US7146446B2 - Multiple module computer system and method - Google Patents
Multiple module computer system and method Download PDFInfo
- Publication number
- US7146446B2 US7146446B2 US11/113,401 US11340105A US7146446B2 US 7146446 B2 US7146446 B2 US 7146446B2 US 11340105 A US11340105 A US 11340105A US 7146446 B2 US7146446 B2 US 7146446B2
- Authority
- US
- United States
- Prior art keywords
- computer
- console
- computer system
- coupling site
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/42—Bus transfer protocol, e.g. handshake; Synchronisation
- G06F13/4282—Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
- G06F1/08—Clock generators with changeable or programmable clock frequency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
- G06F1/12—Synchronisation of different clock signals provided by a plurality of clock generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1632—External expansion units, e.g. docking stations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/10—Program control for peripheral devices
- G06F13/102—Program control for peripheral devices where the programme performs an interfacing function, e.g. device driver
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/20—Handling requests for interconnection or transfer for access to input/output bus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/382—Information transfer, e.g. on bus using universal interface adapter
- G06F13/385—Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4004—Coupling between buses
- G06F13/4027—Coupling between buses using bus bridges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4063—Device-to-bus coupling
- G06F13/4068—Electrical coupling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4063—Device-to-bus coupling
- G06F13/409—Mechanical coupling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/42—Bus transfer protocol, e.g. handshake; Synchronisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/42—Bus transfer protocol, e.g. handshake; Synchronisation
- G06F13/4204—Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
- G06F13/4221—Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being an input/output bus, e.g. ISA bus, EISA bus, PCI bus, SCSI bus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- the present invention relates to computing devices. More particularly, the present invention provides a system including a plurality of computer modules that can independently operate to provide backup capability, dual processing, and the like. Merely by way of example, the present invention is applied to a modular computing environment for desk top computers, but it will be recognized that the invention has a much wider range of applicability. It can be applied to a server as well as other portable or modular computing applications.
- PCs Many desktop or personal computers, which are commonly termed PCs, have been around and used for over ten years.
- the PCs often come with state-of-art microprocessors such as the Intel PentiumTM microprocessor chips. They also include a hard or fixed disk drive such as memory in the giga-bit range. Additionally, the PCs often include a random access memory integrated circuit device such as a dynamic random access memory device, which is commonly termed DRAM.
- DRAM dynamic random access memory device
- the DRAM devices now provide up to millions of memory cells (i.e., mega-bit) on a single slice of silicon.
- PCs also include a high resolution display such as cathode ray tubes or CRTs. In most cases, the CRTs are at least 15 inches or 17 inches or 20 inches in diameter. High resolution flat panel displays are also used with PCs.
- peripheral devices can be used with the PCs.
- these peripheral devices include mass storage devices such as a ZipTM Drive product sold by Iomega Corporation of Utah.
- Other storage devices include external hard drives, tape drives, and others.
- Additional devices include communication devices such as a modem, which can be used to link the PC to a wide area network of computers such as the Internet.
- the PC can include output devices such as a printer and other output means.
- the PC can include special audio output devices such as speakers the like.
- PCs also have easy to use keyboards, mouse input devices, and the like.
- the keyboard is generally configured similar to a typewriter format.
- the keyboard also has the length and width for easily inputting information by way of keys to the computer.
- the mouse also has a sufficient size and shape to easily move a curser on the display from one location to another location.
- computing devices include portable computing devices such as “laptop” computers and the like. Although somewhat successful, laptop computers have many limitations. These computing devices have poor display technology. In fact, these devices often have a smaller flat panel display that has poor viewing characteristics. Additionally, these devices also have poor input devices such as smaller keyboards and the like. Furthermore, these devices have limited common platforms to transfer information to and from these devices and other devices such as PCs.
- the user must often couple the portable computer to a local area network (i.e., LAN), to a serial port with a modem and then manually transfer over files and data between the desktop and the portable computer.
- a local area network i.e., LAN
- serial port with a modem
- the user often must use floppy disks to “zip” up files and programs that exceed the storage capacity of conventional floppy disks, and transfer the floppy disk data manually.
- both the desktop and portable computers typically include hard disk drives, floppy drives, CD-ROMs, computer memory, host processors, graphics accelerators, and the like. Because program software and supporting programs generally must be installed upon both hard drives in order for the user to operate programs on the road and in the office, hard disk space is often wasted.
- Dual CPU systems Similar to separate desktop and portable computers, there is no commonality between two desktop computers. To date, most personal computers are constructed with a single motherboard that provides connection for CPU and other components in the computer. Dual CPU systems have been available through Intel's slot 1 architecture. For example, two Pentium II cartridges can be plugged into two “slot 1” card slots on a motherboard to form a Dual-processor system. The two CPU's share a common host bus that connects to the rest of the system, e.g. main memory, hard disk drive, graphics subsystem, and others. Dual CPU systems have the advantage of increased CPU performance for the whole system. Adding a CPU cartridge requires no change in operating systems and application software. However, dual CPU systems may suffer limited performance improvement if memory or disk drive bandwidth becomes the limiting factor.
- Dual CPU systems have to time-share the processing unit in running multiple applications.
- CPU performance improvement efficiency also depends on software coding structure.
- Dual CPU systems provide no hardware redundancy to help fault tolerance. In running multiple applications, memory and disk drive data throughput will become the limiting factor in improving performance with multi-processor systems.
- Each computer module has dedicated memory and disk drive, and can operate independently.
- the present invention provides a system including a plurality of computer modules that can independently operate to provide backup capability, dual processing, and the like.
- the present invention provides a computer system for multi-processing purposes.
- the computer system has a console comprising a first coupling site and a second coupling site, e.g., computer module bay. Each coupling site comprises a connector.
- the console is an enclosure that is capable of housing each coupling site.
- the system also has a plurality of computer modules, where each of the computer modules is coupled to one of the connectors.
- Each of the computer modules has a processing unit, a main memory coupled to the processing unit, a graphics controller coupled to the processing unit, and a mass storage device coupled to the processing unit.
- Each of the computer modules is substantially similar in design to each other to provide independent processing of each of the computer modules in the computer system.
- the present invention provides a multi-processing computer system.
- the system has a console comprising a first coupling site and a second coupling site. Each coupling site comprises a connector.
- the console is an enclosure that is capable of housing each coupling site.
- the system also has a plurality of computer modules, where each of the computer modules is coupled to one of the connectors.
- Each of the computer modules has a processing unit, a main memory coupled to the processing unit, a graphics controller coupled to the processing unit, a mass storage device coupled to the processing unit, and a video output coupled to the processing unit.
- Each of the computer modules is substantially similar in design to each other to provide independent processing of each of the computer modules in the computer system.
- a video switch circuit is coupled to each of the computer modules through the video output. The video switch is configured to switch a video signal from any one of the computer modules to a display.
- the invention provides improved processing and maintenance features.
- the invention can also provide increased CPU performance for the whole system.
- the invention also can be implemented without changes in operating system and application software.
- the present invention is also implemented using conventional technologies that can be provided in the present computer system in an easy and efficient manner.
- the invention provides at least two users to share the same modular desktop system. Each user operates on a different computer module.
- the other peripheral devices i.e. CDROM, printer, DSL connection, etc. can be shared. This provides lower system cost, less desktop space and more efficiency. Depending upon the embodiment, one or more of these benefits can be available.
- the present invention provides methods of using multiple computer modules.
- FIG. 1 is a simplified diagram of a computer system according to an embodiment of the present invention
- FIG. 2 is a simplified block diagram of a computer system according to an alternative embodiment of the present invention.
- FIG. 3 is a simplified block diagram of a computer system according to a further alternative embodiment of the present invention.
- FIG. 4 is a simplified flow diagram of a method according to an embodiment of the present invention.
- FIG. 5 is a block diagram of one embodiment of a computer system employing the present invention.
- FIG. 6 is a block diagram of an attached computing module (ACM).
- ACM attached computing module
- FIG. 7 illustrates an external view of one embodiment of an ACM.
- FIG. 8 illustrates the internal component layout for one embodiment of an ACM.
- FIG. 9 is a block diagram of a peripheral console (PCON).
- the present invention provides a system including a plurality of computer modules that can independently operate to provide backup capability, dual processing, and the like.
- FIG. 1 is a simplified diagram of a computer system 100 according to an embodiment of the present invention.
- the computer system 100 includes an attached computer module (i.e., ACM) 113 , a desktop console 101 , among other elements.
- the computer system also has another ACM module 117 .
- Each ACM module has a respective slot 121 , 119 , which mechanically houses and electrically couples each ACM to the computer console.
- a display 111 which connects to the console.
- keyboard 109 and mouse 115 are also shown.
- a second display 102 , keyboard 105 , and mouse 107 can be coupled to the console in some optional embodiments to allow more than one user to operate the computer system.
- the computer system is modular and has a variety of components that are removable. Some of these components (or modules) can be used in different computers, workstations, computerized television sets, and portable or laptop units.
- each ACM 113 includes computer components, as will be described below, including a central processing unit (“CPU”), IDE controller, hard disk drive, computer memory, and the like.
- the computer module bay (i.e., CMB) 121 is an opening or slot in the desktop console.
- the CMB houses the ACM and provides communication to and from the ACM.
- the CMB also provides mechanical protection and support to the ACM.
- the CMB has a mechanical alignment mechanism for mating a portion of the ACM to the console.
- the CMB further has thermal heat dissipation sinks, electrical connection mechanisms, and the like.
- the present multiple computer module system has a peripheral console that has two or more computer bays that can receive a removable computer module or ACM.
- Multiple computer module system can function as a personal computer with only one ACM and the peripheral console.
- the second and additional ACM can be added later to increase overall system performance and reliability.
- the ACM operates independently as self-contained computer, communicates with each other through a high-speed serial communication and share most peripheral devices within the peripheral console.
- Each ACM controls its independent graphics subsystem and drives separate video output signals.
- a practical implementation is a dual ACM system. In a dual ACM system, two monitors can be used to display the two ACMs' graphics outputs at the same time.
- a RGB switch is used to switch between the video outputs of the two ACMs and can be controlled by a command from the user.
- input devices i.e. keyboard and mouse
- Command from the user can be in the form of either a dedicated key on the keyboard or a special icon on the screen that the mouse can click on.
- the ACM includes an enclosure such as the one described with the following components, which should not be limiting:
- the ACM connects to a peripheral console with power supply, a display device, an input device, and other elements. Some details of these elements with the present system are described in more detail below.
- the primary ACM can connect directly to the peripheral board in the peripheral console.
- the second ACM can connect either directly or indirectly to the peripheral board.
- a receptacle board is added to allow a cable connection to the peripheral board. This is to facilitate the mechanical positioning of the second ACM inside the computer chassis.
- the receptacle board approach can even be used for the primary ACM if a high bandwidth peripheral bus, e.g. PCI Bus, is not connected from the primary ACM to the peripheral board.
- the shared peripheral console has a chassis and a motherboard that connects the following devices:
- the computer bay is an opening in the peripheral console that receives an ACM.
- CMB provides mechanical protection to ACM, mechanical alignment for connector mating, mechanical locking system to prevent theft and accidental removal, and connectors at the end of the opening for connecting to ACM.
- the interface bus between ACM and the peripheral console has a video bus, peripheral connections, serial communication connection, control signals and power connection.
- Video bus includes video output of graphics devices, i.e. analog RGB and control signals for monitor. Power connection supplies the power for ACM.
- peripheral sharing is the use of Ethernet controllers to bridge the communication between the two ACMs.
- Some of the peripheral devices residing in the peripheral console are shown in the simplified diagram of FIG. 2 . As shown, the diagram is merely an illustration which should not limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, alternatives, and modifications.
- a primary ACM 203 is connected to PCI peripheral devices in the peripheral console through the PCI bus 225 that passes through the connection between primary ACM 203 and peripheral console 201 .
- ACM has a CPU module 207 coupled to the PCI bus through a North Bridge 211 .
- the CPU module can use a suitable microprocessing unit, microcontroller, digital signal processor, and the like.
- the CPU module uses, for example, a 400 MHz Pentium II microprocessor module from Intel Corporation and like microprocessors from AMD Corporation, Cyrix Corporation (now National Semiconductor Corporation), and others.
- the microprocessor can be one such as the Compaq Computer Corporation Alpha Chip, Apple Computer Corporation PowerPC G3 processor, and the like. Further, higher speed processors are contemplated in other embodiments as technology increases in the future.
- peripheral controller 213 is coupled to BIOS/flash memory 217 . Additionally, the peripheral controller is coupled to a clock control logic, a configuration signal, and a peripheral bus.
- the ACM has the hard drive module 215 .
- the ACM includes north bridge 215 , graphics subsystem 223 (e.g., graphics accelerator, graphics memory), an IDE controller, and other components. Adjacent to and in parallel alignment with the hard drive module 215 is the PCI bus.
- North Bridge unit 211 often couples to a computer memory 209 , to the graphics subsystem, and to the peripheral controller via the PCI bus.
- Graphics subsystem typically couples to a graphics memory, and other elements.
- IDE controller generally supports and provides timing signals necessary for the IDE bus.
- the IDE controller is embodied as part of a P114XE controller from Intel, for example.
- Other types of buses than IDE are contemplated, for example EIDE, SCSI, 1394, and the like in alternative embodiments of the present invention.
- the hard drive module or mass storage unit 215 typically includes a computer operating system, application software program files, data files, and the like.
- the computer operating system may be the Windows98 operating system from Microsoft Corporation of Redmond Wash.
- Other operating systems such as WindowsNT, MacOS8, Unix, and the like are also contemplated in alternative embodiments of the present invention.
- some typical application software programs can include Office98 by Microsoft Corporation, Corel Perfect Suite by Corel, and others.
- Hard disk module 215 includes a hard disk drive.
- the hard disk drive can also be replaced by removable hard disk drives, read/write CD ROMs, flash memory, floppy disk drives, and the like.
- a small form factor, for example 2.5′′, is currently contemplated, however, other form factors, such as PC card, and the like are also contemplated.
- Mass storage unit 240 may also support other interfaces than IDE.
- the computer system includes an ACM with security protection.
- the ACM also has a network controller, which can be an Ethernet controller 219 , which is coupled to the North Bridge through the PCI bus.
- the North Bridge is coupled to the CPU.
- the Ethernet controller can be a 10/100 Base, such as Intel's 82559 or the like. Other types of network connection devices can also be used.
- the invention can use Gbit Ethernet 1394, and USB 2.0.
- the network controller couples to a hub 233 in the console, which includes shared peripheral system 201 .
- the second ACM 205 has the same or similar components as the first ACM.
- like reference numerals have been used for easy cross-referencing, but is not intended to be limiting.
- the secondary ACM is not connected to the PCI bus in the peripheral console directly.
- the secondary ACM 219 accesses peripheral devices controlled by the primary ACM through the Ethernet connection to the primary ACM, e.g. CD-ROM, or PCI modem.
- the implementation is not restricted to Ethernet serial communication and can use other high-speed serial communication such as USB 2.0, and 1394.
- the Ethernet hub is coupled to an external output port 235 , which connects to an external network.
- the primary hard disk drive in each ACM can be accessed by the other ACM as sharable hard drive through the Ethernet connection. This allows the easy sharing of files between the two independent computer modules.
- the Ethernet Hub Controller provides the high-speed communication function between the two computer modules. Ethernet data bandwidth of 100 Mbit/sec allows fast data communication between the two computer modules.
- the secondary ACM access peripheral devices of the primary ACM through the network connection provided by Ethernet link.
- the operating system e.g. Windows 98, provides the sharing of resources between the two ACMs.
- critical data in one ACM can be backup into the other ACM.
- the Ethernet hub also couples to PCI bus 239 , which connects to PCI devices 241 , 243 , e.g., modem, SCSI controller.
- a flash memory 242 can also be coupled to the PCI bus.
- the flash memory can store passwords and security information, such as those implementations described in U.S. Ser. No. 09/183,493, which is commonly owned, and hereby incorporated by reference.
- the hub 233 also couples to an I/O control 237 , which connects to keyboard/mouse switch 245 , which couples to keyboard/mouse 247 .
- the keyboard/mouse switch also couples to a second keyboard/house 259 via PS2 or USB signal line 251 .
- the keyboard/mouse switch has at least a first state and a second state, which allow operation of respectively multiple keyboards or a single keyboard.
- the switch also couples to each I/O controller 221 in each ACM via lines 253 , 255 .
- the I/O control 237 also couples to an RGB switch 257 , which allows video signals to pass to the first monitor 259 .
- the RGB switch couples to a second monitor 261 .
- the RGB switch includes analog video switches such as MAXIM's MAX4545.
- the peripheral system 201 also has an independent power supply 231 for each ACM.
- Each power supply provides power to each ACM.
- the power supply is a MICRO ATX 150W made by ENLIGHT, but can be others.
- the power supply is connected or coupled to each ACM through a separate line, for example.
- the independent power supply allows for independent operation of each ACM in some embodiments.
- FIG. 3 is a simplified block diagram 300 of a computer system according to an alternative embodiment of the present invention.
- This diagram is merely an example which should not limit the scope of the claims herein.
- One of ordinary skill in the art would recognizes many other variations, modifications, and alternatives.
- Like reference numerals are used in this FIG. as the previous FIGs. for easy referencing, but are not intended to be limiting.
- each ACM includes common elements as the previous FIG.
- a primary ACM 203 is connected to PCI peripheral devices in the peripheral console through the PCI bus 225 that passes through the connection between primary ACM 203 and peripheral console 201 .
- ACM has a CPU module 207 coupled to the PCI bus through a North Bridge 211 .
- the CPU module can use a suitable microprocessing unit, microcontroller, digital signal processor, and the like.
- the CPU module uses, for example, a 400 MHz Pentium II microprocessor module from Intel Corporation and like microprocessors from AMD Corporation, Cyrix Corporation (now National Semiconductor Corporation), and others.
- the microprocessor can be one such as the Compaq Computer Corporation Alpha Chip, Apple Computer Corporation PowerPC G3 processor, and the like. Further, higher speed processors are contemplated in other embodiments as technology increases in the future.
- peripheral controller 213 is coupled to BIOS/flash memory 217 . Additionally, the peripheral controller is coupled to a clock control logic, a configuration signal, and a peripheral bus.
- the ACM has the hard drive module 215 .
- the ACM includes north bridge 215 , graphics subsystem 223 (e.g., graphics accelerator, graphics memory), an IDE controller, and other components. Adjacent to and in parallel alignment with the hard drive module 215 is the PCI bus.
- North Bridge unit 211 often couples to a computer memory 209 , to the graphics subsystem, and to the peripheral controller via the PCI bus.
- Graphics subsystem typically couples to a graphics memory, and other elements.
- IDE controller generally supports and provides timing signals necessary for the IDE bus.
- the IDE controller is embodied as part of a P114XE controller from Intel, for example.
- Other types of buses than IDE are contemplated, for example EIDE, SCSI, 1394, and the like in alternative embodiments of the present invention.
- the hard drive module or mass storage unit 215 typically includes a computer operating system, application software program files, data files, and the like.
- the computer operating system may be the Windows98 operating system from Microsoft Corporation of Redmond Wash.
- Other operating systems such as WindowsNT, MacOS8, Unix, and the like are also contemplated in alternative embodiments of the present invention.
- some typical application software programs can include Office98 by Microsoft Corporation, Corel Perfect Suite by Corel, and others.
- Hard disk module 215 includes a hard disk drive.
- the hard disk drive can also be replaced by removable hard disk drives, read/write CD ROMs, flash memory, floppy disk drives, and the like.
- a small form factor, for example 2.5′′, is currently contemplated, however, other form factors, such as PC card, and the like are also contemplated.
- Mass storage unit 240 may also support other interfaces than IDE.
- the computer system includes an ACM with security protection.
- the ACM also has a network controller, which can be coupled to a serial port 302 , which is coupled to the PCI bus in the ACM.
- the serial port is coupled to the peripheral console through a serial controller 301 in the serial console.
- the serial controller is connected to PCI bus 239 .
- the serial controller is also coupled to a serial hub controller 303 , which is coupled to the PCI bus and a second ACM.
- a receptacle board 310 is added to connect to the second ACM.
- the purpose of the receptacle board is to allow a cable connection 307 to the peripheral board 300 .
- the cable connection is possible because the signals needed to connect to the peripheral board can be limited to video, I/O, serial communication, and power.
- the serial communication controller can be placed on the receptacle board and not in the ACM. As shown, the serial bus controller couples to the PCI bus. The receptacle board also couples to power, graphics subsystem, I/O controller, and other elements, which may be on a common bus. The overall operation of the present configuration is similar to the previous one except it operates in serial communication mode.
- the Dual ACM system can support different usage models:
- a video switch in the peripheral console is used to switch between the video outputs of the two ACMs.
- the system can be set to support either 1 monitor or 2-monitor mode. The user presses a special key on the keyboard or a special icon on the screen to switch the screen display from one ACM to the other. This same action causes the keyboard and mouse connections to switch from one ACM to the other ACM.
- a dual ACM system can save space, wiring, and cost for a 2-person PC setup, with the added benefit that both PC systems can be accessed from one user site for increased system performance if the other user is not using the system.
- Files can be copied between the primary drive of both system and provides protection against a single ACM failure.
- Software needs to be developed to manage the concurrent use of two PC subsystems, the automatic sharing of selected files between the two systems, and fault tolerance.
- a peripheral console has four computer bays for four separate computer modules.
- the computer modules communicate through a four port Ethernet hub.
- the video, keyboard, and mouse switch will cycle through the connection from each computer module to the external monitor, keyboard, and mouse with a push button sequentially.
- This embodiment is useful for a server that performs different functions concurrently, e.g. email, application hosting, web hosting, firewall, etc.
- FIG. 4 is a simplified diagram of a method according to an embodiment of the present invention. This diagram is merely an example which should not limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives.
- the present diagram illustrates an automatic file backup procedure from one computer module to the other. As shown, a user selects (step 401 ) a certain file in one of the computer module for automatic backup. Next, the method determines if another module is available, step 403 . If so, the method in the originating module requests the other computer module to create (step 405 ) backup file. Alternatively, the method alerts the user of the missing or malfunctioning module, step 429 .
- the method then has the user try later 431 , once the missing or malfunctioning module has been replaced or repaired.
- the method determines if there is sufficient storage available in the other computer module for the backup files. If so, the method goes to the next step. (Alternatively, the method prompts (step 433 ) a message to the user indicating that the storage is full.)
- the method stores the backup file in memory of the other module.
- the software in the originating ACM sets a timer to check (step 411 ) for file modification via branches 423 , 427 through continue, step 425 process. If a file selected for backup has been modified (step 415 ), then the file is automatically back up to the other ACM again, step 417 . Alternatively, the method returns to step 411 through branch 421 .
- FIG. 5 is a block diagram of the components in one computer system employing the present invention.
- the computer system comprises an attached computer module (ACM), a peripheral console (PCON), and the interconnection apparatus between them.
- the ACM includes the central processing unit (CPU) 510 , system memory 520 , high performance devices 550 , primary mass storage 530 , and related interface and support circuitry 540 .
- the PCON includes primary display 610 , primary input 620 , secondary mass storage 650 , other devices 660 , expansion slots 670 , the primary power supply 630 , and related interface and support circuitry 640 .
- the interconnection apparatus 700 includes circuitry to convey power and operational signals between the ACM and PCON.
- the CPU 510 executes instructions and manipulates data stored in the system memory.
- the CPU 510 and system memory 520 represent the user's core computing power.
- the core computing power may also include high performance devices 550 such as advanced graphics processor chips that greatly increase overall system performance and which, because of their speed, need to be located close to the CPU.
- the primary mass storage 530 contains persistent copies of the operating system software, application software, configuration data, and user data.
- the software and data stored in the primary mass storage device represent the user's computing environment.
- Interface and support circuitry 540 primarily includes interface chips and signal busses that interconnect the CPU, system memory, high performance devices, and primary mass storage. The interface and support circuitry also connects ACM-resident components with the ACM-to-PCON interconnection apparatus as needed.
- the primary display component 610 may include an integrated display device or connection circuitry for an external display device.
- This primary display device may be, for example, an LCD, plasma, or CRT display screen used to display text and graphics to the user for interaction with the operating system and application software.
- the primary display component is the primary output of the computer system, i.e., the paramount vehicle by which programs executing on the CPU can communicate toward the user.
- the primary input component 620 of the PCON may include an integrated input device or connection circuitry for attachment to an external input device.
- the primary input may be, for example, a keyboard, touch screen, keypad, mouse, trackball, digitizing pad, or some combination thereof to enable the user to interact with the operating system and application software.
- the primary input component is the paramount vehicle by which programs executing on the CPU receive signals from the user.
- the PCON may contain secondary mass storage 650 to provide additional high capacity storage for data and software.
- Secondary mass storage may have fixed or removable media and may include, for example, devices such as diskette drives, hard disks, CD-ROM drives, DVD drives, and tape drives.
- the PCON may be enhanced with additional capability through the use of integrated “Other Devices” 660 or add-on cards inserted into the PCON's expansion slots 670 .
- additional capability include sound generators, LAN connections, and modems.
- Interface and support circuitry 640 primarily includes interface chips, driver chips, and signal busses that interconnect the other components within the PCON. The interface and support circuitry also connects PCON-resident components with the ACM-to-PCON interconnection apparatus as needed.
- the PCON houses the primary power supply 630 .
- the primary power supply has sufficient capacity to power both the PCON and the ACM 500 for normal operation.
- the ACM may include a secondary “power supply” in the form, for example, of a small battery.
- a secondary “power supply” would be included in the ACM to maintain, for example, a time-of-day clock, configuration settings when the ACM is not attached to a PCON, or machine state when moving an active ACM immediately from one PCON to another.
- the total energy stored in such a battery would, however, be insufficient to sustain operation of the CPU at its rated speed, along with the memory and primary mass storage, for more than a fraction of an hour, if the battery were able to deliver the required level of electrical current at all.
- FIG. 6 is a block diagram of an attached computing module (ACM) 500 .
- the physical ACM package 500 contains the ACM functional components 501 and the ACM side of the ACM-to-PCON Interconnection 300 .
- the ACM 501 comprises a CPU component 510 , a system memory component 520 , a primary mass storage component 530 , a high performance devices components 550 , and an interface and support component 540 .
- the ACM side of the ACM-to-PCON Interconnection 700 comprises a Host Interface Controller (HIC) component 720 and an ACM connector component 730 .
- the HIC 720 and connector 730 components couple the ACM functional components 800 with the signals of an ACM-to-PCON interface bus 710 used to operatively connect an ACM with a PCON.
- the ACM-to-PCON interface bus 710 comprises conveyance for electrical power 714 and signals for a peripheral bus 712 , video 716 , video port 717 , and console type 718 .
- the preferred ACM-to-PCON Interconnection 700 is described in detail in a companion U.S.
- the preferred ACM-to-PCON interconnection 700 includes circuitry to transmit and receive parallel bus information from multiple signal paths as a serial bit stream on a single signal path. This reduces the number of physical signal paths required to traverse the interconnection 700 . Further, employing low-voltage differential signaling (LVDS) on the bit stream data paths provides very reliable, high-speed transmission across cables. This represents a further advantage of the present invention.
- LVDS low-voltage differential signaling
- the CPU component 510 of the ACM functional circuitry 501 of the presently described embodiment comprises a microprocessor 512 , which is the chief component of the personal computer system, power supply connection point 513 , and cache memory 514 tightly coupled to the microprocessor 512 by the CPU-to-cache bus 574 comprising signal paths for address, data, and control information.
- the microprocessor 512 of this embodiment is one of the models from the Pentium II family of processors from Intel Corporation.
- Microprocessor 512 receives electrical power from power bus 568 via connection point 513 .
- Microprocessor 512 couples to the Host Interface Controller (HIC) 720 via CPU-to-HIC bus 563 comprising signal paths to exchange control information such as an interrupt request.
- Microprocessor 512 also couples to CPU Bridge 546 via CPU main bus 564 comprising signal paths for address, data, and control information.
- HIC Host Interface Controller
- the CPU Bridge component 546 of the interface and support circuitry 540 operates to couple the high speed CPU main bus 564 to specialty buses of varying speeds and capability that connect other computer components.
- the CPU Bridge of the presently described embodiment incorporates memory controller circuitry, advanced graphics processor support circuitry, and a general, industry-standard PCI bus controller in a single package.
- a CPU Bridge 546 such as the 52443LX PCI/AGP Controller from Intel Corporation may be used.
- the system memory component 520 of the ACM functional circuitry 501 in the present embodiment comprises main system memory (RAM) 522 , BIOS memory 524 , and flash memory 526 .
- the system memory 520 is used to contain data and instructions that are directly addressable by the CPU.
- the RAM 522 comprises volatile memory devices such as DRAM or SDRAM memory chips that do not retain their stored contents when power is removed. This form of memory represents the largest proportion of total system memory 520 capacity.
- the BIOS memory 524 comprises non-volatile memory devices such as ROM or EPROM memory chips that retain their stored contents regardless of the application of power and are read-only memory under normal operating conditions.
- the BIOS memory 524 stores, for example, start-up instructions for the microprocessor 512 and sets of instructions for rudimentary input/output tasks.
- the flash memory 526 comprises non-volatile memory devices that retain their stored contents regardless of the application of power. Unlike the BIOS non-volatile memory, however, the stored contents of the flash memory 526 are easily changed under normal operating conditions.
- the flash memory 526 may be used to store status and configuration data, such as security identifiers or ACM specifications like the speed of the microprocessor 512 . Some embodiments may combine the BIOS functions into the flash memory device, thus permitting BIOS contents to be rewritten, improving field upgradability.
- the main system memory (RAM) 522 is coupled to memory controller circuitry resident within the CPU Bridge 546 via direct memory bus 565 .
- the BIOS 524 and flash memory 526 are coupled to HIC 720 via switched memory bus 566 . This permits the BIOS 524 and flash 526 memories to be accessed by circuitry in the HIC 720 or other circuitry connected thereto.
- the direct memory bus 565 and the switch memory bus 566 each comprises conductors to convey signals for data, address, and control information.
- the primary mass storage component 530 of the ACM functional circuitry 501 in the present embodiment comprises a compact hard disk drive with an industry-standard, IDE interface.
- the hard disk drive (HDD) 532 has a formatted storage capacity sufficient to contain an operating system for the computer, application software desired by the user, and related user configuration and operating parameter data.
- the HDD 532 in the present embodiment serves as the “boot” device for the personal computer from which the operating system is loaded into RAM 522 by the start-up program stored in the BIOS 524 .
- the present HDD 532 has a capacity of approximately 6,000 megabytes to provide adequate storage for common software configurations and reasonable space for user data.
- a common software configuration includes the Windows 95 operating system from Microsoft Corporation, a word processing program, a spreadsheet program, a presentation graphics program, a database program, an email program, and a web browser such as Navigator from Netscape Corporation.
- the hard disk 532 stores program and data files for each software component, including files distributed by the vendor as well as files created or updated by operation of the software after it is installed.
- a word processor program may maintain information about a user's identity and latest preferences in an operating system registry file.
- the web browser may maintain a file of the user's favorite web sites or most recently viewed web pages.
- An HDD with 6000 megabyte capacity is readily available in the small size of hard disk (e.g., 6.5-inch or 7.5-inch) to minimize the space required within the ACM for the primary mass storage device 530 .
- the HDD 532 is coupled to IDE controller circuitry 548 via IDE bus 572 .
- the IDE controller circuitry 548 is coupled to the CPU Bridge 546 via the Host PCI bus 567 .
- IDE controllers and busses, and the PCI bus are well known and understood in the industry. The above components operate together to couple the hard disk drive 532 to the microprocessor 512 .
- the high performance devices component 550 of the ACM functional circuitry 501 in the present embodiment comprises an Advanced Graphics Processor (AGP) 552 .
- AGP Advanced Graphics Processor
- the Model 740 Graphics Device from Intel Corporation may be used in the present embodiment as the AGP.
- the AGP 552 is located in the ACM 500 , where it is in close proximity to the microprocessor 512 .
- the AGP 552 is coupled to the microprocessor 512 via the advanced graphics port bus 573 of the CPU Bridge 546 .
- the visual display signal generated by the AGP are conveyed toward actual display devices at the peripheral console (PCON) via video signal bus 570 .
- Video information from a source external to the ACM and appearing as video port signals 717 may be conveyed to the AGP 552 via video port signal path 571 .
- high performance components may be included in different ACM configurations.
- an interface to an extremely high speed data communication facility may be desirable in some future computer where CPU-to-network interaction is of comparable intensity to today's CPU-to-graphics interaction.
- CPU-to-network interaction is of comparable intensity to today's CPU-to-graphics interaction.
- high performance components tend to be high in cost, their inclusion in the ACM is desirable.
- Inclusion of high cost, high performance components in the ACM concentrates a user's core computing power and environment in a portable package. This represents a further advantage of the invention.
- the interface and support component 540 of the ACM functional circuitry 501 in the present embodiment comprises circuitry for power regulation 542 , clocking 544 , CPU Bridge 546 , IDE controller 548 , and signal conveyance paths 561 – 174 .
- the CPU Bridge 546 couples the CPU component 510 of the ACM 500 with the other components of the ACM 520 – 150 and the CPU-to-PCON Interconnection 700 .
- the CPU Bridge 546 and IDE controller 548 have already been discussed.
- Power regulation circuitry 542 receives electrical power via the electrical power conduction path 714 of the CPU-to-PCON Interconnection 700 , conditions and distributes it to the other circuitry in the ACM using power distribution bus 568 . Such regulation and distribution is well known and understood in the art.
- Clocking circuitry 544 generates clock signals for distribution to other components within the ACM 500 that require a timing and synchronization clock source.
- the CPU 510 is one such component. Often, the total power dissipated by a CPU is directly proportional to the frequency of its main clock signal.
- the presently described embodiment of the ACM 500 includes circuitry that can vary the frequency of the main CPU clock signal conveyed to the CPU via signal path 562 , in response to a signal received from the host interface controller (HIC) 720 via signal path 561 .
- HIC host interface controller
- the generation and variable frequency control of clocking signals is well understood in the art. By varying the frequency, the power consumption of the CPU (and thus the entire ACM) can be varied.
- variable clock rate generation may be exploited to match the CPU power consumption to the available electrical power.
- Circuitry in the host interface controller (HIC) 720 of the presently described embodiment adjusts the frequency control signal sent via signal path 561 to the clocking circuitry 544 , based on the “console type” information signal 718 conveyed from the peripheral console (PCON) by the CPU-to-PCON interconnection 700 .
- the console type signal originating from a desktop PCON would result in the generation of a maximum speed CPU clock.
- the desktop PCON presumably has unlimited power from an electrical wall outlet and does not need to sacrifice speed for power conservation.
- the console type signal originating from a notebook PCON would, however, result in the generation of a CPU clock speed reduced from the maximum in order to conserve battery power and extend the duration of computer operation obtained from the energy stored in the battery.
- the console type signal originating from a notepad PCON would result in the generation of a CPU clock speed reduced further yet, the notepad PCON presumably having smaller batteries than the notebook PCON.
- Inclusion of control signals and circuitry to effect a CPU clock signal varying in frequency according to characteristics of the PCON to which the ACM is connected facilitates the movement of the user's core computing power and environment to different work settings, which is a further advantage of the present invention.
- FIG. 9 illustrates an external view of one embodiment of an ACM.
- the case 810 of the ACM 500 is generally rectangular in shape, preferably constructed of a strong, lightweight, rigid material that will protect the internal components from mechanical and environmental exposure. Plastics may readily be used to construct the case 810 .
- the case 810 completely surrounds the internal components, being generally an 8-sided box.
- FIG. 8 shows the top 812 , right 814 , and rear 816 surfaces of the ACM case 810 .
- Rear edges 818 of the case joining the rear surface 816 with its adjoining surfaces may be beveled or rounded to facilitate insertion of the ACM 500 into the computer bay of the PCON.
- Notches 840 may be formed by projecting small surfaces inward from otherwise generally flat surfaces of the ACM case 810 .
- the notches 840 may be used to engage with mechanical devices mounted in and about a computer bay. Such mechanical devices can be employed to secure the ACM into position within a computer bay for reliability and security. Openings 817 are formed into the rear surface 816 of the ACM case 810 through which to project connectors 530 a and 530 b . In one embodiment the case 810 is approximately 5.75 inches wide by 6.5 inches deep by 1.6 inches high.
- Connectors 730 a and 730 b are part of the ACM-to-PCON Interconnection as described earlier in reference to FIGS. 5 and 6 .
- connectors 730 a and 730 b mate with corresponding connectors located at the rear of the computer bay to electrically couple the ACM with the PCON containing the computer bay. Details concerning the ACM-to-PCON Interconnection can be found in the U.S. patent application entitled “A Communication Channel and Interface Devices for Bridging Computer Interface Buses,” already incorporated herein by reference.
- the connectors 730 a and 730 b used in one embodiment are connectors complying with the Device Bay industry standard as documented in “Device Bay Interface Specification,” revision 0.85, Feb. 6, 1998. Such connectors have specifically been designed to stand up to the rigors of repeated insertion and withdrawal.
- Cooling plate 830 forms part of the top surface 812 of ACM 500 .
- the cooling plate 830 may be mounted to, or project through an opening formed in, case 810 .
- electromagnetic interference (EMI)/electrostatic discharge (ESD) grounding plate 832 forms part of the right surface 814 of ACM 500 .
- the grounding plate 832 may be mounted to, or project through an opening formed in, case 810 .
- Cooling plate 830 and grounding plate 832 compressively mate with counterparts when the ACM is fully inserted into the computer bay. The counterparts located along the boundaries of the computer bay conduct dangerous heat and electrical charges away from the ACM.
- cooling plate 830 thermally couples to heat-sensitive components such as CPU 810 by methods well known in the art.
- grounding plate 832 electrically couples to EMI/ESD-sensitive components, such as a microprocessor, by methods well known in the art.
- the LCD display 850 forms part of the right surface 814 of ACM 500 .
- the LCD display may be mounted to, or project through an opening formed in, case 810 .
- the LCD display may contain indicators about the status of the ACM. Such indicators may display, for example, the time-of-day from a time-of-day clock contained within the ACM, or the amount of charge remaining in an ACM-resident battery, or certain configuration options recorded in flash memory.
- the LCD display 850 provides display capability for a limited amount of information, most useful when the ACM is separated from a PCON (and is thus separated from a full-capability, primary display device).
- the weight of an inserted ACM is largely borne by the bottom side of a computer bay frame.
- Alternative embodiments are possible where, for example, the weight of the ACM is borne by rails running longitudinally down the right and left sides of the computer bay cavity that engage corresponding grooves running longitudinally down the right and left sides of an ACM.
- FIG. 8 illustrates the internal component layout for one embodiment of an ACM. All components are contained within the confines of the ACM case 510 , except for connectors 730 a and 730 b which extend from the rear of the ACM 500 to engage mating connectors (not shown) that will couple the ACM circuitry with the PCON circuitry.
- Main circuit board 910 provides electrical connections for circuitry within the ACM and mounting for many of its components 524 , 522 , 526 , 552 , 542148 , 720 , and 730 . The fabrication and use of such circuits boards is well known and understood in the art.
- Connector 922 is also mounted on main circuit board 910 and mates with mobile processor module 920 .
- Mobile processor module 920 represents a form of packaging for a microprocessor and related components.
- the illustrated mobile processor module 920 is a self-contained unit that includes a microprocessor 512 , CPU cache 514 , and CPU bridge 546 operatively interconnected by the manufacturer.
- An example of one such module is the Pentium Processor with MMX Technology Mobile Module from Intel Corporation (order number 24 7515-001, September 5997).
- Intel Corporation order number 24 7515-001, September 5997.
- One skilled in the art recognizes that discrete microprocessor, cache, and bridge could have been employed and mounted directly to the main circuit board.
- the mobile processor module 920 blocks the view, from the top, of the system BIOS 524 .
- hard disk drive 532 hides RAM memory 522 , the high performance graphics processor 552 , the host interface controller 720 , and flash memory 526 .
- Memory upgrade socket 930 remains exposed to facilitate installation of additional RAM memory 522 .
- Power regulator 542 like the memory upgrade socket, enjoys a generous amount of overhead clearance to accommodate its vertical size.
- the area including IDE controller 548 also enjoys overhead clearance to facilitate a cable connection with the hard disk drive 532 .
- FIG. 7 is a block diagram of a peripheral console (PCON).
- a peripheral console couples with an ACM to form an operating personal computer system.
- the peripheral console (PCON) supplies an ACM with primary input, display, and power supply; the ACM supplies the core computing power and environment of the user.
- the physical PCON package 600 contains the PCON functional components 601 and the PCON side of the ACM-to-PCON Interconnection 700 .
- the PCON functional components 601 comprise primary display 610 , a primary input 620 , a primary power supply 630 , interface and support 640 , secondary mass storage 650 , other devices 660 , and expansion slots 670 .
- the PCON side of the ACM-to-PCON Interconnection 700 comprises a Peripheral Interface Controller (PIC) component 740 , a PCON connector component 750 , console-type component 742 , and flash memory device 748 .
- the PIC 740 and connector 750 components couple the PCON functional components 201 with the signals of an ACM-to-PCON interface bus 710 used to operatively connect an ACM with a PCON.
- the ACM-to-PCON interface bus 710 comprises conveyance for electrical power 714 and signals for a peripheral bus 712 , video 716 , video port 717 , and console-type 718 .
- the preferred ACM-to-PCON Interconnection 700 is described in detail in the U.S.
- Connector component 750 may be selected to mate directly with the connector component 730 of an ACM (shown in FIG. 6 ). Alternatively, connector component 750 may be selected to mate with, for example, the connector on one end of a cable intervening between the PCON and an ACM in a particular embodiment.
- the ACM-to-PCON interconnection described in the aforementioned companion patent application has the advantage of providing reliable signal conveyance across low cost cables.
- Flash memory device 748 provides non-volatile storage. This storage may be accessible to devices in both the ACM and the PCON, including the host interface controller and the peripheral interface controller to which it is connected. As such, flash memory 748 may be used to store configuration and security data to facilitate an intelligent mating between an ACM and a PCON that needs no participation of the CPU.
- the primary display component 610 of the PCON functional circuitry 601 of the presently described embodiment comprises integrated display panel 612 and video connector 613 .
- Integrated display panel 612 is a color LCD display panel having a resolution of 640 horizontal by 480 vertical pixels. 640-by-480 resolution is popularly considered to be the minimum screen size to make practical use of the application software in widespread use today.
- 640-by-480 resolution is popularly considered to be the minimum screen size to make practical use of the application software in widespread use today.
- Any display device may be used, without departing from the scope and spirit of the invention, that provides principal visual output to the computer user for operating system and application software executing in its customary and intended fashion using the CPU component ( 510 of FIG. 3 ) of an ACM presently coupled to PCON 600 .
- Integrated display panel 612 is coupled to video signal bus 649 and displays a screen image in response to video signals presented on bus 649 .
- Certain pins of connector 750 receive video output signals 716 of the ACM-to-PCON interface bus 710 from a mated connector that is coupled to an ACM. These certain pins of connector 750 couple to video signal bus 649 which conveys the video output signals 716 throughout the PCON 600 as needed.
- Video connector 613 is exposed at the exterior of PCON 600 and couples to video signal bus 649 . Connector 613 permits easy attachment of an external display device that is compatible with the signals carried by bus 649 , such as a CRT monitor (not shown). The external display device may be used in addition, or as an alternative, to integrated display panel 612 .
- the isolation of the relatively heavy and sizable primary display 610 from the core computing power and user environment contained within an ACM represents a further advantage of the present invention.
- the primary input component 620 of the PCON functional circuitry 601 of the presently described embodiment comprises keyboard interface circuitry 622 , keyboard connector 623 , pointer interface circuitry 624 , and pointer connector 625 .
- Keyboard interface circuitry 622 and pointer interface circuitry 624 connect to ISA bus 645 and are thereby coupled to the CPU component ( 510 of FIG. 3 ) of any ACM attached to PCON 600 .
- Keyboard interface circuitry 622 interfaces a standard computer keyboard (not shown), attached at connector 623 , to ISA bus 645 .
- Pointer interface circuitry 622 interfaces a standard computer pointing device (not shown), such as a computer mouse attached at connector 625 , to ISA bus 645 .
- Computer keyboards, pointing devices, connectors 623 , 625 , keyboard interface circuitry 622 , and pointer interface circuitry 624 are well known in the art.
- the isolation of the relatively heavy and sizable primary input devices 620 from the core computing power and user environment contained within an ACM represents a further advantage of the present invention.
- the primary power supply component 630 of the PCON functional circuitry 601 of the presently described embodiment provides electrical energy for the sustained, normal operation of the PCON 600 and any ACM coupled to connector 750 .
- the power supply may be of the switching variety well known in the art that receives electrical energy from an AC source 689 , such as a wall outlet.
- Power supply 630 reduces the alternating current input voltage, to a number of distinct outputs of differing voltages and current capacities.
- the outputs of power supply 630 are applied to power bus 631 .
- Power bus 631 distributes the power supply outputs to the other circuitry within the PCON 600 .
- Bus 631 also connects to certain pins of connector 350 to provide the electrical power 714 for an ACM conveyed by ACM-to-PCON interconnection 700 .
- the isolation of the usually heavy power supply 630 from the core computing power and user environment contained within the ACM represents a further advantage of the present invention.
- the interface and support component 640 of the PCON functional circuitry 601 of the presently described embodiment comprises peripheral bridge 646 , diskette controller 642 , IDE controller 648 , and signal conveyance paths 641 , 643 , 644 , 645 , 647 and 649 .
- Peripheral bridge 646 couples PCI peripheral bus 641 with peripheral busses of other formats such as ISA peripheral bus 645 and others 647 .
- PCI and ISA peripheral busses are industry standards, well known and understood in the art.
- Other peripheral busses 647 may include, for example, a bus compliant with the universal serial bus (USB) industry standard.
- a peripheral console 600 may include a single peripheral bus that is coupled to an attached ACM via ACM-to-PCON interconnection 700 , such as PCI bus 641 , this embodiment includes peripheral bridge 646 to establish additional busses 645 , 647 .
- the additional busses 645 , 647 permit the use of the many low-cost and readily available components compatible with these bus specifications.
- Diskette controller 642 interfaces a floppy disk drive 654 with the CPU component 110 of an attached ACM (shown in FIG. 4 ) so that the CPU may control and use the diskette drive 654 hardware to store and retrieve data. Diskette controller 642 couples to the CPU via a connection to ISA bus 645 . Diskette controller 642 connects to the diskette drive 654 via one of device cables 643 .
- IDE controller 648 interfaces a hard disk drive 652 and a CDROM drive 656 with the CPU component 510 of an attached ACM (shown in FIG. 6 ) so that the CPU may control and use the hard disk drive 652 and CDROM 656 hardware to store and retrieve data.
- IDE controller 648 couples to the CPU via connection to PCI peripheral bus 641 .
- IDE controller 648 connects to each of hard disk drive 652 and CD-ROM drive 656 via one of device cables 643 .
- Some embodiments of PCON 600 may take advantage of VLSI integrated circuits such as an 82371 SB (PIIX4) integrated circuit from Intel Corporation.
- An 82371 SB integrated circuit includes circuitry for both the peripheral bridge 646 and the IDE controller 648 in a single package.
- the secondary mass storage component 650 of the PCON functional circuitry 601 of the presently described embodiment comprises diskette drive 654 , hard disk drive 652 , and CD-ROM drive 656 .
- Secondary mass storage 650 generally provides low-cost, non-volatile storage for data files which may include software program files. Data files stored on secondary mass storage 650 are not part of a computer user's core computing power and environment. Secondary mass storage 650 may be used to store, for example, seldom used software programs, software programs that are used only with companion hardware devices installed in the same peripheral console 600 , or archival copies of data files that are maintained in primary mass storage 550 of an ACM (shown in FIG. 6 ).
- Storage capacities for secondary mass storage 650 devices may vary from the 1.44 megabytes of the 3.5-inch high density diskette drive 654 , to more than 10 gigabytes for a large format (5-inch) hard disk drive 652 .
- Hard disk drive 652 employs fixed recording media, while diskette drive 654 and CD-ROM drive 656 employ removable media.
- Diskette drive 654 and hard disk drive 652 support both read and write operations (i.e., data stored on their recording media may be both recalled and modified) while CD-ROM drive 656 supports only read operations.
- the other devices component 660 of the PCON functional circuitry 601 of the presently described embodiment comprises a video capture card.
- a video capture card accepts analog television signals, such as those complying with the NTSC standard used for television broadcast in the United States, and digitizes picture frames represented by the analog signal for processing by the computer. Video capture cards at present are considered a specialty, i.e., not ubiquitous, component of personal computer systems. Digitized picture information from video capture card 660 is carried via signal conveyance path 644 to the peripheral interface controller 740 which transforms it to the video port signals 317 of the ACM-to-PCON interconnection 700 for coupling to the advanced graphics processor 152 in an attached ACM (shown in FIG. 6 ).
- Video capture card 660 is merely representative of the many types of “other” devices that may be installed in a PCON to expand the capabilities of the personal computer. Sound cards and laboratory data acquisition cards are other examples. Video capture card 660 is shown installed in one of expansion slots 670 for coupling to the interface and control circuitry 640 of the PCON. Any of other devices 660 could be coupled to the interface and control circuitry 640 of the PCON by different means, such as direct installation on the circuit board that includes the interface and control circuitry 640 ; e.g., a motherboard.
- the expansion slots component 670 of the PCON functional circuitry 601 of the presently described embodiment comprises PCI connectors 671 and ISA connectors 672 .
- a circuit card may be inserted into one of the connectors 671 , 672 in order to be operatively coupled with the CPU 510 of an attached ACM (shown in FIG. 6 ).
- Each of connectors 671 electrically connects to PCI bus 641 , and may receive and hold a printed circuit card which it electrically couples to PCI bus 641 .
- Each of connectors 672 electrically connects to ISA bus 645 , and may receive and hold a printed circuit card which it electrically couples to ISA bus 645 .
- the PCI 641 and ISA 645 busses couple to the CPU 110 of an attached ACM (shown in FIG. 4 ) by circuitry already described.
- a particular embodiment may insert another layer of bus bridging between the CPU bridge and the Peripheral bridge. This may be desirable if, for example, a vendor wants to implement a proprietary, general-purpose bus having intermediate performance characteristics that fall between those of the high-performance general purpose bus originating at the CPU, and the slower general purpose PCI bus.
- a vendor wants to implement a proprietary, general-purpose bus having intermediate performance characteristics that fall between those of the high-performance general purpose bus originating at the CPU, and the slower general purpose PCI bus.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Bus Control (AREA)
- Power Sources (AREA)
- Information Transfer Systems (AREA)
- Multi Processors (AREA)
- Storage Device Security (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
Description
-
- 1) A CPU with cache memory;
- 2) Core logic device or means;
- 3) Main memory;
- 4) A single primary Hard Disk Drive (“HDD”) that has a security program;
- 5) Flash memory with system BIOS and programmable user password;
- 6) Operating System, application software, data files on primary HDD;
- 7) An interface device and connectors to peripheral console;
- 8) A software controllable mechanical lock, lock control means, and other accessories.
-
- 1) Input means, e.g. keyboard and mouse,
- 2) Display means, e.g. RGB monitor,
- 3) Add-on means, e.g. PCI add-on slots,
- 4) Two Computer Module Bays (CMB) with connectors to two ACMs,
- 5) A serial communication Hub controller that interfaces to serial communication controller of both ACMs,
- 6) Shared storage subsystem, e.g. Floppy drive, CDROM drive, DVD drive, or 2nd Hard Drive,
- 7) Communication device, e.g. modem,
- 8) Power supply, and others.
Claims (80)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/113,401 US7146446B2 (en) | 1999-05-14 | 2005-04-22 | Multiple module computer system and method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13412299P | 1999-05-14 | 1999-05-14 | |
US09/569,758 US6718415B1 (en) | 1999-05-14 | 2000-05-12 | Computer system and method including console housing multiple computer modules having independent processing units, mass storage devices, and graphics controllers |
US10/772,214 US7099981B2 (en) | 1999-05-14 | 2004-02-03 | Multiple module computer system and method |
US11/113,401 US7146446B2 (en) | 1999-05-14 | 2005-04-22 | Multiple module computer system and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/772,214 Continuation US7099981B2 (en) | 1999-05-14 | 2004-02-03 | Multiple module computer system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050195575A1 US20050195575A1 (en) | 2005-09-08 |
US7146446B2 true US7146446B2 (en) | 2006-12-05 |
Family
ID=32033132
Family Applications (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/569,758 Expired - Fee Related US6718415B1 (en) | 1999-05-14 | 2000-05-12 | Computer system and method including console housing multiple computer modules having independent processing units, mass storage devices, and graphics controllers |
US10/772,214 Expired - Fee Related US7099981B2 (en) | 1999-05-14 | 2004-02-03 | Multiple module computer system and method |
US11/097,694 Expired - Fee Related US7363415B2 (en) | 1999-05-14 | 2005-03-31 | Computer system utilizing multiple computer modules with serial interface |
US11/104,169 Expired - Fee Related US7328297B2 (en) | 1999-05-14 | 2005-04-08 | Computer system utilizing multiple computer modules functioning independently |
US11/113,401 Expired - Fee Related US7146446B2 (en) | 1999-05-14 | 2005-04-22 | Multiple module computer system and method |
US11/124,851 Expired - Lifetime US7363416B2 (en) | 1999-05-14 | 2005-05-04 | Computer system utilizing multiple computer modules with password protection |
US11/166,656 Expired - Lifetime US7376779B2 (en) | 1999-05-14 | 2005-06-24 | Multiple module computer system and method |
US12/077,503 Expired - Fee Related US7676624B2 (en) | 1999-05-14 | 2008-03-18 | Multiple module computer system and method including differential signal channel comprising undirectional serial bit channels |
US12/378,197 Expired - Fee Related US7818487B2 (en) | 1999-05-14 | 2009-02-11 | Multiple module computer system and method using differential signal channel including unidirectional, serial bit channels |
US12/504,534 Expired - Fee Related US8041873B2 (en) | 1999-05-14 | 2009-07-16 | Multiple module computer system and method including differential signal channel comprising unidirectional serial bit channels to transmit encoded peripheral component interconnect bus transaction data |
US13/087,912 Expired - Fee Related US8234436B2 (en) | 1999-05-14 | 2011-04-15 | Computer system including peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US13/560,924 Expired - Fee Related US8626977B2 (en) | 1999-05-14 | 2012-07-27 | Computer system including CPU or peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US13/649,084 Expired - Fee Related US8977797B2 (en) | 1999-05-14 | 2012-10-10 | Method of improving peripheral component interface communications utilizing a low voltage differential signal channel |
US13/744,287 Expired - Fee Related US8756359B2 (en) | 1999-05-14 | 2013-01-17 | Computer system including CPU or peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US14/209,922 Expired - Lifetime US9529768B2 (en) | 1999-05-14 | 2014-03-13 | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
US14/511,093 Expired - Lifetime US9703750B2 (en) | 1999-05-14 | 2014-10-09 | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
US15/055,436 Active US9529769B2 (en) | 1999-05-14 | 2016-02-26 | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/569,758 Expired - Fee Related US6718415B1 (en) | 1999-05-14 | 2000-05-12 | Computer system and method including console housing multiple computer modules having independent processing units, mass storage devices, and graphics controllers |
US10/772,214 Expired - Fee Related US7099981B2 (en) | 1999-05-14 | 2004-02-03 | Multiple module computer system and method |
US11/097,694 Expired - Fee Related US7363415B2 (en) | 1999-05-14 | 2005-03-31 | Computer system utilizing multiple computer modules with serial interface |
US11/104,169 Expired - Fee Related US7328297B2 (en) | 1999-05-14 | 2005-04-08 | Computer system utilizing multiple computer modules functioning independently |
Family Applications After (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/124,851 Expired - Lifetime US7363416B2 (en) | 1999-05-14 | 2005-05-04 | Computer system utilizing multiple computer modules with password protection |
US11/166,656 Expired - Lifetime US7376779B2 (en) | 1999-05-14 | 2005-06-24 | Multiple module computer system and method |
US12/077,503 Expired - Fee Related US7676624B2 (en) | 1999-05-14 | 2008-03-18 | Multiple module computer system and method including differential signal channel comprising undirectional serial bit channels |
US12/378,197 Expired - Fee Related US7818487B2 (en) | 1999-05-14 | 2009-02-11 | Multiple module computer system and method using differential signal channel including unidirectional, serial bit channels |
US12/504,534 Expired - Fee Related US8041873B2 (en) | 1999-05-14 | 2009-07-16 | Multiple module computer system and method including differential signal channel comprising unidirectional serial bit channels to transmit encoded peripheral component interconnect bus transaction data |
US13/087,912 Expired - Fee Related US8234436B2 (en) | 1999-05-14 | 2011-04-15 | Computer system including peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US13/560,924 Expired - Fee Related US8626977B2 (en) | 1999-05-14 | 2012-07-27 | Computer system including CPU or peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US13/649,084 Expired - Fee Related US8977797B2 (en) | 1999-05-14 | 2012-10-10 | Method of improving peripheral component interface communications utilizing a low voltage differential signal channel |
US13/744,287 Expired - Fee Related US8756359B2 (en) | 1999-05-14 | 2013-01-17 | Computer system including CPU or peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US14/209,922 Expired - Lifetime US9529768B2 (en) | 1999-05-14 | 2014-03-13 | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
US14/511,093 Expired - Lifetime US9703750B2 (en) | 1999-05-14 | 2014-10-09 | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
US15/055,436 Active US9529769B2 (en) | 1999-05-14 | 2016-02-26 | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
Country Status (1)
Country | Link |
---|---|
US (17) | US6718415B1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020091854A1 (en) * | 2000-07-17 | 2002-07-11 | Smith Philip S. | Method and system for operating a commissioned e-commerce service prover |
US20050174729A1 (en) * | 1999-05-14 | 2005-08-11 | Acqis Technology, Inc. | Multiple module computer system and method |
US20070005693A1 (en) * | 2005-06-29 | 2007-01-04 | Microsoft Corporation | Multi-console workstations concurrently supporting multiple users |
US20090271552A1 (en) * | 2008-04-24 | 2009-10-29 | Pyk Magnus | Device interface module |
USRE41076E1 (en) | 1998-10-30 | 2010-01-12 | Acqis Technology, Inc. | Password protected modular computer method and device |
US20100100200A1 (en) * | 2008-10-16 | 2010-04-22 | Jason Seung-Min Kim | Discovery of connections utilizing a control bus |
US7836237B2 (en) * | 2008-06-02 | 2010-11-16 | First International Computer, Inc. | Changeable CPU module apparatus for a computer |
USRE42984E1 (en) | 1999-05-14 | 2011-11-29 | Acqis Technology, Inc. | Data security method and device for computer modules |
US8302100B2 (en) | 2000-01-18 | 2012-10-30 | Galactic Computing Corporation Bvi/Bc | System for balance distribution of requests across multiple servers using dynamic metrics |
US8316131B2 (en) | 2000-11-10 | 2012-11-20 | Galactic Computing Corporation Bvi/Bc | Method and system for providing dynamic hosted service management across disparate accounts/sites |
US8429049B2 (en) | 2000-07-17 | 2013-04-23 | Galactic Computing Corporation Bvi/Ibc | Method and system for allocating computing resources |
US8671153B1 (en) | 2010-08-20 | 2014-03-11 | Acqis Llc | Low cost, high performance and high data throughput server blade |
USRE48365E1 (en) | 2006-12-19 | 2020-12-22 | Mobile Motherboard Inc. | Mobile motherboard |
US11044141B2 (en) | 2019-07-09 | 2021-06-22 | Phillip N Hughes | High density, high availability compute system |
Families Citing this family (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978379A (en) | 1997-01-23 | 1999-11-02 | Gadzoox Networks, Inc. | Fiber channel learning bridge, learning half bridge, and protocol |
US7734852B1 (en) | 1998-08-06 | 2010-06-08 | Ahern Frank W | Modular computer system |
US7430171B2 (en) | 1998-11-19 | 2008-09-30 | Broadcom Corporation | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
US7219180B1 (en) * | 2000-04-18 | 2007-05-15 | Digi International Inc. | Combined uninterruptable power supply and bus control module to improve power management and legacy support |
AU2002320116A1 (en) * | 2001-06-18 | 2003-01-02 | Oqo, Inc. | Modular computing system |
US6917999B2 (en) * | 2001-06-29 | 2005-07-12 | Intel Corporation | Platform and method for initializing components within hot-plugged nodes |
FR2830164B1 (en) * | 2001-09-26 | 2005-08-05 | Bull Sa | HOT INSERTION OF AN ELECTRONIC CARD IN A SYSTEM |
JP2003167812A (en) * | 2001-11-30 | 2003-06-13 | Nec Corp | Data relay device, system and method |
US6919878B2 (en) * | 2001-12-28 | 2005-07-19 | Winbond Electronics Corp. | Keyboard/mouse switching controller |
US20060129721A1 (en) * | 2002-06-18 | 2006-06-15 | Betts-Lacroix Jonathan | Modular computing system |
US20030231168A1 (en) * | 2002-06-18 | 2003-12-18 | Jory Bell | Component for use as a portable computing device and pointing device in a modular computing system |
US7590712B2 (en) * | 2002-09-10 | 2009-09-15 | Ge Fanuc Automation North America, Inc. | Methods and systems for management and control of an automation control module |
US7225247B2 (en) * | 2002-10-17 | 2007-05-29 | Intel Corporation | Serial port redirection using a management controller |
US20120173732A1 (en) * | 2002-10-22 | 2012-07-05 | Sullivan Jason A | Systems and methods for providing resources and interactivity in computer systems |
US7075784B2 (en) * | 2002-10-22 | 2006-07-11 | Sullivan Jason A | Systems and methods for providing a dynamically modular processing unit |
BR0315570A (en) | 2002-10-22 | 2005-08-23 | Jason A Sullivan | Non-peripheral processing control module having improved heat dissipation properties |
WO2004038555A2 (en) | 2002-10-22 | 2004-05-06 | Isys Technologies | Robust customizable computer processing system |
US20040181601A1 (en) * | 2003-03-14 | 2004-09-16 | Palsamy Sakthikumar | Peripheral device sharing |
US20040193765A1 (en) * | 2003-03-31 | 2004-09-30 | Hsiao Yung-Chang | PDA docking bay module with peripheral integration |
TWI224273B (en) * | 2003-04-10 | 2004-11-21 | Inventec Corp | Switching system for operation priority of I/O unit and method thereof |
US6915362B2 (en) * | 2003-04-25 | 2005-07-05 | Dell Products L.P. | System to aggregate keyboard video mouse (KVM) control across multiple server blade chassis |
US7661026B2 (en) * | 2003-05-27 | 2010-02-09 | International Business Machines Corporation | Access by distributed computers to a same hardware resource |
US9010645B2 (en) * | 2003-06-13 | 2015-04-21 | Michael Arnouse | Portable computing system and portable computer for use with same |
JP4699685B2 (en) * | 2003-08-21 | 2011-06-15 | パナソニック株式会社 | Signal processing apparatus and electronic apparatus using the same |
US7271780B2 (en) * | 2003-09-23 | 2007-09-18 | Eastman Kodak Company | Display device and system |
WO2005067604A2 (en) * | 2004-01-05 | 2005-07-28 | Oqo Incorporated | Docking station for mobile computing device |
US7596638B2 (en) * | 2004-06-21 | 2009-09-29 | Intel Corporation | Method, system, and apparatus to decrease CPU temperature through I/O bus throttling |
CA2578957C (en) | 2004-09-15 | 2010-11-02 | Cisco Technology, Inc. | Agile information technology infrastructure management system |
JP4165499B2 (en) * | 2004-12-13 | 2008-10-15 | 日本電気株式会社 | Computer system, fault tolerant system using the same, and operation control method thereof |
US7584306B2 (en) * | 2005-05-19 | 2009-09-01 | Aten International Co., Ltd. | KVM switch with on-screen-display and a computer switching method thereof |
TWI273411B (en) * | 2005-05-24 | 2007-02-11 | Inventec Corp | Switch device |
US7643307B2 (en) * | 2005-09-29 | 2010-01-05 | International Business Machines Corporation | Fail safe redundant power supply in a multi-node computer system |
US7882209B1 (en) | 2005-09-30 | 2011-02-01 | At&T Intellectual Property Ii, L.P. | Tiered and modular approach to operational support systems |
EP1931283A2 (en) * | 2005-10-03 | 2008-06-18 | SanDisk IL Ltd | Modular computing system |
US8017402B2 (en) | 2006-03-08 | 2011-09-13 | Accuri Cytometers, Inc. | Fluidic system for a flow cytometer |
US8303894B2 (en) * | 2005-10-13 | 2012-11-06 | Accuri Cytometers, Inc. | Detection and fluidic system of a flow cytometer |
JP4571056B2 (en) * | 2005-10-17 | 2010-10-27 | 富士通株式会社 | Method, information processing apparatus and program for incorporating new apparatus into information processing apparatus |
US20070106959A1 (en) * | 2005-11-05 | 2007-05-10 | Scott McGowan | Multi Internet Video Card |
US20070124895A1 (en) * | 2005-11-22 | 2007-06-07 | Brown Michael E | Cord management systems |
CN101310286B (en) * | 2005-11-24 | 2011-12-14 | 国际商业机器公司 | Improved single sign on |
US7857005B2 (en) * | 2005-12-07 | 2010-12-28 | Accuri Cytometers, Inc. | Pulsation attenuator for a fluidic system |
US7610428B2 (en) * | 2005-12-30 | 2009-10-27 | Augmentix Corporation | System for providing a communication interface |
US20070174418A1 (en) * | 2006-01-23 | 2007-07-26 | Dell Products L.P. | Display firmware upgrade without external devices |
US20070208892A1 (en) * | 2006-03-02 | 2007-09-06 | Betts-Lacroix Jonathan | Modular computing system |
US8283177B2 (en) | 2006-03-08 | 2012-10-09 | Accuri Cytometers, Inc. | Fluidic system with washing capabilities for a flow cytometer |
US7780916B2 (en) * | 2006-03-08 | 2010-08-24 | Accuri Cytometers, Inc. | Flow cytometer system with unclogging feature |
US20070224684A1 (en) * | 2006-03-22 | 2007-09-27 | Olson David C | Transportable flow cytometer |
US7981661B2 (en) * | 2006-04-17 | 2011-07-19 | Accuri Cytometers, Inc. | Flow cytometer system with sheath and waste fluid measurement |
US8384700B2 (en) * | 2007-01-26 | 2013-02-26 | Microsoft Corporation | Linked shell |
US20080288919A1 (en) * | 2007-05-14 | 2008-11-20 | Microsoft Corporation | Encoding of Symbol Table in an Executable |
TWI314688B (en) * | 2006-06-09 | 2009-09-11 | Asustek Comp Inc | Computer and main circuit board thereof |
US8831189B2 (en) | 2006-06-12 | 2014-09-09 | Microsoft Corporation | Device authentication techniques |
WO2008003036A2 (en) * | 2006-06-29 | 2008-01-03 | Se2 Labs | Systems and methods for providing spectral feedback to visually convey a quantitative value |
US8715573B2 (en) | 2006-10-13 | 2014-05-06 | Accuri Cytometers, Inc. | Fluidic system for a flow cytometer with temporal processing |
US7746629B2 (en) * | 2006-11-01 | 2010-06-29 | Simon Assouad | Method and system for coupling a laptop or other portable or hand-held device to a docking system using an Ethernet interface |
US8356361B2 (en) * | 2006-11-07 | 2013-01-15 | Spansion Llc | Secure co-processing memory controller integrated into an embedded memory subsystem |
WO2008058217A2 (en) * | 2006-11-07 | 2008-05-15 | Accuri Instruments Inc. | Flow cell for a flow cytometer system |
JP4814761B2 (en) * | 2006-11-15 | 2011-11-16 | 光洋電子工業株式会社 | Display device with small display |
CN100530070C (en) * | 2006-11-24 | 2009-08-19 | 骆建军 | Hard disk based on FLASH |
US20080158805A1 (en) * | 2006-12-27 | 2008-07-03 | Mazen Waheeb El Bteddini | Small portable multipurpose pc unit insertable into a multitude of operating stations |
US7925900B2 (en) | 2007-01-26 | 2011-04-12 | Microsoft Corporation | I/O co-processor coupled hybrid computing device |
US8175099B2 (en) * | 2007-05-14 | 2012-05-08 | Microsoft Corporation | Embedded system development platform |
US20080307143A1 (en) * | 2007-06-11 | 2008-12-11 | Sunix Co., Ltd. | Modularized (block) channel technology with expansion of different to output interfaces |
US8432541B2 (en) | 2007-12-17 | 2013-04-30 | Accuri Cytometers, Inc. | Optical system for a flow cytometer with an interrogation zone |
CN101470675B (en) * | 2007-12-29 | 2011-03-30 | 联想(北京)有限公司 | Data output method and apparatus |
US20090190297A1 (en) * | 2008-01-29 | 2009-07-30 | Michael Feldman | Motherboard expansion device |
US8195860B2 (en) * | 2008-02-06 | 2012-06-05 | Broadcom Corporation | Computing device with handheld and extended computing devices |
US11113228B2 (en) | 2008-02-13 | 2021-09-07 | Arnouse Digital Devices Corporation | Portable computing system and portable computer for use with same |
USRE49124E1 (en) | 2008-02-13 | 2022-07-05 | Arnouse Digital Devices Corp. | Mobile data center |
US10235323B2 (en) | 2008-02-13 | 2019-03-19 | Michael Arnouse | Portable computing system and portable computer for use with same |
US20090234990A1 (en) * | 2008-03-11 | 2009-09-17 | Aten International Co., Ltd. | Kvm switch system supporting dvi video format |
US8139072B2 (en) * | 2008-04-14 | 2012-03-20 | Mcgowan Scott James | Network hardware graphics adapter compression |
US20090307390A1 (en) * | 2008-06-04 | 2009-12-10 | Broadcom Corporation | Access of built-in peripheral components by internal and external bus pathways |
TW201007553A (en) * | 2008-08-14 | 2010-02-16 | Benq Corp | Display device with internet web browsing capability |
US7904633B2 (en) * | 2008-10-28 | 2011-03-08 | Hewlett-Packard Development Company, L.P. | Switch providing external access to computer-system components and computer-system peripherals |
US7890688B2 (en) * | 2008-12-08 | 2011-02-15 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Method and apparatus for providing a high-speed communications link between a portable device and a docking station |
US8566930B2 (en) * | 2009-02-27 | 2013-10-22 | Science Applications International Corporation | Monitoring module |
US8040631B2 (en) * | 2009-05-18 | 2011-10-18 | Seagate Technology Llc | Servo processors that alternately control head positioning relative to sequential servo patterns |
TW201042466A (en) * | 2009-05-28 | 2010-12-01 | Inst Information Industry | Hybrid computer systems |
US20110061471A1 (en) * | 2009-06-02 | 2011-03-17 | Rich Collin A | System and method of verification of a sample for a flow cytometer |
US8507279B2 (en) | 2009-06-02 | 2013-08-13 | Accuri Cytometers, Inc. | System and method of verification of a prepared sample for a flow cytometer |
EP2966575B1 (en) * | 2009-06-09 | 2018-08-01 | Harman Becker Automotive Systems GmbH | Vehicle computing module |
CN102213974A (en) * | 2010-04-12 | 2011-10-12 | 鸿富锦精密工业(深圳)有限公司 | Computer motherboard |
CN102270016B (en) * | 2010-06-07 | 2013-11-20 | 鸿富锦精密工业(深圳)有限公司 | Cloud computing client computer |
US9551600B2 (en) | 2010-06-14 | 2017-01-24 | Accuri Cytometers, Inc. | System and method for creating a flow cytometer network |
US8645608B2 (en) * | 2010-06-30 | 2014-02-04 | Kabushiki Kaisha Toshiba | Electronic device that includes ranked control units that are connected together and control method thereof |
WO2012025728A1 (en) | 2010-08-27 | 2012-03-01 | Fxi Technologies As | Electronics Device |
US8478917B2 (en) | 2010-09-22 | 2013-07-02 | Microsoft Corporation | Automatic addressing protocol for a shared bus |
US9126374B2 (en) * | 2010-09-28 | 2015-09-08 | Russell B. Hanson | Iso-grid composite component |
WO2012061155A2 (en) | 2010-10-25 | 2012-05-10 | Accuri Cytometers, Inc. | Systems and user interface for collecting a data set in a flow cytometer |
CN102567249B (en) * | 2010-12-20 | 2015-08-26 | 联想(北京)有限公司 | A kind of electronic equipment and data transmission method thereof |
IL210169A0 (en) | 2010-12-22 | 2011-03-31 | Yehuda Binder | System and method for routing-based internet security |
JP4988036B2 (en) * | 2010-12-22 | 2012-08-01 | 株式会社東芝 | Information processing apparatus and video signal output control method in the same apparatus |
US9047050B2 (en) * | 2011-03-24 | 2015-06-02 | Compal Electronics, Inc. | Modular system having cross platform master device |
US8687350B2 (en) * | 2011-05-11 | 2014-04-01 | Ez-Tech Corp | Motherboard and case with hidden internal connectors |
US8868684B2 (en) * | 2011-06-17 | 2014-10-21 | At&T Intellectual Property I, L.P. | Telepresence simulation with multiple interconnected devices |
US8862802B2 (en) | 2011-12-30 | 2014-10-14 | Bedrock Automation Platforms Inc. | Switch fabric having a serial communications interface and a parallel communications interface |
US10101769B2 (en) | 2012-04-10 | 2018-10-16 | Michael Arnouse | Mobile data center |
WO2014046639A1 (en) * | 2012-09-18 | 2014-03-27 | Razer (Asia-Pacific) Pte. Ltd. | Computing systems, peripheral devices and methods for controlling a peripheral device |
CN103794190B (en) * | 2012-10-26 | 2016-08-10 | 纬创资通股份有限公司 | There is the attachment means of electro-static discharge protection function |
DE112013000263T5 (en) * | 2013-08-20 | 2015-07-02 | Komatsu Ltd. | Construction control device |
US9591757B2 (en) * | 2014-03-31 | 2017-03-07 | Bally Gaming, Inc. | Printed circuit board assembly for a gaming machine |
US9426203B2 (en) * | 2014-06-27 | 2016-08-23 | Microsoft Technology Licensing, Llc | Remote application control interface |
US9858237B2 (en) * | 2015-05-11 | 2018-01-02 | Dell Products L.P. | Information handling system differential signalling variable bandwidth interface selectively configuring single ended and differential signals |
US9858231B2 (en) * | 2015-06-22 | 2018-01-02 | Google Llc | Operating system card for multiple devices |
TWI587295B (en) * | 2015-06-26 | 2017-06-11 | 英業達股份有限公司 | Device for resetting hard disk drive |
US9986658B2 (en) * | 2015-12-03 | 2018-05-29 | Facebook, Inc | Power connection clip for a shelf in a server rack |
CN106909198B (en) * | 2015-12-22 | 2020-11-06 | 华硕电脑股份有限公司 | External device, electronic device and electronic system |
US9933821B2 (en) * | 2016-02-17 | 2018-04-03 | Quanta Computer Inc. | Chassis with lock mechanism |
US10248470B2 (en) * | 2016-08-31 | 2019-04-02 | International Business Machines Corporation | Hierarchical hardware object model locking |
TWM535913U (en) * | 2016-09-26 | 2017-01-21 | 宏正自動科技股份有限公司 | Video matrix controller |
JP6900233B2 (en) * | 2017-05-01 | 2021-07-07 | Dynabook株式会社 | Computer systems and electronics |
US11966348B2 (en) | 2019-01-28 | 2024-04-23 | Nvidia Corp. | Reducing coupling and power noise on PAM-4 I/O interface |
US10599606B2 (en) | 2018-03-29 | 2020-03-24 | Nvidia Corp. | 424 encoding schemes to reduce coupling and power noise on PAM-4 data buses |
US10657094B2 (en) | 2018-03-29 | 2020-05-19 | Nvidia Corp. | Relaxed 433 encoding to reduce coupling and power noise on PAM-4 data buses |
US11159153B2 (en) | 2018-03-29 | 2021-10-26 | Nvidia Corp. | Data bus inversion (DBI) on pulse amplitude modulation (PAM) and reducing coupling and power noise on PAM-4 I/O |
US11115623B2 (en) * | 2018-05-07 | 2021-09-07 | Maxim Integrated Products, Inc. | Systems and methods for asymmetric image splitter with line mark memory |
US10623200B2 (en) | 2018-07-20 | 2020-04-14 | Nvidia Corp. | Bus-invert coding with restricted hamming distance for multi-byte interfaces |
CN112739436A (en) * | 2018-09-27 | 2021-04-30 | 英特尔公司 | Highlight identification technique in a volumetric content creation system |
US11432426B2 (en) | 2019-04-14 | 2022-08-30 | Aertight Systems, Inc. | Computer isolation housing |
RU2733336C1 (en) * | 2020-01-21 | 2020-10-01 | Общество с ограниченной ответственностью "Производственная компания Аквариус" | Double-circuit monoblock |
WO2021257096A1 (en) * | 2020-06-19 | 2021-12-23 | Hewlett-Packard Development Company, L.P. | Reprogram a pin of an option board connector |
US11409681B2 (en) | 2020-09-04 | 2022-08-09 | Paypal, Inc. | Computer system communication via sideband processor |
US11693766B2 (en) | 2021-06-15 | 2023-07-04 | International Business Machines Corporation | Resource allocation in microservice architectures |
CN115705270A (en) * | 2021-08-06 | 2023-02-17 | 富联精密电子(天津)有限公司 | Hard disk in-place detection device and method |
TWI777785B (en) * | 2021-09-24 | 2022-09-11 | 華碩電腦股份有限公司 | Electronic device |
WO2023063936A1 (en) * | 2021-10-13 | 2023-04-20 | Hewlett-Packard Development Company, L.P. | Active state power management controls |
RU210332U1 (en) * | 2021-10-29 | 2022-04-07 | Общество с ограниченной ответственностью «ВИДЕОСОФТ» | CONTROLLER |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996585A (en) | 1974-06-11 | 1976-12-07 | International Business Machines Corporation | Video generator circuit for a dynamic digital television display |
US4623964A (en) | 1981-12-23 | 1986-11-18 | International Business Machines Corporation | Homogeneous hierarchial computer business system |
US4700362A (en) | 1983-10-07 | 1987-10-13 | Dolby Laboratories Licensing Corporation | A-D encoder and D-A decoder system |
US4769764A (en) | 1986-08-11 | 1988-09-06 | Isaac Levanon | Modular computer system with portable travel unit |
US4872091A (en) | 1986-07-21 | 1989-10-03 | Ricoh Company, Ltd. | Memory cartridge |
US4890282A (en) | 1988-03-08 | 1989-12-26 | Network Equipment Technologies, Inc. | Mixed mode compression for data transmission |
US4918572A (en) | 1988-12-27 | 1990-04-17 | Motorola Computer X, Inc. | Modular electronic package |
US4939735A (en) | 1988-07-21 | 1990-07-03 | International Business Machines Corporation | Information handling system having serial channel to control unit link |
US5056141A (en) | 1986-06-18 | 1991-10-08 | Dyke David W | Method and apparatus for the identification of personnel |
US5086499A (en) | 1989-05-23 | 1992-02-04 | Aeg Westinghouse Transportation Systems, Inc. | Computer network for real time control with automatic fault identification and by-pass |
US5251097A (en) | 1990-06-11 | 1993-10-05 | Supercomputer Systems Limited Partnership | Packaging architecture for a highly parallel multiprocessor system |
US5278509A (en) | 1992-02-03 | 1994-01-11 | At&T Bell Laboratories | Method for monitoring battery discharge by determining the second derivative of battery voltage over time |
US5278730A (en) | 1992-06-29 | 1994-01-11 | Cordata, Inc. | Modular notebook computer having a planar array of module bays |
US5293497A (en) | 1991-03-13 | 1994-03-08 | Traveling Software, Inc. | Cable for transmitting eight-bit parallel data |
US5311397A (en) | 1992-08-06 | 1994-05-10 | Logistics Management Inc. | Computer with modules readily replaceable by unskilled personnel |
US5317477A (en) | 1992-06-30 | 1994-05-31 | International Business Machines Corporation | High density interconnection assembly |
US5319771A (en) | 1989-05-10 | 1994-06-07 | Seiko Epson Corporation | CPU clock generator having a low frequency output during I/O operations and a high frequency output during memory operations |
US5355391A (en) | 1992-03-06 | 1994-10-11 | Rambus, Inc. | High speed bus system |
US5428806A (en) | 1993-01-22 | 1995-06-27 | Pocrass; Alan L. | Computer networking system including central chassis with processor and input/output modules, remote transceivers, and communication links between the transceivers and input/output modules |
US5436857A (en) | 1993-11-22 | 1995-07-25 | Ncr Corporation | Personal computer module system and method of using |
US5463742A (en) | 1993-03-05 | 1995-10-31 | Hitachi Computer Products (America), Inc. | Personal processor module and docking station for use therewith |
US5539616A (en) | 1992-06-29 | 1996-07-23 | Elonex Technologies, Inc. | Modular portable computer |
US5550861A (en) | 1994-09-27 | 1996-08-27 | Novalink Technologies, Inc. | Modular PCMCIA modem and pager |
US5550710A (en) | 1994-09-09 | 1996-08-27 | Hitachi Computer Products (America), Inc. | Packaging and cooling structure for the personal processor module |
US5578940A (en) | 1995-04-04 | 1996-11-26 | Rambus, Inc. | Modular bus with single or double parallel termination |
US5600800A (en) | 1992-06-29 | 1997-02-04 | Elonex I.P. Holdings, Ltd. | Personal computer system having a docking bay and a hand-held portable computer adapted to dock in the docking bay by a full-service parallel bus |
US5603044A (en) | 1995-02-08 | 1997-02-11 | International Business Machines Corporation | Interconnection network for a multi-nodal data processing system which exhibits incremental scalability |
US5606717A (en) | 1990-04-18 | 1997-02-25 | Rambus, Inc. | Memory circuitry having bus interface for receiving information in packets and access time registers |
US5608608A (en) | 1995-01-04 | 1997-03-04 | International Business Machines Corporation | Cartridge-based design for portable and fixed computers |
US5630057A (en) | 1988-06-14 | 1997-05-13 | Progressive Technology Inc. | Secure architecture and apparatus using an independent computer cartridge |
US5638521A (en) | 1992-10-12 | 1997-06-10 | Leunig Gmbh | Apparatus using a parallel interface for data transfer between a plurality of computers, as well as for transfer of data from computers to shared peripheral devices |
US5640302A (en) | 1992-06-29 | 1997-06-17 | Elonex Ip Holdings | Modular portable computer |
US5659773A (en) | 1990-11-14 | 1997-08-19 | International Business Machines Corporation | Personal computer with input/output subsystem |
US5673174A (en) | 1995-03-23 | 1997-09-30 | Nexar Technologies, Inc. | System permitting the external replacement of the CPU and/or DRAM SIMMs microchip boards |
US5680126A (en) | 1992-06-29 | 1997-10-21 | Elonex I.P. Holdings, Ltd. | Modular portable computer |
US5689654A (en) | 1992-06-29 | 1997-11-18 | Elonex F.P. Holdings, Ltd. | Digital assistant system including a host computer with a docking bay for the digital assistant wherein a heat sink is moved into contact with a docked digital assistant for cooling the digital assistant |
US5721842A (en) | 1995-08-25 | 1998-02-24 | Apex Pc Solutions, Inc. | Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch |
US5721837A (en) | 1993-10-28 | 1998-02-24 | Elonex I.P. Holdings, Ltd. | Micro-personal digital assistant including a temperature managed CPU |
US5745733A (en) | 1995-08-09 | 1998-04-28 | Ncr Corporation | Computer system including a portable portion and a stationary portion providing both uni-processing and multiprocessing capabilities |
US5752080A (en) | 1994-12-22 | 1998-05-12 | Intel Corporation | Cable terminal unit using bit set for selectively enabling a plurality of hardware functions with some functions having a plurality of selectively enabled hardware functions |
US5764924A (en) | 1995-08-24 | 1998-06-09 | Ncr Corporation | Method and apparatus for extending a local PCI bus to a remote I/O backplane |
US5774704A (en) | 1996-07-29 | 1998-06-30 | Silicon Graphics, Inc. | Apparatus and method for dynamic central processing unit clock adjustment |
US5795228A (en) | 1996-07-03 | 1998-08-18 | Ridefilm Corporation | Interactive computer-based entertainment system |
US5809538A (en) | 1996-02-07 | 1998-09-15 | General Instrument Corporation | DRAM arbiter for video decoder |
US5815681A (en) | 1996-05-21 | 1998-09-29 | Elonex Plc Ltd. | Integrated network switching hub and bus structure |
US5819050A (en) | 1996-02-29 | 1998-10-06 | The Foxboro Company | Automatically configurable multi-purpose distributed control processor card for an industrial control system |
US5826048A (en) | 1997-01-31 | 1998-10-20 | Vlsi Technology, Inc. | PCI bus with reduced number of signals |
US5848249A (en) | 1995-06-15 | 1998-12-08 | Intel Corporation | Method and apparatus for enabling intelligent I/O subsystems using PCI I/O devices |
US5859669A (en) | 1996-11-26 | 1999-01-12 | Texas Instruments Incorporated | System for encoding an image control signal onto a pixel clock signal |
US5907566A (en) | 1997-05-29 | 1999-05-25 | 3Com Corporation | Continuous byte-stream encoder/decoder using frequency increase and cyclic redundancy check |
US5941965A (en) | 1996-05-16 | 1999-08-24 | Electronics Accessory Specialists International, Inc. | Universal docking station |
US5948047A (en) | 1996-08-29 | 1999-09-07 | Xybernaut Corporation | Detachable computer structure |
US5960213A (en) | 1995-12-18 | 1999-09-28 | 3D Labs Inc. Ltd | Dynamically reconfigurable multi-function PCI adapter device |
US5968144A (en) | 1996-06-27 | 1999-10-19 | Vlsi Technology, Inc. | System for supporting DMA I/O device using PCI bus and PCI-PCI bridge comprising programmable DMA controller for request arbitration and storing data transfer information |
US5971804A (en) | 1997-06-30 | 1999-10-26 | Emc Corporation | Backplane having strip transmission line ethernet bus |
US5977989A (en) | 1995-05-24 | 1999-11-02 | International Business Machines Corporation | Method and apparatus for synchronizing video and graphics data in a multimedia display system including a shared frame buffer |
US5982363A (en) | 1997-10-24 | 1999-11-09 | General Instrument Corporation | Personal computer-based set-top converter for television services |
US5991844A (en) | 1998-04-17 | 1999-11-23 | Adaptec, Inc. | Redundant bus bridge systems and methods using selectively synchronized clock signals |
US5991163A (en) | 1998-11-12 | 1999-11-23 | Nexabit Networks, Inc. | Electronic circuit board assembly and method of closely stacking boards and cooling the same |
US5999952A (en) | 1997-08-15 | 1999-12-07 | Xybernaut Corporation | Core computer unit |
US6003105A (en) | 1996-11-21 | 1999-12-14 | Hewlett-Packard Company | Long-haul PCI-to-PCI bridge |
US6002442A (en) | 1997-04-01 | 1999-12-14 | Aitech International Corp. | Method and apparatus for reducing flickers in video signal conversions |
US6011546A (en) | 1995-11-01 | 2000-01-04 | International Business Machines Corporation | Programming structure for user interfaces |
US6016252A (en) | 1997-06-30 | 2000-01-18 | Emc Corporation | Cable management system |
US6028643A (en) | 1997-09-03 | 2000-02-22 | Colorgraphic Communications Corporation | Multiple-screen video adapter with television tuner |
US6029183A (en) | 1996-08-29 | 2000-02-22 | Xybernaut Corporation | Transferable core computer |
US6038621A (en) | 1996-11-04 | 2000-03-14 | Hewlett-Packard Company | Dynamic peripheral control of I/O buffers in peripherals with modular I/O |
US6040792A (en) | 1997-11-19 | 2000-03-21 | In-System Design, Inc. | Universal serial bus to parallel bus signal converter and method of conversion |
US6052513A (en) | 1996-06-05 | 2000-04-18 | Compaq Computer Corporation | Multi-threaded bus master |
US6069615A (en) | 1996-08-19 | 2000-05-30 | International Business Machines Corporation | Single pointing device/keyboard for multiple computers |
US6088224A (en) | 1997-12-03 | 2000-07-11 | Emc Corporation | Cabinet for storing a plurality of processing unit modules |
US6088752A (en) | 1998-08-06 | 2000-07-11 | Mobility Electronics, Inc. | Method and apparatus for exchanging information between buses in a portable computer and docking station through a bridge employing a serial link |
US6163464A (en) | 1997-08-08 | 2000-12-19 | Hitachi, Ltd. | Apparatus for interconnecting logic boards |
US6175490B1 (en) | 1997-10-01 | 2001-01-16 | Micron Electronics, Inc. | Fault tolerant computer system |
US6202169B1 (en) | 1997-12-31 | 2001-03-13 | Nortel Networks Corporation | Transitioning between redundant computer systems on a network |
US6208522B1 (en) | 1999-02-12 | 2001-03-27 | Compaq Computer Corp. | Computer chassis assembly with a single center pluggable midplane board |
US6216185B1 (en) | 1998-05-01 | 2001-04-10 | Acqis Technology, Inc. | Personal computer peripheral console with attached computer module |
US6260155B1 (en) | 1998-05-01 | 2001-07-10 | Quad Research | Network information server |
US6289376B1 (en) | 1999-03-31 | 2001-09-11 | Diva Systems Corp. | Tightly-coupled disk-to-CPU storage server |
US6304895B1 (en) | 1997-08-22 | 2001-10-16 | Apex Inc. | Method and system for intelligently controlling a remotely located computer |
US6311268B1 (en) | 1998-11-06 | 2001-10-30 | Acqis Technology, Inc. | Computer module device and method for television use |
US6314522B1 (en) | 1999-01-13 | 2001-11-06 | Acqis Technology, Inc. | Multi-voltage level CPU module |
US6317329B1 (en) | 1998-11-13 | 2001-11-13 | Hewlett-Packard Company | Data storage module alignment system and method |
US6321335B1 (en) | 1998-10-30 | 2001-11-20 | Acqis Technology, Inc. | Password protected modular computer method and device |
US6332180B1 (en) | 1998-06-10 | 2001-12-18 | Compaq Information Technologies Group, L.P. | Method and apparatus for communication in a multi-processor computer system |
US6345330B2 (en) | 1998-05-01 | 2002-02-05 | Acqis Technology, Inc. | Communication channel and interface devices for bridging computer interface buses |
US6366951B1 (en) | 1997-02-03 | 2002-04-02 | Curt A. Schmidt | Distributed processing system where a management computer automatically connects remote reduced-capability workstations with centralized computing modules |
US6378009B1 (en) | 1998-08-25 | 2002-04-23 | Avocent Corporation | KVM (keyboard, video, and mouse) switch having a network interface circuit coupled to an external network and communicating in accordance with a standard network protocol |
US6381602B1 (en) | 1999-01-26 | 2002-04-30 | Microsoft Corporation | Enforcing access control on resources at a location other than the source location |
US6393561B1 (en) | 1996-04-11 | 2002-05-21 | Hitachi, Ltd. | Disk drive computer with programmable nonvolatile memory capable of rewriting a control program of the disk drive |
US6401124B1 (en) | 1998-12-16 | 2002-06-04 | Mustek Systems Inc. | Network peripheral sharing system |
US6425033B1 (en) | 1997-06-20 | 2002-07-23 | National Instruments Corporation | System and method for connecting peripheral buses through a serial bus |
US6452790B1 (en) | 1999-07-07 | 2002-09-17 | Acquis Technology, Inc. | Computer module device and method |
US6453344B1 (en) | 1999-03-31 | 2002-09-17 | Amdahl Corporation | Multiprocessor servers with controlled numbered of CPUs |
US6452789B1 (en) | 2000-04-29 | 2002-09-17 | Hewlett-Packard Company | Packaging architecture for 32 processor server |
US6496361B2 (en) | 1998-11-16 | 2002-12-17 | Acer Incorporated | Embedded CMOS camera in a laptop computer |
Family Cites Families (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4228496A (en) | 1976-09-07 | 1980-10-14 | Tandem Computers Incorporated | Multiprocessor system |
US4141068A (en) | 1977-03-24 | 1979-02-20 | Xerox Corporation | Auxiliary ROM memory system |
US4453215A (en) * | 1981-10-01 | 1984-06-05 | Stratus Computer, Inc. | Central processing apparatus for fault-tolerant computing |
US4570220A (en) | 1983-11-25 | 1986-02-11 | Intel Corporation | High speed parallel bus and data transfer method |
US4799258A (en) | 1984-02-13 | 1989-01-17 | National Research Development Corporation | Apparatus and methods for granting access to computers |
US4670837A (en) | 1984-06-25 | 1987-06-02 | American Telephone And Telegraph Company | Electrical system having variable-frequency clock |
US4680674A (en) * | 1984-07-16 | 1987-07-14 | Moore Fergus E | Modular computer system with integral electronic bus |
US4615039A (en) | 1984-10-01 | 1986-09-30 | National Semiconductor Corporation | Data network driver |
JPH0784675B2 (en) | 1986-07-28 | 1995-09-13 | 川崎製鉄株式会社 | Plated steel with excellent press formability and image clarity after painting |
US4875291A (en) * | 1987-03-20 | 1989-10-24 | Omni Optical Products, Inc. | Rotating reflector prism and target |
JPH0764672B2 (en) | 1987-11-02 | 1995-07-12 | 三菱マテリアル株式会社 | Crystal growth equipment |
US4760276A (en) * | 1987-11-09 | 1988-07-26 | Unisys Corporation | Power supply system, for segmented loads, having phantom redundancy |
US4791524A (en) | 1987-11-18 | 1988-12-13 | International Business Machines Corporation | Electrostatic discharge protection for electronic packages |
US4789764A (en) * | 1987-12-21 | 1988-12-06 | Illinois Tool Works Inc. | Pushbutton switch with resilient extensible pivotable contact element |
US4916572A (en) * | 1989-02-27 | 1990-04-10 | Teledyne Industries, Inc. | Circuitry for protecting against load voltage transients in solid state relay circuits |
US5278790A (en) * | 1989-05-15 | 1994-01-11 | Casio Computer Co., Ltd. | Memory device comprising thin film memory transistors |
US5325517A (en) * | 1989-05-17 | 1994-06-28 | International Business Machines Corporation | Fault tolerant data processing system |
JP2870127B2 (en) * | 1990-05-31 | 1999-03-10 | ソニー株式会社 | Tracking control method |
US5103446A (en) | 1990-11-09 | 1992-04-07 | Moses Computers, Inc. | Local area network adaptive throughput control for instantaneously matching data transfer rates between personal computer nodes |
US5191581A (en) | 1990-12-07 | 1993-03-02 | Digital Equipment Corporation | Method and apparatus for providing high performance interconnection between interface circuits coupled to information buses |
US5198806A (en) | 1990-12-31 | 1993-03-30 | Lord & Sebastian, Inc. | Remote control and secure access for personal computers |
SE469763B (en) | 1991-04-16 | 1993-09-06 | Boris Wallsten | COMPUTER INCLUDING AATMINSTONE TWO TO EACH OTHER ALLOWED CONNECTABLE PARTS |
US5187645A (en) * | 1991-06-07 | 1993-02-16 | Ergo Computing, Inc. | Portable computer with docking connector for peripheral devices |
WO1993006695A1 (en) | 1991-09-23 | 1993-04-01 | Z-Microsystems | Enhanced security system for computing devices |
US5317441A (en) | 1991-10-21 | 1994-05-31 | Advanced Micro Devices, Inc. | Transceiver for full duplex signalling on a fiber optic cable |
US5293487A (en) | 1991-12-27 | 1994-03-08 | Digital Equipment Corporation | Network adapter with high throughput data transfer circuit to optimize network data transfers, with host receive ring resource monitoring and reporting |
US5227957A (en) | 1992-05-14 | 1993-07-13 | Deters John B | Modular computer system with passive backplane |
US5432939A (en) * | 1992-05-27 | 1995-07-11 | International Business Machines Corp. | Trusted personal computer system with management control over initial program loading |
DE4221269C1 (en) | 1992-06-26 | 1993-12-09 | Lancaster Group Ag | Preparation for topical use |
US5473506A (en) | 1993-11-12 | 1995-12-05 | Elonex Technologies, Inc. | Cooling a large microprocessor in a small module |
US5708840A (en) * | 1992-06-29 | 1998-01-13 | Elonex I.P. Holdings, Ltd. | Micro personal digital assistant |
US5301509A (en) * | 1992-07-08 | 1994-04-12 | Cold Jet, Inc. | Method and apparatus for producing carbon dioxide pellets |
US5537544A (en) * | 1992-09-17 | 1996-07-16 | Kabushiki Kaisha Toshiba | Portable computer system having password control means for holding one or more passwords such that the passwords are unreadable by direct access from a main processor |
US5282247A (en) * | 1992-11-12 | 1994-01-25 | Maxtor Corporation | Apparatus and method for providing data security in a computer system having removable memory |
US5339408A (en) * | 1992-12-30 | 1994-08-16 | Digital Equipment Corporation | Method and apparatus for reducing checking costs in fault tolerant processors |
US5430607A (en) * | 1992-12-31 | 1995-07-04 | North Atlantic Industries, Inc. | Rugged modular portable computer including modules hinged along an edge |
US5519843A (en) | 1993-03-15 | 1996-05-21 | M-Systems | Flash memory system providing both BIOS and user storage capability |
US5802391A (en) | 1993-03-16 | 1998-09-01 | Ht Research, Inc. | Direct-access team/workgroup server shared by team/workgrouped computers without using a network operating system |
WO1994022102A1 (en) | 1993-03-16 | 1994-09-29 | Ht Research, Inc. | A chassis for a multiple computer system |
JPH06289953A (en) | 1993-03-31 | 1994-10-18 | Hitachi Ltd | Attachable/detachable information processor |
JPH06289956A (en) | 1993-03-31 | 1994-10-18 | Hitachi Ltd | Attachable/detachable information processor |
US5533125A (en) * | 1993-04-06 | 1996-07-02 | International Business Machines Corporation | Removable computer security device |
JPH0710443A (en) * | 1993-06-24 | 1995-01-13 | Otis Elevator Co | Door-wiping apparatus for elevator |
US6401158B1 (en) | 1993-07-16 | 2002-06-04 | Compaq Computer Corporation | Apparatus for providing a CPU cluster via a disk I/O bus using a CPU brick which fits into a disk cavity |
US6567877B1 (en) * | 1993-08-16 | 2003-05-20 | Sun Microsystems, Inc. | Automatically enabling terminator for internal SCSI buses with external SCSI bus expansion |
JPH0764672A (en) | 1993-08-24 | 1995-03-10 | Toshiba Corp | Constituting method for assembled-type work station and assembled-type work station device |
JPH0784675A (en) | 1993-09-16 | 1995-03-31 | Hitachi Ltd | Detachable information processor |
GB9323453D0 (en) | 1993-11-13 | 1994-01-05 | Calluna Tech Ltd | Security system for portable hard disk drive |
WO1995016238A1 (en) | 1993-12-06 | 1995-06-15 | Telequip Corporation | Secure computer memory card |
JP2941161B2 (en) | 1994-02-04 | 1999-08-25 | キヤノン株式会社 | Embedded electronic device and device detaching method in the electronic device |
US5680536A (en) | 1994-03-25 | 1997-10-21 | Tyuluman; Samuel A. | Dual motherboard computer system |
US5930110A (en) | 1994-03-28 | 1999-07-27 | Kabushiki Kaisha Toshiba | Computer system having detachable expansion unit |
US5485488A (en) | 1994-03-29 | 1996-01-16 | Apple Computer, Inc. | Circuit and method for twisted pair current source driver |
US5572441A (en) | 1994-04-04 | 1996-11-05 | Lucent Technologies Inc. | Data connector for portable devices |
US5436902A (en) * | 1994-04-05 | 1995-07-25 | First Pacific Networks | Ethernet extender |
US5546463A (en) | 1994-07-12 | 1996-08-13 | Information Resource Engineering, Inc. | Pocket encrypting and authenticating communications device |
US6311287B1 (en) | 1994-10-11 | 2001-10-30 | Compaq Computer Corporation | Variable frequency clock control for microprocessor-based computer systems |
GB2310576B (en) | 1994-12-22 | 2000-03-01 | Intel Corp | Method and mechanism for maintaining integrity within SCSI bus with hot insertion |
JPH08202468A (en) * | 1995-01-27 | 1996-08-09 | Hitachi Ltd | Multiprocessor system |
JPH08242240A (en) * | 1995-03-06 | 1996-09-17 | Hitachi Ltd | Atm exchange and method for switching path |
JPH08265349A (en) | 1995-03-27 | 1996-10-11 | Toshiba Microelectron Corp | Digital information processor |
US5608884A (en) | 1995-05-17 | 1997-03-04 | Dell Usa, L.P. | Commonly housed multiple processor type computing system and method of manufacturing the same |
US5737524A (en) | 1995-05-22 | 1998-04-07 | International Business Machines Corporation | Add-in board with programmable configuration registers for use in PCI bus computers |
US5590377A (en) | 1995-06-07 | 1996-12-31 | Ast Research, Inc. | Automatic control of distributed DMAs in a PCI bus system supporting dual ISA buses |
US5696949A (en) | 1995-06-15 | 1997-12-09 | Intel Corporation | System for PCI slots expansion using asynchronous PCI-to-PCI bridge with clock generator for providing clock signal to the expansion mother board and expansion side of bridge |
JPH098276A (en) * | 1995-06-21 | 1997-01-10 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor functional element |
GB2290894A (en) | 1995-08-02 | 1996-01-10 | Memory Corp Plc | Memory module security |
US5588850A (en) | 1995-08-08 | 1996-12-31 | Tongrand Limited | Grounding means for memory card connector |
US5742840A (en) | 1995-08-16 | 1998-04-21 | Microunity Systems Engineering, Inc. | General purpose, multiple precision parallel operation, programmable media processor |
US5608605A (en) * | 1995-09-28 | 1997-03-04 | Hewlett-Packard Company | Apparatus for securing a device via PC card slot and door |
JPH0997127A (en) | 1995-09-29 | 1997-04-08 | Toshiba Corp | Computer system |
US6049823A (en) * | 1995-10-04 | 2000-04-11 | Hwang; Ivan Chung-Shung | Multi server, interactive, video-on-demand television system utilizing a direct-access-on-demand workgroup |
US6026183A (en) * | 1995-10-27 | 2000-02-15 | Texas Instruments Incorporated | Content-based video compression |
US5673172A (en) | 1996-01-05 | 1997-09-30 | Compaq Computer Corporation | Apparatus for electromagnetic interference and electrostatic discharge shielding of hot plug-connected hard disk drives |
US5774703A (en) * | 1996-01-05 | 1998-06-30 | Motorola, Inc. | Data processing system having a register controllable speed |
US5787259A (en) | 1996-03-29 | 1998-07-28 | Microsoft Corporation | Digital interconnects of a PC with consumer electronics devices |
US6179489B1 (en) | 1997-04-04 | 2001-01-30 | Texas Instruments Incorporated | Devices, methods, systems and software products for coordination of computer main microprocessor and second microprocessor coupled thereto |
US5933609A (en) | 1996-04-08 | 1999-08-03 | Vlsi Technology, Inc. | Method and system for hot docking a portable computer to a docking station via the primary PCI bus |
US5751950A (en) | 1996-04-16 | 1998-05-12 | Compaq Computer Corporation | Secure power supply for protecting the shutdown of a computer system |
US5805903A (en) | 1996-05-21 | 1998-09-08 | Compaq Computer Corporation | Protection of computer system against incorrect card insertion during start-up |
US5819053A (en) | 1996-06-05 | 1998-10-06 | Compaq Computer Corporation | Computer system bus performance monitoring |
US5822571A (en) | 1996-06-05 | 1998-10-13 | Compaq Computer Corporation | Synchronizing data between devices |
US6570561B1 (en) | 1996-06-14 | 2003-05-27 | Texas Instruments Incorporated | Portable computer with low voltage differential signaling adapter |
FR2751082B1 (en) | 1996-07-10 | 1998-11-06 | Aerospatiale | SWITCHING DEVICE, IN PARTICULAR FOR A SYSTEM UNDER TEST |
US5737194A (en) * | 1996-07-29 | 1998-04-07 | Cray Research, Inc. | Input/output module assembly |
US5961623A (en) | 1996-08-29 | 1999-10-05 | Apple Computer, Inc. | Method and system for avoiding starvation and deadlocks in a split-response interconnect of a computer system |
US5991863A (en) * | 1996-08-30 | 1999-11-23 | Texas Instruments Incorporated | Single carry/borrow propagate adder/decrementer for generating register stack addresses in a microprocessor |
JP3617884B2 (en) * | 1996-09-18 | 2005-02-09 | 株式会社東芝 | Portable information equipment |
US6715100B1 (en) * | 1996-11-01 | 2004-03-30 | Ivan Chung-Shung Hwang | Method and apparatus for implementing a workgroup server array |
US5857085A (en) | 1996-11-13 | 1999-01-05 | Cypress Semiconductor Corporation | Interface device for XT/AT system devices on high speed local bus |
US6091737A (en) * | 1996-11-15 | 2000-07-18 | Multi-Tech Systems, Inc. | Remote communications server system |
US5982614A (en) | 1996-11-18 | 1999-11-09 | Peripheral Vision, Inc. | Docking station including a port replicator for sharing peripherals between a portable computer and desktop computer |
US5862381A (en) | 1996-11-26 | 1999-01-19 | International Business Machines Corporation | Visualization tool for graphically displaying trace data |
US5878211A (en) | 1996-12-20 | 1999-03-02 | N C R Corporation | Multi-functional retail terminal and associated method |
US5838932A (en) | 1996-12-23 | 1998-11-17 | Compaq Computer Corporation | Transparent PCI to PCI bridge with dynamic memory and I/O map programming |
US5884049A (en) | 1996-12-31 | 1999-03-16 | Compaq Computer Corporation | Increased processor performance comparable to a desktop computer from a docked portable computer |
US6465611B1 (en) | 1997-02-25 | 2002-10-15 | Corixa Corporation | Compounds for immunotherapy of prostate cancer and methods for their use |
US5935226A (en) | 1997-03-20 | 1999-08-10 | Micron Electronics, Inc. | Method and apparatus for issuing transaction requests to a target device in accordance with the state of connection between the portable computer and the target device |
JPH10268995A (en) | 1997-03-25 | 1998-10-09 | Canon Inc | Method and device for controlling interface |
US5909559A (en) | 1997-04-04 | 1999-06-01 | Texas Instruments Incorporated | Bus bridge device including data bus of first width for a first processor, memory controller, arbiter circuit and second processor having a different second data width |
US5941968A (en) * | 1997-04-14 | 1999-08-24 | Advanced Micro Devices, Inc. | Computer system for concurrent data transferring between graphic controller and unified system memory and between CPU and expansion bus device |
US6414687B1 (en) * | 1997-04-30 | 2002-07-02 | Canon Kabushiki Kaisha | Register setting-micro programming system |
US6006243A (en) | 1997-05-30 | 1999-12-21 | International Business Machines Corporation | Foldable personal computer with detachable cover section |
US5884053A (en) * | 1997-06-11 | 1999-03-16 | International Business Machines Corporation | Connector for higher performance PCI with differential signaling |
US6070211A (en) * | 1997-06-11 | 2000-05-30 | International Business Machines Corporation | Driver/receiver circuitry for enhanced PCI bus with differential signaling |
US6078503A (en) * | 1997-06-30 | 2000-06-20 | Emc Corporation | Partitionable cabinet |
US6742068B2 (en) | 1997-06-30 | 2004-05-25 | Emc Corporation | Data server with hot replaceable processing unit modules |
US5974486A (en) | 1997-08-12 | 1999-10-26 | Atmel Corporation | Universal serial bus device controller comprising a FIFO associated with a plurality of endpoints and a memory for storing an identifier of a current endpoint |
US5987543A (en) | 1997-08-29 | 1999-11-16 | Texas Instruments Incorporated | Method for communicating digital information using LVDS and synchronous clock signals |
US6356968B1 (en) | 1997-09-03 | 2002-03-12 | Cirrus Logic, Inc | Apparatus and method for transparent USB-to-1394 bridging and video delivery between a host computer system and a remote peripheral device |
US5978821A (en) | 1997-09-17 | 1999-11-02 | Automated Business Companies | Smart modular electronic machine |
US6104921A (en) | 1997-10-14 | 2000-08-15 | Marconi Communications Inc. | Communications modular docking station |
US6038921A (en) * | 1997-10-15 | 2000-03-21 | Mcmillan Company | Mass flow sensor system for fast temperature sensing responses |
US6009488A (en) | 1997-11-07 | 1999-12-28 | Microlinc, Llc | Computer having packet-based interconnect channel |
US5999476A (en) | 1997-11-21 | 1999-12-07 | Advanced Micro Devices, Inc. | Bios memory and multimedia data storage combination |
US6303875B1 (en) * | 1998-01-23 | 2001-10-16 | Kabushiki Kaisha Toshiba | IC packages replaceable by IC packages having a smaller pin count and circuit device using the same |
DE19805299A1 (en) * | 1998-02-10 | 1999-08-12 | Deutz Ag | Electronic control device |
WO1999039607A1 (en) * | 1998-02-10 | 1999-08-12 | Chung Kyun Lee | Bag with a shock absorbing unit |
US5991833A (en) | 1998-03-13 | 1999-11-23 | Compaq Computer Corporation | Computer system with bridge logic that reduces interference to CPU cycles during secondary bus transactions |
US6226700B1 (en) | 1998-03-13 | 2001-05-01 | Compaq Computer Corporation | Computer system with bridge logic that includes an internal modular expansion bus and a common master interface for internal master devices |
US6199134B1 (en) | 1998-03-13 | 2001-03-06 | Compaq Computer Corporation | Computer system with bridge logic that asserts a system management interrupt signal when an address is made to a trapped address and which also completes the cycle to the target address |
US6202115B1 (en) | 1998-04-17 | 2001-03-13 | Adaptec, Inc. | Fault tolerant redundant bus bridge systems and methods |
US6025989A (en) * | 1998-04-21 | 2000-02-15 | International Business Machines Corporation | Modular node assembly for rack mounted multiprocessor computer |
US6145085A (en) | 1998-04-30 | 2000-11-07 | Compaq Computer Corporation | Method and apparatus for providing remote access to security features on a computer network |
US6301637B1 (en) | 1998-06-08 | 2001-10-09 | Storage Technology Corporation | High performance data paths |
US6256689B1 (en) | 1998-06-11 | 2001-07-03 | Adaptec, Inc. | Bus system expandable by connection of a bus bridge circuit |
US6477593B1 (en) | 1998-06-11 | 2002-11-05 | Adaptec, Inc. | Stacked I/O bridge circuit assemblies having flexibly configurable connections |
US6266539B1 (en) | 1998-06-12 | 2001-07-24 | Cisco Technology, Inc. | Telephone docking station for personal digital assistant |
US6148357A (en) | 1998-06-17 | 2000-11-14 | Advanced Micro Devices, Inc. | Integrated CPU and memory controller utilizing a communication link having isochronous and asynchronous priority modes |
US6070214A (en) | 1998-08-06 | 2000-05-30 | Mobility Electronics, Inc. | Serially linked bus bridge for expanding access over a first bus to a second bus |
US6046571A (en) | 1998-08-21 | 2000-04-04 | Digital Equip Corp | Port replicator with secure integral battery charging cradle |
US6498361B1 (en) | 1998-08-26 | 2002-12-24 | Lightspeed Semiconductor Corporation | Design information memory for configurable integrated circuits |
US6460106B1 (en) | 1998-10-20 | 2002-10-01 | Compaq Information Technologies Group, L.P. | Bus bridge for hot docking in a portable computer system |
US6161157A (en) | 1998-10-27 | 2000-12-12 | Intel Corporation | Docking system |
US6321277B1 (en) | 1998-11-16 | 2001-11-20 | International Business Machines Corporation | Separable in-line automatic terminator for use with a data processing system bus |
US6324605B1 (en) | 1998-12-10 | 2001-11-27 | Network Technologies, Inc. | Computer and peripheral switch with USB |
US6542694B2 (en) * | 1998-12-16 | 2003-04-01 | Kabushiki Kaisha Toshiba | Optical disc for storing moving pictures with text information and apparatus using the disc |
GB2350212B (en) * | 1999-02-09 | 2003-10-08 | Adder Tech Ltd | Data routing device and system |
JP4269041B2 (en) * | 1999-03-02 | 2009-05-27 | 国立大学法人九州工業大学 | Novel cyclic tetrapeptide derivatives and their pharmaceutical uses |
US6297955B1 (en) | 1999-03-31 | 2001-10-02 | Western Digital Ventures, Inc. | Host assembly for an integrated computer module |
US6718415B1 (en) | 1999-05-14 | 2004-04-06 | Acqis Technology, Inc. | Computer system and method including console housing multiple computer modules having independent processing units, mass storage devices, and graphics controllers |
US6643777B1 (en) | 1999-05-14 | 2003-11-04 | Acquis Technology, Inc. | Data security method and device for computer modules |
US6581125B1 (en) * | 1999-05-14 | 2003-06-17 | Koninklijke Philips Electronics N.V. | PCI bridge having latency inducing serial bus |
US6900847B1 (en) | 1999-07-30 | 2005-05-31 | Chyron Corporation | Video hardware and software system |
US6564274B1 (en) * | 1999-12-17 | 2003-05-13 | Omnicluster Technologies, Inc. | Modular architecture for small computer networks |
US6188602B1 (en) * | 2000-01-25 | 2001-02-13 | Dell Usa, L.P. | Mechanism to commit data to a memory device with read-only access |
US6578103B1 (en) | 2000-02-03 | 2003-06-10 | Motorola, Inc. | Compact PCI backplane and method of data transfer across the compact PCI backplane |
US6430000B1 (en) | 2000-04-13 | 2002-08-06 | General Dynamics Information Systems, Inc. | Hermetically sealed plural disk drive housing |
US6725317B1 (en) * | 2000-04-29 | 2004-04-20 | Hewlett-Packard Development Company, L.P. | System and method for managing a computer system having a plurality of partitions |
US6452809B1 (en) | 2000-11-10 | 2002-09-17 | Galactic Computing Corporation | Scalable internet engine |
US6411506B1 (en) * | 2000-07-20 | 2002-06-25 | Rlx Technologies, Inc. | High density web server chassis system and method |
US6747878B1 (en) * | 2000-07-20 | 2004-06-08 | Rlx Technologies, Inc. | Data I/O management system and method |
US6757748B1 (en) | 2000-07-20 | 2004-06-29 | Rlx Technologies, Inc. | Modular network interface system and method |
US6325636B1 (en) | 2000-07-20 | 2001-12-04 | Rlx Technologies, Inc. | Passive midplane for coupling web server processing cards with a network interface(s) |
US6985967B1 (en) * | 2000-07-20 | 2006-01-10 | Rlx Technologies, Inc. | Web server network system and method |
US6745068B2 (en) * | 2000-11-28 | 2004-06-01 | Medtronic, Inc. | Automated template generation algorithm for implantable device |
US7123660B2 (en) | 2001-02-27 | 2006-10-17 | Jazio, Inc. | Method and system for deskewing parallel bus channels to increase data transfer rates |
US7339786B2 (en) * | 2001-03-05 | 2008-03-04 | Intel Corporation | Modular server architecture with Ethernet routed across a backplane utilizing an integrated Ethernet switch module |
US7082160B2 (en) | 2002-09-05 | 2006-07-25 | Faraday Technology Corp. | Pulse width control system for transmitting serial data |
US8102843B2 (en) | 2003-01-21 | 2012-01-24 | Emulex Design And Manufacturing Corporation | Switching apparatus and method for providing shared I/O within a load-store fabric |
US7080971B2 (en) | 2003-03-12 | 2006-07-25 | Florida Turbine Technologies, Inc. | Cooled turbine spar shell blade construction |
US7017001B2 (en) * | 2003-04-16 | 2006-03-21 | Motorola, Inc. | Compact PCI backplane and method of data transfer across the compact PCI backplane |
US7266661B2 (en) | 2004-05-27 | 2007-09-04 | Silverbrook Research Pty Ltd | Method of storing bit-pattern in plural devices |
US7243173B2 (en) | 2004-12-14 | 2007-07-10 | Rockwell Automation Technologies, Inc. | Low protocol, high speed serial transfer for intra-board or inter-board data communication |
US7480303B1 (en) | 2005-05-16 | 2009-01-20 | Pericom Semiconductor Corp. | Pseudo-ethernet switch without ethernet media-access-controllers (MAC's) that copies ethernet context registers between PCI-express ports |
US20060265361A1 (en) | 2005-05-23 | 2006-11-23 | Chu William W | Intelligent search agent |
US8230145B2 (en) | 2007-07-31 | 2012-07-24 | Hewlett-Packard Development Company, L.P. | Memory expansion blade for multiple architectures |
US20090083811A1 (en) | 2007-09-26 | 2009-03-26 | Verivue, Inc. | Unicast Delivery of Multimedia Content |
US8090971B2 (en) * | 2007-12-04 | 2012-01-03 | Synopsys, Inc. | Data recovery architecture (CDR) for low-voltage differential signaling (LVDS) video transceiver applications |
US20090157858A1 (en) | 2007-12-15 | 2009-06-18 | International Business Machines Corporation | Managing Virtual Addresses Of Blade Servers In A Data Center |
US7809869B2 (en) | 2007-12-20 | 2010-10-05 | International Business Machines Corporation | Throttling a point-to-point, serial input/output expansion subsystem within a computing system |
US7822895B1 (en) | 2007-12-28 | 2010-10-26 | Emc Corporation | Scalable CPU (central processing unit) modules for enabling in-place upgrades of electronics systems |
US7783818B1 (en) | 2007-12-28 | 2010-08-24 | Emc Corporation | Modularized interconnect between root complexes and I/O modules |
WO2009114018A1 (en) | 2008-03-14 | 2009-09-17 | Hewlett-Packard Development Company, L.P. | Blade server for increased processing capacity |
TWI439843B (en) | 2008-04-23 | 2014-06-01 | Ibm | Printed circuit assembly with automatic selection of storage configuration based on installed paddle board |
US20090292854A1 (en) | 2008-05-22 | 2009-11-26 | Khoo Ken | Use of bond option to alternate between pci configuration space |
US8739179B2 (en) | 2008-06-30 | 2014-05-27 | Oracle America Inc. | Method and system for low-overhead data transfer |
JP5272265B2 (en) | 2008-09-29 | 2013-08-28 | 株式会社日立製作所 | PCI device sharing method |
US7762818B2 (en) | 2008-12-29 | 2010-07-27 | Virtium Technology, Inc. | Multi-function module |
US8276003B2 (en) | 2009-12-11 | 2012-09-25 | International Business Machines Corporation | Reducing current draw of a plurality of solid state drives at computer startup |
US8671153B1 (en) | 2010-08-20 | 2014-03-11 | Acqis Llc | Low cost, high performance and high data throughput server blade |
US8443126B2 (en) | 2010-09-22 | 2013-05-14 | Wilocity, Ltd. | Hot plug process in a distributed interconnect bus |
US8874955B2 (en) | 2011-07-07 | 2014-10-28 | International Business Machines Corporation | Reducing impact of a switch failure in a switch fabric via switch cards |
US9043526B2 (en) | 2012-06-20 | 2015-05-26 | International Business Machines Corporation | Versatile lane configuration using a PCIe PIe-8 interface |
US9280504B2 (en) | 2012-08-24 | 2016-03-08 | Intel Corporation | Methods and apparatus for sharing a network interface controller |
US9491050B2 (en) | 2013-07-31 | 2016-11-08 | Dell Products Lp | Systems and methods for infrastructure template provisioning in modular chassis systems |
US9148155B1 (en) * | 2014-04-08 | 2015-09-29 | Freescale Semiconductor, Inc. | Clock distribution architecture for integrated circuit |
-
2000
- 2000-05-12 US US09/569,758 patent/US6718415B1/en not_active Expired - Fee Related
-
2004
- 2004-02-03 US US10/772,214 patent/US7099981B2/en not_active Expired - Fee Related
-
2005
- 2005-03-31 US US11/097,694 patent/US7363415B2/en not_active Expired - Fee Related
- 2005-04-08 US US11/104,169 patent/US7328297B2/en not_active Expired - Fee Related
- 2005-04-22 US US11/113,401 patent/US7146446B2/en not_active Expired - Fee Related
- 2005-05-04 US US11/124,851 patent/US7363416B2/en not_active Expired - Lifetime
- 2005-06-24 US US11/166,656 patent/US7376779B2/en not_active Expired - Lifetime
-
2008
- 2008-03-18 US US12/077,503 patent/US7676624B2/en not_active Expired - Fee Related
-
2009
- 2009-02-11 US US12/378,197 patent/US7818487B2/en not_active Expired - Fee Related
- 2009-07-16 US US12/504,534 patent/US8041873B2/en not_active Expired - Fee Related
-
2011
- 2011-04-15 US US13/087,912 patent/US8234436B2/en not_active Expired - Fee Related
-
2012
- 2012-07-27 US US13/560,924 patent/US8626977B2/en not_active Expired - Fee Related
- 2012-10-10 US US13/649,084 patent/US8977797B2/en not_active Expired - Fee Related
-
2013
- 2013-01-17 US US13/744,287 patent/US8756359B2/en not_active Expired - Fee Related
-
2014
- 2014-03-13 US US14/209,922 patent/US9529768B2/en not_active Expired - Lifetime
- 2014-10-09 US US14/511,093 patent/US9703750B2/en not_active Expired - Lifetime
-
2016
- 2016-02-26 US US15/055,436 patent/US9529769B2/en active Active
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996585A (en) | 1974-06-11 | 1976-12-07 | International Business Machines Corporation | Video generator circuit for a dynamic digital television display |
US4623964A (en) | 1981-12-23 | 1986-11-18 | International Business Machines Corporation | Homogeneous hierarchial computer business system |
US4700362A (en) | 1983-10-07 | 1987-10-13 | Dolby Laboratories Licensing Corporation | A-D encoder and D-A decoder system |
US5056141A (en) | 1986-06-18 | 1991-10-08 | Dyke David W | Method and apparatus for the identification of personnel |
US4872091A (en) | 1986-07-21 | 1989-10-03 | Ricoh Company, Ltd. | Memory cartridge |
US4769764A (en) | 1986-08-11 | 1988-09-06 | Isaac Levanon | Modular computer system with portable travel unit |
US4890282A (en) | 1988-03-08 | 1989-12-26 | Network Equipment Technologies, Inc. | Mixed mode compression for data transmission |
US5630057A (en) | 1988-06-14 | 1997-05-13 | Progressive Technology Inc. | Secure architecture and apparatus using an independent computer cartridge |
US4939735A (en) | 1988-07-21 | 1990-07-03 | International Business Machines Corporation | Information handling system having serial channel to control unit link |
US4918572A (en) | 1988-12-27 | 1990-04-17 | Motorola Computer X, Inc. | Modular electronic package |
US5319771A (en) | 1989-05-10 | 1994-06-07 | Seiko Epson Corporation | CPU clock generator having a low frequency output during I/O operations and a high frequency output during memory operations |
US5086499A (en) | 1989-05-23 | 1992-02-04 | Aeg Westinghouse Transportation Systems, Inc. | Computer network for real time control with automatic fault identification and by-pass |
US5606717A (en) | 1990-04-18 | 1997-02-25 | Rambus, Inc. | Memory circuitry having bus interface for receiving information in packets and access time registers |
US5251097A (en) | 1990-06-11 | 1993-10-05 | Supercomputer Systems Limited Partnership | Packaging architecture for a highly parallel multiprocessor system |
US5659773A (en) | 1990-11-14 | 1997-08-19 | International Business Machines Corporation | Personal computer with input/output subsystem |
US5293497A (en) | 1991-03-13 | 1994-03-08 | Traveling Software, Inc. | Cable for transmitting eight-bit parallel data |
US5278509A (en) | 1992-02-03 | 1994-01-11 | At&T Bell Laboratories | Method for monitoring battery discharge by determining the second derivative of battery voltage over time |
US5355391A (en) | 1992-03-06 | 1994-10-11 | Rambus, Inc. | High speed bus system |
US5680126A (en) | 1992-06-29 | 1997-10-21 | Elonex I.P. Holdings, Ltd. | Modular portable computer |
US5600800A (en) | 1992-06-29 | 1997-02-04 | Elonex I.P. Holdings, Ltd. | Personal computer system having a docking bay and a hand-held portable computer adapted to dock in the docking bay by a full-service parallel bus |
US5278730A (en) | 1992-06-29 | 1994-01-11 | Cordata, Inc. | Modular notebook computer having a planar array of module bays |
US5689654A (en) | 1992-06-29 | 1997-11-18 | Elonex F.P. Holdings, Ltd. | Digital assistant system including a host computer with a docking bay for the digital assistant wherein a heat sink is moved into contact with a docked digital assistant for cooling the digital assistant |
US5539616A (en) | 1992-06-29 | 1996-07-23 | Elonex Technologies, Inc. | Modular portable computer |
US5640302A (en) | 1992-06-29 | 1997-06-17 | Elonex Ip Holdings | Modular portable computer |
US5331509A (en) | 1992-06-29 | 1994-07-19 | Cordata, Inc. | Modular notebook computer having a planar array of module bays and a pivotally attached flat-panel display |
US5317477A (en) | 1992-06-30 | 1994-05-31 | International Business Machines Corporation | High density interconnection assembly |
US5311397A (en) | 1992-08-06 | 1994-05-10 | Logistics Management Inc. | Computer with modules readily replaceable by unskilled personnel |
US5638521A (en) | 1992-10-12 | 1997-06-10 | Leunig Gmbh | Apparatus using a parallel interface for data transfer between a plurality of computers, as well as for transfer of data from computers to shared peripheral devices |
US5428806A (en) | 1993-01-22 | 1995-06-27 | Pocrass; Alan L. | Computer networking system including central chassis with processor and input/output modules, remote transceivers, and communication links between the transceivers and input/output modules |
US5463742A (en) | 1993-03-05 | 1995-10-31 | Hitachi Computer Products (America), Inc. | Personal processor module and docking station for use therewith |
US5721837A (en) | 1993-10-28 | 1998-02-24 | Elonex I.P. Holdings, Ltd. | Micro-personal digital assistant including a temperature managed CPU |
US5436857A (en) | 1993-11-22 | 1995-07-25 | Ncr Corporation | Personal computer module system and method of using |
US5550710A (en) | 1994-09-09 | 1996-08-27 | Hitachi Computer Products (America), Inc. | Packaging and cooling structure for the personal processor module |
US5550861A (en) | 1994-09-27 | 1996-08-27 | Novalink Technologies, Inc. | Modular PCMCIA modem and pager |
US5752080A (en) | 1994-12-22 | 1998-05-12 | Intel Corporation | Cable terminal unit using bit set for selectively enabling a plurality of hardware functions with some functions having a plurality of selectively enabled hardware functions |
US5608608A (en) | 1995-01-04 | 1997-03-04 | International Business Machines Corporation | Cartridge-based design for portable and fixed computers |
US5603044A (en) | 1995-02-08 | 1997-02-11 | International Business Machines Corporation | Interconnection network for a multi-nodal data processing system which exhibits incremental scalability |
US5673174A (en) | 1995-03-23 | 1997-09-30 | Nexar Technologies, Inc. | System permitting the external replacement of the CPU and/or DRAM SIMMs microchip boards |
US5578940A (en) | 1995-04-04 | 1996-11-26 | Rambus, Inc. | Modular bus with single or double parallel termination |
US5663661A (en) | 1995-04-04 | 1997-09-02 | Rambus, Inc. | Modular bus with single or double parallel termination |
US5977989A (en) | 1995-05-24 | 1999-11-02 | International Business Machines Corporation | Method and apparatus for synchronizing video and graphics data in a multimedia display system including a shared frame buffer |
US5848249A (en) | 1995-06-15 | 1998-12-08 | Intel Corporation | Method and apparatus for enabling intelligent I/O subsystems using PCI I/O devices |
US5745733A (en) | 1995-08-09 | 1998-04-28 | Ncr Corporation | Computer system including a portable portion and a stationary portion providing both uni-processing and multiprocessing capabilities |
US5764924A (en) | 1995-08-24 | 1998-06-09 | Ncr Corporation | Method and apparatus for extending a local PCI bus to a remote I/O backplane |
US5721842A (en) | 1995-08-25 | 1998-02-24 | Apex Pc Solutions, Inc. | Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch |
US6011546A (en) | 1995-11-01 | 2000-01-04 | International Business Machines Corporation | Programming structure for user interfaces |
US5960213A (en) | 1995-12-18 | 1999-09-28 | 3D Labs Inc. Ltd | Dynamically reconfigurable multi-function PCI adapter device |
US5809538A (en) | 1996-02-07 | 1998-09-15 | General Instrument Corporation | DRAM arbiter for video decoder |
US5819050A (en) | 1996-02-29 | 1998-10-06 | The Foxboro Company | Automatically configurable multi-purpose distributed control processor card for an industrial control system |
US6393561B1 (en) | 1996-04-11 | 2002-05-21 | Hitachi, Ltd. | Disk drive computer with programmable nonvolatile memory capable of rewriting a control program of the disk drive |
US5941965A (en) | 1996-05-16 | 1999-08-24 | Electronics Accessory Specialists International, Inc. | Universal docking station |
US5815681A (en) | 1996-05-21 | 1998-09-29 | Elonex Plc Ltd. | Integrated network switching hub and bus structure |
US6052513A (en) | 1996-06-05 | 2000-04-18 | Compaq Computer Corporation | Multi-threaded bus master |
US5968144A (en) | 1996-06-27 | 1999-10-19 | Vlsi Technology, Inc. | System for supporting DMA I/O device using PCI bus and PCI-PCI bridge comprising programmable DMA controller for request arbitration and storing data transfer information |
US5795228A (en) | 1996-07-03 | 1998-08-18 | Ridefilm Corporation | Interactive computer-based entertainment system |
US5774704A (en) | 1996-07-29 | 1998-06-30 | Silicon Graphics, Inc. | Apparatus and method for dynamic central processing unit clock adjustment |
US6069615A (en) | 1996-08-19 | 2000-05-30 | International Business Machines Corporation | Single pointing device/keyboard for multiple computers |
US5948047A (en) | 1996-08-29 | 1999-09-07 | Xybernaut Corporation | Detachable computer structure |
US6029183A (en) | 1996-08-29 | 2000-02-22 | Xybernaut Corporation | Transferable core computer |
US6038621A (en) | 1996-11-04 | 2000-03-14 | Hewlett-Packard Company | Dynamic peripheral control of I/O buffers in peripherals with modular I/O |
US6003105A (en) | 1996-11-21 | 1999-12-14 | Hewlett-Packard Company | Long-haul PCI-to-PCI bridge |
US5859669A (en) | 1996-11-26 | 1999-01-12 | Texas Instruments Incorporated | System for encoding an image control signal onto a pixel clock signal |
US5826048A (en) | 1997-01-31 | 1998-10-20 | Vlsi Technology, Inc. | PCI bus with reduced number of signals |
US6366951B1 (en) | 1997-02-03 | 2002-04-02 | Curt A. Schmidt | Distributed processing system where a management computer automatically connects remote reduced-capability workstations with centralized computing modules |
US6002442A (en) | 1997-04-01 | 1999-12-14 | Aitech International Corp. | Method and apparatus for reducing flickers in video signal conversions |
US5907566A (en) | 1997-05-29 | 1999-05-25 | 3Com Corporation | Continuous byte-stream encoder/decoder using frequency increase and cyclic redundancy check |
US6425033B1 (en) | 1997-06-20 | 2002-07-23 | National Instruments Corporation | System and method for connecting peripheral buses through a serial bus |
US6016252A (en) | 1997-06-30 | 2000-01-18 | Emc Corporation | Cable management system |
US5971804A (en) | 1997-06-30 | 1999-10-26 | Emc Corporation | Backplane having strip transmission line ethernet bus |
US6157534A (en) | 1997-06-30 | 2000-12-05 | Emc Corporation | Backplane having strip transmission line ethernet bus |
US6163464A (en) | 1997-08-08 | 2000-12-19 | Hitachi, Ltd. | Apparatus for interconnecting logic boards |
US5999952A (en) | 1997-08-15 | 1999-12-07 | Xybernaut Corporation | Core computer unit |
US6304895B1 (en) | 1997-08-22 | 2001-10-16 | Apex Inc. | Method and system for intelligently controlling a remotely located computer |
US6028643A (en) | 1997-09-03 | 2000-02-22 | Colorgraphic Communications Corporation | Multiple-screen video adapter with television tuner |
US6175490B1 (en) | 1997-10-01 | 2001-01-16 | Micron Electronics, Inc. | Fault tolerant computer system |
US5982363A (en) | 1997-10-24 | 1999-11-09 | General Instrument Corporation | Personal computer-based set-top converter for television services |
US6040792A (en) | 1997-11-19 | 2000-03-21 | In-System Design, Inc. | Universal serial bus to parallel bus signal converter and method of conversion |
US6088224A (en) | 1997-12-03 | 2000-07-11 | Emc Corporation | Cabinet for storing a plurality of processing unit modules |
US6202169B1 (en) | 1997-12-31 | 2001-03-13 | Nortel Networks Corporation | Transitioning between redundant computer systems on a network |
US5991844A (en) | 1998-04-17 | 1999-11-23 | Adaptec, Inc. | Redundant bus bridge systems and methods using selectively synchronized clock signals |
US6216185B1 (en) | 1998-05-01 | 2001-04-10 | Acqis Technology, Inc. | Personal computer peripheral console with attached computer module |
US6260155B1 (en) | 1998-05-01 | 2001-07-10 | Quad Research | Network information server |
US6345330B2 (en) | 1998-05-01 | 2002-02-05 | Acqis Technology, Inc. | Communication channel and interface devices for bridging computer interface buses |
US6332180B1 (en) | 1998-06-10 | 2001-12-18 | Compaq Information Technologies Group, L.P. | Method and apparatus for communication in a multi-processor computer system |
US6088752A (en) | 1998-08-06 | 2000-07-11 | Mobility Electronics, Inc. | Method and apparatus for exchanging information between buses in a portable computer and docking station through a bridge employing a serial link |
US6378009B1 (en) | 1998-08-25 | 2002-04-23 | Avocent Corporation | KVM (keyboard, video, and mouse) switch having a network interface circuit coupled to an external network and communicating in accordance with a standard network protocol |
US6321335B1 (en) | 1998-10-30 | 2001-11-20 | Acqis Technology, Inc. | Password protected modular computer method and device |
US6311268B1 (en) | 1998-11-06 | 2001-10-30 | Acqis Technology, Inc. | Computer module device and method for television use |
US5991163A (en) | 1998-11-12 | 1999-11-23 | Nexabit Networks, Inc. | Electronic circuit board assembly and method of closely stacking boards and cooling the same |
US6317329B1 (en) | 1998-11-13 | 2001-11-13 | Hewlett-Packard Company | Data storage module alignment system and method |
US6496361B2 (en) | 1998-11-16 | 2002-12-17 | Acer Incorporated | Embedded CMOS camera in a laptop computer |
US6401124B1 (en) | 1998-12-16 | 2002-06-04 | Mustek Systems Inc. | Network peripheral sharing system |
US6314522B1 (en) | 1999-01-13 | 2001-11-06 | Acqis Technology, Inc. | Multi-voltage level CPU module |
US6381602B1 (en) | 1999-01-26 | 2002-04-30 | Microsoft Corporation | Enforcing access control on resources at a location other than the source location |
US6208522B1 (en) | 1999-02-12 | 2001-03-27 | Compaq Computer Corp. | Computer chassis assembly with a single center pluggable midplane board |
US6289376B1 (en) | 1999-03-31 | 2001-09-11 | Diva Systems Corp. | Tightly-coupled disk-to-CPU storage server |
US6453344B1 (en) | 1999-03-31 | 2002-09-17 | Amdahl Corporation | Multiprocessor servers with controlled numbered of CPUs |
US6452790B1 (en) | 1999-07-07 | 2002-09-17 | Acquis Technology, Inc. | Computer module device and method |
US6452789B1 (en) | 2000-04-29 | 2002-09-17 | Hewlett-Packard Company | Packaging architecture for 32 processor server |
Non-Patent Citations (49)
Title |
---|
"Features Chart", (Feb. 1, 1997) <<http://www.lantimes.com/testing/97feb/702b072a.html>>, downloaded from web on Jun. 23, 2004, 3 pgs. |
Agerwala, T., "SP2 System Architecture" Systems Journal Scalable Parallel Computing, vol. 34, No. 2, 1995. |
Bernal, Carlos, product brochure entitled: "PowerSMP Series 4000", (Mar. 1998) <<http://www/winnetmag.com/Windows/Article/ArticleID/3095//3095.html, downloaded from web on Jun. 22, 2004, 2 pgs. |
CETIA Brochure "CETIA Powerengine CVME 603e"pp. 1-6 downloaded from the internet at http://www.cetia.com/ProductAddOns/wp-47-01.pdf on Feb. 15, 2006. |
Cragle, Jonathan, "Density System 1100", May 1999) <<http://www.winnetmag.com/Windows/Article/ArticleID/5199/5199.html>>, downloaded from web on Jun. 21, 2004, 4 pgs. |
Crystal Advertisement for "QuickConnect(R) Cable Management", ( (C) 2000-2004) <<http://www.crystalpc.com/products/quickconnect.asp>> downloaded from web on Jun. 17, 2004, 4 pgs. |
Crystal Advertisement for "Rackmount Computers", ( (C) 2000-2004) <<http://www.crystalpc.com/products/roservers.asp>>, downloaded from web on Jun. 17, 2004, 8 pgs. |
Cubix Product Brochure entitled, "Density System", ( (C) 2000) <<http://64.173.211.7/support/techinfo/system/density10.htm>> downloaded from web on Jun. 22, 2004, 3 pgs. |
Cubix Product Brochure entitled, "Density System, Technical Specifications", ( (C) 2000) <<http://64.173.211.7/support/techinfo/system/density/info/spec.htm>> downloaded from web on Jun. 22, 2004, 2 pgs. |
Cubix Product Manual entitled, "Density System", Chapter 1-Introduction, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/density/Chap-1.htm>> downloaded from web on Jun. 22, 2004, 5 pgs. |
Cubix Product Manual entitled, "Density System", Chapter 2-Installation, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/Chap-2.htm>> downloaded from web on Jun. 22, 2004, 9 pgs. |
Cubix Product Manual entitled, "Density System", Chapter 3-Operation, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/density/Chap-3.htm>> downloaded from web on Jun. 22, 2004, 4 pgs. |
Cubix Product Manual entitled, "Density System", Chapter 4-Maintenance and Repair, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/density/Chap-3.htm>> downloaded from web on Jun. 22, 2004, 5 pgs. |
Cubix, "Click on the front panel that matches your system", ( (C) 2000) <<http://64.173.211.7/support/techinfo/system/density/density.htm>>, downloaded from web on Jun. 22, 2004, 1 pg. |
Cubix, "DP 6200 'D' Series Plug-In Computers" <<http://64.173.211.7/support/techinfo/bc/dp/6200d/intro.htm>>, downloaded from web on Jun. 22, 2004, 3 pgs. |
Cubix, "Installing DP or SP Series Boards" ( (C) 2000) <<http://64.173.211.7/support/techinfo/bc/dp/6200d/intro.htm>>, downloaded from web Jun. 22, 2004, 2 pgs. |
Cubix, "Multiplexing Video, Keyboard & Mouse with Multiple Density Systems", ( (C) 2000) <<http://64.173.211.7/support/techinfo/system/density/info/vkm-mux.htm>>, downloaded from web on Jun. 22, 2004, 2 pgs. |
Cubix, "Powering On/Off or Resetting Plug-In Computers in an Density System", ( (C) 2000) <<http://64.173.211.7/support/techinfo/system/density/info/power.htm>>, downloaded from web on Jun. 22, 2004, 2 pgs. |
Cubix, "SP 5200 Series" Chapter 1-Introduction, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/sp5200/chap-1.htm>>, downloaded from web on Jun. 22, 2004, 3 pgs. |
Cubix, "SP 5200 Series" Chapter 2-Switches & Jumpers, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/sp5200/chap-3.htm>>downloaded from web on Jun. 22, 2004, 3 pgs. |
Cubix, "SP 5200 Series" Chapter 3-Installation, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/sp5200/chap-2.htm>>downloaded from web on Jun. 22, 2004, 4 pgs. |
Cubix, "SP 5200 Series" Chapter 4-Technical Reference, ( (C) 2000) <<http://64.173.211.7/support/techinfo/manuals/sp5200/chap-4.htm>>, downloaded from web on Jun. 22, 2004, 3 pgs. |
Cubix, "SP 5200XS Series Plug-in Computers", ( (C) 2000) <<http://64.173.211.7/support/techinfo/bc/sp5200xs/intro.htm>>, downloaded from web on Jun. 22, 2004, 2 pgs. |
Cubix, "SP 5200XS Series Technical Specifications", ( (C) 2000) <<http://64.173.211.7/support/techinfo/bc/sp5200xs/spec.htm>>, downloaded from web on Jun. 22, 2004, 2 pgs. |
Cubix, "What are Groups?", ( (C) 2000) <<http://64.173.211.7/support/techinfo/system/density/info/groups.htm>>, downloaded from web on Jun. 22, 2004, 3pgs. |
eBay Advertisement for "Total IT Group Network Engines", <<http://cgi.ebay.com/we/eBayISAPI.dll?ViewItem=5706388046&sspagename+STRK%3AMDBI%3AMEBI3AIT&rd=1>>, downloaded from web on Jun. 25, 2004, 1 pg. |
Feldman, Jonathan, "Rack Steady: The Four Rack-Mounted Servers That Rocked Our Network", <<http://www.networkcomputing.com/shared/printArticle.jhtml?article=/910/910r3side1.htm... >> Jun. 23, 2004, 3 pgs. |
Fetters, Dave, "Cubix High-Density Server Leads the Way With Standout Management Software", (Feb. 8, 1999) <<http://www.nwc.com/shared/printArticle.jhtml?article=/1003/1003r3full.html&pub=nwc>>, downloaded from web on Jun. 23, 2004, 5 pgs. |
Gardner, Michael and Null, Christopher, "A Server Condominium", <<http://www.lantimes.com/testing/98jun/806a042a.html>>, Jun. 23, 2004, 3 pgs. |
Harrison, Dave, "VME in the Military: The M1A2 Main Battle Tank Upgrade Relies on COTS VME" <<http://www.dy4.com>>, (Feb. 9, 1998), pp. 1-34. |
Internet Telephone Roundup, "Industrial Computers", <<http://www.tmcnet.com/articles/itmag/0499/0499roundup.htm>>, downloaded from web on Jun. 23, 2004, 5 pgs. |
MPL Brochure "1<SUP>st </SUP>Rugged All in One industrial 486FDX-133 MHz PC" pp. 1-2, downloaded from the internaet at http://www.mpl.ch/DOCs/ds48600.pdf on Feb. 15, 2006. |
MPL Brochure "IPM 486 Brochure/IPM5 User Manual" pp. 1-6 downloaded from the internet at http://www.mpl.ch/DOCs/u48600xd.pdf on Feb. 15, 2006. |
MPL, "The First Rugged All-in-One Industrial 486FDX-133 MHz PC", IPM486/IPM5 User Manual, 1998, pp. 1-24. |
Press Release: Hiawatha, Iowa, (Mar. 1, 1997) entitled "Crystal Group Products Offer Industrial PCs with Built-in Flexibility", <<http://www.crystalpc.com/news/pressreleases/prodpr.asp>>, downloaded from web on May 14, 2004, 2 pgs. |
Press Release: Kanata, Ontario, Canada, (Apr. 1998) entitled "Enhanced COTS SBC from DY 4 Systems features 166MHz Pentium(TM) Processor" <<http://www.realtime-info.be/VPR/layout/display/pr.asp?PRID=363>>, 2 pgs. |
Product Brochure enetitled "SVME/DM-192 Pentium(R) II Single Board Computer"(Jun. 1999) pp. 1-9. |
Product Brochure entitled "System 8000", <<http://www.bomara.com/Eversys/briefDefault.htm>>, downloaded from web on Jun. 22, 2004, 4 pgs. |
Product Brochure entitled: "ERS/FT II System", ( (C) 2000) <<http://64.173.211.7/support/techinfo/system/ersft2/ersft2.htm>>, downloaded from web on Jun. 22, 2004, 4 pgs. |
Product Manual entitled: "ERS II and ERS/FT II", Chap. 3, System Components, <<http://64.173.211.7/support/techinfo/manuals/ers2/ers2-c3.htm>>, downloaded from the web on Jun. 22, 2004, 21 pgs. |
Product Manual entitled: "ERS II and ERS/FT II", Chap. 6, Component Installation, <<http://64.173.211.7/support/techinfo/manuals/ers2/ers2-c6.htm>>, downloaded from web on Jun. 22, 2004, 18 pgs. |
Snyder, Joel "Better Management through consolidation" pp. 1-6 downloaded from the internet at http://www.opus1.com/www/jms/nw-con-0818rev.html. |
Williams, Dennis, "ChatCom Inc. Chatterbox", (Feb. 17, 1997) <<http://www.lantimes.com/testing/97feb/702b066a.html>> downloaded from web on Jun. 23, 2004, 3 pgs. |
Williams, Dennis, "Consolidated Servers", (Feb. 17, 1997) <<http://www.lantimes.com/testing/97compare/pcconsol.html>> downloaded from web on Jun. 23, 2004, 2 pgs. |
Williams, Dennis, "Cubix Corp. ERS/FT II", (Feb. 17, 1997) <<http://www.lantimes.com/testing/97feb/702b068b.html>> downloaded from web on Jun. 23, 2004, 4 pgs. |
Williams, Dennis, "EVERSYS Corp. System 8000", (Feb. 17, 1997) <<http://www.lantimes.com/testing/97feb/702b70b.html>> downloaded from web on Jun. 22, 2004, 4 pgs. |
Williams, Dennis, "Executive Summary: Consolidate Now", (Feb. 17, 1997) <<http://www.lantimes.com/testing/97feb/702b064a.html>> downloaded from web on Jun. 23, 2004, 2 pgs. |
Williams, Dennis, "Top Scores for Useability and Openness", (Feb. 17, 1997) <<http://www.lantimes.com/testing/97feb/702b064a.html>> downloaded from web on Jun. 23, 2004, 2 pgs. |
Windows Magazine, "Cubix PowerSMP Series 4000", Nov. 1997, <http://<www.techweb.com/winmag/library/1997/1101/ntent008.htm>> downloaded from the web on Jun. 22, 2004, p. NT07. |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE41294E1 (en) | 1998-10-30 | 2010-04-27 | Acqis Techonology, Inc. | Password protected modular computer method and device |
USRE44933E1 (en) | 1998-10-30 | 2014-06-03 | Acqis Llc | Password protected modular computer method and device |
USRE43119E1 (en) | 1998-10-30 | 2012-01-17 | Acqis Llc | Password protected modular computer method and device |
USRE42814E1 (en) | 1998-10-30 | 2011-10-04 | Acqis Technology, Inc. | Password protected modular computer method and device |
USRE41961E1 (en) | 1998-10-30 | 2010-11-23 | Acqis Technology, Inc. | Password protected modular computer method and device |
USRE41076E1 (en) | 1998-10-30 | 2010-01-12 | Acqis Technology, Inc. | Password protected modular computer method and device |
USRE44739E1 (en) | 1999-05-14 | 2014-01-28 | Acqis Llc | Data security method and device for computer modules |
US8234436B2 (en) | 1999-05-14 | 2012-07-31 | Acqis Llc | Computer system including peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US7676624B2 (en) | 1999-05-14 | 2010-03-09 | Acqis Llc | Multiple module computer system and method including differential signal channel comprising undirectional serial bit channels |
US7818487B2 (en) | 1999-05-14 | 2010-10-19 | Acqis Llc | Multiple module computer system and method using differential signal channel including unidirectional, serial bit channels |
USRE46947E1 (en) | 1999-05-14 | 2018-07-10 | Acqis Llc | Data security method and device for computer modules |
US9703750B2 (en) | 1999-05-14 | 2017-07-11 | Acqis Llc | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
US8626977B2 (en) | 1999-05-14 | 2014-01-07 | Acqis Llc | Computer system including CPU or peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
US9529768B2 (en) | 1999-05-14 | 2016-12-27 | Acqis Llc | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
US7328297B2 (en) * | 1999-05-14 | 2008-02-05 | Acqis Technology, Inc. | Computer system utilizing multiple computer modules functioning independently |
US8041873B2 (en) | 1999-05-14 | 2011-10-18 | Acqis Llc | Multiple module computer system and method including differential signal channel comprising unidirectional serial bit channels to transmit encoded peripheral component interconnect bus transaction data |
USRE42984E1 (en) | 1999-05-14 | 2011-11-29 | Acqis Technology, Inc. | Data security method and device for computer modules |
US9529769B2 (en) | 1999-05-14 | 2016-12-27 | Acqis Llc | Computer system including CPU or peripheral bridge directly connected to a low voltage differential signal channel that communicates serial bits of a peripheral component interconnect bus transaction in opposite directions |
USRE43171E1 (en) | 1999-05-14 | 2012-02-07 | Acqis Llc | Data security method and device for computer modules |
US20050174729A1 (en) * | 1999-05-14 | 2005-08-11 | Acqis Technology, Inc. | Multiple module computer system and method |
USRE43602E1 (en) | 1999-05-14 | 2012-08-21 | Acqis Llc | Data security method and device for computer modules |
US8977797B2 (en) | 1999-05-14 | 2015-03-10 | Acqis Llc | Method of improving peripheral component interface communications utilizing a low voltage differential signal channel |
USRE44654E1 (en) | 1999-05-14 | 2013-12-17 | Acqis Llc | Data security method and device for computer modules |
USRE45140E1 (en) | 1999-05-14 | 2014-09-16 | Acqis Llc | Data security method and device for computer modules |
US8756359B2 (en) | 1999-05-14 | 2014-06-17 | Acqis Llc | Computer system including CPU or peripheral bridge to communicate serial bits of peripheral component interconnect bus transaction and low voltage differential signal channel to convey the serial bits |
USRE44468E1 (en) | 1999-05-14 | 2013-08-27 | Acqis Llc | Data security method and device for computer modules |
US8302100B2 (en) | 2000-01-18 | 2012-10-30 | Galactic Computing Corporation Bvi/Bc | System for balance distribution of requests across multiple servers using dynamic metrics |
US8429049B2 (en) | 2000-07-17 | 2013-04-23 | Galactic Computing Corporation Bvi/Ibc | Method and system for allocating computing resources |
US8538843B2 (en) * | 2000-07-17 | 2013-09-17 | Galactic Computing Corporation Bvi/Bc | Method and system for operating an E-commerce service provider |
US7844513B2 (en) | 2000-07-17 | 2010-11-30 | Galactic Computing Corporation Bvi/Bc | Method and system for operating a commissioned e-commerce service prover |
US20020091854A1 (en) * | 2000-07-17 | 2002-07-11 | Smith Philip S. | Method and system for operating a commissioned e-commerce service prover |
US8316131B2 (en) | 2000-11-10 | 2012-11-20 | Galactic Computing Corporation Bvi/Bc | Method and system for providing dynamic hosted service management across disparate accounts/sites |
US20070005693A1 (en) * | 2005-06-29 | 2007-01-04 | Microsoft Corporation | Multi-console workstations concurrently supporting multiple users |
US8015331B2 (en) * | 2005-06-29 | 2011-09-06 | Microsoft Corporation | Multi-console workstations concurrently supporting multiple users |
USRE48365E1 (en) | 2006-12-19 | 2020-12-22 | Mobile Motherboard Inc. | Mobile motherboard |
US8423697B2 (en) * | 2008-04-24 | 2013-04-16 | American Reliance, Inc. | Device interface module |
US20090271552A1 (en) * | 2008-04-24 | 2009-10-29 | Pyk Magnus | Device interface module |
US7836237B2 (en) * | 2008-06-02 | 2010-11-16 | First International Computer, Inc. | Changeable CPU module apparatus for a computer |
US20100100200A1 (en) * | 2008-10-16 | 2010-04-22 | Jason Seung-Min Kim | Discovery of connections utilizing a control bus |
US8275914B2 (en) * | 2008-10-16 | 2012-09-25 | Silicon Image, Inc. | Discovery of connections utilizing a control bus |
US8671153B1 (en) | 2010-08-20 | 2014-03-11 | Acqis Llc | Low cost, high performance and high data throughput server blade |
US11044141B2 (en) | 2019-07-09 | 2021-06-22 | Phillip N Hughes | High density, high availability compute system |
Also Published As
Publication number | Publication date |
---|---|
US8626977B2 (en) | 2014-01-07 |
US20130097352A1 (en) | 2013-04-18 |
US20040177200A1 (en) | 2004-09-09 |
US20140195713A1 (en) | 2014-07-10 |
US7328297B2 (en) | 2008-02-05 |
US20050246469A1 (en) | 2005-11-03 |
US6718415B1 (en) | 2004-04-06 |
US7376779B2 (en) | 2008-05-20 |
US20150026373A1 (en) | 2015-01-22 |
US7363415B2 (en) | 2008-04-22 |
US20050195575A1 (en) | 2005-09-08 |
US9703750B2 (en) | 2017-07-11 |
US7818487B2 (en) | 2010-10-19 |
US8234436B2 (en) | 2012-07-31 |
US20130198430A1 (en) | 2013-08-01 |
US20050204083A1 (en) | 2005-09-15 |
US20160179744A1 (en) | 2016-06-23 |
US20110208893A1 (en) | 2011-08-25 |
US8756359B2 (en) | 2014-06-17 |
US20090157939A1 (en) | 2009-06-18 |
US7676624B2 (en) | 2010-03-09 |
US9529769B2 (en) | 2016-12-27 |
US7363416B2 (en) | 2008-04-22 |
US8977797B2 (en) | 2015-03-10 |
US20050174729A1 (en) | 2005-08-11 |
US20080244149A1 (en) | 2008-10-02 |
US20130024596A1 (en) | 2013-01-24 |
US7099981B2 (en) | 2006-08-29 |
US20100174844A1 (en) | 2010-07-08 |
US8041873B2 (en) | 2011-10-18 |
US9529768B2 (en) | 2016-12-27 |
US20050182882A1 (en) | 2005-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7146446B2 (en) | Multiple module computer system and method | |
US6216185B1 (en) | Personal computer peripheral console with attached computer module | |
USRE41076E1 (en) | Password protected modular computer method and device | |
US5854904A (en) | Object-oriented modular electronic component system | |
US6314522B1 (en) | Multi-voltage level CPU module | |
US5577205A (en) | Chassis for a multiple computer system | |
US5550710A (en) | Packaging and cooling structure for the personal processor module | |
US5941963A (en) | System and method for interconnection of computer peripherals via multiple interfaces | |
US20020097555A1 (en) | Small form factor computer | |
WO1994022088A1 (en) | Multiple computer system | |
JPH10111765A (en) | Multi-conductor cable architecture and interface for separate personal computer | |
WO2005124513A1 (en) | Computer apparatus for interconnecting an industry standard computer to a proprietary backplane and its associated peripherals | |
US20040066620A1 (en) | Device to allow computers to adapt to multiple docking stations | |
Weiss et al. | Extending PCI performance beyond the desktop | |
WO2001037105A1 (en) | Device bay system with surprise removal prevention for supporting and controlling usb and ieee 1394 peripheral devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACQIS TECHNOLOGY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHU, WILLIAM W.Y.;REEL/FRAME:022460/0074 Effective date: 20090326 |
|
AS | Assignment |
Owner name: ACQIS LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACQIS TECHNOLOGY, INC.;REEL/FRAME:022460/0848 Effective date: 20090330 Owner name: ACQIS LLC,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACQIS TECHNOLOGY, INC.;REEL/FRAME:022460/0848 Effective date: 20090330 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
RR | Request for reexamination filed |
Effective date: 20100319 |
|
SULP | Surcharge for late payment | ||
FPB1 | Reexamination decision cancelled all claims | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20141205 |