US6253836B1 - Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus - Google Patents
Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus Download PDFInfo
- Publication number
- US6253836B1 US6253836B1 US09/317,332 US31733299A US6253836B1 US 6253836 B1 US6253836 B1 US 6253836B1 US 31733299 A US31733299 A US 31733299A US 6253836 B1 US6253836 B1 US 6253836B1
- Authority
- US
- United States
- Prior art keywords
- heat pipe
- heat
- thermosyphoning
- generally tubular
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title description 11
- 238000012546 transfer Methods 0.000 claims description 38
- 238000004891 communication Methods 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 abstract description 12
- 230000000452 restraining effect Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0241—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the tubes being flexible
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
- G06F1/203—Cooling means for portable computers, e.g. for laptops
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2200/00—Indexing scheme relating to G06F1/04 - G06F1/32
- G06F2200/20—Indexing scheme relating to G06F1/20
- G06F2200/201—Cooling arrangements using cooling fluid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49353—Heat pipe device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49361—Tube inside tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49362—Tube wound about tube
Definitions
- the present invention generally relates to electronic apparatus and, in a preferred embodiment thereof, more particularly relates to apparatus and methods for dissipating component operating heat in electronic devices such as computers.
- a notebook computer has a base housing, within which the primary heat generating components (such as the computer's microprocessor) are disposed, and a substantially thinner display lid housing pivotally connected to the base housing with a hinge structure.
- the primary heat generating components such as the computer's microprocessor
- a substantially thinner display lid housing pivotally connected to the base housing with a hinge structure.
- specially designed heat transfer apparatus is provided which is representatively useable to transfer operating heat from an electronic component disposed within a housing portion of an electronic apparatus, such as a portable computer, to a lid portion pivotally mounted on the housing for dissipation from the lid portion.
- the heat transfer apparatus is of a quite simple construction and basically comprises two thermosyphoning heat pipes.
- the first heat pipe has a first longitudinal portion, and a second longitudinal portion helically coiled about an axis and defining a generally tubular structure having an interior side surface.
- the first heat pipe which illustratively has a square cross-section, has a flat outer side surface portion that defines the interior side surface of the generally tubular structure.
- the second heat pipe has a first longitudinal portion coaxially and rotatably received in the generally tubular structure in heat transfer engagement with its interior side surface, and a second longitudinal portion disposed exteriorly of the generally tubular structure.
- the heat transfer apparatus is incorporated in a portable computer, illustratively a notebook computer, having a base housing with a heat-generating component therein (representatively a microprocessor), and a lid housing structure secured to the base housing for pivotal movement relative thereto about a hinge line axis.
- the first longitudinal portion of the first heat pipe is held in thermal communication with the heatgenerating component within the base housing, the generally tubular structure is supported in a coaxial relationship with the hinge line, and the second longitudinal portion of the second heat pipe is carried by the lid housing structure in thermal communication with a portion thereof.
- the lid housing is opened and closed, the first longitudinal portion of the second heat pipe is rotated within the coiled, generally tubular portion of the first heat pipe.
- operating heat from the microprocessor is transferred to a portion of the lid housing, for dissipation from the lid housing, sequentially via the first longitudinal portion of the first heat pipe, the generally tubular structure, the first longitudinal portion of the second heat pipe, and the second longitudinal portion of the second heat pipe.
- thermosyphoning heat pipe helically coiling a first longitudinal portion of the first thermosyphoning heat pipe about an axis to form a generally tubular structure having an interior side surface; providing a second thermosyphoning heat pipe; and positioning a first longitudinal portion of the second thermosyphoning heat pipe coaxially within the generally tubular structure, in slidable heat transfer contact with the interior side surface thereof, for rotation relative to the generally tubular structure about its axis.
- the first thermosyphoning heat pipe has a flat side surface portion, and preferably has a square cross-section.
- the method further comprises the step, performed prior to the insertion of the first longitudinal portion of the second heat pipe into the interior of the generally tubular structure, of radially outwardly deforming the interior side surface of the generally tubular structure relative to its outer side surface to increase the inner diameter of the generally tubular structure.
- this radially outwardly deforming step includes the steps of restraining the outer side surface of the generally tubular structure against radial enlargement thereof while axially forcing a diametrically oversized cylindrical structure through the interior of the generally tubular structure, thereby desirably increasing the circularity of the inner side surface of the generally tubular structure and correspondingly increasing the overall heat transfer contact area between the inner side surface of the generally tubular structure and the first longitudinal portion of the second thermosyphoning heat pipe.
- the method further comprises the step of providing a cylindrical mandrel having a first longitudinal portion and a second, larger diameter portion.
- the helically coiling step is performed by helically coiling the first longitudinal portion of the first thermosyphoning heat pipe around the first longitudinal portion of the cylindrical mandrel, and the restraining step is performed by coaxially inserting the generally tubular structure into a tubular restraining member configured to closely receive it.
- the radially outwardly deforming step includes the steps of forcing the second, larger diameter mandrel portion coaxially through the interior of the previously formed generally tubular structure while using the contact between the generally tubular structure and the tubular restraining member to prevent radial enlargement of the outer side surface of the generally tubular structure.
- the first longitudinal portion of the second heat pipe is coaxially and rotatably inserted into the interior of the generally tubular structure in sliding heat transfer engagement with its radially expanded inner side surface.
- FIG. 1 is a partially cut away simplified perspective view of a representative notebook computer incorporating therein a specially designed flexible heat pipe structure embodying principles of the present invention and operative to transfer component operating heat from the computer's base housing to its display lid housing;
- FIG. 2 is an enlarged scale perspective view of the flexible heat pipe structure removed from the computer
- FIG. 3 is an enlarged scale cross-sectional view taken through the flexible heat pipe structure along line 3 — 3 of FIG. 2;
- FIGS. 3A and 3B are views similar to that in FIG. 3 but illustrating representative alternate cross-sectional shapes of a first heat pipe portion of the overall heat pipe structure
- FIG. 4 is an enlarged scale cross-sectional view taken through the flexible heat pipe structure along line 4 — 4 of FIG. 2;
- FIG.5 is an enlarged scale cross-sectional view taken through the flexible heat pipe structure along line 5 — 5 of FIG. 2;
- FIG. 6 is an enlarged scale cross-sectional view taken through the flexible heat pipe structure along line 6 — 6 of FIG. 2;
- FIGS. 7A-7C are highly schematic diagrams illustrating a representative method by which the flexible heat pipe structure is fabricated.
- Portable notebook computer 10 which is representatively in the form of a portable notebook computer, is perspectively illustrated in simplified form in FIG. 1 and embodies principles of the present invention.
- notebook computer 10 includes a rectangular base housing 12 having top and bottom side walls 14 and 16 , front and rear side walls 18 and 20 , and left and right end walls 22 and 24 .
- a keyboard 26 is operatively disposed on the top side wall 14 , within a suitable opening therein, and various electronic components, such as the schematically depicted microprocessor 28 , are carried within the interior of the base housing 12 beneath its top side wall 14 and keyboard 26 .
- the microprocessor 28 generates a considerable amount of heat which, in a manner subsequently described herein, is dissipated from the base housing 12 using principles of the present invention.
- the computer 10 also includes a rectangular lid housing structure 30 which is considerably thinner than the base housing 12 and has (as viewed in FIG. 1) opposite front and rear side walls 32 and 34 , opposite top and bottom side walls 36 and 38 , and opposite left and right end walls 40 and 42 .
- a display screen 44 is mounted on the front side wall 32 , and a bottom edge portion of the lid housing structure 30 is secured to an upper rear edge portion of the base housing 12 , by a hinge structure 46 a , 46 b .
- the hinge structure 46 a , 46 b permits the lid housing 30 to be pivoted relative to the base housing 12 about a hinge axis 48 , between a generally vertical use orientation shown in FIG.
- Suitable latch means (not shown) of conventional design are provided for releasably holding the lid housing 30 in its closed orientation.
- operating heat from the microprocessor 28 within the base housing 12 is transferred to a portion of the lid housing structure 30 , for dissipation therefrom when the lid housing 30 is in its opened orientation, by specially designed heat transfer apparatus 50 which will now be described with reference to FIGS. 1-6.
- Heat transfer apparatus 50 includes first and second thermosyphoning heat pipes 52 and 54 .
- Each of the heat pipes 52 , 54 (see FIGS. 3 and 4) is of a conventional construction, having an outer metal pipe portion 56 , a suitable wicking material 58 lining the interior of pipe portion, and a small amount of working liquid (not shown) disposed within the interior of the pipe portion.
- the cross-section of the first heat pipe 52 (see FIG. 3) is preferably square, but may alternatively have other cross-sections with at least one flat exterior side surface such as the rectangular cross-section of the alternately configured first heat pipe 52 a shown in FIG. 3A, or the semicircular cross-section of the alternately configured first heat pipe 52 b shown in FIG. 3 B.
- the second heat pipe 54 (see FIG. 4) has a circular cross-section.
- the first heat pipe 52 has an evaporating end portion 60 , and a condensing end portion which, in a manner later described herein, is coiled about an axis to form a generally tubular structure 62 .
- the second heat pipe 54 has an evaporating end portion 64 which is coaxially and rotatable received within the interior of the tubular structure 62 for rotation relative thereto about its axis, as indicated by the double-ended arrow 66 in FIG. 2, and a condensing end portion 68 extending at an angle to the evaporating end portion 64 .
- the coiled tubular structure 62 has a circularly cross-sectioned interior side surface 70 (see FIGS.
- first heat pipe 52 having at least one flat exterior side surface portion useable to form the interior side surface 70 of the tubular structure 62 , the first heat pipe 52 could alternately have a circular cross-section.
- the heat pipe-based heat transfer apparatus 50 is installed in the computer 10 by using suitable brackets 71 to mount the tubular structure 62 coaxially with the hinge axis 48 between the hinge sections 46 a and 48 b , thermally communicating the evaporating end 60 of the first heat pipe 52 with the microprocessor 28 using, for example, a clamping structure 73 , and thermally communicating the condensing end portion 68 of the second heat pipe 54 with a portion of the lid structure 30 by, for example, securing the condensing end portion 68 to a heat conductive thermal block member 75 that engages the rear side wall 34 of the lid structure 30 .
- the overall heat transfer apparatus 50 is preferably formed using a unique fabrication method sequentially depicted in schematic form in FIGS. 7A-7B using a cylindrical mandrel member 72 and a tubular restraining member 74 .
- the mandrel member has a first cylindrical end portion 76 , and a second, slightly larger diameter end portion 78 .
- the tubular restraining member 74 has, at its open right end, an inturned annular flange section 80 .
- the condensing end portion of the first heat pipe 52 is tightly wound around the smaller diameter end portion 76 of the mandrel 72 (see FIG. 7A) to form the tubular heat pipe structure 62 , and the tubular restraining member 74 (which is sized to closely receive the tubular structure 62 ) is coaxially slipped over the tubular structure 62 until the flange 80 outwardly abuts the right end of the tubular structure 62 .
- the mandrel 72 is moved rightwardly through the interior of the tubular structure 62 , as indicated by the arrow 82 , in a manner causing the larger diameter mandrel portion 78 to forcibly engage the interior side surface 70 of the tubular portion 62 and radially outwardly deform it relative to the outer side surface of the tubular structure 62 which is restrained against radial enlargement by its contact with the interior side surface of the tubular restraining member 74 .
- This radially outward deformation of the interior side surface 70 of the tubular heat pipe structure 62 gives a desirably more precise roundness to the interior side surface 70 to thereby increase the sliding heat transfer contact area between the interior side surface 70 and the evaporating end portion 64 of the second heat pipe 54 when assembly of the heat transfer structure 50 is completed.
- the evaporating end portion 64 of the second heat pipe 54 (see FIG. 7C) is coaxially and slidably inserted into the interior of the tubular structure 62 as indicated by the arrow 84 .
- the completed heat transfer apparatus 50 may then be installed in the computer 10 as previously described herein.
- heat transfer apparatus 50 has been representatively illustrated and described herein as being incorporated in a portable notebook computer, it will be readily appreciated by those of skill in this particular art that it could alternatively be incorporated in a variety of other types of electronic devices. Additionally, the heat transfer apparatus 50 could be used in conjunction with a variety of types of heat-generating components other than the representatively depicted microprocessor 28 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Human Computer Interaction (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
Claims (16)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/317,332 US6253836B1 (en) | 1999-05-24 | 1999-05-24 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
US09/859,723 US6912785B2 (en) | 1999-05-24 | 2001-05-17 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
US09/859,877 US6595269B2 (en) | 1999-05-24 | 2001-05-17 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/317,332 US6253836B1 (en) | 1999-05-24 | 1999-05-24 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/859,723 Division US6912785B2 (en) | 1999-05-24 | 2001-05-17 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US6253836B1 true US6253836B1 (en) | 2001-07-03 |
Family
ID=23233193
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/317,332 Expired - Fee Related US6253836B1 (en) | 1999-05-24 | 1999-05-24 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
US09/859,877 Expired - Fee Related US6595269B2 (en) | 1999-05-24 | 2001-05-17 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
US09/859,723 Expired - Fee Related US6912785B2 (en) | 1999-05-24 | 2001-05-17 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/859,877 Expired - Fee Related US6595269B2 (en) | 1999-05-24 | 2001-05-17 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
US09/859,723 Expired - Fee Related US6912785B2 (en) | 1999-05-24 | 2001-05-17 | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
Country Status (1)
Country | Link |
---|---|
US (3) | US6253836B1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6708754B2 (en) * | 2001-07-25 | 2004-03-23 | Wen-Chen Wei | Flexible heat pipe |
US20040148959A1 (en) * | 2003-01-31 | 2004-08-05 | Cooligy, Inc. | Remedies to prevent cracking in a liquid system |
US20050145371A1 (en) * | 2003-12-31 | 2005-07-07 | Eric Distefano | Thermal solution for electronics cooling using a heat pipe in combination with active loop solution |
US20060109622A1 (en) * | 2004-11-19 | 2006-05-25 | Hon Hai Precision Industry Co., Ltd. | Heat dissipation module for hinged mobile computer |
US20090279258A1 (en) * | 2008-05-12 | 2009-11-12 | Moore David A | Hinge connector with liquid coolant path |
US20090316359A1 (en) * | 2008-06-18 | 2009-12-24 | Apple Inc. | Heat-transfer mechanism including a liquid-metal thermal coupling |
US20110155362A1 (en) * | 2009-12-30 | 2011-06-30 | Zhensong Zhao | Method and apparatus for heating coupling medium |
CN102169857A (en) * | 2010-02-26 | 2011-08-31 | 昆山巨仲电子有限公司 | Flexible heat pipe structure and manufacturing method thereof |
US8254422B2 (en) | 2008-08-05 | 2012-08-28 | Cooligy Inc. | Microheat exchanger for laser diode cooling |
US20130027886A1 (en) * | 2011-07-26 | 2013-01-31 | Crooijmans Wilhelmus | Thermal conductors in electronic devices |
US20130186602A1 (en) * | 2010-10-08 | 2013-07-25 | Astrium Sas | Heat transfer system |
US20140009888A1 (en) * | 2011-12-28 | 2014-01-09 | Mark MacDonald | Electronic device having a passive heat exchange device |
US20140092544A1 (en) * | 2012-09-28 | 2014-04-03 | Yoshifumi Nishi | Electronic device having passive cooling |
US20140092542A1 (en) * | 2012-09-28 | 2014-04-03 | Yoshifumi Nishi | Electronic device having passive cooling |
US20140216688A1 (en) * | 2013-02-01 | 2014-08-07 | Dell Products L.P. | Heat Exchanger and Technique for Cooling a Target Space and/or Device Via Stepped Sequencing of Multiple Working Fluids of Dissimilar Saturation Temperatures to Provide Condensation-by-Vaporization Cycles |
US20170347489A1 (en) * | 2016-05-27 | 2017-11-30 | Asia Vital Components Co., Ltd. | Heat dissipation element |
CN108966599A (en) * | 2018-08-03 | 2018-12-07 | 英业达科技有限公司 | Heat pipe heat and portable electronic devices with this heat pipe heat |
US20190254194A1 (en) * | 2019-03-30 | 2019-08-15 | Intel Corporation | Torsional heat pipe |
US20190353429A1 (en) * | 2014-07-18 | 2019-11-21 | Shanghai Dazhi Heat Dissipation Technology Co. | Heat-wing |
US11131510B1 (en) * | 2020-03-04 | 2021-09-28 | Inventec (Pudong) Technology Corporation | Heat pipe structure |
US20220205731A1 (en) * | 2019-05-15 | 2022-06-30 | Aavid Thermal Corp. | Vapor chamber thermal strap assembly and method |
US11847003B2 (en) | 2018-10-26 | 2023-12-19 | Huawei Technologies Co., Ltd. | Folding device and heat dissipation apparatus |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6675874B2 (en) * | 2001-06-29 | 2004-01-13 | Thermal Corp. | Heat pipe system for cooling flywheel energy storage systems |
US6808011B2 (en) * | 2001-09-26 | 2004-10-26 | Thermal.Corp. | Heat pipe system for cooling flywheel energy storage systems |
US20040035558A1 (en) * | 2002-06-14 | 2004-02-26 | Todd John J. | Heat dissipation tower for circuit devices |
US7117930B2 (en) * | 2002-06-14 | 2006-10-10 | Thermal Corp. | Heat pipe fin stack with extruded base |
JP3634825B2 (en) * | 2002-06-28 | 2005-03-30 | 株式会社東芝 | Electronics |
JP3629257B2 (en) * | 2002-08-30 | 2005-03-16 | 株式会社東芝 | Electronics |
US20060102323A1 (en) * | 2003-02-14 | 2006-05-18 | Prosenjit Ghosh | Radially shaped heat pipe |
US7861768B1 (en) * | 2003-06-11 | 2011-01-04 | Apple Inc. | Heat sink |
US6978828B1 (en) | 2004-06-18 | 2005-12-27 | Schlumberger Technology Corporation | Heat pipe cooling system |
US7116552B2 (en) * | 2005-01-31 | 2006-10-03 | Chaun-Choung Technology Corp. | Heat-dissipation apparatus of portable computer |
JP4569428B2 (en) * | 2005-09-12 | 2010-10-27 | 株式会社デンソー | Liquid crystal display |
TWM309700U (en) * | 2006-10-16 | 2007-04-11 | Quanta Comp Inc | Thermal module |
US20080130221A1 (en) * | 2006-12-02 | 2008-06-05 | Krishnakumar Varadarajan | Thermal hinge for lid cooling |
US20080253082A1 (en) * | 2007-04-12 | 2008-10-16 | Lev Jeffrey A | Cooling system with flexible heat transport element |
CN101959752B (en) * | 2008-03-03 | 2014-03-26 | 三星重工业株式会社 | Reinforcement member for membrane of liquefied natural gas cargo, membrane assembly having same, and construction method for same |
US20090279262A1 (en) * | 2008-05-12 | 2009-11-12 | Meng-Cheng Huang | Heat dissipating structure |
TW201036527A (en) * | 2009-03-19 | 2010-10-01 | Acbel Polytech Inc | Large-area liquid-cooled heat-dissipation device |
KR20110026193A (en) * | 2009-09-07 | 2011-03-15 | 삼성전자주식회사 | System for cooling heated member and sytem for cooling battery |
US8477487B2 (en) * | 2010-04-05 | 2013-07-02 | Apple Inc. | Computer hinge having a hollow clutch |
US8488312B2 (en) | 2011-02-14 | 2013-07-16 | Adc Telecommunications, Inc. | Systems and methods for thermal management for telecommunications enclosures using heat pipes |
US20120285662A1 (en) * | 2011-05-10 | 2012-11-15 | Celsia Technologies Taiwan, I | Vapor chamber with improved sealed opening |
CN102811588A (en) * | 2011-05-30 | 2012-12-05 | 富准精密工业(深圳)有限公司 | Electronic equipment |
US9600041B2 (en) | 2014-07-28 | 2017-03-21 | Google Technology Holdings LLC | Heat management apparatus for an electronic device |
US10275000B2 (en) * | 2016-09-06 | 2019-04-30 | Google Llc | Thermally conductive cables |
EP3867729A4 (en) | 2018-12-18 | 2022-07-27 | CommScope Technologies LLC | Thermal management for modular electronic devices |
CN110134214A (en) * | 2019-05-29 | 2019-08-16 | 英业达科技有限公司 | Portable electronic devices |
US10721842B1 (en) * | 2019-07-29 | 2020-07-21 | Hewlett Packard Enterprise Development Lp | Flexible thermal cooling assembly |
US11206748B2 (en) * | 2019-12-13 | 2021-12-21 | Intel Corporation | Flexible hinge to accommodate a flexible heat spreader |
US11598584B2 (en) * | 2020-04-15 | 2023-03-07 | Asia Vital Components Co., Ltd. | Dual heat transfer structure |
EP4001820B1 (en) * | 2020-11-20 | 2024-05-29 | Nokia Technologies Oy | Oscillating heat pipe |
US12117876B2 (en) | 2020-11-21 | 2024-10-15 | Intel Corporation | Hinge assembly and guide assembly for electronic devices using a heat carrying member |
US20240318924A1 (en) * | 2023-03-23 | 2024-09-26 | Meta Platforms Technologies, Llc | Polygonal-shaped heat pipes |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4593753A (en) * | 1984-11-09 | 1986-06-10 | Mcconnell Research Enterprises Pty. Ltd. | Exhaust gas liquid heating system for internal combustion engines |
US5172754A (en) * | 1988-10-27 | 1992-12-22 | Graber Neil M | Heat exchanger for recovery of heat from a spa or hot tub pump motor |
US5313362A (en) | 1991-05-31 | 1994-05-17 | Hitachi, Ltd. | Packaging structure of small-sized computer |
US5383340A (en) | 1994-03-24 | 1995-01-24 | Aavid Laboratories, Inc. | Two-phase cooling system for laptop computers |
EP0702287A2 (en) | 1994-09-16 | 1996-03-20 | Fujikura Ltd. | Personal computer cooling device and process for manufacturing container of heat pipe for the device |
US5588483A (en) | 1995-01-27 | 1996-12-31 | Diamond Electric Mfg. Co., Ltd. | Heat radiating apparatus |
US5621613A (en) | 1995-05-16 | 1997-04-15 | Intel Corporation | Apparatus for dissipating heat in a hinged computing device |
US5646822A (en) | 1995-08-30 | 1997-07-08 | Intel Corporation | Heat pipe exchanger system for cooling a hinged computing device |
US5781409A (en) * | 1996-12-19 | 1998-07-14 | Compaq Computer Corporation | Heat dissipating lid hinge structure with laterally offset heat pipe end portions |
US5796581A (en) * | 1997-07-30 | 1998-08-18 | International Business Machines Corporation | Rotational joint for hinged heat pipe cooling of a computer |
US5847925A (en) * | 1997-08-12 | 1998-12-08 | Compaq Computer Corporation | System and method for transferring heat between movable portions of a computer |
US5910883A (en) * | 1997-08-06 | 1999-06-08 | International Business Machines Corporation | Hinge incorporating a helically coiled heat pipe for a laptop computer |
US5975195A (en) * | 1997-03-21 | 1999-11-02 | Cema Technologies, Inc. | Rotatable heat transfer coupling |
US6026888A (en) * | 1997-06-02 | 2000-02-22 | Compaq Computer Corporation | Molded heat exchanger structure for portable computer |
US6069791A (en) * | 1997-08-14 | 2000-05-30 | Fujikura Ltd. | Cooling device for notebook personal computer |
US6078499A (en) * | 1998-08-31 | 2000-06-20 | International Business Machines Corporation | Spring loaded heat pipe connector for hinged apparatus package |
US6105662A (en) * | 1995-03-17 | 2000-08-22 | Fujitsu Limited | Cooling system for electronic packages |
US6118654A (en) * | 1997-04-22 | 2000-09-12 | Intel Corporation | Heat exchanger for a portable computing device and docking station |
US6125035A (en) * | 1998-10-13 | 2000-09-26 | Dell Usa, L.P. | Heat sink assembly with rotating heat pipe |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2965121B2 (en) | 1994-02-15 | 1999-10-18 | インターナショナル・ビジネス・マシーンズ・コーポレイション | High density recording and reproducing device |
JP3991395B2 (en) * | 1997-09-25 | 2007-10-17 | ソニー株式会社 | Electronics |
US6148906A (en) * | 1998-04-15 | 2000-11-21 | Scientech Corporation | Flat plate heat pipe cooling system for electronic equipment enclosure |
US6031716A (en) * | 1998-09-08 | 2000-02-29 | International Business Machines Corporation | Computer incorporating heat dissipator with hinged heat pipe arrangement for enhanced cooling capacity |
US6141216A (en) * | 1999-03-31 | 2000-10-31 | International Business Machines Corporation | Quick-release hinge joint for heat pipe |
US6226178B1 (en) * | 1999-10-12 | 2001-05-01 | Dell Usa, L.P. | Apparatus for cooling a heat generating component in a computer |
US6134106A (en) * | 1999-12-08 | 2000-10-17 | Loyalty Founder Enterprise Co., Ltd. | Winding chain dissipating unit suitable for electronic device |
-
1999
- 1999-05-24 US US09/317,332 patent/US6253836B1/en not_active Expired - Fee Related
-
2001
- 2001-05-17 US US09/859,877 patent/US6595269B2/en not_active Expired - Fee Related
- 2001-05-17 US US09/859,723 patent/US6912785B2/en not_active Expired - Fee Related
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4593753A (en) * | 1984-11-09 | 1986-06-10 | Mcconnell Research Enterprises Pty. Ltd. | Exhaust gas liquid heating system for internal combustion engines |
US5172754A (en) * | 1988-10-27 | 1992-12-22 | Graber Neil M | Heat exchanger for recovery of heat from a spa or hot tub pump motor |
US5313362A (en) | 1991-05-31 | 1994-05-17 | Hitachi, Ltd. | Packaging structure of small-sized computer |
US5383340A (en) | 1994-03-24 | 1995-01-24 | Aavid Laboratories, Inc. | Two-phase cooling system for laptop computers |
EP0702287A2 (en) | 1994-09-16 | 1996-03-20 | Fujikura Ltd. | Personal computer cooling device and process for manufacturing container of heat pipe for the device |
US5588483A (en) | 1995-01-27 | 1996-12-31 | Diamond Electric Mfg. Co., Ltd. | Heat radiating apparatus |
US6105662A (en) * | 1995-03-17 | 2000-08-22 | Fujitsu Limited | Cooling system for electronic packages |
US5621613A (en) | 1995-05-16 | 1997-04-15 | Intel Corporation | Apparatus for dissipating heat in a hinged computing device |
US5646822A (en) | 1995-08-30 | 1997-07-08 | Intel Corporation | Heat pipe exchanger system for cooling a hinged computing device |
US5781409A (en) * | 1996-12-19 | 1998-07-14 | Compaq Computer Corporation | Heat dissipating lid hinge structure with laterally offset heat pipe end portions |
US5975195A (en) * | 1997-03-21 | 1999-11-02 | Cema Technologies, Inc. | Rotatable heat transfer coupling |
US6118654A (en) * | 1997-04-22 | 2000-09-12 | Intel Corporation | Heat exchanger for a portable computing device and docking station |
US6026888A (en) * | 1997-06-02 | 2000-02-22 | Compaq Computer Corporation | Molded heat exchanger structure for portable computer |
US5796581A (en) * | 1997-07-30 | 1998-08-18 | International Business Machines Corporation | Rotational joint for hinged heat pipe cooling of a computer |
US5910883A (en) * | 1997-08-06 | 1999-06-08 | International Business Machines Corporation | Hinge incorporating a helically coiled heat pipe for a laptop computer |
US5847925A (en) * | 1997-08-12 | 1998-12-08 | Compaq Computer Corporation | System and method for transferring heat between movable portions of a computer |
US6069791A (en) * | 1997-08-14 | 2000-05-30 | Fujikura Ltd. | Cooling device for notebook personal computer |
US6078499A (en) * | 1998-08-31 | 2000-06-20 | International Business Machines Corporation | Spring loaded heat pipe connector for hinged apparatus package |
US6125035A (en) * | 1998-10-13 | 2000-09-26 | Dell Usa, L.P. | Heat sink assembly with rotating heat pipe |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6708754B2 (en) * | 2001-07-25 | 2004-03-23 | Wen-Chen Wei | Flexible heat pipe |
US20040148959A1 (en) * | 2003-01-31 | 2004-08-05 | Cooligy, Inc. | Remedies to prevent cracking in a liquid system |
US7201012B2 (en) * | 2003-01-31 | 2007-04-10 | Cooligy, Inc. | Remedies to prevent cracking in a liquid system |
US20050145371A1 (en) * | 2003-12-31 | 2005-07-07 | Eric Distefano | Thermal solution for electronics cooling using a heat pipe in combination with active loop solution |
US20060109622A1 (en) * | 2004-11-19 | 2006-05-25 | Hon Hai Precision Industry Co., Ltd. | Heat dissipation module for hinged mobile computer |
US7254019B2 (en) * | 2004-11-19 | 2007-08-07 | Hon Hai Precision Industry Co., Ltd. | Heat dissipation module for hinged mobile computer |
US20090279258A1 (en) * | 2008-05-12 | 2009-11-12 | Moore David A | Hinge connector with liquid coolant path |
US7791876B2 (en) * | 2008-05-12 | 2010-09-07 | Hewlett-Packard Development Company, L.P. | Hinge connector with liquid coolant path |
US20090316359A1 (en) * | 2008-06-18 | 2009-12-24 | Apple Inc. | Heat-transfer mechanism including a liquid-metal thermal coupling |
US7701716B2 (en) * | 2008-06-18 | 2010-04-20 | Apple Inc. | Heat-transfer mechanism including a liquid-metal thermal coupling |
US8254422B2 (en) | 2008-08-05 | 2012-08-28 | Cooligy Inc. | Microheat exchanger for laser diode cooling |
US8299604B2 (en) | 2008-08-05 | 2012-10-30 | Cooligy Inc. | Bonded metal and ceramic plates for thermal management of optical and electronic devices |
US20110155362A1 (en) * | 2009-12-30 | 2011-06-30 | Zhensong Zhao | Method and apparatus for heating coupling medium |
US8748779B2 (en) * | 2009-12-30 | 2014-06-10 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for heating coupling medium |
CN102169857A (en) * | 2010-02-26 | 2011-08-31 | 昆山巨仲电子有限公司 | Flexible heat pipe structure and manufacturing method thereof |
US20130186602A1 (en) * | 2010-10-08 | 2013-07-25 | Astrium Sas | Heat transfer system |
US9625216B2 (en) * | 2010-10-08 | 2017-04-18 | Airbus Defence And Space Sas | Heat transfer system two separate heat loops in exchange |
US20130027886A1 (en) * | 2011-07-26 | 2013-01-31 | Crooijmans Wilhelmus | Thermal conductors in electronic devices |
US8675363B2 (en) * | 2011-07-26 | 2014-03-18 | Hewlett-Packard Development Company, L.P. | Thermal conductors in electronic devices |
US20140009888A1 (en) * | 2011-12-28 | 2014-01-09 | Mark MacDonald | Electronic device having a passive heat exchange device |
US9268377B2 (en) * | 2011-12-28 | 2016-02-23 | Intel Corporation | Electronic device having a passive heat exchange device |
TWI561966B (en) * | 2011-12-28 | 2016-12-11 | Intel Corp | Electronic device having a passive heat exchange device |
US20140092544A1 (en) * | 2012-09-28 | 2014-04-03 | Yoshifumi Nishi | Electronic device having passive cooling |
US9134757B2 (en) * | 2012-09-28 | 2015-09-15 | Intel Corporation | Electronic device having passive cooling |
US8982555B2 (en) * | 2012-09-28 | 2015-03-17 | Intel Corporation | Electronic device having passive cooling |
US20140092542A1 (en) * | 2012-09-28 | 2014-04-03 | Yoshifumi Nishi | Electronic device having passive cooling |
US20140216688A1 (en) * | 2013-02-01 | 2014-08-07 | Dell Products L.P. | Heat Exchanger and Technique for Cooling a Target Space and/or Device Via Stepped Sequencing of Multiple Working Fluids of Dissimilar Saturation Temperatures to Provide Condensation-by-Vaporization Cycles |
US10018425B2 (en) * | 2013-02-01 | 2018-07-10 | Dell Products, L.P. | Heat exchanger and technique for cooling a target space and/or device via stepped sequencing of multiple working fluids of dissimilar saturation temperatures to provide condensation-by-vaporization cycles |
US11448469B2 (en) * | 2014-07-18 | 2022-09-20 | Yue Zhang | Heat-wing |
US20190353429A1 (en) * | 2014-07-18 | 2019-11-21 | Shanghai Dazhi Heat Dissipation Technology Co. | Heat-wing |
US10451355B2 (en) * | 2016-05-27 | 2019-10-22 | Asia Vital Components Co., Ltd. | Heat dissipation element |
US20170347489A1 (en) * | 2016-05-27 | 2017-11-30 | Asia Vital Components Co., Ltd. | Heat dissipation element |
CN108966599A (en) * | 2018-08-03 | 2018-12-07 | 英业达科技有限公司 | Heat pipe heat and portable electronic devices with this heat pipe heat |
US11847003B2 (en) | 2018-10-26 | 2023-12-19 | Huawei Technologies Co., Ltd. | Folding device and heat dissipation apparatus |
US20190254194A1 (en) * | 2019-03-30 | 2019-08-15 | Intel Corporation | Torsional heat pipe |
US10932393B2 (en) * | 2019-03-30 | 2021-02-23 | Intel Corporation | Torsional heat pipe |
US20220205731A1 (en) * | 2019-05-15 | 2022-06-30 | Aavid Thermal Corp. | Vapor chamber thermal strap assembly and method |
US11662154B2 (en) * | 2019-05-15 | 2023-05-30 | Aavid Thermal Corp. | Vapor chamber thermal strap assembly and method |
US11131510B1 (en) * | 2020-03-04 | 2021-09-28 | Inventec (Pudong) Technology Corporation | Heat pipe structure |
Also Published As
Publication number | Publication date |
---|---|
US6595269B2 (en) | 2003-07-22 |
US20020008960A1 (en) | 2002-01-24 |
US6912785B2 (en) | 2005-07-05 |
US20010022720A1 (en) | 2001-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6253836B1 (en) | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus | |
US7116552B2 (en) | Heat-dissipation apparatus of portable computer | |
US6069791A (en) | Cooling device for notebook personal computer | |
US20070119023A1 (en) | Multi-section hinge mechanism | |
US6983514B2 (en) | Pivot hinge with positioning function | |
CN101739084B (en) | Electronic device | |
US8403288B2 (en) | Supporting mechanism and device using the same | |
US20070012825A1 (en) | Article for supporting electronic device | |
US20060146030A1 (en) | Body rotation type portable terminal | |
US7607201B2 (en) | Multi-section hinge mechanism | |
JP2010107044A (en) | Hinge assembly and portable electronic device using the same | |
JP2010156460A (en) | Hinge assembly and portable electronic device using the same | |
US10401908B2 (en) | Electronic device | |
WO2020232377A1 (en) | Vapor chamber thermal strap assembly and method | |
US20120008299A1 (en) | System and apparatus for protecting a mobile device | |
US8235429B2 (en) | Fixing base | |
US7847860B2 (en) | Camera assembly for a mobile communication device | |
US20080134468A1 (en) | Pivotal device | |
JP3118012U (en) | Flat panel display module | |
US8820947B2 (en) | Projection apparatus with locking structure | |
JPH10335843A (en) | Spring member, handle device and portable device | |
WO2010143045A2 (en) | Stand assemblies for portable terminals | |
JP2003237447A (en) | Rotary damper and assist grip device | |
JP2006118264A (en) | Hinge device | |
JPH11219234A (en) | Display part opening and closing type information processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: COMPAQ INFORMATION TECHNOLOGIES GROUP, L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMPAQ COMPUTER CORPORATION;REEL/FRAME:012471/0218 Effective date: 20010620 |
|
AS | Assignment |
Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:COMPAQ INFORMATION TECHNOLOGIES GROUP, LP;REEL/FRAME:015000/0305 Effective date: 20021001 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: COMPAQ COMPUTER COROPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITCHELL, NATHAN A.;REEL/FRAME:023839/0518 Effective date: 19890927 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20130703 |