[go: nahoru, domu]

US3849584A - Plasma arc torch - Google Patents

Plasma arc torch Download PDF

Info

Publication number
US3849584A
US3849584A US00409329A US40932973A US3849584A US 3849584 A US3849584 A US 3849584A US 00409329 A US00409329 A US 00409329A US 40932973 A US40932973 A US 40932973A US 3849584 A US3849584 A US 3849584A
Authority
US
United States
Prior art keywords
plasma arc
arc torch
inserts
electrode
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00409329A
Inventor
V Lakomsky
G Melnik
A Chvertko
A Bukalo
B Paton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00409329A priority Critical patent/US3849584A/en
Priority to US05/498,937 priority patent/US3980802A/en
Application granted granted Critical
Publication of US3849584A publication Critical patent/US3849584A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/226Remelting metals with heating by wave energy or particle radiation by electric discharge, e.g. plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/10Mountings, supports, terminals or arrangements for feeding or guiding electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • ABSTRACT A plasma arc remelting furnace system with improved components including mechanisms for independently vertically feeding and oscillating the metal blank through the top of the furnace.
  • Multiple plasma arc torches (plasmatrons) are installed in a sealed chamber and adjustable operators enable angular disposition of individual torches.
  • the torches have improved torch nozzles with heat sink construction enabling operation at higher temperatures, better stabilized plasma arcs and longer torch life.
  • the system can utilize ingot molds of various cross section shapes, i.e., round, square, rectangular and polygonal and, depending upon mold shape, the number of torches can differ.
  • Operating circuits are provided for use with a plurality of different numbers (up to eight) of torches, either with direct current or alternating current power sources, and possible variations of circuits will enable using a larger number of torches.
  • Installations in the prior art used for the production of ingots in plasma arc remelting teach use of a cooled mold with a vertically movable bottom part for lowering the ingot being made.
  • the mold is positioned within the lower portion of a hermetically sealed chamber and the installations utilize one or several plasma torches connected to a source of electrical energy.
  • a suitable power operated mechanism connected to the bottom part provides for moving that part and extracting the formed ingot.
  • Radial arrangement of several plasmatrons around a crystallizer allows the placement of heat sources evenly around the molten pool, or bath, of metal which exists at the top of the ingot being formed. Precise regulation of the heating of all sections of the bath is obtained by changing the circumferential distances between the plasmatrons. It is known, that at low remelting rates, 70 to 80 percent of the heat released by the solidificating ingot is removed to the water-cooled copper crystallizer through its contact strip with the bath. ln heating the bath by plasma flames placed along the periphery of the bath it is easy to obtain its flat shape. Also, at a certain inclination of the plasmatrons to the bath, one can make the liquid metal revolve, at a desired rate, around the vertical axis by using the energy of plasma ets.
  • Blanks larger than mm in diameter are melted close to free surface of the bath and their melted face takes a flat or a concave form, thus causing an increase in the efficiency of the remelting process.
  • the demands put on the quality of the blanks are less rigid than on blanks used in furnaces with sidewise feed or blanks, where usually the blanks must be much thinner than the ingot and therefore their manufacture consumes more labor.
  • Blanksfor multi-plasmatron furnaces can be of round or square cross section,'or they can be composed of end and side scrap of sheet. In the case of remelting a loose material in a furnace with a radial arrangement of plasmatrons, the material is fed to the middle of the bath, securing a good and complete melting of the fed material.
  • A. non-uniform temperature field is generated during melting of a metal in a water-cooled copper crucible by intensive heat-energy flow from plasmatrons. Temperature' gradients can reach 200 /cm.
  • the non-uniform temperature field generates free-convexion macroflows, causing a stirring of the metallic bath with an intensity directly proportional to the number of plasmatrons installed in the furnace. This stirring promotes a chemical homogenization of the molten metal and accelerates the reactions which take place in the diffusion zone.
  • ingots of higher quality can be obtained than in singleplasmatron furnaces, not only because of the thermal conditions of the process, but also in connection with a morefavorable diffusion kinetics of metal-refining reactions.
  • the location of plasmatrons around the crystallizer of the furnace does ensure better operational conditions than in the case of axial arrangement, where the whole, or almost the whole, capacity of the furnace is concentrated in a single plasmatron.
  • the plasmatrons used in metallurgy whether in single or multitorch furnaces, unlike plasma generators for welding, cutting, surfacing, etc., must possess a considerable resource in working capacity and be reliable in operation; in this respect the ablation of the tungsten cathode and the failure of the nozzle must be eliminated or reduced to a minimum.
  • Prior art plasma arc torches have been water cooled, the nozzles have been water cooled and even the center electrode has been water cooled but still the tungsten cathodes and the nozzle structures fail in a short time, often before an ingot is completed.
  • the present invention consists of an installation for the production of metal ingots including a hermetically sealable chamber which contains an ingot forming mold and mounted through the chamber walls are a plurality of plasma arc torches.
  • the torches are mounted for adjustment along their axis as well as being swive'lled in the chamber wall enabling precise location and shifting of the plasma arc flame issuing from the torch with respect to the other torches and with respect to the mold.
  • an electric power supply source for powering the torches and a device for maintaining a metal charge such as a blank arranged within the chamber to be melted in the plasma arc, the molten metal from the charge being collected and solidified in a mold to form an ingot.
  • the torches, the chamber, the mold and even the charge maintaining device are preferably made with hollow walls and fluid cooling is provided
  • a mechanism for rotating a metal blank being melted is provided and can be operated simultaneously or selectively with respect to directional feed of the blank along its axis.
  • the blank feeding mechanism can be omitted.
  • Primary objects of this invention reside in providing an improved plasma arc remelting torch and torch nozzle construction.
  • a primary novel component is a plasma arc remelting torch (plasmatron) with a novel nozzle area construction which increases the stable, plasma arc producing service life of the torch electrode and the torch nozzle end, these being the critical components of the torch.
  • plasma arc remelting torch plasma arc remelting torch
  • a plasmatron nozzle construction utilizing one or more of the following constructional details: smooth gas flow path profile to avoid turbulence as well as shock formations at supersonic flow; torch electrode projection (preferably 2-3 mm) from nozzle body; use of heat sink inserts within the nozzle orifice and surrounding the electrode; press-fit heat seat inserts enabling ease of replacement; projection of heat sink inserts (preferably lO-l mm) from the terminal end of the nozzle; torch electrode and heat sink inserts both projecting from the nozzle terminal end with inserts projecting beyond the electrode; nozzle being fluid cooled but with no cooling at the terminal end; nozzle made from copper with high heat conductivity and including heat sink inserts of other material having not only a high degree of heat conductivity but also a high melting temperature; cylindrical inserts having chamfered ends; torch electrode spaced from heat sink inserts at a preferred distance of 2-7 mm, electrode diameter being at least 8 mm, and nozzle orifice
  • FIG. 1 is a schematic elevation section view of the major components of a plasma arc remelting furnace and system to which the present invention applies;
  • FIG. 2 is a front elevation diagrammatic sketch of a plasma arc remelting system
  • FIG. 3 is a plan schematic view of the positioning of the plasma arc torches in the installation of FIG. 2 and includes a schematic 3 phase AC power circuit;
  • FIG. 4 is an enlarged vertical cross-section view of the ball and socket connection providing projection of each torch into the furnace chamber, and shows details of the correlated torch angle positioning control members, the plasma arc torch not being sectioned;
  • FIG. 5 is a section view taken on line 55 of FIG. 4 showing the sliding collar and gimbal connection between the operating mechanism and the torch mounting sleeve;
  • FIG. 6 is an enlarged vertical section through the nozzle end of a plasma arc torch showing an intermediate aspect in development of the embodiment illustrated in FIG. 8;
  • FIG. 7 is a bottom view of the nozzle shown in FIG.
  • FIGS. 8 and 9 are views similar to FIGS. 6 and 7 but illustrating a plasma arc torch nozzle structure according to the present invention
  • FIG. 10 is a vertical section of the upper end support bell end operating mechanism for enabling introduction, feed and oscillation of the blank
  • FIG. 11 is a section view taken on line 1ll1 of FIG. 10 showing details of the blank oscillating structure and operator mounted in the upper end bell housing;
  • FIG. 12 is a schematic circuit illustrating one way of obtaining and connecting DC power to one or more plasmatrons
  • FIG. 13 is a schematic circuit illustrating a starter or ignition circuit by which a plasma arc torch can be started
  • FIG. 14 is another schematic circuit illustrating an AC circuit which can be used to power plural torches in multiples of three;
  • FIGS. 15 and 16 are diagrams, respectively of three and six torch plasma arc remelting installations with the electric connections to each torch labelled to correlate with the torch connections shown in FIG. 14;
  • FIG. 17 is another schematic circuit illustrating an AC circuit enabling powering for plural torches in multiples of four, particularly useful in remelting metal into molds of square or other polygonal cross-section;
  • FIGS. 18 and 19 are diagrams, respectively of four and eight torch plasma arc remelting installations with square cross section molds and with the electric connections to each torch labelled to correlate with the torch connections shown in FIG. 17;
  • FIG. 20 is a table showing the heat conductivity coefficient and melting temperatures for several materials considered for making heat sink inserts GENERAL DESCRIPTION
  • a hermetically sealable chamber having an opening 12 at the top portion thereof for accommodating a vertically positioned metal blank 14 and an opening 16 in the lower portion thereof for accommodating a solidified ingot 18.
  • the chamber includes an outwardly downwardly inclined roof portion 20 which supports a plurality of plasma torch devices 22 which extend through the chamber roof into the vicinity of the lower end portion of the metal blank 14.
  • a hollow wall fluid cooled mold 24 is positioned into the lower end of the chamber with its upper mouth 26 spaced closely adjacent the nozzle ends 28 of the plasma arc torches 22.
  • a coolant system 30 is provided for supplying cooling fluid through coolant lines 32 and 34 to the mold 24 and also for providing cooling fluid for plasma arc torches 22 through dual lines 36 and 38.
  • the walls of the chamber 10 may also be made hollow and the cooling system 30 may also be connected with the chamber 10 to provide cooling in its sidewalls thereof.
  • Plasma arc torches 22 are connected with a conventional source of electrical power AC or DC (not shown) which is also connected directly to the ingot l8 and mold 24.
  • a metal blank 14 to be melted is suspended from the top of chamber 12 to a location within the upper portion of the chamber 12 in substantially the position shown in FIG. 1.
  • the chamber is sealed and all air within the chamber is exhausted to a vacuum in the order of IO mm. Hg and the chamber is scavaged with an inert gas such as argon.
  • the plasma arc torches are then sequentially ignited by the use of a direct current pulse between the torch body, e.g., nozzle, and the cathode from the power supply source.
  • a convenient method of establishing ignition or initiating DC pulse is to employ a common oscillator connected between the cathode and torch body of the torch means to be started and the mold 24.
  • Metal blank 14 is axially lowered into the remelting zone defined by the plasma arcs issuing from the plasma arc torches 22. It can also be oscillated or rotated as shown by the rotation arrow while being lowered into the remelting zone.
  • the liquid level of the molten metal pool in the top of mold 24 can be maintained at a constant position within the mold to attain balanced thermodynamic conditions within the remelt-' ing zone and the molten metal bath and to produce a high quality metal ingot which is substantially free from nonmetallic inclusions, stringers, and gas bubbles.
  • grain pattern shown by the ingots thus produced is of the ideal herringbone formation wherein the grain patterns are directed from the center of the ingot upwardly and outwardly toward the exterior surfaces thereof.
  • the axial moving of metal blank 14 and the rotation thereof can be selectively used when needed, and particularly rotation of the ingot need not be used in all cases since the plasma arc torches are adjustably mounted within chamber 10.
  • the plasma arc torches are positioned within chamber 10 in such a manner that their longitudinal axes define an angle A with a plane defined by the horizontal top of mold 24.
  • This angle can be varied by virtue of the adjustable fea ture of the plasma arc torches by reason of ball joints 40 and operating mechanisms (FIGS. 2, 3 and 4) which are secured in and to the roof portion 20 of the plasma arc remelting installation.
  • the position of the ball joints with respect-to the plasma arc torches 22 define a fixed point along the axis about which variable angular positioning of the torch is possible. It is also possible to adjust the longitudinal axial position of the torches 22, which is usually fixed for a specific furnace system, by moving them inwardly and outwardly along their axis in order to bring the plasma arc torches closer to and further away from the mouth portion 26 of mold 24.
  • This adjustable feature of the plasma arc tore-hes allows an existing plasma arc installation as described herein to produce a variety of cross sections of ingots 18 by inserting different molds 24 into the plasma arc chamber 10.
  • a circular cross section mold can be removed and replaced with a square or rectangular cross section mold whereupon the plasma torches will be adjusted as needed to accommodate the different size and shaped molds and hence the ingots being made.
  • the mold 24 is removable retained within the body of chamber 20. The top portion, the chamber, the mold and the lower portion are secured by interconnected flanges enabling separability of the furnace components.
  • FIG. 2 shows a plasma arc installation 50 equipped with operational supporting subsystems therefor.
  • the furnace components can be separable as described for FIG. 1.
  • the hermetically sealable chamber 52 is provided with a fluid cooled mold 54 which is shown integrally constructed with respect to the remaining portions of chamber 52 and is arranged to form an ingot 56.
  • a plurality of plasma arc torches 58 are positioned so as to direct the plasma arcs toward the upper mouth portion 60 of mold 54.
  • the plasma arc torches are adjustably mounted and in the position shown have their axes in vertical planes which are directed at acute angles to the vertical axis of the mold 2.
  • adjustable torches can either extend in a vertical diametric plane of the mold or their yaw angle can be adjusted so the plasma arc has a direction with a component extending tangentially which will rotate the bath of molten metal in the mold 54.
  • An arrangement of the torches 58 having a tangential component is diagrammatically illustrated in FIG. 3.
  • the mold 54 has a movable bottom or carriage 62 which is connected via rod 64 to an ingot extracting mechanism 66.
  • Metal blank 68 is supported to project down through the upper sleeve extension 69 on neck portion 70 in the roo amb y fl nseq and housing 72 and blank feeding and oscillating mechanism 74.
  • the power driven mechanism 74 operates to feed and to rotate or oscillate the blank during remelting.
  • a side hatch 76 can be provided in sleeve extension 69 and/or upper neck portion 70 in order to provide for insertion of the metal blank 68 and for withdrawing of the spent stub of the blank following the melting operation, however the entire bell housing 72 and the operating mechanism can be disconnected and lifted as a unit from the chamber 52 to insert the blanks and to withdraw the spent stub.
  • Plasma arc torches 58 are positioned within the upper roof portion 78 of chamber 52 and are adjustably mounted therein in the manner as will be hereinafter described relative to FIG. 4. In order to melt a metal charge in installation 50 it is not necessary to employ a solid metal blank 68. It is also possible to add the charge by feeding metal particles, such as scrap, into the upper mold mouth 60 from a hopper 80 connected with the interior of the chamber through a feed trough 82.
  • a vacuum pump 84 connected through a pipe line 86 with the crystallizer chamber 52 which, along with plasma arc torches 58, is supplied with plasma forming gas or gas mixtures from a gas supply tank 88 which is connected to each plasma arc torch through a gas distribution device 90 (one shown) designed to simultaneously con trol the gas consumption as well as the ratio of gases in the plasma gas mixture.
  • a gas recirculating circuit comprising a diaphragm compressor 92 connected to the distribution device 90 and through a system of gas filters 94, which include a chemical purification system containing absorber de vices, to pipe lines 86.
  • the plasma arc remelting installation can be supplied with either a DC or AC power supply from an electrical power source through a control unit 96.
  • the cathodes of the plasma arc torches 58 in a DC mode, are connected to the negative terminal of the supply source 96 while the mold 54 is connected to the positive terminal.
  • the positive terminal of the DC source may connect directly to the mold or to the ingot through the ingot withdrawing mechanism 66 or to both the mold and the mechanism
  • the electrical power source portion of unit 96 can be a three-phase alternating transformer having its secondary windings arranged in start form 97 (FIG. 3) with each leg connected to a respective plasma arc torch 58 and with the star neutral point or center connector insulated from ground and from the mold 54.
  • start form 97 FIG. 3
  • the metal blank 68 is inserted into the upper neck portion 70.
  • Air in chamber 52 is pumped out by vacuum pump 84 until a satisfactory low pressure is reached such as 10 mm Hg.
  • Chamber 52 is then filled and scavaged with a neutral gas which is then recirculated with the gas recirculation equipment 90, 92 and 94.
  • Plasma arc torches 58 are then initiated in a manner described above and the positions thereof are adjusted in order to accommodate the particular type of cross-section of the ingot 56 being solidified within installation 50.
  • a molten metal bath is obtained in the upper part of mold 54 as the result of melting of the lower end portion of metal blank 68, the metal blank feeding mechanism 72 and the ingot extracting mechanism 66 are initiated.
  • Removal of nonmetal and gaseous admixtures in the molten metal bath, as well as the change of shape of the end of the metal blank 68 as a result of the fusion action and control over the drip forming process on the lower end of the metal blank can be conveniently varied within the installation 50 by adjustment of the axial positions thereof as above described without the necessity of replacing and rebuilding the entire installation 50 for each new position of the torches which is desired.
  • the molten metal bath under the action of the plasma arcs will rotate and speed of rotation can be regulated by varying the angle B (see FIG. 3) which the plasma torches form with the radial planes passing through the axis of the mold 54.
  • the force of the plasma arcs and intensity of heat radiation can be additionally controlled by varying the volume of the inert gas being pumped through the torches and also by varying the current applied to the torches.
  • the forming of molten metal drops on the lowermost end of metal blank 68 can be additionally regulated by varying the current being supplied by electric power supply means 96 by employing modulated pulses of current having an optimal pulse shape and duration. Pulsing of the gas being delivered from the torches can also be employed.
  • slag can be added through the trough of hopper 80 as desired during the process.
  • the cooled mold 54 is designed to extract up to 80 percent of the heat released by the solidifying ingot through the cooling system therefor.
  • the molten metal pool 10] supported by the solidified ingot 56 forms a flat shallow bath in the installation 50 which has a maximum depth dimension to maximum cross-sectional dimension (diameter for FIG. 3) of the mold of from one-fifth to one-tenth.
  • the temperature gradient can be up to about 200 C per centimeter by employing currents of from 500 to 5,000 amps. and voltages of from 40 to 200 volts.
  • the operation power level of the installation 50 is from to 3,000 kilowatts in order to produce ingots having weights varying from 50kg. to 5,000 kg.
  • Each torch 58 is an elon-' gate, essentially tubular member, normally made from a material such as copper which has extremely good heat conductivity.
  • the main torch body 58 not herein described in detail, is made with hollow walls (FIG. 4)
  • trode holder cooled by cooling fluid.
  • annular passage for introduction of inert plasma gas such as argon.
  • the roof portion 78 of crystallizer chamber 52 includes a plurality of flanged apertures 100 accommodating the sealed mounting of a desired number of torches 58 through associated adjustment assemblies 99.
  • Each torch 58 projects through its own adjusting assembly 99 into the crystallizer and each assembly 99 has a ball and socket unit 102, a torch to ball sleeve gland arrangement 104 and a torch swivelling adjustment mechanism 106.
  • Torch 58 projects down into the crystallizer chamber 52 through a seal in the sleeve gland arrangement 104 which passes through and is secured and sealed to the ball 108, which is secured and sealed in its socket.
  • the socket of the ball and socket arrangement 102 consists of several parts including a base 110 having a flange 112 by which the base is secured by suitable bolts to an associated upstanding flanged aperture 100 in the crystallizer cover.
  • the connection between the socket base flange and the aperture flange is sealed by a spigotted construction 114 and a heat resistant'seal ring 116.
  • Ball 108 seats in a parallel spherical seat 118 machined in the socket base 110 and multiple contoured ring seals 120, placed in an annular recess 122 in the base and secured by a ring nut clamp 124 socket base, provide a friction tight fluid seal between the positionedthe desired distance from either or both of the blank and the molten metal pool or slag bath at the upper part of thernold.
  • a ring nut clamp 124 socket base provide a friction tight fluid seal between the positionedthe desired distance from either or both of the blank and the molten metal pool or slag bath at the upper part of thernold.
  • torch 58, sleeve 140 and ball 108 can be swivelled in any direction from a coaxial axis through the associated chamber aperture 100.
  • the angular disposition of torch 58 can be selectively set via the adjustment mechanism 106 which connects to the torch assembly through a gimbal device 160 slidably embracing the heavy cylindrical outer portion 1520f gland sleeve 140.
  • the gimbal device is shiftable in two directions normal to each other, which for convenience can be designated as movements having components in X and Y axes, by adjustable control members 162 and 164, a part of mechanism 106.
  • Gimbal device 160 has an I inner ring 166 slipped over the heavy outer portion 152 socket base and the surface of ball 108.
  • partially spherical ball cap 126 is disposed to extend ball 108, being held in its position by a threaded, seat cap clamping ring 128 screw threaded over the socket base 110.
  • Clamping ring 128 is tightened an amount sufficient to provide a proper seating relationship yet still enable the desired swivelling fit between the ball 108 and seat surfaces.
  • Ring nut 124 is used to tighten the seals 120 to provide a gas tight seal between the ball and the socket.
  • Ball 108 is apertured with a through bore, partially threaded at 134 below an enlarged annular recess 136 within which is received a group of heat resistant seal rings 138.
  • a sleeve 140 having a close sliding fit over the cylindrical body of torch 58, is part of the sleeve gland assembly 104, and has several external stepped portions. The lowermost terminal portion 142 of the sleeve 140 projects into the crystallizer chamber 52 and is threaded.
  • a heat shield ring 144 disposed with a sliding fit over the lower end of the torch, is threaded on the inner terminal end of sleeve 140 and in assembly is positioned just within the crystallizer chamber.
  • Sleeve 140 is made from insulating material.
  • Shield ring 144 is made of a heat resistant material, having a high melting point, and includes an inverted, frusto-conical skirt 146 which by deflecting and blocking the high temperature radiation from the plasma arc flames shields the sealed ball joint zone at the associated chamber aperture 100 from the intense heat.
  • a mesial threaded portion 148 of sleeve 140 screws into the internal threads 134 of the ball 108 so that a shoulder 150 abuts and compresses the seal rings 138 between the sleeve and the ball.
  • a portion 152 of sleeve 140 external of the chamber is cylindrical and terminates in a threaded gland cup 154 which holds packing rings 156 compressed by a gland nut 158.
  • the torch 58 can be axially shifted through the gland sleeve so the torch nozzle end can be of gland sleeve with a free sliding fit.
  • the ring 166 has diametrical trunnions 168 and 169 (FIG.
  • Gimbal boss 172 has an axial bore and includes, fixed within the bore, a threaded nut 174 for purposes which will presently be described.
  • Adjustment mechanism 106 is secured on a bracket 176 mounted as by screws or welding to the associated socket flange.
  • a base member 178 secured to the bracket 176 has spaced bearing blocks 180 which journal a rock shaft 182 onan axis through the center of ball 108.
  • Rock shaft has a keyed connection 182m and carries both a rocking arm assembly 186 and a worm wheel sector 188.
  • a black plate 190 integral with base member 178 provides an axially fixed bearing connection for the shaft of a worm gear 192 meshed with the worm wheel sector 188. Both ends of the worm gear shaft will be journalled in rigid supports although only the back support plate 190 is shown.
  • Control member 164 is a manual operating knob secured to the worm shaft so that rotation of the control member will rotate the worm and rock the rocking arm assembly 186 about an axis extending through the center of the ball 108.
  • the other control member 162 is carried at the upper end of the rocking arm assembly 186 in a sleeve-like construction 192 parallel to the rocking axis and into one end of which the elongate boss 172 of the gimbal device is telescoped.
  • the control member knob 162 is fixed to one end of a threaded shaft 196 which is rotatably journalled in an axially fixed disposition within the sleeve construction 194 via bearings 198.
  • the threaded end of shaft 196 is threaded into the nut 174 in the boss of the gimbal device 160, whereby rotation of control knob 162 will move the gimbal device 160 toward and away from the rocking lever along an axis parallel to the rocking axis, providing aswivel adjustment to the torch in one direction of they aforenoted X-Y adjustment.
  • Coordinated adjustment of the two control knobs 162 and 164 will enable selective positioning of the torch in any direction up to an angle of 15 so the plasma arc path can be directed, for example, along a diametral plane through the vertical axis of the blank to impinge closer to the blank or to an greater degree down into the molten metal bath and closer to the side walls.
  • the torch can be swivelled to provide a tangential component of the plasma arc path around the vertical axis of the mold to cause a swirl of the molten metal bath.
  • Control members are manual knobs but power actuators, selected from many available types could, if desired, be substituted for the manually operated control knobs.
  • the weak link in a PAR system is the torch nozzle.
  • the electrode terminal end is disposed within the reduced diameter nozzle orifice.
  • the torch start-up arc occurs between electrode and the nozzle surface while the running or operating arc occurs from the electrode to the melt or ingot being made.
  • an undesirable crossarcing from electrode to nozzle occurs due to nonstable flow conditions.
  • This undesirable cross-arcing something which has been essentially impossible to avoid, is called intermittent arcing and causes ablation of the electrode and the nozzle and often results in burn-through at the nozzle aperture.
  • the prior art torches including nozzle tip structure are water cooled and are conventionally made from copper.
  • the prior art nozzle structures normally include hollow walls to provide the annular chamber for fluid cooling.
  • some conditions causing intermediate arcing are negated by providing a smoother gas flow pattern. Also by providing a heat sink structure at the nozzle, i.e., or controlling the location of the intermediate arcing by affording it a directed path from electrode to nozzle, the possibility of burn-through by the intermittent arcing is almost completely eliminated. To accomplish this desired function it was decided to shield the prior art hollow nozzle 200 tip with cylindrical metal inserts 204 as is shown in FIGS. 6 and 7 having good heat conductivity and high melting temperatures.
  • Tungsten being one material having a good heat conducting coefficient of 0.38 through 0.47 and a high melting temperature of 3,200 C., was used in the form of small cylindrical rod 204 spaced around the inner periphery of the torch nozzle orifice 202. While a problem with tungsten is difficulty of machining, it has been determined that ground tungsten bars (cylindrical inserts) provide satisfactory heat sink inserts.
  • orifice 222 of the nozzle 220 is constructed with a smoother profile curvature of the side wall configuration so flow of plasma gas adjacent the walls remains laminar rather than turbulent.
  • Smooth nozzle curves can be calculated from known techniques but the advantages of acquiring and using such nozzle profiles in plasma arc torches has not been previously known, used, or appreciated.
  • Laminar flow of the plasma forming gas is essentially necessary for stability of the plasma arc in higher powered torches which use a higher velocity gas flow and provide a long plasma flame. Note: non-laminar flow which has turbulent zones can be tolerated in low powered torches, i.e., those which produce short length plasma flame.
  • Nozzleexit diameter can vary from 10 mm to 30 mm. It has been found through experience that high power PAR torches should have a preferred nozzle exit diameter of 25 mm while lower powered torches have been found to perform satisfactorily using a 20 mm exit diameter.
  • the torch tip structure 224 (FIG. 8) is changed so that the annular cooling chamber as in the attached hollow tip 206 of FIG. 6 is omitted.
  • the fluid passages 226 in the hollow torch walls do not extend down into the tip body around the reduced diameter nozzle 222 which surrounds the portion 230 of the terminal end portion of the electrode 228 which is disposed laterally adjacent the heat sink inserts 232.
  • the nozzle tip 224 where the inserts are placed is solid metal (copper being preferred). Leaving out the water cooling at the nozzle tip avoids the intense thermal shock, resulting from inadvertent intermittent arcing from the electrode to the nozzle structure.
  • the cylindrical heat sink inserts 232 provide a greater body surface to shield the copper nozzle tip 224 which has a substantially lower melting temperature than the inserts.
  • One refinement to the inserts 232 which helps provide longer life is to chamfer 234, 236 both ends to avoid sharp corners. This feature is of particular importance at the inner ends of the inserts because it helps reduce the sharp structural break interference type of flow path interference which creates Blasius turbulence which in turn contributes to the in termittent arcing.
  • any turbulence created by their terminal edges is at a location in the flow path of the plasma flame which is outside of the nozzle where it has essentially stabilized into relatively free laminar flow so .the effect of turbulence caused by the terminal end of the insert tips is negligible.
  • the diameter D of the nozzle inner periphery at the nozzle outlet 238 should preferably be from 10 to 30 mm; the inserts 232 should use that nozzle diameter or a minutely larger diameter as a common mounting circle for their center axes in order to provide a cylindrical keyway 240 slightly greater than 180 for an embracing keyed interfit between insert and the keyway groove 240 into which they are pressed; the keyway interfit 0 can be up to 10 mm in length; the electrode end 230 projects a distance a of 2-3 mm beyond the nozzle terminal edge; the inserts 232 project a distance b of 10-15 mm; the distance e between electrode end 230 and inserts 232 is from 2-7 mm; and the circumferential spacing between inserts may be from 0 to 2 mm.
  • a zero circumferential spacing between inserts is technically impossible when a keyed groove insert mounting arrangement is used but
  • Solid electrode diameters d of 10-12 mm have been found satisfactory for high power (up to 2,000 Amperes) operation. Above 2,000 Amperes, multiple strand or composite electrodes up to 25 mm in diameter are satisfactory. For low power (up to 1,000 Amperes) solid electrodes of 8 mm diameter are satisfactory.
  • FIG. 20 of the drawings shows the Heat Conductivity Coefficient and the melting temperatures for the metals. Similar values can be found for other metals, alloys and metal oxides. While various materials have been tried for heat sink insert materials, tungsten and Rhenium are presently found to be the best because of their excellent coefficient of heat conductivity and its high melting temperature.
  • the insert material should be electrically conductive and preferably should have a coefficient of heat conductivity of 0.3 and a melting temperature above 2,500 C.
  • the PAR furnace is arranged to accommodate top feeding of a blank 68 downwardly along the vertical axis of the furnace remelting chamber 52 as shown in FIG. 2, and feeding of the blank is accomplished by a blank feed and oscillating mechanism 74 mounted coaxially on top of chamber 52.
  • Mounting for mechanism 74 includes a furnace bell housing 72 which can be constructed for direct installation over a flanged central opening in the remelting chamber, as shown in FIG. 1, or as an upwardly directed sleeve extension fastened on the upper end of a sleeve-like bell housing extension 69 such as shown in FIG. 2.
  • Bell housing 72 constitutes a rigid heavy support structure for the blank feed and oscillating assembly 74 which includes blank feeding mechanism 250 as well as blank oscillating mechanism 252.
  • Housing 72 is a vertical sleeve-like member having lower end flanges 254 which enable the bell housing to be secured as by bolts to a mating flange on the top of the melting chamber or to the upper end of a chamber top extension.
  • a suitable heat and vacuum seal 256 may be placed between the flanged connection.
  • the upper end of housing 72 has a reduced diameter opening and incorporates a radial bearing 258 with a heat and vacuum seal arrangement 260 for a hollow rotatable support shell 262 which projects coaxially down through the bell housing 72.
  • housing 72 The upper end opening of housing 72 is recessed at 263 to receive the seals 260 which are secured by a gland ring 264.
  • the gland ring can be threaded or otherwise adjustably secured to press theseals tight between the recess walls and the support shell 262;
  • Support shell 262 carries the entire blank feed mechanism 250, is rotatably mounted in the upper bearing end of the bell housing, and also carries a massive large diameter spur gear 266 which serves the dual purpose of transferring oscillatory drive power to the shell and of locating and maintaining the shell 262 in fixed axial disposition on the bell housing.
  • Spur gear 266 is bolted to an outer annular flange 268 on the shell 262 adjacent but spaced down below the top end of the hollow support shell.
  • the spur gear 266 is axially fixed in a rotatable fashion between three sets of upper and lower support rollers, 272 and 274 respectively, arranged in equiangular spacing on associated double bearing support assemblies 276, the brackets of which are secured as by welding to the outside of the upper end of the bell housing 72.
  • Oscillatory rotational movement of the support shell is accomplished by means of a double acting hydraulic motor 278 mounted via its support bracket 280 on one side of the upper end of the bell housing 72.
  • the exemplary hydraulic power unit has a fixed position 282 intermediate the ends of a piston rod 284 secured at each end to an ear of bracket 280.
  • the motor cylinder 286, is mounted on the rod 284 and surrounds the piston 282 for reciprocation between the support bracket ears.
  • Hydraulic fluid under pressure from a suitable source (not shown) and through a suitable automatically reversing control system (not shown) is supplied through one or the other of lines 288 and 290 which connect through suitable drilled passages in the fixed piston rod to respectiveinternal orifices 292 and 294 on opposite sides of the piston.
  • line 290 is automatically connected through valving to a drain or return conduit back to the source and vice versa.
  • Automatic control of hydraulic system valving can be accomplished in any known manner, e.g., by electric motor driven rotary valving (not shown).
  • the reciprocable cylinder 286 is prevented from rotary movement by a suitable tracking device, e.g., a bar 296 fixed between the ears of bracket 280.
  • the bar 296 can slidably fit into notches 298 (see FIG. 10) in the cylinder end plates.
  • Rigidly fastened to or integrally formed on the outer surface and extending between the ends of cylinder 286 and parallel to its axis is a rack of gear teeth 300 which mesh with the teeth of spur gear 266. Reciprocation of the hydraulic cylinder 286 thus causes oscillation of the spur gear 266 which in turn oscillates the blank support shell 262.
  • the top end of blank support shell has an end wall 302 and is internally contoured by suitable means such as casting or machining into a cable drum chamber 304, receiving a cable drum 306 fixed to a support axle 308.
  • the ends of axle 308 are journalled in heavy radial bearings 310 and 312 received in bearing recesses 314 and 316, respectively, machined in diametrally opposed walls of the drum chamber 304.
  • the bearings and drum are maintained against axial shift by a bearing end cap 318.
  • One end 320 of the axle 308 projects to the exterior of the chamber through a heat and vacuum seal arrangement 322 and carries a spur gear 324 which is suitably drive connected to the axle as by a key and keyway or via a splined fitting.
  • a reversible electric motor 330 (or a suitable alternate kind of reversible rotary motor) which connects through a reduction gear box 332 to an output spur gear 334 meshed with the drum drive gear 324.
  • Dual wrought steel cables 336 and 338 are wound around and have one of their respective ends secured to the cable drum 306.
  • the other ends of both cables depend in equally spaced apart diametral arrangement relative to the axis of the blank support shell and are secured in such diametral spacing to a vertically movable cross-head 340.
  • Cross-head 340 has diametral projecting guide ribs 342 and 344 which slidably ride in internal, vertical groove tracks 346 and 348 extending from adjacent the top of shell 262 to its bottom end.
  • Firmly secured to and depending from the underside of cross-head 340 in the exemplary disclosure is a heavy hook 350 from which is hung a blank 68 by means of eye 352 rigidly secured in the blank and projected from the center of the blank end face.
  • the blank feed mechanism 250 being wholly supported on the top of the blank support sleeve will be rotated with the sleeve so there is no interference between oscillatory movement and the gearing of the blank feed mechanism, each can be selectively operated independently of the other, oscillation does not effect feed movement and feed movement does not effect oscillation.
  • the reversible electric motor 330 will of course be operated from a suitable power source (not shown) and via suitable controls which can be manual or automatic to gradually lower the blank 68 into the furnace chamber 52 as the lower end of the blank is melting off during the'plasma arc remelting process.
  • the new nozzle tip construction may be utilized on existing torch bodies and will enable longer continuous operation at higher powers and will provide longer and hotter plasma flames.
  • the torch positioning control (FIG. 4) permits accurate torch manipulation and adjustment even during remelting. At higher powers the blank is remelting at a faster rate so reliable blank feeding is absolutely necessary in order to keep the blank down in position between the plurality of radially disposed torches in the furnace cover.
  • ROUND AND SQUARE MOLDS lngots made in a round mold 54, 54' and 54", such as shown in FIGS. 3, and 16 should use at least two torches, but can very conveniently be made by using a crystallizer with one or more torches of any number (furnaces with at least up to eight torches are feasible and the number very probably could be higher) and the torches such as A, B and C in FIG. 15 will be equally spaced around the axis of the furnace. As shown in FIGS. 1 and 2, the blank 14 or 68 hangs down, along the furnace axis, so its lower end portion is positioned between and is radiation screening each of the torches from the plasma flames of the other torches.
  • the plural plasmajets in cooperation with radiation screening by the blank, provide a good distribution of heat over the top of the molten metal bath so its melted face takes on a flat or only a very slightly concave form and even heat disposition is easily maintained around the cooled mold wall perimeter.
  • the torches A, B and C in FIG. 15 are radially disposed, in plan view.
  • FIG. 3 shows three torches 58 equally spaced around a circular mold but having an angular disposition in plan view to cause a rotation of the molten metal bath.
  • Blank oscillation when three torches are used should be at least in a 60, back and forth rotation to result in evenmelting off of the blank tip.
  • the six torch pattern of FIG. 16 is obtained.
  • torches can be radial or inclined to obtainthe desired plasma flame paths but with an increased number of torches, a shorter arc of blank oscillation can be used, e.g., a 30 arc, to obtain even melting off of the blank tip.
  • the torches will be increased in multiples of the number of corners of the mold, e.g., the square molds 360 (FIG. 18) and 362 (FIG. 19) respectively have four torches D, E, F, G or eight torches D, E, F, G and D,, E,, F G,. In such installations the torches are equally spaced apart. However it is understood that with irregular shaped molds the torch positioning must of course be varied to provide the best possible disposition of the heat radiation correlated with the mold cooling wall shapes.
  • POWER CIRCUITS Power for the furnaces can be either AC or DC and several exemplary circuits which can be used have been shown. The power circuits are essentially well known and will only be briefly described.
  • FIG. 12 is a simple circuit using DC for the torches T T and T
  • the circuit derives AC power from a three phase input and the three phase lines connect in parallel to three phase transformers K K K
  • One or up to eight individual transformers can be provided depending on the number of torches used.
  • the output of each transformer K connects to a rectifier bank R R or R
  • the positive output terminal A of all rectifier. banks is connected to the furnace mold, ingot and hence the molten bath indicated as BI and the negative terminal of each rectifier R is connected to the elec-- trode of an associated torch T.
  • Equalized power can be obtained by suitable controls such as providing variable transformers K K ,'K
  • Excitation of a torch can be accomplished through circuits also known previous to this invention, one such suitable circuit being depicted in FIG. 13, where the starting arc is struck between the torch electrode TE and nozzle body TN.
  • the circuit is energized by oscillator 370, and a parallel circuit consisting of a high frequency induction coil 372 variable resistor 374, switch 376 and condensor 378.
  • the common ground is also connected to one side of the main power circuit and the mold, ingot bath arrangement BI.
  • the in-turn excitation of plural plasmatrons can be accomplished by using a common oscillator and suitable plural switching.
  • FIG. 14 illustrates a circuit suitable for three torches or for multiples of three torches and uses three phase inputs to the primary windings of a three phase transformer KA for each set of three torches, A, B, C, the respective electrodes of which are connected to individual phase windings of-the transformer secondarys.
  • FIG. 17 shows an AC circuit suitable for torches arranged in groups of four.
  • the right hand circuit is a duplicate of the left hand circuit and enables powering of eight torches.
  • Transformer KA is a special wound transformer having a three phase primary winding connected to a three phase power source.
  • a plasma arc torch with a center electrode and a nozzle end structure comprising: an elongate, hollow body coaxially surrounding and spaced from the lower end of said electrode; a plurality of circumferentially spaced apart electrically conductive heat sink inserts mounted in the interior of said body, around and radially spaced from said electrode, each said insert having a first portion radially adjacent said electrode lower end and second portion axially disposed beyond the terminal end of said electrode; said body providing an annular nozzle orifice having end means defining a nozzle orifice with a smoothly curved, convergent profile surface within said body for providing a substantially laminar flow of plasma gas past said electrode and inserts;
  • a plasma arch torch as defined in claim 3 wherein the distance of projection ofsaid inserts beyond the terminal edge of said body is within a range of from ll 7.
  • a plasma arc torch as defined in claim 8 wherein the distance of projection of said inserts beyond the terminal edge of said body is within a range of from l0l 5 30.
  • a plasma arc torch as defined in claim 30, wherein the current of the are operating power can be up to 2,000 amperes and the electrode is solid.
  • a plasma arc torch as defined in claim 40 wherein the terminal end portion of said annular body disposed radially adjacent said electrode lower end and adjacent said inserts is solid.
  • a plasma arc torch with a center electrode and a nozzle end structure comprising: an elongate hollow body coaxially surrounding and spaced from the lower end of said electrode; and a plurality of circumferentially spaced apart electrically conductive heat sink inserts mounted in the interiorof said body, around and radially spaced from said electrode, each said insert having a portion radially adjacent said electrode and an end of at least one of said inserts projecting axially beyond the terminal end of said body.
  • a plasma arc torch as defined in claim 45 wherein the orifice diameter of said nozzle is in a range of from lO30 mm.
  • a plasma arc torch as defined in claim 45 wherein all said inserts have portions axially disposed to project beyond the terminal end of said body.
  • a plasma arc torch as defined in claim 47 wherein the distance of projection of said inserts beyond the terminal edge of said annular body is within a range of from -15 mm.
  • a plasma arc torch as defined in claim 45 wherein the terminal end of said electrode projects beyond the terminal end of said body.
  • a plasma arc torch as defined in claim 49 wherein the distance of projection of said electrode terminal end is within a range of from 2-3 mm.
  • a plasma arc torch as defined in claim 45 wherein said inserts are made from material having a heat conductivity coefficient of at least 0.3 and a melting temperature of at least 2,500 C.
  • a plasma arc torch as defined in claim 57 wherein at least the upper ends of said inserts are chamfered.
  • a plasma arc torch as defined in claim 45 wherein the shortest distance from said electrode lower end to said inserts is in a range of from 2-7 mm.
  • a plasma arc torch as defined in claim 59 wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
  • a plasma arc torch as defined in claim 45 wherein said inserts are cylindrical and the inner peripheral portion of said body has partially cylindrical keyways which receive said inserts.
  • a plasma arc torch as defined in claim 45 wherein said body includes a hollow chamber and means are provided for circulating a cooling fluid through said hollow chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Plasma Technology (AREA)

Abstract

A plasma arc remelting furnace system with improved components including mechanisms for independently vertically feeding and oscillating the metal blank through the top of the furnace. Multiple plasma arc torches (plasmatrons) are installed in a sealed chamber and adjustable operators enable angular disposition of individual torches. The torches have improved torch nozzles with heat sink construction enabling operation at higher temperatures, better stabilized plasma arcs and longer torch life. The system can utilize ingot molds of various cross section shapes, i.e., round, square, rectangular and polygonal and, depending upon mold shape, the number of torches can differ. Operating circuits are provided for use with a plurality of different numbers (up to eight) of torches, either with direct current or alternating current power sources, and possible variations of circuits will enable using a larger number of torches.

Description

ll-1974 XR United States Patent [191 Paton et al.
[ 1 PLASMA ARC TORCH [76] Inventors: Boris Evgenievich Paton, Apt. 21, 11/13, Kotsubinskogo Str.; Victor Iosifovich Lakomsky, Bastionoja, Ul. 10; Gary Alexandrovich Melnik, u]. Prazhskaya 3, kv. 169; Anatoli Ivanovich Chvertko, Blvd. Lesiga, Ukrainka 2; Alfred Iosifovich Bukalo, Apt. 69, 8/2, Zaporozhtsa Str., all of Kiev, U.S.S.R.
22 Filed: Oct. 24, 1973 211 App]. No.: 409,329
Primary Examiner-R. N. Envall Attorney, Agent, or FirmStrauch, Nolan, Neale, Nies & Kurz [5 7] ABSTRACT A plasma arc remelting furnace system with improved components including mechanisms for independently vertically feeding and oscillating the metal blank through the top of the furnace. Multiple plasma arc torches (plasmatrons) are installed in a sealed chamber and adjustable operators enable angular disposition of individual torches. The torches have improved torch nozzles with heat sink construction enabling operation at higher temperatures, better stabilized plasma arcs and longer torch life. The system can utilize ingot molds of various cross section shapes, i.e., round, square, rectangular and polygonal and, depending upon mold shape, the number of torches can differ. Operating circuits are provided for use with a plurality of different numbers (up to eight) of torches, either with direct current or alternating current power sources, and possible variations of circuits will enable using a larger number of torches.
62 Claims, 20 Drawing Figures PATENIEL nuv I 91914 SHEET 10? 6 mm mm PAIENTE HOV] 91974 SHEET 2 BF 6 wow PATENTE rmv 1 9 I974 SHEET 30F 6 PATENTEL 50v 1 91974 SHEET b 0F 6 PATENTEL Nov 19 I974 SHEET 5 OF 6 mt Z: n
PAIEIIIEI HEY I mm 3'. 849 584 SHEET 6 [IF 6 FIG. 20
gggg IIQ$iTURE COEFFICIENT OF THE MATERIAL L 'A DESIGNATION cm. sec. deg Tm, C
GRAPHITE 0.I2 I0 3407 Tm, C
TUNGSTEN' 0.3s0.47 3200 RHENIUM 038-047 3I50 COPPER 0.92 I I083 MCSLYBDENUM I 0.354 2600' TANTALUM' 0.I95 -3027 ZIRCOANIIUM 7 0.2 I860 'S Q 'f 'S 0.0a 2980 NICKEL 014 I452 IRON o .I2 I530 HAFNIUM 0.07 I 2200 'gffi 'g 0.05 2760 PLASMA ARC TORCH BACKGROUND OF THE INVENTION The present invention was developed to provide improved operation and longer life for plasma arc remelting systems used to make metal ingots and components of such systems. Together with the improved structure the invention contemplates improvements in the methods for the operation of such systems.
Installations in the prior art used for the production of ingots in plasma arc remelting teach use of a cooled mold with a vertically movable bottom part for lowering the ingot being made. The mold is positioned within the lower portion of a hermetically sealed chamber and the installations utilize one or several plasma torches connected to a source of electrical energy. A suitable power operated mechanism connected to the bottom part provides for moving that part and extracting the formed ingot. Reference can be made to US. Pat. Nos. 3,147,329 and 3,496,280 for explanations of plasmatron operation and plasma arc remelting.
One known installation of this type is disclosed in British Pat. No. 1,237,155 based, in part, on prior development work of several of the applicants hereof. A serious problem encountered was that the plasma arcs frequently burned through the water cooled torches and/or the mold, thereby releasing the coolant fluid into the evacuated space of the chamber and causing serious explosions due to the presence of high temperature molten metal therein. In thatinstallation plasma torches having a fixed position with respect to the mold were provided for melting a metal blank which was lowered into the remelting chamber. Difficulties with the thermal balance in this installation were encountered and overcome. Another problem was that the plasma arcs did not occupy the same paths betweenthe plasma torches and the mold in successive runs. As a result the metal blank was not uniformly melted in this apparatus.
Many of these disadvantages were overcome by development of the improved system disclosed in part in a U.S.S.R. publication entitled Stahl, No. 6, 1971 which teaches top feeding and revolving of a blank in a plasmatron furnace as well as angular adjustment of at least one of several torches arranged to direct the plasma arc flame downwardly toward the lower end of the blank and against the upper end of the watercooled mold. Those improvements enabled operation wherein at least one of the plasma arc torches is adjustably mounted via a ball and socketjoint in the chamber so that the position of its plasma arc flame can be adjusted with respect to the mold and wherein the metal blank being melted can be rotated as well as lowered axially into the remelting zone within the chamber.
Radial arrangement of several plasmatrons around a crystallizer allows the placement of heat sources evenly around the molten pool, or bath, of metal which exists at the top of the ingot being formed. Precise regulation of the heating of all sections of the bath is obtained by changing the circumferential distances between the plasmatrons. It is known, that at low remelting rates, 70 to 80 percent of the heat released by the solidificating ingot is removed to the water-cooled copper crystallizer through its contact strip with the bath. ln heating the bath by plasma flames placed along the periphery of the bath it is easy to obtain its flat shape. Also, at a certain inclination of the plasmatrons to the bath, one can make the liquid metal revolve, at a desired rate, around the vertical axis by using the energy of plasma ets.
The experience in operation of plasma-arc furnaces with a radial arrangement of plasrhatrons around the crystallizer has shown, that through control of the heating of the bath by changing the peripheral distances between the plasmatrons, one can obtain in the same furnace (by changing only the crystallizer and priming) round, square, rectangular and other shaped ingots from the same blank, for instance, of round cross section.
Another significant advantage of the multiplasmatron furnace with axial feed of the blank is an essential (almost percent) radiation screening of the plasma jets and bath by the blank. Blanks larger than mm in diameter are melted close to free surface of the bath and their melted face takes a flat or a concave form, thus causing an increase in the efficiency of the remelting process. In this case the demands put on the quality of the blanks are less rigid than on blanks used in furnaces with sidewise feed or blanks, where usually the blanks must be much thinner than the ingot and therefore their manufacture consumes more labor. Blanksfor multi-plasmatron furnaces can be of round or square cross section,'or they can be composed of end and side scrap of sheet. In the case of remelting a loose material in a furnace with a radial arrangement of plasmatrons, the material is fed to the middle of the bath, securing a good and complete melting of the fed material.
A. non-uniform temperature field is generated during melting of a metal in a water-cooled copper crucible by intensive heat-energy flow from plasmatrons. Temperature' gradients can reach 200 /cm. The non-uniform temperature field generates free-convexion macroflows, causing a stirring of the metallic bath with an intensity directly proportional to the number of plasmatrons installed in the furnace. This stirring promotes a chemical homogenization of the molten metal and accelerates the reactions which take place in the diffusion zone. Therefore, in the multi-plasmatron furances ingots of higher quality can be obtained than in singleplasmatron furnaces, not only because of the thermal conditions of the process, but also in connection with a morefavorable diffusion kinetics of metal-refining reactions.
Experience gained from those previously known plasma arc remelting systems brought to light various difficulties in obtaining appropriate control over torch adjustment, operational functioning of the feed and revolving structures and emphasized the very short torch life, one of the major problems of plasma arc torches used in furnace systems for remelting metals.
The location of plasmatrons around the crystallizer of the furnace does ensure better operational conditions than in the case of axial arrangement, where the whole, or almost the whole, capacity of the furnace is concentrated in a single plasmatron. Nevertheless, to be economically feasible and acceptable, the plasmatrons used in metallurgy, whether in single or multitorch furnaces, unlike plasma generators for welding, cutting, surfacing, etc., must possess a considerable resource in working capacity and be reliable in operation; in this respect the ablation of the tungsten cathode and the failure of the nozzle must be eliminated or reduced to a minimum. The stronger is the current of the power source, the more difficult it is to secure high working capacity of the plasmatron. Prior art plasma arc torches have been water cooled, the nozzles have been water cooled and even the center electrode has been water cooled but still the tungsten cathodes and the nozzle structures fail in a short time, often before an ingot is completed.
SUMMARY OF THE INVENTION The present invention consists of an installation for the production of metal ingots including a hermetically sealable chamber which contains an ingot forming mold and mounted through the chamber walls are a plurality of plasma arc torches. The torches are mounted for adjustment along their axis as well as being swive'lled in the chamber wall enabling precise location and shifting of the plasma arc flame issuing from the torch with respect to the other torches and with respect to the mold. Also provided are an electric power supply source for powering the torches and a device for maintaining a metal charge such as a blank arranged within the chamber to be melted in the plasma arc, the molten metal from the charge being collected and solidified in a mold to form an ingot. The torches, the chamber, the mold and even the charge maintaining device are preferably made with hollow walls and fluid cooling is provided A mechanism for rotating a metal blank being melted is provided and can be operated simultaneously or selectively with respect to directional feed of the blank along its axis. When the metal charge being melted is in the form of metal particles, the blank feeding mechanism can be omitted.
Primary objects of this invention reside in providing an improved plasma arc remelting torch and torch nozzle construction.
A primary novel component is a plasma arc remelting torch (plasmatron) with a novel nozzle area construction which increases the stable, plasma arc producing service life of the torch electrode and the torch nozzle end, these being the critical components of the torch.
In conjunction with the preceeding, primary novel component, further objects of the invention reside in a plasmatron nozzle construction utilizing one or more of the following constructional details: smooth gas flow path profile to avoid turbulence as well as shock formations at supersonic flow; torch electrode projection (preferably 2-3 mm) from nozzle body; use of heat sink inserts within the nozzle orifice and surrounding the electrode; press-fit heat seat inserts enabling ease of replacement; projection of heat sink inserts (preferably lO-l mm) from the terminal end of the nozzle; torch electrode and heat sink inserts both projecting from the nozzle terminal end with inserts projecting beyond the electrode; nozzle being fluid cooled but with no cooling at the terminal end; nozzle made from copper with high heat conductivity and including heat sink inserts of other material having not only a high degree of heat conductivity but also a high melting temperature; cylindrical inserts having chamfered ends; torch electrode spaced from heat sink inserts at a preferred distance of 2-7 mm, electrode diameter being at least 8 mm, and nozzle orifice having a diameter preferably within the range of -30 mm; and, heat sink inserts preferably being made of tungsten or other material having similar melting point and thermal conductivity properties.
Each of these aspects contributes to increased torch life.
Further novel features and other objects of this invention will become apparent from the following detailed description, discussion and the appended claims taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS A preferred structural embodiment of this invention is disclosed in the accompanying drawings, in which:
FIG. 1 is a schematic elevation section view of the major components of a plasma arc remelting furnace and system to which the present invention applies;
FIG. 2 is a front elevation diagrammatic sketch of a plasma arc remelting system;
FIG. 3 is a plan schematic view of the positioning of the plasma arc torches in the installation of FIG. 2 and includes a schematic 3 phase AC power circuit;
FIG. 4 is an enlarged vertical cross-section view of the ball and socket connection providing projection of each torch into the furnace chamber, and shows details of the correlated torch angle positioning control members, the plasma arc torch not being sectioned;
FIG. 5 is a section view taken on line 55 of FIG. 4 showing the sliding collar and gimbal connection between the operating mechanism and the torch mounting sleeve;
FIG. 6 is an enlarged vertical section through the nozzle end of a plasma arc torch showing an intermediate aspect in development of the embodiment illustrated in FIG. 8;
FIG. 7 is a bottom view of the nozzle shown in FIG.
FIGS. 8 and 9 are views similar to FIGS. 6 and 7 but illustrating a plasma arc torch nozzle structure according to the present invention;
FIG. 10 is a vertical section of the upper end support bell end operating mechanism for enabling introduction, feed and oscillation of the blank;
FIG. 11 is a section view taken on line 1ll1 of FIG. 10 showing details of the blank oscillating structure and operator mounted in the upper end bell housing;
FIG. 12 is a schematic circuit illustrating one way of obtaining and connecting DC power to one or more plasmatrons;
FIG. 13 is a schematic circuit illustrating a starter or ignition circuit by which a plasma arc torch can be started;
FIG. 14 is another schematic circuit illustrating an AC circuit which can be used to power plural torches in multiples of three;
FIGS. 15 and 16 are diagrams, respectively of three and six torch plasma arc remelting installations with the electric connections to each torch labelled to correlate with the torch connections shown in FIG. 14;
FIG. 17 is another schematic circuit illustrating an AC circuit enabling powering for plural torches in multiples of four, particularly useful in remelting metal into molds of square or other polygonal cross-section;
FIGS. 18 and 19 are diagrams, respectively of four and eight torch plasma arc remelting installations with square cross section molds and with the electric connections to each torch labelled to correlate with the torch connections shown in FIG. 17; and
FIG. 20 is a table showing the heat conductivity coefficient and melting temperatures for several materials considered for making heat sink inserts GENERAL DESCRIPTION With reference to FIG. 1, a brief general description of the plasma arc remelting installation to which this invention pertains is shown with a hermetically sealable chamber having an opening 12 at the top portion thereof for accommodating a vertically positioned metal blank 14 and an opening 16 in the lower portion thereof for accommodating a solidified ingot 18. The chamber includes an outwardly downwardly inclined roof portion 20 which supports a plurality of plasma torch devices 22 which extend through the chamber roof into the vicinity of the lower end portion of the metal blank 14. A hollow wall fluid cooled mold 24 is positioned into the lower end of the chamber with its upper mouth 26 spaced closely adjacent the nozzle ends 28 of the plasma arc torches 22. A coolant system 30 is provided for supplying cooling fluid through coolant lines 32 and 34 to the mold 24 and also for providing cooling fluid for plasma arc torches 22 through dual lines 36 and 38. The walls of the chamber 10 may also be made hollow and the cooling system 30 may also be connected with the chamber 10 to provide cooling in its sidewalls thereof.
In general, the operation of a plasma arc remelting installation such as depicted in FIG. 1 is'as follows. Plasma arc torches 22 are connected with a conventional source of electrical power AC or DC (not shown) which is also connected directly to the ingot l8 and mold 24. A metal blank 14 to be melted is suspended from the top of chamber 12 to a location within the upper portion of the chamber 12 in substantially the position shown in FIG. 1. The chamber is sealed and all air within the chamber is exhausted to a vacuum in the order of IO mm. Hg and the chamber is scavaged with an inert gas such as argon. The plasma arc torches are then sequentially ignited by the use of a direct current pulse between the torch body, e.g., nozzle, and the cathode from the power supply source. A convenient method of establishing ignition or initiating DC pulse is to employ a common oscillator connected between the cathode and torch body of the torch means to be started and the mold 24. Once the plurality of torch means have been started the metal in blank 14 is progressively melted and drops into the mold 24, forming a molten metal bath on top of ingot 18. Metal blank 14 is progressively lowered as it is melted off and ingot 18 is progressively extracted from the bottom portion of chamber 16 as the molten metal pool progressively solidifies by reason of the heat extracted by the fluid cooled mold 24. Metal blank 14 is axially lowered into the remelting zone defined by the plasma arcs issuing from the plasma arc torches 22. It can also be oscillated or rotated as shown by the rotation arrow while being lowered into the remelting zone. By carefully controlling the remelting parameters and adjusting the positions of the plasma are torches 22 with respect to the melting end of metal blank 14, the liquid level of the molten metal pool in the top of mold 24 can be maintained at a constant position within the mold to attain balanced thermodynamic conditions within the remelt-' ing zone and the molten metal bath and to produce a high quality metal ingot which is substantially free from nonmetallic inclusions, stringers, and gas bubbles. The
grain pattern shown by the ingots thus produced is of the ideal herringbone formation wherein the grain patterns are directed from the center of the ingot upwardly and outwardly toward the exterior surfaces thereof.
The axial moving of metal blank 14 and the rotation thereof can be selectively used when needed, and particularly rotation of the ingot need not be used in all cases since the plasma arc torches are adjustably mounted within chamber 10.
In the schematic diagram of FIG. 1, the plasma arc torches are positioned within chamber 10 in such a manner that their longitudinal axes define an angle A with a plane defined by the horizontal top of mold 24. I
This angle can be varied by virtue of the adjustable fea ture of the plasma arc torches by reason of ball joints 40 and operating mechanisms (FIGS. 2, 3 and 4) which are secured in and to the roof portion 20 of the plasma arc remelting installation. The position of the ball joints with respect-to the plasma arc torches 22 define a fixed point along the axis about which variable angular positioning of the torch is possible. It is also possible to adjust the longitudinal axial position of the torches 22, which is usually fixed for a specific furnace system, by moving them inwardly and outwardly along their axis in order to bring the plasma arc torches closer to and further away from the mouth portion 26 of mold 24. This adjustable feature of the plasma arc tore-hes allows an existing plasma arc installation as described herein to produce a variety of cross sections of ingots 18 by inserting different molds 24 into the plasma arc chamber 10. For example, a circular cross section mold can be removed and replaced with a square or rectangular cross section mold whereupon the plasma torches will be adjusted as needed to accommodate the different size and shaped molds and hence the ingots being made. As shown the mold 24 is removable retained within the body of chamber 20. The top portion, the chamber, the mold and the lower portion are secured by interconnected flanges enabling separability of the furnace components.
The schematic diagram of FIG. 2 shows a plasma arc installation 50 equipped with operational supporting subsystems therefor. Although not depicted, the furnace components can be separable as described for FIG. 1. The hermetically sealable chamber 52 is provided with a fluid cooled mold 54 which is shown integrally constructed with respect to the remaining portions of chamber 52 and is arranged to form an ingot 56. A plurality of plasma arc torches 58 are positioned so as to direct the plasma arcs toward the upper mouth portion 60 of mold 54. The plasma arc torches are adjustably mounted and in the position shown have their axes in vertical planes which are directed at acute angles to the vertical axis of the mold 2. These adjustable torches can either extend in a vertical diametric plane of the mold or their yaw angle can be adjusted so the plasma arc has a direction with a component extending tangentially which will rotate the bath of molten metal in the mold 54. An arrangement of the torches 58 having a tangential component is diagrammatically illustrated in FIG. 3.
The mold 54 has a movable bottom or carriage 62 which is connected via rod 64 to an ingot extracting mechanism 66.
Metal blank 68 is supported to project down through the upper sleeve extension 69 on neck portion 70 in the roo amb y fl nseq and housing 72 and blank feeding and oscillating mechanism 74. The power driven mechanism 74 operates to feed and to rotate or oscillate the blank during remelting. A side hatch 76 can be provided in sleeve extension 69 and/or upper neck portion 70 in order to provide for insertion of the metal blank 68 and for withdrawing of the spent stub of the blank following the melting operation, however the entire bell housing 72 and the operating mechanism can be disconnected and lifted as a unit from the chamber 52 to insert the blanks and to withdraw the spent stub.
Plasma arc torches 58 are positioned within the upper roof portion 78 of chamber 52 and are adjustably mounted therein in the manner as will be hereinafter described relative to FIG. 4. In order to melt a metal charge in installation 50 it is not necessary to employ a solid metal blank 68. It is also possible to add the charge by feeding metal particles, such as scrap, into the upper mold mouth 60 from a hopper 80 connected with the interior of the chamber through a feed trough 82.
Other parts of the support system include a vacuum pump 84 connected through a pipe line 86 with the crystallizer chamber 52 which, along with plasma arc torches 58, is supplied with plasma forming gas or gas mixtures from a gas supply tank 88 which is connected to each plasma arc torch through a gas distribution device 90 (one shown) designed to simultaneously con trol the gas consumption as well as the ratio of gases in the plasma gas mixture.
To assure constant pressure in the crystallizer chamber 52 during the melting cycle, provision is made for a gas recirculating circuit comprising a diaphragm compressor 92 connected to the distribution device 90 and through a system of gas filters 94, which include a chemical purification system containing absorber de vices, to pipe lines 86.
The plasma arc remelting installation can be supplied with either a DC or AC power supply from an electrical power source through a control unit 96. In a conventional manner, the cathodes of the plasma arc torches 58, in a DC mode, are connected to the negative terminal of the supply source 96 while the mold 54 is connected to the positive terminal. in such case the positive terminal of the DC source may connect directly to the mold or to the ingot through the ingot withdrawing mechanism 66 or to both the mold and the mechanism The electrical power source portion of unit 96 can be a three-phase alternating transformer having its secondary windings arranged in start form 97 (FIG. 3) with each leg connected to a respective plasma arc torch 58 and with the star neutral point or center connector insulated from ground and from the mold 54. In this AC circuit connection the mold 54 can be and in the normal installation is usually grounded.
Briefly stated, to start a plasma arc remelting operation, the metal blank 68 is inserted into the upper neck portion 70. Air in chamber 52 is pumped out by vacuum pump 84 until a satisfactory low pressure is reached such as 10 mm Hg. Chamber 52 is then filled and scavaged with a neutral gas which is then recirculated with the gas recirculation equipment 90, 92 and 94. Plasma arc torches 58 are then initiated in a manner described above and the positions thereof are adjusted in order to accommodate the particular type of cross-section of the ingot 56 being solidified within installation 50. When a molten metal bath is obtained in the upper part of mold 54 as the result of melting of the lower end portion of metal blank 68, the metal blank feeding mechanism 72 and the ingot extracting mechanism 66 are initiated.
Removal of nonmetal and gaseous admixtures in the molten metal bath, as well as the change of shape of the end of the metal blank 68 as a result of the fusion action and control over the drip forming process on the lower end of the metal blank can be conveniently varied within the installation 50 by adjustment of the axial positions thereof as above described without the necessity of replacing and rebuilding the entire installation 50 for each new position of the torches which is desired.
When the plasma torches 58 are positioned with a tangential component as described above with reference to FIG. 3, the molten metal bath under the action of the plasma arcs will rotate and speed of rotation can be regulated by varying the angle B (see FIG. 3) which the plasma torches form with the radial planes passing through the axis of the mold 54. Also, the force of the plasma arcs and intensity of heat radiation can be additionally controlled by varying the volume of the inert gas being pumped through the torches and also by varying the current applied to the torches.
The forming of molten metal drops on the lowermost end of metal blank 68 can be additionally regulated by varying the current being supplied by electric power supply means 96 by employing modulated pulses of current having an optimal pulse shape and duration. Pulsing of the gas being delivered from the torches can also be employed.
If during the melting process a molten slag cover 100 for the molten metal bath is required for refining of the metal, slag can be added through the trough of hopper 80 as desired during the process.
The cooled mold 54 is designed to extract up to 80 percent of the heat released by the solidifying ingot through the cooling system therefor.
The molten metal pool 10] supported by the solidified ingot 56 forms a flat shallow bath in the installation 50 which has a maximum depth dimension to maximum cross-sectional dimension (diameter for FIG. 3) of the mold of from one-fifth to one-tenth. Within this molten metal bath the temperature gradient can be up to about 200 C per centimeter by employing currents of from 500 to 5,000 amps. and voltages of from 40 to 200 volts. The operation power level of the installation 50 is from to 3,000 kilowatts in order to produce ingots having weights varying from 50kg. to 5,000 kg.
TORCH ADJUSTMENT The manner in which the plasmatrons are adjustably mounted in the walls of the crystallizer will now be described with general reference to FIG. 2 and reference to FIGS. 4 and 5 for details. Each torch 58 is an elon-' gate, essentially tubular member, normally made from a material such as copper which has extremely good heat conductivity. The main torch body 58, not herein described in detail, is made with hollow walls (FIG. 4)
trode holder cooled by cooling fluid. Surrounding the electrode is an annular passage for introduction of inert plasma gas such as argon.
In accord with the present invention, the roof portion 78 of crystallizer chamber 52 includes a plurality of flanged apertures 100 accommodating the sealed mounting of a desired number of torches 58 through associated adjustment assemblies 99. Each torch 58 projects through its own adjusting assembly 99 into the crystallizer and each assembly 99 has a ball and socket unit 102, a torch to ball sleeve gland arrangement 104 and a torch swivelling adjustment mechanism 106.
Torch 58 projects down into the crystallizer chamber 52 through a seal in the sleeve gland arrangement 104 which passes through and is secured and sealed to the ball 108, which is secured and sealed in its socket.
The socket of the ball and socket arrangement 102 consists of several parts including a base 110 having a flange 112 by which the base is secured by suitable bolts to an associated upstanding flanged aperture 100 in the crystallizer cover. The connection between the socket base flange and the aperture flange is sealed by a spigotted construction 114 and a heat resistant'seal ring 116. Ball 108 seats in a parallel spherical seat 118 machined in the socket base 110 and multiple contoured ring seals 120, placed in an annular recess 122 in the base and secured by a ring nut clamp 124 socket base, provide a friction tight fluid seal between the positionedthe desired distance from either or both of the blank and the molten metal pool or slag bath at the upper part of thernold. When the desired axial dispootflie r hiipbtain e o ch ig dly 9- cured to the sleeve by tightening gland nut 158, and the torch will normally be maintained in such position throughout the remelting operation.
With the construction shown in FIG. 4, torch 58, sleeve 140 and ball 108 can be swivelled in any direction from a coaxial axis through the associated chamber aperture 100. The angular disposition of torch 58 can be selectively set via the adjustment mechanism 106 which connects to the torch assembly through a gimbal device 160 slidably embracing the heavy cylindrical outer portion 1520f gland sleeve 140.
The gimbal device is shiftable in two directions normal to each other, which for convenience can be designated as movements having components in X and Y axes, by adjustable control members 162 and 164, a part of mechanism 106. Gimbal device 160 has an I inner ring 166 slipped over the heavy outer portion 152 socket base and the surface of ball 108. A ring-shaped,
partially spherical ball cap 126 is disposed to extend ball 108, being held in its position by a threaded, seat cap clamping ring 128 screw threaded over the socket base 110. Clamping ring 128 is tightened an amount sufficient to provide a proper seating relationship yet still enable the desired swivelling fit between the ball 108 and seat surfaces. Ring nut 124 is used to tighten the seals 120 to provide a gas tight seal between the ball and the socket.
Ball 108 is apertured with a through bore, partially threaded at 134 below an enlarged annular recess 136 within which is received a group of heat resistant seal rings 138. A sleeve 140, having a close sliding fit over the cylindrical body of torch 58, is part of the sleeve gland assembly 104, and has several external stepped portions. The lowermost terminal portion 142 of the sleeve 140 projects into the crystallizer chamber 52 and is threaded. A heat shield ring 144, disposed with a sliding fit over the lower end of the torch, is threaded on the inner terminal end of sleeve 140 and in assembly is positioned just within the crystallizer chamber. Sleeve 140 is made from insulating material. Shield ring 144 is made of a heat resistant material, having a high melting point, and includes an inverted, frusto-conical skirt 146 which by deflecting and blocking the high temperature radiation from the plasma arc flames shields the sealed ball joint zone at the associated chamber aperture 100 from the intense heat.
A mesial threaded portion 148 of sleeve 140 screws into the internal threads 134 of the ball 108 so that a shoulder 150 abuts and compresses the seal rings 138 between the sleeve and the ball. A portion 152 of sleeve 140 external of the chamber is cylindrical and terminates in a threaded gland cup 154 which holds packing rings 156 compressed by a gland nut 158. By loosening nut 158, the torch 58 can be axially shifted through the gland sleeve so the torch nozzle end can be of gland sleeve with a free sliding fit. The ring 166 has diametrical trunnions 168 and 169 (FIG. 5) by which it is journalled to the outer gimbal ring 170 which in turn includes an integral projecting boss 172 through which adjustment control movements in both the X and Y axes are transmitted to the gimbal device. Gimbal boss 172 has an axial bore and includes, fixed within the bore, a threaded nut 174 for purposes which will presently be described.
Adjustment mechanism 106 is secured on a bracket 176 mounted as by screws or welding to the associated socket flange. A base member 178 secured to the bracket 176 has spaced bearing blocks 180 which journal a rock shaft 182 onan axis through the center of ball 108. Rock shaft has a keyed connection 182m and carries both a rocking arm assembly 186 and a worm wheel sector 188. A black plate 190 integral with base member 178 provides an axially fixed bearing connection for the shaft of a worm gear 192 meshed with the worm wheel sector 188. Both ends of the worm gear shaft will be journalled in rigid supports although only the back support plate 190 is shown. Control member 164 is a manual operating knob secured to the worm shaft so that rotation of the control member will rotate the worm and rock the rocking arm assembly 186 about an axis extending through the center of the ball 108.
. The other control member 162 is carried at the upper end of the rocking arm assembly 186 in a sleeve-like construction 192 parallel to the rocking axis and into one end of which the elongate boss 172 of the gimbal device is telescoped. The control member knob 162 is fixed to one end of a threaded shaft 196 which is rotatably journalled in an axially fixed disposition within the sleeve construction 194 via bearings 198. The threaded end of shaft 196 is threaded into the nut 174 in the boss of the gimbal device 160, whereby rotation of control knob 162 will move the gimbal device 160 toward and away from the rocking lever along an axis parallel to the rocking axis, providing aswivel adjustment to the torch in one direction of they aforenoted X-Y adjustment. Rocking of the rocking arm 186, by means of control knob 164, rocks the gimbal device in the second direction of the X-Y adjustment.
Coordinated adjustment of the two control knobs 162 and 164 will enable selective positioning of the torch in any direction up to an angle of 15 so the plasma arc path can be directed, for example, along a diametral plane through the vertical axis of the blank to impinge closer to the blank or to an greater degree down into the molten metal bath and closer to the side walls. In conjunction with such adjustment the torch can be swivelled to provide a tangential component of the plasma arc path around the vertical axis of the mold to cause a swirl of the molten metal bath. Control members are manual knobs but power actuators, selected from many available types could, if desired, be substituted for the manually operated control knobs.
More accurate control of the positioning of the torches as well as ability to selectively control the torch angles during operation enables better and more even distribution of the melting temperatures relative to the blank and the molten pool at the upper end of the mold. This becomes extremely important as higher powered longer life torches are made possible as a result of the following advantageous improvements in the torch itself.
TORCH NOZZLE CONSTRUCTION Operational experience has taught that the weak link in a PAR system is the torch nozzle. The electrode terminal end is disposed within the reduced diameter nozzle orifice. The torch start-up arc occurs between electrode and the nozzle surface while the running or operating arc occurs from the electrode to the melt or ingot being made. During operation an undesirable crossarcing from electrode to nozzle occurs due to nonstable flow conditions. This undesirable cross-arcing, something which has been essentially impossible to avoid, is called intermittent arcing and causes ablation of the electrode and the nozzle and often results in burn-through at the nozzle aperture. The highest tempratures, i.e., the hottest plasma exists at the torch tip. The prior art torches including nozzle tip structure are water cooled and are conventionally made from copper. The prior art nozzle structures normally include hollow walls to provide the annular chamber for fluid cooling. Nozzle constructions, knownprior to this invention, due to ablation and burn-through, had an extremely short operating life, not more than several hours and often not long enough to permit making a complete ingot.
In accord with the present invention some conditions causing intermediate arcing are negated by providing a smoother gas flow pattern. Also by providing a heat sink structure at the nozzle, i.e., or controlling the location of the intermediate arcing by affording it a directed path from electrode to nozzle, the possibility of burn-through by the intermittent arcing is almost completely eliminated. To accomplish this desired function it was decided to shield the prior art hollow nozzle 200 tip with cylindrical metal inserts 204 as is shown in FIGS. 6 and 7 having good heat conductivity and high melting temperatures. Tungsten, being one material having a good heat conducting coefficient of 0.38 through 0.47 and a high melting temperature of 3,200 C., was used in the form of small cylindrical rod 204 spaced around the inner periphery of the torch nozzle orifice 202. While a problem with tungsten is difficulty of machining, it has been determined that ground tungsten bars (cylindrical inserts) provide satisfactory heat sink inserts.
The first attempts at use of such inserts as shown in FIG. 6, were satisfactory to increase life at lower powers, however they did not provide much increased life at the desired higher powers due to thermal shock de- SEQ QGQLLQI .the z i tl tungsten i ert u n cause of intermittent arcing now being confined to the inserts. Proceeding from those attempts at using inserts, the nozzle of torch 218 has been further improved, in the manner shown in FIGS. 8 and 9, in several important respects, each of which contributes to the materially increased life of the nozzle tip and negates burn-off ablation or destruction of nozzle, electrode and heat sink insert material which, besides shortening the torch life, contaminated the ingot being made.
Referring specifically to FIGS. 8 and 9, orifice 222 of the nozzle 220 is constructed with a smoother profile curvature of the side wall configuration so flow of plasma gas adjacent the walls remains laminar rather than turbulent. Smooth nozzle curves can be calculated from known techniques but the advantages of acquiring and using such nozzle profiles in plasma arc torches has not been previously known, used, or appreciated. Laminar flow of the plasma forming gas is essentially necessary for stability of the plasma arc in higher powered torches which use a higher velocity gas flow and provide a long plasma flame. Note: non-laminar flow which has turbulent zones can be tolerated in low powered torches, i.e., those which produce short length plasma flame.
Nozzleexit diameter can vary from 10 mm to 30 mm. It has been found through experience that high power PAR torches should have a preferred nozzle exit diameter of 25 mm while lower powered torches have been found to perform satisfactorily using a 20 mm exit diameter.
Together with the changed nozzle orifice profile, the torch tip structure 224 (FIG. 8) is changed so that the annular cooling chamber as in the attached hollow tip 206 of FIG. 6 is omitted. In tip 224, the fluid passages 226 in the hollow torch walls do not extend down into the tip body around the reduced diameter nozzle 222 which surrounds the portion 230 of the terminal end portion of the electrode 228 which is disposed laterally adjacent the heat sink inserts 232. In other words, the nozzle tip 224 where the inserts are placed is solid metal (copper being preferred). Leaving out the water cooling at the nozzle tip avoids the intense thermal shock, resulting from inadvertent intermittent arcing from the electrode to the nozzle structure. In prior art nozzles, the intermittent arcing directly impinged on and resulted in rapid burn-through of the copper nozzles which were water cooled. Thermal shock of such arcing could be accommodated by the ductile property of the copper nozzles, however when tungsten inserts were added, the water cooled areas maintained the tungsten at a temperature sufficiently cool so that the thermal shock of an intermittent arcing under the high powers resulted in fracturing the brittle tungsten inserts.
Together with the above structure it has been found that by projecting the electrode terminal tip 230 slightly below the terminal end of the nozzle tip per se, as shown by distance a in FIG. 8, laminar flow of the gas is enhanced, it will help maintain continuity and stability of the plasma arc flame path and it reduces wear of the electrode tip. An electrode projection distance a of from 2 to 3 mm below the torch tip plane has given highly satisfactory results at high powers. While the heat sink inserts 204 (FIG. 6) were mounted wholly within the nozzle tip, they were extended down past the tip end of electrode 210 which did increase useful life by shifting the location of the arcing as well as by shielding the nozzle tip from direct arcing action. The inserts 232 (FIG. 8) in accord with further aspects of the present invention are mounted slightly lower in the nozzle tip 224 and project from a transverse plane at the nozzle tip a distance b which is greater than the projection of the relocated electrode 228. Desired projection dimensions b of the inserts have beenfound to be from 10 to mm. The resulting structural relationship between the solid nozzle tip, the smoothly curved laminar flow profile of the nozzle orifice, the relocated projecting electrode terminal end and the projecting heat sink inserts each are improvements which in and of themselves increase the useful life of the torch and when all of these improvements are used in combination the resulting plasmatron is capable of a very high powered operation with an extended length, stable plasma flame has been accommodated for over a 1,000 hour life period before repair or replacement of component torch parts is necessary. It is believed that a very important aspect of this startling torch life improvement in high power operation is due to the essentially smooth walled profile 222 of the nozzle orifice and the projection of both the electrode tip 230 and the ends of inserts 232 beyond the terminal plane of the annular nozzle body per se, resulting in an annular laminar flow nozzle path whose internal wall formed by the electrode surface does not terminate prior to the termination of the outer peripheral confining wall nozzle orifice of the annular zone, and results in the controlled relocation of the zone of intermittent arcing to a position near or outside of the terminal edge of the nozzle.
The cylindrical heat sink inserts 232 provide a greater body surface to shield the copper nozzle tip 224 which has a substantially lower melting temperature than the inserts. One refinement to the inserts 232 which helps provide longer life is to chamfer 234, 236 both ends to avoid sharp corners. This feature is of particular importance at the inner ends of the inserts because it helps reduce the sharp structural break interference type of flow path interference which creates Blasius turbulence which in turn contributes to the in termittent arcing. To a lesser extent a sharp terminal edge at the exit end of the inserts can also create Blasius type of turbulence but by projecting the inserts beyond the nozzle exit, any turbulence created by their terminal edges is at a location in the flow path of the plasma flame which is outside of the nozzle where it has essentially stabilized into relatively free laminar flow so .the effect of turbulence caused by the terminal end of the insert tips is negligible.
As a result of successful operations of the new plasma torches, several desired parameters have been found. Referring again to FIGS. 8 and 9, the diameter D of the nozzle inner periphery at the nozzle outlet 238 should preferably be from 10 to 30 mm; the inserts 232 should use that nozzle diameter or a minutely larger diameter as a common mounting circle for their center axes in order to provide a cylindrical keyway 240 slightly greater than 180 for an embracing keyed interfit between insert and the keyway groove 240 into which they are pressed; the keyway interfit 0 can be up to 10 mm in length; the electrode end 230 projects a distance a of 2-3 mm beyond the nozzle terminal edge; the inserts 232 project a distance b of 10-15 mm; the distance e between electrode end 230 and inserts 232 is from 2-7 mm; and the circumferential spacing between inserts may be from 0 to 2 mm. Of course a zero circumferential spacing between inserts is technically impossible when a keyed groove insert mounting arrangement is used but when other insert mounting techniques are used the inserts can be placed to touch each other.
Solid electrode diameters d of 10-12 mm have been found satisfactory for high power (up to 2,000 Amperes) operation. Above 2,000 Amperes, multiple strand or composite electrodes up to 25 mm in diameter are satisfactory. For low power (up to 1,000 Amperes) solid electrodes of 8 mm diameter are satisfactory.
The Table 'of Various Metals, Alloys and Metal Oxides in FIG. 20 of the drawings shows the Heat Conductivity Coefficient and the melting temperatures for the metals. Similar values can be found for other metals, alloys and metal oxides. While various materials have been tried for heat sink insert materials, tungsten and Rhenium are presently found to be the best because of their excellent coefficient of heat conductivity and its high melting temperature. The insert material should be electrically conductive and preferably should have a coefficient of heat conductivity of 0.3 and a melting temperature above 2,500 C.
BLANK FEED AND OSCILLATING MECHANISM This portion of the description will have general reference to FIGS. 1 and 4 and specific reference to FIGS. 10 and 11. As briefly described hereinbefore, the PAR furnace is arranged to accommodate top feeding of a blank 68 downwardly along the vertical axis of the furnace remelting chamber 52 as shown in FIG. 2, and feeding of the blank is accomplished by a blank feed and oscillating mechanism 74 mounted coaxially on top of chamber 52. Mounting for mechanism 74 includes a furnace bell housing 72 which can be constructed for direct installation over a flanged central opening in the remelting chamber, as shown in FIG. 1, or as an upwardly directed sleeve extension fastened on the upper end of a sleeve-like bell housing extension 69 such as shown in FIG. 2.
Bell housing 72 constitutes a rigid heavy support structure for the blank feed and oscillating assembly 74 which includes blank feeding mechanism 250 as well as blank oscillating mechanism 252. Housing 72 is a vertical sleeve-like member having lower end flanges 254 which enable the bell housing to be secured as by bolts to a mating flange on the top of the melting chamber or to the upper end of a chamber top extension. A suitable heat and vacuum seal 256 may be placed between the flanged connection. The upper end of housing 72 has a reduced diameter opening and incorporates a radial bearing 258 with a heat and vacuum seal arrangement 260 for a hollow rotatable support shell 262 which projects coaxially down through the bell housing 72. The upper end opening of housing 72 is recessed at 263 to receive the seals 260 which are secured by a gland ring 264. The gland ring can be threaded or otherwise adjustably secured to press theseals tight between the recess walls and the support shell 262; The
inner periphery of the gland ring and the bearing 258 below the seal recess 263 provides a radial bearing and guide to maintain the support shell 262 coaxial within the bell housing 72.
Support shell 262 carries the entire blank feed mechanism 250, is rotatably mounted in the upper bearing end of the bell housing, and also carries a massive large diameter spur gear 266 which serves the dual purpose of transferring oscillatory drive power to the shell and of locating and maintaining the shell 262 in fixed axial disposition on the bell housing. Spur gear 266 is bolted to an outer annular flange 268 on the shell 262 adjacent but spaced down below the top end of the hollow support shell. In turn the spur gear 266 is axially fixed in a rotatable fashion between three sets of upper and lower support rollers, 272 and 274 respectively, arranged in equiangular spacing on associated double bearing support assemblies 276, the brackets of which are secured as by welding to the outside of the upper end of the bell housing 72.
Oscillatory rotational movement of the support shell is accomplished by means of a double acting hydraulic motor 278 mounted via its support bracket 280 on one side of the upper end of the bell housing 72. The exemplary hydraulic power unit has a fixed position 282 intermediate the ends of a piston rod 284 secured at each end to an ear of bracket 280. The motor cylinder 286, is mounted on the rod 284 and surrounds the piston 282 for reciprocation between the support bracket ears. Hydraulic fluid under pressure from a suitable source (not shown) and through a suitable automatically reversing control system (not shown) is supplied through one or the other of lines 288 and 290 which connect through suitable drilled passages in the fixed piston rod to respectiveinternal orifices 292 and 294 on opposite sides of the piston. As in well-known double acting hydraulic motors when pressure is applied in line 288, line 290 is automatically connected through valving to a drain or return conduit back to the source and vice versa. Automatic control of hydraulic system valving can be accomplished in any known manner, e.g., by electric motor driven rotary valving (not shown).
The reciprocable cylinder 286 is prevented from rotary movement by a suitable tracking device, e.g., a bar 296 fixed between the ears of bracket 280. The bar 296 can slidably fit into notches 298 (see FIG. 10) in the cylinder end plates. Rigidly fastened to or integrally formed on the outer surface and extending between the ends of cylinder 286 and parallel to its axis is a rack of gear teeth 300 which mesh with the teeth of spur gear 266. Reciprocation of the hydraulic cylinder 286 thus causes oscillation of the spur gear 266 which in turn oscillates the blank support shell 262.
The top end of blank support shell has an end wall 302 and is internally contoured by suitable means such as casting or machining into a cable drum chamber 304, receiving a cable drum 306 fixed to a support axle 308. The ends of axle 308 are journalled in heavy radial bearings 310 and 312 received in bearing recesses 314 and 316, respectively, machined in diametrally opposed walls of the drum chamber 304. The bearings and drum are maintained against axial shift by a bearing end cap 318. One end 320 of the axle 308 projects to the exterior of the chamber through a heat and vacuum seal arrangement 322 and carries a spur gear 324 which is suitably drive connected to the axle as by a key and keyway or via a splined fitting.
Mounted on top of the upper end of the blank support shell 262 is a reversible electric motor 330 (or a suitable alternate kind of reversible rotary motor) which connects through a reduction gear box 332 to an output spur gear 334 meshed with the drum drive gear 324.
Dual wrought steel cables 336 and 338 are wound around and have one of their respective ends secured to the cable drum 306. The other ends of both cables depend in equally spaced apart diametral arrangement relative to the axis of the blank support shell and are secured in such diametral spacing to a vertically movable cross-head 340. Cross-head 340 has diametral projecting guide ribs 342 and 344 which slidably ride in internal, vertical groove tracks 346 and 348 extending from adjacent the top of shell 262 to its bottom end. Firmly secured to and depending from the underside of cross-head 340 in the exemplary disclosure is a heavy hook 350 from which is hung a blank 68 by means of eye 352 rigidly secured in the blank and projected from the center of the blank end face. Because the crosshead is keyed to the blank support sleeve and because the cross-head hook 350 and blank eye 352 are rigidly secured to the cross-head and blank respectively, oscillatory rotation of the blank support sleeve 262 will cause oscillatory rotation of the blank 68.
Furthermore, the blank feed mechanism 250 being wholly supported on the top of the blank support sleeve will be rotated with the sleeve so there is no interference between oscillatory movement and the gearing of the blank feed mechanism, each can be selectively operated independently of the other, oscillation does not effect feed movement and feed movement does not effect oscillation.
The reversible electric motor 330 will of course be operated from a suitable power source (not shown) and via suitable controls which can be manual or automatic to gradually lower the blank 68 into the furnace chamber 52 as the lower end of the blank is melting off during the'plasma arc remelting process.
The construction of the feeding and blank-revolving mechanisms, are relatively simple and negate manufac ture and servicing problems.
From past experience in operation of plasma-arc furnaces, it is known that a radial arrangement of plasmatrons around the crystallizer provides better operation through control of the heating of the bath because the peripheral distances between the plasmatrons can be changed. Thus one can obtain in the same furnace (by changing only the crystallizer and priming) round, square, rectangular and other shaped ingots from the same blank, for instance, of round cross section. Blanks need not be round, they can be of round or square cross section, or they can be composed of end and side scrap of sheet. In any event the novel nozzle construction, the improved controls for torch manipulation and positioning, and the simple rugged blank feed and turning mechanism, as has been hereinbefore described, results in more satisfactory operation as Well as enabling operations not previously possible. The new nozzle tip construction may be utilized on existing torch bodies and will enable longer continuous operation at higher powers and will provide longer and hotter plasma flames. The torch positioning control (FIG. 4) permits accurate torch manipulation and adjustment even during remelting. At higher powers the blank is remelting at a faster rate so reliable blank feeding is absolutely necessary in order to keep the blank down in position between the plurality of radially disposed torches in the furnace cover.
ROUND AND SQUARE MOLDS lngots made in a round mold 54, 54' and 54", such as shown in FIGS. 3, and 16 should use at least two torches, but can very conveniently be made by using a crystallizer with one or more torches of any number (furnaces with at least up to eight torches are feasible and the number very probably could be higher) and the torches such as A, B and C in FIG. 15 will be equally spaced around the axis of the furnace. As shown in FIGS. 1 and 2, the blank 14 or 68 hangs down, along the furnace axis, so its lower end portion is positioned between and is radiation screening each of the torches from the plasma flames of the other torches. In circular molds, the plural plasmajets, in cooperation with radiation screening by the blank, provide a good distribution of heat over the top of the molten metal bath so its melted face takes on a flat or only a very slightly concave form and even heat disposition is easily maintained around the cooled mold wall perimeter.
The torches A, B and C in FIG. 15 are radially disposed, in plan view. FIG. 3, shows three torches 58 equally spaced around a circular mold but having an angular disposition in plan view to cause a rotation of the molten metal bath. Blank oscillation when three torches are used should be at least in a 60, back and forth rotation to result in evenmelting off of the blank tip. When more torches are used, as by adding torches A,, B, and C, to the three torches A, B and C of FIG. 15, the six torch pattern of FIG. 16 is obtained. Again, such torches can be radial or inclined to obtainthe desired plasma flame paths but with an increased number of torches, a shorter arc of blank oscillation can be used, e.g., a 30 arc, to obtain even melting off of the blank tip.
When square or cornered molds, such as molds 360 and 362 shown in FIGS. 18 and 19, are used, it is found to be of importance to provide at least a torch for each corner. Thus, for rectangular (including square) molds at least four torches D, E, F and G are required. The corner mounting and plasma flame direction against the blank tip intentionally results in maximum radiation of heat back into the corner areas of the molten metal bath, areas which require more heat to maintain a proper molten bath thickness because the cooled mold corner structures have disproportionate cooling of the volume ofmetal adjacent the mold corner wall surfaces in relation to the volume of metal adjacent the flat intermediate wall surfaces.
In polygonal cross-section molds, the torches will be increased in multiples of the number of corners of the mold, e.g., the square molds 360 (FIG. 18) and 362 (FIG. 19) respectively have four torches D, E, F, G or eight torches D, E, F, G and D,, E,, F G,. In such installations the torches are equally spaced apart. However it is understood that with irregular shaped molds the torch positioning must of course be varied to provide the best possible disposition of the heat radiation correlated with the mold cooling wall shapes.
POWER CIRCUITS Power for the furnaces can be either AC or DC and several exemplary circuits which can be used have been shown. The power circuits are essentially well known and will only be briefly described.
FIG. 12 is a simple circuit using DC for the torches T T and T The circuit derives AC power from a three phase input and the three phase lines connect in parallel to three phase transformers K K K One or up to eight individual transformers can be provided depending on the number of torches used. The output of each transformer K connects to a rectifier bank R R or R The positive output terminal A of all rectifier. banks is connected to the furnace mold, ingot and hence the molten bath indicated as BI and the negative terminal of each rectifier R is connected to the elec-- trode of an associated torch T. Equalized power can be obtained by suitable controls such as providing variable transformers K K ,'K
Excitation of a torch can be accomplished through circuits also known previous to this invention, one such suitable circuit being depicted in FIG. 13, where the starting arc is struck between the torch electrode TE and nozzle body TN. The circuit is energized by oscillator 370, and a parallel circuit consisting of a high frequency induction coil 372 variable resistor 374, switch 376 and condensor 378. The common ground is also connected to one side of the main power circuit and the mold, ingot bath arrangement BI.
The in-turn excitation of plural plasmatrons can be accomplished by using a common oscillator and suitable plural switching.
AC power circuits are shown in FIGS. 14 and 17. FIG. 14 illustrates a circuit suitable for three torches or for multiples of three torches and uses three phase inputs to the primary windings of a three phase transformer KA for each set of three torches, A, B, C, the respective electrodes of which are connected to individual phase windings of-the transformer secondarys.
FIG. 17 shows an AC circuit suitable for torches arranged in groups of four. The right hand circuit is a duplicate of the left hand circuit and enables powering of eight torches. Transformer KA, is a special wound transformer having a three phase primary winding connected to a three phase power source. Using suitable ratios of secondary windings S S S and S, to the associated primary windings of transformer KA, four different secondary outputs of equal current valves can be obtained and all four outputs will be out of phase with each t Eaqh ulnutfi !,.2 .J sl 2l g..l so taeqte through a respective variable inductance 1,, I l and I, to the electrode of its respective torch D, E, F and G, and the common lead from the secondary connects to a common ground with the mold, ingot bath unit Bl.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
What is claimed and desired to be secured by Letters Patent is:
1. A plasma arc torch with a center electrode and a nozzle end structure, said nozzle end structure comprising: an elongate, hollow body coaxially surrounding and spaced from the lower end of said electrode; a plurality of circumferentially spaced apart electrically conductive heat sink inserts mounted in the interior of said body, around and radially spaced from said electrode, each said insert having a first portion radially adjacent said electrode lower end and second portion axially disposed beyond the terminal end of said electrode; said body providing an annular nozzle orifice having end means defining a nozzle orifice with a smoothly curved, convergent profile surface within said body for providing a substantially laminar flow of plasma gas past said electrode and inserts;
2. A plasma arc torch as defined in claim 1, wherein said smoothly curved, convergent profile surface starts at a location upstream of said inserts and merges into an essentially straight flow path adjacent the upper ends of said inserts to the terminal end of the nozzle 'body.
3. A plasma arc torch as defined in claim 1, wherein at least one of said inserts has a portion axially disposed to project beyond the terminal edge of said body.
4. A plasma arc torch as defined in claim 3, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
5. A plasma arc torch as defined in claim 3, wherein all said inserts have portions axially disposed to project beyond the terminal edge of said body.
6. A plasma arch torch as defined in claim 3, wherein the distance of projection ofsaid inserts beyond the terminal edge of said body is within a range of from ll 7. A plasma arc torch as defined in claim 1, wherein said electrode terminal end projects beyond the terminal end of said body.
8. A plasma arch torch as defined in claim 7, wherein the distance of projection of said electrode terminal end is within a range of from 23 mm.
9. A plasma arc torch as defined in claim 8, wherein the orifice diameter of said nozzle is in a range of from l030 mm.
10. A plasma arch torch as defined in claim 1, wherein the diameter of said electrode is at least 11. A plasma arc torch as defined in claim 10, wherein the current of the are operating power can be up to 2,000 amperes and the electrode is solid.
12. A plasma arc torch as defined in claim 10, wherein the current of the arc operating power can be above 2,000 amperes and the electrode is of composite strand structure.
13. A plasma arc torch as defined in claim 1, wherein said inserts are made from material having a heat conductivity coefficient of at least 0.3 and a melting temperature of at least 2,500 C.
14. A plasma arc torch as defined in claim 13, wherein said inserts are made from tungsten.
15. A plasma arc torch as defined in claim 1, wherein said inserts are cylindrical.
16. A plasma arc torch as defined in claim 2, wherein at least said upper ends of said inserts are chamfered.
17. A plasma arc torch as defined in claim 16, wherein both ends of said inserts are chamfered.
18. A plasma arc torch as defined in claim 1 wherein the shortest distance from said electrode lower end to said inserts is in a range of from 27 mm.
19. A plasma arc torch as defined in claim 1, wherein said inserts are cylindrical and the lower inner peripheral portion of said body has partially cylindrical keyways which receive said inserts.
20. A plasma arc torch as defined in claim 19, wherein said partial cylindrical keyways have crosssections exceeding a semicircle.
21. A plasma arc torch as defined in claim 1, wherein said body includes a hollow chamber and means are provided for circulating a cooling fluid through said hollow chamber.
22. A plasma arc torch as defined in claim 21, wherein the terminal end portion of said body disposed radially adjacent said electrode lower end and adjacent said inserts is solid.
23. A plasma arc torch as defined in claim 22, wherein said body comprises copper material.
24. A plasma arc torch as defined in claim 3, wherein said electrode terminal end projects beyond the terminal end of said body.
25. A plasma arc torch as defined in claim 24, wherein the distance of projection of said electrode terminal end is within a range of from 2-3 mm.
26. A plasma arc torch as defined in claim 25, wherein the distance of projection of said inserts beyond the terminal edge of said body is within a range of from l0l5 mm.
27. A plasma arc torch as defined in claim 22, wherein the shortest distance from said electrode lower end to said inserts is in a range of from 2-7 mm.
28. A plasma arc torch as defined in claim 27, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
29. A plasma arc torch as defined in claim 8, wherein the distance of projection of said inserts beyond the terminal edge of said body is within a range of from l0l 5 30. A plasma arc torch as defined in claim 29, wherein the diameter of said electrode is at least 10 31. A plasma arc torch as defined in claim 30, wherein the orifice diameter of said nozzle is in a range of from 1030 mm.
32. A plasma arc torch as defined in claim 30, wherein the current of the are operating power can be up to 2,000 amperes and the electrode is solid.
33. A plasma arc torch as defined in claim 30, wherein the current of the are operating power can be above 2,000 amperes and the electrode is of composite strand structure.
34. A plasma arc torch as defined in claim 3, wherein said inserts are made from material having a heat conductivity coefficient of at least 0.3 and a melting temperature of at least 2,500 C.
35. A plasma arc torch as defined in claim 34, wherein said inserts are made from tungsten.
36. A plasma arc torch as defined in claim 3, wherein said inserts are cylindrical.
37. A plasma arc torch as defined in claim 3, wherein at least said upper ends of said inserts are chamfered.
38. A plasma arc torch as defined in claim 37, wherein both ends of said inserts are chamfered.
39. A plasma arc torch as defined in claim 3, wherein the shortest distance from said electrode lower end to said inserts is in a range from 2-7 mm.
40. A plasma arc torch as defined in claim 3, wherein said body includes a hollow chamber and means are provided for circulating a cooling fluid through said hollow chamber.
'41. A plasma arc torch as defined in claim 40, wherein the terminal end portion of said annular body disposed radially adjacent said electrode lower end and adjacent said inserts is solid.
42. A plasma arc torch as defined in claim 41, wherein said body comprises copper material.
43. A plasma arc torch as defined in claim 42, wherein said inserts are made from tungsten.
44. A plasma arc torch as defined in claim 1, wherein the orifice diameter of said nozzle is in a range of from l30 mm.
45. A plasma arc torch with a center electrode and a nozzle end structure comprising: an elongate hollow body coaxially surrounding and spaced from the lower end of said electrode; and a plurality of circumferentially spaced apart electrically conductive heat sink inserts mounted in the interiorof said body, around and radially spaced from said electrode, each said insert having a portion radially adjacent said electrode and an end of at least one of said inserts projecting axially beyond the terminal end of said body.
46. A plasma arc torch as defined in claim 45, wherein the orifice diameter of said nozzle is in a range of from lO30 mm.
47. A plasma arc torch as defined in claim 45, wherein all said inserts have portions axially disposed to project beyond the terminal end of said body.
48. A plasma arc torch as defined in claim 47, wherein the distance of projection of said inserts beyond the terminal edge of said annular body is within a range of from -15 mm.
49. A plasma arc torch as defined in claim 45, wherein the terminal end of said electrode projects beyond the terminal end of said body.
50. A plasma arc torch as defined in claim 49, wherein the distance of projection of said electrode terminal end is within a range of from 2-3 mm.
22 51. A plasma arc torch as defined in claim 50, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
52. A plasma arc torch as defined in claim 45,-
wherein the diameter of siad electrode is at least 10 53. A plasma arc torch as defined in claim 52, wherein the current of the are operating power can be up to 2,000 amperes and-the electrode is solid.
54. A plasma arc torch as defined in claim 52, wherein the current of the are operating power can be above 2,000 amperes and the electrode is of composite strand structure.
55. A plasma arc torch as defined in claim 45, wherein said inserts are made from material having a heat conductivity coefficient of at least 0.3 and a melting temperature of at least 2,500 C.
56. A plasma arc torch as defined in claim 55, wherein said inserts are made from tungsten.
57. A plasma arc torch as defined in claim wherein said inserts are cylindrical.
58. A plasma arc torch as defined in claim 57, wherein at least the upper ends of said inserts are chamfered.
59. A plasma arc torch as defined in claim 45, wherein the shortest distance from said electrode lower end to said inserts is in a range of from 2-7 mm.
60. A plasma arc torch as defined in claim 59, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
61. A plasma arc torch as defined in claim 45, wherein said inserts are cylindrical and the inner peripheral portion of said body has partially cylindrical keyways which receive said inserts.
62. A plasma arc torch as defined in claim 45, wherein said body includes a hollow chamber and means are provided for circulating a cooling fluid through said hollow chamber.

Claims (62)

1. A plasma arc torch with a center electrode and a nozzle end structure, said nozzle end structure comprising: an elongate, hollow body coaxially surrounding and spaced from the lower end of said electrode; a plurality of circumferentially spaced apart electrically conduCtive heat sink inserts mounted in the interior of said body, around and radially spaced from said electrode, each said insert having a first portion radially adjacent said electrode lower end and second portion axially disposed beyond the terminal end of said electrode; said body providing an annular nozzle orifice having end means defining a nozzle orifice with a smoothly curved, convergent profile surface within said body for providing a substantially laminar flow of plasma gas past said electrode and inserts.
2. A plasma arc torch as defined in claim 1, wherein said smoothly curved, convergent profile surface starts at a location upstream of said inserts and merges into an essentially straight flow path adjacent the upper ends of said inserts to the terminal end of the nozzle body.
3. A plasma arc torch as defined in claim 1, wherein at least one of said inserts has a portion axially disposed to project beyond the terminal edge of said body.
4. A plasma arc torch as defined in claim 3, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
5. A plasma arc torch as defined in claim 3, wherein all said inserts have portions axially disposed to project beyond the terminal edge of said body.
6. A plasma arch torch as defined in claim 3, wherein the distance of projection of said inserts beyond the terminal edge of said body is within a range of from 10-15 mm.
7. A plasma arc torch as defined in claim 1, wherein said electrode terminal end projects beyond the terminal end of said body.
8. A plasma arch torch as defined in claim 7, wherein the distance of projection of said electrode terminal end is within a range of from 2-3 mm.
9. A plasma arc torch as defined in claim 8, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
10. A plasma arch torch as defined in claim 1, wherein the diameter of said electrode is at least 10 mm.
11. A plasma arc torch as defined in claim 10, wherein the current of the arc operating power can be up to 2,000 amperes and the electrode is solid.
12. A plasma arc torch as defined in claim 10, wherein the current of the arc operating power can be above 2,000 amperes and the electrode is of composite strand structure.
13. A plasma arc torch as defined in claim 1, wherein said inserts are made from material having a heat conductivity coefficient of at least 0.3 and a melting temperature of at least 2,500* C.
14. A plasma arc torch as defined in claim 13, wherein said inserts are made from tungsten.
15. A plasma arc torch as defined in claim 1, wherein said inserts are cylindrical.
16. A plasma arc torch as defined in claim 2, wherein at least said upper ends of said inserts are chamfered.
17. A plasma arc torch as defined in claim 16, wherein both ends of said inserts are chamfered.
18. A plasma arc torch as defined in claim 1 wherein the shortest distance from said electrode lower end to said inserts is in a range of from 2-7 mm.
19. A plasma arc torch as defined in claim 1, wherein said inserts are cylindrical and the lower inner peripheral portion of said body has partially cylindrical keyways which receive said inserts.
20. A plasma arc torch as defined in claim 19, wherein said partial cylindrical keyways have cross-sections exceeding a semicircle.
21. A plasma arc torch as defined in claim 1, wherein said body includes a hollow chamber and means are provided for circulating a cooling fluid through said hollow chamber.
22. A plasma arc torch as defined in claim 21, wherein the terminal end portion of said body disposed radially adjacent said electrode lower end and adjacent said inserts is solid.
23. A plasma arc torch as defined in claim 22, wherein said body comprises copper material.
24. A plasma arc torch as defined in claim 3, wherein said electrode terminal end projects beyond the terminal end of said body.
25. A plasma arc torch as defined in claim 24, wHerein the distance of projection of said electrode terminal end is within a range of from 2-3 mm.
26. A plasma arc torch as defined in claim 25, wherein the distance of projection of said inserts beyond the terminal edge of said body is within a range of from 10-15 mm.
27. A plasma arc torch as defined in claim 22, wherein the shortest distance from said electrode lower end to said inserts is in a range of from 2-7 mm.
28. A plasma arc torch as defined in claim 27, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
29. A plasma arc torch as defined in claim 8, wherein the distance of projection of said inserts beyond the terminal edge of said body is within a range of from 10-15 mm.
30. A plasma arc torch as defined in claim 29, wherein the diameter of said electrode is at least 10 mm.
31. A plasma arc torch as defined in claim 30, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
32. A plasma arc torch as defined in claim 30, wherein the current of the arc operating power can be up to 2,000 amperes and the electrode is solid.
33. A plasma arc torch as defined in claim 30, wherein the current of the arc operating power can be above 2,000 amperes and the electrode is of composite strand structure.
34. A plasma arc torch as defined in claim 3, wherein said inserts are made from material having a heat conductivity coefficient of at least 0.3 and a melting temperature of at least 2,500* C.
35. A plasma arc torch as defined in claim 34, wherein said inserts are made from tungsten.
36. A plasma arc torch as defined in claim 3, wherein said inserts are cylindrical.
37. A plasma arc torch as defined in claim 3, wherein at least said upper ends of said inserts are chamfered.
38. A plasma arc torch as defined in claim 37, wherein both ends of said inserts are chamfered.
39. A plasma arc torch as defined in claim 3, wherein the shortest distance from said electrode lower end to said inserts is in a range from 2-7 mm.
40. A plasma arc torch as defined in claim 3, wherein said body includes a hollow chamber and means are provided for circulating a cooling fluid through said hollow chamber.
41. A plasma arc torch as defined in claim 40, wherein the terminal end portion of said annular body disposed radially adjacent said electrode lower end and adjacent said inserts is solid.
42. A plasma arc torch as defined in claim 41, wherein said body comprises copper material.
43. A plasma arc torch as defined in claim 42, wherein said inserts are made from tungsten.
44. A plasma arc torch as defined in claim 1, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
45. A plasma arc torch with a center electrode and a nozzle end structure comprising: an elongate hollow body coaxially surrounding and spaced from the lower end of said electrode; and a plurality of circumferentially spaced apart electrically conductive heat sink inserts mounted in the interior of said body, around and radially spaced from said electrode, each said insert having a portion radially adjacent said electrode and an end of at least one of said inserts projecting axially beyond the terminal end of said body.
46. A plasma arc torch as defined in claim 45, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
47. A plasma arc torch as defined in claim 45, wherein all said inserts have portions axially disposed to project beyond the terminal end of said body.
48. A plasma arc torch as defined in claim 47, wherein the distance of projection of said inserts beyond the terminal edge of said annular body is within a range of from 10-15 mm.
49. A plasma arc torch as defined in claim 45, wherein the terminal end of said electrode projects beyond the terminal end of said body.
50. A plasma arc torch as defined in claim 49, wherein the distance of projecTion of said electrode terminal end is within a range of from 2-3 mm.
51. A plasma arc torch as defined in claim 50, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
52. A plasma arc torch as defined in claim 45, wherein the diameter of siad electrode is at least 10 mm.
53. A plasma arc torch as defined in claim 52, wherein the current of the arc operating power can be up to 2,000 amperes and the electrode is solid.
54. A plasma arc torch as defined in claim 52, wherein the current of the arc operating power can be above 2,000 amperes and the electrode is of composite strand structure.
55. A plasma arc torch as defined in claim 45, wherein said inserts are made from material having a heat conductivity coefficient of at least 0.3 and a melting temperature of at least 2,500* C.
56. A plasma arc torch as defined in claim 55, wherein said inserts are made from tungsten.
57. A plasma arc torch as defined in claim 45, wherein said inserts are cylindrical.
58. A plasma arc torch as defined in claim 57, wherein at least the upper ends of said inserts are chamfered.
59. A plasma arc torch as defined in claim 45, wherein the shortest distance from said electrode lower end to said inserts is in a range of from 2-7 mm.
60. A plasma arc torch as defined in claim 59, wherein the orifice diameter of said nozzle is in a range of from 10-30 mm.
61. A plasma arc torch as defined in claim 45, wherein said inserts are cylindrical and the inner peripheral portion of said body has partially cylindrical keyways which receive said inserts.
62. A plasma arc torch as defined in claim 45, wherein said body includes a hollow chamber and means are provided for circulating a cooling fluid through said hollow chamber.
US00409329A 1973-10-24 1973-10-24 Plasma arc torch Expired - Lifetime US3849584A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00409329A US3849584A (en) 1973-10-24 1973-10-24 Plasma arc torch
US05/498,937 US3980802A (en) 1973-10-24 1974-08-20 Method of arc control in plasma arc furnace torches

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00409329A US3849584A (en) 1973-10-24 1973-10-24 Plasma arc torch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/498,937 Division US3980802A (en) 1973-10-24 1974-08-20 Method of arc control in plasma arc furnace torches

Publications (1)

Publication Number Publication Date
US3849584A true US3849584A (en) 1974-11-19

Family

ID=23620014

Family Applications (1)

Application Number Title Priority Date Filing Date
US00409329A Expired - Lifetime US3849584A (en) 1973-10-24 1973-10-24 Plasma arc torch

Country Status (1)

Country Link
US (1) US3849584A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105888A (en) * 1976-07-09 1978-08-08 Westinghouse Electric Corp. Arc heater apparatus for producing acetylene from heavy hydrocarbons
EP0030679A1 (en) * 1979-12-18 1981-06-24 VEB Edelstahlwerk 8. Mai 1945 Freital High-power plasmatron's nozzle
EP0207929A1 (en) * 1985-06-17 1987-01-07 VOEST-ALPINE Aktiengesellschaft Electric furnace, in particular a plasma furnace
EP0761415A2 (en) * 1995-09-01 1997-03-12 Agrodyn Hochspannungstechnik GmbH Method and apparatus for surface pretreatment of articles
WO1997029619A1 (en) * 1996-02-07 1997-08-14 Scientific Utilization, Inc. Three-phase alternating current plasma generator
US6781087B1 (en) 2000-01-18 2004-08-24 Scientific Utilization, Inc. Three-phase plasma generator having adjustable electrodes
EP1689549A2 (en) * 2003-12-02 2006-08-16 Battelle Energy Alliance, LLC Plasma generators, reactor systems and related methods
US20070284340A1 (en) * 2006-06-09 2007-12-13 Morten Jorgensen Vortex generator for plasma treatment
US20090230106A1 (en) * 2008-03-17 2009-09-17 Israel Stol Buried-arc welding with thru-the-arc seam tracking
US20100170641A1 (en) * 2006-06-09 2010-07-08 3Dt Llc Plasma treatment method and apparatus
US20120241438A1 (en) * 2009-12-16 2012-09-27 Kcc Corporation Plasma arc torch positioning apparatus
US8610024B1 (en) 2008-02-05 2013-12-17 Zybek Advanced Products, Inc. Apparatus and method for producing a lunar agglutinate simulant
CN106521482A (en) * 2016-09-29 2017-03-22 成都真火科技有限公司 Ceramic coating utilizing laminar flow plasma and preparing method of ceramic coating
CN109618483A (en) * 2019-01-07 2019-04-12 中国科学院合肥物质科学研究院 A kind of multiple arc plasma body generator

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105888A (en) * 1976-07-09 1978-08-08 Westinghouse Electric Corp. Arc heater apparatus for producing acetylene from heavy hydrocarbons
EP0030679A1 (en) * 1979-12-18 1981-06-24 VEB Edelstahlwerk 8. Mai 1945 Freital High-power plasmatron's nozzle
EP0207929A1 (en) * 1985-06-17 1987-01-07 VOEST-ALPINE Aktiengesellschaft Electric furnace, in particular a plasma furnace
EP0761415A2 (en) * 1995-09-01 1997-03-12 Agrodyn Hochspannungstechnik GmbH Method and apparatus for surface pretreatment of articles
EP0761415A3 (en) * 1995-09-01 1998-01-28 Agrodyn Hochspannungstechnik GmbH Method and apparatus for surface pretreatment of articles
US5837958A (en) * 1995-09-01 1998-11-17 Agrodyn Hochspannungstechnik Gmbh Methods and apparatus for treating the surface of a workpiece by plasma discharge
WO1997029619A1 (en) * 1996-02-07 1997-08-14 Scientific Utilization, Inc. Three-phase alternating current plasma generator
US5801489A (en) * 1996-02-07 1998-09-01 Paul E. Chism, Jr. Three-phase alternating current plasma generator
US6781087B1 (en) 2000-01-18 2004-08-24 Scientific Utilization, Inc. Three-phase plasma generator having adjustable electrodes
EP1689549A4 (en) * 2003-12-02 2008-11-05 Battelle Energy Alliance Llc Plasma generators, reactor systems and related methods
EP1689549A2 (en) * 2003-12-02 2006-08-16 Battelle Energy Alliance, LLC Plasma generators, reactor systems and related methods
US20070284340A1 (en) * 2006-06-09 2007-12-13 Morten Jorgensen Vortex generator for plasma treatment
US7547861B2 (en) 2006-06-09 2009-06-16 Morten Jorgensen Vortex generator for plasma treatment
US20100170641A1 (en) * 2006-06-09 2010-07-08 3Dt Llc Plasma treatment method and apparatus
US8610024B1 (en) 2008-02-05 2013-12-17 Zybek Advanced Products, Inc. Apparatus and method for producing a lunar agglutinate simulant
US20090230106A1 (en) * 2008-03-17 2009-09-17 Israel Stol Buried-arc welding with thru-the-arc seam tracking
US8927901B2 (en) * 2008-03-17 2015-01-06 Alcoa Inc. Buried-arc welding of metal work pieces with through-the-arc seam tracking
US20120241438A1 (en) * 2009-12-16 2012-09-27 Kcc Corporation Plasma arc torch positioning apparatus
US8912463B2 (en) * 2009-12-16 2014-12-16 Kcc Corporation Plasma arc torch positioning apparatus
CN106521482A (en) * 2016-09-29 2017-03-22 成都真火科技有限公司 Ceramic coating utilizing laminar flow plasma and preparing method of ceramic coating
CN106521482B (en) * 2016-09-29 2019-08-20 成都真火科技有限公司 A kind of ceramic coating and preparation method thereof using laminar flow plasma
CN109618483A (en) * 2019-01-07 2019-04-12 中国科学院合肥物质科学研究院 A kind of multiple arc plasma body generator

Similar Documents

Publication Publication Date Title
US4018973A (en) Furnace construction for plasma arc remelting of metal
US3849584A (en) Plasma arc torch
US3980802A (en) Method of arc control in plasma arc furnace torches
US3894573A (en) Installation and method for plasma arc remelting of metal
US4390772A (en) Plasma torch and a method of producing a plasma
US4289949A (en) Plasma burners
US5630713A (en) Rotary burner
CA2242862C (en) Electrode for plasma generator the generator comprising same and process for treatment of solidifying liquid metal
US3649805A (en) Plasma generating method and means
JPS6158524B2 (en)
US2817695A (en) Electric furnace and electrode structures for kaolin melting
US3865173A (en) Art of casting metals
JPS61291907A (en) Apparatus for producing fine particles
US3723630A (en) Method for the plasma-ac remelting of a consumable metal bar in a controlled atmosphere
US4122292A (en) Electric arc heating vacuum apparatus
GB866106A (en) Improved arc working process and apparatus
US6219372B1 (en) Guide tube structure for flux concentration
US6358297B1 (en) Method for controlling flux concentration in guide tubes
CN1057416A (en) Heating means and device
US4004076A (en) Nonconsumable electrode for melting metals and alloys
US4766598A (en) Electric arc furnace and method with coaxial current flow
KR950012485B1 (en) A plasma arc torch
KR840001978Y1 (en) Gas tungsten arc welding torch
RU2742408C1 (en) Method of arc surfacing using filler wire
DE2649141C3 (en) Plasma arc furnace for remelting metals and alloys