02-03 | 2016-12-06 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US9510819B2 (en) | 2006-02-03 | 2016-12-06 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US7905903B2 (en) | 2006-02-03 | 2011-03-15 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US9532777B2 (en) | 2006-02-03 | 2017-01-03 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US7909851B2 (en) | 2006-02-03 | 2011-03-22 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US9538998B2 (en) | 2006-02-03 | 2017-01-10 | Biomet Sports Medicine, Llc | Method and apparatus for fracture fixation |
US10729430B2 (en) | 2006-02-03 | 2020-08-04 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US10729421B2 (en) | 2006-02-03 | 2020-08-04 | Biomet Sports Medicine, Llc | Method and apparatus for soft tissue fixation |
US9561025B2 (en) | 2006-02-03 | 2017-02-07 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US8771316B2 (en) | 2006-02-03 | 2014-07-08 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US10716557B2 (en) | 2006-02-03 | 2020-07-21 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US10702259B2 (en) | 2006-02-03 | 2020-07-07 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US9603591B2 (en) | 2006-02-03 | 2017-03-28 | Biomet Sports Medicine, Llc | Flexible anchors for tissue fixation |
US10695052B2 (en) | 2006-02-03 | 2020-06-30 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US10687803B2 (en) | 2006-02-03 | 2020-06-23 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9622736B2 (en) | 2006-02-03 | 2017-04-18 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US8721684B2 (en) | 2006-02-03 | 2014-05-13 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US9642661B2 (en) | 2006-02-03 | 2017-05-09 | Biomet Sports Medicine, Llc | Method and Apparatus for Sternal Closure |
US10675073B2 (en) | 2006-02-03 | 2020-06-09 | Biomet Sports Medicine, Llc | Method and apparatus for sternal closure |
US10603029B2 (en) | 2006-02-03 | 2020-03-31 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US10595851B2 (en) | 2006-02-03 | 2020-03-24 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US10542967B2 (en) | 2006-02-03 | 2020-01-28 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US10517587B2 (en) | 2006-02-03 | 2019-12-31 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US10441264B2 (en) | 2006-02-03 | 2019-10-15 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US10398428B2 (en) | 2006-02-03 | 2019-09-03 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US8088130B2 (en) | 2006-02-03 | 2012-01-03 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US10321906B2 (en) | 2006-02-03 | 2019-06-18 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US9763656B2 (en) | 2006-02-03 | 2017-09-19 | Biomet Sports Medicine, Llc | Method and apparatus for soft tissue fixation |
US8652172B2 (en) | 2006-02-03 | 2014-02-18 | Biomet Sports Medicine, Llc | Flexible anchors for tissue fixation |
US8273106B2 (en) | 2006-02-03 | 2012-09-25 | Biomet Sports Medicine, Llc | Soft tissue repair and conduit device |
US10251637B2 (en) | 2006-02-03 | 2019-04-09 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US9801620B2 (en) | 2006-02-03 | 2017-10-31 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US8652171B2 (en) | 2006-02-03 | 2014-02-18 | Biomet Sports Medicine, Llc | Method and apparatus for soft tissue fixation |
US8632569B2 (en) | 2006-02-03 | 2014-01-21 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US8292921B2 (en) | 2006-02-03 | 2012-10-23 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US10154837B2 (en) | 2006-02-03 | 2018-12-18 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8608777B2 (en) | 2006-02-03 | 2013-12-17 | Biomet Sports Medicine | Method and apparatus for coupling soft tissue to a bone |
US10098629B2 (en) | 2006-02-03 | 2018-10-16 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8597327B2 (en) | 2006-02-03 | 2013-12-03 | Biomet Manufacturing, Llc | Method and apparatus for sternal closure |
US8574235B2 (en) | 2006-02-03 | 2013-11-05 | Biomet Sports Medicine, Llc | Method for trochanteric reattachment |
US10092288B2 (en) | 2006-02-03 | 2018-10-09 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8298262B2 (en) | 2006-02-03 | 2012-10-30 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US10022118B2 (en) | 2006-02-03 | 2018-07-17 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US10004588B2 (en) | 2006-02-03 | 2018-06-26 | Biomet Sports Medicine, Llc | Method and apparatus for fixation of an ACL graft |
US10004489B2 (en) | 2006-02-03 | 2018-06-26 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9993241B2 (en) | 2006-02-03 | 2018-06-12 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US8361113B2 (en) | 2006-02-03 | 2013-01-29 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8409253B2 (en) | 2006-02-03 | 2013-04-02 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US11278331B2 (en) | 2006-02-07 | 2022-03-22 | P Tech Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US11253296B2 (en) | 2006-02-07 | 2022-02-22 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11129645B2 (en) | 2006-02-07 | 2021-09-28 | P Tech, Llc | Methods of securing a fastener |
US9439642B2 (en) | 2006-02-07 | 2016-09-13 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US9173650B2 (en) | 2006-02-07 | 2015-11-03 | P Tech, Llc | Methods and devices for trauma welding |
US8496657B2 (en) | 2006-02-07 | 2013-07-30 | P Tech, Llc. | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
US10368924B2 (en) | 2006-02-07 | 2019-08-06 | P Tech, Llc | Methods and devices for trauma welding |
US20080039845A1 (en) * | 2006-02-07 | 2008-02-14 | Bonutti Peter M | Methods and devices for intracorporeal bonding of implants with thermal energy |
US9743963B2 (en) | 2006-02-07 | 2017-08-29 | P Tech, Llc | Methods and devices for trauma welding |
US11134995B2 (en) | 2006-02-07 | 2021-10-05 | P Tech, Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US9610073B2 (en) | 2006-02-07 | 2017-04-04 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11998251B2 (en) | 2006-02-07 | 2024-06-04 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US9421005B2 (en) | 2006-02-07 | 2016-08-23 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11246638B2 (en) | 2006-05-03 | 2022-02-15 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US9750492B2 (en) | 2006-08-04 | 2017-09-05 | Depuy Mitek, Llc | Suture anchor system with tension relief mechanism |
US9788825B2 (en) | 2006-08-04 | 2017-10-17 | Depuy Mitek, Llc | Suture anchor with relief mechanism |
US10939902B2 (en) | 2006-08-04 | 2021-03-09 | DePuy Synthes Products, Inc. | Suture anchor with relief mechanism |
US10813633B2 (en) | 2006-08-04 | 2020-10-27 | DePuy Synthes Products, Inc. | Suture anchor system with tension relief mechanism |
US8777956B2 (en) | 2006-08-16 | 2014-07-15 | Biomet Sports Medicine, Llc | Chondral defect repair |
US8251998B2 (en) | 2006-08-16 | 2012-08-28 | Biomet Sports Medicine, Llc | Chondral defect repair |
US10517714B2 (en) | 2006-09-29 | 2019-12-31 | Biomet Sports Medicine, Llc | Ligament system for knee joint |
US10398430B2 (en) | 2006-09-29 | 2019-09-03 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US9833230B2 (en) | 2006-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Fracture fixation device |
US9414925B2 (en) | 2006-09-29 | 2016-08-16 | Biomet Manufacturing, Llc | Method of implanting a knee prosthesis assembly with a ligament link |
US8562645B2 (en) | 2006-09-29 | 2013-10-22 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US9788876B2 (en) | 2006-09-29 | 2017-10-17 | Biomet Sports Medicine, Llc | Fracture fixation device |
US9078644B2 (en) | 2006-09-29 | 2015-07-14 | Biomet Sports Medicine, Llc | Fracture fixation device |
US7658751B2 (en) | 2006-09-29 | 2010-02-09 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US11096684B2 (en) | 2006-09-29 | 2021-08-24 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US9486211B2 (en) | 2006-09-29 | 2016-11-08 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US10349931B2 (en) | 2006-09-29 | 2019-07-16 | Biomet Sports Medicine, Llc | Fracture fixation device |
US7601165B2 (en) | 2006-09-29 | 2009-10-13 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable suture loop |
US11672527B2 (en) | 2006-09-29 | 2023-06-13 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US8562647B2 (en) | 2006-09-29 | 2013-10-22 | Biomet Sports Medicine, Llc | Method and apparatus for securing soft tissue to bone |
US8231654B2 (en) | 2006-09-29 | 2012-07-31 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US8672968B2 (en) | 2006-09-29 | 2014-03-18 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US8500818B2 (en) | 2006-09-29 | 2013-08-06 | Biomet Manufacturing, Llc | Knee prosthesis assembly with ligament link |
US10695045B2 (en) | 2006-09-29 | 2020-06-30 | Biomet Sports Medicine, Llc | Method and apparatus for attaching soft tissue to bone |
US10835232B2 (en) | 2006-09-29 | 2020-11-17 | Biomet Sports Medicine, Llc | Fracture fixation device |
US8801783B2 (en) | 2006-09-29 | 2014-08-12 | Biomet Sports Medicine, Llc | Prosthetic ligament system for knee joint |
US7959650B2 (en) | 2006-09-29 | 2011-06-14 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US8672969B2 (en) | 2006-09-29 | 2014-03-18 | Biomet Sports Medicine, Llc | Fracture fixation device |
US11376115B2 (en) | 2006-09-29 | 2022-07-05 | Biomet Sports Medicine, Llc | Prosthetic ligament system for knee joint |
US9539003B2 (en) | 2006-09-29 | 2017-01-10 | Biomet Sports Medicine, LLC. | Method and apparatus for forming a self-locking adjustable loop |
US9918826B2 (en) | 2006-09-29 | 2018-03-20 | Biomet Sports Medicine, Llc | Scaffold for spring ligament repair |
US10743925B2 (en) | 2006-09-29 | 2020-08-18 | Biomet Sports Medicine, Llc | Fracture fixation device |
US9724090B2 (en) | 2006-09-29 | 2017-08-08 | Biomet Manufacturing, Llc | Method and apparatus for attaching soft tissue to bone |
US11259794B2 (en) | 2006-09-29 | 2022-03-01 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US9681940B2 (en) | 2006-09-29 | 2017-06-20 | Biomet Sports Medicine, Llc | Ligament system for knee joint |
US10610217B2 (en) | 2006-09-29 | 2020-04-07 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US10004493B2 (en) | 2006-09-29 | 2018-06-26 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US11612391B2 (en) | 2007-01-16 | 2023-03-28 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US10517584B1 (en) | 2007-02-13 | 2019-12-31 | P Tech, Llc | Tissue fixation system and method |
US10390817B2 (en) | 2007-02-13 | 2019-08-27 | P Tech, Llc | Tissue fixation system and method |
US11801044B2 (en) | 2007-02-13 | 2023-10-31 | P Tech, Llc | Tissue fixation system and method |
US9402668B2 (en) | 2007-02-13 | 2016-08-02 | P Tech, Llc | Tissue fixation system and method |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
US9017381B2 (en) | 2007-04-10 | 2015-04-28 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US11185320B2 (en) | 2007-04-10 | 2021-11-30 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US9861351B2 (en) | 2007-04-10 | 2018-01-09 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US10729423B2 (en) | 2007-04-10 | 2020-08-04 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US9931145B2 (en) | 2007-12-05 | 2018-04-03 | Syntorr, Inc. | Flexible bone screw |
US9468477B2 (en) | 2007-12-05 | 2016-10-18 | Syntorr, Inc. | Flexible bone screw |
US20090149890A1 (en) * | 2007-12-05 | 2009-06-11 | Martin Daniel L | Flexible bone screw |
US8808338B2 (en) | 2007-12-05 | 2014-08-19 | Syntorr, Inc. | Flexible bone screw |
US9931144B2 (en) | 2007-12-05 | 2018-04-03 | Syntorr, Inc. | Flexible bone screw |
US11534159B2 (en) | 2008-08-22 | 2022-12-27 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US20150150656A1 (en) * | 2008-12-01 | 2015-06-04 | Straumann Holding Ag | Fixation pin |
US10376342B2 (en) | 2008-12-01 | 2019-08-13 | Straumann Holding Ag | Fixation pin |
US11730573B2 (en) | 2008-12-01 | 2023-08-22 | Straumann Holding Ag | Fixation pin |
US11419706B2 (en) * | 2008-12-01 | 2022-08-23 | Straumann Holding Ag | Fixation pin |
US10149767B2 (en) | 2009-05-28 | 2018-12-11 | Biomet Manufacturing, Llc | Method of implanting knee prosthesis assembly with ligament link |
US8343227B2 (en) | 2009-05-28 | 2013-01-01 | Biomet Manufacturing Corp. | Knee prosthesis assembly with ligament link |
US8900314B2 (en) | 2009-05-28 | 2014-12-02 | Biomet Manufacturing, Llc | Method of implanting a prosthetic knee joint assembly |
US12096928B2 (en) | 2009-05-29 | 2024-09-24 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US9358055B2 (en) * | 2010-08-02 | 2016-06-07 | Tongji University | Separable pedicle screw |
US20140296928A1 (en) * | 2010-08-02 | 2014-10-02 | Tongji University | Separable pedicle screw |
US9888915B2 (en) | 2011-02-14 | 2018-02-13 | Smith & Nephew, Inc. | Method and device for suture removal |
US8771352B2 (en) | 2011-05-17 | 2014-07-08 | Biomet Sports Medicine, Llc | Method and apparatus for tibial fixation of an ACL graft |
US9216078B2 (en) | 2011-05-17 | 2015-12-22 | Biomet Sports Medicine, Llc | Method and apparatus for tibial fixation of an ACL graft |
US9445827B2 (en) | 2011-10-25 | 2016-09-20 | Biomet Sports Medicine, Llc | Method and apparatus for intraosseous membrane reconstruction |
US8506597B2 (en) | 2011-10-25 | 2013-08-13 | Biomet Sports Medicine, Llc | Method and apparatus for interosseous membrane reconstruction |
US11241305B2 (en) | 2011-11-03 | 2022-02-08 | Biomet Sports Medicine, Llc | Method and apparatus for stitching tendons |
US9357991B2 (en) | 2011-11-03 | 2016-06-07 | Biomet Sports Medicine, Llc | Method and apparatus for stitching tendons |
US10265159B2 (en) | 2011-11-03 | 2019-04-23 | Biomet Sports Medicine, Llc | Method and apparatus for stitching tendons |
US10363028B2 (en) | 2011-11-10 | 2019-07-30 | Biomet Sports Medicine, Llc | Method for coupling soft tissue to a bone |
US9314241B2 (en) | 2011-11-10 | 2016-04-19 | Biomet Sports Medicine, Llc | Apparatus for coupling soft tissue to a bone |
US10368856B2 (en) | 2011-11-10 | 2019-08-06 | Biomet Sports Medicine, Llc | Apparatus for coupling soft tissue to a bone |
US9357992B2 (en) | 2011-11-10 | 2016-06-07 | Biomet Sports Medicine, Llc | Method for coupling soft tissue to a bone |
US9370350B2 (en) | 2011-11-10 | 2016-06-21 | Biomet Sports Medicine, Llc | Apparatus for coupling soft tissue to a bone |
US11534157B2 (en) | 2011-11-10 | 2022-12-27 | Biomet Sports Medicine, Llc | Method for coupling soft tissue to a bone |
US9381013B2 (en) | 2011-11-10 | 2016-07-05 | Biomet Sports Medicine, Llc | Method for coupling soft tissue to a bone |
US9259217B2 (en) | 2012-01-03 | 2016-02-16 | Biomet Manufacturing, Llc | Suture Button |
US9433407B2 (en) | 2012-01-03 | 2016-09-06 | Biomet Manufacturing, Llc | Method of implanting a bone fixation assembly |
US9402640B2 (en) * | 2012-12-12 | 2016-08-02 | Wright Medical Technology, Inc. | Alignment guide with embedded features for intra-operative fluoro-checks |
US20140163570A1 (en) * | 2012-12-12 | 2014-06-12 | Wright Medical Technology, Inc. | Alignment guide with embedded features for intra-operative fluoro-checks |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
US9757119B2 (en) | 2013-03-08 | 2017-09-12 | Biomet Sports Medicine, Llc | Visual aid for identifying suture limbs arthroscopically |
US9918827B2 (en) | 2013-03-14 | 2018-03-20 | Biomet Sports Medicine, Llc | Scaffold for spring ligament repair |
US10758221B2 (en) | 2013-03-14 | 2020-09-01 | Biomet Sports Medicine, Llc | Scaffold for spring ligament repair |
US20150012050A1 (en) * | 2013-07-03 | 2015-01-08 | Biomet Manufacturing, Llc | Bone fusion device |
US9517098B2 (en) * | 2013-07-03 | 2016-12-13 | Biomet Manufacturing, Llc | Bone fusion device |
US9962202B2 (en) | 2013-07-03 | 2018-05-08 | Biomet Manufacturing, Llc | Bone fusion device |
US10806443B2 (en) | 2013-12-20 | 2020-10-20 | Biomet Sports Medicine, Llc | Knotless soft tissue devices and techniques |
US11648004B2 (en) | 2013-12-20 | 2023-05-16 | Biomet Sports Medicine, Llc | Knotless soft tissue devices and techniques |
US10136886B2 (en) | 2013-12-20 | 2018-11-27 | Biomet Sports Medicine, Llc | Knotless soft tissue devices and techniques |
US10765420B2 (en) | 2014-04-24 | 2020-09-08 | Smith & Nephew, Inc. | Suture passer |
US9615822B2 (en) | 2014-05-30 | 2017-04-11 | Biomet Sports Medicine, Llc | Insertion tools and method for soft anchor |
US9700291B2 (en) | 2014-06-03 | 2017-07-11 | Biomet Sports Medicine, Llc | Capsule retractor |
US9936943B1 (en) | 2014-08-07 | 2018-04-10 | Nicholas MANCINI | Suture passing surgical device with atraumatic grasper preventing accidental perforations |
US11219443B2 (en) | 2014-08-22 | 2022-01-11 | Biomet Sports Medicine, Llc | Non-sliding soft anchor |
US10039543B2 (en) | 2014-08-22 | 2018-08-07 | Biomet Sports Medicine, Llc | Non-sliding soft anchor |
US10743856B2 (en) | 2014-08-22 | 2020-08-18 | Biomet Sports Medicine, Llc | Non-sliding soft anchor |
US9955980B2 (en) | 2015-02-24 | 2018-05-01 | Biomet Sports Medicine, Llc | Anatomic soft tissue repair |
US10912551B2 (en) | 2015-03-31 | 2021-02-09 | Biomet Sports Medicine, Llc | Suture anchor with soft anchor of electrospun fibers |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
US11744651B2 (en) | 2015-10-21 | 2023-09-05 | P Tech, Llc | Systems and methods for navigation and visualization |
US11317974B2 (en) | 2015-10-21 | 2022-05-03 | P Tech, Llc | Systems and methods for navigation and visualization |
US11684430B2 (en) | 2015-10-21 | 2023-06-27 | P Tech, Llc | Systems and methods for navigation and visualization |
US10765484B2 (en) | 2015-10-21 | 2020-09-08 | P Tech, Llc | Systems and methods for navigation and visualization |
US12023111B2 (en) | 2015-10-21 | 2024-07-02 | P Tech, Llc | Systems and methods for navigation and visualization |
US12096995B2 (en) | 2015-10-21 | 2024-09-24 | P Tech, Llc | Systems and methods for navigation and visualization |
ES2617585A1 (en) * | 2015-12-16 | 2017-06-19 | Rodolfo ESCUDERO VALVERDE | Bender, rotator and surgical needle impactor (Machine-translation by Google Translate, not legally binding) |
US11272969B2 (en) | 2016-10-25 | 2022-03-15 | Swemac Innovation Ab | Osseous pin, guide sleeve therefor, extraction member therefor and kit |
JP2019536589A (en) * | 2016-10-25 | 2019-12-19 | スウェマック・イノヴェーション・アーベー | Bone pin, guide sleeve for bone pin, extraction member for bone pin, and kit |
WO2018077387A1 (en) * | 2016-10-25 | 2018-05-03 | Swemac Innovation Ab | Osseous pin, guide sleeve therefor, extraction member therefor and kit |
US10682133B2 (en) | 2016-10-31 | 2020-06-16 | Smith & Nephew, Inc. | Suture passer and grasper instrument and method |
RU2687754C1 (en) * | 2017-12-18 | 2019-05-16 | Федеральное Государственное бюджетное образовательное учреждение высшего образования Дагестанский государственный медицинский университет Министерства здравоохранения Российской Федерации | Device for femoral neck osteosynthesis |
Also Published As
Publication number | Publication date |
---|---|
CA1010603A (en) | 1977-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3842824A (en) | Notched surgical pin and breaking tool therefor | |
US11202662B2 (en) | Percutaneous fixator and method of insertion | |
US20210361333A1 (en) | Devices for generating and applying compression within a body | |
US6149654A (en) | Intra-articular drill | |
US5374270A (en) | Device and method for insertion of guide pin | |
US5611801A (en) | Method and apparatus for bone fracture fixation | |
US6656189B1 (en) | Radiolucent aiming guide | |
US6238417B1 (en) | Method for fixing at least two bone segments | |
US4643178A (en) | Surgical wire and method for the use thereof | |
US6042583A (en) | Bone anchor-insertion tool and surgical method employing same | |
US5441502A (en) | System and method for re-attaching soft tissue to bone | |
US9107676B2 (en) | Latarjet instrumentation and method | |
KR0162634B1 (en) | Bone pin | |
JP2538470B2 (en) | Bone screw | |
US6309396B1 (en) | Tool for inserting an intramedullary guide wire | |
US3118444A (en) | Forearm rod for fractures | |
KR20020050244A (en) | Surgical instrument | |
EP2014241A2 (en) | Applicator for suture/button construct | |
US9095332B2 (en) | Method and apparatus for attaching an elongated object to bone | |
HU217055B (en) | Osteosynthesis device | |
EP0625886A1 (en) | Apparatus and method for suture attachment | |
JPS62159647A (en) | Apparatus for fixing fractured femule | |
JPH07194612A (en) | Cam binding type locking device for orthopedics | |
JPH05103795A (en) | Fastening screw for fixing biologically absorbing bone | |
JPS63117742A (en) | Treatment jig for endoscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |
|
AS | Assignment |
Owner name: BAXTER INTERNATIONAL INC., ILLINOIS Free format text: CHANGE OF NAME;ASSIGNOR:BAXTER TRAVENOL LABORATOIRES, INC., A CORP. OF DE;REEL/FRAME:005053/0167 Effective date: 19881011 |