US5168465A - Highly compact EPROM and flash EEPROM devices - Google Patents
Highly compact EPROM and flash EEPROM devices Download PDFInfo
- Publication number
- US5168465A US5168465A US07/641,508 US64150891A US5168465A US 5168465 A US5168465 A US 5168465A US 64150891 A US64150891 A US 64150891A US 5168465 A US5168465 A US 5168465A
- Authority
- US
- United States
- Prior art keywords
- erase
- gates
- gate
- floating gate
- floating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015654 memory Effects 0.000 claims abstract description 67
- 238000007667 floating Methods 0.000 claims description 223
- 239000000758 substrate Substances 0.000 claims description 38
- 238000002955 isolation Methods 0.000 claims description 21
- 230000005684 electric field Effects 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 6
- 239000002019 doping agent Substances 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 31
- 238000003860 storage Methods 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 9
- 239000007787 solid Substances 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 description 78
- 239000010408 film Substances 0.000 description 46
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 40
- 229920005591 polysilicon Polymers 0.000 description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 32
- 125000006850 spacer group Chemical group 0.000 description 29
- 235000012239 silicon dioxide Nutrition 0.000 description 16
- 239000000377 silicon dioxide Substances 0.000 description 16
- 230000005641 tunneling Effects 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 238000013459 approach Methods 0.000 description 13
- 230000008901 benefit Effects 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000007943 implant Substances 0.000 description 13
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 238000005530 etching Methods 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- 230000001351 cycling effect Effects 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 8
- 238000005468 ion implantation Methods 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000002784 hot electron Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- FRIKWZARTBPWBN-UHFFFAOYSA-N [Si].O=[Si]=O Chemical compound [Si].O=[Si]=O FRIKWZARTBPWBN-UHFFFAOYSA-N 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000005055 memory storage Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/10—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5628—Programming or writing circuits; Data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5628—Programming or writing circuits; Data input circuits
- G11C11/5635—Erasing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5642—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0408—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
- G11C16/0425—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/349—Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/349—Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
- G11C16/3495—Circuits or methods to detect or delay wearout of nonvolatile EPROM or EEPROM memory devices, e.g. by counting numbers of erase or reprogram cycles, by using multiple memory areas serially or cyclically
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/76—Masking faults in memories by using spares or by reconfiguring using address translation or modifications
- G11C29/765—Masking faults in memories by using spares or by reconfiguring using address translation or modifications in solid state disks
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/78—Masking faults in memories by using spares or by reconfiguring using programmable devices
- G11C29/80—Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
- G11C29/816—Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout
- G11C29/82—Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout for EEPROMs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
- H01L29/4011—Multistep manufacturing processes for data storage electrodes
- H01L29/40114—Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
- H01L29/7884—Programmable transistors with only two possible levels of programmation charging by hot carrier injection
- H01L29/7885—Hot carrier injection from the channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/561—Multilevel memory cell aspects
- G11C2211/5613—Multilevel memory cell with additional gates, not being floating or control gates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/563—Multilevel memory reading aspects
- G11C2211/5631—Concurrent multilevel reading of more than one cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/563—Multilevel memory reading aspects
- G11C2211/5634—Reference cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/564—Miscellaneous aspects
- G11C2211/5644—Multilevel memory comprising counting devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
Definitions
- This invention relates generally to semiconductor electrically programmable read only memories (Eprom) and electrically erasable programmable read only memories (EEprom), and specifically to semiconductor structures of such memories, processes of making them, and techniques for using them.
- Eprom semiconductor electrically programmable read only memories
- EEprom electrically erasable programmable read only memories
- An electrically programmable read only memory utilizes a floating (unconnected) conductive gate, in a field effect transistor structure, positioned over but insulated from a channel region in a semiconductor substrate, between source and drain regions.
- a control gate is then provided over the floating gate, but also insulated therefrom.
- the threshold voltage characteristic of the transistor is controlled by the amount of charge that is retained on the floating gate. That is, the minimum amount of voltage (threshold) that must be applied to the control gate before the transistor is turned “on” to permit conduction between its source and drain regions is controlled by the level of charge on the floating gate.
- a transistor is programmed to one of two states by accelerating electrons from the substrate channel region, through a thin gate dielectric and onto the floating gate.
- the memory cell transistor's state is read by placing an operating voltage across its source and drain and on its control gate, and then detecting the level of current flowing between the source and drain as to whether the device is programmed to be "on” or “off” at the control gate voltage selected.
- a specific, single cell in a two-dimensional array of Eprom cells is addressed for reading by application of a source-drain voltage to source and drain lines in a column containing the cell being addressed, and application of a control gate voltage to the control gates in a row containing the cell being addressed.
- Eprom transistor is usually implemented in one of two basic configurations. One is where the floating gate extends substantially entirely over the transistor's channel region between its source and drain. Another type, preferred in many applications, is where the floating gate extends from the drain region only part of the way across the channel. The control gate then extends completely across the channel, over the floating gate and then across the remaining portion of the channel not occupied by the floating gate. The control gate is separated from that remaining channel portion by a thin gate oxide. This second type is termed a "split-channel" Eprom transistor.
- EEprom electrically erasable and programmable read only memory
- One way in which the cell is erased electrically is by transfer of charge from the floating gate to the transistor drain through a very thin tunnel dielectric. This is accomplished by application of appropriate voltages to the transistor's source, drain and control gate.
- Other EEprom memory cells are provided with a separate, third gate for accomplishing the erasing.
- An erase gate passes through each memory cell transistor closely adjacent to a surface of the floating gate but insulated therefrom by a thin tunnel dielectric.
- An array of EEprom cells are generally referred to as a Flash EEprom array because an entire array of cells, or significant group of cells, is erased simultaneously (i.e., in a flash).
- EEprom's have been found to have a limited effective life.
- the number of cycles of programming and erasing that such a device can endure before becoming degraded is finite. After a number of such cycles in excess of 10,000, depending upon its specific structure, its programmability can be reduced. Often, by the time the device has been put through such a cycle for over 100,000 times, it can no longer be programmed or erased properly. This is believed to be the result of electrons being trapped in the dielectric each time charge is transferred to or away from the floating gate by programming or erasing, respectively.
- Eprom and EEprom cell and array structures and processes for making them that result in cells of reduced size so their density on a semiconductor chip can be increased. It is also an object of the invention that the structures be highly manufacturable, reliable, scalable, repeatable and producible with a very high yield.
- Another object of the present invention is to provide a technique for increasing the amount of information that can be stored in a given size Eprom or EEprom array.
- one edge of the floating gate is self aligned to and overlaps the edge of the drain diffusion and the second edge of the floating gate is self aligned to but is spaced apart from the edge of the source diffusion.
- a sidewall spacer formed along the second edge of the floating gate facing the source side is used to define the degree of spacing between the two edges.
- Self alignment of both source and drain to the edges of the floating gate results in a split channel Eprom device having accurate control of the three most critical device parameters: Channel segment lengths L1 and L2 controllable by floating gate and control gate, respectively, and the extent of overlap between the floating gate and the drain diffusion. All three parameters are insensitive to mask misalignment and can be made reproducibly very small in scaled-down devices.
- a separate erase gate is provided to transform a Eprom device into a Flash EEprom device.
- the area of overlap between the floating gate and the erase gate is insensitive to mask misalignment and can therefore be made reproducibly very small.
- the erase gate is also used as a field plate to provide very compact electric isolation between adjacent cells in a memory array.
- a new erase mechanism is provided which employs tailoring of the edges of a very thin floating gate so as to enhance their effectiveness as electron injectors.
- a novel intelligent programming and sensing technique is provided which permits the practical implementation of multiple state storage wherein each Eprom or flash EEprom cell stores more than one bit per cell.
- a novel intelligent erase algorithm is provided which results in a significant reduction in the electrical stress experienced by the erase tunnel dielectric and results in much higher endurance to program/erase cycling.
- FIG. 1 is a cross section of the split channel Flash EEprom Samachisa prior art cell which erases by tunneling of electrons from the floating gate to the drain diffusion.
- FIG. 2a is a cross section of the Flash EEprom Kynett prior art cell which erases by tunneling of electrons from the floating gate to the source diffusion.
- FIG. 2b is a cross section of the Flash EEprom Kupec prior art cell with triple polysilicon.
- FIG. 2c is a schematic of the Kupec cell during erase.
- FIG. 3a is a topological view of the triple polysilicon split channel Flash EEprom prior art Masuoka cell which erases by tunneling of electrons from the floating gate to an erase gate.
- FIG. 3b is a schematic view of the Masuoka prior art cell of FIG. 3a.
- FIG. 3c is a view of the Masuoka prior art cell of FIG. 3a along cross section AA.
- FIG. 3d is a cross section view of the split channel Eprom Harari prior art cell.
- FIG. 4a is a cross section view of the split channel Eprom Eitan prior art cell having a drain diffusion self aligned to one edge of the floating gate.
- FIG. 4b is a cross section view of the prior art Eitan cell of FIG. 4a during the process step used in the formation of the self aligned drain diffusion.
- FIG. 4c is a cross section view of the split channel Eprom Mizutani prior cell with sidewall spacer forming the floating gate.
- FIG. 4d is a cross section view of the split channel Eprom Wu prior art cell with sidewall spacer forming one of two floating gates.
- FIG. 4e is a cross section view of a stacked gate Eprom Tanaka prior art cell with heavily doped channel adjacent to the drain junction.
- FIG. 5a is a cross section of a split channel Eprom cell in accordance with this invention.
- FIGS. 5b through 5f are cross sections of the cell of FIG. 5a during various stages in the manufacturing process.
- FIG. 6a is a top view of a 2 ⁇ 2 array of Flash EEprom cells formed in a triple layer structure in accordance with one embodiment of this invention.
- FIG. 6b is a view along cross section AA of the structure of FIG. 6a.
- FIG. 7a is a top view of a 2 ⁇ 2 array of Flash EEprom cells formed in a triple layer structure in accordance with a second embodiment of this invention wherein the erase gates also provide field plate isolation.
- FIG. 7b is a view along cross section AA of the structure of FIG. 7a.
- FIG. 7c is a view along cross section CC of the structure of FIG. 7a.
- FIG. 8a is a top view of a 2 ⁇ 2 array of Flash EEprom cells formed in a triple layer structure in accordance with a third embodiment of this invention wherein the tunnel erase dielectric is confined to the vertical surfaces at the two edges of the floating gate.
- FIG. 8b is a view along cross section AA of the structure of FIG. 8a.
- FIG. 9a is a top view of a 2 ⁇ 2 array of Flash EEprom cells formed in a triple layer structure in accordance with a fourth embodiment of this invention wherein the erase gate is sandwiched in between the floating gate and the control gate.
- FIG. 9b is a view along cross section AA of the structure of FIG. 9a.
- FIG. 9c is a view along cross section DD of the structure of FIG. 9a.
- FIG. 10 is a schematic representation of the coupling capacitances associated with the floatings gate of the Flash EEprom cell of the invention.
- FIG. 11a is a schematic representation of the composite transistor forming a split channel Eprom device.
- FIG. 11b shows the programming and erase characteristics of a split channel Flash EEprom device.
- FIG. 11c shows the four conduction states of a split channel Flash EEprom device in accordance with this invention.
- FIG. 11d shows the program/erase cycling endurance characteristics of prior art Flash EEprom devices.
- FIG. 11e shows a circuit schematic and programming/read voltage pulses required to implement multistate storage.
- FIG. 12 outlines the key steps in the new algorithm used to erase with a minimum stress.
- FIG. 13 shows the program/erase cycling endurance characteristics of the split channel Flash EEprom device of this invention using intelligent algorithms for multistate programming and for reduced stress during erasing.
- FIGS. 14a, 14b and 14c are cross sections of another embodiment of this invention during critical steps in the manufacturing flow.
- FIGS. 15a and 15b are schematic representations of two memory arrays for the Flash EEprom embodiments of this invention.
- FIGS. 16a and 16b are cross sectional views of Flash EEprom transistors, illustrating the erase mechanism by asperity injection (16a) and sharp tip (16b).
- FIGS. 16c and 16d are cross sectional views of parts of Flash EEprom transistors illustrating the formation of sharp-tipped edges of the floating gate by directional etching to facilitate high field electronic injection.
- FIG. 17a contains Table I which shows voltage conditions for all operational modes for the array of FIG. 15a.
- FIG. 17b contains Table II which shows example voltage conditions for all operational modes for the virtual ground array of FIG. 15b.
- the second approach is a double polysilicon cell described by G. Samachisa et al., in an article titled “A 128K Flash EEprom Using Double Polysilicon Technology", IEEE Journal of Solid State Circuits, October 1987, Vol. SC-22, No. 5, p. 676. Variations on this second cell are also described by H. Kume et al. in an article titled “A Flash-Erase EEprom Cell with an Asymmetric Source and Drain Structure", Technical Digest of the IEEE International Electron Devices Meeting, December 1987, p. 560, and by V. N. Kynett et al.
- Transistor 100 is an NMOS transistor with source 101, drain 102, substrate 103, floating gate 104 and control gate 109.
- the transistor has a split channel consisting of a section 112 (L1) whose conductivity is controlled by floating gate 104, in series with a section 120 (L2) whose conductivity is controlled by control gate 109. Programming takes place as in other Eprom cells by injection of hot electrons 107 from the channel at the pinchoff region 119 near the drain junction.
- Injected electrons are trapped on floating gate 104 and raise the conduction threshold voltage of channel region 112 and therefore of transistor 100.
- the oxide in region 112 separating between the floating gate 104 and drain diffusion 102 and channel 112 is thinned to between 15 and 20 nanometers, to allow electronic tunneling of trapped electrons 108 from the floating gate to the drain.
- V CG 12 V
- V D 9 V
- V BB 0 V
- V S 0 V
- V CG 0 V
- V D 19 V
- V BB 0 V
- V S floating.
- Samachisa points out that the electrical erase is not self-limiting. It is possible to overerase the cell, leaving the floating gate positively charged, thus turning the channel portion L1 into a depletion mode transistor.
- the series enhancement transistor L2 is needed therefore to prevent transistor leakage in the overerase condition.
- the Samachisa cell suffers from certain disadvantages. These are:
- the Kynett and Kume cells are similar to the Samachisa cell except for the elimination of the series enhancement transistor 120, and the performing of tunnel erase 208 over the source diffusion 201 rather than over the drain diffusion 202.
- Kynett achieves a lower erase voltage than Samachisa by thinning tunnel dielectric 212 to 10 nanometers or less, so that even though the voltage applied to the source diffusion during erase is reduced, the electric field across tunnel dielectric 212 remains as high as in the case of the Samachisa cell.
- the Kynett cell can be contrasted with the Samachisa cell:
- Kynett is less susceptible to avalanche breakdown of source diffusion 201 during erase because the voltage is reduced from 19 volts to 12 volts.
- Kynett's cell is more susceptible to low yields due to pinholes in the thin dielectric layer 212 because its thickness is reduced from approximately 20 nanometers to approximately 10 nanometers.
- Kynett uses a lower voltage for erase but essentially the same drain voltage for programming Kynett is far more susceptible to accidental "program disturb" due to partial tunnel erase (during programming) occurring from floating gate 204 to drain 202.
- Kynett's cell is highly susceptible to an condition because it does not have the series enhancement channel portion 120 of Samachisa's cell.
- Kynett et al. deploy a special erase algorithm. This algorithm applies a short erase pulse to an array of cells, then measures the threshold voltage of all cells to ensure that no cell has been overerased into depletion. It then applies a second erase pulse and repeats the reading of all cells in the array. This cycle is stopped as soon as the last cell in the array has been erased to a reference enhancement voltage threshold level.
- the problem with this approach is that the first cell to have been adequately erased continues to receive erase pulses until the last cell has been adequately erased, and may therefore be susceptible to overerase into a depletion threshold state.
- Kupec's cell employs essentially the Kynett cell without a thin tunnel dielectric over the source, channel, or drain, and with a third polysilicon plate covering the entire transistor and acting as an erase plate.
- a cross sectional view of the Kupec device is shown in FIG. 2b.
- Transistor 200b consists of a stacked floating gate 204b and control gate 209b with source 201b and drain 202b self aligned to the edges of the floating gate.
- Gate dielectric 212 is relatively thick and does not permit tunnel erase from floating gate to source or drain.
- An erase plate 230b overlies the control gate and covers the sidewalls of both the control gate and the floating gate.
- Erase takes place by tunneling across the relatively thick oxide 231b between the edges of floating gate 204b and erase plate 230b.
- Kupec attempts to overcome the overerase condition by connecting the erase plate during high voltage erase to drain 202b and through a high impedance resistor R (FIG. 2c) to the erase supply voltage V ERASE .
- R high impedance resistor
- FIG. 3a provides a top view of the Masuoka prior art cell
- FIG. 3b shows the schematic representation of the same cell
- FIG. 3c provides a cross section view along the channel from source to drain.
- Transistor 300 consists of a split channel Eprom transistor having a source 301, a drain 302, a floating gate 304 controlling channel conduction along section L1 (312) of the channel, a control gate 309 capacitively coupled to the floating gate and also controlling the conduction along the series portion of the channel L2 (320), which has enhancement threshold voltage.
- the transistor channel width (W), as well as the edges of the source and drain diffusions are defined by the edges 305 of a thick field oxide formed by isoplanar oxidation.
- Oxide 332 of thickness in the 25 to 40 nanometers range is used as isolation between the floating gate and the substrate.
- Masuoka adds an erase gate 330 disposed underneath the floating gate along one of its edges. This erase gate is used to electrically erase floating gate 304 in an area of tunnel dielectric 331 where the floating gate overlaps the erase gate.
- Tunnel dielectric 331 is of thickness between 30 and 60 nanometers.
- Masuoka's cell uses a relatively thick tunnel dielectric and therefore does not need to use thin tunnel dielectrics for erase. Therefore it is less susceptible to oxide pinholes introduced during the manufacturing cycle.
- Masuoka's cell requires a third layer of polysilicon, which complicates the process as well as aggravates the surface topology. Because the erase gate consumes surface area over the field oxide 305 it results in a larger cell.
- the portion L2 of the channel length controlled by control gate 109, 309 has a fixed enhancement threshold voltage determined by the p+ channel doping concentration 360.
- the portion L1 of the channel length controlled by floating gate 104 (Samachisa) and 304 (Masuoka) has a variable threshold voltage determined by the net charge stored on the floating gate.
- the Eitan split channel Eprom transistor 400 is shown in cross sections in FIG. 4a.
- the Eitan patent highlights the main reasons for using a split channel architecture rather than the standard self aligned stacked gate Eprom transistor 200 (FIG. 2). These reasons can be summarized as follows:
- Eitan shows that the shorter the length L1 the greater the programming efficiency and the greater the read current of the split channel Eprom transistor.
- the series enhancement channel L2 acquires additional importance because it allows the floating gate portion L1 to be overerased into depletion threshold voltage without turning on the composite split channel transistor.
- the disadvantages incurred by the addition of the series enhancement channel L2 are an increase in cell area, a decrease in transistor transconductance, an increase in control gate capacitance, and an increase in variability of device characteristics for programming and reading brought about by the fact that L1 or L2 or both are not precisely controlled in the manufacturing process of the prior art split channel devices.
- Samachisa, Masuoka and Eitan each adopt a different approach to reduce the variability of L1 and L2:
- Samachisa's transistor 100 uses the two edges 140, 143 of control gate 109 to define (by a self aligned ion implant) drain diffusion 102 and source diffusion 101.
- Edge 141 of floating gate 104 is etched prior to ion implant, using edge 140 of control gate 109 as an etch mask. This results in a split channel transistor where (L1+L2) is accurately controlled by the length between the two edges 140, 143 of the control gate.
- L1 and L2 are both sensitive to misalignment between the mask defining edge 142 and the mask defining edges 140, 143.
- Masuoka's transistor 300 forms both edges 341, 342 of floating gate 304 in a single masking step. Therefore L1 is insensitive to mask misalignment. L2, which is formed by ion implant of source diffusion 301 to be self aligned to edge 343 of control gate 309, is sensitive to misalignment between the mask defining edge 342 and the mask defining edge 343. Furthermore the Masuoka transistor 300 may form a third channel region, L3, if edge 340 of control gate 309 is misaligned in a direction away from edge 341 of floating gate 304. The formation of L3 will severely degrade the programming efficiency of such a cell.
- Eitan's transistor 400 uses a separate mask layer 480 to expose the edge of floating gate 404 to allow drain diffusion 402 to be self aligned (by ion implantation) to edge 441 of floating gate 404. Therefore L1 can be accurately controlled and is not sensitive to mask misalignment. L2 however is sensitive to the misalignment between edge 482 of photoresist 480 and edge 442 of the floating gate. Eitan claims that the variability in L2 due to this mask misalignment, can be as much as 1.0 micron or more without affecting the performance of the device (see claims 3, 4 of the above-referenced Eitan patent).
- Transistor 400c has a floating gate 404c formed along the sidewall 440c of control gate 409c. In this way both L1 and L2 can be independently established and are not sensitive to mask misalignment.
- Transistor 400c has the drawback that the capacitive coupling between control gate 409c and floating gate 404c is limited to the capacitor area of the sidewall shared between them, which is relatively a small area. Therefore there is a very weak capacitive coupling between the control gate and the floating gate either during programming or during read. Therefore, although the device achieves good control of L1 and L2 it is of rather low efficiency for both modes of operation.
- FIG. 4d A cross section of the Wu prior art transistor is shown in FIG. 4d (FIG. 2 in the above-referenced article).
- This transistor has a floating gate 404d coupled to a control gate 409d, extending over channel region L1 (412d), in series with a second floating gate 492d formed in a sidewall adjacent to source diffusion 401d and overlying channel region L2 (420d).
- This second floating gate is capacitively coupled to the control gate 409d through the relatively small area of the sidewall 493d shared between them and is therefore only marginally better than the Mizutani prior art device, although it does achieve a good control of both L1 and L2.
- Transistor 400e is a stacked gate Eprom transistor (not split channel) with source 401e and drain 402e self aligned to both edges of floating gate 404e and control gate 409e.
- the channel region is more heavily p doped 460e than the p substrate 463e, but in addition there is a second p+ region 477e which is even more heavily p-doped than region 460e.
- This region 477e is formed by diffusion of boron down and sideways from the top surface on the drain side only, and is formed after formation of the floating gate so as to be self aligned to the floating gate on the drain side.
- the extent of sideway diffusion of boron ahead of the sideway diffusion of arsenic from the N+ drain junction defines a channel region Lp (478e) adjacent to the drain.
- This is a DMOS type structure, called DSA (Diffusion Self Aligned) by Tanaka.
- Transistor 400e has proven difficult to manufacture because it is rather difficult to control the length Lp and the surface channel concentration p+ through a double diffusion step. Furthermore, it is rather difficult to obtain value of Lp bigger than approximately 0.3 microns by diffusion because device scaling dictates the use of rather low temperature diffusion cycles. Still further, the DSA Eprom device suffers from an excessively high transistor threshold voltage in the unprogrammed (conducting) state, as well as from high drain junction capacitance. Both these effects can increase substantially the read access time.
- FIG. 5a presents a cross sectional view of a split channel Eprom transistor in accordance with a first embodiment of this invention.
- Transistor 500a consists of a p type silicon substrate 563 (which can alternatively be a p type epitaxial layer grown on top of a p++ doped silicon substrate), N+ source diffusion 501a, N+ drain diffusion 502a, a channel region 560a which is more heavily p-doped than the surrounding substrate, a floating gate 504a overlying a portion L1 of the channel, 512a, and a control gate 509 overlying the remaining portion L2 of the channel, 520a as well as the floating gate.
- Floating gate 504a is dielectrically isolated from the surface of the silicon substrate by dielectric film 564a, which is thermally grown Silicon Dioxide.
- Control gate 509 is capacitively coupled to floating gate 504a through dielectric film 567a, which can either be thermally grown Silicon Dioxide or a combination of thin layers of Silicon Dioxide and Silicon Nitride.
- Control gate 509 is also insulated from the silicon surface in channel portion L2 as well as over the source and drain diffusions by dielectric film 565a, which is made of the same material as dielectric 567a.
- P-type substrate 563 is typically 5 to 50 Ohms centimeter
- p+ channel doping 560a is typically in the range of 1 ⁇ 10 16 cm -3 to 2 ⁇ 10 17 cm -3
- dielectric film 564a is typically 20 to 40 nanometers thick
- dielectric film 567a is typically 20 to 50 nanometers thick
- floating gate 504a is usually a heavily N+ doped film of polysilicon of thickness which can be as low as 25 nanometers (this thickness will be discussed in Section VII) or as high as 400 nanometers.
- Control gate 509 is either a heavily N+ doped film of polysilicon or a low resistivity interconnect material such as a silicide or a refractory metal.
- edge 523a of N+ drain diffusion 502a formed by ion implantation of Arsenic or Phosphorus is self aligned to edge 522a of floating gate 504a, while edge 521a of N+ source diffusion 501a formed by the same ion implantation step is self aligned to, but is spaced apart from, edge 550a of the same floating gate 504a, using a sidewall spacer (not shown in FIG. 5a) which is removed after the ion implantation but prior to formation of control gate 509.
- the implant dose used to form diffusions 501a, 502a is typically in the range of 1 ⁇ 10 15 cm -2 to 1 ⁇ 10 16 cm -2 .
- FIGS. 5b through 5f The key steps for the formation of channel portions L1 and L2 are illustrated in FIGS. 5b through 5f.
- floating gates 504a, 504b are formed in a layer of N+ doped polysilicon on top of a thin gate oxide 564a, by anisotropic reactive ion etchings, using photoresist layer 590 as a mask.
- a thin protective film 566a is deposited or thermally grown, followed by the deposition of a thick spacer layer 570.
- the purpose of film 566a is to protect the underlying structure such as layer 565a from being etched or attacked when the spacer film is etched back.
- Spacer layer 570 can be a conformal film of undoped LPCVD polysilicon while protective film 566a can be silicon dioxide or silicon nitride. Alternatively, spacer layer 570 can be a conformal film of LPCVD silicon dioxide while protective film 566a can be either LPCVD silicon nitride or LPCVD polysilicon.
- the thickness of protective film 566a should be as thin as possible, typically in the range of 10 to 30 nanometers, so as to allow penetration of the subsequent Arsenic implantation to form the source and drain diffusions.
- the thickness of the conformal spacer layer determines the width of the sidewall spacer, and therefore also the length of channel portion L2. Typically for an L2 of 400 nanometers a spacer layer of approximately 600 nanometers thickness is used.
- spacers 592a, 593a and 592b, 593b are formed along the vertical edges of floating gates 504a and 504b respectively at the completion of the timed reactive ion etch step.
- These spacers result from the fact that the thickness of layer 570 is greater adjacent to the vertical walls of the floating gates than it is on flat surfaces. Therefore a carefully timed anisotropic reactive ion etchback will etch through layer 570 in areas of flat surface topology while not completely etching through it along each edge, forming the spacers.
- the technique for formation of narrow sidewall spacers along both edges of the gate of MOS transistors is well known in the industry, and is commonly used to form lightly doped drains (LDD) in short channel MOSFETS. (See, for example, FIG. 1 in an article in 1984 IEDM Technical Digest, p. 59 by S. Meguro et al. titled "Hi-CMOS III Technology”.)
- LDD lightly doped drains
- the spacer can be significantly wider, it is used along one edge only, and it is used not to define a lightly doped source or drain but rather to define the series enhancement transistor channel portion L2.
- Photoresist 591a, 591b (FIG. 5d) is used as a mask to protect spacers 592a, 592b while exposing spacers 593a, 593b.
- the latter are etched away, preferably with a wet chemical etch (which should be chosen so as to not etch protective film 566a), and the photoresist is stripped.
- ion implantation of Arsenic through dielectric films 566a and 565a is used to form N+ source diffusions 501a, 501b and N+ drain diffusions 502a, 502b.
- these diffusions are self aligned to edges 522a and 522b of the floating gates.
- the diffusions are self aligned to edges 550a and 550b of the floating gates but are spaced apart from these edges by the width of spacers 592a and 592b less the sideways diffusion in subsequent high temperature process steps.
- spacers 592a, 592b and the protective film 566a are removed (FIG. 5f), preferably with wet etches which will not attack the underlying layers 565a and 504a.
- Dielectric film 567a is grown by thermal oxidation or deposited by LPCVD on the exposed surfaces of the floating gates and substrate.
- a conductive layer is then deposited and control gates 509a, 509b are formed through etching of long narrow strips which constitute the word lines in rows of memory cells in an array.
- passivation layer 568 usually phosphorus doped glass or a Borophosphosilicate glass (BPSG). This passivation is made to flow in a high temperature anneal step.
- Contact vias are etched (not shown in FIG. 5f) to allow electrical access to the source and drain diffusions.
- Metallic interconnect strips 569a, 569b are provided on top of passivation layer 568, accessing the source and drain diffusions through the via openings (not shown).
- transistor 500a of FIG. 5f Comparing split channel transistor 500a of FIG. 5f with the Samachisa, Masuoka, Harari and Eitan prior art split channel transistors 100, 300, 300d and 400, the advantages of transistor 500a can be summarized as follows:
- L1 and L2 are insensitive to mark misalignment. Therefore they can be controlled much more accurately and reproducibly than the prior art.
- transistor 500a defines L2 through control of the width of a sidewall spacer it is possible in transistor 500a to achieve controllably a much shorter channel portion L2 than possible through a mask alignment. This becomes an important consideration in highly scaled split channel Eprom and Flash EEprom transistors.
- FIG. 14c presents a cross sectional view of a non self aligned split channel Eprom transistor in accordance with a second embodiment of this invention.
- FIGS. 14a and 14b illustrate the critical process steps in the manufacturing process of this device.
- Transistor 1400 consists of a p type silicon substrate 1463 (which can also be a p type epitaxial layer grown on a p++ substrate).
- Shallow N+ source diffusions 1401 and N+ drain diffusions 1402 are formed prior to formation of floating gate 1404, in contrast with the embodiment of section Ia above.
- the channel region between the source and drain diffusions is split into two portions: a portion L1 (1412) which is lying directly underneath the floating gate, and a portion L2 (1420) which is lying directly underneath the control gate 1409.
- the improvement over the Harari prior art split channel transistor 300d (FIG. 3d) consists of a heavily p+ doped narrow region 1460 adjacent to drain diffusion 1402.
- p substrate 1463 may have a p type doping concentration of 1 ⁇ 10 16 cm -3
- p+ region 1460 may have a p+ type doping concentration of between 1 ⁇ 10 17 cm -3 and 1 ⁇ 10 18 cm -3 .
- the length Lp and doping concentration of region 1460 are chosen so that the depletion region width at the drain junction under programming voltage conditions is less than the width Lp. So long as that condition is satisfied, and so long as L1 is bigger than Lp, then the actual value of L1 is of secondary importance to the device performance. Since L1 in this device is determined through a mask alignment between the floating gate and the drain it is not as well controlled as in the Eitan prior art transistor 400. However, to the extent that region 1460 can be made to be self aligned to the drain so that parameter Lp is not sensitive to mask alignment, then any variability in L1 is of secondary importance, Lp being the controlling parameter.
- a new method is disclosed for manufacturing the split channel Eprom transistor 1400 which results in much better control of the parameter Lp and of the surface channel doping concentration 1413 than is provided by the DSA (Diffusion Self Align) approach of the Tanaka prior art transistor 400e (FIG. 4e).
- a thin oxide layer 1475 typically 50 nanometers of silicon dioxide, is covered with a layer 1474 of silicon nitride, approximately 100 nanometers thick. This in turn is covered with a second layer 1473 of deposited silicon dioxide, approximately 100 nanometers thick.
- Oxide 1475 and nitride 1474 can, for example, be the same films used to form isoplanar isolation regions in the periphery of the memory array.
- a photoresist mask P.R.1 (1470) is used to define source and drain regions in long parallel strips extending in width between edges 1471, 1472 of openings in the photoresist.
- Exposed oxide layer 1473 is now wet etched in a carefully controlled and timed etch step which includes substantial undercutting of photoresist 1470.
- the extent of undercutting which is measured by the distance Lx between oxide edges 1476 and 1478, will eventually determine the magnitude of parameter Lp.
- Lx is chosen between 300 nanometers and 700 nanometers.
- the three parameters critical for a reproducible Lx are the concentration and temperature of the etch solution (hydrofluoric acid) and the density (i.e., lack of porosity) of the oxide 1473 being etched.
- a second, anisotropic etch is performed, using the same photoresist mask P.R.1 to etch away long strips of the exposed silicon nitride film 1474. Edges 1471, 1472 of P.R.1 (1470) are used to form edges 1480, 1481 respectively in the etched strips of nitride layers.
- Arsenic ion implantation with an ion dose of approximately 5 ⁇ 10 15 cm -2 is performed with an energy sufficient to penetrate oxide film 1475 and dope the surface in long strips of N+ doped regions (1402, 1401).
- Photoresist mask P.R.1 can be used as the mask for this step, but nitride layer 1474 can serve equally well as the implant mask. P.R.1 is stripped at the completion of this step.
- An implant damage anneal and surface oxidation step follows, resulting in 200 to 300 nanometers of silicon dioxide 1462 grown over the source and drain diffusion strips.
- the temperature for this oxidation should be below 1000° C. to minimize the lateral diffusion of the N+ dopants in regions 1402, 1401. If desired it is possible through an extra masking step to remove nitride layer 1474 also from the field regions between adjacent channels, so as to grow oxide film 1462 not only over the source and drain regions but also over the field isolation regions.
- a second photoresist mask P.R.2 (1482) is used to protect the source-side (1401) of the substrate during the subsequent implant step.
- This implant of boron can be performed at relatively high energy sufficient to penetrate through nitride layer 1474 and oxide layer 1475 but not high enough to penetrate top oxide 1473, nitride 1474 and oxide 1475.
- nitride layer 1474 can first be etched along edge 1482, using edge 1478 of the top oxide 1473 as a mask.
- the boron implant dose is in the range of 1 ⁇ 10 13 cm -2 and 1 ⁇ 10 14 cm -2 .
- the surface area of heavy p+ doping 1460 is confined to the very narrow and long strip of width extending between edge 1478 of the top oxide and the edge of the N+ diffusion 1402, and running the length of the drain diffusion strip. Note that the thick oxide 1462 prevents penetration of the boron implant into the drain diffusion strip. This greatly reduces the drain junction capacitance, which is highly desirable for fast reading. Note also that p+ region 1460 is automatically self aligned to drain region 1402 through this process.
- top oxide 1473, nitride 1474 and thin oxide 1475 are now removed by etching. This etching also reduces the thickness of the oxide layer 1462 protecting the source and drain diffusions. It is desirable to leave this film thickness at not less than approximately 100 nanometers at the completion of this etch step.
- a gate oxide 1464 is grown over the surface, including the channel regions, separating between the long source/drain diffusion strips (typical oxide thickness between 15 and 40 nanometers).
- a layer of polysilicon is deposited (thickness between 25 and 400 nanometers), doped N+, masked and etched to form continuous narrow strips of floating gates 1404 mask aligned to run parallel to drain diffusion strips 1402 and to overlap p+ regions 1460.
- a second dielectric 1466, 1411 is grown or deposited on top of the substrate and floating gate strips, respectively.
- This can be a layer of silicon dioxide or a combination of thin films of silicon dioxide and silicon nitride, of combined thickness in the range between 20 and 50 nanometers.
- a second layer of polysilicon is deposited, doped N+ (or silicided for lower resistivity), masked and etched to form control gates 1409 in long strips running perpendicular to the strips of floating gates and source/drain strips.
- Each control gate strip is capacitively coupled to the floating gate strips it crosses over through dielectric film 1411 in the areas where the strips overlap each other.
- Control gates 1409 also control the channel conduction in channel portions L2 not covered by the floating gate strips.
- Each strip of control gates is now covered by a dielectric isolation film (can be thermally grown oxide).
- transistor 1400 With source, drain and channel regions defined by the edges of a thick isoplanar oxidation isolation layer, or to rely for field isolation on oxide 1462 grown also in the field regions, see the option described in step 5 above.)
- Control gate 1409 now runs over a relatively thick oxide 1462 over the source and drain regions.
- a relatively thick oxide is not possible for example with the prior art Eitan cell, where these source and drain regions are formed after, not before, the floating gate is formed. This improves the protection from oxide breakdowns and reduces the parasitic capacitance between control gate and drain.
- drain junction capacitance is less with this cell than with all other prior art devices, because p+ region 1460 is very narrowly confined near the drain diffusion.
- FIG. 6a presents a topological view of a 2 ⁇ 2 memory array consisting of four Flash EEprom transistors 600a, 600b, 600c and 600d in accordance with one embodiment of this invention.
- FIG. 6b presents a cross section view of the same structure along AA of FIG. 6a.
- a second cross section along BB results in the Eprom transistor 500a shown in FIG. 5a.
- Transistor 600a of FIG. 6a is a split channel Eprom transistor which has added to it erase gates 530, 535, which overlap edges 532a, 562a of floating gate 504a.
- Transistor 600a is programmed as a split channel Eprom transistor having a source diffusion 501a, a drain diffusion 502a, and a control gate 509.
- Floating gate 504a and channel portions L1 and L2 are formed in accordance with the split channel Eprom transistor 500a of section I.a. or the split channel Eprom transistor 1400 of section I.b.
- other split channel Eprom devices such as the Eitan, Harari, Masuoka or Samachisa prior art Eprom
- the transistor channel width W is defined by the edges 505, 505a of a thick field oxide 562.
- Transistor 600a is erased by tunneling of electrons from floating gate 504a to erase gates 530, 535 across tunnel dielectrics 531a, 561a on the sidewalls and top surface of the floating gate where it is overlapped by the erase gate.
- Tunnel dielectric film 531a, 561a is normally a layer of Silicon Dioxide grown through thermal oxidation of the heavily N+ doped and textured polycrystalline silicon comprising the floating gate. It is well known in the industry (see for example an article by H. A. R. Wegener titled “Endurance Model for textured-poly floating gate memories", Technical Digest of the IEEE International Electron Device Meeting, Dec. 1984, p. 480) that such a film, when grown under the appropriate oxidation conditions over properly textured doped polysilicon allows an increase by several orders of magnitude of the conduction by electron tunneling even when the film is several times thicker than tunnel dielectric films grown on single crystal silicon (such as the tunnel dielectric films used in the prior art Samachisa and Kynett devices).
- a tunnel dielectric oxide grown to a thickness of 40 nanometers on N+ doped and textured polysilicon can conduct by electronic tunneling approximately the same current density as a tunnel dielectric oxide of 10 nanometers thickness grown on N+ doped single crystal silicon under identical voltage bias conditions. It is believed that this highly efficient tunneling mechanism is a result of sharp asperities at the grain boundaries of the polysilicon which is specially textured to enhance the areal density of such asperities.
- a commonly practiced technique is to first oxidize the surface of the polysilicon at a high temperature to accentuate the texturing, then stripping that oxide and regrowing a tunnel oxide at a lower temperature.
- the oxide film capping such an asperity experiences a local amplification by a factor of four to five of the applied electric field resulting in an efficient localized tunnel injector.
- the advantage provided by the thicker films of tunnel dielectric is that they are much easier to grow in uniform and defect-free layers. Furthermore the electric field stress during tunneling in the thick (40 nanometer) tunnel dielectric is only 25 percent of the stress in the thin (10 nanometer) tunnel dielectric, assuming the same voltage bias conditions. This reduced stress translates into higher reliability and greater endurance to write/erase cycling. For these reasons, all Flash EEprom embodiments of this invention rely on polypoly erase through a relatively thick tunnel dielectric.
- floating gate 504a is formed in a first layer of heavily N+ doped polysilicon of thickness between 25 and 400 nanometers
- erase gates 530, 535 are formed in a second layer of N+ doped polysilicon of thickness between 50 and 300 nanometers
- control gate 509 is formed in a third conductive layer of thickness between 200 and 500 nanometers, which may be N+ doped polysilicon or a polycide, a silicide, or a refractory metal.
- the erase gate can be formed in a relatively thin layer because a relatively high sheet resistivity (e.g., 100 Ohm per square) can be tolerated since almost no current is carried in this gate during tunnel erase.
- the manufacturing process can be somewhat simplified by implementing erase gates 530, 535 in the same conductive layer as that used for control gate 509.
- the spacing Z between the edges of the control gate and the erase gate would then have to be significantly greater than is the case when the control gate and erase gates are implemented in two different conductive layers insulated from each other by dielectric film 567a.
- Transistor 600a employs a field isolation oxide 562 (FIG. 6b) of thickness between 200 and 1000 nanometers.
- Gate oxide 564a protecting channel portion L1 (512a) is thermally grown silicon dioxide of thickness between 15 and 40 nanometers.
- Dielectric film 567a which serves to strongly capacitively couple control gate 509 and floating gate 504a is grown or deposited. It may be silicon dioxide or a combination of thin films of silicon dioxide and oxidized silicon nitride of combined thickness of between 20 and 50 nanometers. This dielectric also serves as part of the gate oxide protecting channel portion L2 (520a) as well as insulation 565a (FIG. 5a) over the source and drain diffusions.
- Erase dielectric 531a, 561a is thermally grown Silicon Dioxide or other deposited dielectrics possessing the appropriate characteristics for efficient erase conduction, such as Silicon Nitride. Its thickness is between 30 and 60 nanometers.
- a point of significance is the fact that the tunnel dielectric area contributing to erase in each cell consisting of the combined areas of 531a and 561a, is insensitive to the mask misalignment between edges 532a, 562a of floating gate 504a and erase gates 530, 530. (Note that each erase gate, such as 535, is shared between two adjacent cells, such as 600a and 600c in this case). Any such misalignment will result in a reduction of the area of the tunnel dielectric at one edge of the floating gate, but also in an increase of equal magnitude in the area available for tunneling at the other edge of the floating gate. This feature permits the construction of a cell with very small area of tunnel dielectric.
- Masuoka implements the erase gate in a first conductive layer 330 and the floating gate in a second conductive layer 304, i.e., in a reverse order to that used in this invention.
- Typical bias voltage conditions necessary to erase memory cells 600a, 600b, 600c and 600d are:
- FIG. 7a A 2 ⁇ 2 array of Flash EEprom cells in accordance with another embodiment of this invention is shown in topological view in FIG. 7a and in two cross sectional views AA and CC in FIGS. 7b and 7c respectively.
- Cross sectional view BB is essentially the same as the split channel Eprom transistor of FIG. 5a.
- Split channel Flash EEprom transistor 700a employs three conductive layers (floating gate 704 erase gates 730, 735 and control gate 709) formed in the same sequence as described in section II in conjunction with the Flash EEprom transistor 600a of FIGS. 6a, 6b.
- the major distinguishing feature of transistor 700a is that erase gates 730, 735, 736 are used not only for tunnel erase but also as the switched off gates of isolation field transistors formed outside the active transistor regions.
- the thick isoplaner isolation oxide 562 of cell 600a (FIG. 6b) is not necessary, and is replaced inside the array of memory cells 700a, 700b, 700c and 700d by a much thinner oxide 762 (FIGS. 7b, 7c) capped with field plates 730, 735, 736, which are held at 0 V at all times except during erasing.
- control gate 709 between its edges 744 and 774 defines channel width W 2 of the series enhancement channel portion L2 (FIG. 7c). This permits the reduction in overall cell width due to removal of the requirement for the control gate to overlap the edges of the isoplaner oxide.
- One precaution necessary in the fabrication of cell 700a is that any misalignment between the mask layers defining edge 732a of floating gate 704a, edge 784 of erase gate 730, and edge 744 of control gate 709 must not be allowed to create a situation where a narrow parasitic edge transistor is created under control gate 709 in parallel with the split channel L1 and L2.
- erase gates 730, 736 and control gate 709 are formed in two separate conductive layers which are isolated from each other by dielectric insulator film 767 (FIG. 7b) there is no requirement placed on the magnitude of the spatial separation Z between edge 784 and edge 744. In fact, the two edges can be allowed to overlap each other through oversizing or through misalignment, i.e., Z can be zero or negative. Dielectric insulator 767 also forms part of the gate dielectric 766 (FIG. 7c) over channel portion L2.
- source diffusion 701 and drain diffusion 702 can be formed in long strips. If transistor 500a is used as the Eprom transistor, then source diffusion edge 721 is self aligned to the previously discussed sidewall spacer (not shown) while drain diffusion edge 723 is self aligned to edge 722 of floating gate 704a. In areas between adjacent floating gates 704a, 704c the source and drain diffusion edges (721x, 723x in FIG. 7a) respectively must be prevented from merging with one another.
- this embodiment also in conjunction with Eprom cell 1400 (FIG. 14c) or with any other prior art split channel Eproms so long as they do not have their isoplanar isolation oxide inside the memory array.
- FIG. 8a 2 ⁇ 2 array of cells 800a, 800b, 800c and 800d are shown in FIG. 8a in topological view and in FIG. 8b along the same cross section direction AA as is the case in FIG. 7b for cells 700a, 700c.
- Cell 800a has a floating gate 804a formed in a first layer of heavily N+ doped polysilicon. This gate controls the transistor conduction in channel portion L1 (FIG. 8a) through gate oxide insulation film 864.
- Control gate 809 is formed in the second conductive layer, and is insulated from the floating gate by dielectric film 867, which may be a thermally grown oxide or a combination of thin silicon dioxide and silicon nitride films. Edges 874, 844 of control gate 809 are used as a mask to define by self aligned etching the edges 862a, 832a respectively of floating gate 804a.
- Erase gates 830, 835 are formed in a third conductive layer and are made to overlap edges 832a, 862a of floating gate 804a. Each erase gate such as 830 is shared by two adjacent cells (such as 800a, 800c).
- the erase gates are insulated from control gate 809 by dielectric insulator 897 which is grown or deposited prior to deposition of erase gates 830, 835, 836.
- Tunnel erase dielectrics 831a, 861a are confined to the surface of the vertical edges 832a, 862a of the floating gate 804a.
- Erase gate 830 also provides a field plate isolation over oxide 862 in the field between adjacent devices.
- the thickness of all conducting and insulating layers in structure 800 are approximately the same as those used in structure 700a. However, because the erase gate is implemented here after, rather than before the control gate, the fabrication process sequence is somewhat different. Specifically (see FIGS. 8a, 8b):
- Floating gates 804a, 804c are formed in long continuous and narrow strips on top of gate oxide 864. The width of each such strip is L1 plus the extent of overlap of the floating gate over the drain diffusion.
- Dielectric 867 is formed and the second conductive layer (N+ doped polysilicon or a silicide) is deposited.
- Control gates 809 are defined in long narrow strips in a direction perpendicular to the direction of the strips of floating gates. The strips are etched along edges 844, 874, and insulated with relatively thick dielectric 897.
- Edges 844, 874 are then used to etch dielectric 867 and then, in a self aligned manner to also etch vertical edges 832a and 862a of the underlying floating gate strips, resulting in isolated floating gates which have exposed edges of polysilicon only along these vertical walls.
- Tunnel dielectric films 831a, 861a are formed by thermal oxidation of these exposed surfaces.
- a third conductive layer is deposited, from which are formed erase gates 830 in long strips running in between and parallel to adjacent strips of control gates. These erase gates also serve as field isolation plates to electrically isolate between adjacent regions in the memory array.
- Flash EEprom transistor 800a can be implemented in conjunction with any of the split channel Eprom transistors of this invention (transistors 500a and 1400) or with any of the prior art split gate Eprom transistors of Eitan, Samachisa, Masuoka or Harari.
- an array of Flash EEprom transistors 800a can be fabricated by adding a few process steps to the fabrication process for the split channel Eprom transistor 1400 (FIG. 14c), as follows:
- Steps 1 through 10 are identical to steps 1 through 10 described in Section I.b. in conjunction with the manufacturing process for split channel Eprom transistor 1400.
- Steps 11, 12, and 13 are the process steps 4, 5, and 6 respectively described in this section IV in conjunction with split channel Flash EEprom transistor 800a.
- Cell 800a results in a very small area of tunnel erase, which is also relatively easy to control (it is not defined by a mask dimension, but rather by the thickness of the deposited layer constituting the floating gates). For this reason, this cell is the most highly scalable embodiment of this invention.
- a 2 ⁇ 2 array of Flash EEprom cells 900a, 900b, 900c and 900d in accordance with a fourth embodiment of this invention is shown in topological view in FIG. 9a and in two cross sectional views AA and DD in FIGS. 9b and 9c respectively.
- Cross section BB of FIG. 9a yields the split channel Eprom structure 500a of FIG. 5a.
- Transistor 900a is a split channel Flash EEprom transistor having channel portions L1 and L2 formed by self alignment as in Eprom transistor 500a or in a non self aligned manner as in Eprom transistor 1400.
- Erase gate 930 is a narrow conductive strip sandwiched between floating gate 904a on the bottom and control gate 909 on top.
- Erase gate 930 is located away from edges 932a, 962a of the floating gate. These edges therefore play no role in the tunnel erase, which takes place through tunnel dielectric 931 confined to the area where erase gate 930 overlaps floating gate 904a.
- Erase gate 930 also overlaps a width W e of the series enhancement channel portion L2.
- erase gate 930 is held at 0 V, and therefore the channel portion of width W e does not contribute to the read or program current.
- the only contribution to conduction in channel portion L2 comes from widths W p and W q where the channel is controlled directly by control gate 909.
- Channel portion L1 however sees conduction contributions from all three widths, W p , W q and W e .
- Edges 932a, 962a of floating gate 904a can be etched to be self aligned to edges 944, 974 respectively of control gate 909. This then permits the formation of channel stop field isolation 998, by implanting a p type dopant in the field regions not protected by the control gate or floating gate (FIG. 9b).
- erase gate strips 930, 936 can be made very narrow by taking advantage of controlled undercutting by for example isotropic etchings of the conductive layer forming these strips. This results in a small area of tunnel erase, which is insensitive to mask misalignment. Furthermore the channel width W p and W q is also insensitive to mask misalignment.
- This embodiment of Flash EEprom can also be implemented in conjunction with prior art split channel Eproms cells such as the Eitan, Harari, Samachisa or Masuoka cells.
- FIG. 10 represents a schematic of the major capacitances which couple the floating gate of the split channel Flash EEprom cells of this invention to the surrounding electrodes.
- C G Capacitance between Floating gate 1104 and control gate 1109.
- C D Capacitance between Floating gate 1104 and drain diffusion 1102.
- C B Capacitance between Floating gate 1104 and substrate 1163.
- C E Capacitance between Floating gate 1104 and erase gate 1130.
- C T C G +C D +C B +C E is the total capacitance.
- the voltage V FG on Floating gate 1104 is proportional to voltages V CG , V ERASE , V D , V BB and to the charge Q according to the following equation: ##EQU1##
- C T the dominant factor in C T is C G , the coupling to the control gate.
- C B the coupling to the control gate.
- C B is also a major contributor by virtue of the fact that the entire bottom surface of the floating gate is strongly coupled to the substrate.
- Embodiments 700a, 800a and 900a allow this condition to be readily met: C E is small since the area of tunnel dielectric is small, and C T is large because both C G and C B are large. These embodiments are therefore particularly well suited for efficiently coupling the erase voltage across the tunnel dielectric.
- the split channel Flash EEprom device can be viewed as a composite transistor consisting of two transistors T1 and T2 in series -- FIG. 11a.
- Transistor T1 is a floating gate transistor of effective channel length L1 and having a variable threshold voltage V T1 .
- Transistor T2 has a fixed (enhancement) threshold voltage V T2 and an effective channel length L2.
- the Eprom programming characteristics of the composite transistor are shown in curve (a) of FIG. 11b.
- V CG no programming can occur if either one of V CG or V D is at 0 V.
- Prior art devices employ a so called "intelligent programming" algorithm whereby programming pulses are applied, each of typically 100 microseconds to 1 millisecond duration, followed by a sensing (read) operation. Pulses are applied until the device is sensed to be fully in the off state, and then one to three more programming pulses are applied to ensure solid programmability.
- Prior art split channel Flash EEprom devices erase with a single pulse of sufficient voltage V ERASE and sufficient duration to ensure that V T1 is erased to a voltage below V T2 (curve b) in FIG. 11b).
- V ERASE sufficient voltage
- V T2 voltage below V T2
- the floating gate transistor may continue to erase into depletion mode operation (line (C) in FIG. 11b)
- the true memory storage window should be represented by the full swing of V tx for transistor T1.
- This invention proposes for the first time a scheme to take advantage of the full memory window. This is done by using the wider memory window to store more than two binary states and therefore more than a single bit per cell. For example, it is possible to store 4, rather than 2 states per cell, with these states having the following threshold voltage:
- the conduction current I DS of the composite transistor for all 4 states is shown as a function of V CG in FIG. 11c.
- a current sensing amplifier is capable of easily distinguishing between these four conduction states.
- the maximum number of states which is realistically feasible is influenced by the noise sensitivity of the sense amplifier as well as by any charge loss which can be expected over time at elevated temperatures. Eight distinct conduction states are necessary for 3 bit storage per cell, and 16 distinct conduction states are required for 4 bit storage per cell.
- Multistate memory cells have previously been proposed in conjunction with ROM (Read Only Memory) devices and DRAM (Dynamic Random Access Memory).
- ROM Read Only Memory
- DRAM Dynamic Random Access Memory
- each storage transistor can have one of several fixed conduction states by having different channel ion implant doses to establish more than two permanent threshold voltage states.
- more than two conduction states per ROM cell can be achieved by establishing with two photolithographic masks one of several values of transistor channel width or transistor channel length.
- each transistor in a ROM array may be fabricated with one of two channel widths and with one of two channel lengths, resulting in four distinct combinations of channel width and length, and therefore in four distinct conductive states.
- Prior art multistate DRAM cells have also been proposed where each cell in the array is physically identical to all other cells.
- the programming algorithm allow programming of the device into any one of several conduction states.
- the device be erased to a voltage V T1 more negative than the "3" state (-3.0 V in this example).
- the device is programmed in a short programming pulse, typically one to ten microseconds in duration. Programming conditions are selected such that no single pulse can shift the device threshold by more than one half of the threshold voltage difference between two successive states.
- FIG. 11e An example of one such circuit is shown in FIG. 11e.
- an array of memory cells has decoded word lines and decoded bit lines connected to the control gates and drains respectively of rows and columns of cells.
- Each bit line is normally precharged to a voltage of between 1.0 V and 2.0 V during the time between read, program or erase.
- four sense amplifiers each with its own distinct current reference levels IREF,0, IREF,1, IREF,2, and IREF,3 are attached to each decoded output of the bit line.
- the current through the Flash EEprom transistor is compared simultaneously (i.e., in parallel) with these four reference levels (this operation can also be performed in four consecutive read cycles using a single sense amplifier with a different reference applied at each cycle, if the attendant additional time required for reading is not a concern).
- the data output is provided from the four sense amplifiers through four Di buffers (D0, D1, D2 and D3).
- the four data inputs Ii (I0, I1, I2 and I3) are presented to a comparator circuit which also has presented to it the four sense amp outputs for the accessed cell. If Di match Ii, then the cell is in the correct state and no programming is required. If however all four Di do not match all four Ii, then the comparator output activates a programming control circuit. This circuit in turn controls the bit line (VPBL) and word line (VPWL) programming pulse generators. A single short programming pulse is applied to both the selected word line and the selected bit line. This is followed by a second read cycle to determine if a match between Di and Ii has been established. This sequence is repeated through multiple programming/reading pulses and is stopped only when a match is established (or earlier if no match has been established but after a preset maximum number of pulses has been reached).
- each cell is programmed into any one of the four conduction states in direct correlation with the reference conduction states I REF , i.
- the same sense amplifiers used during programming/reading pulsing are also used during sensing (i.e., during normal reading).
- This allows excellent tracking between the reference levels (dashed lines in FIG. 11c) and the programmed conduction levels (solid lines in FIG. 11c), across large memory arrays and also for a very wide range of operating temperatures.
- the device experiences the minimum amount of endurance-related stress possible.
- I REF In actual fact, although four reference levels and four sense amplifiers are used to program the cell into one of four distinct conduction states, only three sense amplifiers and three reference levels are required to sense the correct one of four stored states.
- I REF In FIG. 11c, I REF ("2") can differentiate correctly between conduction states “3" and “2”, I REF ("1") can differentiate correctly between conduction states “2” and “1”, and I REF ("0") can differentiate correctly between conduction states "1” and "0".
- circuits of FIG. 11e can be used also with binary storage, or with storage of more than four states per cell.
- circuits other than the one shown in FIG. 11e are also possible.
- voltage level sensing rather than conduction level sensing can be employed.
- states “3" and “2" are the result of net positive charge (holes) on the floating gate while states “1" and “0” are the result of net negative charge (electrons) on the floating gate.
- states “3" and “2” are the result of net positive charge (holes) on the floating gate while states “1" and “0” are the result of net negative charge (electrons) on the floating gate.
- Flash EEprom devices The endurance of Flash EEprom devices is their ability to withstand a given number of program/erase cycles.
- the physical phenomenon limiting the endurance of prior art Flash EEprom devices is trapping of electrons in the active dielectric films of the device (see the Wegener article referenced above).
- the dielectric used during hot electron channel injection traps part of the injected electrons.
- the tunnel erase dielectric likewise traps some of the tunneled electrons.
- dielectric 212 traps electrons in region 207 during programming and in region 208 during erasing. The trapped electrons oppose the applied electric field in subsequent write/erase cycles thereby causing a reduction in the threshold voltage shift of V tx .
- Flash EEprom devices specify a sufficiently long erase pulse duration to allow proper erase after 1 ⁇ 10 4 cycles. However this also results in virgin devices being overerased and therefore being unnecessarily overstressed.
- FIG. 12 outlines the main steps in the sequence of the new erase algorithm. Assume that a block array of mxn memory cells is to be fully erased (Flash erase) to state "3" (highest conductivity and lowest V T1 state). Certain parameters are established in conjunction with the erase algorithm. They are listed in FIG. 12: V 1 is the erase voltage of the first erase pulse. V 1 is lower by perhaps 5 volts from the erase voltage required to erase a virgin device to state "3" in a one second erase pulse. t is chosen to be approximately 1/10th of the time required to fully erase a virgin device to state "3". Typically, V 1 may be between 10 and 20 volts while t may be between 10 and 100 milliseconds.
- a cell is considered to be fully erased when its read conductance is greater than I "3" .
- the number S of complete erase cyclings experienced by each block is an important information at the system level. If S is known for each block then a block can be replaced automatically with a new redundant block once S reaches 1 ⁇ 10 6 (or any other set number) of program/erase cycles. S is set at zero initially, and is incremented by one for each complete block erase multiple pulse cycle.
- the value of S at any one time can be stored by using for example twenty bits (2 20 equals approximately 1 ⁇ 10 6 ) in each block. That way each block carries its own endurance history. Alternatively the S value can be stored off chip as part of the system.
- N is greater than x (array not adequately erased) a second erase pulse is applied of magnitude greater by ⁇ V than the magnitude of the first pulse, with the same pulse duration, t. Read diagonal cells, count N.
- the final erase pulse is applied to assure that the array is solidly and fully erased.
- the magnitude of V ERASE can be the same as in the previous pulse or higher by another increment ⁇ V.
- the duration can be between 1t and 5t.
- N is greater than X, then address locations of the N unerased bits are generated, possibly for substitution with redundant good bits at the system level. If N is significantly larger than X (for example, if N represents perhaps 5% of the total number of cells), then a flag may be raised, to indicate to the user that the array may have reached its endurance end of life.
- S is incremented by one and the new S is stored for future reference. This step is optional.
- the new S can be stored either by writing it into the newly erased block or off chip in a separate register file.
- the erase cycle is ended.
- the complete cycle is expected to be completed with between 10 to 20 erase pulses and to last a total of approximately one second.
- FIG. 13 shows the four conduction states of the Flash EEprom devices of this invention as a function of the number of program/erase cycles. Since all four states are always accomplished by programming or erasing to fixed reference conduction states, there is no window closure for any of these states at least until 1 ⁇ 10 6 cycles.
- a Flash EEprom memory chip it is possible to implement efficiently the new erase algorithm by providing on chip (or alternatively on a separate controller chip) a voltage multiplier to provide the necessary voltage V1 and voltage increments ⁇ V to n ⁇ V, timing circuitry to time the erase and sense pulse duration, counting circuitry to count N and compare it with the stored value for X, registers to store address locations of bad bits, and control and sequencing circuitry, including the instruction set to execute the erase sequence outlined above.
- Flash EEprom embodiments 600a, 700a, 800a, and 900a of this invention use tunnel erase across a relatively thick dielectric oxide grown on the textured surface of the polysilicon floating gate.
- Wegener has postulated that asperities -- small, bump-like, curved surfaces of diameter of approximately 30 nanometers, enhance the electric field at the injector surface (in this case, the floating gate) by a factor of 4 to 5, thereby allowing efficient tunnel conduction to occur even across a relatively thick tunnel dielectric film (30 to 70 nanometers).
- process steps such as high temperature oxidation of the polysilicon surface, to shape the surface of the polysilicon so as to accentuate these asperities. Although such steps are reproducible, they are empirical in nature, somewhat costly to implement, and not well understood.
- a new approach is disclosed in this invention which results in a highly reproducible, enhanced electric field tunnel erase which is more efficient than the asperities method yet simpler to implement in several EEprom and Flash EEprom devices.
- the floating gate layer is deposited in a very thin layer, typically in the range between 25 and 200 nanometers. This is much thinner than floating gates of all prior art Eprom, EEprom or Flash EEprom devices, which typically use a layer of polysilicon of thickness at least 200 nanometers, and usually more like 350 to 450 nanometers.
- the prior art polysilicon thickness is chosen to be higher than 200 nanometers primarily because of the lower sheet resistivity and better quality polyoxides provided by the thicker polysilicon.
- the floating gate also serves as an implant mask (FIG. 4b) and must therefore be sufficiently thick to prevent penetration of the implant ions.
- the spacer formation (FIGS. 5b through 5f) cannot be readily implemented if floating gate 504a is 100 nanometers or less in thickness.
- Eprom transistor 1400 (FIG. 14c) and Flash EEprom transistors 600a (FIG. 6a), 700a (FIG. 7a), 800a (FIG. 8a) and 900a (FIG. 9a) as well as the Kupec prior art transistor 200b (FIG. 2b) can all be implemented with a floating gate of thickness 100 nanometers or less to achieve a significant improvement in erase efficiency.
- edges of the floating gate in such a thin layer can be tailored through oxidation to form extremely sharp-tipped edges.
- the radius of curvature of these tipped edges can be made extremely small and is dictated by the thickness of the thin polysilicon film as well as the thickness of the tunnel dielectric grown. Therefore, tunnel erase from these sharp tips no longer depends on surface asperities but instead is dominated by the tip itself.
- Flash EEprom transistor 800a (FIG. 8a) in two different embodiments, a relatively thick floating gate (transistor 800a shown in FIG. 8b and FIG. 16a) and the same transistor modified to have a very thin floating gate (transistor 800M shown in FIG. 16b).
- floating gate 804a In the cross section view of FIG. 16a (corresponding to direction AA of FIG. 8a), floating gate 804a is approximately 300 nanometers thick. Its vertical edges 862a, 832a are shown having a multitude of small asperities at the surface. Each asperity acts as an electron injector during tunnel erase (shown by the direction of the arrows across tunnel dielectric layers 861a, 831a). Injected electrons are collected by erase gates 835, 830 which overlap vertical edges 862a, 832a.
- modified transistor 800M is shown in FIG. 16b (along the same cross section AA of FIG. 8a) shows a transistor with floating gate 804M of thickness 100 nanometers or less.
- Dielectric layers 864 and 867 as well as control gate 809 can be the same as in transistor 800a.
- Equation (4) basically states that when C E is very small relative to C T , then essentially 100% of the erase voltage V ERASE is effectively applied across the tunnel dielectric layer of thickness t. This allows a reduction of the magnitude of V ERASE necessary to erase the device.
- C E allows all other device capacitances contributing to C T (in FIG. 10) to be made small, which leads to a highly scalable Flash EEprom device.
- the thinner floating gate also helps to improve metalization step coverage and to reduce the propensity to form polysilicon stringers in the manufacturing process.
- the very thin floating gate should not be overly heavily doped, to avoid penetration of the N+ dopant through polysilicon 804M and gate dielectric 864. Since floating gate 804M is never used as a current conductor, a sheet resistivity of between 100 and 10,000 Ohms per square in quite acceptable.
- a thin floating gate layer provides a relatively straight forward approach to achieving after oxidation sharp-tipped edges
- other approaches are possible to achieve sharp-tipped edges even in a relatively thick floating gate layer.
- a relatively thick layer forming floating gate 804 is etched with a reentrant angle of etching. After oxidation, a sharp tip 870 is formed at the top edge, facilitating high field tunneling 861 to the erase gate 830 deposited on top of the tunnel erase dielectric 831.
- the erase gate is deposited before the floating gate.
- Erase gate 830 is etched so as to create a reentrant cavity close to its bottom surface.
- Tunnel erase dielectric 831 is then grown, followed by deposition and formation of floating gate 804.
- Floating gate 804 fills the narrow reentrant cavity where a sharp tip 870 is formed, which facilitates the high field tunneling 861.
- the device of FIG. 16d has asperities formed at the surface of the erase gate whereas all other devices described in this invention have asperities formed at the surfaces of their floating gate.
- the Flash EEprom cells of this invention can be implemented in dense memory arrays in several different array architectures.
- the first architecture, shown in FIG. 15a is the one commonly used in the industry for Eprom arrays.
- the 3 ⁇ 2 array of FIG. 15a shows two rows and three columns of Flash EEprom transistors.
- Transistors T10, T11, T12 along the first row share a common control gate (word line) and a common source S.
- Each transistor in the row has its own drain D connected to a column bit line which is shared with th drains of all other transistors in the same column.
- the floating gates of all transistors are adjacent their drains, away from their sources.
- Erase lines are shown running in the bit line direction (can also run in the word line direction), with each erase line coupled (through the erase dielectric) to the floating gates of the transistors to the left and to the right of the erase line.
- the voltage conditions for the different modes of operation are shown in Table I (FIG. 17a) for the selected cell as well as for unselected cells sharing either the same row (word line) or the same column (bit line).
- all erase lines are brought high. However, it is also possible to erase only sectors of the array by taking V ERASE high for pairs of erase gates only in these sectors, keeping all other erase lines at 0 V.
- FIG. 15a A second Flash EEprom memory array architecture which lends itself to better packing density than the array of FIG. 15a is known as the virtual ground array (for a detailed description of this array architecture, see the Harari patent referenced herein).
- FIGS. 6a, 7a, 8a and 9a A topological view of such an array of cells was provided in FIGS. 6a, 7a, 8a and 9a.
- FIG. 15b A schematic representation of a 2 ⁇ 2 virtual ground memory array corresponding to the array of FIG. 6a is shown in FIG. 15b.
- the source and drain regions are used interchangeably.
- diffusion 502 is used as the drain of transistor 600a and as the source of transistor 600b.
- the term "virtual ground comes from the fact that the ground supply applied to the source is decoded rather than hard-wired.
- This decoding allows the source to be used interchangeably as ground line or drain.
- the operating conditions in the virtual ground array are given in Table II (FIG. 17b). They are essentially the same as that for the standard architecture array, except that all source and drain columns of unselected cells are left floating during programming to prevent accidental program disturbance. During reading all columns are pulled up to a low voltage (about 1.5 V) and the selected cell alone has its source diffusion pulled down close to ground potential so that its current can be sensed.
- the array can be erased in a block, or in entire rows by decoding the erase voltage to the corresponding erase lines.
- the split channel Flash EEprom devices 600a, 700a, 800a and 900a can equally well be formed in conjunction with a split channel Eprom composite transistor 500a having channel portions L1 and L2 formed in accordance with the one-sided spacer sequence outlined in FIGS. 5b through 5f, or in accordance with Eprom transistor 1400, or with Eprom transistors formed in accordance with other self-aligning process techniques or, altogether in non self-aligning methods such as the ones employed in the prior art by Eitan, Samachisa, Masuoka and Harari. Therefore, the invention is entitled to protection within the full scope of the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
V.sub.FG =Q/C.sub.T +20C.sub.E /C.sub.T (2)
E.sub.ERASE =V.sub.ERASE /t-V.sub.FG /t (3)
C.sub.E <<C.sub.T,
Therefore, V.sub.FG =Q/C.sub.T, and
E.sub.ERASE =(V.sub.ERASE -Q/C.sub.T)/t.
E.sub.ERASE =V.sub.ERASE /t (4)
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/641,508 US5168465A (en) | 1988-06-08 | 1991-01-15 | Highly compact EPROM and flash EEPROM devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/204,175 US5095344A (en) | 1988-06-08 | 1988-06-08 | Highly compact eprom and flash eeprom devices |
US07/641,508 US5168465A (en) | 1988-06-08 | 1991-01-15 | Highly compact EPROM and flash EEPROM devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/204,175 Division US5095344A (en) | 1988-06-08 | 1988-06-08 | Highly compact eprom and flash eeprom devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/994,370 Division US5311241A (en) | 1990-01-16 | 1992-12-21 | Focus detecting apparatus detecting focus to a plurality of areas |
Publications (1)
Publication Number | Publication Date |
---|---|
US5168465A true US5168465A (en) | 1992-12-01 |
Family
ID=26899259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/641,508 Expired - Lifetime US5168465A (en) | 1988-06-08 | 1991-01-15 | Highly compact EPROM and flash EEPROM devices |
Country Status (1)
Country | Link |
---|---|
US (1) | US5168465A (en) |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268318A (en) * | 1988-06-08 | 1993-12-07 | Eliyahou Harari | Highly compact EPROM and flash EEPROM devices |
US5268319A (en) * | 1988-06-08 | 1993-12-07 | Eliyahou Harari | Highly compact EPROM and flash EEPROM devices |
US5270979A (en) * | 1991-03-15 | 1993-12-14 | Sundisk Corporation | Method for optimum erasing of EEPROM |
US5331592A (en) * | 1992-05-15 | 1994-07-19 | Nec Corporation | Non-volatile semiconductor memory device with erasure control circuit |
US5343424A (en) * | 1993-04-16 | 1994-08-30 | Hughes Aircraft Company | Split-gate flash EEPROM cell and array with low voltage erasure |
US5349220A (en) * | 1993-08-10 | 1994-09-20 | United Microelectronics Corporation | Flash memory cell and its operation |
US5367185A (en) * | 1990-06-29 | 1994-11-22 | Sharp Kabushiki Kaisha | Non-volatile semiconductor memory with third electrode covering control gate |
US5388083A (en) * | 1993-03-26 | 1995-02-07 | Cirrus Logic, Inc. | Flash memory mass storage architecture |
US5402371A (en) * | 1992-10-09 | 1995-03-28 | Oki Electric Industry Co., Ltd. | Method of writing data into and erasing the same from semiconductor nonvolatile memory |
DE4333978A1 (en) * | 1993-10-05 | 1995-04-13 | Gold Star Electronics | Nonvolatile semiconductor memory and method for production thereof |
US5457606A (en) * | 1993-11-10 | 1995-10-10 | Raymond Engineering Inc. | Hermetically sealed PC card unit including a header secured to a connector |
US5479638A (en) * | 1993-03-26 | 1995-12-26 | Cirrus Logic, Inc. | Flash memory mass storage architecture incorporation wear leveling technique |
US5519843A (en) * | 1993-03-15 | 1996-05-21 | M-Systems | Flash memory system providing both BIOS and user storage capability |
US5596486A (en) * | 1993-11-10 | 1997-01-21 | Kaman Aerospace Corporation | Hermetically sealed memory or PC card unit having a frame, header and covers in bonded engagement |
US5629548A (en) * | 1994-02-12 | 1997-05-13 | Kabushiki Kaisha Toshiba | Semiconductor device with adjustable channel width |
US5638320A (en) * | 1994-11-02 | 1997-06-10 | Invoice Technology, Inc. | High resolution analog storage EPROM and flash EPROM |
US5650649A (en) * | 1993-12-14 | 1997-07-22 | Nec Corporation | Floating gate type field effect transistor having control gate applied with pulses for evacuating carriers from p-type semiconductor floating gate |
US5652719A (en) * | 1993-09-21 | 1997-07-29 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device |
US5680341A (en) * | 1996-01-16 | 1997-10-21 | Invoice Technology | Pipelined record and playback for analog non-volatile memory |
US5706227A (en) * | 1995-12-07 | 1998-01-06 | Programmable Microelectronics Corporation | Double poly split gate PMOS flash memory cell |
US5708285A (en) * | 1994-09-13 | 1998-01-13 | Mitsubishi Denki Kabushiki Kaisha | Non-volatile semiconductor information storage device |
US5719808A (en) * | 1989-04-13 | 1998-02-17 | Sandisk Corporation | Flash EEPROM system |
US5760438A (en) * | 1995-05-26 | 1998-06-02 | Cypress Semiconductor Corporation | High speed flash memory cell structure and method |
US5760435A (en) * | 1996-04-22 | 1998-06-02 | Chartered Semiconductor Manufacturing, Ltd. | Use of spacers as floating gates in EEPROM with doubled storage efficiency |
US5778418A (en) * | 1991-09-27 | 1998-07-07 | Sandisk Corporation | Mass computer storage system having both solid state and rotating disk types of memory |
US5812449A (en) * | 1995-05-16 | 1998-09-22 | Hyundai Electronics Industries Co., Ltd. | Flash EEPROM cell, method of manufacturing the same, method of programming and method of reading the same |
US5814857A (en) * | 1993-10-28 | 1998-09-29 | Goldstar Electron Company, Ltd. | EEPROM flash memory cell, memory device, and process for formation thereof |
US5859454A (en) * | 1996-11-15 | 1999-01-12 | Lg Semicon Co., Ltd. | Nonvolatile memory device |
US5969986A (en) * | 1998-06-23 | 1999-10-19 | Invox Technology | High-bandwidth read and write architectures for non-volatile memories |
US5991195A (en) * | 1992-07-10 | 1999-11-23 | Sony Corporation | Flash EEPROM with erase verification and address scrambling architecture |
US6002614A (en) * | 1991-02-08 | 1999-12-14 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US6034897A (en) * | 1999-04-01 | 2000-03-07 | Lexar Media, Inc. | Space management for managing high capacity nonvolatile memory |
US6040997A (en) * | 1998-03-25 | 2000-03-21 | Lexar Media, Inc. | Flash memory leveling architecture having no external latch |
US6040993A (en) * | 1998-02-23 | 2000-03-21 | Macronix International Co., Ltd. | Method for programming an analog/multi-level flash EEPROM |
US6081447A (en) * | 1991-09-13 | 2000-06-27 | Western Digital Corporation | Wear leveling techniques for flash EEPROM systems |
US6104640A (en) * | 1991-02-08 | 2000-08-15 | Btg International Inc. | Electrically alterable non-violatile memory with N-bits per cell |
US6122195A (en) * | 1997-03-31 | 2000-09-19 | Lexar Media, Inc. | Method and apparatus for decreasing block write operation times performed on nonvolatile memory |
US6128695A (en) * | 1995-07-31 | 2000-10-03 | Lexar Media, Inc. | Identification and verification of a sector within a block of mass storage flash memory |
US6141249A (en) * | 1999-04-01 | 2000-10-31 | Lexar Media, Inc. | Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time |
US6202138B1 (en) | 1995-07-31 | 2001-03-13 | Lexar Media, Inc | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US6208557B1 (en) * | 1999-05-21 | 2001-03-27 | National Semiconductor Corporation | EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming |
US6256755B1 (en) | 1998-10-19 | 2001-07-03 | International Business Machines Corporation | Apparatus and method for detecting defective NVRAM cells |
US6262918B1 (en) | 1999-04-01 | 2001-07-17 | Lexar Media, Inc. | Space management for managing high capacity nonvolatile memory |
US6314025B1 (en) | 1998-06-23 | 2001-11-06 | Sandisk Corporation | High data rate write process for non-volatile flash memories |
US6346725B1 (en) | 1998-05-22 | 2002-02-12 | Winbond Electronics Corporation | Contact-less array of fully self-aligned, triple polysilicon, source-side injection, nonvolatile memory cells with metal-overlaid wordlines |
US6353554B1 (en) | 1995-02-27 | 2002-03-05 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US6356479B1 (en) * | 2000-06-05 | 2002-03-12 | Oki Electric Industry Co., Ltd. | Semiconductor memory system |
US6374337B1 (en) | 1998-11-17 | 2002-04-16 | Lexar Media, Inc. | Data pipelining method and apparatus for memory control circuit |
US6411546B1 (en) | 1997-03-31 | 2002-06-25 | Lexar Media, Inc. | Nonvolatile memory using flexible erasing methods and method and system for using same |
US6429472B2 (en) * | 2000-03-16 | 2002-08-06 | Samsung Electronics Co., Ltd. | Split gate type flash memory |
US6462992B2 (en) | 1989-04-13 | 2002-10-08 | Sandisk Corporation | Flash EEprom system |
US6567307B1 (en) | 2000-07-21 | 2003-05-20 | Lexar Media, Inc. | Block management for mass storage |
US6606267B2 (en) | 1998-06-23 | 2003-08-12 | Sandisk Corporation | High data rate write process for non-volatile flash memories |
US20030195728A1 (en) * | 2002-03-26 | 2003-10-16 | Matsushita Electric Industrial Co., Ltd. | Method of estimating a lifetime of hot carrier of MOS transistor, and simulation of hot carrier degradation |
US6639309B2 (en) | 2002-03-28 | 2003-10-28 | Sandisk Corporation | Memory package with a controller on one side of a printed circuit board and memory on another side of the circuit board |
US6660585B1 (en) | 2000-03-21 | 2003-12-09 | Aplus Flash Technology, Inc. | Stacked gate flash memory cell with reduced disturb conditions |
US20040070021A1 (en) * | 2002-10-09 | 2004-04-15 | Yuan Jack H. | Flash memory array with increased coupling between floating and control gates |
US6728851B1 (en) | 1995-07-31 | 2004-04-27 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US20040080012A1 (en) * | 2002-10-28 | 2004-04-29 | Sung-Ho Kim | Nonvolatile memory device having asymmetric source/drain region and fabricating method thereof |
US20040083335A1 (en) * | 2002-10-28 | 2004-04-29 | Gonzalez Carlos J. | Automated wear leveling in non-volatile storage systems |
US6757800B1 (en) | 1995-07-31 | 2004-06-29 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US20040175888A1 (en) * | 2001-08-08 | 2004-09-09 | Yuan Jack H. | Scalable self-aligned dual floating gate memory cell array and methods of forming the array |
US6801979B1 (en) | 1995-07-31 | 2004-10-05 | Lexar Media, Inc. | Method and apparatus for memory control circuit |
US6813678B1 (en) | 1998-01-22 | 2004-11-02 | Lexar Media, Inc. | Flash memory system |
US20050003616A1 (en) * | 2003-06-20 | 2005-01-06 | Jeffrey Lutze | Self aligned non-volatile memory cell and process for fabrication |
US20050018527A1 (en) * | 2001-09-28 | 2005-01-27 | Gorobets Sergey Anatolievich | Non-volatile memory control |
US20050072999A1 (en) * | 2003-10-06 | 2005-04-07 | George Matamis | Bitline direction shielding to avoid cross coupling between adjacent cells for NAND flash memory |
US6894930B2 (en) | 2002-06-19 | 2005-05-17 | Sandisk Corporation | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
US6898662B2 (en) | 2001-09-28 | 2005-05-24 | Lexar Media, Inc. | Memory system sectors |
US20050162927A1 (en) * | 2002-06-19 | 2005-07-28 | Henry Chien | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
US20050199939A1 (en) * | 2004-03-12 | 2005-09-15 | Lutze Jeffrey W. | Self aligned non-volatile memory cells and processes for fabrication |
US6950918B1 (en) | 2002-01-18 | 2005-09-27 | Lexar Media, Inc. | File management of one-time-programmable nonvolatile memory devices |
US6957295B1 (en) | 2002-01-18 | 2005-10-18 | Lexar Media, Inc. | File management of one-time-programmable nonvolatile memory devices |
US6978342B1 (en) | 1995-07-31 | 2005-12-20 | Lexar Media, Inc. | Moving sectors within a block of information in a flash memory mass storage architecture |
US7000064B2 (en) | 2001-09-28 | 2006-02-14 | Lexar Media, Inc. | Data handling system |
US20060110880A1 (en) * | 2004-11-23 | 2006-05-25 | Yuan Jack H | Self-aligned trench filling with high coupling ratio |
US20060108648A1 (en) * | 2004-11-23 | 2006-05-25 | Yuan Jack H | Memory with self-aligned trenches for narrow gap isolation regions |
US20060134864A1 (en) * | 2004-12-22 | 2006-06-22 | Masaaki Higashitani | Multi-thickness dielectric for semiconductor memory |
US7102671B1 (en) | 2000-02-08 | 2006-09-05 | Lexar Media, Inc. | Enhanced compact flash memory card |
US20060239111A1 (en) * | 2004-04-21 | 2006-10-26 | Masaki Shingo | Non-volatile semiconductor device and method for automatically recovering erase failure in the device |
US7167944B1 (en) | 2000-07-21 | 2007-01-23 | Lexar Media, Inc. | Block management for mass storage |
US7185208B2 (en) | 2001-09-28 | 2007-02-27 | Lexar Media, Inc. | Data processing |
US20070087504A1 (en) * | 2005-10-18 | 2007-04-19 | Pham Tuan D | Integration process flow for flash devices with low gap fill aspect ratio |
US7231643B1 (en) | 2002-02-22 | 2007-06-12 | Lexar Media, Inc. | Image rescue system including direct communication between an application program and a device driver |
US7254724B2 (en) | 2001-09-28 | 2007-08-07 | Lexar Media, Inc. | Power management system |
US7275686B2 (en) | 2003-12-17 | 2007-10-02 | Lexar Media, Inc. | Electronic equipment point-of-sale activation to avoid theft |
US20080001652A1 (en) * | 2006-05-22 | 2008-01-03 | Denso Corporation | Electronic circuit device |
CN100369253C (en) * | 1999-07-14 | 2008-02-13 | 株式会社日立制作所 | Semiconductor integrated circuit device, its manufacturing method and action method |
US7340581B2 (en) | 2001-09-28 | 2008-03-04 | Lexar Media, Inc. | Method of writing data to non-volatile memory |
US7370166B1 (en) | 2004-04-30 | 2008-05-06 | Lexar Media, Inc. | Secure portable storage device |
US20080157169A1 (en) * | 2006-12-28 | 2008-07-03 | Yuan Jack H | Shield plates for reduced field coupling in nonvolatile memory |
US20080160680A1 (en) * | 2006-12-28 | 2008-07-03 | Yuan Jack H | Methods of fabricating shield plates for reduced field coupling in nonvolatile memory |
US7464306B1 (en) | 2004-08-27 | 2008-12-09 | Lexar Media, Inc. | Status of overall health of nonvolatile memory |
US7523249B1 (en) | 1995-07-31 | 2009-04-21 | Lexar Media, Inc. | Direct logical block addressing flash memory mass storage architecture |
US7594063B1 (en) | 2004-08-27 | 2009-09-22 | Lexar Media, Inc. | Storage capacity status |
US20090307140A1 (en) * | 2008-06-06 | 2009-12-10 | Upendra Mardikar | Mobile device over-the-air (ota) registration and point-of-sale (pos) payment |
US7725628B1 (en) | 2004-04-20 | 2010-05-25 | Lexar Media, Inc. | Direct secondary device interface by a host |
US7745285B2 (en) | 2007-03-30 | 2010-06-29 | Sandisk Corporation | Methods of forming and operating NAND memory with side-tunneling |
US7917709B2 (en) | 2001-09-28 | 2011-03-29 | Lexar Media, Inc. | Memory system for data storage and retrieval |
US8171203B2 (en) | 1995-07-31 | 2012-05-01 | Micron Technology, Inc. | Faster write operations to nonvolatile memory using FSInfo sector manipulation |
US10192874B2 (en) * | 2017-06-19 | 2019-01-29 | United Microelectronics Corp. | Nonvolatile memory cell and fabrication method thereof |
US11595820B2 (en) | 2011-09-02 | 2023-02-28 | Paypal, Inc. | Secure elements broker (SEB) for application communication channel selector optimization |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0047153A1 (en) * | 1980-08-29 | 1982-03-10 | Fujitsu Limited | Semiconductor memory device |
US4328565A (en) * | 1980-04-07 | 1982-05-04 | Eliyahou Harari | Non-volatile eprom with increased efficiency |
US4331968A (en) * | 1980-03-17 | 1982-05-25 | Mostek Corporation | Three layer floating gate memory transistor with erase gate over field oxide region |
US4361847A (en) * | 1980-04-07 | 1982-11-30 | Eliyahou Harari | Non-volatile EPROM with enhanced drain overlap for increased efficiency |
US4377818A (en) * | 1978-11-02 | 1983-03-22 | Texas Instruments Incorporated | High density electrically programmable ROM |
JPS5854668A (en) * | 1981-09-29 | 1983-03-31 | Fujitsu Ltd | Electrically erasable read-only memory and manufacture thereof |
JPS58121678A (en) * | 1982-01-12 | 1983-07-20 | Mitsubishi Electric Corp | Semiconductor nonvolatile memory |
US4412311A (en) * | 1980-06-04 | 1983-10-25 | Sgs-Ates Componenti Elettronici S.P.A. | Storage cell for nonvolatile electrically alterable memory |
US4422092A (en) * | 1979-09-17 | 1983-12-20 | Texas Instruments Incorporated | High coupling ratio electrically programmable ROM |
US4462090A (en) * | 1978-12-14 | 1984-07-24 | Tokyo Shibaura Denki Kabushiki Kaisha | Method of operating a semiconductor memory circuit |
US4486769A (en) * | 1979-01-24 | 1984-12-04 | Xicor, Inc. | Dense nonvolatile electrically-alterable memory device with substrate coupling electrode |
US4503519A (en) * | 1981-03-25 | 1985-03-05 | Fujitsu Limited | Semiconductor non-volatile memory element of an electrically erasable type |
US4531203A (en) * | 1980-12-20 | 1985-07-23 | Tokyo Shibaura Denki Kabushiki Kaisha | Semiconductor memory device and method for manufacturing the same |
US4561004A (en) * | 1979-10-26 | 1985-12-24 | Texas Instruments | High density, electrically erasable, floating gate memory cell |
US4577215A (en) * | 1983-02-18 | 1986-03-18 | Rca Corporation | Dual word line, electrically alterable, nonvolatile floating gate memory device |
US4639893A (en) * | 1984-05-15 | 1987-01-27 | Wafer Scale Integration, Inc. | Self-aligned split gate EPROM |
EP0219241A2 (en) * | 1985-10-16 | 1987-04-22 | Seiko Instruments Inc. | Non-volatile semiconductor memory |
US4665417A (en) * | 1984-09-27 | 1987-05-12 | International Business Machines Corporation | Non-volatile dynamic random access memory cell |
JPS62165370A (en) * | 1986-01-16 | 1987-07-21 | Toshiba Corp | Non-volatile semiconductor memory device |
US4717943A (en) * | 1984-06-25 | 1988-01-05 | International Business Machines | Charge storage structure for nonvolatile memories |
JPS6393158A (en) * | 1986-10-07 | 1988-04-23 | Toshiba Corp | Nonvolatile semiconductor storage device |
US4763299A (en) * | 1985-10-15 | 1988-08-09 | Emanuel Hazani | E2 PROM cell and architecture |
US4794565A (en) * | 1986-09-15 | 1988-12-27 | The Regents Of The University Of California | Electrically programmable memory device employing source side injection |
US4803529A (en) * | 1980-11-20 | 1989-02-07 | Tokyo Shibaura Denki Kabushiki Kaisha | Electrically erasable and electrically programmable read only memory |
US4852062A (en) * | 1987-09-28 | 1989-07-25 | Motorola, Inc. | EPROM device using asymmetrical transistor characteristics |
US4935378A (en) * | 1987-03-23 | 1990-06-19 | Kabushiki Kaisha Toshiba | Method for manufacturing a semiconductor device having more than two conductive layers |
-
1991
- 1991-01-15 US US07/641,508 patent/US5168465A/en not_active Expired - Lifetime
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4377818A (en) * | 1978-11-02 | 1983-03-22 | Texas Instruments Incorporated | High density electrically programmable ROM |
US4462090A (en) * | 1978-12-14 | 1984-07-24 | Tokyo Shibaura Denki Kabushiki Kaisha | Method of operating a semiconductor memory circuit |
US4486769A (en) * | 1979-01-24 | 1984-12-04 | Xicor, Inc. | Dense nonvolatile electrically-alterable memory device with substrate coupling electrode |
US4422092A (en) * | 1979-09-17 | 1983-12-20 | Texas Instruments Incorporated | High coupling ratio electrically programmable ROM |
US4561004A (en) * | 1979-10-26 | 1985-12-24 | Texas Instruments | High density, electrically erasable, floating gate memory cell |
US4331968A (en) * | 1980-03-17 | 1982-05-25 | Mostek Corporation | Three layer floating gate memory transistor with erase gate over field oxide region |
US4361847A (en) * | 1980-04-07 | 1982-11-30 | Eliyahou Harari | Non-volatile EPROM with enhanced drain overlap for increased efficiency |
US4328565A (en) * | 1980-04-07 | 1982-05-04 | Eliyahou Harari | Non-volatile eprom with increased efficiency |
US4412311A (en) * | 1980-06-04 | 1983-10-25 | Sgs-Ates Componenti Elettronici S.P.A. | Storage cell for nonvolatile electrically alterable memory |
EP0047153A1 (en) * | 1980-08-29 | 1982-03-10 | Fujitsu Limited | Semiconductor memory device |
US4803529A (en) * | 1980-11-20 | 1989-02-07 | Tokyo Shibaura Denki Kabushiki Kaisha | Electrically erasable and electrically programmable read only memory |
US4531203A (en) * | 1980-12-20 | 1985-07-23 | Tokyo Shibaura Denki Kabushiki Kaisha | Semiconductor memory device and method for manufacturing the same |
US4503519A (en) * | 1981-03-25 | 1985-03-05 | Fujitsu Limited | Semiconductor non-volatile memory element of an electrically erasable type |
JPS5854668A (en) * | 1981-09-29 | 1983-03-31 | Fujitsu Ltd | Electrically erasable read-only memory and manufacture thereof |
JPS58121678A (en) * | 1982-01-12 | 1983-07-20 | Mitsubishi Electric Corp | Semiconductor nonvolatile memory |
US4577215A (en) * | 1983-02-18 | 1986-03-18 | Rca Corporation | Dual word line, electrically alterable, nonvolatile floating gate memory device |
US4639893A (en) * | 1984-05-15 | 1987-01-27 | Wafer Scale Integration, Inc. | Self-aligned split gate EPROM |
US4717943A (en) * | 1984-06-25 | 1988-01-05 | International Business Machines | Charge storage structure for nonvolatile memories |
US4665417A (en) * | 1984-09-27 | 1987-05-12 | International Business Machines Corporation | Non-volatile dynamic random access memory cell |
US4763299A (en) * | 1985-10-15 | 1988-08-09 | Emanuel Hazani | E2 PROM cell and architecture |
EP0219241A2 (en) * | 1985-10-16 | 1987-04-22 | Seiko Instruments Inc. | Non-volatile semiconductor memory |
JPS62165370A (en) * | 1986-01-16 | 1987-07-21 | Toshiba Corp | Non-volatile semiconductor memory device |
US4794565A (en) * | 1986-09-15 | 1988-12-27 | The Regents Of The University Of California | Electrically programmable memory device employing source side injection |
JPS6393158A (en) * | 1986-10-07 | 1988-04-23 | Toshiba Corp | Nonvolatile semiconductor storage device |
US4935378A (en) * | 1987-03-23 | 1990-06-19 | Kabushiki Kaisha Toshiba | Method for manufacturing a semiconductor device having more than two conductive layers |
US4852062A (en) * | 1987-09-28 | 1989-07-25 | Motorola, Inc. | EPROM device using asymmetrical transistor characteristics |
Non-Patent Citations (28)
Title |
---|
A. T. Wu et al., "A Novel High-Speed, 5-Volt Programming EPROM Structure with Source-Side Injection", 1986 IEDM Technical Digest, pp. 584-587. |
A. T. Wu et al., A Novel High Speed, 5 Volt Programming EPROM Structure with Source Side Injection , 1986 IEDM Technical Digest, pp. 584 587. * |
F. Masuoka et al., "A 256K Flash EEPROM Using Triple Polysilicon Technology", Digest of Technical Papers, IEEE International Solid-State Circuits, Feb. 1985, pp. 168-169, 335. |
F. Masuoka et al., A 256K Flash EEPROM Using Triple Polysilicon Technology , Digest of Technical Papers, IEEE International Solid State Circuits, Feb. 1985, pp. 168 169, 335. * |
G. Samachisa et al., "A 128K Flash EEPROM Using Double-Polysilicon Technology", IEEE Journal of Solid State Circuits, Oct. 1987, vol. SC-22, No. 5, pp. 676-683. |
G. Samachisa et al., A 128K Flash EEPROM Using Double Polysilicon Technology , IEEE Journal of Solid State Circuits, Oct. 1987, vol. SC 22, No. 5, pp. 676 683. * |
H. A. R. Wegener, "Endurance Model for Textured-Poly Floating Gate Memories", Technical Digest of the IEEE International Electron Device Meeting, Dec. 1984, pp. 480-483. |
H. A. R. Wegener, Endurance Model for Textured Poly Floating Gate Memories , Technical Digest of the IEEE International Electron Device Meeting, Dec. 1984, pp. 480 483. * |
H. Kume et al., "A Flash-Erase EEPROM Cell with an Asymmetric Source and Drain Structure", Technical Digest of the IEEE International Electron Devices Meeting, Dec. 1987, pp. 560-563. |
H. Kume et al., A Flash Erase EEPROM Cell with an Asymmetric Source and Drain Structure , Technical Digest of the IEEE International Electron Devices Meeting, Dec. 1987, pp. 560 563. * |
J. Kupec et al., "Triple Level Polysilicon EEprom with Single Transistor per Bit", 1980 IEDM Technical Digest, pp. 602-606. |
J. Kupec et al., Triple Level Polysilicon EEprom with Single Transistor per Bit , 1980 IEDM Technical Digest, pp. 602 606. * |
M. Horiguchi et al., "An Experimental Large-Capacity Semiconductor File Memory Using 16-Levels/Cell Storage", IEEE Journal of Solid-State Circuits, vol. 23, No. 1, Feb. 1988, pp. 27-33. |
M. Horiguchi et al., An Experimental Large Capacity Semiconductor File Memory Using 16 Levels/Cell Storage , IEEE Journal of Solid State Circuits, vol. 23, No. 1, Feb. 1988, pp. 27 33. * |
Muller et al., "Electrically Alterable 8192 Bit N-Channel MOS PROM", 1977 IEEE International Solid-State Circuits Conference, Feb. 18, 1977, pp. 188-189. |
Muller et al., Electrically Alterable 8192 Bit N Channel MOS PROM , 1977 IEEE International Solid State Circuits Conference, Feb. 18, 1977, pp. 188 189. * |
S. Meguro et al., "Hi-CMOS III Technology", 1984 IEDM Technical Digest, pp. 59-62. |
S. Meguro et al., Hi CMOS III Technology , 1984 IEDM Technical Digest, pp. 59 62. * |
S. Tanaka et al., "A Programmable 256K CMOS EPROM with On-Chip Test Circuits", 1984 ISSCC Digest of Technical Papers, pp. 148-149. |
S. Tanaka et al., A Programmable 256K CMOS EPROM with On Chip Test Circuits , 1984 ISSCC Digest of Technical Papers, pp. 148 149. * |
Sang U. Kim, "A Very Small Schottky Barrier Diode (SDB) with Self-Aligned Guard Ring for VLSI Applications", 1979 IEDM Technical Digest, pp. 49-53. |
Sang U. Kim, A Very Small Schottky Barrier Diode (SDB) with Self Aligned Guard Ring for VLSI Applications , 1979 IEDM Technical Digest, pp. 49 53. * |
T. Furuyama et al., "An Experimental 2-Bit/Cell Storage DRAM for Macro Cell or Memory-on-Logic Application", IEEE Custom Integrated Circuits Conference, May 1988, pp. 4.4.1-4.4.4. |
T. Furuyama et al., An Experimental 2 Bit/Cell Storage DRAM for Macro Cell or Memory on Logic Application , IEEE Custom Integrated Circuits Conference, May 1988, pp. 4.4.1 4.4.4. * |
V. N. Kynett et al., "An In-System Reprogrammable 256K CMOS Flash Memory", Digest of Technical Papers, IEEE International Solid-State Circuits Conference, Feb. 1988, pp. 132-133, 330. |
V. N. Kynett et al., An In System Reprogrammable 256K CMOS Flash Memory , Digest of Technical Papers, IEEE International Solid State Circuits Conference, Feb. 1988, pp. 132 133, 330. * |
Y. Mizutani and K. Makita, "A New EPROM Cell with a Side-Wall Floating Gate for High-Density and High-Performance Device", 1985 IEDM Technical Digest, pp. 635-638. |
Y. Mizutani and K. Makita, A New EPROM Cell with a Side Wall Floating Gate for High Density and High Performance Device , 1985 IEDM Technical Digest, pp. 635 638. * |
Cited By (242)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268319A (en) * | 1988-06-08 | 1993-12-07 | Eliyahou Harari | Highly compact EPROM and flash EEPROM devices |
US5268318A (en) * | 1988-06-08 | 1993-12-07 | Eliyahou Harari | Highly compact EPROM and flash EEPROM devices |
US20030046603A1 (en) * | 1989-04-13 | 2003-03-06 | Eliyahou Harari | Flash EEprom system |
US5999446A (en) * | 1989-04-13 | 1999-12-07 | Sandisk Corporation | Multi-state flash EEprom system with selective multi-sector erase |
US7397713B2 (en) * | 1989-04-13 | 2008-07-08 | Sandisk Corporation | Flash EEprom system |
US7460399B1 (en) | 1989-04-13 | 2008-12-02 | Sandisk Corporation | Flash EEprom system |
US6462992B2 (en) | 1989-04-13 | 2002-10-08 | Sandisk Corporation | Flash EEprom system |
US5719808A (en) * | 1989-04-13 | 1998-02-17 | Sandisk Corporation | Flash EEPROM system |
US5367185A (en) * | 1990-06-29 | 1994-11-22 | Sharp Kabushiki Kaisha | Non-volatile semiconductor memory with third electrode covering control gate |
US6584012B2 (en) | 1991-02-08 | 2003-06-24 | Btg International Inc. | Electrically alterable non-volatile memory with N-bits per cell |
US6002614A (en) * | 1991-02-08 | 1999-12-14 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US6327189B2 (en) | 1991-02-08 | 2001-12-04 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6324121B2 (en) | 1991-02-08 | 2001-11-27 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6343034B2 (en) | 1991-02-08 | 2002-01-29 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6344998B2 (en) | 1991-02-08 | 2002-02-05 | Btg International Inc. | Electrically alterable non-volatile memory with N-Bits per cell |
US6246613B1 (en) | 1991-02-08 | 2001-06-12 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US6243321B1 (en) | 1991-02-08 | 2001-06-05 | Btg Int Inc | Electrically alterable non-volatile memory with n-bits per cell |
US6870763B2 (en) | 1991-02-08 | 2005-03-22 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6356486B1 (en) | 1991-02-08 | 2002-03-12 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6404675B2 (en) | 1991-02-08 | 2002-06-11 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6724656B2 (en) | 1991-02-08 | 2004-04-20 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6104640A (en) * | 1991-02-08 | 2000-08-15 | Btg International Inc. | Electrically alterable non-violatile memory with N-bits per cell |
US6339545B2 (en) | 1991-02-08 | 2002-01-15 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US7075825B2 (en) | 1991-02-08 | 2006-07-11 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US5270979A (en) * | 1991-03-15 | 1993-12-14 | Sundisk Corporation | Method for optimum erasing of EEPROM |
US5369615A (en) * | 1991-03-15 | 1994-11-29 | Sundisk Corporation | Method for optimum erasing of EEPROM |
US6081447A (en) * | 1991-09-13 | 2000-06-27 | Western Digital Corporation | Wear leveling techniques for flash EEPROM systems |
US20030227804A1 (en) * | 1991-09-13 | 2003-12-11 | Sandisk Corporation And Western Digital Corporation | Wear leveling techniques for flash EEPROM systems |
US6850443B2 (en) | 1991-09-13 | 2005-02-01 | Sandisk Corporation | Wear leveling techniques for flash EEPROM systems |
US7353325B2 (en) | 1991-09-13 | 2008-04-01 | Sandisk Corporation | Wear leveling techniques for flash EEPROM systems |
US20050114589A1 (en) * | 1991-09-13 | 2005-05-26 | Lofgren Karl M. | Wear leveling techniques for flash EEPROM systems |
US20080162798A1 (en) * | 1991-09-13 | 2008-07-03 | Lofgren Karl M J | Wear leveling techniques for flash eeprom systems |
US6594183B1 (en) | 1991-09-13 | 2003-07-15 | Sandisk Corporation | Wear leveling techniques for flash EEPROM systems |
US6230233B1 (en) | 1991-09-13 | 2001-05-08 | Sandisk Corporation | Wear leveling techniques for flash EEPROM systems |
US5778418A (en) * | 1991-09-27 | 1998-07-07 | Sandisk Corporation | Mass computer storage system having both solid state and rotating disk types of memory |
US6016530A (en) * | 1991-09-27 | 2000-01-18 | Sandisk Corporation | Mass computer storage system having both solid state and rotating disk types of memory |
US5331592A (en) * | 1992-05-15 | 1994-07-19 | Nec Corporation | Non-volatile semiconductor memory device with erasure control circuit |
US5991195A (en) * | 1992-07-10 | 1999-11-23 | Sony Corporation | Flash EEPROM with erase verification and address scrambling architecture |
US5402371A (en) * | 1992-10-09 | 1995-03-28 | Oki Electric Industry Co., Ltd. | Method of writing data into and erasing the same from semiconductor nonvolatile memory |
US5535357A (en) * | 1993-03-15 | 1996-07-09 | M-Systems Flash Disk Pioneers Ltd. | Flash memory system providing both BIOS and user storage capability |
US5519843A (en) * | 1993-03-15 | 1996-05-21 | M-Systems | Flash memory system providing both BIOS and user storage capability |
US5388083A (en) * | 1993-03-26 | 1995-02-07 | Cirrus Logic, Inc. | Flash memory mass storage architecture |
US5479638A (en) * | 1993-03-26 | 1995-12-26 | Cirrus Logic, Inc. | Flash memory mass storage architecture incorporation wear leveling technique |
US5343424A (en) * | 1993-04-16 | 1994-08-30 | Hughes Aircraft Company | Split-gate flash EEPROM cell and array with low voltage erasure |
US5349220A (en) * | 1993-08-10 | 1994-09-20 | United Microelectronics Corporation | Flash memory cell and its operation |
USRE42120E1 (en) | 1993-09-21 | 2011-02-08 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41244E1 (en) | 1993-09-21 | 2010-04-20 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41456E1 (en) | 1993-09-21 | 2010-07-27 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
US5652719A (en) * | 1993-09-21 | 1997-07-29 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device |
USRE41969E1 (en) | 1993-09-21 | 2010-11-30 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41020E1 (en) | 1993-09-21 | 2009-12-01 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41950E1 (en) | 1993-09-21 | 2010-11-23 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41468E1 (en) | 1993-09-21 | 2010-08-03 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41021E1 (en) | 1993-09-21 | 2009-12-01 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41019E1 (en) | 1993-09-21 | 2009-12-01 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
USRE41485E1 (en) | 1993-09-21 | 2010-08-10 | Kabushiki Kaisha Toshiba | Multi-state EEPROM having write-verify control circuit |
DE4333978A1 (en) * | 1993-10-05 | 1995-04-13 | Gold Star Electronics | Nonvolatile semiconductor memory and method for production thereof |
US5814857A (en) * | 1993-10-28 | 1998-09-29 | Goldstar Electron Company, Ltd. | EEPROM flash memory cell, memory device, and process for formation thereof |
US5457606A (en) * | 1993-11-10 | 1995-10-10 | Raymond Engineering Inc. | Hermetically sealed PC card unit including a header secured to a connector |
US5596486A (en) * | 1993-11-10 | 1997-01-21 | Kaman Aerospace Corporation | Hermetically sealed memory or PC card unit having a frame, header and covers in bonded engagement |
US5650649A (en) * | 1993-12-14 | 1997-07-22 | Nec Corporation | Floating gate type field effect transistor having control gate applied with pulses for evacuating carriers from p-type semiconductor floating gate |
US5885872A (en) * | 1994-02-12 | 1999-03-23 | Kabushiki Kaisha Toshiba | Method for manufacturing a semiconductor device having an adjustable channel width |
US5629548A (en) * | 1994-02-12 | 1997-05-13 | Kabushiki Kaisha Toshiba | Semiconductor device with adjustable channel width |
US5708285A (en) * | 1994-09-13 | 1998-01-13 | Mitsubishi Denki Kabushiki Kaisha | Non-volatile semiconductor information storage device |
US5638320A (en) * | 1994-11-02 | 1997-06-10 | Invoice Technology, Inc. | High resolution analog storage EPROM and flash EPROM |
US5751635A (en) * | 1994-11-02 | 1998-05-12 | Invoice Technology, Inc. | Read circuits for analog memory cells |
US5694356A (en) * | 1994-11-02 | 1997-12-02 | Invoice Technology, Inc. | High resolution analog storage EPROM and flash EPROM |
US5687115A (en) * | 1994-11-02 | 1997-11-11 | Invoice Technology, Inc. | Write circuits for analog memory |
US7911851B2 (en) | 1995-02-27 | 2011-03-22 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US8570814B2 (en) | 1995-02-27 | 2013-10-29 | Mlc Intellectual Property, Llc | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US7006384B2 (en) | 1995-02-27 | 2006-02-28 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US7068542B2 (en) | 1995-02-27 | 2006-06-27 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US6434050B2 (en) | 1995-02-27 | 2002-08-13 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US6353554B1 (en) | 1995-02-27 | 2002-03-05 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US7286414B2 (en) | 1995-02-27 | 2007-10-23 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US6714455B2 (en) | 1995-02-27 | 2004-03-30 | Btg International Inc. | Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell |
US5812449A (en) * | 1995-05-16 | 1998-09-22 | Hyundai Electronics Industries Co., Ltd. | Flash EEPROM cell, method of manufacturing the same, method of programming and method of reading the same |
US5760438A (en) * | 1995-05-26 | 1998-06-02 | Cypress Semiconductor Corporation | High speed flash memory cell structure and method |
US8078797B2 (en) | 1995-07-31 | 2011-12-13 | Micron Technology, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US6757800B1 (en) | 1995-07-31 | 2004-06-29 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US6202138B1 (en) | 1995-07-31 | 2001-03-13 | Lexar Media, Inc | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US8171203B2 (en) | 1995-07-31 | 2012-05-01 | Micron Technology, Inc. | Faster write operations to nonvolatile memory using FSInfo sector manipulation |
US8397019B2 (en) | 1995-07-31 | 2013-03-12 | Micron Technology, Inc. | Memory for accessing multiple sectors of information substantially concurrently |
US6128695A (en) * | 1995-07-31 | 2000-10-03 | Lexar Media, Inc. | Identification and verification of a sector within a block of mass storage flash memory |
US6978342B1 (en) | 1995-07-31 | 2005-12-20 | Lexar Media, Inc. | Moving sectors within a block of information in a flash memory mass storage architecture |
US8554985B2 (en) | 1995-07-31 | 2013-10-08 | Micron Technology, Inc. | Memory block identified by group of logical block addresses, storage device with movable sectors, and methods |
US7549013B2 (en) | 1995-07-31 | 2009-06-16 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US7523249B1 (en) | 1995-07-31 | 2009-04-21 | Lexar Media, Inc. | Direct logical block addressing flash memory mass storage architecture |
US6393513B2 (en) | 1995-07-31 | 2002-05-21 | Lexar Media, Inc. | Identification and verification of a sector within a block of mass storage flash memory |
US6223308B1 (en) | 1995-07-31 | 2001-04-24 | Lexar Media, Inc. | Identification and verification of a sector within a block of mass STO rage flash memory |
US7441090B2 (en) | 1995-07-31 | 2008-10-21 | Lexar Media, Inc. | System and method for updating data sectors in a non-volatile memory using logical block addressing |
US8793430B2 (en) | 1995-07-31 | 2014-07-29 | Micron Technology, Inc. | Electronic system having memory with a physical block having a sector storing data and indicating a move status of another sector of the physical block |
US6728851B1 (en) | 1995-07-31 | 2004-04-27 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US7424593B2 (en) | 1995-07-31 | 2008-09-09 | Micron Technology, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US9026721B2 (en) | 1995-07-31 | 2015-05-05 | Micron Technology, Inc. | Managing defective areas of memory |
US6397314B1 (en) | 1995-07-31 | 2002-05-28 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US7774576B2 (en) | 1995-07-31 | 2010-08-10 | Lexar Media, Inc. | Direct logical block addressing flash memory mass storage architecture |
US8032694B2 (en) | 1995-07-31 | 2011-10-04 | Micron Technology, Inc. | Direct logical block addressing flash memory mass storage architecture |
US6801979B1 (en) | 1995-07-31 | 2004-10-05 | Lexar Media, Inc. | Method and apparatus for memory control circuit |
US20040199714A1 (en) * | 1995-07-31 | 2004-10-07 | Petro Estakhri | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US7111140B2 (en) | 1995-07-31 | 2006-09-19 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US7908426B2 (en) | 1995-07-31 | 2011-03-15 | Lexar Media, Inc. | Moving sectors within a block of information in a flash memory mass storage architecture |
US7263591B2 (en) | 1995-07-31 | 2007-08-28 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US5706227A (en) * | 1995-12-07 | 1998-01-06 | Programmable Microelectronics Corporation | Double poly split gate PMOS flash memory cell |
US5680341A (en) * | 1996-01-16 | 1997-10-21 | Invoice Technology | Pipelined record and playback for analog non-volatile memory |
US5760435A (en) * | 1996-04-22 | 1998-06-02 | Chartered Semiconductor Manufacturing, Ltd. | Use of spacers as floating gates in EEPROM with doubled storage efficiency |
US5859454A (en) * | 1996-11-15 | 1999-01-12 | Lg Semicon Co., Ltd. | Nonvolatile memory device |
US6411546B1 (en) | 1997-03-31 | 2002-06-25 | Lexar Media, Inc. | Nonvolatile memory using flexible erasing methods and method and system for using same |
US6587382B1 (en) | 1997-03-31 | 2003-07-01 | Lexar Media, Inc. | Nonvolatile memory using flexible erasing methods and method and system for using same |
US6122195A (en) * | 1997-03-31 | 2000-09-19 | Lexar Media, Inc. | Method and apparatus for decreasing block write operation times performed on nonvolatile memory |
US6813678B1 (en) | 1998-01-22 | 2004-11-02 | Lexar Media, Inc. | Flash memory system |
US20050248986A1 (en) * | 1998-02-23 | 2005-11-10 | Wong Sau C | High data rate write process for non-volatile flash memories |
US7349255B2 (en) | 1998-02-23 | 2008-03-25 | Sandisk Corporation | High data rate write process for non-volatile flash memories |
US6040993A (en) * | 1998-02-23 | 2000-03-21 | Macronix International Co., Ltd. | Method for programming an analog/multi-level flash EEPROM |
US6040997A (en) * | 1998-03-25 | 2000-03-21 | Lexar Media, Inc. | Flash memory leveling architecture having no external latch |
US6699753B2 (en) | 1998-05-22 | 2004-03-02 | Winbond Electronics Corporation | Method of fabricating an array of non-volatile memory cells |
US6346725B1 (en) | 1998-05-22 | 2002-02-12 | Winbond Electronics Corporation | Contact-less array of fully self-aligned, triple polysilicon, source-side injection, nonvolatile memory cells with metal-overlaid wordlines |
US6944058B2 (en) | 1998-06-23 | 2005-09-13 | Sandisk Corporation | High data rate write process for non-volatile flash memories |
US20030206469A1 (en) * | 1998-06-23 | 2003-11-06 | Wong Sau C. | High data rate write process for non-volatile flash memories |
US5969986A (en) * | 1998-06-23 | 1999-10-19 | Invox Technology | High-bandwidth read and write architectures for non-volatile memories |
US6606267B2 (en) | 1998-06-23 | 2003-08-12 | Sandisk Corporation | High data rate write process for non-volatile flash memories |
US6314025B1 (en) | 1998-06-23 | 2001-11-06 | Sandisk Corporation | High data rate write process for non-volatile flash memories |
US6256755B1 (en) | 1998-10-19 | 2001-07-03 | International Business Machines Corporation | Apparatus and method for detecting defective NVRAM cells |
US6374337B1 (en) | 1998-11-17 | 2002-04-16 | Lexar Media, Inc. | Data pipelining method and apparatus for memory control circuit |
US6262918B1 (en) | 1999-04-01 | 2001-07-17 | Lexar Media, Inc. | Space management for managing high capacity nonvolatile memory |
US6134151A (en) * | 1999-04-01 | 2000-10-17 | Lexar Media, Inc. | Space management for managing high capacity nonvolatile memory |
US6141249A (en) * | 1999-04-01 | 2000-10-31 | Lexar Media, Inc. | Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time |
US6034897A (en) * | 1999-04-01 | 2000-03-07 | Lexar Media, Inc. | Space management for managing high capacity nonvolatile memory |
US6327187B1 (en) | 1999-05-21 | 2001-12-04 | National Semiconductor Corporation | EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming |
US6208557B1 (en) * | 1999-05-21 | 2001-03-27 | National Semiconductor Corporation | EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming |
CN100369253C (en) * | 1999-07-14 | 2008-02-13 | 株式会社日立制作所 | Semiconductor integrated circuit device, its manufacturing method and action method |
US7102671B1 (en) | 2000-02-08 | 2006-09-05 | Lexar Media, Inc. | Enhanced compact flash memory card |
US6429472B2 (en) * | 2000-03-16 | 2002-08-06 | Samsung Electronics Co., Ltd. | Split gate type flash memory |
US20040008561A1 (en) * | 2000-03-21 | 2004-01-15 | Aplus Flash Technology, Inc. | Stacked gate flash memory cell with reduced distrub conditions |
US6660585B1 (en) | 2000-03-21 | 2003-12-09 | Aplus Flash Technology, Inc. | Stacked gate flash memory cell with reduced disturb conditions |
US6356479B1 (en) * | 2000-06-05 | 2002-03-12 | Oki Electric Industry Co., Ltd. | Semiconductor memory system |
US7167944B1 (en) | 2000-07-21 | 2007-01-23 | Lexar Media, Inc. | Block management for mass storage |
US8019932B2 (en) | 2000-07-21 | 2011-09-13 | Micron Technology, Inc. | Block management for mass storage |
US8250294B2 (en) | 2000-07-21 | 2012-08-21 | Micron Technology, Inc. | Block management for mass storage |
US7734862B2 (en) | 2000-07-21 | 2010-06-08 | Lexar Media, Inc. | Block management for mass storage |
US6567307B1 (en) | 2000-07-21 | 2003-05-20 | Lexar Media, Inc. | Block management for mass storage |
US7858472B2 (en) | 2001-08-08 | 2010-12-28 | Sandisk Corporation | Scalable self-aligned dual floating gate memory cell array and methods of forming the array |
US20040175888A1 (en) * | 2001-08-08 | 2004-09-09 | Yuan Jack H. | Scalable self-aligned dual floating gate memory cell array and methods of forming the array |
US6953970B2 (en) | 2001-08-08 | 2005-10-11 | Sandisk Corporation | Scalable self-aligned dual floating gate memory cell array and methods of forming the array |
US20050201154A1 (en) * | 2001-08-08 | 2005-09-15 | Yuan Jack H. | Scalable self-aligned dual floating gate memory cell array and methods of forming the array |
US7211866B2 (en) | 2001-08-08 | 2007-05-01 | Sandisk Corporation | Scalable self-aligned dual floating gate memory cell array and methods of forming the array |
US20070161191A1 (en) * | 2001-08-08 | 2007-07-12 | Yuan Jack H | Scalable Self-Aligned Dual Floating Gate Memory Cell Array And Methods Of Forming The Array |
US8694722B2 (en) | 2001-09-28 | 2014-04-08 | Micron Technology, Inc. | Memory systems |
US6898662B2 (en) | 2001-09-28 | 2005-05-24 | Lexar Media, Inc. | Memory system sectors |
US9489301B2 (en) | 2001-09-28 | 2016-11-08 | Micron Technology, Inc. | Memory systems |
US7681057B2 (en) | 2001-09-28 | 2010-03-16 | Lexar Media, Inc. | Power management of non-volatile memory systems |
US7215580B2 (en) | 2001-09-28 | 2007-05-08 | Lexar Media, Inc. | Non-volatile memory control |
US7254724B2 (en) | 2001-09-28 | 2007-08-07 | Lexar Media, Inc. | Power management system |
US7000064B2 (en) | 2001-09-28 | 2006-02-14 | Lexar Media, Inc. | Data handling system |
US9032134B2 (en) | 2001-09-28 | 2015-05-12 | Micron Technology, Inc. | Methods of operating a memory system that include outputting a data pattern from a sector allocation table to a host if a logical sector is indicated as being erased |
US8135925B2 (en) | 2001-09-28 | 2012-03-13 | Micron Technology, Inc. | Methods of operating a memory system |
US8208322B2 (en) | 2001-09-28 | 2012-06-26 | Micron Technology, Inc. | Non-volatile memory control |
US20050018527A1 (en) * | 2001-09-28 | 2005-01-27 | Gorobets Sergey Anatolievich | Non-volatile memory control |
US7340581B2 (en) | 2001-09-28 | 2008-03-04 | Lexar Media, Inc. | Method of writing data to non-volatile memory |
US7185208B2 (en) | 2001-09-28 | 2007-02-27 | Lexar Media, Inc. | Data processing |
US8386695B2 (en) | 2001-09-28 | 2013-02-26 | Micron Technology, Inc. | Methods and apparatus for writing data to non-volatile memory |
US7917709B2 (en) | 2001-09-28 | 2011-03-29 | Lexar Media, Inc. | Memory system for data storage and retrieval |
US7944762B2 (en) | 2001-09-28 | 2011-05-17 | Micron Technology, Inc. | Non-volatile memory control |
US6950918B1 (en) | 2002-01-18 | 2005-09-27 | Lexar Media, Inc. | File management of one-time-programmable nonvolatile memory devices |
US6957295B1 (en) | 2002-01-18 | 2005-10-18 | Lexar Media, Inc. | File management of one-time-programmable nonvolatile memory devices |
US8166488B2 (en) | 2002-02-22 | 2012-04-24 | Micron Technology, Inc. | Methods of directly accessing a mass storage data device |
US7231643B1 (en) | 2002-02-22 | 2007-06-12 | Lexar Media, Inc. | Image rescue system including direct communication between an application program and a device driver |
US9213606B2 (en) | 2002-02-22 | 2015-12-15 | Micron Technology, Inc. | Image rescue |
US20030195728A1 (en) * | 2002-03-26 | 2003-10-16 | Matsushita Electric Industrial Co., Ltd. | Method of estimating a lifetime of hot carrier of MOS transistor, and simulation of hot carrier degradation |
US7039566B2 (en) * | 2002-03-26 | 2006-05-02 | Matsushita Electric Industrial Co., Ltd. | Method of estimating a lifetime of hot carrier of MOS transistor, and simulation of hot carrier degradation |
US20040036155A1 (en) * | 2002-03-28 | 2004-02-26 | Wallace Robert F. | Memory package |
US20060128101A1 (en) * | 2002-03-28 | 2006-06-15 | Wallace Robert F | Memory package |
US7429781B2 (en) | 2002-03-28 | 2008-09-30 | Sandisk Corporation | Memory package |
US7064003B2 (en) | 2002-03-28 | 2006-06-20 | Sandisk Corporation | Memory package |
US6639309B2 (en) | 2002-03-28 | 2003-10-28 | Sandisk Corporation | Memory package with a controller on one side of a printed circuit board and memory on another side of the circuit board |
US6797538B2 (en) | 2002-03-28 | 2004-09-28 | Sandisk Corporation | Memory package |
US20050018505A1 (en) * | 2002-03-28 | 2005-01-27 | Wallace Robert F. | Memory package |
US6894930B2 (en) | 2002-06-19 | 2005-05-17 | Sandisk Corporation | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
US6898121B2 (en) | 2002-06-19 | 2005-05-24 | Sandisk Corporation | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
US7170786B2 (en) | 2002-06-19 | 2007-01-30 | Sandisk Corporation | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
US20050162927A1 (en) * | 2002-06-19 | 2005-07-28 | Henry Chien | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
USRE43417E1 (en) | 2002-06-19 | 2012-05-29 | SanDisk Technologies, Inc | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
US6908817B2 (en) | 2002-10-09 | 2005-06-21 | Sandisk Corporation | Flash memory array with increased coupling between floating and control gates |
US7517756B2 (en) | 2002-10-09 | 2009-04-14 | Sandisk Corporation | Flash memory array with increased coupling between floating and control gates |
US7170131B2 (en) | 2002-10-09 | 2007-01-30 | Sandisk Corporation | Flash memory array with increased coupling between floating and control gates |
US20040070021A1 (en) * | 2002-10-09 | 2004-04-15 | Yuan Jack H. | Flash memory array with increased coupling between floating and control gates |
US20070122980A1 (en) * | 2002-10-09 | 2007-05-31 | Yuan Jack H | Flash Memory Array with Increased Coupling Between Floating and Control Gates |
US20070083698A1 (en) * | 2002-10-28 | 2007-04-12 | Gonzalez Carlos J | Automated Wear Leveling in Non-Volatile Storage Systems |
US20040080012A1 (en) * | 2002-10-28 | 2004-04-29 | Sung-Ho Kim | Nonvolatile memory device having asymmetric source/drain region and fabricating method thereof |
US7552272B2 (en) | 2002-10-28 | 2009-06-23 | Sandisk Corporation | Automated wear leveling in non-volatile storage systems |
US7120729B2 (en) | 2002-10-28 | 2006-10-10 | Sandisk Corporation | Automated wear leveling in non-volatile storage systems |
US20040083335A1 (en) * | 2002-10-28 | 2004-04-29 | Gonzalez Carlos J. | Automated wear leveling in non-volatile storage systems |
US7105406B2 (en) | 2003-06-20 | 2006-09-12 | Sandisk Corporation | Self aligned non-volatile memory cell and process for fabrication |
US20070076485A1 (en) * | 2003-06-20 | 2007-04-05 | Jeffrey Lutze | Self-Aligned Non-Volatile Memory Cell and Process for Fabrication |
US7504686B2 (en) | 2003-06-20 | 2009-03-17 | Sandisk Corporation | Self-aligned non-volatile memory cell |
US20050003616A1 (en) * | 2003-06-20 | 2005-01-06 | Jeffrey Lutze | Self aligned non-volatile memory cell and process for fabrication |
US20050072999A1 (en) * | 2003-10-06 | 2005-04-07 | George Matamis | Bitline direction shielding to avoid cross coupling between adjacent cells for NAND flash memory |
US7221008B2 (en) | 2003-10-06 | 2007-05-22 | Sandisk Corporation | Bitline direction shielding to avoid cross coupling between adjacent cells for NAND flash memory |
US7275686B2 (en) | 2003-12-17 | 2007-10-02 | Lexar Media, Inc. | Electronic equipment point-of-sale activation to avoid theft |
US7436019B2 (en) | 2004-03-12 | 2008-10-14 | Sandisk Corporation | Non-volatile memory cells shaped to increase coupling to word lines |
US20050199939A1 (en) * | 2004-03-12 | 2005-09-15 | Lutze Jeffrey W. | Self aligned non-volatile memory cells and processes for fabrication |
US20070111422A1 (en) * | 2004-03-12 | 2007-05-17 | Lutze Jeffrey W | Self Aligned Non-Volatile Memory Cells and Processes for Fabrication |
US7183153B2 (en) | 2004-03-12 | 2007-02-27 | Sandisk Corporation | Method of manufacturing self aligned non-volatile memory cells |
US7725628B1 (en) | 2004-04-20 | 2010-05-25 | Lexar Media, Inc. | Direct secondary device interface by a host |
US8316165B2 (en) | 2004-04-20 | 2012-11-20 | Micron Technology, Inc. | Direct secondary device interface by a host |
US8090886B2 (en) | 2004-04-20 | 2012-01-03 | Micron Technology, Inc. | Direct secondary device interface by a host |
US20060239111A1 (en) * | 2004-04-21 | 2006-10-26 | Masaki Shingo | Non-volatile semiconductor device and method for automatically recovering erase failure in the device |
US7352620B2 (en) * | 2004-04-21 | 2008-04-01 | Spansion Llc | Non-volatile semiconductor device and method for automatically recovering erase failure in the device |
US7865659B2 (en) | 2004-04-30 | 2011-01-04 | Micron Technology, Inc. | Removable storage device |
US8612671B2 (en) | 2004-04-30 | 2013-12-17 | Micron Technology, Inc. | Removable devices |
US9576154B2 (en) | 2004-04-30 | 2017-02-21 | Micron Technology, Inc. | Methods of operating storage systems including using a key to determine whether a password can be changed |
US10049207B2 (en) | 2004-04-30 | 2018-08-14 | Micron Technology, Inc. | Methods of operating storage systems including encrypting a key salt |
US7370166B1 (en) | 2004-04-30 | 2008-05-06 | Lexar Media, Inc. | Secure portable storage device |
US8151041B2 (en) | 2004-04-30 | 2012-04-03 | Micron Technology, Inc. | Removable storage device |
US7594063B1 (en) | 2004-08-27 | 2009-09-22 | Lexar Media, Inc. | Storage capacity status |
US7949822B2 (en) | 2004-08-27 | 2011-05-24 | Micron Technology, Inc. | Storage capacity status |
US7464306B1 (en) | 2004-08-27 | 2008-12-09 | Lexar Media, Inc. | Status of overall health of nonvolatile memory |
US8296545B2 (en) | 2004-08-27 | 2012-10-23 | Micron Technology, Inc. | Storage capacity status |
US7743290B2 (en) | 2004-08-27 | 2010-06-22 | Lexar Media, Inc. | Status of overall health of nonvolatile memory |
US20060110880A1 (en) * | 2004-11-23 | 2006-05-25 | Yuan Jack H | Self-aligned trench filling with high coupling ratio |
US7416956B2 (en) | 2004-11-23 | 2008-08-26 | Sandisk Corporation | Self-aligned trench filling for narrow gap isolation regions |
US7402886B2 (en) | 2004-11-23 | 2008-07-22 | Sandisk Corporation | Memory with self-aligned trenches for narrow gap isolation regions |
US7381615B2 (en) | 2004-11-23 | 2008-06-03 | Sandisk Corporation | Methods for self-aligned trench filling with grown dielectric for high coupling ratio in semiconductor devices |
US20080211007A1 (en) * | 2004-11-23 | 2008-09-04 | Yuan Jack H | Self-Aligned Trenches With Grown Dielectric For High Coupling Ratio In Semiconductor Devices |
US20060108648A1 (en) * | 2004-11-23 | 2006-05-25 | Yuan Jack H | Memory with self-aligned trenches for narrow gap isolation regions |
US20060108647A1 (en) * | 2004-11-23 | 2006-05-25 | Yuan Jack H | Self-aligned trench filling for narrow gap isolation regions |
US7615820B2 (en) | 2004-11-23 | 2009-11-10 | Sandisk Corporation | Self-aligned trenches with grown dielectric for high coupling ratio in semiconductor devices |
US20060134864A1 (en) * | 2004-12-22 | 2006-06-22 | Masaaki Higashitani | Multi-thickness dielectric for semiconductor memory |
US7482223B2 (en) | 2004-12-22 | 2009-01-27 | Sandisk Corporation | Multi-thickness dielectric for semiconductor memory |
US7541240B2 (en) | 2005-10-18 | 2009-06-02 | Sandisk Corporation | Integration process flow for flash devices with low gap fill aspect ratio |
US20070087504A1 (en) * | 2005-10-18 | 2007-04-19 | Pham Tuan D | Integration process flow for flash devices with low gap fill aspect ratio |
US7471119B2 (en) | 2006-05-22 | 2008-12-30 | Denso Corporation | Electronic circuit device |
US20080001652A1 (en) * | 2006-05-22 | 2008-01-03 | Denso Corporation | Electronic circuit device |
US20080160680A1 (en) * | 2006-12-28 | 2008-07-03 | Yuan Jack H | Methods of fabricating shield plates for reduced field coupling in nonvolatile memory |
US20080157169A1 (en) * | 2006-12-28 | 2008-07-03 | Yuan Jack H | Shield plates for reduced field coupling in nonvolatile memory |
US8248859B2 (en) | 2007-03-30 | 2012-08-21 | Sandisk Corporation | Methods of forming and operating NAND memory with side-tunneling |
US7745285B2 (en) | 2007-03-30 | 2010-06-29 | Sandisk Corporation | Methods of forming and operating NAND memory with side-tunneling |
US20090307140A1 (en) * | 2008-06-06 | 2009-12-10 | Upendra Mardikar | Mobile device over-the-air (ota) registration and point-of-sale (pos) payment |
US11521194B2 (en) | 2008-06-06 | 2022-12-06 | Paypal, Inc. | Trusted service manager (TSM) architectures and methods |
US11595820B2 (en) | 2011-09-02 | 2023-02-28 | Paypal, Inc. | Secure elements broker (SEB) for application communication channel selector optimization |
US12022290B2 (en) | 2011-09-02 | 2024-06-25 | Paypal, Inc. | Secure elements broker (SEB) for application communication channel selector optimization |
US10192874B2 (en) * | 2017-06-19 | 2019-01-29 | United Microelectronics Corp. | Nonvolatile memory cell and fabrication method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5168465A (en) | Highly compact EPROM and flash EEPROM devices | |
US5268319A (en) | Highly compact EPROM and flash EEPROM devices | |
US5268318A (en) | Highly compact EPROM and flash EEPROM devices | |
US5095344A (en) | Highly compact eprom and flash eeprom devices | |
US5198380A (en) | Method of highly compact EPROM and flash EEPROM devices | |
US5789776A (en) | Single poly memory cell and array | |
US5482881A (en) | Method of making flash EEPROM memory with reduced column leakage current | |
US6674120B2 (en) | Nonvolatile semiconductor memory device and method of operation thereof | |
US6784476B2 (en) | Semiconductor device having a flash memory cell and fabrication method thereof | |
EP1022780B1 (en) | Method of forming a flash memory cell | |
US6212103B1 (en) | Method for operating flash memory | |
JPH03155168A (en) | Memory device | |
US5045491A (en) | Method of making a nonvolatile memory array having cells with separate program and erase regions | |
JP2967346B2 (en) | Method of manufacturing nonvolatile memory device | |
US6335243B1 (en) | Method of fabricating nonvolatile memory device | |
US6204530B1 (en) | Flash-type nonvolatile semiconductor memory devices for preventing overerasure | |
US5523249A (en) | Method of making an EEPROM cell with separate erasing and programming regions | |
US6251717B1 (en) | Viable memory cell formed using rapid thermal annealing | |
US5936889A (en) | Array of nonvolatile memory device and method for fabricating the same | |
KR100660022B1 (en) | 2-bit non-volatile memory device and method of manufacturing the same | |
JP4427431B2 (en) | Semiconductor memory device, semiconductor memory device manufacturing method, and semiconductor memory device operating method | |
KR100244276B1 (en) | Non-volatile memory device and manufacturing method thereof | |
KR100287883B1 (en) | Array of Devices of Nonvolatile Memory and Manufacturing Method Thereof | |
KR100267769B1 (en) | Method for manufacturing nonvolatile memory device | |
KR19990015597A (en) | Nonvolatile Memory Device and Manufacturing Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SANDISK CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARARI, ELIYAHOU;REEL/FRAME:011783/0928 Effective date: 20010509 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK CORPORATION;REEL/FRAME:038438/0904 Effective date: 20160324 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES LLC, TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SANDISK TECHNOLOGIES INC;REEL/FRAME:038807/0980 Effective date: 20160516 |