US3828780A - Combined electrocoagulator-suction instrument - Google Patents
Combined electrocoagulator-suction instrument Download PDFInfo
- Publication number
- US3828780A US3828780A US00344872A US34487273A US3828780A US 3828780 A US3828780 A US 3828780A US 00344872 A US00344872 A US 00344872A US 34487273 A US34487273 A US 34487273A US 3828780 A US3828780 A US 3828780A
- Authority
- US
- United States
- Prior art keywords
- passage
- vent opening
- tube
- suction
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1402—Probes for open surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/74—Suction control
- A61M1/741—Suction control with means for varying suction manually
- A61M1/7411—Suction control with means for varying suction manually by changing the size of a vent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S604/00—Surgery
- Y10S604/902—Suction wands
Definitions
- ABSTRACT A combined electrocoagulator-suction instrument useful for coagulating bleeding capillaries and veins within a surgical field and for sucking out blood and other liquids from the field either during, before or after the coagulation procedure.
- An elongate body of electrically non-conductive material is formed with a main flow passage terminating at one end of the body in a nipple for connecting the passage to a vacuum source.
- a second passage through the body receives an electrical conductor connected to an electrosurgical generator, the end of the conductor passing through the second passage and having its bared end bent back to extend into the interior of the first passage.
- An open ended metal tube has one end formed to be inserted into the main passage at the end opposite to said nipple, the tube being mechanically seated within the passage in electrical contact with the bared wire end.
- An electrically non-conductive sheath surrounds all of the exposed surface of the tube with the exception of a short section at the opposite end or tip.
- a branch passage extends through the wall of the body to communicate with the main passage at a location intermediate the ends of the main passage, the opposite end of the branch passage opening at the exterior of the body at a vent opening which can be fully or partially covered by the surgeons finger to regulate the degree of suction within the main flow passage.
- the vent opening is offset from the location at which the branch passage communicates with the main passage in an upstream direction with respect to the direction of flow of fluid through the main passage.
- the body of the patient is electrically connected to one side of an electrical circuit while an electrically conductive probe is connected to the other;
- an electrically conductive probe is connected to the other;
- the conventional suction instrument takes the form of a plastic body or fitting having a passage connected to a suction source.
- An elongate tube mounted on the body is inserted into the incision to suck out blood or other body fluids.
- the suction instrument is controlled by a simple vent opening in the body, the surgeon covering the vent opening with his finger when he wants to exert suction in the tube and uncovering the opening when suction at the tube end is not desired.
- the present invention is especially designed to provide an instrument capable of simultaneous use both as an electrocoagulator and as a suction instrument.
- the instrument includes an elongate body formed of an inexpensive electrically non-conductive material.
- a main flow passage extends longitudinally through the body from end to end, a nipple at one end of the body being employed to couple that end of the body to a flexible tube connected to a suction source.
- a second'longitudinal passage extends through the body from end to end and receives the electric power cable of the coagulation circuit. The cable passes entirely through the second passage and its bared end is bent back into the forward end of the main flow passage.
- a hollow metal tube is inserted into the forward end of the main flow passage, the tube frictionally clamping itself in position and electrically contacting the exposed end of the electric power cable.
- An electrically non-conductive sheath encloses all of the exposed portion of the tube with the exception of a relatively short portion at the tube tip.
- the suction source supplies suction to the main flow passage and to the interior of the tube.
- a vent opening for regulating the degree of suction in the tube is provided; however, unlike vent openings of conventional suction instruments, the vent opening does not communicate directly with the main flow passage.
- a branch passage having, in cross-section, a kidney shaped configuration extends from the vent opening through the body to communicate with the main flow passage at a location upstream of the vent opening with respect to the direction of flow of fluid through the main flow passage and, during use of the instrument, is disposed vertically above the main flow passage.
- the vent opening of the present instrument is a relatively long and narrow slot which enables the surgeon to regulate the degree of suction by pushing his finger longitudinally along the slot from one end toward the other.
- vent opening is offset in an upstream direction from the location at which its branch passage communicates with the main flow passage means that in order for blood to reach the vent opening, the blood must flow in the direction opposite to that which it is urged by the suction.
- the elongated vent opening enables the surgeon to apply an adequate amount of suction without completely closing the vent opening so that a flow of air through the branch passage in a direction from the vent opening toward the main passage can be present at all times to resist the flow of blood from the main passage to the vent opening. By preventing blood from reaching the vent opening, the possibility of electric shock or burn at the finger covering the vent opening is substantially eliminated.
- FIG. 1 is a perspective view of a combined electrocoagulator-suction instrument embodying the present invention
- FIG. 2 is a side elevational view of the instrument of FIG. 1 with certain parts broken away and shown in section;
- FIG-3 is a cross sectional view taken on line 3-3 of FIG. 2.
- the instrument of the present invention includes an elongate body designated generally 10 which preferably is molded or otherwise formed from a relatively inexpensive electrically non-conductive material. As is usually the case with instruments of this type, the instrument is designed to be disposed of after a single usage and by molding the body from a relatively inexpensive thermoplastic material production costs well within a throw-away category are achieved.
- a projecting nipple 12 is integrally formed at the rearward end of body 10 and a main flow passage 14 extends through the nipple for the entire length of the body. Nipple 12 is employed to connect passage 14 to a flexible tube 16 whose opposite end is connected to a conventional suction source, not shown. As best seen in FIG.
- the forward or left hand end 18 of main passage 14 is of reduced diameter and separated from a branch passage 20 which places main passage 14 in communication with an elongate vent opening 22 which opens at the exterior of body 10.
- the branch passage 20 is located vertically above the main flow passage 14 whereby, during use of the instrument, material contained within the body will flow into the left hand end 18 before it will flow into branch passage 20.
- a second passage 24 extends through body 10 from end to end and is dimensioned to receive an electric power cable 26 which is connected to the electrical power supply employed inthe coagulation operation. Insulation is stripped from the end of cable 26 as at 28 and the bared end of the cable is bent back to extend rearwardly into the forward end of main passage section 18.
- a hollow metal tube 30 is inserted into the front end of main passage section 18, the tube being dimensioned to snugly fit into passage 18 with the exterior wall of the tube clamping the bared end 28 of power cable 26 between the tube wall and the wall of passage section 18 to mechanically seat tube 30 in body 10 and to establish electrical contact between tube 30 and the electric power source. Referring to FIG. 1, it is seen that the entire exposed portion of tube 30 is enclosed by a sheath of electrically non-conductive material 32 with the exception of a relatively short section at the extreme tip of the projecting tube 30.
- vent opening 22 takes the form of what might be best described as a narrow elongate slot which is elongated longitudinally of body 10.
- suction is supplied to tube 16, with vent opening 22 uncovered, the suction is substantially all vented through opening 22 and little, if any, suction is supplied to the interior of tube 30.
- the surgeon places his finger over the righthand or rearward end of opening 22 and slides his finger forward along the opening until the desired degree of suction is achieved. Referring to FIG. 2, it will be seen that fluid flowing through the instrument passes from left to right as viewed in FIG. 2 and that opening 22 is thus offset in an upstream direction from the location at which branch passage opens into main passage 14.
- kidney or quarter-moon shaped with rounded corners the outer circular segment has a radius of Va"
- the thickness of the wall separating branch passage 20 Cross-sectional configuration of branch passage 20
- Location of upstream end of vent opening 22 Diameter of passage section 18'
- a combined electrocoagulator-suction instrument comprising an elongate body of electrically nonconductive material having a main flow passage extending longitudinally therethrough, coupling means at one end of said body for connecting said main passage to a source of suction, receiving means at the other end of said passage receiving one end of an electrically conductive tube to place the interior of the tube in fluid communication with said main passage, electrical conductor means in contact with said electrically conductive tube in said receiving means, means defining a branch passage in said body opening into said main passage at a first location intermediate the ends of said main passage, and means defining a vent opening in the exterior of said body, said vent opening being disposed away from said first location in a direction toward said other end of said body, said branch passage communicating with said vent opening.
- a combined electrocoagulator-suction instrument comprising an elongate body of electrically nonconductive material having first and second passages extending longitudinally therethrough, coupling means at one end of said body for connecting said first passage to a suction source, electrical conductor means extending through said second passage from said one end of said body and having an exposed electrically conductive end projecting into the end of said first passage adjacent the other end of said body, an elongate tube of electrically conductive material seated in said first passage at said other end of said body in electrical contact with said conductor, means defining a vent opening at the exterior of said body adjacent said other end of said body, means defining a branch passage extending from said vent opening through said body to communicate with said first passage at a location between said vent opening and said one end of said body, said vent opening being adapted to be fully or partially covered by a finger of a person holding said body to regulate the degree of suction in said tube.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- External Artificial Organs (AREA)
- Surgical Instruments (AREA)
Abstract
A combined electrocoagulator-suction instrument useful for coagulating bleeding capillaries and veins within a surgical field and for sucking out blood and other liquids from the field either during, before or after the coagulation procedure. An elongate body of electrically non-conductive material is formed with a main flow passage terminating at one end of the body in a nipple for connecting the passage to a vacuum source. A second passage through the body receives an electrical conductor connected to an electro-surgical generator, the end of the conductor passing through the second passage and having its bared end bent back to extend into the interior of the first passage. An open ended metal tube has one end formed to be inserted into the main passage at the end opposite to said nipple, the tube being mechanically seated within the passage in electrical contact with the bared wire end. An electrically non-conductive sheath surrounds all of the exposed surface of the tube with the exception of a short section at the opposite end or tip. A branch passage extends through the wall of the body to communicate with the main passage at a location intermediate the ends of the main passage, the opposite end of the branch passage opening at the exterior of the body at a vent opening which can be fully or partially covered by the surgeon''s finger to regulate the degree of suction within the main flow passage. The vent opening is offset from the location at which the branch passage communicates with the main passage in an upstream direction with respect to the direction of flow of fluid through the main passage.
Description
tates Patent Morrison, Jr.
1 1 COMBINED ELEC TROCOAGULATOR-SUCTION lNSTRUMENT [75] Inventor: Charles F. Morrison, .lr., Boulder,
Colo.
[73] Assignee: Valleylah, lnc., Boulder, C010.
[22] Filed: Mar. 26, 1973 [21] Appl. No.: 344,872
52 us. Cl. .1 128/2751, l28/303.17
[51] int. Cl. A61m 1/00, A6lb 17/40 [58] Field of Search 128/2751, 276, 277, 303.17
[56] References Cited UNITED STATES PATENTS 2,888,928 6/1959 Seiger l28/303.17
3,595,234 7/1971 Jackson 128/276 3,610,242 10/1971 Sheridan et a1 128/276 Primary Examiner-Channing L. Pace Attorney, Agent, or F irmBurton, Crandell, Polumbus & Harris [57] ABSTRACT A combined electrocoagulator-suction instrument useful for coagulating bleeding capillaries and veins within a surgical field and for sucking out blood and other liquids from the field either during, before or after the coagulation procedure. An elongate body of electrically non-conductive material is formed with a main flow passage terminating at one end of the body in a nipple for connecting the passage to a vacuum source. A second passage through the body receives an electrical conductor connected to an electrosurgical generator, the end of the conductor passing through the second passage and having its bared end bent back to extend into the interior of the first passage. An open ended metal tube has one end formed to be inserted into the main passage at the end opposite to said nipple, the tube being mechanically seated within the passage in electrical contact with the bared wire end. An electrically non-conductive sheath surrounds all of the exposed surface of the tube with the exception of a short section at the opposite end or tip. A branch passage extends through the wall of the body to communicate with the main passage at a location intermediate the ends of the main passage, the opposite end of the branch passage opening at the exterior of the body at a vent opening which can be fully or partially covered by the surgeons finger to regulate the degree of suction within the main flow passage. The vent opening is offset from the location at which the branch passage communicates with the main passage in an upstream direction with respect to the direction of flow of fluid through the main passage.
4 Claims, 3 Drawing Figures BACKGROUND OF THE INVENTION Coagulation of blood vessels during surgery by the application of a high frequency electrical current is a standard and widely used technique. In this technique,
the body of the patient is electrically connected to one side of an electrical circuit while an electrically conductive probe is connected to the other; When the probe is touched to or placed near the open blood vessel, a high frequency electrical current flows from the probe to cause coagulation at the point where the current jumps from the probe tip to the patient's body.
Because this technique is used forsealing off blood vessels, it follows that some quantity of blood will be encountered at the precise region at which the coagulation is to be performed and it is therefore often necessary that the excess blood be removed by a suction instrument.
The conventional suction instrument takes the form of a plastic body or fitting having a passage connected to a suction source. An elongate tube mounted on the body is inserted into the incision to suck out blood or other body fluids. The suction instrument is controlled by a simple vent opening in the body, the surgeon covering the vent opening with his finger when he wants to exert suction in the tube and uncovering the opening when suction at the tube end is not desired.
Because the shape of the tip of an electrocoagulator probe is not overly critical, attempts have previously been made to provide an instrument capable of performing the dual functions of electrocoagulation and suction by making the tube of the suction instrument of an electrically conductive material and electrically connecting this tube into the coagulating power circuit. This arrangement has proved to be totally unsatisfactory because of the fact that blood is electrically conductive and if the surgeon places his finger over the vent hole to induce suction while electrical current is flowing through the tube-probe, blood flowing into the vent opening will conduct current to the overlying finger, resulting in electrical shock or burn. Because of the high frequency currents employed, the thin material of the surgeons glove offers no effective resistance to the electric current.
SUMMARY OF THE INVENTION The present invention is especially designed to provide an instrument capable of simultaneous use both as an electrocoagulator and as a suction instrument. The instrument includes an elongate body formed of an inexpensive electrically non-conductive material. A main flow passage extends longitudinally through the body from end to end, a nipple at one end of the body being employed to couple that end of the body to a flexible tube connected to a suction source. A second'longitudinal passage extends through the body from end to end and receives the electric power cable of the coagulation circuit. The cable passes entirely through the second passage and its bared end is bent back into the forward end of the main flow passage. A hollow metal tube is inserted into the forward end of the main flow passage, the tube frictionally clamping itself in position and electrically contacting the exposed end of the electric power cable. An electrically non-conductive sheath encloses all of the exposed portion of the tube with the exception of a relatively short portion at the tube tip.
The suction source supplies suction to the main flow passage and to the interior of the tube. A vent opening for regulating the degree of suction in the tube is provided; however, unlike vent openings of conventional suction instruments, the vent opening does not communicate directly with the main flow passage. A branch passage having, in cross-section, a kidney shaped configuration extends from the vent opening through the body to communicate with the main flow passage at a location upstream of the vent opening with respect to the direction of flow of fluid through the main flow passage and, during use of the instrument, is disposed vertically above the main flow passage. Further, in contrast to conventional suction instruments whose vent opening is designed or shaped so as to be completely closed when touched by the surgeons finger, the vent opening of the present instrument is a relatively long and narrow slot which enables the surgeon to regulate the degree of suction by pushing his finger longitudinally along the slot from one end toward the other.
The fact that the vent opening is offset in an upstream direction from the location at which its branch passage communicates with the main flow passage means that in order for blood to reach the vent opening, the blood must flow in the direction opposite to that which it is urged by the suction. Further, the elongated vent opening enables the surgeon to apply an adequate amount of suction without completely closing the vent opening so that a flow of air through the branch passage in a direction from the vent opening toward the main passage can be present at all times to resist the flow of blood from the main passage to the vent opening. By preventing blood from reaching the vent opening, the possibility of electric shock or burn at the finger covering the vent opening is substantially eliminated.
Other objects and features of the invention will be come apparent by reference to the following specification and to the drawings.
IN THE DRAWINGS FIG. 1 is a perspective view of a combined electrocoagulator-suction instrument embodying the present invention;
FIG. 2 is a side elevational view of the instrument of FIG. 1 with certain parts broken away and shown in section; and
FIG-3 is a cross sectional view taken on line 3-3 of FIG. 2.
The instrument of the present invention includes an elongate body designated generally 10 which preferably is molded or otherwise formed from a relatively inexpensive electrically non-conductive material. As is usually the case with instruments of this type, the instrument is designed to be disposed of after a single usage and by molding the body from a relatively inexpensive thermoplastic material production costs well within a throw-away category are achieved. A projecting nipple 12 is integrally formed at the rearward end of body 10 and a main flow passage 14 extends through the nipple for the entire length of the body. Nipple 12 is employed to connect passage 14 to a flexible tube 16 whose opposite end is connected to a conventional suction source, not shown. As best seen in FIG. 2, the forward or left hand end 18 of main passage 14 is of reduced diameter and separated from a branch passage 20 which places main passage 14 in communication with an elongate vent opening 22 which opens at the exterior of body 10. The branch passage 20 is located vertically above the main flow passage 14 whereby, during use of the instrument, material contained within the body will flow into the left hand end 18 before it will flow into branch passage 20.
A second passage 24 extends through body 10 from end to end and is dimensioned to receive an electric power cable 26 which is connected to the electrical power supply employed inthe coagulation operation. Insulation is stripped from the end of cable 26 as at 28 and the bared end of the cable is bent back to extend rearwardly into the forward end of main passage section 18. A hollow metal tube 30 is inserted into the front end of main passage section 18, the tube being dimensioned to snugly fit into passage 18 with the exterior wall of the tube clamping the bared end 28 of power cable 26 between the tube wall and the wall of passage section 18 to mechanically seat tube 30 in body 10 and to establish electrical contact between tube 30 and the electric power source. Referring to FIG. 1, it is seen that the entire exposed portion of tube 30 is enclosed by a sheath of electrically non-conductive material 32 with the exception of a relatively short section at the extreme tip of the projecting tube 30.
It will be noted that vent opening 22 takes the form of what might be best described as a narrow elongate slot which is elongated longitudinally of body 10. When suction is supplied to tube 16, with vent opening 22 uncovered, the suction is substantially all vented through opening 22 and little, if any, suction is supplied to the interior of tube 30. When it is desired to suck blood or other body fluids into tube 30, the surgeon places his finger over the righthand or rearward end of opening 22 and slides his finger forward along the opening until the desired degree of suction is achieved. Referring to FIG. 2, it will be seen that fluid flowing through the instrument passes from left to right as viewed in FIG. 2 and that opening 22 is thus offset in an upstream direction from the location at which branch passage opens into main passage 14. Thus, in order for any blood to flow through branch passage 20 toward vent opening 22, the blood must flow in a direction opposite to the direction of flow induced by the suction applied at tube 16. Further, by leaving a portion of vent opening 22 uncovered, the surgeon can assure a flow of air through passage 20 from left to right as viewed in FIG. 2, thus further inhibiting the flow of blood in passage 20. Thus, suction can be applied at the same time current is flowing through tube 30 without risking electrical shock or burn to the portion of the finger exposed over opening 22.
An instrument constructed with the following dimensions has been found to be particularly suitable for use in accordance with the invention hereof:
Location of right end of branch passage 20 2%" from right end of body 10 (as viewed in FIG. 2)
kidney or quarter-moon shaped with rounded corners, the outer circular segment has a radius of Va", the thickness of the wall separating branch passage 20 Cross-sectional configuration of branch passage 20 Location of upstream end of vent opening 22 Diameter of passage section 18' While one embodiment of the invention has been described in detail, it will be apparent to those skilled in the art that the disclosed embodiment may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting, and the true scope of the invention is that defined in the following claims.
I claim:
1. A combined electrocoagulator-suction instrument comprising an elongate body of electrically nonconductive material having a main flow passage extending longitudinally therethrough, coupling means at one end of said body for connecting said main passage to a source of suction, receiving means at the other end of said passage receiving one end of an electrically conductive tube to place the interior of the tube in fluid communication with said main passage, electrical conductor means in contact with said electrically conductive tube in said receiving means, means defining a branch passage in said body opening into said main passage at a first location intermediate the ends of said main passage, and means defining a vent opening in the exterior of said body, said vent opening being disposed away from said first location in a direction toward said other end of said body, said branch passage communicating with said vent opening.
2. A combined electrocoagulator-suction instrument as defined in claim 1 in which said branch passage is, in cross section, kidney shaped.
3. A combined electrocoagulator-suction instrument comprising an elongate body of electrically nonconductive material having first and second passages extending longitudinally therethrough, coupling means at one end of said body for connecting said first passage to a suction source, electrical conductor means extending through said second passage from said one end of said body and having an exposed electrically conductive end projecting into the end of said first passage adjacent the other end of said body, an elongate tube of electrically conductive material seated in said first passage at said other end of said body in electrical contact with said conductor, means defining a vent opening at the exterior of said body adjacent said other end of said body, means defining a branch passage extending from said vent opening through said body to communicate with said first passage at a location between said vent opening and said one end of said body, said vent opening being adapted to be fully or partially covered by a finger of a person holding said body to regulate the degree of suction in said tube.
4. The invention defined in claim 3 wherein said vent opening is elongated longitudinally of said body.
Claims (4)
1. A combined electrocoagulator-suction instrument comprising an elongate body of electrically nonconductive material having a main flow passage extending longitudinally therethrough, coupling means at one end of said body for connecting said main passage to a source of suction, receiving means at the other end of said passage receiving one end of an electrically conductive tube to place the interior of the tube in fluid communication with said main passage, electrical conductor means in contact with said electrically conductive tube in said receiving means, means defining a branch passage in said body opening into said main passage at a first location intermediate the ends of said main passage, and means defining a vent opening in the exterior of said body, said vent opening being disposed away from said first location in a direction toward said other end of said body, said branch passage communicating with said vent opening.
2. A combined electrocoagulator-suction instrument as defined in claim 1 in which said branch passage is, in cross section, kidney shaped.
3. A combined electrocoagulator-suction instrument comprising an elongate body of electrically non-conductive material having first and second passages extending longitudinally therethrough, coupling means at one end of said body for connecting said first passage to a suction source, electrical conductor means extending through said second passage from said one end of said body and having an exposed electrically conductive end projecting into the end of said first passage adjacent the other end of said body, an elongate tube of electrically conductive material seated in said first passage at said other end of said body in electrical contact with said conductor, means defining a vent opening at the exterior of said body adjacent said other end of said body, means defining a branch passage extending from said vent opening through said body to communicate with said first passage at a location between said vent opening and said one end of said body, said vent opening being adapted to be fully or partially covered by a finger of a person holding said body to regulate the degree of suction in said tube.
4. The invention defined in claim 3 wherein said vent opening is elongated longitudinally of said body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00344872A US3828780A (en) | 1973-03-26 | 1973-03-26 | Combined electrocoagulator-suction instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00344872A US3828780A (en) | 1973-03-26 | 1973-03-26 | Combined electrocoagulator-suction instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
US3828780A true US3828780A (en) | 1974-08-13 |
Family
ID=23352421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00344872A Expired - Lifetime US3828780A (en) | 1973-03-26 | 1973-03-26 | Combined electrocoagulator-suction instrument |
Country Status (1)
Country | Link |
---|---|
US (1) | US3828780A (en) |
Cited By (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3902494A (en) * | 1973-05-15 | 1975-09-02 | Scheerer | Suction surgical instrument |
US3906955A (en) * | 1974-05-06 | 1975-09-23 | Richard R Roberts | Surgical cauterizing tool having suction means |
US3974833A (en) * | 1973-03-19 | 1976-08-17 | Durden Iii John G | Disposable electrosurgical cautery having optional suction control feature |
US3982541A (en) * | 1974-07-29 | 1976-09-28 | Esperance Jr Francis A L | Eye surgical instrument |
US4307720A (en) * | 1979-07-26 | 1981-12-29 | Weber Jr Jaroy | Electrocautery apparatus and method and means for cleaning the same |
US4347842A (en) * | 1980-02-15 | 1982-09-07 | Mark Beale | Disposable electrical surgical suction tube and instrument |
US4362166A (en) * | 1980-11-04 | 1982-12-07 | Mallinckrodt, Inc. | Disposable medical probe and connector |
WO1984003829A1 (en) * | 1983-03-28 | 1984-10-11 | Koezponti Valto Hitelbank | Surgical instrument especially for performing neurosurgical operations |
US4813926A (en) * | 1986-07-02 | 1989-03-21 | Sherwood Medical Company | Medical suction device with air vent and fixed restrictor |
US4815462A (en) * | 1987-04-06 | 1989-03-28 | Clark Vickie J | Lipectomy device |
US4872454A (en) * | 1985-10-15 | 1989-10-10 | Lucas DeOliveira | Fluid control electrosurgical device |
US4919129A (en) * | 1987-11-30 | 1990-04-24 | Celebration Medical Products, Inc. | Extendable electrocautery surgery apparatus and method |
US4932952A (en) * | 1988-12-20 | 1990-06-12 | Alto Development Corporation | Antishock, anticlog suction coagulator |
US4949734A (en) * | 1988-08-25 | 1990-08-21 | Gerald Bernstein | Shield for electrosurgical device |
US5052999A (en) * | 1990-01-29 | 1991-10-01 | Klein Jeffrey A | Liposuction method and apparatus |
US5055100A (en) * | 1989-06-19 | 1991-10-08 | Eugene Olsen | Suction attachment for electrosurgical instruments or the like |
EP0457220A1 (en) * | 1990-05-14 | 1991-11-21 | Colin Dr. Nates | Suction devices |
US5085657A (en) * | 1983-03-14 | 1992-02-04 | Ben Simhon Haim | Electrosurgical instrument |
DE4038633A1 (en) * | 1990-12-04 | 1992-06-11 | Storz Karl | Rinsing and suction medical instrument esp. for operations - has slide valve housing easily releasable from HF plug housing |
EP0518051A1 (en) * | 1991-06-14 | 1992-12-16 | Richard Wolf GmbH | Coagulation suction and irrigation device |
US5181916A (en) * | 1991-04-26 | 1993-01-26 | Sorenson Laboratories, Inc. | Surgical probe and smoke eliminator |
US5192267A (en) * | 1989-01-23 | 1993-03-09 | Nadiv Shapira | Vortex smoke remover for electrosurgical devices |
US5195959A (en) * | 1991-05-31 | 1993-03-23 | Paul C. Smith | Electrosurgical device with suction and irrigation |
US5201730A (en) * | 1989-10-24 | 1993-04-13 | Surgical Technologies, Inc. | Tissue manipulator for use in vitreous surgery combining a fiber optic endoilluminator with an infusion/aspiration system |
US5224944A (en) * | 1991-01-07 | 1993-07-06 | Elliott Martin P | Aspiration tip for a cautery handpiece |
US5234428A (en) * | 1991-06-11 | 1993-08-10 | Kaufman David I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
US5246440A (en) * | 1990-09-13 | 1993-09-21 | Noord Andrew J Van | Electrosurgical knife |
US5256138A (en) * | 1990-10-04 | 1993-10-26 | The Birtcher Corporation | Electrosurgical handpiece incorporating blade and conductive gas functionality |
US5273524A (en) * | 1991-10-09 | 1993-12-28 | Ethicon, Inc. | Electrosurgical device |
US5314406A (en) * | 1992-10-09 | 1994-05-24 | Symbiosis Corporation | Endoscopic electrosurgical suction-irrigation instrument |
US5322503A (en) * | 1991-10-18 | 1994-06-21 | Desai Ashvin H | Endoscopic surgical instrument |
US5364395A (en) * | 1993-05-14 | 1994-11-15 | West Jr Hugh S | Arthroscopic surgical instrument with cauterizing capability |
US5366490A (en) * | 1992-08-12 | 1994-11-22 | Vidamed, Inc. | Medical probe device and method |
US5368560A (en) * | 1993-03-29 | 1994-11-29 | Medical Development Systems, Inc. | Suction nozzle |
US5385544A (en) * | 1992-08-12 | 1995-01-31 | Vidamed, Inc. | BPH ablation method and apparatus |
US5409453A (en) * | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5421819A (en) * | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
US5435805A (en) * | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US5441503A (en) * | 1988-09-24 | 1995-08-15 | Considine; John | Apparatus for removing tumors from hollow organs of the body |
US5449356A (en) * | 1991-10-18 | 1995-09-12 | Birtcher Medical Systems, Inc. | Multifunctional probe for minimally invasive surgery |
US5451222A (en) * | 1994-03-16 | 1995-09-19 | Desentech, Inc. | Smoke evacuation system |
US5456662A (en) * | 1993-02-02 | 1995-10-10 | Edwards; Stuart D. | Method for reducing snoring by RF ablation of the uvula |
US5470308A (en) * | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5514131A (en) * | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5520685A (en) * | 1994-08-04 | 1996-05-28 | Alto Development Corporation | Thermally-insulated anti-clog tip for electrocautery suction tubes |
US5542915A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
US5554112A (en) * | 1992-10-09 | 1996-09-10 | Birtcher Medical Systems, Inc. | Minimally invasive irrigator/aspirator surgical probe and method of using same |
US5556377A (en) * | 1992-08-12 | 1996-09-17 | Vidamed, Inc. | Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe |
US5599295A (en) * | 1992-08-12 | 1997-02-04 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
EP0763366A1 (en) * | 1995-09-15 | 1997-03-19 | Megadyne Medical Products, Inc. | Suction coagulator bending tool |
US5626560A (en) * | 1993-04-13 | 1997-05-06 | Soring Medizintechnik Gmbh | Diathermic hand-held instrument with an endoscopic probe |
US5630794A (en) * | 1992-08-12 | 1997-05-20 | Vidamed, Inc. | Catheter tip and method of manufacturing |
DE19701328A1 (en) * | 1996-01-23 | 1997-07-24 | Valleylab Inc | Rinsing device for surgical use |
US5672153A (en) * | 1992-08-12 | 1997-09-30 | Vidamed, Inc. | Medical probe device and method |
US5720719A (en) * | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Ablative catheter with conformable body |
US5730742A (en) * | 1994-08-04 | 1998-03-24 | Alto Development Corporation | Inclined, flared, thermally-insulated, anti-clog tip for electrocautery suction tubes |
US5788917A (en) * | 1997-05-27 | 1998-08-04 | General Motors Corporation | Method of making a plastic article |
US5861002A (en) * | 1991-10-18 | 1999-01-19 | Desai; Ashvin H. | Endoscopic surgical instrument |
ES2128232A1 (en) * | 1996-03-13 | 1999-05-01 | Fernandez Manuel Sevillano | Brain separator with incorporated aspiration |
US5904681A (en) * | 1997-02-10 | 1999-05-18 | Hugh S. West, Jr. | Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy |
US5951548A (en) * | 1997-02-21 | 1999-09-14 | Stephen R. DeSisto | Self-evacuating electrocautery device |
US5976129A (en) * | 1991-10-18 | 1999-11-02 | Desai; Ashvin H. | Endoscopic surgical instrument |
US5989249A (en) * | 1996-04-29 | 1999-11-23 | Kirwan Surgical Products, Inc. | Bipolar suction coagulator |
US6102885A (en) * | 1996-08-08 | 2000-08-15 | Bass; Lawrence S. | Device for suction-assisted lipectomy and method of using same |
US6117134A (en) * | 1996-02-14 | 2000-09-12 | Cunningham; James Steven | Instrument for suction electrosurgery |
US6146380A (en) * | 1998-01-09 | 2000-11-14 | Radionics, Inc. | Bent tip electrical surgical probe |
US6146353A (en) * | 1998-09-22 | 2000-11-14 | Sherwood Services Ag | Smoke extraction device |
US6149646A (en) * | 1999-02-02 | 2000-11-21 | Linvatec Corporation | Monopolar tissue ablator |
US6231591B1 (en) | 1991-10-18 | 2001-05-15 | 2000 Injectx, Inc. | Method of localized fluid therapy |
US20010001314A1 (en) * | 1997-06-13 | 2001-05-17 | Arthrocare Corporation | Electrosurgical systems and methods for recanalization of occluded body lumens |
US20010032001A1 (en) * | 1995-06-07 | 2001-10-18 | Olivier Ricart | Systems and methods for electrosurgical treatment of spinal tissue |
US6312426B1 (en) | 1997-05-30 | 2001-11-06 | Sherwood Services Ag | Method and system for performing plate type radiofrequency ablation |
US20020026186A1 (en) * | 1995-06-07 | 2002-02-28 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
US6358273B1 (en) | 1999-04-09 | 2002-03-19 | Oratec Inventions, Inc. | Soft tissue heating apparatus with independent, cooperative heating sources |
US6379350B1 (en) | 1999-10-05 | 2002-04-30 | Oratec Interventions, Inc. | Surgical instrument for ablation and aspiration |
US6391028B1 (en) | 1997-02-12 | 2002-05-21 | Oratec Interventions, Inc. | Probe with distally orientated concave curve for arthroscopic surgery |
US20020095151A1 (en) * | 1995-11-22 | 2002-07-18 | Arthrocare Corporation | Electrosurgical apparatus and methods for treatment and removal of tissue |
US20020095152A1 (en) * | 1995-06-07 | 2002-07-18 | Arthrocare Corporation | Electrosurgical apparatus and methods for cutting tissue |
US20020133149A1 (en) * | 2001-03-17 | 2002-09-19 | Arthrocare Corporation | Electrosurgical systems and methods for hair transplantation and epilation |
US6458127B1 (en) * | 1999-11-22 | 2002-10-01 | Csaba Truckai | Polymer embolic elements with metallic coatings for occlusion of vascular malformations |
US6461357B1 (en) | 1997-02-12 | 2002-10-08 | Oratec Interventions, Inc. | Electrode for electrosurgical ablation of tissue |
US20030009164A1 (en) * | 1995-06-07 | 2003-01-09 | Arthrocare Corporation | Articulated electrosurgical probe |
US20030014051A1 (en) * | 2001-06-18 | 2003-01-16 | Arthrocare Corporation | Electrosurgical apparatus having compound return electrode |
US20030014047A1 (en) * | 1995-06-07 | 2003-01-16 | Jean Woloszko | Apparatus and methods for treating cervical inter-vertebral discs |
US20030028189A1 (en) * | 1998-08-11 | 2003-02-06 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US6524307B1 (en) | 2001-10-05 | 2003-02-25 | Medtek Devices, Inc. | Smoke evacuation apparatus |
US20030040742A1 (en) * | 1998-02-20 | 2003-02-27 | Arthrocare Corporation | Systems and methods for electrosurgical spine surgery |
US20030055418A1 (en) * | 1998-06-02 | 2003-03-20 | Arthrocare Corporation | Systems and methods for electrosurgical tendon vascularization |
US6544260B1 (en) | 1996-08-20 | 2003-04-08 | Oratec Interventions, Inc. | Method for treating tissue in arthroscopic environment using precooling and apparatus for same |
US20030073908A1 (en) * | 1996-04-26 | 2003-04-17 | 2000 Injectx, Inc. | Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells |
US20030084907A1 (en) * | 1993-05-10 | 2003-05-08 | Arthrocare Corporation | Systems and methods for electrosurgical dissection and harvesting of tissue |
US6564107B1 (en) * | 2000-08-21 | 2003-05-13 | Cardiac Pacemakers, Inc. | Coil-less lead system |
US20030097126A1 (en) * | 1993-05-10 | 2003-05-22 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
US20030097129A1 (en) * | 1998-01-21 | 2003-05-22 | Arthrocare Corporation | Apparatus and methods for electrosurgical removal and digestion of tissue |
US20030120269A1 (en) * | 2001-11-08 | 2003-06-26 | Arthrocare Corporation | Methods and apparatus for skin treatment |
US20030130738A1 (en) * | 2001-11-08 | 2003-07-10 | Arthrocare Corporation | System and method for repairing a damaged intervertebral disc |
US6595990B1 (en) | 1992-01-07 | 2003-07-22 | Arthrocare Corporation | Systems and methods for electrosurgical tissue revascularization |
US20030139789A1 (en) * | 2001-11-08 | 2003-07-24 | Arthrocare Corporation | Systems and methods for electrosurigical treatment of obstructive sleep disorders |
US20030158545A1 (en) * | 2000-09-28 | 2003-08-21 | Arthrocare Corporation | Methods and apparatus for treating back pain |
US6610059B1 (en) | 2002-02-25 | 2003-08-26 | Hs West Investments Llc | Endoscopic instruments and methods for improved bubble aspiration at a surgical site |
US20030163178A1 (en) * | 1997-10-02 | 2003-08-28 | Arthrocare Corporation | Systems and methods for electrosurgical tissue contraction |
US6623454B1 (en) | 1992-01-07 | 2003-09-23 | Arthrocare Corp. | System and method for electrosurgical tissue contraction |
US6632220B1 (en) | 1992-01-07 | 2003-10-14 | Arthrocare Corp. | Systems for electrosurgical tissue treatment in conductive fluid |
US6632193B1 (en) | 1995-06-07 | 2003-10-14 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US20030208192A1 (en) * | 2000-11-24 | 2003-11-06 | Csaba Truckai | Polymer matrix devices for treatment of vascular malformations |
US20030208196A1 (en) * | 2002-05-03 | 2003-11-06 | Arthrocare Corporation | Control system for limited-use device |
US6645203B2 (en) | 1997-02-12 | 2003-11-11 | Oratec Interventions, Inc. | Surgical instrument with off-axis electrode |
US20030212396A1 (en) * | 1995-11-22 | 2003-11-13 | Arthrocare Corporation | Systems and methods for electrosurgical incisions on external skin surfaces |
US20030216725A1 (en) * | 1993-05-10 | 2003-11-20 | Arthrocare Corporation | Electrosurgical apparatus and methods for laparoscopy |
US20030216726A1 (en) * | 1995-06-07 | 2003-11-20 | Arthrocare Corporation | Systems for epidermal tissue ablation |
US20030225403A1 (en) * | 2000-06-09 | 2003-12-04 | Arthrocare Corporation | Electrosurgical apparatus and methods for treating joint tissue |
US6659106B1 (en) | 1995-06-07 | 2003-12-09 | Arthrocare Corporation | System and methods for electrosurgical treatment of turbinates |
US20040002647A1 (en) * | 1991-10-18 | 2004-01-01 | Ashvin Desai | Gel injection treatment of body parts |
US20040006339A1 (en) * | 1995-06-07 | 2004-01-08 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from the base of tongue |
US20040015216A1 (en) * | 2002-05-30 | 2004-01-22 | Desisto Stephen R. | Self-evacuating electrocautery device |
US20040024398A1 (en) * | 1996-07-16 | 2004-02-05 | Arthrocare Corporation | Systems and methods for electrosurgical intervertebral disc replacement |
US6695839B2 (en) | 2001-02-08 | 2004-02-24 | Oratec Interventions, Inc. | Method and apparatus for treatment of disrupted articular cartilage |
US20040054366A1 (en) * | 1998-08-11 | 2004-03-18 | Arthrocare Corporation | Instrument for electrosurgical tissue treatment |
US20040078037A1 (en) * | 2001-05-10 | 2004-04-22 | Gyrus Medical Limited | Surgical instrument |
US6726684B1 (en) | 1996-07-16 | 2004-04-27 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US20040082951A1 (en) * | 2002-09-10 | 2004-04-29 | O'halloran Laurence R. | Beveled tonsil suction cautery dissector |
US6730081B1 (en) | 1991-10-18 | 2004-05-04 | Ashvin H. Desai | Endoscopic surgical instrument |
US20040087939A1 (en) * | 1993-05-10 | 2004-05-06 | Arthrocare Corporation | Methods for electrosurgical tissue treatment between spaced apart electrodes |
US6747218B2 (en) | 2002-09-20 | 2004-06-08 | Sherwood Services Ag | Electrosurgical haptic switch including snap dome and printed circuit stepped contact array |
US6757565B2 (en) | 2002-02-08 | 2004-06-29 | Oratec Interventions, Inc. | Electrosurgical instrument having a predetermined heat profile |
US6770071B2 (en) | 1995-06-07 | 2004-08-03 | Arthrocare Corporation | Bladed electrosurgical probe |
US20040153055A1 (en) * | 2000-12-15 | 2004-08-05 | Tyco Healthcare Group Lp | Electrosurgical electrode shroud |
US6805130B2 (en) | 1995-11-22 | 2004-10-19 | Arthrocare Corporation | Methods for electrosurgical tendon vascularization |
US20040247849A1 (en) * | 2003-06-05 | 2004-12-09 | Csaba Truckai | Polymer composites for biomedical applications and methods of making |
US20050004634A1 (en) * | 1995-06-07 | 2005-01-06 | Arthrocare Corporation | Methods for electrosurgical treatment of spinal tissue |
US20050043709A1 (en) * | 2002-10-10 | 2005-02-24 | Brimhall Greg L. | System and method of delivering local anesthesia |
US20050043710A1 (en) * | 2002-05-28 | 2005-02-24 | Macosta Medical U.S.A., L.L.C. | Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia |
US6896674B1 (en) | 1993-05-10 | 2005-05-24 | Arthrocare Corporation | Electrosurgical apparatus having digestion electrode and methods related thereto |
US6939346B2 (en) | 1999-04-21 | 2005-09-06 | Oratec Interventions, Inc. | Method and apparatus for controlling a temperature-controlled probe |
US20050240206A1 (en) * | 2004-04-21 | 2005-10-27 | Sjostrom Douglas D | Surgical instrument aspiration valve |
US20050255039A1 (en) * | 1998-06-26 | 2005-11-17 | Pro Surg, Inc., A California Corporation | Gel injection treatment of breast, fibroids & endometrial ablation |
US20050277915A1 (en) * | 2004-06-10 | 2005-12-15 | Decesare Michael | Electrosurgical ablator with integrated aspirator lumen and method of making same |
US20050277916A1 (en) * | 2004-06-10 | 2005-12-15 | Decesare Michael | Electrosurgical device with adhesive-free insulating piece and method of making same |
US20050288662A1 (en) * | 2004-06-23 | 2005-12-29 | Uchida Andy H | Electrosurgical generator |
US6997941B2 (en) | 1996-08-13 | 2006-02-14 | Oratec Interventions, Inc. | Method and apparatus for treating annular fissures in intervertebral discs |
US20060041257A1 (en) * | 2003-11-20 | 2006-02-23 | Sartor Joe D | Electrosurgical pencil with improved controls |
US7070596B1 (en) | 2000-08-09 | 2006-07-04 | Arthrocare Corporation | Electrosurgical apparatus having a curved distal section |
US7131969B1 (en) | 1995-06-07 | 2006-11-07 | Arthrocare Corp | Systems and methods for electrosurgical treatment of obstructive sleep disorders |
US20060265149A1 (en) * | 2005-04-04 | 2006-11-23 | Palmerton Christopher A | Fluid evacuation system with two-way communication filter |
US20060293655A1 (en) * | 2005-06-28 | 2006-12-28 | Sherwood Services Ag | Electrode with rotatably deployable sheath |
US7156844B2 (en) | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US7156842B2 (en) | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US20070000501A1 (en) * | 2005-07-01 | 2007-01-04 | Wert Lindsay T | Surgical procedure supplemental accessory controller and method utilizing turn-on and turn-off time delays |
US7179255B2 (en) | 1995-06-07 | 2007-02-20 | Arthrocare Corporation | Methods for targeted electrosurgery on contained herniated discs |
US7235072B2 (en) | 2003-02-20 | 2007-06-26 | Sherwood Services Ag | Motion detector for controlling electrosurgical output |
US7241294B2 (en) | 2003-11-19 | 2007-07-10 | Sherwood Services Ag | Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same |
US7244257B2 (en) | 2002-11-05 | 2007-07-17 | Sherwood Services Ag | Electrosurgical pencil having a single button variable control |
US7297145B2 (en) | 1997-10-23 | 2007-11-20 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
US7297143B2 (en) | 2003-02-05 | 2007-11-20 | Arthrocare Corporation | Temperature indicating electrosurgical apparatus and methods |
US7318823B2 (en) | 1995-04-13 | 2008-01-15 | Arthrocare Corporation | Methods for repairing damaged intervertebral discs |
US20080086121A1 (en) * | 2006-10-06 | 2008-04-10 | Sensenbrenner Alexander G | Surgical instrument for coagulation and suction |
US7357798B2 (en) | 1996-07-16 | 2008-04-15 | Arthrocare Corporation | Systems and methods for electrosurgical prevention of disc herniations |
US7387625B2 (en) | 1995-06-07 | 2008-06-17 | Arthrocare Corporation | Methods and apparatus for treating intervertebral discs |
US7393354B2 (en) | 2002-07-25 | 2008-07-01 | Sherwood Services Ag | Electrosurgical pencil with drag sensing capability |
US7422585B1 (en) | 1992-01-07 | 2008-09-09 | Arthrocare Corporation | System for electrosurgical myocardial revascularization |
US7429262B2 (en) | 1992-01-07 | 2008-09-30 | Arthrocare Corporation | Apparatus and methods for electrosurgical ablation and resection of target tissue |
US7491200B2 (en) | 2004-03-26 | 2009-02-17 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from base of tongue |
US7505812B1 (en) | 1993-05-10 | 2009-03-17 | Arthrocare Corporation | Electrosurgical system for treating restenosis of body lumens |
US7549424B2 (en) | 1991-10-18 | 2009-06-23 | Pro Surg, Inc. | Method and apparatus for tissue treatment with laser and electromagnetic radiation |
US7572251B1 (en) | 1995-06-07 | 2009-08-11 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US20090248010A1 (en) * | 2008-03-31 | 2009-10-01 | Monte Fry | Electrosurgical Pencil Including Improved Controls |
US7632267B2 (en) | 2005-07-06 | 2009-12-15 | Arthrocare Corporation | Fuse-electrode electrosurgical apparatus |
US20100023008A1 (en) * | 2008-07-24 | 2010-01-28 | Heard David N | Suction Coagulator |
US7655003B2 (en) | 2005-06-22 | 2010-02-02 | Smith & Nephew, Inc. | Electrosurgical power control |
US7678069B1 (en) | 1995-11-22 | 2010-03-16 | Arthrocare Corporation | System for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US7691101B2 (en) | 2006-01-06 | 2010-04-06 | Arthrocare Corporation | Electrosurgical method and system for treating foot ulcer |
US7704249B2 (en) | 2004-05-07 | 2010-04-27 | Arthrocare Corporation | Apparatus and methods for electrosurgical ablation and resection of target tissue |
US7708733B2 (en) | 2003-10-20 | 2010-05-04 | Arthrocare Corporation | Electrosurgical method and apparatus for removing tissue within a bone body |
US7758537B1 (en) | 1995-11-22 | 2010-07-20 | Arthrocare Corporation | Systems and methods for electrosurgical removal of the stratum corneum |
US7794456B2 (en) | 2003-05-13 | 2010-09-14 | Arthrocare Corporation | Systems and methods for electrosurgical intervertebral disc replacement |
US7828794B2 (en) | 2005-08-25 | 2010-11-09 | Covidien Ag | Handheld electrosurgical apparatus for controlling operating room equipment |
US20100314796A1 (en) * | 2006-08-03 | 2010-12-16 | Becton, Dickinson And Company | Syringe and Removable Needle Assembly Having Binary Attachment Features |
US7862560B2 (en) | 2007-03-23 | 2011-01-04 | Arthrocare Corporation | Ablation apparatus having reduced nerve stimulation and related methods |
US20110022048A1 (en) * | 2008-01-31 | 2011-01-27 | Uwe Bacher | Bipolar coagulation instrument |
US7879034B2 (en) | 2006-03-02 | 2011-02-01 | Arthrocare Corporation | Internally located return electrode electrosurgical apparatus, system and method |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7892230B2 (en) | 2004-06-24 | 2011-02-22 | Arthrocare Corporation | Electrosurgical device having planar vertical electrode and related methods |
US8012153B2 (en) | 2003-07-16 | 2011-09-06 | Arthrocare Corporation | Rotary electrosurgical apparatus and methods thereof |
US8114071B2 (en) | 2006-05-30 | 2012-02-14 | Arthrocare Corporation | Hard tissue ablation system |
US8162937B2 (en) | 2008-06-27 | 2012-04-24 | Tyco Healthcare Group Lp | High volume fluid seal for electrosurgical handpiece |
USD658760S1 (en) | 2010-10-15 | 2012-05-01 | Arthrocare Corporation | Wound care electrosurgical wand |
US8192424B2 (en) | 2007-01-05 | 2012-06-05 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US8231620B2 (en) | 2009-02-10 | 2012-07-31 | Tyco Healthcare Group Lp | Extension cutting blade |
US8235987B2 (en) | 2007-12-05 | 2012-08-07 | Tyco Healthcare Group Lp | Thermal penetration and arc length controllable electrosurgical pencil |
US8257350B2 (en) | 2009-06-17 | 2012-09-04 | Arthrocare Corporation | Method and system of an electrosurgical controller with wave-shaping |
US8317786B2 (en) | 2009-09-25 | 2012-11-27 | AthroCare Corporation | System, method and apparatus for electrosurgical instrument with movable suction sheath |
US8323279B2 (en) | 2009-09-25 | 2012-12-04 | Arthocare Corporation | System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath |
US8353907B2 (en) | 2007-12-21 | 2013-01-15 | Atricure, Inc. | Ablation device with internally cooled electrodes |
US8355799B2 (en) | 2008-12-12 | 2013-01-15 | Arthrocare Corporation | Systems and methods for limiting joint temperature |
US8372067B2 (en) | 2009-12-09 | 2013-02-12 | Arthrocare Corporation | Electrosurgery irrigation primer systems and methods |
US8506565B2 (en) | 2007-08-23 | 2013-08-13 | Covidien Lp | Electrosurgical device with LED adapter |
US8568405B2 (en) | 2010-10-15 | 2013-10-29 | Arthrocare Corporation | Electrosurgical wand and related method and system |
US8574187B2 (en) | 2009-03-09 | 2013-11-05 | Arthrocare Corporation | System and method of an electrosurgical controller with output RF energy control |
US8597292B2 (en) | 2008-03-31 | 2013-12-03 | Covidien Lp | Electrosurgical pencil including improved controls |
US8636733B2 (en) | 2008-03-31 | 2014-01-28 | Covidien Lp | Electrosurgical pencil including improved controls |
US8668688B2 (en) | 2006-05-05 | 2014-03-11 | Covidien Ag | Soft tissue RF transection and resection device |
US8685018B2 (en) | 2010-10-15 | 2014-04-01 | Arthrocare Corporation | Electrosurgical wand and related method and system |
US8696659B2 (en) | 2010-04-30 | 2014-04-15 | Arthrocare Corporation | Electrosurgical system and method having enhanced temperature measurement |
US8747401B2 (en) | 2011-01-20 | 2014-06-10 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US8747111B2 (en) | 2010-04-30 | 2014-06-10 | 3M Innovative Properties Company | Suction handle, suction handle assembly, and oral care systems comprising same |
US8747400B2 (en) | 2008-08-13 | 2014-06-10 | Arthrocare Corporation | Systems and methods for screen electrode securement |
US8747399B2 (en) | 2010-04-06 | 2014-06-10 | Arthrocare Corporation | Method and system of reduction of low frequency muscle stimulation during electrosurgical procedures |
US20140228839A1 (en) * | 2005-12-02 | 2014-08-14 | Ioan Cosmescu | Swivel device for improved surgical smoke evacuation |
US8876746B2 (en) | 2006-01-06 | 2014-11-04 | Arthrocare Corporation | Electrosurgical system and method for treating chronic wound tissue |
US8979838B2 (en) | 2010-05-24 | 2015-03-17 | Arthrocare Corporation | Symmetric switching electrode method and related system |
US20150080890A1 (en) * | 2013-09-13 | 2015-03-19 | Gyrus Medical Limited | Electrode assembly |
US8998892B2 (en) | 2007-12-21 | 2015-04-07 | Atricure, Inc. | Ablation device with cooled electrodes and methods of use |
US9011428B2 (en) | 2011-03-02 | 2015-04-21 | Arthrocare Corporation | Electrosurgical device with internal digestor electrode |
US9101363B2 (en) | 2012-08-10 | 2015-08-11 | William J. Zinnanti | Cautery electrode with multi-channel insulated shaft |
US9131597B2 (en) | 2011-02-02 | 2015-09-08 | Arthrocare Corporation | Electrosurgical system and method for treating hard body tissue |
US9168082B2 (en) | 2011-02-09 | 2015-10-27 | Arthrocare Corporation | Fine dissection electrosurgical device |
US9254166B2 (en) | 2013-01-17 | 2016-02-09 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9271784B2 (en) | 2011-02-09 | 2016-03-01 | Arthrocare Corporation | Fine dissection electrosurgical device |
WO2016053635A2 (en) | 2014-09-17 | 2016-04-07 | Zinnanti William J | Electrosurgery probes with smoke and liquid evacuation |
US9358063B2 (en) | 2008-02-14 | 2016-06-07 | Arthrocare Corporation | Ablation performance indicator for electrosurgical devices |
US9526556B2 (en) | 2014-02-28 | 2016-12-27 | Arthrocare Corporation | Systems and methods systems related to electrosurgical wands with screen electrodes |
US9693818B2 (en) | 2013-03-07 | 2017-07-04 | Arthrocare Corporation | Methods and systems related to electrosurgical wands |
US9713489B2 (en) | 2013-03-07 | 2017-07-25 | Arthrocare Corporation | Electrosurgical methods and systems |
US9788882B2 (en) | 2011-09-08 | 2017-10-17 | Arthrocare Corporation | Plasma bipolar forceps |
US9801678B2 (en) | 2013-03-13 | 2017-10-31 | Arthrocare Corporation | Method and system of controlling conductive fluid flow during an electrosurgical procedure |
US9827140B2 (en) | 2013-07-17 | 2017-11-28 | William Thomas McClellan | Percutaneous blepharoplasty device and method |
WO2017211601A1 (en) * | 2016-06-06 | 2017-12-14 | Pajunk GmbH Medizintechnologie | Monopolar cannula |
US9962150B2 (en) | 2013-12-20 | 2018-05-08 | Arthrocare Corporation | Knotless all suture tissue repair |
US10299855B2 (en) | 2009-06-16 | 2019-05-28 | Karl Storz Se & Co. Kg | Medical coagulation instrument |
US10420607B2 (en) | 2014-02-14 | 2019-09-24 | Arthrocare Corporation | Methods and systems related to an electrosurgical controller |
US10448992B2 (en) | 2010-10-22 | 2019-10-22 | Arthrocare Corporation | Electrosurgical system with device specific operational parameters |
US10716587B2 (en) | 2014-06-13 | 2020-07-21 | Surgis Medical Llc | Surgical device with light |
US11191885B2 (en) * | 2018-12-06 | 2021-12-07 | Joshua C. Arnone | Flow control system |
US11564732B2 (en) | 2019-12-05 | 2023-01-31 | Covidien Lp | Tensioning mechanism for bipolar pencil |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2888928A (en) * | 1957-04-15 | 1959-06-02 | Seiger Harry Wright | Coagulating surgical instrument |
US3595234A (en) * | 1969-02-19 | 1971-07-27 | Sheridan David S | Vacuum control for medicosurgical suction tube |
US3610242A (en) * | 1969-02-28 | 1971-10-05 | David S Sheridan | Medico-surgical suction systems |
-
1973
- 1973-03-26 US US00344872A patent/US3828780A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2888928A (en) * | 1957-04-15 | 1959-06-02 | Seiger Harry Wright | Coagulating surgical instrument |
US3595234A (en) * | 1969-02-19 | 1971-07-27 | Sheridan David S | Vacuum control for medicosurgical suction tube |
US3610242A (en) * | 1969-02-28 | 1971-10-05 | David S Sheridan | Medico-surgical suction systems |
Cited By (382)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974833A (en) * | 1973-03-19 | 1976-08-17 | Durden Iii John G | Disposable electrosurgical cautery having optional suction control feature |
US3902494A (en) * | 1973-05-15 | 1975-09-02 | Scheerer | Suction surgical instrument |
US3906955A (en) * | 1974-05-06 | 1975-09-23 | Richard R Roberts | Surgical cauterizing tool having suction means |
US3982541A (en) * | 1974-07-29 | 1976-09-28 | Esperance Jr Francis A L | Eye surgical instrument |
US4307720A (en) * | 1979-07-26 | 1981-12-29 | Weber Jr Jaroy | Electrocautery apparatus and method and means for cleaning the same |
US4347842A (en) * | 1980-02-15 | 1982-09-07 | Mark Beale | Disposable electrical surgical suction tube and instrument |
US4362166A (en) * | 1980-11-04 | 1982-12-07 | Mallinckrodt, Inc. | Disposable medical probe and connector |
US5085657A (en) * | 1983-03-14 | 1992-02-04 | Ben Simhon Haim | Electrosurgical instrument |
GB2146536A (en) * | 1983-03-28 | 1985-04-24 | Koezponti Valto Hitelbank | Surgical instrument especially for performing neurosurgical operations |
US4686981A (en) * | 1983-03-28 | 1987-08-18 | Laszlo Forintos | Surgical instrument especially for performing neurosurgical operations |
WO1984003829A1 (en) * | 1983-03-28 | 1984-10-11 | Koezponti Valto Hitelbank | Surgical instrument especially for performing neurosurgical operations |
US4872454A (en) * | 1985-10-15 | 1989-10-10 | Lucas DeOliveira | Fluid control electrosurgical device |
US4813926A (en) * | 1986-07-02 | 1989-03-21 | Sherwood Medical Company | Medical suction device with air vent and fixed restrictor |
US4815462A (en) * | 1987-04-06 | 1989-03-28 | Clark Vickie J | Lipectomy device |
US4919129A (en) * | 1987-11-30 | 1990-04-24 | Celebration Medical Products, Inc. | Extendable electrocautery surgery apparatus and method |
US4949734A (en) * | 1988-08-25 | 1990-08-21 | Gerald Bernstein | Shield for electrosurgical device |
US5718709A (en) * | 1988-09-24 | 1998-02-17 | Considine; John | Apparatus for removing tumours from hollow organs of the body |
US5441503A (en) * | 1988-09-24 | 1995-08-15 | Considine; John | Apparatus for removing tumors from hollow organs of the body |
US4932952A (en) * | 1988-12-20 | 1990-06-12 | Alto Development Corporation | Antishock, anticlog suction coagulator |
US5192267A (en) * | 1989-01-23 | 1993-03-09 | Nadiv Shapira | Vortex smoke remover for electrosurgical devices |
US5055100A (en) * | 1989-06-19 | 1991-10-08 | Eugene Olsen | Suction attachment for electrosurgical instruments or the like |
US5201730A (en) * | 1989-10-24 | 1993-04-13 | Surgical Technologies, Inc. | Tissue manipulator for use in vitreous surgery combining a fiber optic endoilluminator with an infusion/aspiration system |
US5052999A (en) * | 1990-01-29 | 1991-10-01 | Klein Jeffrey A | Liposuction method and apparatus |
EP0457220A1 (en) * | 1990-05-14 | 1991-11-21 | Colin Dr. Nates | Suction devices |
US5123840A (en) * | 1990-05-14 | 1992-06-23 | Colin Nates | Surgical apparatus |
AU646666B2 (en) * | 1990-05-14 | 1994-03-03 | Colin Nates | Surgical apparatus |
US5246440A (en) * | 1990-09-13 | 1993-09-21 | Noord Andrew J Van | Electrosurgical knife |
US5256138A (en) * | 1990-10-04 | 1993-10-26 | The Birtcher Corporation | Electrosurgical handpiece incorporating blade and conductive gas functionality |
DE4038633A1 (en) * | 1990-12-04 | 1992-06-11 | Storz Karl | Rinsing and suction medical instrument esp. for operations - has slide valve housing easily releasable from HF plug housing |
DE4038633C2 (en) * | 1990-12-04 | 2003-06-26 | Storz Karl Gmbh & Co Kg | Device for rinsing and suctioning of operating areas |
US5224944A (en) * | 1991-01-07 | 1993-07-06 | Elliott Martin P | Aspiration tip for a cautery handpiece |
US5181916A (en) * | 1991-04-26 | 1993-01-26 | Sorenson Laboratories, Inc. | Surgical probe and smoke eliminator |
US5195959A (en) * | 1991-05-31 | 1993-03-23 | Paul C. Smith | Electrosurgical device with suction and irrigation |
US5234428A (en) * | 1991-06-11 | 1993-08-10 | Kaufman David I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
EP0518051A1 (en) * | 1991-06-14 | 1992-12-16 | Richard Wolf GmbH | Coagulation suction and irrigation device |
US5273524A (en) * | 1991-10-09 | 1993-12-28 | Ethicon, Inc. | Electrosurgical device |
US5976129A (en) * | 1991-10-18 | 1999-11-02 | Desai; Ashvin H. | Endoscopic surgical instrument |
US5449356A (en) * | 1991-10-18 | 1995-09-12 | Birtcher Medical Systems, Inc. | Multifunctional probe for minimally invasive surgery |
US6730081B1 (en) | 1991-10-18 | 2004-05-04 | Ashvin H. Desai | Endoscopic surgical instrument |
US5861002A (en) * | 1991-10-18 | 1999-01-19 | Desai; Ashvin H. | Endoscopic surgical instrument |
US20040002647A1 (en) * | 1991-10-18 | 2004-01-01 | Ashvin Desai | Gel injection treatment of body parts |
US7549424B2 (en) | 1991-10-18 | 2009-06-23 | Pro Surg, Inc. | Method and apparatus for tissue treatment with laser and electromagnetic radiation |
US6231591B1 (en) | 1991-10-18 | 2001-05-15 | 2000 Injectx, Inc. | Method of localized fluid therapy |
US5322503A (en) * | 1991-10-18 | 1994-06-21 | Desai Ashvin H | Endoscopic surgical instrument |
US6623454B1 (en) | 1992-01-07 | 2003-09-23 | Arthrocare Corp. | System and method for electrosurgical tissue contraction |
US6632220B1 (en) | 1992-01-07 | 2003-10-14 | Arthrocare Corp. | Systems for electrosurgical tissue treatment in conductive fluid |
US7468059B2 (en) | 1992-01-07 | 2008-12-23 | Arthrocare Corporation | System and method for epidermal tissue ablation |
US7717912B2 (en) | 1992-01-07 | 2010-05-18 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
US7507236B2 (en) | 1992-01-07 | 2009-03-24 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US7201750B1 (en) | 1992-01-07 | 2007-04-10 | Arthrocare Corporation | System for treating articular cartilage defects |
US7824405B2 (en) | 1992-01-07 | 2010-11-02 | Arthrocare Corporation | Electrosurgical apparatus and methods for laparoscopy |
US6595990B1 (en) | 1992-01-07 | 2003-07-22 | Arthrocare Corporation | Systems and methods for electrosurgical tissue revascularization |
US7819863B2 (en) | 1992-01-07 | 2010-10-26 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US7429262B2 (en) | 1992-01-07 | 2008-09-30 | Arthrocare Corporation | Apparatus and methods for electrosurgical ablation and resection of target tissue |
US7422585B1 (en) | 1992-01-07 | 2008-09-09 | Arthrocare Corporation | System for electrosurgical myocardial revascularization |
US5554110A (en) * | 1992-08-12 | 1996-09-10 | Vidamed, Inc. | Medical ablation apparatus |
US5599295A (en) * | 1992-08-12 | 1997-02-04 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
US5607389A (en) * | 1992-08-12 | 1997-03-04 | Vidamed, Inc. | Medical probe with biopsy stylet |
US6464661B2 (en) | 1992-08-12 | 2002-10-15 | Vidamed, Inc. | Medical probe with stylets |
US5470309A (en) * | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical ablation apparatus utilizing a heated stylet |
US5630794A (en) * | 1992-08-12 | 1997-05-20 | Vidamed, Inc. | Catheter tip and method of manufacturing |
US5435805A (en) * | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US5672153A (en) * | 1992-08-12 | 1997-09-30 | Vidamed, Inc. | Medical probe device and method |
US5599294A (en) * | 1992-08-12 | 1997-02-04 | Vidamed, Inc. | Microwave probe device and method |
US5720719A (en) * | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Ablative catheter with conformable body |
US5720718A (en) * | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
US5366490A (en) * | 1992-08-12 | 1994-11-22 | Vidamed, Inc. | Medical probe device and method |
US5556377A (en) * | 1992-08-12 | 1996-09-17 | Vidamed, Inc. | Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe |
US6206847B1 (en) | 1992-08-12 | 2001-03-27 | Vidamed, Inc. | Medical probe device |
US5421819A (en) * | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
US5895370A (en) * | 1992-08-12 | 1999-04-20 | Vidamed, Inc. | Medical probe (with stylets) device |
US5542915A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
US5470308A (en) * | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5385544A (en) * | 1992-08-12 | 1995-01-31 | Vidamed, Inc. | BPH ablation method and apparatus |
US5514131A (en) * | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5409453A (en) * | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US6022334A (en) * | 1992-08-12 | 2000-02-08 | Vidamed, Inc. | Medical probe device with optic viewing capability |
US5554112A (en) * | 1992-10-09 | 1996-09-10 | Birtcher Medical Systems, Inc. | Minimally invasive irrigator/aspirator surgical probe and method of using same |
US5314406A (en) * | 1992-10-09 | 1994-05-24 | Symbiosis Corporation | Endoscopic electrosurgical suction-irrigation instrument |
US5456662A (en) * | 1993-02-02 | 1995-10-10 | Edwards; Stuart D. | Method for reducing snoring by RF ablation of the uvula |
US5368560A (en) * | 1993-03-29 | 1994-11-29 | Medical Development Systems, Inc. | Suction nozzle |
US5626560A (en) * | 1993-04-13 | 1997-05-06 | Soring Medizintechnik Gmbh | Diathermic hand-held instrument with an endoscopic probe |
US6896674B1 (en) | 1993-05-10 | 2005-05-24 | Arthrocare Corporation | Electrosurgical apparatus having digestion electrode and methods related thereto |
US20040087939A1 (en) * | 1993-05-10 | 2004-05-06 | Arthrocare Corporation | Methods for electrosurgical tissue treatment between spaced apart electrodes |
US7445618B2 (en) | 1993-05-10 | 2008-11-04 | Arthrocare Corporation | Methods for tissue ablation using pulsed energy |
US7505812B1 (en) | 1993-05-10 | 2009-03-17 | Arthrocare Corporation | Electrosurgical system for treating restenosis of body lumens |
US6974453B2 (en) | 1993-05-10 | 2005-12-13 | Arthrocare Corporation | Dual mode electrosurgical clamping probe and related methods |
US6960204B2 (en) | 1993-05-10 | 2005-11-01 | Arthrocare Corporation | Electrosurgical method using laterally arranged active electrode |
US20030216725A1 (en) * | 1993-05-10 | 2003-11-20 | Arthrocare Corporation | Electrosurgical apparatus and methods for laparoscopy |
US6915806B2 (en) | 1993-05-10 | 2005-07-12 | Arthrocare Corporation | Method for harvesting graft vessel |
US20020052600A1 (en) * | 1993-05-10 | 2002-05-02 | Davison Terry S. | Electrosurgical apparatus and methods for ablating tissue |
US6746447B2 (en) | 1993-05-10 | 2004-06-08 | Arthrocare Corporation | Methods for ablating tissue |
US7169143B2 (en) | 1993-05-10 | 2007-01-30 | Arthrocare Corporation | Methods for electrosurgical tissue treatment in electrically conductive fluid |
US7331957B2 (en) | 1993-05-10 | 2008-02-19 | Arthrocare Corporation | Electrosurgical apparatus and methods for laparoscopy |
US6589237B2 (en) | 1993-05-10 | 2003-07-08 | Arthrocare Corp. | Electrosurgical apparatus and methods for treating tissue |
US20030084907A1 (en) * | 1993-05-10 | 2003-05-08 | Arthrocare Corporation | Systems and methods for electrosurgical dissection and harvesting of tissue |
US20030097126A1 (en) * | 1993-05-10 | 2003-05-22 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
US5364395A (en) * | 1993-05-14 | 1994-11-15 | West Jr Hugh S | Arthroscopic surgical instrument with cauterizing capability |
US5451222A (en) * | 1994-03-16 | 1995-09-19 | Desentech, Inc. | Smoke evacuation system |
US20040087937A1 (en) * | 1994-05-10 | 2004-05-06 | Arthrocare Corporation | Systems for electrosurgical tissue treatment in conductive fluid |
US7217268B2 (en) | 1994-05-10 | 2007-05-15 | Arthrocare Corporation | Method for electrosurgical tissue treatment near a patient's heart |
US5730742A (en) * | 1994-08-04 | 1998-03-24 | Alto Development Corporation | Inclined, flared, thermally-insulated, anti-clog tip for electrocautery suction tubes |
US5520685A (en) * | 1994-08-04 | 1996-05-28 | Alto Development Corporation | Thermally-insulated anti-clog tip for electrocautery suction tubes |
US7318823B2 (en) | 1995-04-13 | 2008-01-15 | Arthrocare Corporation | Methods for repairing damaged intervertebral discs |
US7824398B2 (en) | 1995-06-07 | 2010-11-02 | Arthrocare Corporation | Electrosurgical systems and methods for removing and modifying tissue |
US7572251B1 (en) | 1995-06-07 | 2009-08-11 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US7270659B2 (en) | 1995-06-07 | 2007-09-18 | Arthrocare Corporation | Methods for electrosurgical treatment of spinal tissue |
US20030014047A1 (en) * | 1995-06-07 | 2003-01-16 | Jean Woloszko | Apparatus and methods for treating cervical inter-vertebral discs |
US6770071B2 (en) | 1995-06-07 | 2004-08-03 | Arthrocare Corporation | Bladed electrosurgical probe |
US20030009164A1 (en) * | 1995-06-07 | 2003-01-09 | Arthrocare Corporation | Articulated electrosurgical probe |
USRE40156E1 (en) | 1995-06-07 | 2008-03-18 | Arthrocare Corporation | Methods for repairing damaged intervertebral discs |
US6772012B2 (en) | 1995-06-07 | 2004-08-03 | Arthrocare Corporation | Methods for electrosurgical treatment of spinal tissue |
US7192428B2 (en) | 1995-06-07 | 2007-03-20 | Arthrocare Corporation | Systems for epidermal tissue ablation |
US7387625B2 (en) | 1995-06-07 | 2008-06-17 | Arthrocare Corporation | Methods and apparatus for treating intervertebral discs |
US6837888B2 (en) | 1995-06-07 | 2005-01-04 | Arthrocare Corporation | Electrosurgical probe with movable return electrode and methods related thereto |
US6837887B2 (en) | 1995-06-07 | 2005-01-04 | Arthrocare Corporation | Articulated electrosurgical probe and methods |
US7179255B2 (en) | 1995-06-07 | 2007-02-20 | Arthrocare Corporation | Methods for targeted electrosurgery on contained herniated discs |
US20020095152A1 (en) * | 1995-06-07 | 2002-07-18 | Arthrocare Corporation | Electrosurgical apparatus and methods for cutting tissue |
US20050004634A1 (en) * | 1995-06-07 | 2005-01-06 | Arthrocare Corporation | Methods for electrosurgical treatment of spinal tissue |
US7393351B2 (en) | 1995-06-07 | 2008-07-01 | Arthrocare Corporation | Apparatus and methods for treating cervical inter-vertebral discs |
US20040006339A1 (en) * | 1995-06-07 | 2004-01-08 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from the base of tongue |
US20020026186A1 (en) * | 1995-06-07 | 2002-02-28 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
US7442191B2 (en) | 1995-06-07 | 2008-10-28 | Arthrocare Corporation | Systems and methods for electrosurgical treatment of turbinates |
US20010032001A1 (en) * | 1995-06-07 | 2001-10-18 | Olivier Ricart | Systems and methods for electrosurgical treatment of spinal tissue |
US6632193B1 (en) | 1995-06-07 | 2003-10-14 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US7131969B1 (en) | 1995-06-07 | 2006-11-07 | Arthrocare Corp | Systems and methods for electrosurgical treatment of obstructive sleep disorders |
US6659106B1 (en) | 1995-06-07 | 2003-12-09 | Arthrocare Corporation | System and methods for electrosurgical treatment of turbinates |
US20030216726A1 (en) * | 1995-06-07 | 2003-11-20 | Arthrocare Corporation | Systems for epidermal tissue ablation |
AU705312B2 (en) * | 1995-09-15 | 1999-05-20 | Megadyne Medical Products, Inc. | Suction coagulator bending tool |
EP0763366A1 (en) * | 1995-09-15 | 1997-03-19 | Megadyne Medical Products, Inc. | Suction coagulator bending tool |
US6805130B2 (en) | 1995-11-22 | 2004-10-19 | Arthrocare Corporation | Methods for electrosurgical tendon vascularization |
US20020095151A1 (en) * | 1995-11-22 | 2002-07-18 | Arthrocare Corporation | Electrosurgical apparatus and methods for treatment and removal of tissue |
US7678069B1 (en) | 1995-11-22 | 2010-03-16 | Arthrocare Corporation | System for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US7758537B1 (en) | 1995-11-22 | 2010-07-20 | Arthrocare Corporation | Systems and methods for electrosurgical removal of the stratum corneum |
US7988689B2 (en) | 1995-11-22 | 2011-08-02 | Arthrocare Corporation | Electrosurgical apparatus and methods for treatment and removal of tissue |
US7270661B2 (en) | 1995-11-22 | 2007-09-18 | Arthocare Corporation | Electrosurgical apparatus and methods for treatment and removal of tissue |
US6896672B1 (en) | 1995-11-22 | 2005-05-24 | Arthrocare Corporation | Methods for electrosurgical incisions on external skin surfaces |
US20030212396A1 (en) * | 1995-11-22 | 2003-11-13 | Arthrocare Corporation | Systems and methods for electrosurgical incisions on external skin surfaces |
US20020099366A1 (en) * | 1995-11-22 | 2002-07-25 | Arthrocare Corporation, A Delaware Corporation | Electrosurgical apparatus and methods for treatment and removal of tissue |
US7186234B2 (en) | 1995-11-22 | 2007-03-06 | Arthrocare Corporation | Electrosurgical apparatus and methods for treatment and removal of tissue |
US5738648A (en) * | 1996-01-23 | 1998-04-14 | Valleylab Inc | Method and apparatus for a valve and irrigator |
DE19701328A1 (en) * | 1996-01-23 | 1997-07-24 | Valleylab Inc | Rinsing device for surgical use |
US6117134A (en) * | 1996-02-14 | 2000-09-12 | Cunningham; James Steven | Instrument for suction electrosurgery |
ES2128232A1 (en) * | 1996-03-13 | 1999-05-01 | Fernandez Manuel Sevillano | Brain separator with incorporated aspiration |
US20030073908A1 (en) * | 1996-04-26 | 2003-04-17 | 2000 Injectx, Inc. | Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells |
US5989249A (en) * | 1996-04-29 | 1999-11-23 | Kirwan Surgical Products, Inc. | Bipolar suction coagulator |
US7104986B2 (en) | 1996-07-16 | 2006-09-12 | Arthrocare Corporation | Intervertebral disc replacement method |
US7357798B2 (en) | 1996-07-16 | 2008-04-15 | Arthrocare Corporation | Systems and methods for electrosurgical prevention of disc herniations |
US7429260B2 (en) | 1996-07-16 | 2008-09-30 | Arthrocare Corporation | Systems and methods for electrosurgical tissue contraction within the spine |
US6726684B1 (en) | 1996-07-16 | 2004-04-27 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US7449021B2 (en) | 1996-07-16 | 2008-11-11 | Arthrocare Corporation | Systems and methods for electrosurgical tissue contraction within the spine |
US20040024398A1 (en) * | 1996-07-16 | 2004-02-05 | Arthrocare Corporation | Systems and methods for electrosurgical intervertebral disc replacement |
US7462176B2 (en) | 1996-08-08 | 2008-12-09 | Starion Instruments Corporation | Device for suction-assisted lipectomy and method of using same |
US6544248B1 (en) | 1996-08-08 | 2003-04-08 | Starion Instruments Corporation | Device for suction-assisted lipectomy and method of using same |
US20050256498A1 (en) * | 1996-08-08 | 2005-11-17 | Starion Instruments Corporation | Device for suction-assisted lipectomy and method of using same |
US6918903B2 (en) | 1996-08-08 | 2005-07-19 | Starion Instrument Corporation | Device for suction-assisted lipectomy and method of using same |
US6102885A (en) * | 1996-08-08 | 2000-08-15 | Bass; Lawrence S. | Device for suction-assisted lipectomy and method of using same |
US8226697B2 (en) | 1996-08-13 | 2012-07-24 | Neurotherm, Inc. | Method for treating intervertebral disc |
US7647123B2 (en) | 1996-08-13 | 2010-01-12 | Oratec Interventions, Inc. | Method for treating intervertebral discs |
US7282061B2 (en) | 1996-08-13 | 2007-10-16 | Oratec Interventions, Inc. | Method of treating intervertebral disc |
US20080091252A1 (en) * | 1996-08-13 | 2008-04-17 | Oratec Interventions, Inc., A California Corporation | Method for treating intervertebral disc |
US7400930B2 (en) | 1996-08-13 | 2008-07-15 | Oratec Interventions, Inc. | Method for treating intervertebral discs |
US6997941B2 (en) | 1996-08-13 | 2006-02-14 | Oratec Interventions, Inc. | Method and apparatus for treating annular fissures in intervertebral discs |
US8187312B2 (en) | 1996-08-13 | 2012-05-29 | Neurotherm, Inc. | Method for treating intervertebral disc |
US7267683B2 (en) | 1996-08-13 | 2007-09-11 | Oratec Interventions, Inc. | Method for treating intervertebral discs |
US6544260B1 (en) | 1996-08-20 | 2003-04-08 | Oratec Interventions, Inc. | Method for treating tissue in arthroscopic environment using precooling and apparatus for same |
US5904681A (en) * | 1997-02-10 | 1999-05-18 | Hugh S. West, Jr. | Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy |
US6645203B2 (en) | 1997-02-12 | 2003-11-11 | Oratec Interventions, Inc. | Surgical instrument with off-axis electrode |
US6391028B1 (en) | 1997-02-12 | 2002-05-21 | Oratec Interventions, Inc. | Probe with distally orientated concave curve for arthroscopic surgery |
US6461357B1 (en) | 1997-02-12 | 2002-10-08 | Oratec Interventions, Inc. | Electrode for electrosurgical ablation of tissue |
US5951548A (en) * | 1997-02-21 | 1999-09-14 | Stephen R. DeSisto | Self-evacuating electrocautery device |
US5788917A (en) * | 1997-05-27 | 1998-08-04 | General Motors Corporation | Method of making a plastic article |
US6312426B1 (en) | 1997-05-30 | 2001-11-06 | Sherwood Services Ag | Method and system for performing plate type radiofrequency ablation |
US20010001314A1 (en) * | 1997-06-13 | 2001-05-17 | Arthrocare Corporation | Electrosurgical systems and methods for recanalization of occluded body lumens |
US6855143B2 (en) | 1997-06-13 | 2005-02-15 | Arthrocare Corporation | Electrosurgical systems and methods for recanalization of occluded body lumens |
US7094215B2 (en) | 1997-10-02 | 2006-08-22 | Arthrocare Corporation | Systems and methods for electrosurgical tissue contraction |
US20030163178A1 (en) * | 1997-10-02 | 2003-08-28 | Arthrocare Corporation | Systems and methods for electrosurgical tissue contraction |
US7297145B2 (en) | 1997-10-23 | 2007-11-20 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
US6146380A (en) * | 1998-01-09 | 2000-11-14 | Radionics, Inc. | Bent tip electrical surgical probe |
US20030097129A1 (en) * | 1998-01-21 | 2003-05-22 | Arthrocare Corporation | Apparatus and methods for electrosurgical removal and digestion of tissue |
US20030040742A1 (en) * | 1998-02-20 | 2003-02-27 | Arthrocare Corporation | Systems and methods for electrosurgical spine surgery |
US6712811B2 (en) | 1998-02-20 | 2004-03-30 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US6763836B2 (en) | 1998-06-02 | 2004-07-20 | Arthrocare Corporation | Methods for electrosurgical tendon vascularization |
US20030055418A1 (en) * | 1998-06-02 | 2003-03-20 | Arthrocare Corporation | Systems and methods for electrosurgical tendon vascularization |
US20050255039A1 (en) * | 1998-06-26 | 2005-11-17 | Pro Surg, Inc., A California Corporation | Gel injection treatment of breast, fibroids & endometrial ablation |
US8663216B2 (en) | 1998-08-11 | 2014-03-04 | Paul O. Davison | Instrument for electrosurgical tissue treatment |
US20040054366A1 (en) * | 1998-08-11 | 2004-03-18 | Arthrocare Corporation | Instrument for electrosurgical tissue treatment |
US7276063B2 (en) | 1998-08-11 | 2007-10-02 | Arthrocare Corporation | Instrument for electrosurgical tissue treatment |
US20030028189A1 (en) * | 1998-08-11 | 2003-02-06 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US7435247B2 (en) * | 1998-08-11 | 2008-10-14 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US6146353A (en) * | 1998-09-22 | 2000-11-14 | Sherwood Services Ag | Smoke extraction device |
US7241293B2 (en) | 1998-11-20 | 2007-07-10 | Arthrocare Corporation | Electrode screen enhanced electrosurgical apparatus and methods for ablating tissue |
US6149646A (en) * | 1999-02-02 | 2000-11-21 | Linvatec Corporation | Monopolar tissue ablator |
US6358273B1 (en) | 1999-04-09 | 2002-03-19 | Oratec Inventions, Inc. | Soft tissue heating apparatus with independent, cooperative heating sources |
US6939346B2 (en) | 1999-04-21 | 2005-09-06 | Oratec Interventions, Inc. | Method and apparatus for controlling a temperature-controlled probe |
US6379350B1 (en) | 1999-10-05 | 2002-04-30 | Oratec Interventions, Inc. | Surgical instrument for ablation and aspiration |
US6458127B1 (en) * | 1999-11-22 | 2002-10-01 | Csaba Truckai | Polymer embolic elements with metallic coatings for occlusion of vascular malformations |
US7462178B2 (en) | 2000-05-12 | 2008-12-09 | Arthrocare Corporation | Systems and methods for electrosurgical spine surgery |
US7270658B2 (en) | 2000-05-12 | 2007-09-18 | Arthrocare Corporation | Systems and methods for electrosurgery |
US20030225403A1 (en) * | 2000-06-09 | 2003-12-04 | Arthrocare Corporation | Electrosurgical apparatus and methods for treating joint tissue |
US6991631B2 (en) | 2000-06-09 | 2006-01-31 | Arthrocare Corporation | Electrosurgical probe having circular electrode array for ablating joint tissue and systems related thereto |
US7070596B1 (en) | 2000-08-09 | 2006-07-04 | Arthrocare Corporation | Electrosurgical apparatus having a curved distal section |
US6564107B1 (en) * | 2000-08-21 | 2003-05-13 | Cardiac Pacemakers, Inc. | Coil-less lead system |
US20030158545A1 (en) * | 2000-09-28 | 2003-08-21 | Arthrocare Corporation | Methods and apparatus for treating back pain |
US7331956B2 (en) | 2000-09-28 | 2008-02-19 | Arthrocare Corporation | Methods and apparatus for treating back pain |
US7306598B2 (en) | 2000-11-24 | 2007-12-11 | Dfine, Inc. | Polymer matrix devices for treatment of vascular malformations |
US20030208192A1 (en) * | 2000-11-24 | 2003-11-06 | Csaba Truckai | Polymer matrix devices for treatment of vascular malformations |
US20050273098A1 (en) * | 2000-12-15 | 2005-12-08 | Charles Allen | Electrosurgical electrode shroud |
US20060189977A1 (en) * | 2000-12-15 | 2006-08-24 | Charles Allen | Electrosurgical electrode shroud |
US20040153055A1 (en) * | 2000-12-15 | 2004-08-05 | Tyco Healthcare Group Lp | Electrosurgical electrode shroud |
US7582244B2 (en) | 2000-12-15 | 2009-09-01 | Covidien Ag | Electrosurgical electrode shroud |
US6986768B2 (en) | 2000-12-15 | 2006-01-17 | Sherwood Services Ag | Electrosurgical electrode shroud |
US7060064B2 (en) | 2000-12-15 | 2006-06-13 | Sherwood Services Ag | Electrosurgical electrode shroud |
US6695839B2 (en) | 2001-02-08 | 2004-02-24 | Oratec Interventions, Inc. | Method and apparatus for treatment of disrupted articular cartilage |
US7419488B2 (en) | 2001-02-09 | 2008-09-02 | Arthrocare Corporation | Electrosurgical probe with movable return electrode and methods related thereto |
US20020133149A1 (en) * | 2001-03-17 | 2002-09-19 | Arthrocare Corporation | Electrosurgical systems and methods for hair transplantation and epilation |
US20040078037A1 (en) * | 2001-05-10 | 2004-04-22 | Gyrus Medical Limited | Surgical instrument |
US6827725B2 (en) * | 2001-05-10 | 2004-12-07 | Gyrus Medical Limited | Surgical instrument |
US6837884B2 (en) | 2001-06-18 | 2005-01-04 | Arthrocare Corporation | Electrosurgical apparatus having compound return electrode |
US20030014051A1 (en) * | 2001-06-18 | 2003-01-16 | Arthrocare Corporation | Electrosurgical apparatus having compound return electrode |
US6524307B1 (en) | 2001-10-05 | 2003-02-25 | Medtek Devices, Inc. | Smoke evacuation apparatus |
US20030139789A1 (en) * | 2001-11-08 | 2003-07-24 | Arthrocare Corporation | Systems and methods for electrosurigical treatment of obstructive sleep disorders |
US20030120269A1 (en) * | 2001-11-08 | 2003-06-26 | Arthrocare Corporation | Methods and apparatus for skin treatment |
US6920883B2 (en) | 2001-11-08 | 2005-07-26 | Arthrocare Corporation | Methods and apparatus for skin treatment |
US20030130738A1 (en) * | 2001-11-08 | 2003-07-10 | Arthrocare Corporation | System and method for repairing a damaged intervertebral disc |
US7004941B2 (en) | 2001-11-08 | 2006-02-28 | Arthrocare Corporation | Systems and methods for electrosurigical treatment of obstructive sleep disorders |
US6757565B2 (en) | 2002-02-08 | 2004-06-29 | Oratec Interventions, Inc. | Electrosurgical instrument having a predetermined heat profile |
US6610059B1 (en) | 2002-02-25 | 2003-08-26 | Hs West Investments Llc | Endoscopic instruments and methods for improved bubble aspiration at a surgical site |
US20030208196A1 (en) * | 2002-05-03 | 2003-11-06 | Arthrocare Corporation | Control system for limited-use device |
US20050043710A1 (en) * | 2002-05-28 | 2005-02-24 | Macosta Medical U.S.A., L.L.C. | Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia |
US20040015216A1 (en) * | 2002-05-30 | 2004-01-22 | Desisto Stephen R. | Self-evacuating electrocautery device |
US7393354B2 (en) | 2002-07-25 | 2008-07-01 | Sherwood Services Ag | Electrosurgical pencil with drag sensing capability |
US8016824B2 (en) | 2002-07-25 | 2011-09-13 | Covidien Ag | Electrosurgical pencil with drag sensing capability |
US7621909B2 (en) | 2002-07-25 | 2009-11-24 | Covidien Ag | Electrosurgical pencil with drag sensing capability |
US7169148B2 (en) * | 2002-09-10 | 2007-01-30 | O'halloran Laurence R | Beveled tonsil suction cautery dissector |
US20040082951A1 (en) * | 2002-09-10 | 2004-04-29 | O'halloran Laurence R. | Beveled tonsil suction cautery dissector |
US6747218B2 (en) | 2002-09-20 | 2004-06-08 | Sherwood Services Ag | Electrosurgical haptic switch including snap dome and printed circuit stepped contact array |
US20050043709A1 (en) * | 2002-10-10 | 2005-02-24 | Brimhall Greg L. | System and method of delivering local anesthesia |
US7713256B2 (en) | 2002-10-10 | 2010-05-11 | Becton, Dickinson And Company | System and method of delivering local anesthesia |
US20070250037A1 (en) * | 2002-10-10 | 2007-10-25 | Becton, Dickinson And Company | System and method of delivering local anesthesia |
US7713257B2 (en) | 2002-10-10 | 2010-05-11 | Becton, Dickinson And Company | System and method of delivering local anesthesia |
US7244257B2 (en) | 2002-11-05 | 2007-07-17 | Sherwood Services Ag | Electrosurgical pencil having a single button variable control |
US8128622B2 (en) | 2002-11-05 | 2012-03-06 | Covidien Ag | Electrosurgical pencil having a single button variable control |
US7297143B2 (en) | 2003-02-05 | 2007-11-20 | Arthrocare Corporation | Temperature indicating electrosurgical apparatus and methods |
US7955327B2 (en) | 2003-02-20 | 2011-06-07 | Covidien Ag | Motion detector for controlling electrosurgical output |
US7235072B2 (en) | 2003-02-20 | 2007-06-26 | Sherwood Services Ag | Motion detector for controlling electrosurgical output |
US7951141B2 (en) | 2003-05-13 | 2011-05-31 | Arthrocare Corporation | Systems and methods for electrosurgical intervertebral disc replacement |
US7794456B2 (en) | 2003-05-13 | 2010-09-14 | Arthrocare Corporation | Systems and methods for electrosurgical intervertebral disc replacement |
US7569626B2 (en) | 2003-06-05 | 2009-08-04 | Dfine, Inc. | Polymer composites for biomedical applications and methods of making |
US20040247849A1 (en) * | 2003-06-05 | 2004-12-09 | Csaba Truckai | Polymer composites for biomedical applications and methods of making |
US9907556B2 (en) | 2003-06-05 | 2018-03-06 | Dfine, Inc. | Polymer composites for biomedical applications and methods of making |
US8012153B2 (en) | 2003-07-16 | 2011-09-06 | Arthrocare Corporation | Rotary electrosurgical apparatus and methods thereof |
US8801705B2 (en) | 2003-10-20 | 2014-08-12 | Arthrocare Corporation | Electrosurgical method and apparatus for removing tissue within a bone body |
US7708733B2 (en) | 2003-10-20 | 2010-05-04 | Arthrocare Corporation | Electrosurgical method and apparatus for removing tissue within a bone body |
US7241294B2 (en) | 2003-11-19 | 2007-07-10 | Sherwood Services Ag | Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same |
US7156844B2 (en) | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US7156842B2 (en) | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US8449540B2 (en) | 2003-11-20 | 2013-05-28 | Covidien Ag | Electrosurgical pencil with improved controls |
US7503917B2 (en) | 2003-11-20 | 2009-03-17 | Covidien Ag | Electrosurgical pencil with improved controls |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7959633B2 (en) | 2003-11-20 | 2011-06-14 | Covidien Ag | Electrosurgical pencil with improved controls |
US20060041257A1 (en) * | 2003-11-20 | 2006-02-23 | Sartor Joe D | Electrosurgical pencil with improved controls |
US7491200B2 (en) | 2004-03-26 | 2009-02-17 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from base of tongue |
US8608666B2 (en) | 2004-04-21 | 2013-12-17 | Smith & Nephew, Inc. | Surgical instrument aspiration valve |
US20050240206A1 (en) * | 2004-04-21 | 2005-10-27 | Sjostrom Douglas D | Surgical instrument aspiration valve |
US7766844B2 (en) | 2004-04-21 | 2010-08-03 | Smith & Nephew, Inc. | Surgical instrument aspiration valve |
US7704249B2 (en) | 2004-05-07 | 2010-04-27 | Arthrocare Corporation | Apparatus and methods for electrosurgical ablation and resection of target tissue |
US7244256B2 (en) | 2004-06-10 | 2007-07-17 | Linvatec Corporation | Electrosurgical device with adhesive-free insulating piece and method of making same |
US7150746B2 (en) | 2004-06-10 | 2006-12-19 | Linvatec Corporation | Electrosurgical ablator with integrated aspirator lumen and method of making same |
US20050277916A1 (en) * | 2004-06-10 | 2005-12-15 | Decesare Michael | Electrosurgical device with adhesive-free insulating piece and method of making same |
US20050277915A1 (en) * | 2004-06-10 | 2005-12-15 | Decesare Michael | Electrosurgical ablator with integrated aspirator lumen and method of making same |
US7226447B2 (en) | 2004-06-23 | 2007-06-05 | Smith & Nephew, Inc. | Electrosurgical generator |
US20050288662A1 (en) * | 2004-06-23 | 2005-12-29 | Uchida Andy H | Electrosurgical generator |
US7892230B2 (en) | 2004-06-24 | 2011-02-22 | Arthrocare Corporation | Electrosurgical device having planar vertical electrode and related methods |
US20060265149A1 (en) * | 2005-04-04 | 2006-11-23 | Palmerton Christopher A | Fluid evacuation system with two-way communication filter |
US7761188B2 (en) | 2005-04-04 | 2010-07-20 | Medtek Devices, Inc. | Fluid evacuation system with two-way communication filter |
US8095241B2 (en) | 2005-04-04 | 2012-01-10 | Medtek Devices, Inc. | Fluid evacuation system with two-way communication filter |
US20100312402A1 (en) * | 2005-04-04 | 2010-12-09 | Medtek Devices, Inc. | Fluid evacuation system with two-way communication filter |
US8603082B2 (en) | 2005-06-22 | 2013-12-10 | Smith & Nephew, Inc. | Electrosurgical power control |
US8348934B2 (en) | 2005-06-22 | 2013-01-08 | Smith & Nephew, Inc. | Electrosurgical power control |
US7655003B2 (en) | 2005-06-22 | 2010-02-02 | Smith & Nephew, Inc. | Electrosurgical power control |
US20100121317A1 (en) * | 2005-06-22 | 2010-05-13 | Smith & Nephew, Inc. | Electrosurgical Power Control |
US8052675B2 (en) | 2005-06-22 | 2011-11-08 | Smith & Nephew, Inc. | Electrosurgical power control |
US20090138012A1 (en) * | 2005-06-28 | 2009-05-28 | Sherwood Services Ag | Electrode with Rotatably Deployable Sheath |
US20060293655A1 (en) * | 2005-06-28 | 2006-12-28 | Sherwood Services Ag | Electrode with rotatably deployable sheath |
US8460289B2 (en) | 2005-06-28 | 2013-06-11 | Covidien Ag | Electrode with rotatably deployable sheath |
US8100902B2 (en) | 2005-06-28 | 2012-01-24 | Covidien Ag | Electrode with rotatably deployable sheath |
US7500974B2 (en) | 2005-06-28 | 2009-03-10 | Covidien Ag | Electrode with rotatably deployable sheath |
US20070000501A1 (en) * | 2005-07-01 | 2007-01-04 | Wert Lindsay T | Surgical procedure supplemental accessory controller and method utilizing turn-on and turn-off time delays |
US7632267B2 (en) | 2005-07-06 | 2009-12-15 | Arthrocare Corporation | Fuse-electrode electrosurgical apparatus |
US7828794B2 (en) | 2005-08-25 | 2010-11-09 | Covidien Ag | Handheld electrosurgical apparatus for controlling operating room equipment |
US20140228839A1 (en) * | 2005-12-02 | 2014-08-14 | Ioan Cosmescu | Swivel device for improved surgical smoke evacuation |
US7691101B2 (en) | 2006-01-06 | 2010-04-06 | Arthrocare Corporation | Electrosurgical method and system for treating foot ulcer |
US8663152B2 (en) | 2006-01-06 | 2014-03-04 | Arthrocare Corporation | Electrosurgical method and system for treating foot ulcer |
US8663154B2 (en) | 2006-01-06 | 2014-03-04 | Arthrocare Corporation | Electrosurgical method and system for treating foot ulcer |
US9254167B2 (en) | 2006-01-06 | 2016-02-09 | Arthrocare Corporation | Electrosurgical system and method for sterilizing chronic wound tissue |
US8876746B2 (en) | 2006-01-06 | 2014-11-04 | Arthrocare Corporation | Electrosurgical system and method for treating chronic wound tissue |
US8636685B2 (en) | 2006-01-06 | 2014-01-28 | Arthrocare Corporation | Electrosurgical method and system for treating foot ulcer |
US9168087B2 (en) | 2006-01-06 | 2015-10-27 | Arthrocare Corporation | Electrosurgical system and method for sterilizing chronic wound tissue |
US8663153B2 (en) | 2006-01-06 | 2014-03-04 | Arthrocare Corporation | Electrosurgical method and system for treating foot ulcer |
US7879034B2 (en) | 2006-03-02 | 2011-02-01 | Arthrocare Corporation | Internally located return electrode electrosurgical apparatus, system and method |
US7901403B2 (en) | 2006-03-02 | 2011-03-08 | Arthrocare Corporation | Internally located return electrode electrosurgical apparatus, system and method |
US8292887B2 (en) | 2006-03-02 | 2012-10-23 | Arthrocare Corporation | Internally located return electrode electrosurgical apparatus, system and method |
US8668688B2 (en) | 2006-05-05 | 2014-03-11 | Covidien Ag | Soft tissue RF transection and resection device |
US8114071B2 (en) | 2006-05-30 | 2012-02-14 | Arthrocare Corporation | Hard tissue ablation system |
US8444638B2 (en) | 2006-05-30 | 2013-05-21 | Arthrocare Corporation | Hard tissue ablation system |
US20100314796A1 (en) * | 2006-08-03 | 2010-12-16 | Becton, Dickinson And Company | Syringe and Removable Needle Assembly Having Binary Attachment Features |
US7922958B2 (en) | 2006-08-03 | 2011-04-12 | Becton, Dickinson And Company | Method of making an elongate syringe barrel |
US8187272B2 (en) | 2006-10-06 | 2012-05-29 | Biomedcraft Designs, Inc. | Surgical instrument for coagulation and suction |
US20080086121A1 (en) * | 2006-10-06 | 2008-04-10 | Sensenbrenner Alexander G | Surgical instrument for coagulation and suction |
US8192424B2 (en) | 2007-01-05 | 2012-06-05 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US9254164B2 (en) | 2007-01-05 | 2016-02-09 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US8870866B2 (en) | 2007-01-05 | 2014-10-28 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US7862560B2 (en) | 2007-03-23 | 2011-01-04 | Arthrocare Corporation | Ablation apparatus having reduced nerve stimulation and related methods |
US8506565B2 (en) | 2007-08-23 | 2013-08-13 | Covidien Lp | Electrosurgical device with LED adapter |
US8235987B2 (en) | 2007-12-05 | 2012-08-07 | Tyco Healthcare Group Lp | Thermal penetration and arc length controllable electrosurgical pencil |
US8945124B2 (en) | 2007-12-05 | 2015-02-03 | Covidien Lp | Thermal penetration and arc length controllable electrosurgical pencil |
US8353907B2 (en) | 2007-12-21 | 2013-01-15 | Atricure, Inc. | Ablation device with internally cooled electrodes |
US8915878B2 (en) | 2007-12-21 | 2014-12-23 | Atricure, Inc. | Ablation device with internally cooled electrodes |
US8998892B2 (en) | 2007-12-21 | 2015-04-07 | Atricure, Inc. | Ablation device with cooled electrodes and methods of use |
US20110022048A1 (en) * | 2008-01-31 | 2011-01-27 | Uwe Bacher | Bipolar coagulation instrument |
US8231622B2 (en) * | 2008-01-31 | 2012-07-31 | Karl Storz Gmbh & Co. Kg | Bipolar coagulation instrument |
US9358063B2 (en) | 2008-02-14 | 2016-06-07 | Arthrocare Corporation | Ablation performance indicator for electrosurgical devices |
US8597292B2 (en) | 2008-03-31 | 2013-12-03 | Covidien Lp | Electrosurgical pencil including improved controls |
US20090248010A1 (en) * | 2008-03-31 | 2009-10-01 | Monte Fry | Electrosurgical Pencil Including Improved Controls |
US8636733B2 (en) | 2008-03-31 | 2014-01-28 | Covidien Lp | Electrosurgical pencil including improved controls |
US8663219B2 (en) | 2008-03-31 | 2014-03-04 | Covidien Lp | Electrosurgical pencil including improved controls |
US8632536B2 (en) | 2008-03-31 | 2014-01-21 | Covidien Lp | Electrosurgical pencil including improved controls |
US8591509B2 (en) | 2008-03-31 | 2013-11-26 | Covidien Lp | Electrosurgical pencil including improved controls |
US9198720B2 (en) | 2008-03-31 | 2015-12-01 | Covidien Lp | Electrosurgical pencil including improved controls |
US8663218B2 (en) | 2008-03-31 | 2014-03-04 | Covidien Lp | Electrosurgical pencil including improved controls |
US8162937B2 (en) | 2008-06-27 | 2012-04-24 | Tyco Healthcare Group Lp | High volume fluid seal for electrosurgical handpiece |
US9028490B2 (en) | 2008-07-24 | 2015-05-12 | Covidien Lp | Suction coagulator |
US20100023008A1 (en) * | 2008-07-24 | 2010-01-28 | Heard David N | Suction Coagulator |
US8808287B2 (en) | 2008-07-24 | 2014-08-19 | Covidien Lp | Suction coagulator |
US8328804B2 (en) * | 2008-07-24 | 2012-12-11 | Covidien Lp | Suction coagulator |
US8747400B2 (en) | 2008-08-13 | 2014-06-10 | Arthrocare Corporation | Systems and methods for screen electrode securement |
US9452008B2 (en) | 2008-12-12 | 2016-09-27 | Arthrocare Corporation | Systems and methods for limiting joint temperature |
US8355799B2 (en) | 2008-12-12 | 2013-01-15 | Arthrocare Corporation | Systems and methods for limiting joint temperature |
US8231620B2 (en) | 2009-02-10 | 2012-07-31 | Tyco Healthcare Group Lp | Extension cutting blade |
US8574187B2 (en) | 2009-03-09 | 2013-11-05 | Arthrocare Corporation | System and method of an electrosurgical controller with output RF energy control |
US10299855B2 (en) | 2009-06-16 | 2019-05-28 | Karl Storz Se & Co. Kg | Medical coagulation instrument |
US9138282B2 (en) | 2009-06-17 | 2015-09-22 | Arthrocare Corporation | Method and system of an electrosurgical controller with wave-shaping |
US8257350B2 (en) | 2009-06-17 | 2012-09-04 | Arthrocare Corporation | Method and system of an electrosurgical controller with wave-shaping |
US8323279B2 (en) | 2009-09-25 | 2012-12-04 | Arthocare Corporation | System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath |
US8317786B2 (en) | 2009-09-25 | 2012-11-27 | AthroCare Corporation | System, method and apparatus for electrosurgical instrument with movable suction sheath |
US9095358B2 (en) | 2009-12-09 | 2015-08-04 | Arthrocare Corporation | Electrosurgery irrigation primer systems and methods |
US8372067B2 (en) | 2009-12-09 | 2013-02-12 | Arthrocare Corporation | Electrosurgery irrigation primer systems and methods |
US8747399B2 (en) | 2010-04-06 | 2014-06-10 | Arthrocare Corporation | Method and system of reduction of low frequency muscle stimulation during electrosurgical procedures |
US8696659B2 (en) | 2010-04-30 | 2014-04-15 | Arthrocare Corporation | Electrosurgical system and method having enhanced temperature measurement |
US8747111B2 (en) | 2010-04-30 | 2014-06-10 | 3M Innovative Properties Company | Suction handle, suction handle assembly, and oral care systems comprising same |
US8979838B2 (en) | 2010-05-24 | 2015-03-17 | Arthrocare Corporation | Symmetric switching electrode method and related system |
US8685018B2 (en) | 2010-10-15 | 2014-04-01 | Arthrocare Corporation | Electrosurgical wand and related method and system |
US8568405B2 (en) | 2010-10-15 | 2013-10-29 | Arthrocare Corporation | Electrosurgical wand and related method and system |
USD658760S1 (en) | 2010-10-15 | 2012-05-01 | Arthrocare Corporation | Wound care electrosurgical wand |
US10448992B2 (en) | 2010-10-22 | 2019-10-22 | Arthrocare Corporation | Electrosurgical system with device specific operational parameters |
US8747401B2 (en) | 2011-01-20 | 2014-06-10 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9131597B2 (en) | 2011-02-02 | 2015-09-08 | Arthrocare Corporation | Electrosurgical system and method for treating hard body tissue |
US9271784B2 (en) | 2011-02-09 | 2016-03-01 | Arthrocare Corporation | Fine dissection electrosurgical device |
US9168082B2 (en) | 2011-02-09 | 2015-10-27 | Arthrocare Corporation | Fine dissection electrosurgical device |
US9011428B2 (en) | 2011-03-02 | 2015-04-21 | Arthrocare Corporation | Electrosurgical device with internal digestor electrode |
US9788882B2 (en) | 2011-09-08 | 2017-10-17 | Arthrocare Corporation | Plasma bipolar forceps |
US9101363B2 (en) | 2012-08-10 | 2015-08-11 | William J. Zinnanti | Cautery electrode with multi-channel insulated shaft |
US9254166B2 (en) | 2013-01-17 | 2016-02-09 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9649144B2 (en) | 2013-01-17 | 2017-05-16 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9693818B2 (en) | 2013-03-07 | 2017-07-04 | Arthrocare Corporation | Methods and systems related to electrosurgical wands |
US9713489B2 (en) | 2013-03-07 | 2017-07-25 | Arthrocare Corporation | Electrosurgical methods and systems |
US9801678B2 (en) | 2013-03-13 | 2017-10-31 | Arthrocare Corporation | Method and system of controlling conductive fluid flow during an electrosurgical procedure |
US9827140B2 (en) | 2013-07-17 | 2017-11-28 | William Thomas McClellan | Percutaneous blepharoplasty device and method |
US10179025B2 (en) * | 2013-09-13 | 2019-01-15 | Gyrus Medical Limited | Electrode assembly |
CN104434306A (en) * | 2013-09-13 | 2015-03-25 | 佳乐医疗设备有限公司 | Electrode assembly |
US20150080890A1 (en) * | 2013-09-13 | 2015-03-19 | Gyrus Medical Limited | Electrode assembly |
US9962150B2 (en) | 2013-12-20 | 2018-05-08 | Arthrocare Corporation | Knotless all suture tissue repair |
US10420607B2 (en) | 2014-02-14 | 2019-09-24 | Arthrocare Corporation | Methods and systems related to an electrosurgical controller |
US9526556B2 (en) | 2014-02-28 | 2016-12-27 | Arthrocare Corporation | Systems and methods systems related to electrosurgical wands with screen electrodes |
US10716587B2 (en) | 2014-06-13 | 2020-07-21 | Surgis Medical Llc | Surgical device with light |
WO2016053635A2 (en) | 2014-09-17 | 2016-04-07 | Zinnanti William J | Electrosurgery probes with smoke and liquid evacuation |
WO2017211601A1 (en) * | 2016-06-06 | 2017-12-14 | Pajunk GmbH Medizintechnologie | Monopolar cannula |
US11191564B2 (en) | 2016-06-06 | 2021-12-07 | Pajunk GmbH Medizintechnologie | Unipolar cannula |
US11191885B2 (en) * | 2018-12-06 | 2021-12-07 | Joshua C. Arnone | Flow control system |
US11564732B2 (en) | 2019-12-05 | 2023-01-31 | Covidien Lp | Tensioning mechanism for bipolar pencil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3828780A (en) | Combined electrocoagulator-suction instrument | |
US6117134A (en) | Instrument for suction electrosurgery | |
US5730742A (en) | Inclined, flared, thermally-insulated, anti-clog tip for electrocautery suction tubes | |
US4562838A (en) | Electrosurgery instrument | |
US5989249A (en) | Bipolar suction coagulator | |
US3974833A (en) | Disposable electrosurgical cautery having optional suction control feature | |
US6210410B1 (en) | Coagulation device for coagulating biological tissues | |
US4347842A (en) | Disposable electrical surgical suction tube and instrument | |
US6616658B2 (en) | Electrosurgical pencil | |
US3902494A (en) | Suction surgical instrument | |
US5290282A (en) | Coagulating cannula | |
US3825004A (en) | Disposable electrosurgical cautery | |
US4353371A (en) | Longitudinally, side-biting, bipolar coagulating, surgical instrument | |
US5246440A (en) | Electrosurgical knife | |
US5885277A (en) | High-frequency surgical instrument for minimally invasive surgery | |
US6969389B2 (en) | Bipolar hemostatic forceps for an endoscope | |
US5282799A (en) | Bipolar electrosurgical scalpel with paired loop electrodes | |
US4765331A (en) | Electrosurgical device with treatment arc of less than 360 degrees | |
US4369794A (en) | Probe with electrocardiographic monitoring | |
US20050107786A1 (en) | Bipolar surgical forceps with argon plasma coagulation capability | |
EP0684015A1 (en) | Electrosurgical device | |
CA2085401A1 (en) | Bipolar sphincterotomy utilizing side-by-side parallel wires | |
KR950702848A (en) | MEDICAL PROBE DEVICE AND METHOD | |
US6712817B1 (en) | Treatment instrument for endoscope | |
ATE280540T1 (en) | ABLATION SYSTEM WITH A CATHETER HAVING A SPLIT TIP AND WITH SWITCHING AND MEASURING POSSIBILITIES |