US6652967B2 - Nano-dispersed powders and methods for their manufacture - Google Patents
Nano-dispersed powders and methods for their manufacture Download PDFInfo
- Publication number
- US6652967B2 US6652967B2 US10/004,387 US438701A US6652967B2 US 6652967 B2 US6652967 B2 US 6652967B2 US 438701 A US438701 A US 438701A US 6652967 B2 US6652967 B2 US 6652967B2
- Authority
- US
- United States
- Prior art keywords
- dispersed
- particles
- powders
- nano
- dispersed powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 239000000843 powder Substances 0.000 title claims abstract description 210
- 238000000034 method Methods 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000203 mixture Substances 0.000 claims abstract description 70
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 239000002184 metal Substances 0.000 claims abstract description 56
- -1 borides Chemical class 0.000 claims abstract description 14
- 150000004767 nitrides Chemical class 0.000 claims abstract description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 8
- 150000002739 metals Chemical class 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 194
- 239000002243 precursor Substances 0.000 claims description 104
- 239000002105 nanoparticle Substances 0.000 claims description 33
- 239000012530 fluid Substances 0.000 claims description 28
- 239000002002 slurry Substances 0.000 claims description 25
- 239000000919 ceramic Substances 0.000 claims description 16
- 238000010791 quenching Methods 0.000 claims description 7
- 230000000171 quenching effect Effects 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 238000003801 milling Methods 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 claims 4
- 238000010438 heat treatment Methods 0.000 claims 3
- 230000003197 catalytic effect Effects 0.000 abstract description 9
- 239000003054 catalyst Substances 0.000 abstract description 4
- 150000004770 chalcogenides Chemical class 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 36
- 239000000463 material Substances 0.000 description 31
- 239000000047 product Substances 0.000 description 31
- 239000011858 nanopowder Substances 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000012545 processing Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 229910052726 zirconium Inorganic materials 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 229910000420 cerium oxide Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 231100001261 hazardous Toxicity 0.000 description 4
- 239000000383 hazardous chemical Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000002071 nanotube Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000007669 thermal treatment Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 2
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910039444 MoC Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910033181 TiB2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910026551 ZrC Inorganic materials 0.000 description 2
- LRTTZMZPZHBOPO-UHFFFAOYSA-N [B].[B].[Hf] Chemical compound [B].[B].[Hf] LRTTZMZPZHBOPO-UHFFFAOYSA-N 0.000 description 2
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- PXRRKABOTYTTLJ-UHFFFAOYSA-N [O-2].[Zn+2].[Ag+].[Cu+2] Chemical compound [O-2].[Zn+2].[Ag+].[Cu+2] PXRRKABOTYTTLJ-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- GSWGDDYIUCWADU-UHFFFAOYSA-N aluminum magnesium oxygen(2-) Chemical compound [O--].[Mg++].[Al+3] GSWGDDYIUCWADU-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- LGLOITKZTDVGOE-UHFFFAOYSA-N boranylidynemolybdenum Chemical compound [Mo]#B LGLOITKZTDVGOE-UHFFFAOYSA-N 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 2
- AUVPWTYQZMLSKY-UHFFFAOYSA-N boron;vanadium Chemical compound [V]#B AUVPWTYQZMLSKY-UHFFFAOYSA-N 0.000 description 2
- OSPYXUDVXSLVLJ-UHFFFAOYSA-N calcium cerium(3+) oxygen(2-) Chemical compound [Ca+2].[O-2].[Ce+3] OSPYXUDVXSLVLJ-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000009388 chemical precipitation Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- VODBHXZOIQDDST-UHFFFAOYSA-N copper zinc oxygen(2-) Chemical compound [O--].[O--].[Cu++].[Zn++] VODBHXZOIQDDST-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 229910001337 iron nitride Inorganic materials 0.000 description 2
- DMTIXTXDJGWVCO-UHFFFAOYSA-N iron(2+) nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[Fe++].[Ni++] DMTIXTXDJGWVCO-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000011156 metal matrix composite Substances 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- SGWQOXURUQZMLJ-UHFFFAOYSA-N oxygen(2-) scandium(3+) yttrium(3+) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[O--].[Sc+3].[Y+3].[Zr+4] SGWQOXURUQZMLJ-UHFFFAOYSA-N 0.000 description 2
- JXSUUUWRUITOQZ-UHFFFAOYSA-N oxygen(2-);yttrium(3+);zirconium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Y+3].[Y+3].[Zr+4].[Zr+4] JXSUUUWRUITOQZ-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical class CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000951 Aluminide Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000012691 Cu precursor Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 239000012692 Fe precursor Substances 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- MUBKMWFYVHYZAI-UHFFFAOYSA-N [Al].[Cu].[Zn] Chemical compound [Al].[Cu].[Zn] MUBKMWFYVHYZAI-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- RTVHKGIVFVKLDJ-UHFFFAOYSA-N barium(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+3].[Fe+3].[Ba+2] RTVHKGIVFVKLDJ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229940025708 injectable product Drugs 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 125000005474 octanoate group Chemical group 0.000 description 1
- 239000006250 one-dimensional material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000002464 physical blending Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000012686 silicon precursor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000001089 thermophoresis Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052844 willemite Inorganic materials 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J12/00—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
- B01J12/005—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J12/00—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
- B01J12/02—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/08—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/14—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/12—Making metallic powder or suspensions thereof using physical processes starting from gaseous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/08—Making granules by agglomerating smaller particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/58—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/145—After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0615—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
- C01B21/062—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with chromium, molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/991—Boron carbide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
- C01B35/04—Metal borides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/02—Oxides or hydroxides
- C01F11/04—Oxides or hydroxides by thermal decomposition
- C01F11/06—Oxides or hydroxides by thermal decomposition of carbonates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/02—Magnesia
- C01F5/06—Magnesia by thermal decomposition of magnesium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/006—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2/00—Lime, magnesia or dolomite
- C04B2/10—Preheating, burning calcining or cooling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0004—Microcomposites or nanocomposites, e.g. composite particles obtained by polymerising monomers onto inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62222—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/105—Varistor cores
- H01C7/108—Metal oxide
- H01C7/112—ZnO type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1253—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00132—Controlling the temperature using electric heating or cooling elements
- B01J2219/00135—Electric resistance heaters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00177—Controlling or regulating processes controlling the pH
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/0018—Controlling or regulating processes controlling the conductivity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B2009/125—Micropellets, microgranules, microparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/013—Additives applied to the surface of polymers or polymer particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/252—Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
Definitions
- the present invention relates, in general, to nano-dispersed powders, and, more particularly, to nano-dispersed, complex composition fine powders and methods to produce such powders.
- Powders are used in numerous applications. They are the building blocks of catalytic, electronic, telecommunication, electrical, magnetic, structural, optical, biomedical, chemical, thermal and consumer goods. On-going market demands for more efficient, reliable, smaller, faster, superior and more portable products have demanded miniaturization of numerous products. This, in turn, has demanded miniaturization of the building blocks, i.e. the powders.
- Sub-micron and nanoscale (or nanosize, ultra-fine) powders with a size 10 to 100 times smaller than conventional micron size powders, enable quality improvement and differentiation of product characteristics at scales currently unachievable by commercially available micron-sized powders.
- Nanopowders in particular, and sub-micron powders in general, are a novel family of materials whose distinguishing features include that their domain size is so small that size confinement effects become a significant determinant of the materials' performance. Such confinement effects can, therefore, lead to a wide range of commercially important properties. Nanopowders, therefore, are an extraordinary opportunity for design, development and commercialization of a wide range of devices and products for various applications. Furthermore, since they represent a whole new family of material precursors where conventional coarse-grain physiochemical mechanisms are not applicable, these materials offer unique combination of properties that can enable novel and multifunctional components of unmatched performance. Bickmore, et al. in U.S. Pat. No. 5,984,997, which along with the references contained therein is incorporated herein by reference, teach some applications of sub-micron and nanoscale powders.
- dispersed powders comprise powders of a first composition (e.g. metal) dispersed on the surface of a carrier which may be of a second composition (e.g. carbon).
- a first composition e.g. metal
- a second composition e.g. carbon
- the dispersed powder structure enables greater and more effective availability of the first composition. It also provides a cost reduction because the second composition can be a low-cost carrier. Additionally, the dispersed powder structure improves the stability and enhances the performance synergistically.
- Dispersed powders are desired in a number of applications such as catalysis.
- the junctions provide active sites for useful chemical reactions.
- Dispersed powders are often produced using chemical precipitation techniques. These techniques fail to provide a fine and uniform distribution of the dispersed particles on the surfaces of the carrier. Furthermore, the challenge becomes even more difficult when complex compositions need to be dispersed on a carrier powder. Chemical precipitation techniques also leave chemical residues on the surfaces that sometimes are not desirable. Given the difficulty in their production, few dispersed powders are known in the literature and these have found only limited applications.
- Phillips in U.S. Pat. No. 5,989,648 (which, along with its references, is specifically incorporated herein by reference) teaches a plasma-based method for preparing metal supported catalysts from an aerosol comprising a mixture of at least one metal powder and at least one support powder. Phillips reports the unusual benefits as catalysts of the metal supported powders so prepared. However, Phillips does not offer motivation for or methods of utilizing fluid precursors to form dispersed powders. Phillips also does not teach nano-dispersed sub-micron powders, motivations for their use, or their benefits to various applications.
- nano-dispersed powders comprising powders that have been morphologically engineered. More specifically, the term nano-dispersed powders according to this invention refers to powders that have been arranged to provide a desired morphological distribution (dispersion) at nanoscale levels (e.g., sub-100 nm levels). As described in the definition section, nano-dispersed powders comprise carrier particles and attached particles dispersed on the surface of the carrier particles.
- the carrier particles may be spherical, non-spherical, porous, tubular, planar, crystallites, amorphous, or any other useful form.
- the nanoparticles may similarly be one-dimensional, two-dimensional, or three-dimensional, spherical, non-spherical, porous, tubular, planar, crystallites, or amorphous forms, or any other useful form.
- the attached nano-dispersed particles may be free flowing, agglomerated, porous, coated, or hollow forms or any other useful form.
- the same carrier may have nanoparticles of more than one composition attached to its surface.
- various nano-dispersed particles of different compositions may be blended to achieve useful compositions.
- the invention provides nano-dispersed powders with unusually engineered morphology.
- the unusual morphology provides a high density of multi-phasic points (i.e. points where two or more distinct phases interact with each other and/or species in the gas phase). These morphologically engineered nano-dispersed powders offer benefits to numerous applications.
- Some illustrative, but non-limiting applications include (a) catalytic transformation of less valuable chemicals and material feed stocks into more valuable chemicals and materials; (b) catalytic transformation of more hazardous chemicals and materials into less hazardous or non-hazardous forms of substances; (c) unusual phosphor, photonic, and optical materials for display, photonic, and optical applications; (d) unusual carriers, tracers, drug delivery vehicles, and markers for biomedical and genomic applications; (e) unusual building blocks for batteries, sensors, and electrochemical products; (f) fillers for polymers, ceramics, and metal matrix composites; and (g) dopants for electronic, magnetic, thermal, piezo, electrical, tooling, structural, inks, paints, and topical health products.
- FIG. 1 shows an example of a sub-micron powder comprising nanopowders discretely dispersed on and attached to the surface of the submicron powder.
- FIG. 2 shows an example of a nanotube carrier having nanoparticles dispersed on and attached to its surface, wherein at least two of the nanoparticles are not in contact with each other.
- FIG. 3 shows one embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
- FIG. 4 shows a schematic concentric flame approach to improve the uniformity of particle size distribution.
- FIG. 5 shows an alternate embodiment for producing nano-dispersed particles in which both the nano-sized powders and the carrier particles are prepared in-situ during the thermal processing.
- FIG. 6 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
- FIG. 7 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
- FIG. 8 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
- the present invention is directed to dispersed powders in general and dispersed nanoscale powders in particular.
- dispersed powders provide a structure having a particle size that is largely determined by the size of a carrier particle, and surface behavior that is largely determined by dispersed particles attached to the carrier particle. This somewhat oversimplifies dispersed particle structures in that both the size and ultimate surface behavior may be affected by each component, however the simplification is useful for understanding.
- the composite structure can be engineered to have some benefits (e.g., cost, material handling, and the like) associated with larger particle sizes while exhibiting behaviors, particularly surface-related behaviors, of the nanoscale powders dispersed on the carrier.
- FIGS. 1 and 2 show two non-limiting examples of nano-dispersed sub-micron powders and nano-dispersed nanopowders, respectively.
- FIG. 1 shows an example of a sub-micron powder comprising nanopowders 200 discretely dispersed on and attached to the surface of a submicron carrier 102 .
- discretely it is meant that the particles 200 do not touch or overlap. In one sense means particles do not physically overlap. In another sense means that they are sufficiently separate that the solid states of atoms within adjacent particles 200 have a level of interaction determined by their separation.
- FIG. 2 shows an example of a nanotube carrier 203 having nanoparticles 200 dispersed on and attached to its surface, wherein at least two of the nanoparticles are not in contact with each other.
- Powders refers to powders that simultaneously satisfy the following criteria:
- Micron powders refers to fine powders that simultaneously satisfy the following criteria:
- powders that simultaneously satisfy the following criteria:
- they comprise at least a first composition that serves as a carrier particle
- they comprise particles of at least a second composition that are attached to the surface of the carrier particle in a mechanically stable state, where the second composition can be the same as or different from the first composition;
- the average separation distance between the center of gravity of the at least two neighboring attached particles on the surface of the carrier that are not in contact with each other is at least 1.05 times the average diameter of the attached particles, preferably greater than 2.5 times the average diameter of the attached particles, more preferably greater than 5 times the average diameter of the attached particles, and most preferably greater than 10 times the average diameter of the attached particles; and (6) the attached particle is smaller than the carrier particle. More particularly, the ratio of the average diameter of the carrier particles and the average diameter of the attached particles is greater than or equal to 2, preferably greater than 10, more preferably greater than 25, and most preferably greater than 100. In one embodiment, the carrier powder is less than 1000 microns, preferably less than 100 microns, more preferably 10 microns, and most preferably 1 micron.
- nanopowders “nanosize powders,” and “nanoscale powders” are used interchangeably and refer to fine powders that simultaneously satisfy the following criteria:
- Pig powders refers to powders that have a composition purity of at least 99.9%, preferably 99.99% by metal basis.
- Nano-dispersed powders refers to dispersed powders in which the attached particle is a nanopowder.
- Nano-dispersed sub-micron powders refers to dispersed powders in which the attached particle is a nanopowder and the carrier particle is a sub-micron powder.
- Nano-dispersed nanopowders refers to dispersed powders where the attached particle is a nanopowder and the carrier particle is also a nanoscale powder.
- binder “particle,” and “grain” are used interchangeably and encompass oxides, carbides, nitrides, borides, chalcogenides, halides, metals, intermetallics, ceramics, polymers, alloys, and combinations thereof.
- the term includes single metal, multi-metal, and complex compositions. These terms further include hollow, dense, porous, semi-porous, coated, uncoated, layered, laminated, simple, complex, dendritic, inorganic, organic, elemental, non-elemental, composite, doped, undoped, spherical, non-spherical, surface functionalized, surface non-functionalized, stoichiometric, and non-stoichiometric forms or substances.
- powder in its generic sense includes one-dimensional materials (fibers, tubes), two-dimensional materials (platelets, films, laminates, planar), and three-dimensional materials (spheres, cones, ovals, cylindrical, cubes, monoclinic, parallelolipids, dumbbells, hexagonal, truncated dodecahedron, irregular shaped structures, etc.).
- spect ratio refers to the ratio of the maximum to the minimum dimension of a particle.
- the present invention is directed to dispersed powders in general and dispersed nanoscale powders in particular. Dispersed powders preferably simultaneously satisfy the following criteria:
- they comprise a carrier particle with at least a first composition
- they comprise particles of at least a second composition that are dispersed on and attached to the surface of the carrier particle in a mechanically stable state (i.e., sufficiently attached to prevent undesired physical mobility during normal use), where the composition of the attached particles may be the same as or different than the carrier particle;
- the surfaces of the attached particle and carrier particle interact physically, chemically, or electrochemically with each other, but the attached particles exhibit properties (e.g., electrical properties, chemical properties, solid state properties, size-confinement properties, surface properties and/or the like) that are distinct from the carrier particle;
- the average separation distance between the center of gravity of the at least two neighboring attached particles that are not in contact with each other is at least 1.05 times the average diameter of the attached particles, preferably greater than 2.5 times the average diameter of the attached particles, more preferably greater than 5 times the average diameter of the attached particles, and most preferably greater than 10 times the average diameter of the attached particles;
- the attached particle is smaller than the carrier particle. More particularly, the ratio of the average diameter of the carrier particles and the average diameter of the attached particles is greater than or equal to 2, preferably greater than 10, more preferably greater than 25, and most preferably greater than 100.
- the carrier particle is a ceramic composition (oxide, carbide, nitride, boride, chalcogenide) or an intermetallic composition (aluminide, silicide) or an elemental composition.
- ceramic composition include, but are not limited to (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, barium iron oxide and silver copper zinc oxide; (c) doped oxides such as zirconium doped cerium oxide, antimony doped tin oxide,
- the dispersed particles that are attached to the carrier particle are elemental, ceramic, intermetallic or polymer compositions.
- the composition of the attached particles can be the same as or different than the composition of the carrier particle.
- the particles are preferably separated from each other either uniformly or non-uniformly across the surface of the carrier particle.
- the distance between two neighboring attached particles on the surface of the carrier that do not touch each other is at least 2 Angstroms, but may be greater than 5 Angstroms, 10 Angstroms, 50 Angstroms or more to meet the needs of a particular application.
- elemental compositions for the dispersed, attached particles include, but are not limited to, (a) precious metals such as platinum, palladium, gold, silver, rhodium, ruthenium and their alloys; (b) base and rare earth metals such as iron, nickel, manganese, cobalt, aluminum, copper, zinc, titanium, samarium, cerium, europium, erbium, and neodymium; (c) semi-metals such as boron, silicon, tin, indium, selenium, tellurium, and bismuth; (d) non-metals such as carbon, phosphorus, and halogens; (e) clusters such as fullerenes (C 60 , C 70 , C 82 ), silicon clusters, and nanotubes of various compositions; and (f) alloys such as steel, shape memory alloys, aluminum alloys, manganese alloys, and superplastic alloys.
- precious metals such as platinum, palladium, gold, silver,
- Ceramic compositions for the dispersed, attached particles include, but are not limited to, (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, and silver copper zinc oxide; (c) doped oxides such as zirconium doped cerium oxide, antimony doped tin oxide, boron doped aluminum oxide, phosphorus doped silicon oxide, and nickel doped iron oxide; (d) carbides such as silicon carbide, boron carbide, iron carbide, titanium carbide, zircon
- the nano-dispersed powders of this invention may further comprise carrier particles having dispersed particles of more than one composition dispersed on and attached to their surfaces.
- the dispersed powders may comprise multiple layers of the attached particles, where the layers may be concentric or non-concentric.
- Other preferred specifications for the carrier particles are provided in Table 2.
- Range Desired Range Preferred Range Average particle Less than 5 micron 1 nm-250 nm size Standard deviation 1 nm-750 nm 1 nm-50 nm of the Size distribution Purity, by wt % Dependent on the >99.99% needs of the application and cost (normally, greater than 90%) Surface Area >1 m 2 /gm >100 m 2 /gm XRD crystallite Amorphous, 1 nm to ⁇ 250 nm size 1 micron Mechanical Dependent on the High Stability needs of the application and cost
- nano-dispersed powders of this invention commercially desirable result in part from (a) the separation between the attached nanoparticles during their use, (b) the unusual properties of attached nanoparticles, (c) the useful interaction between the carrier composition and the dispersed attached particles, and (d) the morphologically induced interaction of dispersed attached particle interfaces and the carrier particle interface with the chemical, electromagnetic, electrochemical, photonic, magnetic, charges, and thermodynamic environment around the dispersed particles.
- the distinct usefulness of nano-dispersed powders is in part a result of the separation between the dispersed nanoparticles attached to the surface of the carrier particle, which in turn reduces the potential sintering of the particles at higher temperatures. It is known in the art that closely packed small particles in general, and nanoscale particles in particular, sinter faster as the temperature of use increases. This limits the time during which the useful performance of the particle is available. Many applications, particularly those that operate at high temperatures (e.g. catalysis), require that the surface and bulk properties of the material in use do not vary or that they vary only slightly with time. This is difficult to accomplish with closely packed nanoparticles, because such nanoparticles sinter (diffuse and grow) across the grain boundaries as a function of temperature and time.
- dispersing the nanoparticles on the surface of the carrier particle By dispersing the nanoparticles on the surface of the carrier particle, the surfaces of the dispersed nanoparticles are kept from touching each other. This reduces or eliminates the interaction and consequent sintering between the nanoparticles, even at high temperatures. As a result, the interaction at the grain boundary is eliminated, and consequently the time and temperature based variances are eliminated. Thus, dispersing the nanoparticles solves an outstanding problem that confronts attempts to utilize the beneficial properties of nanoscale powders.
- Nano-scaled materials are a family of materials whose distinguishing feature is that their mean grain size is less than 100 nm.
- Nanopowders because of their nanoscale dimensions (near-molecular), feature a variety of confinement effects that significantly modify the properties of the material. The physics behind this has been aptly conjectured to be the following: a property will be altered when the entity or mechanism responsible for that property is confined within a space smaller than the critical length associated with that entity or mechanism. Such confinement effects lead to very desirable properties. For example:
- nanopowders have a very high surface area which leads to enhanced interfacial diffusivities and thus enables rapid, low temperature formation of materials that are typically difficult to process;
- (b)nanopowders are isomorphic because of dimensional confinement. Furthermore, enhanced solubilities are observed leading to non-equilibrium compositions. This leads to catalysts and reactants with extremely high surface areas, high selectivity and activity;
- (c)nanopowders have grain sizes that are too small for Frank-Read dislocation to operate in the conventional yield stress domain; consequently, enhancement in strengths and hardness of 100% to 500% are observed in films and pellets made from nanopowders;
- the size of the nanopowder is less than the wavelength of visible light; consequently unique optical materials with grain sizes tailored for excitonic interactions with particular wavelengths can be prepared;
- nanopowders are confined to dimension less than the domain size of magnetic materials; consequently, nanopowders are precursors to magnetic materials exhibiting Giant Magnetoresistive (GMR) and superparamagnetic effects; and
- nanopowders feature quantum confinement to dimensions less than Debye length. This leads to electrochemical properties with order of magnitude higher sensitivities to chemical species.
- Nanopowders in general, and nano-dispersed powders in particular thus provide an extraordinary opportunity for design, development and commercialization of a wide range of structural, electrochemical, electrical, optical, electronic, magnetic and chemical applications. Furthermore, since nanopowders represent a whole new family of material precursors for which conventional coarse-grain physiochemical mechanisms are not performance determining, nanomaterials in general and nano-dispersed powders in particular offer unique combination of properties that can enable novel and multifunctional components of unmatched performance.
- nano-dispersed powders Yet another source of distinct usefulness of nano-dispersed powders results in part from the useful interaction between the dispersed attached nanoparticles and the carrier particles.
- Dimensionally confined nanomaterials have properties that are determined in part by the interface thermodynamics and characteristics. These interfaces in turn are influenced by neighboring atoms.
- the nanoparticles interact with the interface of the carrier particles. This interaction can induce a novel performance that is not exhibited by either of the carrier particle or nanoparticle materials in isolation.
- triple points are the points where three or more phases meet and lead to useful interaction between the dispersed particles, the carrier particles, and the fluid environment around the junction of dispersed and carrier particles.
- the nanoscale size of dispersed particles significantly increases the density of triple points. These are points where useful chemical, electrochemical, physical, electronic, photonic and electrical interactions can occur.
- FIG. 3 shows one embodiment of a system for producing dispersed powders in accordance with the present invention. This method can be used to produce dispersed powders that are coarse and pure, but is particularly useful for nano-dispersed sub-micron and nano-dispersed nanoscale powders.
- the process shown in FIG. 3 begins at 100 with a metal-containing precursor such as an emulsion, fluid, particle-containing liquid slurry, or water-soluble salt.
- the precursor may be a gas, a single-phase liquid, a multi-phase liquid, a melt, fluid mixtures, or combinations thereof.
- the metal-containing precursor comprise a stoichiometric or a non-stoichiometric metal composition wherein at least some portion is in a fluid phase. Fluid precursors are preferred in this invention over solid precursors because fluids are easier to convey, evaporate, and thermally process, and the resulting product is more uniform.
- the precursors are preferably environmentally benign, safe, readily available, high-metal loading, lower cost fluid materials.
- metal-containing precursors suitable for purposes of this invention include, but are not limited to, metal acetates, metal carboxylates, metal ethanoates, metal alkoxides, metal octoates, metal chelates, metallo-organic compounds, metal halides, metal azides, metal nitrates, metal sulfates, metal hydroxides, metal salts soluble in organics or water, and metal-containing emulsions.
- multiple metal precursors may be mixed if complex nano-dispersed powders are desired.
- a barium precursor and iron precursor may be mixed to prepare high purity barium ferrite powders.
- a yttrium precursor, barium precursor, and copper precursor may be mixed in correct proportions to yield a high purity YBCO powder for superconducting applications.
- an aluminum precursor and silica precursor may be mixed to yield aluminum silicate powders.
- Such complex nano-dispersed powders can help create materials with surprising and unusual properties not available through the respective single metal oxides or a simple nanocomposite formed by physical blending powders of different compositions.
- nanoscale powders formed from blending two or more metals can create materials with a hardness, refractive index, or other property or a combination of such properties that have values that are intermediate to the properties of the respective single metal oxide forms.
- complex powders may be prepared from aluminum and silicon precursors to create novel aluminum silicate nanomaterials with refractive index that is intermediate to the refractive index of the alumina and silica.
- precursors of a higher purity it is desirable to use precursors of a higher purity to produce a nano-dispersed powder of a desired purity. For example, if purities greater than x % (by metal basis) is desired, one or more precursors that are mixed and used have purities greater than or equal to x % (by metal basis) to practice the teachings herein.
- the metal-containing precursor 100 (containing one or a mixture of metal-containing precursors) is mixed with carrier particles 102 of desired size, composition, and characteristics.
- Carrier particles 102 may comprise micron-sized particles, sub-micron particles, or nanostructured particles.
- the resultant slurry precursor 104 is the preferred feed material for producing nano-dispersed powders.
- the relative concentrations of the metal-containing precursors 100 and the carrier particles 102 should be substantially equivalent to that desired in the final product.
- the slurry precursor 104 Upon formation of the slurry precursor 104 , the slurry precursor 104 is fed into a high temperature process 106 implemented using a high temperature reactor, for example.
- a synthetic aid such as a reactive fluid 108 can be added along with the slurry precursor 104 as it is being fed into the reactor 106 .
- a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-carbon elemental ratio in the precursor molecule is high.
- a reactive fluid 108 that provides excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 . Examples of such reactive fluids include, but are not limited to, oxygen gas and air.
- a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-carbon elemental ratio is less than 0.1, more preferably less than 1.0, and most preferably less than 2.0.
- a reactive fluid 108 that provides excess carbon or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 .
- reactive fluids include, but are not limited to, methane, ethylene, acetylene, ethane, natural gas, benzene, naphtha, and hydrogen.
- a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-nitrogen elemental ratio in the precursor molecule less than 0.1, more preferably less than 1.0, and most preferably less than 2.0.
- a reactive fluid 108 that provides excess nitrogen or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 .
- reactive fluids include, but are not limited to, amines, ammonia, hydrazine, nitrogen, and hydrogen.
- a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-boron elemental ratio in the precursor molecule less than 0.1 and more preferably less than 1.0, and most preferably less than 1.5.
- a reactive fluid 108 that provides excess boron or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 . Examples include, but are not limited to, boranes, boron, and hydrogen.
- a preferred embodiment of this invention is to use a precursor 100 in which the (a) oxygen-to-carbon elemental ratio in the precursor molecule less than 0.1 and more preferably less than 1.0, and most preferably less than 2.0, and (b) the oxygen-to-nitrogen elemental ratio in the precursor molecule less than 0.1, more preferably less than 1.0, and most preferably less than 2.0.
- a reactive fluid 108 may be added along with the slurry precursor 104 to the reaction zone 106 .
- reactive fluids include, but are not limited to, methane, ethylene, acetylene, ethane, natural gas, benzene, naphtha, amines, ammonia, hydrazine, nitrogen, and hydrogen.
- the precursor 100 may be also pre-processed in a number of other ways before the high temperature thermal treatment.
- the pH may be adjusted to ensure stable precursor.
- selective solution chemistry such as precipitation may be employed to form a sol or other state of matter.
- the precursor 101 may be pre-heated or partially combusted before the thermal treatment.
- the slurry precursor 104 may be injected axially, radially, tangentially, or at any other angle into the high temperature region 106 . As stated above, the slurry precursor 104 may be pre-mixed or diffusionally mixed with other reactants.
- the slurry precursor 104 may be fed into the thermal processing reactor by a laminar, parabolic, turbulent, pulsating, sheared, or cyclonic flow pattern, or by any other flow pattern.
- one or more metal-containing precursors 100 can be injected from one or more ports in the reactor 106 .
- the feed spray system may yield a feed pattern that envelops the heat source or, alternatively, the heat sources may envelop the feed, or alternatively, various combinations of this may be employed.
- a preferred embodiment is to atomize and spray the feed in a manner that enhances heat transfer efficiency, mass transfer efficiency, momentum transfer efficiency, and reaction efficiency.
- the reactor shape may be cylindrical, spherical, conical, or any other shape. Methods and equipment such as those taught in U.S. Pat. Nos. 5,788,738, 5,851,507, and 5,984,997 (each of which is specifically incorporated herein by reference) can be employed in practicing the methods of this invention.
- the slurry precursor 104 is fed into reactor 106 , it is processed at high temperatures to form the product nano-dispersed powder.
- the thermal treatment is preferably done in a gas environment with the aim to produce a product such as powders that have the desired porosity, strength, morphology, dispersion, surface area, and composition.
- This step produces by-products such as gases. To reduce costs, these gases may be recycled, mass/heat integrated, or used to prepare the pure gas stream desired by the process.
- the high temperature processing is conducted at step 106 (FIG. 3) at temperatures greater than 1500° C., preferably 2500° C., more preferably greater than 3000° C., and most preferably greater than 4000° C.
- temperatures may be achieved by various methods including, but not limited to, plasma processes, combustion, pyrolysis, electrical arcing in an appropriate reactor, and combinations thereof.
- the plasma may provide reaction gases or just provide a clean source of heat.
- reaction zone such as a combustion flame
- the reaction zone can be surrounded by a fully or a partially concentric zone of a medium with a thermal, mass and momentum profile that reduces such non-uniformity.
- FIG. 4 shows a primary combustion burner 420 , over which useful particle producing flame chemistry occurs, is preferably surrounded by a concentric secondary burner 421 where a fuel is burned to maintain the outer edge temperatures in region 422 as close to the primary flame's highest temperature in region 423 as possible.
- the mass and momentum profile of the medium created by the concentric secondary burner 421 should be similar in one or more respects to the mass and momentum profile of the medium created by the primary burner 420 .
- Such concentric burners can assist in a more uniform thermal, mass, and momentum profile for the reaction space created by the primary burner 420 .
- a non-limiting illustration of such concentric burners is discussed and referenced by Howard et al., Carbon 30(8):1183-1201 (1992), which along with references contained therein is specifically incorporated herein by reference.
- the slurry precursor 104 is pre-treated to minimize non-uniformity in heat, mass, and/or momentum transfer. This can be achieved through techniques such as (a) axially, radially, or tangentially surrounding the high temperature processing zone 106 with an inert gas plasma, (b) axially, radially, or tangentially surrounding the high temperature processing zone 106 with a complete combustion flame, preferably of high temperature, or (c) axially, radially, or tangentially surrounding the high temperature processing zone 106 with an electrical arc or high temperature radiation source.
- the concentric flame's adiabatic temperature is preferably greater than 500° C., more preferably greater than 1000° C., and most preferably greater than 2000° C.
- the minimal requirement of this technique is that the high temperature processing zone temperature at the outer edges be higher when the concentric high temperature thermal zone is present than when it is absent.
- This principle of concentric thermal zones can be applied to any method of producing dispersed powders.
- Illustrative examples of processes where this principle can be used include one-dimensional combustion flames, diffusion flames, turbulent flames, pre-mixed flames, flat flames, plasma, arcing, microwave, sputtering, pyrolysis, spray evaporation, laser and hydrothermal processing.
- carrier particles 102 are present in the high temperature process.
- the carrier particles 102 may be substantially inert during high temperature process 106 , or they may be transformed by physical, chemical, or solid state reactions.
- High temperature processing is performed in a manner such that the end product of high temperature process 106 includes carrier particles 102 of desired size, composition and uniformity. Alternatively, the carrier particles can be added at a later stage of the high temperature process.
- the high temperature process 106 results in a vapor comprising fine powders and carrier particles.
- this vapor is cooled at step 110 to nucleate dispersion of fine powders, preferably nanopowders, onto the surface of the carrier particles.
- the cooling temperature at step 110 is high enough to prevent moisture condensation.
- the dispersed particles are formed from the precursor because of the thermokinetic conditions in the process.
- the process conditions such as pressure, residence time, flow rates, species concentrations, diluent addition, degree of mixing, momentum transfer, mass transfer, and heat transfer, the morphology of the dispersed powders can be tailored. It is important to note that the focus of the process is on producing a dispersed powder product that excels in satisfying the end application requirement and customer needs. In some cases, this may be achieved with uniformly dispersed particles and in others it may be non-uniformly distributed particles that best meet the customer needs.
- the nano-dispersed powder is preferably quenched to lower temperatures at step 116 to minimize and preferably prevent agglomeration or grain growth.
- Suitable quenching methods include, but are not limited to, methods taught in U.S. Pat. No. 5,788,738. It is preferred that quenching methods be employed which can prevent deposition of the powders on the conveying walls. These methods may include electrostatic means, blanketing with gases, the use of higher flow rates, mechanical means, chemical means, electrochemical means, or sonication/vibration of the walls.
- the high temperature processing system includes instrumentation 112 , 114 that can assist in the quality control of the process by analyzing the quality of the product either between steps 116 and 118 , or between steps 118 and 120 .
- the data collected after analysis of the product can provide information on how to adjust the process variables to adjust the quality of the product.
- the high temperature processing zone 106 is operated to produce fine powders 120 (FIG. 3 ), preferably submicron powders, and most preferably nanopowders.
- the gaseous products from the process may be monitored for composition, temperature and other variables to ensure quality at 112 (FIG. 3 ).
- the gaseous products may be recycled to be used in process 108 (FIG. 3 ), or used as a valuable raw material when dispersed powders 120 have been formed.
- the nano-dispersed powders are cooled further at step 118 and then harvested at step 120 .
- the product nano-dispersed powders 120 may be collected by any method. Suitable collection means include, but are not limited to, bag filtration, electrostatic separation, membrane filtration, cyclones, impact filtration, centrifugation, hydrocyclones, thermophoresis, magnetic separation, and combinations thereof.
- FIG. 5 shows an alternate embodiment for producing dispersed particles according to this invention.
- the embodiment shown in FIG. 5 begins with nano-scale powders 200 produced by any technique. These nanoscale powders 200 are mixed with desired coarser carrier particles 202 into a slurry precursor 204 .
- the slurry precursor 204 is mixed with a fluid such as a fuel and then used as precursor to make nano-dispersed particles following steps 204 - 210 in a manner similar to that described for steps 104 - 112 of FIG. 3 .
- precursors may be blended into or emulsified into a commercially available nanoparticulate sol, such as NALCO® silica sols or NYACOL® alumina sol. This multi-phased feed is then used to make particles by the process described by FIG. 5 .
- FIG. 6 shows yet another embodiment for producing dispersed particles according to this invention.
- both the nano-scale particles and the carrier particles are formed in-situ during the thermal processing step.
- a metal-containing precursor 300 containing one or a mixture of metal-containing precursors
- optional dopants 301 are combined to form a precursor batch 302 .
- the dopants may be added to modify or enable the performance of the dispersed powders suitably for a particular application.
- dopants include, but are not limited to, transition metals, rare earth metals, alkali metals, alkaline earth metals, semi-metals, and non-metals. It is preferred that, like other metal precursors, precursors for such dopants are intimately mixed with the metal-containing precursor 300 .
- dopant precursors are fluids.
- the precursor batch is then feed into a high temperature reactor 306 .
- one or more synthetic aids such as a reactive fluid 308 can be added along with the precursor batch 302 as it is being fed into the reactor 306 .
- synthetic aids include, but are not limited to, oxygen, methane, nitrogen, feed gases, oxidants, or reactants.
- the precursor batch 302 is then fed into a thermal reactor 306 where the precursors are partially transformed, or preferably completely transformed, into the vapor form.
- the source of thermal energy in the preferred embodiments is plasma generator 305 .
- Plasma gas 307 which may be inert or reactive, is supplied to plasma generator 305 .
- the source of thermal energy may be internal energy, heat of reaction, conductive, convective, radiative, inductive, microwave, electromagnetic, direct or pulsed electric arc, laser, nuclear, or combinations thereof, so long as it is sufficient to cause the rapid vaporization of the powder suspension being processed.
- the high temperature process 306 results in a vapor comprising both fine powders and carrier particles formed in-situ from the precursors 300 .
- the thermokinetic conditions and ratio of the precursor to the synthetic aid are controlled.
- the precursors can be fed at different locations in the reactor to engineer the residence time experienced by each feed location.
- a change in residence time or thermokinetic condition or process variable produces powders of different characteristics (size, shape, composition, etc.). This method can therefore be employed to produce both carrier and attached particles.
- this vapor is cooled at step 310 to nucleate dispersion of the onto the surface of the carrier particles.
- the cooling temperature at step 310 is high enough to prevent moisture condensation.
- the nano-dispersed powder is preferably quenched as described above to lower temperatures at step 316 to prevent agglomeration or grain growth. It is preferred that quenching methods be employed which can prevent deposition of the powders on the conveying walls. Following quenching step 316 the nano-dispersed powders are cooled further at step 318 and then harvested at step 320 .
- the product of this process is a dispersed powder, such as nano-scale particles dispersed on larger nano-scale particles or nano-scale particles dispersed on sub-micron particles.
- the nano-dispersed powders are produced by first combining nano-scale powders produced by any method with carrier particles.
- the relative concentrations of the nano-scale powder and the carrier particles should be substantially equivalent to that desired in the final product.
- the mixture is then mechanically milled by methods known in the art to produce the nano-dispersed powders.
- the milling may be done in gas or liquid environment. If a liquid environment is employed, the liquid may comprise acids, alkalis, oxidizers, dispersants, metal containing precursors, or other suitable constituents.
- FIG. 7 shows an alternative flow diagram of a thermal process for the synthesis of nano-dispersed powders.
- precursors 404 such as metal containing emulsions, fluid, or water soluble salt, are combined with carrier particles 405 .
- carrier particles 405 Although a single precursor storage tank 404 is shown in FIG. 7, it is to be understood that multiple precursor tanks may be provided and used with or without premixing mechanisms (not shown) to premix multiple precursors before feeding into reactor 401 .
- a feed stream of precursor material from storage tank 404 and carrier particles 405 is atomized in mixing apparatus 403 .
- a precursor storage 404 may be implemented by suspending the precursor in a gas, preferably in a continuous operation, using fluidized beds, spouting beds, hoppers, or combinations thereof, as best suited to the nature of the precursor.
- the resulting suspension is advantageously preheated in a heat exchanger (not shown), preferably with the exhaust heat, and is then fed into a thermal reactor 401 where the atomized precursors are partially transformed, or preferably completely transformed, into the vapor form.
- the source of thermal energy in the preferred embodiments is plasma generator 402 powered by power supply 206 .
- Plasma gas 407 which may be inert or reactive, is supplied to plasma generator 402 .
- the source of thermal energy may be internal energy, heat of reaction, conductive, convective, radiative, inductive, microwave, electromagnetic, direct or pulsed electric arc, laser, nuclear, or combinations thereof, so long as it is sufficient to cause the rapid vaporization of the precursor being processed.
- the peak temperature in the thermal reactor 401 is greater than 1500° C., preferably greater than 2500° C., more preferably greater than 3000° C., and most preferably greater than 4000° C.
- the walls of reactor 401 may be pre-coated with the same material being processed.
- the vapor next enters an extended reaction zone 411 of the thermal reactor which provides additional residence time as needed to complete the processing of the feed material and to provide additional reaction and forming time for the vapor (if necessary).
- an extended reaction zone 411 of the thermal reactor which provides additional residence time as needed to complete the processing of the feed material and to provide additional reaction and forming time for the vapor (if necessary).
- the stream leaves the reactor, it passes through a zone 409 where the thermokinetic conditions favor the nucleation of solid powders from the vaporized precursor. These conditions are determined by calculating the supersaturation ratio and critical cluster size required to initiate nucleation. Rapid quenching leads to high supersaturation which gives rise to homogeneous nucleation.
- the zones 401 , 411 , and 409 may be combined and integrated in any manner to enhance material, energy, momentum, and/or reaction efficiency.
- the process stream is quenched in a heat removal apparatus within nucleation zone 409 comprising, for example, a converging-diverging nozzle-driven adiabatic expansion chamber at rates at least exceeding 1,000 K/sec, preferably greater than 1,000,000 K/sec, or as high as possible.
- a cooling medium (not shown) may be utilized for the converging-diverging nozzle to prevent contamination of the product and damage to the expansion chamber.
- the quenched gas stream is filtered by appropriate separation equipment in harvesting region 413 to remove the nano-dispersed product from the gas stream.
- the filtration can be accomplished by single stage or multistage impingement filters, electrostatic filters, screen filters, fabric filters, cyclones, scrubbers, magnetic filters, or combinations thereof.
- the filtered nano-dispersed product is then harvested from the filter, either in batch mode or continuously, using screw conveyors or gas-phase solid transport, and the product stream is conveyed to powder processing or packaging unit operations (not shown).
- the process is preferably operated at near ambient pressures and more preferably at pressures that are less than 750 mm Hg absolute (i.e. vacuum).
- a low pressure can be achieved using any type of vacuum pump, compressor, and more preferably using compressed fluid-based eductor operating on a venturi principle given the lower cost, simplicity and environmental benefits.
- Vacuum generating equipment may be placed at any stage of the overall process.
- the product stream from the vacuum generating equipment may be utilized elsewhere in the process to achieve heat and mass integration and thereby to reduce costs.
- a suspension or dispersion may be prepared in a liquid directly if the liquid were to be utilized as the high pressure driving fluid for the eductor.
- the nano-dispersed product is deposited directly on a substrate 601 to form a coating or film or near-net shape structural part.
- the fluid precursor 504 and carrier particles 505 are fed into mixing apparatus 503 and then fed into a thermal reactor 501 where the atomized precursors are partially transformed, or preferably completely transformed, into the vapor form.
- the preferred source of thermal energy in the embodiment illustrated in FIG. 8 is plasma generator 502 powered by power supply 506 .
- the mixture is thermally heated in reactor 501 to high temperatures to yield a hot vapor.
- a substrate 601 having an exposed surface is provided within or in communication with reaction chamber 501 on, for example, a thermally controlled substrate holder.
- the hot vapor is then contacted with the exposed substrate surface and coats the exposed surface.
- the hot vapor may be cooled or quenched before the deposition step to provide a stream that has fine liquid droplets or hot particulate matter.
- the substrate 601 may be cooled or heated using a substrate thermal control 514 to affect the quality of the coating.
- the substrate 601 may be mounted on a turn-table or drum to rotate the substrate 601 parallel, perpendicularly, tangentially (or at any other angle) relative to the gas stream comprising of nanoparticles.
- the rotation can help achieve different thickness, a conformal form, or a curved form.
- the substrate 601 to be coated may be continuously fed and removed over rotating cylinders to substrate 601 . By controlling the substrate feed rate, the coating thickness can be controlled.
- Such coating method can employ suitable in-situ instrumentation to control the quality of the coating formed.
- the deposition approach in accordance with the present invention is different from thermal spray technology currently in used in many ways such as: (a) the feed in conventional methods is a solid micron sized powder in thermal spray processes, whereas in this invention the feed is a fluid precursor; and (b) the conventional thermal spray process is considered to yield a powder with molten surface which then sticks to the substrate, whereas in this invention, as the hot vapor cools it is anticipated to yield a molten droplet or soft particulate that forms the coating.
- the advantage of forming a coating or film according to this invention is the fine to nanoscale microstructure of the resultant coating or film.
- the present invention will yield additional benefits in the ability to easily transport fluids within the process, the ability to form coatings, and the ability to form wide range of compositions (oxides, carbides, nitrides, borides, multimetal compositions, composites, etc.) from a limited collection of precursors through mixing and other methods as taught herein.
- a coating, film, or component may also be prepared by dispersing the dispersed nanopowder, followed by applying various known methods such as, but not limited to, electrophoretic deposition, magnetophoretic deposition, spin coating, dip coating, spraying, brushing, screen printing, ink-jet printing, toner printing, and sintering.
- the nanopowders may be thermally treated or reacted to enhance their electrical, optical, photonic, catalytic, thermal, magnetic, structural, electronic, emission, processing, or forming properties before such a step.
- the powder may be post-processed to further improve its performance or characteristics such as flowability.
- the post-processing of the dispersed powder may be include one or more of the following steps in any order: air classification, sieving, drying, reduction, chemical reaction with liquid, chemical reaction with gases, humidification, surface treatment, coating, pyrolysis, combustion, casting, dispersion, dissolution, suspension, molding, hipping, pressing, milling, composite forming, coarsening, mixing, agglomeration, de-agglomeration, weighing, and packaging.
- a non-limiting illustration of such post-processing would be where the dispersed powder are dissolved in a media selected such that the carrier particle dissolves in the media while the attached particles do not dissolve in the media.
- This post-processing can produce hollow nanostructured or sub-micron particles.
- the dispersed particles comprise of a polymeric carrier powders and the attached particles are ceramic, pyrolysis or combustion can also be utilized to make hollow particles.
- Such hollow particles are anticipated to have unusual properties such as lower effective density, low effective dielectric constant, lower effective thermal conductivity.
- Dispersed powders have numerous applications in industries such as, but not limited to, catalysis, biomedical, pharmaceuticals, sensor, electronic, telecom, optics, electrical, photonic, thermal, piezo, magnetic and electrochemical products.
- Biomedical implants and surgical tools can benefit from dispersed powders. It is expected that nano-dispersed powders can enable implants with modulus and other properties that match the part being replaced. The match is expected to be within 10% of the target properties.
- the surgical tools produced using nano-dispersed powders are expected to offer strength that is at least 10% higher than that achieved using powders without nano-dispersion.
- Powdered marker, drug carriers and inhalation particulates that reduce side effects can benefit from nano-dispersed powders.
- carrier particles with a size range of 500 nm to 50 microns are preferred, and carrier particles with a geometric diameter of 1-50 ⁇ m and an aerodynamic diameter of 1-10 ⁇ m are most preferred.
- the nanoscale dispersed particle can be a drug or a carrier of the drug.
- the carrier particle can be engineered to favor prolonged release.
- carrier particles with a size range of 100 nm to 25 microns are preferred, and carrier particles with a geometric diameter of 0.1-5 ⁇ m and an aerodynamic diameter of 0.1-1 ⁇ m are most preferred.
- the nanoscale dispersed particles can be markers, tracers, drug vehicles or target carriers.
- Phosphors emit light when exposed to radiation.
- Phosphors include Zn 2 SiO 4 :Mn, ZnS:Ag, ZnO:Zn, CaSiO 3 :Mn, Y 3 Al 5 O 12 :Ce, Y 2 O 3 :Eu, Y 2 SiO 5 :Ce, Y 3 (Al,Ga) 5 O 12 :Tb, BaO.6Al 2 O 3 :Mn, BaMg 2 Al 16 O 27 :Eu, CsI:Na, and CaS:Ce,Sm.
- the major phase of the phosphor is the carrier particle and the minor phase is the nano-dispersed particle.
- the minor phase is the nano-dispersed particle.
- Y 3 Al 5 O 12 :Ce Y 3 Al 5 O 12 can be the carrier particle while Ce is the nano-dispersed phase on the surface of the carrier.
- carrier particles with a size range of 50 nm to 25 microns are preferred, and carrier particles with a geometric diameter of 0.5-10 microns are preferred.
- the dispersed particles with a size range of 1 nm to 0.5 microns are preferred, and dispersed particles with a geometric diameter of 1-100 nanometers are preferred.
- Nano-dispersed phosphor powders can be used in lamps, cathode ray tubes, field emission displays, plasma display panels, scintillators, X-ray detectors, IR detectors, UV detectors and laser detectors. Nano-dispersed phosphor powders can also be used in printing inks, or dispersed in plastics to prevent forgery and counterfeiting of currency, original works of art, passports, credit cards, bank checks, and other documents or products. The nano-dispersed powders can also be used to prepare optical networking components such as detectors, emitters, photodiodes, and phototransistors.
- Nano-dispersed powders can increase the reliability of these components by 10% or more when used as electroceramic dopants. Furthermore, nano-dispersed particles can enable miniaturization of these components by enabling ceramic layer thicknesses below 500 nm and electrode layer thicknesses below 400 nm.
- Electrochemical capacitors prepared from nano-dispersed powders are expected to have charge densities that are 10% higher than those prepared from non-dispersed powders of equivalent composition.
- the electrochemical capacitors are also expected to offer high volumetric efficiencies, and longer mean times between failures.
- Batteries prepared from nano-dispersed powders can offer power densities that are 5% higher than those prepared from non-dispersed powders of equivalent composition.
- Chemical sensors prepared from nano-dispersed powder are expected to offer sensitivities that are at least 10% higher than those prepared from non-dispersed powders of equivalent composition.
- a major application area for nano-dispersed powders produced using the high temperature process of this invention is in chemical catalysis.
- Catalytic materials that are prepared from nano-dispersed powders are expected to last 10% or more longer and give superior yields and selectivity than catalytic materials prepared from non-dispersed powders of equivalent composition. They are also expected to offer turn over rates that are 5% higher than those prepared from non-dispersed powders of equivalent composition.
- the process of this invention for producing nano-dispersed powders can additionally offer desirable porosity, structural strength, and uniformity. Examples of such applications include (a) catalytic transformation of less valuable chemicals and material feed stocks into more valuable chemicals and materials and (b) catalytic transformation of more hazardous chemicals and materials into less hazardous or non-hazardous forms of substances.
- nano-dispersed powders include (a) fillers for polymers, ceramics, and metal matrix composites and (b) dopants for electronic, magnetic, thermal, piezo, electrical, tooling, structural, inks, paints, and topical health products.
- Magnetic devices prepared from dispersed powders are expected to offer superior magnetic performance.
- nano-dispersed powders offer a means of improving the value-added performance of existing products that are produced from non-dispersed powders.
- affordability can be achieved by combining low cost carrier powders with highly functional but somewhat more expensive attached nanoparticles thereby yielding more affordable yet high performance nano-dispersed powders on a per unit weight basis.
- improved ability to process micron size carrier powders can accelerate the adoption of nano-dispersed powders in commerce.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Thermal Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
Abstract
Description
TABLE 1 |
Specifications for the carrier particles |
Parameter | Desired Range | Preferred Range | ||
Average particle | 5 nm-5 mm | 50 nm-5 microns | ||
size | ||||
Standard deviation | 1 nm-10 micron | 1 nm-1000 nm | ||
of the Size | ||||
distribution | ||||
Purity, by wt % | Dependent on the | >99.99% | ||
needs of the | ||||
application and | ||||
cost (normally, | ||||
greater than 90%) | ||||
Surface Area | >1 m2/gm | >10 m2/gm | ||
XRD crystallite | Amorphous, 1 nm to | <1000 nm | ||
size | >1 micron | |||
Porosity | Dependent on the | High | ||
needs of the | ||||
application and | ||||
cost | ||||
Composition | Ceramics, | Single metal and | ||
elements, alloys | multi-metal oxide | |||
ceramics | ||||
TABLE 2 |
Specifications for dispersed, attached particles |
Parameter | Desired Range | Preferred Range | ||
Average particle | Less than 5 micron | 1 nm-250 nm | ||
size | ||||
Standard deviation | 1 nm-750 nm | 1 nm-50 nm | ||
of the Size | ||||
distribution | ||||
Purity, by wt % | Dependent on the | >99.99% | ||
needs of the | ||||
application and | ||||
cost (normally, | ||||
greater than 90%) | ||||
Surface Area | >1 m2/gm | >100 m2/gm | ||
XRD crystallite | Amorphous, 1 nm to | <250 nm | ||
size | 1 micron | |||
Mechanical | Dependent on the | High | ||
Stability | needs of the | |||
application and | ||||
cost | ||||
Claims (30)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/004,387 US6652967B2 (en) | 2001-08-08 | 2001-12-04 | Nano-dispersed powders and methods for their manufacture |
US10/143,995 US6855426B2 (en) | 2001-08-08 | 2002-05-10 | Methods for producing composite nanoparticles |
PCT/US2002/025269 WO2003045610A2 (en) | 2001-08-08 | 2002-08-07 | Nano-dispersed powders and methods for their manufacture |
US10/464,208 US6726992B1 (en) | 1998-11-06 | 2003-06-18 | Nano-engineered phosphors and related nanotechnology |
US10/464,242 US6716525B1 (en) | 1998-11-06 | 2003-06-18 | Nano-dispersed catalysts particles |
US10/698,564 US20040178530A1 (en) | 1996-09-03 | 2003-10-31 | High volume manufacturing of nanoparticles and nano-dispersed particles at low cost |
US11/054,786 US7341757B2 (en) | 2001-08-08 | 2005-02-10 | Polymer nanotechnology |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31096701P | 2001-08-08 | 2001-08-08 | |
US10/004,387 US6652967B2 (en) | 2001-08-08 | 2001-12-04 | Nano-dispersed powders and methods for their manufacture |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/274,517 Division US6344271B1 (en) | 1996-09-03 | 1999-03-23 | Materials and products using nanostructured non-stoichiometric substances |
US10/150,722 Division US6602595B2 (en) | 1996-09-03 | 2002-05-17 | Nanotechnology for inks and dopants |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/143,995 Continuation-In-Part US6855426B2 (en) | 2001-08-08 | 2002-05-10 | Methods for producing composite nanoparticles |
US10/150,722 Division US6602595B2 (en) | 1996-09-03 | 2002-05-17 | Nanotechnology for inks and dopants |
US10/464,208 Division US6726992B1 (en) | 1998-11-06 | 2003-06-18 | Nano-engineered phosphors and related nanotechnology |
US10/698,564 Division US20040178530A1 (en) | 1996-09-03 | 2003-10-31 | High volume manufacturing of nanoparticles and nano-dispersed particles at low cost |
US11/054,786 Continuation-In-Part US7341757B2 (en) | 2001-08-08 | 2005-02-10 | Polymer nanotechnology |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030102099A1 US20030102099A1 (en) | 2003-06-05 |
US6652967B2 true US6652967B2 (en) | 2003-11-25 |
Family
ID=26672930
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/004,387 Expired - Lifetime US6652967B2 (en) | 1996-09-03 | 2001-12-04 | Nano-dispersed powders and methods for their manufacture |
US10/464,208 Expired - Lifetime US6726992B1 (en) | 1998-11-06 | 2003-06-18 | Nano-engineered phosphors and related nanotechnology |
US10/698,564 Abandoned US20040178530A1 (en) | 1996-09-03 | 2003-10-31 | High volume manufacturing of nanoparticles and nano-dispersed particles at low cost |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/464,208 Expired - Lifetime US6726992B1 (en) | 1998-11-06 | 2003-06-18 | Nano-engineered phosphors and related nanotechnology |
US10/698,564 Abandoned US20040178530A1 (en) | 1996-09-03 | 2003-10-31 | High volume manufacturing of nanoparticles and nano-dispersed particles at low cost |
Country Status (2)
Country | Link |
---|---|
US (3) | US6652967B2 (en) |
WO (1) | WO2003045610A2 (en) |
Cited By (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030035955A1 (en) * | 2001-08-08 | 2003-02-20 | Tapesh Yadav | Methods for producing composite nanoparticles |
US20030102222A1 (en) * | 2001-11-30 | 2003-06-05 | Zhou Otto Z. | Deposition method for nanostructure materials |
US20030230479A1 (en) * | 2002-06-17 | 2003-12-18 | Sarkas Harry W. | Process for preparing nanostructured materials of controlled surface chemistry |
US20040055892A1 (en) * | 2001-11-30 | 2004-03-25 | University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US20040107719A1 (en) * | 2001-12-18 | 2004-06-10 | Itw Industrial Components S.R.L. | Service device for a refrigerator, and refrigerator featuring such a device |
US20040120884A1 (en) * | 1999-12-13 | 2004-06-24 | Jonathan Sherman | Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof |
US20050014317A1 (en) * | 2003-07-18 | 2005-01-20 | Pyo Sung Gyu | Method for forming inductor in semiconductor device |
US20060079410A1 (en) * | 2004-06-07 | 2006-04-13 | Nanoproducts Corporation | Molybdenum comprising nanomaterials and related nanotechnology |
US20060137567A1 (en) * | 2002-11-27 | 2006-06-29 | Nanoproducts Corporation | Nano-engineered inks, methods for their manufacture and their applications |
US20060165898A1 (en) * | 2005-01-21 | 2006-07-27 | Cabot Corporation | Controlling flame temperature in a flame spray reaction process |
US20060222844A1 (en) * | 2005-04-04 | 2006-10-05 | Stinson Jonathan S | Medical devices including composites |
US20060275542A1 (en) * | 2005-06-02 | 2006-12-07 | Eastman Kodak Company | Deposition of uniform layer of desired material |
US20060291827A1 (en) * | 2005-02-11 | 2006-12-28 | Suib Steven L | Process and apparatus to synthesize materials |
US20070014148A1 (en) * | 2004-05-10 | 2007-01-18 | The University Of North Carolina At Chapel Hill | Methods and systems for attaching a magnetic nanowire to an object and apparatuses formed therefrom |
US20070045116A1 (en) * | 2005-08-26 | 2007-03-01 | Cheng-Hung Hung | Electrodepositable coating compositions and related methods |
US20070048550A1 (en) * | 2005-08-26 | 2007-03-01 | Millero Edward R | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070048540A1 (en) * | 2005-08-26 | 2007-03-01 | Ragunathan Kaliappa G | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070088111A1 (en) * | 2005-08-26 | 2007-04-19 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070104629A1 (en) * | 2003-01-31 | 2007-05-10 | Nanoproducts Corporation | Nanoparticles of rare earth oxides |
US20070114908A1 (en) * | 2005-11-18 | 2007-05-24 | Hon Hai Precision Industry Co., Ltd. | Cold cathode fluorescent lamp and backlight module using same |
US7250477B2 (en) | 2002-12-20 | 2007-07-31 | General Electric Company | Thermoset composite composition, method, and article |
US20070243382A1 (en) * | 2004-07-26 | 2007-10-18 | Massachusetts Institute Of Technology | Microspheres including nanoparticles |
US20070254159A1 (en) * | 2005-08-26 | 2007-11-01 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US7318844B2 (en) * | 2003-07-21 | 2008-01-15 | Abb Research Ltd | Laser-irradiated metallized electroceramic |
US20080020304A1 (en) * | 2004-11-24 | 2008-01-24 | Schroder Kurt A | Electrical, Plating And Catalytic Uses Of Metal Nanomaterial Compositions |
US20080044678A1 (en) * | 2006-08-18 | 2008-02-21 | Ppg Industries Ohio, Inc. | Method and apparatus for the production of ultrafine particles and related coating compositions |
US20080056977A1 (en) * | 2006-08-30 | 2008-03-06 | Ppg Industries Ohio, Inc. | Production of ultrafine metal carbide particles utilizing polymeric feed materials |
US20080069716A1 (en) * | 2006-09-14 | 2008-03-20 | The Timken Company | Micron size powders having nano size reinforcement |
US20080090069A1 (en) * | 2005-08-26 | 2008-04-17 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties and related coated substrates |
US20080148905A1 (en) * | 2006-12-20 | 2008-06-26 | Cheng-Hung Hung | Production of high purity ultrafine metal carbide particles |
US20080248306A1 (en) * | 2005-09-27 | 2008-10-09 | Eth Zurich, Eth Transfer | Method for Attaching Manoparticles to Substrate Particles |
US20080280049A1 (en) * | 2007-05-11 | 2008-11-13 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
US20090084163A1 (en) * | 2005-08-23 | 2009-04-02 | Junhong Chen | Ambient-temperature gas sensor |
US20090183651A1 (en) * | 2008-01-22 | 2009-07-23 | Ppg Industries Ohio, Inc. | Coatings including pigments comprising substrate particles with ultrafine metal oxide particles deposited thereon |
US20090250404A1 (en) * | 2006-06-05 | 2009-10-08 | Brian Berkowitz | Decontaminating fluids and methods of use thereof |
US20090269505A1 (en) * | 2008-01-31 | 2009-10-29 | Industrial Technology Research Institute | Method for manufacturing a substrate with surface structure by employing photothermal effect |
US7635458B1 (en) | 2006-08-30 | 2009-12-22 | Ppg Industries Ohio, Inc. | Production of ultrafine boron carbide particles utilizing liquid feed materials |
US20100000443A1 (en) * | 2007-03-16 | 2010-01-07 | Asahi Glass Company, Limited | Hollow fine particles, production process thereof, coating composition and article having coating film formed |
US20100047555A1 (en) * | 2007-03-16 | 2010-02-25 | Asahi Glass Company Limited | Hollow fine particles, production process thereof, coating composition and article having coating film formed |
US20100055017A1 (en) * | 2008-09-03 | 2010-03-04 | Ppg Industries Ohio, Inc. | Methods for the production of ultrafine metal carbide particles and hydrogen |
US7708974B2 (en) | 2002-12-10 | 2010-05-04 | Ppg Industries Ohio, Inc. | Tungsten comprising nanomaterials and related nanotechnology |
US7717001B2 (en) | 2004-10-08 | 2010-05-18 | Sdc Materials, Inc. | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
US20100210457A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Method of Producing Catalytic Materials for Fabricating Nanostructures |
US20100210456A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Catalytic Materials for Fabricating Nanostructures |
US20100209706A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Nano-Material and Method of Fabrication |
US20100209696A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Anchored Nanostructure Materials and Method of Fabrication |
US20100209605A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Anchored Nanostructure Materials and Ball Milling Method Of Fabrication |
US20100261029A1 (en) * | 2008-12-18 | 2010-10-14 | Ppg Industries Ohio, Inc. | Multi-phase particulates, method of making, and composition containing same |
USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
US20100314788A1 (en) * | 2006-08-18 | 2010-12-16 | Cheng-Hung Hung | Production of Ultrafine Particles in a Plasma System Having Controlled Pressure Zones |
US20110006254A1 (en) * | 2009-07-07 | 2011-01-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Process to make electrochemically active/inactive nanocomposite material |
US20110070426A1 (en) * | 2006-08-30 | 2011-03-24 | Vanier Noel R | Sintering aids for boron carbide ultrafine particles |
US20110081538A1 (en) * | 2008-03-04 | 2011-04-07 | Linton John R | Particles including nanoparticles, uses thereof, and methods |
US20110092734A1 (en) * | 2008-04-04 | 2011-04-21 | Sud-Chemie Ag | Method for the production of nanocrystalline bismuth-molybdenum mixed oxide |
US20110183833A1 (en) * | 2008-10-13 | 2011-07-28 | Calado Da Silva Joao Manuel | Ceramic powders coated with a nanoparticle layer and process for obtaining thereof |
US20110217561A1 (en) * | 2008-11-25 | 2011-09-08 | Kureha Corporation | Coating Liquid and Gas Barrier Laminate |
US20110223220A1 (en) * | 2010-03-15 | 2011-09-15 | Ppg Industries Ohio, Inc. | Dispersions of encapsulated particles and methods for their production and use |
US8058337B2 (en) | 1996-09-03 | 2011-11-15 | Ppg Industries Ohio, Inc. | Conductive nanocomposite films |
US8268405B2 (en) | 2005-08-23 | 2012-09-18 | Uwm Research Foundation, Inc. | Controlled decoration of carbon nanotubes with aerosol nanoparticles |
US20120235203A1 (en) * | 2009-11-19 | 2012-09-20 | Nitto Denko Corporation | Method for producing nanoparticles |
US8309129B2 (en) | 2007-05-03 | 2012-11-13 | Bend Research, Inc. | Nanoparticles comprising a drug, ethylcellulose, and a bile salt |
US20120321892A1 (en) * | 2011-06-17 | 2012-12-20 | Babcock & Wilcox Technical Services Y-12, Llc | Titanium-Group Nano-Whiskers and Method of Production |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
US8476206B1 (en) | 2012-07-02 | 2013-07-02 | Ajay P. Malshe | Nanoparticle macro-compositions |
US8481449B1 (en) * | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8486363B2 (en) | 2011-09-30 | 2013-07-16 | Ppg Industries Ohio, Inc. | Production of graphenic carbon particles utilizing hydrocarbon precursor materials |
US8486870B1 (en) | 2012-07-02 | 2013-07-16 | Ajay P. Malshe | Textured surfaces to enhance nano-lubrication |
US8492319B2 (en) | 2006-01-12 | 2013-07-23 | Ajay P. Malshe | Nanoparticle compositions and methods for making and using the same |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8663495B1 (en) | 2006-02-22 | 2014-03-04 | William Marsh Rice University | Gelled nanotube-containing heat transfer medium |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US8668803B1 (en) | 2009-12-15 | 2014-03-11 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US8679433B2 (en) | 2011-08-19 | 2014-03-25 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US8703204B2 (en) | 2007-05-03 | 2014-04-22 | Bend Research, Inc. | Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and anon-ionizable polymer |
CN103747871A (en) * | 2009-12-15 | 2014-04-23 | 斯得玛特利斯有限责任公司 | Tunable size of nano-active material on nano-support |
US8796361B2 (en) | 2010-11-19 | 2014-08-05 | Ppg Industries Ohio, Inc. | Adhesive compositions containing graphenic carbon particles |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US20140291296A1 (en) * | 2011-10-12 | 2014-10-02 | The Regents Of The University Of California | Nanomaterials fabricated using spark erosion and other particle fabrication processes |
US8932632B2 (en) | 2003-10-21 | 2015-01-13 | Ppg Industries Ohio, Inc. | Adhesives and sealants nanotechnology |
US8974719B2 (en) | 2009-02-13 | 2015-03-10 | Consolidated Nuclear Security, LLC | Composite materials formed with anchored nanostructures |
US8974827B2 (en) | 2007-06-04 | 2015-03-10 | Bend Research, Inc. | Nanoparticles comprising a non-ionizable cellulosic polymer and an amphiphilic non-ionizable block copolymer |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US20150267099A1 (en) * | 2012-12-31 | 2015-09-24 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9233078B2 (en) | 2007-12-06 | 2016-01-12 | Bend Research, Inc. | Nanoparticles comprising a non-ionizable polymer and an Amine-functionalized methacrylate copolymer |
US9303153B2 (en) | 2009-09-09 | 2016-04-05 | Qd Vision, Inc. | Formulations including nanoparticles |
US9365701B2 (en) | 2009-09-09 | 2016-06-14 | Qd Vision, Inc. | Particles including nanoparticles, uses thereof, and methods |
US20160222265A1 (en) * | 2013-10-03 | 2016-08-04 | Mitsui Mining & Smelting Co., Ltd. | Abrasive material, method for producing same, and abrasive slurry containing same |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9475946B2 (en) | 2011-09-30 | 2016-10-25 | Ppg Industries Ohio, Inc. | Graphenic carbon particle co-dispersions and methods of making same |
US20160339521A1 (en) * | 2014-01-24 | 2016-11-24 | United Technologies Corporation | Powder improvement for additive manufacturing |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US9545384B2 (en) | 2007-06-04 | 2017-01-17 | Bend Research, Inc. | Nanoparticles comprising drug, a non-ionizable cellulosic polymer and tocopheryl polyethylene glocol succinate |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US9724362B2 (en) | 2007-12-06 | 2017-08-08 | Bend Research, Inc. | Pharmaceutical compositions comprising nanoparticles and a resuspending material |
US9761903B2 (en) | 2011-09-30 | 2017-09-12 | Ppg Industries Ohio, Inc. | Lithium ion battery electrodes including graphenic carbon particles |
US9832818B2 (en) | 2011-09-30 | 2017-11-28 | Ppg Industries Ohio, Inc. | Resistive heating coatings containing graphenic carbon particles |
US9938416B2 (en) | 2011-09-30 | 2018-04-10 | Ppg Industries Ohio, Inc. | Absorptive pigments comprising graphenic carbon particles |
US9988551B2 (en) | 2011-09-30 | 2018-06-05 | Ppg Industries Ohio, Inc. | Black pigments comprising graphenic carbon particles |
US10100266B2 (en) | 2006-01-12 | 2018-10-16 | The Board Of Trustees Of The University Of Arkansas | Dielectric nanolubricant compositions |
US10167555B2 (en) | 2014-08-18 | 2019-01-01 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
US10213900B2 (en) * | 2016-02-25 | 2019-02-26 | Kamei Tekkousho Ltd. | Abrasive material |
US10240052B2 (en) | 2011-09-30 | 2019-03-26 | Ppg Industries Ohio, Inc. | Supercapacitor electrodes including graphenic carbon particles |
US10294375B2 (en) | 2011-09-30 | 2019-05-21 | Ppg Industries Ohio, Inc. | Electrically conductive coatings containing graphenic carbon particles |
US10377928B2 (en) | 2015-12-10 | 2019-08-13 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US10532134B2 (en) | 2012-04-18 | 2020-01-14 | Drexel University | Thixotropic processing of magnesium composites with a nanoparticles-haloed grain structure for biomedical implant applications |
US10763490B2 (en) | 2011-09-30 | 2020-09-01 | Ppg Industries Ohio, Inc. | Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles |
LU101177B1 (en) | 2019-04-16 | 2020-10-16 | Delmee Maxime | Functionalized metal powders by small particles made by non-thermal plasma glow discharge for additive manufacturing applications |
US10865464B2 (en) | 2016-11-16 | 2020-12-15 | Hrl Laboratories, Llc | Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom |
US10947428B2 (en) | 2010-11-19 | 2021-03-16 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US11499230B2 (en) | 2014-08-18 | 2022-11-15 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
US11724310B2 (en) * | 2011-06-17 | 2023-08-15 | Consolidated Nuclear Security, LLC | Titanium-group nano-whiskers and method of production |
Families Citing this family (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6652967B2 (en) * | 2001-08-08 | 2003-11-25 | Nanoproducts Corporation | Nano-dispersed powders and methods for their manufacture |
US6740453B2 (en) * | 2002-02-27 | 2004-05-25 | Cyprus Amax Minerals Company | Electrochemical cell with carbonaceous material and molybdenum carbide as anode |
US7287412B2 (en) * | 2003-06-03 | 2007-10-30 | Nano-Proprietary, Inc. | Method and apparatus for sensing hydrogen gas |
FR2846572B1 (en) * | 2002-11-05 | 2004-12-31 | Centre Nat Rech Scient | DISSYMMETRIC PARTICLES OF NANOMETRIC OR MESOSCOPIC SIZE, AND PROCESS FOR THEIR PREPARATION |
US20040091417A1 (en) * | 2002-11-07 | 2004-05-13 | Nanoproducts Corporation | Nanotechnology for agriculture, horticulture, and pet care |
US7162308B2 (en) | 2002-11-26 | 2007-01-09 | Wilson Greatbatch Technologies, Inc. | Nanotube coatings for implantable electrodes |
US20050126338A1 (en) * | 2003-02-24 | 2005-06-16 | Nanoproducts Corporation | Zinc comprising nanoparticles and related nanotechnology |
KR100501242B1 (en) * | 2003-05-31 | 2005-07-18 | 주식회사 대우일렉트로닉스 | Method for producing an injection-moled material with an antibacterial function |
US20070240491A1 (en) * | 2003-06-03 | 2007-10-18 | Nano-Proprietary, Inc. | Hydrogen Sensor |
US20050008861A1 (en) * | 2003-07-08 | 2005-01-13 | Nanoproducts Corporation | Silver comprising nanoparticles and related nanotechnology |
US7160489B2 (en) * | 2003-10-10 | 2007-01-09 | The Board Of Trustees Of The University Of Illinois | Controlled chemical aerosol flow synthesis of nanometer-sized particles and other nanometer-sized products |
AT413699B (en) * | 2004-02-06 | 2006-05-15 | Tigerwerk Lack Und Farbenfabri | PROCESS FOR PREPARING POLYESTER RESINS AND POWDER LACK FORMULATIONS COMPRISING SUCH POLYESTER RESINS |
DE102004014618B3 (en) * | 2004-03-23 | 2005-11-10 | Eads Space Transportation Gmbh | Electrothermal impulse engine |
US8106586B1 (en) | 2004-04-26 | 2012-01-31 | Imaging Systems Technology, Inc. | Plasma discharge display with fluorescent conversion material |
DE102004020961A1 (en) * | 2004-04-28 | 2005-11-24 | Ceram Ag | Paint and / or coating material |
US7527824B2 (en) * | 2004-06-25 | 2009-05-05 | Becker Michael F | Methods for producing coated nanoparticles from microparticles |
CN101427357B (en) * | 2004-06-29 | 2011-01-26 | 毫微-专卖股份有限公司 | Nanoparticle implantation |
CA2771947C (en) * | 2004-09-07 | 2014-05-20 | Nisshin Seifun Group Inc. | Process and apparatus for producing fine particles |
WO2006045713A1 (en) | 2004-10-25 | 2006-05-04 | Ciba Specialty Chemicals Holding Inc. | Functionalized nanoparticles |
US20060184251A1 (en) * | 2005-01-07 | 2006-08-17 | Zongtao Zhang | Coated medical devices and methods of making and using |
US20060153728A1 (en) * | 2005-01-10 | 2006-07-13 | Schoenung Julie M | Synthesis of bulk, fully dense nanostructured metals and metal matrix composites |
KR20060082527A (en) * | 2005-01-12 | 2006-07-19 | 삼성에스디아이 주식회사 | Phosphor and plasma display panel using the same |
US8167393B2 (en) | 2005-01-14 | 2012-05-01 | Cabot Corporation | Printable electronic features on non-uniform substrate and processes for making same |
WO2006076606A2 (en) | 2005-01-14 | 2006-07-20 | Cabot Corporation | Optimized multi-layer printing of electronics and displays |
US7749299B2 (en) | 2005-01-14 | 2010-07-06 | Cabot Corporation | Production of metal nanoparticles |
US8383014B2 (en) | 2010-06-15 | 2013-02-26 | Cabot Corporation | Metal nanoparticle compositions |
US7824466B2 (en) | 2005-01-14 | 2010-11-02 | Cabot Corporation | Production of metal nanoparticles |
KR100678285B1 (en) | 2005-01-20 | 2007-02-02 | 삼성전자주식회사 | Quantum Dot Phosphor for Light Emitting Diode and Method of Preparing Thereof |
US8079838B2 (en) * | 2005-03-16 | 2011-12-20 | Horiba, Ltd. | Pure particle generator |
JP4061367B2 (en) * | 2005-03-18 | 2008-03-19 | 独立行政法人 日本原子力研究開発機構 | ZnS (Ag) scintillation detector |
KR101111747B1 (en) * | 2005-05-16 | 2012-06-12 | 삼성엘이디 주식회사 | A composite nano particle and electronic device using the same |
US20060266216A1 (en) * | 2005-05-24 | 2006-11-30 | Cabot Corporation | High-throughput powder synthesis system |
DE102005061828B4 (en) * | 2005-06-23 | 2017-05-24 | Osram Opto Semiconductors Gmbh | Wavelength-converting converter material, light-emitting optical component and method for its production |
US8350657B2 (en) | 2005-06-30 | 2013-01-08 | Derochemont L Pierre | Power management module and method of manufacture |
EP1964159A4 (en) * | 2005-06-30 | 2017-09-27 | L. Pierre De Rochemont | Electrical components and method of manufacture |
CN100436310C (en) * | 2005-07-13 | 2008-11-26 | 清华大学 | Production of carbon nano-tube array |
WO2007016193A2 (en) * | 2005-07-28 | 2007-02-08 | Florida State University Research Foundation, Incorporated | Nanoparticle synthesis and associated methods |
US20100005853A1 (en) * | 2005-08-03 | 2010-01-14 | Nano-Proprietary, Inc. | Continuous Range Hydrogen Sensor |
US7615097B2 (en) * | 2005-10-13 | 2009-11-10 | Plasma Processes, Inc. | Nano powders, components and coatings by plasma technique |
US7517718B2 (en) * | 2006-01-12 | 2009-04-14 | International Business Machines Corporation | Method for fabricating an inorganic nanocomposite |
CN101415509B (en) * | 2006-02-16 | 2013-04-17 | 布莱阿姆青年大学 | Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys |
US20110180757A1 (en) * | 2009-12-08 | 2011-07-28 | Nemanja Vockic | Luminescent materials that emit light in the visible range or the near infrared range and methods of forming thereof |
CN101443431B (en) * | 2006-03-21 | 2014-05-21 | 超点公司 | Luminescent materials that emit light in the visible range or the near infrared range |
JP2009534490A (en) * | 2006-04-19 | 2009-09-24 | チバ ホールディング インコーポレーテッド | Inorganic optical brightener |
FR2901721B1 (en) * | 2006-05-30 | 2008-08-22 | Commissariat Energie Atomique | MAX PHASE POWDERS AND PROCESS FOR PRODUCING SAID POWDERS |
US20080000880A1 (en) * | 2006-06-30 | 2008-01-03 | Bao Feng | System and method for treating a coating on a substrate |
WO2008016712A2 (en) * | 2006-08-02 | 2008-02-07 | Inframat Corporation | Medical devices and methods of making and using |
CN101588826A (en) * | 2006-08-02 | 2009-11-25 | 英孚拉玛特公司 | Lumen-supporting devices and methods of making and using |
US8952612B1 (en) | 2006-09-15 | 2015-02-10 | Imaging Systems Technology, Inc. | Microdischarge display with fluorescent conversion material |
US20080074479A1 (en) * | 2006-09-27 | 2008-03-27 | Tri-Century Corporation | Method and apparatus for filling ink-jet cartridge |
EA015999B1 (en) * | 2006-10-24 | 2012-01-30 | Бенек Ой | Device for producing nanoparticles |
US20080152913A1 (en) * | 2006-12-22 | 2008-06-26 | 3M Innovative Properties Company | Method of making compositions including particles |
US20080153963A1 (en) * | 2006-12-22 | 2008-06-26 | 3M Innovative Properties Company | Method for making a dispersion |
US20080166558A1 (en) * | 2006-12-22 | 2008-07-10 | 3M Innovative Properties Company | Compositions of particles |
US8008624B2 (en) * | 2007-01-16 | 2011-08-30 | General Electric Company | X-ray detector fabrication methods and apparatus therefrom |
DE102007010719A1 (en) * | 2007-03-06 | 2008-09-11 | Merck Patent Gmbh | Phosphors consisting of doped garnets for pcLEDs |
DE102007053285A1 (en) * | 2007-11-08 | 2009-05-14 | Merck Patent Gmbh | Process for the preparation of coated phosphors |
DE102007053770A1 (en) * | 2007-11-12 | 2009-05-14 | Merck Patent Gmbh | Coated phosphor particles with refractive index matching |
EP2296628B1 (en) * | 2008-05-22 | 2014-05-14 | 3M Innovative Properties Company | Process for manufacturing flowable powder drug compositions |
EP2309978B1 (en) * | 2008-06-26 | 2018-12-26 | 3M Innovative Properties Company | Dry powder pharmaceutical compositions for pulmonary administration, and methods of manufacturing thereof |
US9861580B2 (en) * | 2008-07-02 | 2018-01-09 | 3M Innovative Properties Company | Method of making a dry powder pharmaceutical composition |
DE102008038295B4 (en) * | 2008-08-18 | 2013-11-28 | Eads Deutschland Gmbh | Granulation and stabilization of resin systems for use in the manufacture of fiber composite components |
US20100055440A1 (en) * | 2008-08-27 | 2010-03-04 | Seoul National University Industry Foundation | Composite nanoparticles |
DE102008042578A1 (en) * | 2008-10-02 | 2010-04-08 | Biotronik Vi Patent Ag | Implant with a body made of a biocorrodible manganese alloy |
US20110206937A1 (en) * | 2010-02-25 | 2011-08-25 | Schmidt Wayde R | Composite article having a ceramic nanocomposite layer |
US8404199B2 (en) | 2010-08-06 | 2013-03-26 | Empire Technology Development Llc | Fluorine based vanadium boride nanoparticle synthesis |
EP2425915B1 (en) * | 2010-09-01 | 2015-12-02 | Directa Plus S.p.A. | Multi mode production complex for nano-particles of metal |
EP2425916B1 (en) | 2010-09-01 | 2014-11-12 | Directa Plus S.p.A. | Multiple feeder reactor for the production of nanoparticles of metal |
EP2625135B1 (en) | 2010-10-04 | 2017-08-02 | 3M Innovative Properties Company | Method of modifying dissolution rate of particles by addition of hydrophobic nanoparticles |
WO2013001685A1 (en) * | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | Composite phosphor and light-emitting device |
US9849512B2 (en) | 2011-07-01 | 2017-12-26 | Attostat, Inc. | Method and apparatus for production of uniformly sized nanoparticles |
US9114378B2 (en) | 2012-03-26 | 2015-08-25 | Brigham Young University | Iron and cobalt based fischer-tropsch pre-catalysts and catalysts |
US9079164B2 (en) | 2012-03-26 | 2015-07-14 | Brigham Young University | Single reaction synthesis of texturized catalysts |
US8691324B2 (en) * | 2012-04-03 | 2014-04-08 | Xerox Corporation | Dry coating processes for substrates |
US9024526B1 (en) | 2012-06-11 | 2015-05-05 | Imaging Systems Technology, Inc. | Detector element with antenna |
US9289750B2 (en) | 2013-03-09 | 2016-03-22 | Brigham Young University | Method of making highly porous, stable aluminum oxides doped with silicon |
CN103466667B (en) * | 2013-09-10 | 2015-12-09 | 清华大学 | A kind of using plasma high temperature pyrolytic cracking (HTP) prepares the method for nano magnesia |
US20160162625A1 (en) | 2013-09-26 | 2016-06-09 | Synopsys, Inc. | Mapping Intermediate Material Properties To Target Properties To Screen Materials |
US10417373B2 (en) | 2013-09-26 | 2019-09-17 | Synopsys, Inc. | Estimation of effective channel length for FinFETs and nano-wires |
US9836563B2 (en) | 2013-09-26 | 2017-12-05 | Synopsys, Inc. | Iterative simulation with DFT and non-DFT |
WO2015048509A1 (en) | 2013-09-26 | 2015-04-02 | Synopsys, Inc. | First principles design automation tool |
US10516725B2 (en) | 2013-09-26 | 2019-12-24 | Synopsys, Inc. | Characterizing target material properties based on properties of similar materials |
US10489212B2 (en) | 2013-09-26 | 2019-11-26 | Synopsys, Inc. | Adaptive parallelization for multi-scale simulation |
KR101591606B1 (en) * | 2013-11-21 | 2016-02-04 | 주식회사 엘지화학 | Gettering agent and moisture absorbent film using the same |
US20170306170A1 (en) * | 2014-08-29 | 2017-10-26 | SDCmaterials, Inc. | Composition comprising nanoparticles with desired sintering and melting point temperatures and methods of making thereof |
US10190253B2 (en) | 2014-09-23 | 2019-01-29 | Attostat, Inc | Nanoparticle treated fabrics, fibers, filaments, and yarns and related methods |
US9434006B2 (en) | 2014-09-23 | 2016-09-06 | Attostat, Inc. | Composition containing spherical and coral-shaped nanoparticles and method of making same |
US9919363B2 (en) | 2014-09-23 | 2018-03-20 | Attostat, Inc. | System and method for making non-spherical nanoparticles and nanoparticle compositions made thereby |
US9885001B2 (en) | 2014-09-23 | 2018-02-06 | Attostat, Inc. | Fuel additive composition and related methods |
US9883670B2 (en) | 2014-09-23 | 2018-02-06 | Attostat, Inc. | Compositions and methods for treating plant diseases |
US9839652B2 (en) | 2015-04-01 | 2017-12-12 | Attostat, Inc. | Nanoparticle compositions and methods for treating or preventing tissue infections and diseases |
EP3283580A4 (en) | 2015-04-13 | 2019-03-20 | Attostat, Inc. | Anti-corrosion nanoparticle compositions |
US11473202B2 (en) | 2015-04-13 | 2022-10-18 | Attostat, Inc. | Anti-corrosion nanoparticle compositions |
US10952942B2 (en) | 2015-09-03 | 2021-03-23 | International Business Machines Corporation | Plasmonic enhancement of zinc oxide light absorption for sunscreen applications |
US9937112B2 (en) | 2015-09-03 | 2018-04-10 | International Business Machines Corporation | Doping of zinc oxide particles for sunscreen applications |
US10682294B2 (en) | 2015-09-03 | 2020-06-16 | International Business Machines Corporation | Controlling zinc oxide particle size for sunscreen applications |
US9993402B2 (en) | 2015-09-03 | 2018-06-12 | International Business Machines Corporation | Sunscreen additives for enhancing vitamin D production |
US9883994B2 (en) | 2015-09-03 | 2018-02-06 | International Business Machines Corporation | Implementing organic materials in sunscreen applications |
US9883993B2 (en) | 2015-09-03 | 2018-02-06 | International Business Machines Corporation | Notch filter coatings for use in sunscreen applications |
US10369092B2 (en) | 2015-09-03 | 2019-08-06 | International Business Machines Corporation | Nitride-based nanoparticles for use in sunscreen applications |
US10772808B2 (en) | 2015-09-03 | 2020-09-15 | International Business Machines Corporation | Anti-reflective coating on oxide particles for sunscreen applications |
US10092487B2 (en) | 2015-10-22 | 2018-10-09 | International Business Machines Corporation | Plasmonic enhancement of absorption in sunscreen applications |
US10045918B2 (en) | 2015-10-22 | 2018-08-14 | International Business Machines Corporation | Embedding oxide particles within separate particles for sunscreen applications |
US10076475B2 (en) | 2015-10-23 | 2018-09-18 | International Business Machines Corporation | Shell-structured particles for sunscreen applications |
RU2612293C1 (en) * | 2015-10-29 | 2017-03-06 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" | Method of titanium carbonitride nanopowder obtainment |
US10734097B2 (en) | 2015-10-30 | 2020-08-04 | Synopsys, Inc. | Atomic structure optimization |
US10078735B2 (en) | 2015-10-30 | 2018-09-18 | Synopsys, Inc. | Atomic structure optimization |
US10201571B2 (en) | 2016-01-25 | 2019-02-12 | Attostat, Inc. | Nanoparticle compositions and methods for treating onychomychosis |
EP3281726B1 (en) * | 2016-08-09 | 2019-05-15 | SLM Solutions Group AG | Apparatus for producing a three-dimensional workpiece with temperature-controlled shielding gas |
US11018376B2 (en) | 2017-11-28 | 2021-05-25 | Attostat, Inc. | Nanoparticle compositions and methods for enhancing lead-acid batteries |
US11646453B2 (en) | 2017-11-28 | 2023-05-09 | Attostat, Inc. | Nanoparticle compositions and methods for enhancing lead-acid batteries |
EP3553137A1 (en) * | 2018-04-13 | 2019-10-16 | Siemens Aktiengesellschaft | Particle with an antimicrobial surface, material for formation of a coating using such particles, and a method for the production of such particles |
CN109950587A (en) * | 2019-04-02 | 2019-06-28 | 浙江大学 | A kind of proton exchange film fuel battery system temperature Active Fault-tolerant Control Method |
US12115250B2 (en) | 2019-07-12 | 2024-10-15 | Evoq Nano, Inc. | Use of nanoparticles for treating respiratory infections associated with cystic fibrosis |
US20210139376A1 (en) * | 2019-11-12 | 2021-05-13 | QuShell LLC | Materials with hierarchical nanochemical bonding, manufacturing methods and applications of same |
US20210162392A1 (en) * | 2019-12-03 | 2021-06-03 | The Governing Council Of The University Of Toronto | Electrocatalysts comprising transition metals and chalcogen for oxygen evolution reactions (oer) and manufacturing thereof |
KR102260508B1 (en) * | 2019-12-10 | 2021-06-07 | 현대모비스 주식회사 | Catalyst for fuel cell, electrode for fuel cell comprising the same and membrane electrode assembly comprising the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5939146A (en) * | 1996-12-11 | 1999-08-17 | The Regents Of The University Of California | Method for thermal spraying of nanocrystalline coatings and materials for the same |
US5984997A (en) | 1997-08-29 | 1999-11-16 | Nanomaterials Research Corporation | Combustion of emulsions: A method and process for producing fine powders |
US5989648A (en) | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
US6268054B1 (en) * | 1997-02-18 | 2001-07-31 | Cabot Corporation | Dispersible, metal oxide-coated, barium titanate materials |
US6447848B1 (en) * | 1995-11-13 | 2002-09-10 | The United States Of America As Represented By The Secretary Of The Navy | Nanosize particle coatings made by thermally spraying solution precursor feedstocks |
US6528029B1 (en) * | 1999-10-13 | 2003-03-04 | Engelhard Corporation | Catalyst compositions employing sol gel particles and methods of using the same |
US6548171B1 (en) * | 1998-11-10 | 2003-04-15 | Emilio Barbera-Guillem | Fluorescent nanocrystal-embedded microspheres for fluorescence analyses |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US489449A (en) * | 1893-01-10 | Num bering-machine | ||
US3565676A (en) * | 1968-04-01 | 1971-02-23 | Fansteel Metallurgical Corp | Chemical vapor deposition method |
US3806449A (en) * | 1970-06-15 | 1974-04-23 | Avco Corp | Separation of liquid-liquid multiphase mixtures |
US3635819A (en) * | 1970-06-15 | 1972-01-18 | Avco Corp | Process for cleaning up oil spills |
US3734790A (en) * | 1970-10-22 | 1973-05-22 | Us Army | Gaseous illuminant pyrotechnic systems |
US4094804A (en) * | 1974-08-19 | 1978-06-13 | Junzo Shimoiizaka | Method for preparing a water base magnetic fluid and product |
US4017820A (en) * | 1975-07-25 | 1977-04-12 | Illinois Tool Works Inc. | Humidity sensor with multiple electrode layers separated by a porous monolithic ceramic dielectric structure |
US4019994A (en) * | 1975-08-28 | 1977-04-26 | Georgia-Pacific Corporation | Process for the preparation of aqueous magnetic material suspensions |
LU76937A1 (en) * | 1977-03-11 | 1978-10-18 | ||
FR2461521A1 (en) * | 1979-07-20 | 1981-02-06 | Anvar | MAGNETIC FLUIDS, IN PARTICULAR FERROFLUIDS, AND PROCESS FOR OBTAINING THEM |
US4315827A (en) * | 1979-11-08 | 1982-02-16 | Ferrofluidics Corporation | Low-vapor-pressure ferrofluids and method of making same |
US4252678A (en) * | 1979-12-04 | 1981-02-24 | Xerox Corporation | Preparation of colloidal dispersions of ruthenium, rhodium, osmium and iridium by the polymer-catalyzed decomposition of carbonyl cluster compounds thereof |
US4381244A (en) * | 1980-03-24 | 1983-04-26 | General Electric Company | Ferrofluid |
US4430239A (en) * | 1981-10-21 | 1984-02-07 | Ferrofluidics Corporation | Ferrofluid composition and method of making and using same |
US4426356A (en) * | 1982-09-30 | 1984-01-17 | E. I. Du Pont De Nemours And Company | Method for making capacitors with noble metal electrodes |
JPS59227765A (en) * | 1983-06-04 | 1984-12-21 | 科学技術庁金属材料技術研究所長 | Manufacture of ceramic super fine particle |
US4588575A (en) * | 1984-11-01 | 1986-05-13 | Celanese Corporation | Production of microcrystalline metal oxides |
JPS61122106A (en) * | 1984-11-19 | 1986-06-10 | Ube Ind Ltd | Production of metal oxide fine powder |
US4584244A (en) * | 1985-05-28 | 1986-04-22 | Conoco Inc. | Preparation of cold flow resistant polymer powders |
US5187209A (en) * | 1986-07-01 | 1993-02-16 | Hidefumi Hirai | Colloidal metal dispersion, and a colloidal metal complex |
DE3809331C1 (en) * | 1988-03-19 | 1989-04-27 | Degussa Ag, 6000 Frankfurt, De | |
JPH01299452A (en) * | 1988-05-27 | 1989-12-04 | Ricoh Co Ltd | Four-terminal detecting type gas detector |
FR2640048B1 (en) * | 1988-12-06 | 1993-01-22 | Armines | METHOD FOR MANUFACTURING A GAS DETECTION SENSOR, SENSOR THEREOF |
US5194128A (en) * | 1989-07-12 | 1993-03-16 | Thermo Electron Technologies Corporation | Method for manufacturing ultrafine particles |
CA2021814C (en) * | 1989-07-25 | 2002-04-02 | James A. Davidson | Zirconium alloy-based prosthesis with zirconium oxide or zirconium nitride coating |
JP2539062B2 (en) * | 1989-12-18 | 1996-10-02 | ホーヤ株式会社 | Multi-component glass containing semiconductor crystallites |
GB2242443B (en) * | 1990-03-28 | 1994-04-06 | Nisshin Flour Milling Co | Coated particles of inorganic or metallic materials and processes of producing the same |
DE69128505T2 (en) * | 1990-09-07 | 1998-08-20 | Dainippon Printing Co Ltd | Image receiving material for thermal dye transfer and its production process |
US5381664A (en) * | 1990-09-28 | 1995-01-17 | The United States Of America, As Represented By The Secretary Of Commerce | Nanocomposite material for magnetic refrigeration and superparamagnetic systems using the same |
US5369241A (en) * | 1991-02-22 | 1994-11-29 | Idaho Research Foundation | Plasma production of ultra-fine ceramic carbides |
DE4106536A1 (en) * | 1991-03-01 | 1992-09-03 | Degussa | THERMALLY-PAINTED ZIRCONYLICATE, METHOD FOR THE PRODUCTION AND USE THEREOF |
US5238729A (en) * | 1991-04-05 | 1993-08-24 | Minnesota Mining And Manufacturing Company | Sensors based on nanosstructured composite films |
US5180650A (en) * | 1992-01-31 | 1993-01-19 | Xerox Corporation | Toner compositions with conductive colored magnetic particles |
DE4214723C2 (en) * | 1992-05-04 | 1994-08-25 | Starck H C Gmbh Co Kg | Finely divided metal powder |
DE4214722C2 (en) * | 1992-05-04 | 1994-08-25 | Starck H C Gmbh Co Kg | Finely divided metal powder |
US5417956A (en) * | 1992-08-18 | 1995-05-23 | Worcester Polytechnic Institute | Preparation of nanophase solid state materials |
US5385776A (en) * | 1992-11-16 | 1995-01-31 | Alliedsignal Inc. | Nanocomposites of gamma phase polymers containing inorganic particulate material |
DE4238688A1 (en) * | 1992-11-17 | 1994-05-19 | Bosch Gmbh Robert | Sintered solid electrolyte with high oxygen ion conductivity |
US5308804A (en) * | 1992-12-15 | 1994-05-03 | Lee Huai Chuan | Moving disks made of semiconductor nanocrystallite embedded glass |
SE502053C2 (en) * | 1993-01-15 | 1995-07-31 | Sandvik Ab | Whisker- and particle-reinforced ceramic cutting tool material |
US5482656A (en) * | 1993-03-04 | 1996-01-09 | Kabushiki Kaisha Toshiba | Non-linear optical devices employing a polysilane composition and a polysilane composition therefor |
GB9306594D0 (en) * | 1993-03-30 | 1993-05-26 | Univ Keele | Sensor |
US5720805A (en) * | 1993-04-13 | 1998-02-24 | Southwest Research Institute | Titanium-tin-oxide nanoparticles, compositions utilizing the same, and the method of forming the same |
KR100214428B1 (en) * | 1993-06-30 | 1999-08-02 | 후지무라 마사지카, 아키모토 유미 | Infrared ray cutoff material and infrared cutoff powder used for the same |
WO1995006090A1 (en) * | 1993-08-23 | 1995-03-02 | Alliedsignal Inc. | Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates and organo zirconates dispersed therein and process of preparing same |
US5414588A (en) * | 1993-09-20 | 1995-05-09 | The Regents Of The University Of California | High performance capacitors using nano-structure multilayer materials fabrication |
US5503081A (en) * | 1993-11-22 | 1996-04-02 | Fmc Corp | Annular plasma injector |
US5486435A (en) * | 1994-01-25 | 1996-01-23 | Hydro-Quebec | Additives for extruding polymer electrolytes |
FR2716457B1 (en) * | 1994-02-23 | 1996-05-24 | Saint Gobain Vitrage Int | Protonic conductive electrolyte material. |
US5629075A (en) * | 1994-04-28 | 1997-05-13 | Kao Corporation | Magnetic recording medium having a substrate containing magnetic powder |
US5472749A (en) * | 1994-10-27 | 1995-12-05 | Northwestern University | Graphite encapsulated nanophase particles produced by a tungsten arc method |
US6065476A (en) * | 1994-12-21 | 2000-05-23 | Board Of Regents, University Of Texas System | Method of enhancing surface porosity of biodegradable implants |
US5624718A (en) * | 1995-03-03 | 1997-04-29 | Southwest Research Institue | Diamond-like carbon based electrocatalytic coating for fuel cell electrodes |
US5676976A (en) * | 1995-05-19 | 1997-10-14 | Etex Corporation | Synthesis of reactive amorphous calcium phosphates |
US6027742A (en) * | 1995-05-19 | 2000-02-22 | Etex Corporation | Bioresorbable ceramic composites |
US5726247A (en) * | 1996-06-14 | 1998-03-10 | E. I. Du Pont De Nemours And Company | Fluoropolymer nanocomposites |
JPH0992987A (en) * | 1995-09-22 | 1997-04-04 | Yazaki Corp | Manufacture of electrical junction box |
US5876683A (en) * | 1995-11-02 | 1999-03-02 | Glumac; Nicholas | Combustion flame synthesis of nanophase materials |
US5880197A (en) * | 1995-12-22 | 1999-03-09 | Amcol International Corporation | Intercalates and exfoliates formed with monomeric amines and amides: composite materials containing same and methods of modifying rheology therewith |
US5714536A (en) * | 1996-01-11 | 1998-02-03 | Xerox Corporation | Magnetic nanocompass compositions and processes for making and using |
US5874134A (en) * | 1996-01-29 | 1999-02-23 | Regents Of The University Of Minnesota | Production of nanostructured materials by hypersonic plasma particle deposition |
US6036774A (en) * | 1996-02-26 | 2000-03-14 | President And Fellows Of Harvard College | Method of producing metal oxide nanorods |
US5897945A (en) * | 1996-02-26 | 1999-04-27 | President And Fellows Of Harvard College | Metal oxide nanorods |
US6042900A (en) * | 1996-03-12 | 2000-03-28 | Alexander Rakhimov | CVD method for forming diamond films |
US5739193A (en) * | 1996-05-07 | 1998-04-14 | Hoechst Celanese Corp. | Polymeric compositions having a temperature-stable dielectric constant |
DE59711741D1 (en) * | 1996-05-31 | 2004-08-05 | Ciba Sc Holding Ag | Bismuth vanadate pigments |
US5905000A (en) * | 1996-09-03 | 1999-05-18 | Nanomaterials Research Corporation | Nanostructured ion conducting solid electrolytes |
US6652967B2 (en) * | 2001-08-08 | 2003-11-25 | Nanoproducts Corporation | Nano-dispersed powders and methods for their manufacture |
US6855749B1 (en) * | 1996-09-03 | 2005-02-15 | Nanoproducts Corporation | Polymer nanocomposite implants with enhanced transparency and mechanical properties for administration within humans or animals |
US6344271B1 (en) * | 1998-11-06 | 2002-02-05 | Nanoenergy Corporation | Materials and products using nanostructured non-stoichiometric substances |
US6569397B1 (en) * | 2000-02-15 | 2003-05-27 | Tapesh Yadav | Very high purity fine powders and methods to produce such powders |
US6057637A (en) * | 1996-09-13 | 2000-05-02 | The Regents Of The University Of California | Field emission electron source |
JP3534151B2 (en) * | 1996-10-29 | 2004-06-07 | 宇部興産株式会社 | Polyimide precursor composition and polyimide film |
US6180389B1 (en) * | 1997-01-03 | 2001-01-30 | The Research And Development Institute, Inc. | Virion-constrained nanoparticles comprising a plant virion coat protein shell and encapsulated guest molecules |
DE19720269A1 (en) * | 1997-05-14 | 1998-11-19 | Inst Neue Mat Gemein Gmbh | Nanocomposite for thermal insulation purposes |
US6045925A (en) * | 1997-08-05 | 2000-04-04 | Kansas State University Research Foundation | Encapsulated nanometer magnetic particles |
US6693143B2 (en) * | 1997-10-03 | 2004-02-17 | Dentsply Detrey Gmbh | Dental materials having a nanoscale filler |
US5985173A (en) * | 1997-11-18 | 1999-11-16 | Gray; Henry F. | Phosphors having a semiconductor host surrounded by a shell |
DE19811790A1 (en) * | 1998-03-18 | 1999-09-23 | Bayer Ag | Transparent paint binders containing nanoparticles with improved scratch resistance, a process for their preparation and their use |
US5977002A (en) * | 1998-03-26 | 1999-11-02 | Ford Motor Company | Medium gray colored glass with improved UV and IR absorption and nitrate-free manufacturing process therefor |
AUPP355798A0 (en) * | 1998-05-15 | 1998-06-11 | University Of Western Australia, The | Process for the production of ultrafine powders |
US6229937B1 (en) * | 1998-09-17 | 2001-05-08 | Corning Incorporated | Circularly polarized fiber in optical circuits |
US6716525B1 (en) * | 1998-11-06 | 2004-04-06 | Tapesh Yadav | Nano-dispersed catalysts particles |
US6375864B1 (en) * | 1998-11-10 | 2002-04-23 | M.A. Hannacolor, A Division Of M.A. Hanna Company | Daylight/nightglow colored phosphorescent plastic compositions and articles |
US6328798B1 (en) * | 1999-02-19 | 2001-12-11 | Equistar Chemicals, Lp | Coated polymeric particles having improved anti-block characteristics, method of making such particles, and apparatus therefor |
US6689823B1 (en) * | 1999-03-31 | 2004-02-10 | The Brigham And Women's Hospital, Inc. | Nanocomposite surgical materials and method of producing them |
US6194481B1 (en) * | 1999-05-19 | 2001-02-27 | Board Of Regents Of The University Of Texas System | Mechanically strong and transparent or translucent composites made using zirconium oxide nanoparticles |
JP4284020B2 (en) * | 1999-07-30 | 2009-06-24 | ピーピージー インダストリーズ オハイオ, インコーポレイテッド | Cured coating with improved scratch resistance, coated substrate and methods related thereto |
US6576156B1 (en) * | 1999-08-25 | 2003-06-10 | The United States Of America As Represented By The Secretary Of The Navy | Phosphors with nanoscale grain sizes and methods for preparing the same |
US6226904B1 (en) * | 1999-09-01 | 2001-05-08 | Hamilton Beach/Proctor-Silex, Inc. | Burn guard electric iron soleplate |
US6387981B1 (en) * | 1999-10-28 | 2002-05-14 | 3M Innovative Properties Company | Radiopaque dental materials with nano-sized particles |
US6361161B1 (en) * | 2000-03-01 | 2002-03-26 | Eastman Kodak Company | Nanoparticles for printing images |
US6541112B1 (en) * | 2000-06-07 | 2003-04-01 | Dmc2 Degussa Metals Catalysts Cerdec Ag | Rare earth manganese oxide pigments |
US6503316B1 (en) * | 2000-09-22 | 2003-01-07 | Dmc2 Degussa Metals Catalysts Cerdec Ag | Bismuth-containing laser markable compositions and methods of making and using same |
DE10049803A1 (en) * | 2000-10-09 | 2002-04-18 | Bayer Ag | Composite particles used e.g. for pigmenting paint or plastics comprise unagglomerated primary pigment particles adhering to colorless carrier particles and separated from one another by a minimum distance |
US6855426B2 (en) * | 2001-08-08 | 2005-02-15 | Nanoproducts Corporation | Methods for producing composite nanoparticles |
US6689192B1 (en) * | 2001-12-13 | 2004-02-10 | The Regents Of The University Of California | Method for producing metallic nanoparticles |
US6682872B2 (en) * | 2002-01-22 | 2004-01-27 | International Business Machines Corporation | UV-curable compositions and method of use thereof in microelectronics |
US6680279B2 (en) * | 2002-01-24 | 2004-01-20 | General Motors Corporation | Nanostructured catalyst particle/catalyst carrier particle system |
-
2001
- 2001-12-04 US US10/004,387 patent/US6652967B2/en not_active Expired - Lifetime
-
2002
- 2002-08-07 WO PCT/US2002/025269 patent/WO2003045610A2/en not_active Application Discontinuation
-
2003
- 2003-06-18 US US10/464,208 patent/US6726992B1/en not_active Expired - Lifetime
- 2003-10-31 US US10/698,564 patent/US20040178530A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6447848B1 (en) * | 1995-11-13 | 2002-09-10 | The United States Of America As Represented By The Secretary Of The Navy | Nanosize particle coatings made by thermally spraying solution precursor feedstocks |
US5939146A (en) * | 1996-12-11 | 1999-08-17 | The Regents Of The University Of California | Method for thermal spraying of nanocrystalline coatings and materials for the same |
US6268054B1 (en) * | 1997-02-18 | 2001-07-31 | Cabot Corporation | Dispersible, metal oxide-coated, barium titanate materials |
US5989648A (en) | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
US5984997A (en) | 1997-08-29 | 1999-11-16 | Nanomaterials Research Corporation | Combustion of emulsions: A method and process for producing fine powders |
US6548171B1 (en) * | 1998-11-10 | 2003-04-15 | Emilio Barbera-Guillem | Fluorescent nanocrystal-embedded microspheres for fluorescence analyses |
US6528029B1 (en) * | 1999-10-13 | 2003-03-04 | Engelhard Corporation | Catalyst compositions employing sol gel particles and methods of using the same |
Cited By (252)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8058337B2 (en) | 1996-09-03 | 2011-11-15 | Ppg Industries Ohio, Inc. | Conductive nanocomposite films |
US8389603B2 (en) | 1996-09-03 | 2013-03-05 | Ppg Industries Ohio, Inc. | Thermal nanocomposites |
US20040120884A1 (en) * | 1999-12-13 | 2004-06-24 | Jonathan Sherman | Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof |
US7341757B2 (en) * | 2001-08-08 | 2008-03-11 | Nanoproducts Corporation | Polymer nanotechnology |
US20030035955A1 (en) * | 2001-08-08 | 2003-02-20 | Tapesh Yadav | Methods for producing composite nanoparticles |
US6855426B2 (en) * | 2001-08-08 | 2005-02-15 | Nanoproducts Corporation | Methods for producing composite nanoparticles |
US20080006534A1 (en) * | 2001-11-30 | 2008-01-10 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US20050133372A1 (en) * | 2001-11-30 | 2005-06-23 | The University Of North Carolina | Method and apparatus for attaching nanostructure-containing material onto a sharp tip of an object and related articles |
US7455757B2 (en) | 2001-11-30 | 2008-11-25 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US20080099339A1 (en) * | 2001-11-30 | 2008-05-01 | Zhou Otto Z | Deposition method for nanostructure materials |
US20030102222A1 (en) * | 2001-11-30 | 2003-06-05 | Zhou Otto Z. | Deposition method for nanostructure materials |
US7887689B2 (en) | 2001-11-30 | 2011-02-15 | The University Of North Carolina At Chapel Hill | Method and apparatus for attaching nanostructure-containing material onto a sharp tip of an object and related articles |
US7252749B2 (en) * | 2001-11-30 | 2007-08-07 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US8002958B2 (en) | 2001-11-30 | 2011-08-23 | University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US20040055892A1 (en) * | 2001-11-30 | 2004-03-25 | University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US20040107719A1 (en) * | 2001-12-18 | 2004-06-10 | Itw Industrial Components S.R.L. | Service device for a refrigerator, and refrigerator featuring such a device |
US6904764B2 (en) | 2001-12-18 | 2005-06-14 | Itw Industrial Components S.R.L. | Service device for a refrigerator, and refrigerator featuring such a device |
US20040045807A1 (en) * | 2002-06-17 | 2004-03-11 | Sarkas Harry W. | Process for preparing nanostructured materials of controlled surface chemistry |
US20030230479A1 (en) * | 2002-06-17 | 2003-12-18 | Sarkas Harry W. | Process for preparing nanostructured materials of controlled surface chemistry |
US20110166289A1 (en) * | 2002-11-27 | 2011-07-07 | Ppg Industries Ohio, Inc. | Nano-engineered inks, methods for their manufacture and their applications |
US8263685B2 (en) | 2002-11-27 | 2012-09-11 | Ppg Industries Ohio, Inc. | Nano-engineered inks, methods for their manufacture and their applications |
US20060137567A1 (en) * | 2002-11-27 | 2006-06-29 | Nanoproducts Corporation | Nano-engineered inks, methods for their manufacture and their applications |
US7914617B2 (en) | 2002-11-27 | 2011-03-29 | Tapesh Yadav | Nano-engineered inks, methods for their manufacture and their applications |
US7708974B2 (en) | 2002-12-10 | 2010-05-04 | Ppg Industries Ohio, Inc. | Tungsten comprising nanomaterials and related nanotechnology |
US7250477B2 (en) | 2002-12-20 | 2007-07-31 | General Electric Company | Thermoset composite composition, method, and article |
US7229600B2 (en) | 2003-01-31 | 2007-06-12 | Nanoproducts Corporation | Nanoparticles of rare earth oxides |
US20080138267A1 (en) * | 2003-01-31 | 2008-06-12 | Nanoproducts Corporation | Nanoparticles of rare earth oxides |
US20070104629A1 (en) * | 2003-01-31 | 2007-05-10 | Nanoproducts Corporation | Nanoparticles of rare earth oxides |
US7498005B2 (en) * | 2003-01-31 | 2009-03-03 | Ppg Industries Ohio, Inc. | Nanoparticles of rare earth oxides |
US20050014317A1 (en) * | 2003-07-18 | 2005-01-20 | Pyo Sung Gyu | Method for forming inductor in semiconductor device |
US7318844B2 (en) * | 2003-07-21 | 2008-01-15 | Abb Research Ltd | Laser-irradiated metallized electroceramic |
US8932632B2 (en) | 2003-10-21 | 2015-01-13 | Ppg Industries Ohio, Inc. | Adhesives and sealants nanotechnology |
US20070014148A1 (en) * | 2004-05-10 | 2007-01-18 | The University Of North Carolina At Chapel Hill | Methods and systems for attaching a magnetic nanowire to an object and apparatuses formed therefrom |
US20060079410A1 (en) * | 2004-06-07 | 2006-04-13 | Nanoproducts Corporation | Molybdenum comprising nanomaterials and related nanotechnology |
US7968503B2 (en) | 2004-06-07 | 2011-06-28 | Ppg Industries Ohio, Inc. | Molybdenum comprising nanomaterials and related nanotechnology |
US20070243382A1 (en) * | 2004-07-26 | 2007-10-18 | Massachusetts Institute Of Technology | Microspheres including nanoparticles |
US7449237B2 (en) * | 2004-07-26 | 2008-11-11 | Massachusetts Institute Of Technology | Microspheres including nanoparticles in the peripheral region |
US7717001B2 (en) | 2004-10-08 | 2010-05-18 | Sdc Materials, Inc. | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
WO2006071419A3 (en) * | 2004-11-24 | 2009-01-22 | Nanotechnologies Inc | Electrical, plating and catalytic uses of metal nanomaterial compositions |
US7820097B2 (en) * | 2004-11-24 | 2010-10-26 | Ncc Nano, Llc | Electrical, plating and catalytic uses of metal nanomaterial compositions |
US20080020304A1 (en) * | 2004-11-24 | 2008-01-24 | Schroder Kurt A | Electrical, Plating And Catalytic Uses Of Metal Nanomaterial Compositions |
US20060162497A1 (en) * | 2005-01-21 | 2006-07-27 | Cabot Corporation | Processes for forming nanoparticles in a flame spray system |
US20060165898A1 (en) * | 2005-01-21 | 2006-07-27 | Cabot Corporation | Controlling flame temperature in a flame spray reaction process |
US20060165910A1 (en) * | 2005-01-21 | 2006-07-27 | Cabot Corporation | Processes for forming nanoparticles |
US20060291827A1 (en) * | 2005-02-11 | 2006-12-28 | Suib Steven L | Process and apparatus to synthesize materials |
US7641983B2 (en) * | 2005-04-04 | 2010-01-05 | Boston Scientific Scimed, Inc. | Medical devices including composites |
US20060222844A1 (en) * | 2005-04-04 | 2006-10-05 | Stinson Jonathan S | Medical devices including composites |
US9023754B2 (en) | 2005-04-19 | 2015-05-05 | SDCmaterials, Inc. | Nano-skeletal catalyst |
US9132404B2 (en) | 2005-04-19 | 2015-09-15 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
US9180423B2 (en) | 2005-04-19 | 2015-11-10 | SDCmaterials, Inc. | Highly turbulent quench chamber |
US9216398B2 (en) | 2005-04-19 | 2015-12-22 | SDCmaterials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US9599405B2 (en) | 2005-04-19 | 2017-03-21 | SDCmaterials, Inc. | Highly turbulent quench chamber |
US9719727B2 (en) | 2005-04-19 | 2017-08-01 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US20060275542A1 (en) * | 2005-06-02 | 2006-12-07 | Eastman Kodak Company | Deposition of uniform layer of desired material |
US8268405B2 (en) | 2005-08-23 | 2012-09-18 | Uwm Research Foundation, Inc. | Controlled decoration of carbon nanotubes with aerosol nanoparticles |
US20090084163A1 (en) * | 2005-08-23 | 2009-04-02 | Junhong Chen | Ambient-temperature gas sensor |
US8240190B2 (en) | 2005-08-23 | 2012-08-14 | Uwm Research Foundation, Inc. | Ambient-temperature gas sensor |
US20100233487A1 (en) * | 2005-08-26 | 2010-09-16 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US8231970B2 (en) | 2005-08-26 | 2012-07-31 | Ppg Industries Ohio, Inc | Coating compositions exhibiting corrosion resistance properties and related coated substrates |
US8288000B2 (en) | 2005-08-26 | 2012-10-16 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US8283042B2 (en) | 2005-08-26 | 2012-10-09 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070275256A1 (en) * | 2005-08-26 | 2007-11-29 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070254159A1 (en) * | 2005-08-26 | 2007-11-01 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070048550A1 (en) * | 2005-08-26 | 2007-03-01 | Millero Edward R | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070149682A1 (en) * | 2005-08-26 | 2007-06-28 | Ragunathan Kaliappa G | Methods for producing corrosion resisting particles and methods for producing coating compositions that include such particles |
US20080090069A1 (en) * | 2005-08-26 | 2008-04-17 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties and related coated substrates |
US7811670B2 (en) | 2005-08-26 | 2010-10-12 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US7745010B2 (en) | 2005-08-26 | 2010-06-29 | Prc Desoto International, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070045116A1 (en) * | 2005-08-26 | 2007-03-01 | Cheng-Hung Hung | Electrodepositable coating compositions and related methods |
US20070048540A1 (en) * | 2005-08-26 | 2007-03-01 | Ragunathan Kaliappa G | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20080022886A1 (en) * | 2005-08-26 | 2008-01-31 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070088111A1 (en) * | 2005-08-26 | 2007-04-19 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20080248306A1 (en) * | 2005-09-27 | 2008-10-09 | Eth Zurich, Eth Transfer | Method for Attaching Manoparticles to Substrate Particles |
US7492085B2 (en) * | 2005-11-18 | 2009-02-17 | Hon Hai Precision Industry Co., Ltd. | Cold cathode fluorescent lamp with mixing gas filled therein and backlight module using same |
US20070114908A1 (en) * | 2005-11-18 | 2007-05-24 | Hon Hai Precision Industry Co., Ltd. | Cold cathode fluorescent lamp and backlight module using same |
US9718967B2 (en) | 2006-01-12 | 2017-08-01 | The Board Of Trustees Of The University Of Arkansas | Nano-tribology compositions and related methods including nano-sheets |
US8492319B2 (en) | 2006-01-12 | 2013-07-23 | Ajay P. Malshe | Nanoparticle compositions and methods for making and using the same |
US9499766B2 (en) | 2006-01-12 | 2016-11-22 | Board Of Trustees Of The University Of Arkansas | Nanoparticle compositions and methods for making and using the same |
US10100266B2 (en) | 2006-01-12 | 2018-10-16 | The Board Of Trustees Of The University Of Arkansas | Dielectric nanolubricant compositions |
US9650589B2 (en) | 2006-01-12 | 2017-05-16 | The Board Of Trustees Of The University Of Arkansas | Nanoparticle compositions and additive packages |
US9902918B2 (en) | 2006-01-12 | 2018-02-27 | The Board Of Trustees Of The University Of Arkansas | Nano-tribology compositions and related methods including hard particles |
US9868920B2 (en) | 2006-01-12 | 2018-01-16 | The Board Of Trustees Of The University Of Arkansas | Nanoparticle compositions and greaseless coatings for equipment |
US8663495B1 (en) | 2006-02-22 | 2014-03-04 | William Marsh Rice University | Gelled nanotube-containing heat transfer medium |
US20090250404A1 (en) * | 2006-06-05 | 2009-10-08 | Brian Berkowitz | Decontaminating fluids and methods of use thereof |
US20080044678A1 (en) * | 2006-08-18 | 2008-02-21 | Ppg Industries Ohio, Inc. | Method and apparatus for the production of ultrafine particles and related coating compositions |
US20100314788A1 (en) * | 2006-08-18 | 2010-12-16 | Cheng-Hung Hung | Production of Ultrafine Particles in a Plasma System Having Controlled Pressure Zones |
US7758838B2 (en) | 2006-08-18 | 2010-07-20 | Ppg Industries Ohio, Inc. | Method and apparatus for the production of ultrafine particles and related coating compositions |
US20080056977A1 (en) * | 2006-08-30 | 2008-03-06 | Ppg Industries Ohio, Inc. | Production of ultrafine metal carbide particles utilizing polymeric feed materials |
US20100003180A1 (en) * | 2006-08-30 | 2010-01-07 | Ppg Industries Ohio, Inc. | Production of ultrafine boron carbide particles utilizing liquid feed materials |
US20110070426A1 (en) * | 2006-08-30 | 2011-03-24 | Vanier Noel R | Sintering aids for boron carbide ultrafine particles |
US7776303B2 (en) | 2006-08-30 | 2010-08-17 | Ppg Industries Ohio, Inc. | Production of ultrafine metal carbide particles utilizing polymeric feed materials |
US7635458B1 (en) | 2006-08-30 | 2009-12-22 | Ppg Industries Ohio, Inc. | Production of ultrafine boron carbide particles utilizing liquid feed materials |
US8889065B2 (en) * | 2006-09-14 | 2014-11-18 | Iap Research, Inc. | Micron size powders having nano size reinforcement |
US20080069716A1 (en) * | 2006-09-14 | 2008-03-20 | The Timken Company | Micron size powders having nano size reinforcement |
US7438880B2 (en) | 2006-12-20 | 2008-10-21 | Ppg Industries Ohio, Inc. | Production of high purity ultrafine metal carbide particles |
US20080148905A1 (en) * | 2006-12-20 | 2008-06-26 | Cheng-Hung Hung | Production of high purity ultrafine metal carbide particles |
US20100000443A1 (en) * | 2007-03-16 | 2010-01-07 | Asahi Glass Company, Limited | Hollow fine particles, production process thereof, coating composition and article having coating film formed |
US8480989B2 (en) * | 2007-03-16 | 2013-07-09 | Asahi Glass Company, Limited | Hollow fine particles, production process thereof, coating composition and article having coating film formed |
US20100047555A1 (en) * | 2007-03-16 | 2010-02-25 | Asahi Glass Company Limited | Hollow fine particles, production process thereof, coating composition and article having coating film formed |
US8309129B2 (en) | 2007-05-03 | 2012-11-13 | Bend Research, Inc. | Nanoparticles comprising a drug, ethylcellulose, and a bile salt |
US8703204B2 (en) | 2007-05-03 | 2014-04-22 | Bend Research, Inc. | Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and anon-ionizable polymer |
US7678419B2 (en) | 2007-05-11 | 2010-03-16 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
US8906316B2 (en) | 2007-05-11 | 2014-12-09 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US20080280049A1 (en) * | 2007-05-11 | 2008-11-13 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
US8142619B2 (en) | 2007-05-11 | 2012-03-27 | Sdc Materials Inc. | Shape of cone and air input annulus |
US8076258B1 (en) | 2007-05-11 | 2011-12-13 | SDCmaterials, Inc. | Method and apparatus for making recyclable catalysts |
US8051724B1 (en) | 2007-05-11 | 2011-11-08 | SDCmaterials, Inc. | Long cool-down tube with air input joints |
US8893651B1 (en) | 2007-05-11 | 2014-11-25 | SDCmaterials, Inc. | Plasma-arc vaporization chamber with wide bore |
US8524631B2 (en) | 2007-05-11 | 2013-09-03 | SDCmaterials, Inc. | Nano-skeletal catalyst |
US8663571B2 (en) | 2007-05-11 | 2014-03-04 | SDCmaterials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US7905942B1 (en) | 2007-05-11 | 2011-03-15 | SDCmaterials, Inc. | Microwave purification process |
US7897127B2 (en) | 2007-05-11 | 2011-03-01 | SDCmaterials, Inc. | Collecting particles from a fluid stream via thermophoresis |
US8604398B1 (en) | 2007-05-11 | 2013-12-10 | SDCmaterials, Inc. | Microwave purification process |
US8574408B2 (en) | 2007-05-11 | 2013-11-05 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US8956574B2 (en) | 2007-05-11 | 2015-02-17 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
US9545384B2 (en) | 2007-06-04 | 2017-01-17 | Bend Research, Inc. | Nanoparticles comprising drug, a non-ionizable cellulosic polymer and tocopheryl polyethylene glocol succinate |
US8974827B2 (en) | 2007-06-04 | 2015-03-10 | Bend Research, Inc. | Nanoparticles comprising a non-ionizable cellulosic polymer and an amphiphilic non-ionizable block copolymer |
US8575059B1 (en) * | 2007-10-15 | 2013-11-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9737878B2 (en) | 2007-10-15 | 2017-08-22 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9597662B2 (en) | 2007-10-15 | 2017-03-21 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9089840B2 (en) | 2007-10-15 | 2015-07-28 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8507401B1 (en) * | 2007-10-15 | 2013-08-13 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US8507402B1 (en) * | 2007-10-15 | 2013-08-13 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9186663B2 (en) | 2007-10-15 | 2015-11-17 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9592492B2 (en) | 2007-10-15 | 2017-03-14 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8759248B2 (en) * | 2007-10-15 | 2014-06-24 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US8481449B1 (en) * | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US9302260B2 (en) | 2007-10-15 | 2016-04-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9233078B2 (en) | 2007-12-06 | 2016-01-12 | Bend Research, Inc. | Nanoparticles comprising a non-ionizable polymer and an Amine-functionalized methacrylate copolymer |
US9724362B2 (en) | 2007-12-06 | 2017-08-08 | Bend Research, Inc. | Pharmaceutical compositions comprising nanoparticles and a resuspending material |
US7713349B2 (en) | 2008-01-22 | 2010-05-11 | Ppg Industries Ohio, Inc. | Coatings including pigments comprising substrate particles with ultrafine metal oxide particles deposited thereon |
US20090183651A1 (en) * | 2008-01-22 | 2009-07-23 | Ppg Industries Ohio, Inc. | Coatings including pigments comprising substrate particles with ultrafine metal oxide particles deposited thereon |
US20090269505A1 (en) * | 2008-01-31 | 2009-10-29 | Industrial Technology Research Institute | Method for manufacturing a substrate with surface structure by employing photothermal effect |
US20110081538A1 (en) * | 2008-03-04 | 2011-04-07 | Linton John R | Particles including nanoparticles, uses thereof, and methods |
US9534313B2 (en) | 2008-03-04 | 2017-01-03 | Qd Vision, Inc. | Particles including nanoparticles dispersed in solid wax, method and uses thereof |
US20110092734A1 (en) * | 2008-04-04 | 2011-04-21 | Sud-Chemie Ag | Method for the production of nanocrystalline bismuth-molybdenum mixed oxide |
US8480998B2 (en) * | 2008-04-04 | 2013-07-09 | Sued-Chemie Ip Gmbh & Co. Kg | Method for the production of nanocrystalline bismuth-molybdenum mixed oxide |
USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
US20100055017A1 (en) * | 2008-09-03 | 2010-03-04 | Ppg Industries Ohio, Inc. | Methods for the production of ultrafine metal carbide particles and hydrogen |
US9512043B2 (en) * | 2008-10-13 | 2016-12-06 | Innovnano-Materiais Avancados, S.A. | Ceramic powders coated with a nanoparticle layer and process for obtaining thereof |
US20110183833A1 (en) * | 2008-10-13 | 2011-07-28 | Calado Da Silva Joao Manuel | Ceramic powders coated with a nanoparticle layer and process for obtaining thereof |
US8642146B2 (en) * | 2008-11-25 | 2014-02-04 | Chisato Fujimura | Coating liquid and gas barrier laminate |
US20110217561A1 (en) * | 2008-11-25 | 2011-09-08 | Kureha Corporation | Coating Liquid and Gas Barrier Laminate |
US20100261029A1 (en) * | 2008-12-18 | 2010-10-14 | Ppg Industries Ohio, Inc. | Multi-phase particulates, method of making, and composition containing same |
US8974719B2 (en) | 2009-02-13 | 2015-03-10 | Consolidated Nuclear Security, LLC | Composite materials formed with anchored nanostructures |
US8945691B2 (en) | 2009-02-13 | 2015-02-03 | Consolidated Nuclear Security, LLC | Nano-material and method of fabrication |
US20100209706A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Nano-Material and Method of Fabrication |
US20100209696A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Anchored Nanostructure Materials and Method of Fabrication |
US20100210456A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Catalytic Materials for Fabricating Nanostructures |
US20100210457A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Method of Producing Catalytic Materials for Fabricating Nanostructures |
US20100209605A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Anchored Nanostructure Materials and Ball Milling Method Of Fabrication |
US8591988B1 (en) | 2009-02-13 | 2013-11-26 | Babcock & Wilcox Technical Services Y-12, Llc | Method of fabrication of anchored nanostructure materials |
US9878307B2 (en) | 2009-02-13 | 2018-01-30 | Consolidated Nuclear Security, LLC | Method of producing catalytic material for fabricating nanostructures |
US8318250B2 (en) | 2009-02-13 | 2012-11-27 | Babcock & Wilcox Technical Services Y-12, Llc | Anchored nanostructure materials and method of fabrication |
US8377840B2 (en) | 2009-02-13 | 2013-02-19 | Babcock & Wilcox Technical Services Y-12, Llc | Method of producing catalytic materials for fabricating nanostructures |
US20110006254A1 (en) * | 2009-07-07 | 2011-01-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Process to make electrochemically active/inactive nanocomposite material |
US9303153B2 (en) | 2009-09-09 | 2016-04-05 | Qd Vision, Inc. | Formulations including nanoparticles |
US9365701B2 (en) | 2009-09-09 | 2016-06-14 | Qd Vision, Inc. | Particles including nanoparticles, uses thereof, and methods |
US9951273B2 (en) | 2009-09-09 | 2018-04-24 | Samsung Electronics Co., Ltd. | Formulations including nanoparticles |
US8697479B2 (en) * | 2009-11-19 | 2014-04-15 | Nitto Denko Corporation | Method for producing nanoparticles |
US20120235203A1 (en) * | 2009-11-19 | 2012-09-20 | Nitto Denko Corporation | Method for producing nanoparticles |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
US9332636B2 (en) | 2009-12-15 | 2016-05-03 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US9039916B1 (en) | 2009-12-15 | 2015-05-26 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for copper copper-oxide |
AU2010332089B2 (en) * | 2009-12-15 | 2015-05-28 | SDCmaterials, Inc. | Tunable size of nano-active material on support |
US9090475B1 (en) | 2009-12-15 | 2015-07-28 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for silicon SiO2 |
US8992820B1 (en) | 2009-12-15 | 2015-03-31 | SDCmaterials, Inc. | Fracture toughness of ceramics |
US9119309B1 (en) | 2009-12-15 | 2015-08-25 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8859035B1 (en) | 2009-12-15 | 2014-10-14 | SDCmaterials, Inc. | Powder treatment for enhanced flowability |
US8865611B2 (en) | 2009-12-15 | 2014-10-21 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US8877357B1 (en) | 2009-12-15 | 2014-11-04 | SDCmaterials, Inc. | Impact resistant material |
US8668803B1 (en) | 2009-12-15 | 2014-03-11 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US9533289B2 (en) | 2009-12-15 | 2017-01-03 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9522388B2 (en) | 2009-12-15 | 2016-12-20 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8821786B1 (en) | 2009-12-15 | 2014-09-02 | SDCmaterials, Inc. | Method of forming oxide dispersion strengthened alloys |
US8828328B1 (en) | 2009-12-15 | 2014-09-09 | SDCmaterails, Inc. | Methods and apparatuses for nano-materials powder treatment and preservation |
US9308524B2 (en) | 2009-12-15 | 2016-04-12 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
CN103747871A (en) * | 2009-12-15 | 2014-04-23 | 斯得玛特利斯有限责任公司 | Tunable size of nano-active material on nano-support |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8932514B1 (en) | 2009-12-15 | 2015-01-13 | SDCmaterials, Inc. | Fracture toughness of glass |
US8906498B1 (en) | 2009-12-15 | 2014-12-09 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US20110223220A1 (en) * | 2010-03-15 | 2011-09-15 | Ppg Industries Ohio, Inc. | Dispersions of encapsulated particles and methods for their production and use |
WO2011115953A1 (en) | 2010-03-15 | 2011-09-22 | Ppg Industries Ohio, Inc. | Dispersions of encapsulated particles and methods for their production and use |
US12043768B2 (en) | 2010-11-19 | 2024-07-23 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US10947428B2 (en) | 2010-11-19 | 2021-03-16 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US12049574B2 (en) | 2010-11-19 | 2024-07-30 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US12031064B2 (en) | 2010-11-19 | 2024-07-09 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US11629276B2 (en) | 2010-11-19 | 2023-04-18 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US8796361B2 (en) | 2010-11-19 | 2014-08-05 | Ppg Industries Ohio, Inc. | Adhesive compositions containing graphenic carbon particles |
US9562175B2 (en) | 2010-11-19 | 2017-02-07 | Ppg Industries Ohio, Inc. | Adhesive compositions containing graphenic carbon particles |
US9433938B2 (en) | 2011-02-23 | 2016-09-06 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PTPD catalysts |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US9216406B2 (en) | 2011-02-23 | 2015-12-22 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US20120321892A1 (en) * | 2011-06-17 | 2012-12-20 | Babcock & Wilcox Technical Services Y-12, Llc | Titanium-Group Nano-Whiskers and Method of Production |
US11724310B2 (en) * | 2011-06-17 | 2023-08-15 | Consolidated Nuclear Security, LLC | Titanium-group nano-whiskers and method of production |
US8679433B2 (en) | 2011-08-19 | 2014-03-25 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US8969237B2 (en) | 2011-08-19 | 2015-03-03 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9498751B2 (en) | 2011-08-19 | 2016-11-22 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9832818B2 (en) | 2011-09-30 | 2017-11-28 | Ppg Industries Ohio, Inc. | Resistive heating coatings containing graphenic carbon particles |
US11616220B2 (en) | 2011-09-30 | 2023-03-28 | Ppg Industries Ohio, Inc. | Electrodepositable compositions and electrodeposited coatings including graphenic carbon particles |
US9221688B2 (en) | 2011-09-30 | 2015-12-29 | Ppg Industries Ohio, Inc. | Production of graphenic carbon particles utilizing hydrocarbon precursor materials |
US8486363B2 (en) | 2011-09-30 | 2013-07-16 | Ppg Industries Ohio, Inc. | Production of graphenic carbon particles utilizing hydrocarbon precursor materials |
US9938416B2 (en) | 2011-09-30 | 2018-04-10 | Ppg Industries Ohio, Inc. | Absorptive pigments comprising graphenic carbon particles |
US10294375B2 (en) | 2011-09-30 | 2019-05-21 | Ppg Industries Ohio, Inc. | Electrically conductive coatings containing graphenic carbon particles |
US9988551B2 (en) | 2011-09-30 | 2018-06-05 | Ppg Industries Ohio, Inc. | Black pigments comprising graphenic carbon particles |
US10240052B2 (en) | 2011-09-30 | 2019-03-26 | Ppg Industries Ohio, Inc. | Supercapacitor electrodes including graphenic carbon particles |
US10763490B2 (en) | 2011-09-30 | 2020-09-01 | Ppg Industries Ohio, Inc. | Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles |
US8486364B2 (en) | 2011-09-30 | 2013-07-16 | Ppg Industries Ohio, Inc. | Production of graphenic carbon particles utilizing methane precursor material |
US9475946B2 (en) | 2011-09-30 | 2016-10-25 | Ppg Industries Ohio, Inc. | Graphenic carbon particle co-dispersions and methods of making same |
US9761903B2 (en) | 2011-09-30 | 2017-09-12 | Ppg Industries Ohio, Inc. | Lithium ion battery electrodes including graphenic carbon particles |
US9789554B2 (en) * | 2011-10-12 | 2017-10-17 | The Regents Of The University Of California | Nanomaterials fabricated using spark erosion and other particle fabrication processes |
US20140291296A1 (en) * | 2011-10-12 | 2014-10-02 | The Regents Of The University Of California | Nanomaterials fabricated using spark erosion and other particle fabrication processes |
US10532134B2 (en) | 2012-04-18 | 2020-01-14 | Drexel University | Thixotropic processing of magnesium composites with a nanoparticles-haloed grain structure for biomedical implant applications |
US8921286B2 (en) | 2012-07-02 | 2014-12-30 | Nanomech, Inc. | Textured surfaces to enhance nano-lubrication |
US9592532B2 (en) | 2012-07-02 | 2017-03-14 | Nanomech, Inc. | Textured surfaces to enhance nano-lubrication |
US9359575B2 (en) | 2012-07-02 | 2016-06-07 | Nanomech, Inc. | Nanoparticle macro-compositions |
US8476206B1 (en) | 2012-07-02 | 2013-07-02 | Ajay P. Malshe | Nanoparticle macro-compositions |
US10066187B2 (en) | 2012-07-02 | 2018-09-04 | Nanomech, Inc. | Nanoparticle macro-compositions |
US8486870B1 (en) | 2012-07-02 | 2013-07-16 | Ajay P. Malshe | Textured surfaces to enhance nano-lubrication |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9533299B2 (en) | 2012-11-21 | 2017-01-03 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9676982B2 (en) * | 2012-12-31 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US20150267099A1 (en) * | 2012-12-31 | 2015-09-24 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US9873824B2 (en) * | 2013-10-03 | 2018-01-23 | Mitsui Mining & Smelting Co., Ltd. | Abrasive material, method for producing same, and abrasive slurry containing same |
US20160222265A1 (en) * | 2013-10-03 | 2016-08-04 | Mitsui Mining & Smelting Co., Ltd. | Abrasive material, method for producing same, and abrasive slurry containing same |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9950316B2 (en) | 2013-10-22 | 2018-04-24 | Umicore Ag & Co. Kg | Catalyst design for heavy-duty diesel combustion engines |
US9566568B2 (en) | 2013-10-22 | 2017-02-14 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US20160339521A1 (en) * | 2014-01-24 | 2016-11-24 | United Technologies Corporation | Powder improvement for additive manufacturing |
US10005127B2 (en) * | 2014-01-24 | 2018-06-26 | United Technologies Corporation | Powder improvement for additive manufacturing |
US10413880B2 (en) | 2014-03-21 | 2019-09-17 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10086356B2 (en) | 2014-03-21 | 2018-10-02 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10683574B2 (en) | 2014-08-18 | 2020-06-16 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
US10947622B2 (en) | 2014-08-18 | 2021-03-16 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
US11499230B2 (en) | 2014-08-18 | 2022-11-15 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
US10167555B2 (en) | 2014-08-18 | 2019-01-01 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
US11674062B2 (en) | 2015-12-10 | 2023-06-13 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US10377928B2 (en) | 2015-12-10 | 2019-08-13 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US10213900B2 (en) * | 2016-02-25 | 2019-02-26 | Kamei Tekkousho Ltd. | Abrasive material |
US11390934B2 (en) | 2016-11-16 | 2022-07-19 | Hrl Laboratories, Llc | Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom |
US10865464B2 (en) | 2016-11-16 | 2020-12-15 | Hrl Laboratories, Llc | Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom |
WO2020212312A1 (en) | 2019-04-16 | 2020-10-22 | Am 4 Am S.À R.L. | Functionalized metal powders by small particles made by non-thermal plasma glow discharge for additive manufacturing applications |
LU101177B1 (en) | 2019-04-16 | 2020-10-16 | Delmee Maxime | Functionalized metal powders by small particles made by non-thermal plasma glow discharge for additive manufacturing applications |
Also Published As
Publication number | Publication date |
---|---|
US20040067355A1 (en) | 2004-04-08 |
US6726992B1 (en) | 2004-04-27 |
WO2003045610A2 (en) | 2003-06-05 |
US20040178530A1 (en) | 2004-09-16 |
US20030102099A1 (en) | 2003-06-05 |
WO2003045610A3 (en) | 2003-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6652967B2 (en) | Nano-dispersed powders and methods for their manufacture | |
US6716525B1 (en) | Nano-dispersed catalysts particles | |
US7387673B2 (en) | Color pigment nanotechnology | |
US20190105804A1 (en) | Gas dispersion manufacture of nanoparticulates, and nanoparticulate-containing products and processing thereof | |
US5984997A (en) | Combustion of emulsions: A method and process for producing fine powders | |
US6786950B2 (en) | High purity fine metal powders and methods to produce such powder | |
CA2627567C (en) | Luminescent compositions, methods for making luminescent compositions and inks incorporating the same | |
US7498005B2 (en) | Nanoparticles of rare earth oxides | |
US7922936B2 (en) | Luminescent compositions, methods for making luminescent compositions and inks incorporating the same | |
US10428186B2 (en) | Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same | |
WO2002100924A2 (en) | Precursors of engineered powders | |
US20060165898A1 (en) | Controlling flame temperature in a flame spray reaction process | |
KR100666728B1 (en) | Method for Manufacturing Metal Oxide Hollow Nanoparticles | |
JP2012255163A (en) | Tungsten comprising nanomaterials and related nanotechnology | |
US20060248982A1 (en) | Nanomaterials manufacturing methods and products thereof | |
Tani et al. | Evolution of the morphology of zinc oxide/silica particles made by spray combustion | |
Casey | Nanoparticle technologies and applications | |
Nagarale | Synthetic Methods of Nanomaterials | |
Cheng | Synthesis of Nanometer-sized Yttrium Oxide Particles in Diisooctyl Sodium Sulphosuccinate/Isooctane Reverse Micelle Solution | |
LU | Synthesis, Characterization, and Processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NANOENERGY CORPORATION, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YADAV, TAPESH;PFAFFENBACH, KARL;DIRSTINE, ROGER;REEL/FRAME:012362/0987 Effective date: 20011203 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: NANOPRODUCTS CORPORATION, COLORADO Free format text: CHANGE OF NAME;ASSIGNOR:NANOENERGY CORPORATION;REEL/FRAME:016547/0085 Effective date: 20020208 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: KOCH NANOMATERIALS, LLC, BY KOCH GENESIS COMPANY, Free format text: SECURITY AGREEMENT;ASSIGNOR:NANOPRODUCTS CORPORATION;REEL/FRAME:019477/0836 Effective date: 20070627 |
|
AS | Assignment |
Owner name: NANOPRODUCTS CORPORATION, COLORADO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:KOCH NANOMATERIALS, LLC, BY KOCH GENESIS COMPANY, LLC;REEL/FRAME:020417/0791 Effective date: 20080128 |
|
AS | Assignment |
Owner name: PPG INDUSTRIES OHIO, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANOPRODUCTS CORPORATION;REEL/FRAME:020540/0506 Effective date: 20080128 Owner name: PPG INDUSTRIES OHIO, INC.,OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANOPRODUCTS CORPORATION;REEL/FRAME:020540/0506 Effective date: 20080128 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |