US8470586B2 - Processing polynucleotide-containing samples - Google Patents
Processing polynucleotide-containing samples Download PDFInfo
- Publication number
- US8470586B2 US8470586B2 US11/579,353 US57935305A US8470586B2 US 8470586 B2 US8470586 B2 US 8470586B2 US 57935305 A US57935305 A US 57935305A US 8470586 B2 US8470586 B2 US 8470586B2
- Authority
- US
- United States
- Prior art keywords
- microfluidic device
- liquid
- particles
- sample
- processing region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/433—Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/433—Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
- B01F25/4331—Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/52—Containers specially adapted for storing or dispensing a reagent
- B01L3/523—Containers specially adapted for storing or dispensing a reagent with means for closing or opening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
- C12N15/101—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0019—Valves using a microdroplet or microbubble as the valve member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0032—Constructional types of microvalves; Details of the cutting-off member using phase transition or influencing viscosity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0036—Operating means specially adapted for microvalves operated by temperature variations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0042—Electric operating means therefor
- F16K99/0044—Electric operating means therefor using thermo-electric means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/16—Reagents, handling or storing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0672—Integrated piercing tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0867—Multiple inlets and one sample wells, e.g. mixing, dilution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/087—Multiple sequential chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0442—Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0481—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0633—Valves, specific forms thereof with moving parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0677—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0677—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
- B01L2400/0683—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0694—Valves, specific forms thereof vents used to stop and induce flow, backpressure valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502723—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5082—Test tubes per se
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/56—Labware specially adapted for transferring fluids
- B01L3/565—Seals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0082—Microvalves adapted for a particular use
- F16K2099/0084—Chemistry or biology, e.g. "lab-on-a-chip" technology
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
Definitions
- the present invention relates to methods for processing polynucleotide-containing samples as well as to related systems.
- the analysis of a biological sample often includes detecting one or more polynucleotides present in the sample.
- detection is qualitative detection, which relates, e.g., to the determination of the presence of the polynucleotide and/or the determination of information related to, e.g., the type, size, presence or absence of mutations, and/or the sequence of the polynucleotide.
- quantitative detection which relates, e.g., to the determination of the amount of polynucleotide present. Detection may include both qualitative and quantitative aspects.
- Detecting polynucleotides often involves the use of an enzyme. For example, some detection methods include polynucleotide amplification by polymerase chain reaction (PCR) or a related amplification technique. Other detection methods that do not amplify the polynucleotide to be detected also make use of enzymes. However, the functioning of enzymes used in such techniques may be inhibited by the presence of inhibitors present along with the polynucleotide to be detected. The inhibitors may interfere with, for example, the efficiency and/or specificity of the enzymes.
- PCR polymerase chain reaction
- One aspect of the present invention relates to a method and related systems for processing one or more polynucleotide(s) (e.g., to concentrate the polynucleotide(s) and/or to separate the polynucleotides from inhibitor compounds (e.g., hemoglobin) that might inhibit detection and/or amplification of the polynucleotides).
- inhibitor compounds e.g., hemoglobin
- the method includes contacting the polynucleotides and a relatively immobilized compound that preferentially associates with (e.g., retains) the polynucleotides as opposed to inhibitors.
- An exemplary compound is a poly-cationic polyamide (e.g., poly-L-lysine and/or the poly-D-lysine), which may be bound to a surface (e.g., a surface of one or more particles).
- the compound retains the polynucleotides so that the polynucleotides and inhibitors may be separated, such as by washing the surface with the compound and associated polynucleotides. Upon separation, the association between the polynucleotide and compound may be disrupted to release (e.g., separate) the polynucleotides from the compound and surface.
- the surface e.g., a surface of one or more particles
- a poly-cationic polyamide which may be covalently bound to the surface.
- the polycationic polyamide may include at least one of poly-L-lysine and poly-D-lysine.
- the poly-cationic polyamide e.g., the at least one of the poly-L-lysine and the poly-D-lysine
- the poly-cationic polyamide (e.g., the at least one of the poly-L-lysine and the poly-D-lysine) may have an average molecular weight of less than about 35,000 Da (e.g., an average molecular weight of less than about 30000 Da (e.g., an average molecular weight of about 25,000 Da)).
- the poly-cationic polyamide (e.g., the at least one of the poly-L-lysine and the poly-D-lysine) may have a median molecular weight of at least about 15,000 Da.
- the poly-cationic polyamide (e.g., the at least one of the poly-L-lysine and the poly-D-lysine) may have a median molecular weight of less than about 25,000 Da (e.g., a median molecular weight of less than about 20,000 Da (e.g., a median molecular weight of about 20,000 Da).
- sample preparation device including a surface including a poly-cationic polyamide bound thereto and a sample introduction passage in communication with the surface for contacting the surface with a fluidic sample.
- the device includes a heat source configured to heat an aqueous liquid in contact with the surface to at least about 65° C.
- the device includes a reservoir of liquid having a pH of at least about 10 (e.g., about 10.5 or more).
- the device is configured to contact the surface with the liquid (e.g., by actuating a pressure source to move the liquid).
- the surface comprises surfaces of a plurality of particles.
- the poly-cationic polyamide includes poly-L-lysine and/or poly-D-lysine.
- Another aspect of the invention relates to a method for processing a sample including providing a mixture including a liquid and an amount of polynucleotide, contacting a retention member with the mixture.
- the retention member may be configured to preferentially retain polynucleotides as compared to polymerase chain reaction inhibitors. Substantially all of the liquid in the mixture is removed from the retention member. The polynucleotides are released from the retention member.
- the polynucleotide may have a size of less than about 7.5 Mbp.
- the liquid may be a first liquid and removing substantially all of the liquid from the retention member may include contacting the retention member with a second liquid.
- Contacting the retention member with a second liquid can include actuating a thermally actuated pressure source to apply a pressure to the second liquid. Contacting the retention member with a second liquid can include opening a thermally actuated valve to place the second liquid in fluid communication with the retention member.
- the second liquid may have a volume of less than about 50 microliters.
- the retention member may include a surface having a compound configured to bind polynucleotides preferentially to polymerase chain reaction inhibitors (e.g., hemoglobin, peptides, faecal compounds, humic acids, mucousol compounds, DNA binding proteins, or a saccharide).
- polymerase chain reaction inhibitors e.g., hemoglobin, peptides, faecal compounds, humic acids, mucousol compounds, DNA binding proteins, or a saccharide.
- the surface may include a poly-lysine (e.g., poly-L-lysine and/or poly-D-lysine).
- a poly-lysine e.g., poly-L-lysine and/or poly-D-lysine.
- the second liquid may include a detergent (e.g., SDS).
- a detergent e.g., SDS
- Releasing may include heating the retention member to a temperature of at least about 50° C. (e.g., at about 65° C.).
- the temperature may be insufficient to boil the liquid in the presence of the retention member during heating.
- the temperature may be 100° C. or less (e.g., less than 100° C., about 97° C. or less).
- the temperature may be maintained for less than about 10 minutes (e.g., for less than about 5 minutes, for less than about 3 minutes).
- the releasing may be performed without centrifugation of the retention member.
- PCR inhibitors are rapidly removed from clinical samples to create a PCR-ready sample.
- the method may comprise the preparation of a polynucleotide-containing sample that is substantially free of inhibitors.
- the samples may be prepared from, e.g., crude lysates resulting from thermal, chemical, ultrasonic, mechanical, electrostatic, and other lysing techniques.
- the samples may be prepared without centrifugation.
- the samples may be prepared using microfluidic devices or on a larger scale.
- a retention member e.g., a plurality of particles such as beads, comprising bound poly-lysine, e.g., poly-L-lysine, and related methods and systems.
- the retention member preferentially binds polynucleotides, e.g., DNA, as compared to inhibitors.
- the retention member may be used to prepare polynucleotides samples for further processing, such as amplification by polymerase chain reaction.
- more than 90% of a polynucleotide present in a sample may be bound to the retention member, released, and recovered.
- a polynucleotide may be bound to the retention member, released, and recovered, in less than 10 minutes, less than 7.5 minutes, less than 5 minutes, or less than 3 minutes.
- a polynucleotide may be bound to a retention member, released, and recovered without subjecting the polynucleotide, retention member, and/or inhibitors to centrifugation.
- Separating the polynucleotides and inhibitors generally excludes subjecting the polynucleotides, inhibitors, processing region, and/or retention member to sedimentation (e.g., centrifugation).
- a microfluidic device including a channel, a first mass of a thermally responsive substance (TRS) disposed on a first side of the channel, a second mass of a TRS disposed on a second side of the channel opposite the first side of the channel, a gas pressure source associated with the first mass of the TRS. Actuation of the gas pressure source drives the first mass of the TRS into the second mass of the TRS and obstructs the channel.
- TRS thermally responsive substance
- the microfluidic device can include a second gas pressure source associated with the second mass of the TRS. Actuation of the second gas pressure source drives the second mass of TRS into the first mass of TRS.
- At least one (e.g., both) of the first and second masses of TRS may be a wax.
- Another aspect of the invention relates to a method for obstructing a channel of a microfluidic device.
- a mass of a TRS is heated and driven across the channel (e.g., by gas pressure) into a second mass of TRS.
- the second mass of TRS may also be driven (e.g., by gas pressure) toward the first mass of TRS.
- the actuator includes a channel, a chamber connected to the channel, at least one reservoir of encapsulated liquid disposed in the chamber, and a gas surrounding the reservoir within the chamber. Heating the chamber expands the reservoir of encapsulated liquid and pressurizes the gas.
- the liquid has a boiling point of about 90° C. or less.
- the liquid may be a hydrocarbon having about 10 carbon atoms or fewer.
- the liquid may be encapsulated by a polymer.
- the actuator may include multiple reservoirs of encapsulated liquid disposed in the chamber.
- the multiple reservoirs may be dispersed within a solid (e.g., a wax).
- the multiple reservoirs may be disposed within a flexible enclosure (e.g., a flexible sack).
- a flexible enclosure e.g., a flexible sack
- Another aspect of the invention relates to a method including pressurizing a gas within a chamber of a microfluidic to create a gas pressure sufficient to move a liquid within a channel of the microfluidic device. Pressurizing the gas typically expanding at least one reservoir of encapsulated liquid disposed within the chamber.
- Expanding the at least one reservoir can include heating the chamber.
- Pressurizing the gas can include expanding multiple reservoirs of encapsulated liquid.
- the device includes a mass of a temperature responsive substance (TRS) that separates first and second channels of the device.
- TRS temperature responsive substance
- the device is configured to move a first liquid along the first channel so that a portion (e.g., a medial portion) of the first liquid is adjacent the TRS and to move a second liquid along the second channel so that a portion (e.g., a medial portion) of second liquid is adjacent the TRS.
- a heat source is actuated to move the TRS (e.g., by melting, dispersing, fragmenting).
- the medial portions of the first and second liquids typically combine without being separated by a gas interface. Typically, only a subset of the first liquid and a subset of the second liquid are combined. The liquids mix upon being moved along a mixing channel.
- Another aspect of the invention relates to a lyophilized reagent particle and a method of making the particle.
- the lyophilized particles include multiple smaller particles each having a plurality of ligands that preferentially associate with polynucleotides as compared to PCR inhibitors.
- the lyophilized particles can also (or alternatively) include lysing reagents (e.g., enzymes) configured to lyse cells to release polynucleotides.
- the lyophilized particles can also (or alternatively) include enzymes (e.g., proteases) that degrade proteins.
- Cells can be lysed by combining a solution of the cells with the lyophilized particles to reconstitute the particles.
- the reconstituted lysing reagents lyse the cells.
- the polynucleotides associate with ligands of the smaller particles.
- the solution may be heated (e.g., radiatively using a lamp (e.g., a heat lamp).
- lyophilized particles include reagents (e.g., primers, control plasmids, polymerase enzymes) for performing a PCR reaction.
- reagents e.g., primers, control plasmids, polymerase enzymes
- a method for making lyophilized particles includes forming a solution of reagents of the particle and a cryoprotectant (e.g., a sugar or poly-alcohol).
- a cryoprotectant e.g., a sugar or poly-alcohol
- the solution is deposited dropwise on a chilled hydrophobic surface (e.g., a diamond film or polytetrafluoroethylene surface).
- the particles freeze and are subjected to reduced pressure (typically while still frozen) for a time sufficient to remove (e.g., sublimate) the solvent.
- the lyophilized particles may have a diameter of about 5 mm or less (e.g., about 2.5 mm or less, about 1.75 mm or less).
- FIG. 1 is a perspective view of a microfluidic device.
- FIG. 2 is a cross-sectional view of a processing region for retaining polynucleotides and/or separating polynucleotides from inhibitors.
- FIG. 3 is a cross-sectional view of an actuator.
- FIG. 4 is a perspective view of a microfluidic device.
- FIG. 5 is a side cross-sectional view of the microfluidic device of FIG. 4 .
- FIG. 6 is a perspective view of a microfluidic network of the microfluidic device of FIG. 4 .
- FIG. 7 illustrates an array of heat sources for operating components of the microfluidic device of FIG. 4 .
- FIGS. 8 and 9 illustrate a valve in the open and closed states respectively.
- FIGS. 10A-10D illustrate a mixing gate of the microfluidic network of FIG. 6 and adjacent regions of the network.
- FIG. 11 illustrates a device for separating polynucleotides and inhibitors.
- FIG. 12 illustrates the device of FIG. 11 and a device for operation thereof.
- FIG. 13 illustrates a microfluidic device.
- FIG. 14 is a cross-section of the microfluidic device of FIG. 13 taken along 5 .
- FIG. 15 illustrates the retention of herring sperm DNA.
- FIG. 16 illustrates the retention and release of DNA from group B streptococci
- FIG. 17 illustrates the PCR response of a sample from which inhibitors had been removed and of a sample from which inhibitors had not been removed.
- FIG. 18 illustrates the PCR response of a sample prepared in accord with the invention and a sample prepared using a commercial DNA extraction method.
- FIG. 19 a illustrates a flow chart showing steps performed during a method for separation polynucleotides and inhibitors.
- FIG. 19 b illustrates DNA from samples subjected to the method of FIG. 19 a.
- Analysis of biological samples often includes determining whether one or more polynucleotides (e.g., a DNA, RNA, mRNA, or rRNA) is present in the sample. For example, one may analyze a sample to determine whether a polynucleotide indicative of the presence of a particular pathogen is present.
- biological samples are complex mixtures.
- a sample may be provided as a blood sample, a tissue sample (e.g., a swab of, for example, nasal, buccal, anal, or vaginal tissue), a biopsy aspirate, a lysate, as fungi, or as bacteria.
- Polynucleotides to be determined may be contained within particles (e.g., cells (e.g., white blood cells and/or red blood cells), tissue fragments, bacteria (e.g., gram positive bacteria and/or gram negative bacteria), fungi, spores).
- particles e.g., cells (e.g., white blood cells and/or red blood cells), tissue fragments, bacteria (e.g., gram positive bacteria and/or gram negative bacteria), fungi, spores).
- One or more liquids e.g., water, a buffer, blood, blood plasma, saliva, urine, spinal fluid, or organic solvent
- Methods for analyzing biological samples include providing a biological sample (e.g., a swab), releasing polynucleotides from particles (e.g., bacteria) of the sample, amplifying one or more of the released polynucleotides (e.g., by polymerase chain reaction (PCR)), and determining the presence (or absence) of the amplified polynucleotide(s) (e.g., by fluorescence detection).
- Biological samples typically include inhibitors (e.g., mucousal compounds, hemoglobin, faecal compounds, and DNA binding proteins) that can inhibit determining the presence of polynucleotides in the sample.
- inhibitors can reduce the amplification efficiency of polynucleotides by PCR and other enzymatic techniques for determining the presence of polynucleotides. If the concentration of inhibitors is not reduced relative to the polynucleotides to be determined, the analysis can produce false negative results.
- a microfluidic device 200 includes first, second, and third layers 205 , 207 , and 209 that define a microfluidic network 201 having various components configured to process a sample including one or more polynucleotides to be determined.
- Device 200 typically processes the sample by increasing the concentration of a polynucleotide to be determined and/or by reducing the concentration of inhibitors relative to the concentration of polynucleotide to be determined.
- Network 201 includes an inlet 202 by which sample material can be introduced to the network and an output 236 by which a processed sample can be removed (e.g., expelled by or extracted from) network 201 .
- a channel 204 extends between inlet 202 and a junction 255 .
- a valve 205 is positioned along channel 204 .
- a reservoir channel 240 extends between junction 255 and an actuator 244 .
- Gates 242 and 246 are positioned along channel 240 .
- a channel 257 extends between junction 255 and a junction 257 .
- a valve 208 is positioned along channel 257 .
- a reservoir channel 246 extends between junction 259 and an actuator 248 .
- Gates 250 and 252 are positioned along channel 246 .
- a channel 261 extends between junction 259 and a junction 263 .
- a valve 210 and a hydrophobic vent 212 are positioned along channel 261 .
- a channel 256 extends between junction 263 and an actuator 254 .
- a gate 258 is positioned along channel 256 .
- a channel 214 extends between junction 263 and a processing chamber 220 , which has an inlet 265 and an outlet 267 .
- a channel 228 extends between processing chamber outlet 267 and a waste reservoir 232 .
- a valve 234 is positioned along channel 228 .
- a channel 230 extends between processing chamber outlet 267 and output 236 .
- processing chamber 220 includes a plurality of particles (e.g., beads, microspheres) 218 configured to retain polynucleotides of the sample under a first set of conditions (e.g., a first temperature and/or first pH) and to release the polynucleotides under a second set of conditions (e.g., a second, higher temperature and/or a second, more basic pH).
- a first set of conditions e.g., a first temperature and/or first pH
- a second set of conditions e.g., a second, higher temperature and/or a second, more basic pH
- the polynucleotides are retained preferentially as compared to inhibitors that may be present in the sample.
- Particles 218 are configured as a retention member 216 (e.g., a column) through which sample material (e.g., polynucleotides) must pass when moving between the inlet 265 and outlet 267 of processing region 220 .
- a filter 219 prevents particles 218 from passing downstream of processing region 220 .
- a channel 287 connects filter 219 with outlet 267 .
- Filter 219 has a surface area within processing region 220 that is larger than the cross-sectional area of inlet 265 .
- the ratio of the surface area of filter 219 within processing region 220 to the cross-sectional area of inlet 265 is at least about 5 (e.g., at least about 10, at least about 20, at least about 20).
- the surface area of filter 219 within processing region 220 is at least about 1 mm 2 (e.g., at least about 2 mm 2 , at least about 3 mm 2 ).
- the cross-sectional area of inlet 265 and/or channel 214 is about 0.25 mm 2 or less (e.g., about 0.2 mm or less, about 0.15 mm 2 or less, about 0.1 mm 2 or less). The larger surface area presented by filter 219 to material flowing through processing region 220 helps prevent clogging of the processing region while avoiding significant increases in the void volume (discussed below) of the processing region.
- Particles 218 are modified with at least one ligand that retains polynucleotides (e.g., preferentially as compared to inhibitors).
- the ligands retain polynucleotides from liquids having a pH about 9.5 or less (e.g., about 9.0 or less, about 8.75 or less, about 8.5 or less).
- the ligands to release polynucleotides when the pH is about 10 or greater (e.g., about 10.5 or greater, about 11.0 or greater). Consequently, polynucleotides can be released from the ligand modified particles into the surrounding liquid.
- Exemplary ligands include, for example, polyamides (e.g., poly-cationic polyamides such as poly-L-lysine, poly-D-lysine, poly-DL-ornithine).
- Other ligands include, for example, intercalators, poly-intercalators, minor groove binders polyamines (e.g., spermidine), homopolymers and copolymers comprising a plurality of amino acids, and combinations thereof.
- the ligands have an average molecular weight of at least about 5000 Da (e.g., at least about 7500 Da, of at least about 15000 Da).
- the ligands have an average molecular weight of about 50000 Da or less (e.g., about 35000, or less, about 27500 Da or less). In some embodiments, the ligand is a poly-lysine ligand attached to the particle surface by an amide bond.
- the ligands are resistant to enzymatic degradation, such as degradation by protease enzymes (e.g., mixtures of endo- and exo-proteases such as pronase) that cleave peptide bonds.
- protease enzymes e.g., mixtures of endo- and exo-proteases such as pronase
- exemplary protease resistant ligands include, for example, poly-D-lysine and other ligands that are enantiomers of ligands susceptible to enzymatic attack.
- Particles 218 are typically formed of a material to which the ligands can be associated.
- Exemplary materials from which particles 218 can be formed include polymeric materials that can be modified to attach a ligand. Typical polymeric materials provide or can be modified to provide carboxylic groups and/or amino groups available to attach ligands.
- Exemplary polymeric materials include, for example, polystyrene, latex polymers (e.g., polycarboxylate coated latex), polyacrylamide, polyethylene oxide, and derivatives thereof.
- Polymeric materials that can used to form particles 218 are described in U.S. Pat. No. 6,235,313 to Mathiowitz et al., which patent is incorporated herein by reference
- Other materials include glass, silica, agarose, and amino-propyl-tri-ethoxy-silane (APES) modified materials.
- APES amino-propyl-tri-ethoxy-silane
- Exemplary particles that can be modified with suitable ligands include carboxylate particles (e.g., carboxylate modified magnetic beads (Sera-Mag Magnetic Carboxylate modified beads, Part #3008050250, Seradyn) and Polybead carboxylate modified microspheres available from Polyscience, catalog no. 09850).
- the ligands include poly-D-lysine and the beads comprise a polymer (e.g., polycarboxylate coated latex).
- the ratio of mass of particles to the mass of polynucleotides retained by the particles is no more than about 25 or more (e.g., no more than about 20, no more than about 10).
- about 1 gram of particles retains about 100 milligrams of polynucleotides.
- the total volume of processing region 220 (including particles 218 ) between inlet 265 and filter 219 is about 15 microliters or less (e.g., about 10 microliters or less, about 5 microliters or less, about 2.5 microliters or less, about 2 microliters or less). In an exemplary embodiment, the total volume of processing region 220 is about 2.3 microliters. In some embodiments, particles 218 occupy at least about 10 percent (e.g., at least about 15 percent) of the total volume of processing region 220 . In some embodiments, particles 218 occupy about 75 percent or less (e.g., about 50 percent or less, about 35 percent or less) of the total volume of processing chamber 220 .
- the volume of processing region 220 that is free to be occupied by liquid is about equal to the total volume minus the volume occupied by the particles.
- the void volume of processing region 220 is about 10 microliters or less (e.g., about 7.5 microliters or less, about 5 microliters or less, about 2.5 microliters or less, about 2 microliters or less).
- the void volume is about 50 nanoliters or more (e.g., about 100 nanoliters or more, about 250 nanoliters or more).
- the total volume of processing region 220 is about 2.3 microliters.
- the total volume of the processing region is about 2.3 microliters
- the total volume of the processing region is about 2.3 microliters
- the volume occupied by particles is about 0.3 microliters
- the volume free to be occupied by liquid (void volume) is about 2 microliters.
- Particles 218 typically have an average diameter of about 20 microns or less (e.g., about 15 microns or less, about 10 microns or less). In some embodiments, particles 218 have an average diameter of at least about 4 microns (e.g., at least about 6 microns, at least about 8 microns).
- a volume of channel 287 between filter 219 and outlet 267 is substantially smaller than the void volume of processing region 220 .
- the volume of channel 287 between filter 219 and outlet 267 is about 35% or less (e.g., about 25% or less, about 20% or less) of the void volume.
- the volume of channel 287 between filter 219 and outlet 267 is about 500 microliters.
- the particle density is typically at least about 10 8 particles per milliliter (e.g., about 10 9 particles per milliliter).
- a processing region with a total volume of about 1 microliter may include about 10 3 beads.
- Filter 219 typically has pores with a width smaller than the diameter of particles 218 .
- filter 219 has pores having an average width of about 8 microns and particles 218 have an average diameter of about 10 microns.
- At least some (e.g., all) of the particles are magnetic. In alternative embodiments, few (e.g., none) of the particles are magnetic.
- At least some (e.g., all) the particles are solid. In some embodiments, at least some (e.g., all) the particles are porous (e.g., the particles may have channels extending at least partially within them).
- Channels of microfluidic network 201 typically have at least one sub-millimeter cross-sectional dimension.
- channels of network 201 may have a width and/or a depth of about 1 mm or less (e.g., about 750 microns or less, about 500 microns, or less, about 250 microns or less).
- a valve is a component that has a normally open state allowing material to pass along a channel from a position on one side of the valve (e.g., upstream of the valve) to a position on the other side of the valve (e.g., downstream of the valve). Upon actuation, the valve transitions to a closed state that prevents material from passing along the channel from one side of the valve to the other.
- valve 205 includes a mass 251 of a thermally responsive substance (TRS) that is relatively immobile at a first temperature and more mobile at a second temperature.
- TRS thermally responsive substance
- a chamber 253 is in gaseous communication with mass 251 .
- valves of network 201 Upon heating gas (e.g., air) in chamber 253 and heating mass 251 of TRS to the second temperature, gas pressure within chamber 253 moves mass 251 into channel 204 obstructing material from passing therealong.
- gas e.g., air
- Other valves of network 201 have the same structure and operate in the same fashion as valve 205 .
- a mass of TRS can be an essentially solid mass or an agglomeration of smaller particles that cooperate to obstruct the passage.
- TRS's include a eutectic alloy (e.g., a solder), wax (e.g., an olefin), polymers, plastics, and combinations thereof.
- the first and second temperatures are insufficiently high to damage materials, such as polymer layers of device 200 .
- the second temperature is less than about 90° C. and the first temperature is less than the second temperature (e.g., about 70° C. or less).
- a gate is a component that has a normally closed state that does not allow material to pass along a channel from a position on one side of the gate to another side of the gate.
- the gate transitions to a closed state in which material is permitted to pass from one side of the gate (e.g., upstream of the gate) to the other side of the gate (e.g., downstream of the gate).
- gate 242 includes a mass 271 of TRS positioned to obstruct passage of material between junction 255 and channel 240 .
- the mass changes state (e.g., by melting, by dispersing, by fragmenting, and/or dissolving) to permit passage of material between junction 255 and channel 240 .
- the portion of channel 240 between gates 242 and 246 forms a fluid reservoir 279 configured to hold a liquid (e.g., water, an organic liquid, or combination thereof).
- a liquid e.g., water, an organic liquid, or combination thereof.
- gates 242 and 246 limit (e.g., prevent) evaporation of liquid within the fluid reservoir.
- the liquid of reservoir 279 is typically used as a wash liquid to remove inhibitors from processing region 220 while leaving polynucleotides associated with particles 218 .
- the wash liquid is a solution having one or more additional components (e.g., a buffer, chelator, surfactant, a detergent, a base, an acid, or a combination thereof).
- Exemplary solutions include, for example, a solution of 10-50 mM Tris at pH 8.0, 0.5-2 mM EDTA, and 0.5%-2% SDS, a solution of 10-50 mM Tris at pH 8.0, 0.5 to 2 mM EDTA, and 0.5%-2% Triton X-100.
- the portion of channel 246 between gates 250 and 252 form a fluid reservoir 281 configured like reservoir 279 to hold a liquid (e.g., a solution) with limited or no evaporation.
- a liquid e.g., a solution
- the liquid of reservoir 281 is typically used as a release liquid into which polynucleotides that had been retained by particles 218 are released.
- An exemplary release liquid is an hydroxide solution (e.g., a NaOH solution) having a concentration of, for example, between about 2 mM hydroxide (e.g., about 2 mM NaOH) and about 500 mM hydroxide (e.g., about 500 mM NaOH).
- liquid in reservoir 281 is an hydroxide solution having a concentration of about 25 mM or less (e.g., an hydroxide concentration of about 15 mM).
- Reservoirs 279 , 281 typically hold at least about 0.375 microliters of liquid (e.g., at least about 0.750 microliters, at least about 1.25 microliters, at least about 2.5 microliters). In some embodiments, reservoirs 279 , 281 hold about 7.5 microliters or less of liquid (e.g., about 5 microliters or less, about 4 microliters or less, about 3 microliters or less).
- An actuator is a component that provides a gas pressure that can move material (e.g., sample material and/or reagent material) between one location of network 201 and another location.
- actuator 244 includes a chamber 272 having a mass 273 of thermally expansive material (TEM) therein. When heated, the TEM expands decreasing the free volume within chamber 272 and pressurizing the gas (e.g., air) surrounding mass 273 within chamber 272 .
- TEM thermally expansive material
- gates 246 and 242 are actuated with actuator 244 . Consequently, the pressurized gas drives liquid in fluid reservoir 279 towards junction 255 .
- actuator 244 can generate a pressure differential of more than about 3 psi (e.g., at least about 4 psi, at least about 5 psi) between the actuator and junction 255 .
- the TEM includes a plurality of sealed liquid reservoirs (e.g., spheres) 275 dispersed within a carrier 277 .
- the liquid is a high vapor pressure liquid (e.g., isobutane and/or isopentane) sealed within a casing (e.g., a polymeric casing formed of monomers such as vinylidene chloride, acrylonitrile and methylmethacrylate).
- Carrier 277 has properties (e.g., flexibility and/or an ability to soften (e.g., melt) at higher temperatures) that permit expansion of the reservoirs 275 without allowing the reservoirs to pass along channel 240 .
- carrier 277 is a wax (e.g., an olefin) or a polymer with a suitable glass transition temperature.
- the reservoirs make up at least about 25 weight percent (e.g., at least about 35 weight percent, at least about 50 weight percent) of the TEM. In some embodiments, the reservoirs make up about 75 weight percent or less (e.g., about 65 weight percent or less, about 50 weight percent or less) of the TEM.
- Suitable sealed liquid reservoirs can be obtained from Expancel (Akzo Nobel).
- the liquid When the TEM is heated (e.g., to a temperature of at least about 50° C. (e.g., to at least about 75° C., at least about 90° C.)), the liquid vaporizes and increases the volume of each sealed reservoir and of mass 273 . Carrier 277 softens allowing mass 273 to expand.
- the TEM is heated to a temperature of less than about 150° C. (e.g., about 125° C. or less, about 110° C. or less, about 100° C. or less) during actuation.
- the volume of the TEM expands by at least about 5 times (e.g., at least about 10 times, at least about 20 times, at least about 30 times).
- a hydrophobic vent (e.g., vent 212 ) is a structure that permits gas to exit a channel while limiting (e.g., preventing) liquid from exiting the channel.
- hydrophobic vents include a layer of porous hydrophobic material (e.g., a porous filter such as a porous hydrophobic membrane from Osmonics) that defines a wall of the channel.
- a porous hydrophobic material e.g., a porous filter such as a porous hydrophobic membrane from Osmonics
- hydrophobic vents can be used to position a microdroplet of sample at a desired location within network 201 .
- Hydrophobic vents typically have a length of at least about 2.5 mm (e.g., at least about 5 mm, at least about 7.5 mm) along a channel.
- the length of the hydrophobic vent is typically at least about 5 times (e.g., at least about 10 times, at least about 20 times) larger than a depth of the channel within the hydrophobic vent.
- the channel depth within the hydrophobic vent is about 300 microns or less (e.g., about 250 microns or less, about 200 microns or less, about 150 microns or less).
- the depth of the channel within the hydrophobic vent is typically about 75% or less (e.g., about 65% or less, about 60% or less) of than the depth of the channel upstream and downstream of the hydrophobic vent.
- the channel depth within the hydrophobic vent is about 150 microns and the channel depth upstream and downstream of the hydrophobic vent is about 250 microns.
- a width of the channel within the hydrophobic vent is typically at least about 25% wider (e.g., at least about 50% wider) than a width of the channel upstream from the vent and downstream from the vent.
- the width of the channel within the hydrophobic vent is about 400 microns and the width of the channel upstream and downstream from the vent is about 250 microns.
- Microfluidic device 200 can be fabricated as desired.
- layers 205 , 207 , and 209 are formed of a polymeric material.
- Components of network 201 are typically formed by molding (e.g., by injection molding) layers 207 , 209 .
- Layer 205 is typically a flexible polymeric material (e.g., a laminate) that is secured (e.g., adhesively and/or thermally) to layer 207 to seal components of network 201 .
- Layers 207 and 209 may be secured to one another using adhesive.
- device 200 is typically thermally associated with an array of heat sources configured to operate the components (e.g., valves, gates, actuators, and processing region 220 ) of the device.
- the heat sources are integral with an operating system, which operates the device during use.
- the operating system includes a processor (e.g., a computer) configured to actuate the heat sources according to a desired protocol.
- processors configured to operate microfluidic devices are described in U.S. application Ser. No. 09/819,105, filed Mar. 28, 2001, which application is incorporated herein by reference.
- the heat sources are integral with the device itself.
- Device 200 may be operated as follows. Valves of network 201 are configured in the open state. Gates of network 201 are configured in the closed state. A fluidic sample comprising polynucleotides is introduced to network 201 via inlet 202 .
- sample can be introduced with a syringe having a Luer fitting. The syringe provides pressure to initially move the sample within network 201 .
- Sample passes along channels 204 , 257 , 261 , and 214 to inlet 265 of processing region 220 .
- the sample passes through processing region 220 , exits via outlet 267 , and passes along channel 228 to waste chamber 232 .
- the amount of sample introduced is about 500 microliters or less (e.g., about 250 microliters or less, about 100 microliters or less, about 50 microliters or less, about 25 microliters or less, about 10 microliters or less). In some embodiments, the amount of sample is about 2 microliters or less (e.g., of about 0.5 microliters or less).
- Polynucleotides entering processing region 220 pass through interstices between the particles 218 .
- Polynucleotides of the sample contact retention member 216 and are preferentially retained as compared to liquid of the sample and certain other sample components (e.g., inhibitors).
- retention member 220 retains at least about 50% of polynucleotides (at least about 75%, at least about 85%, at least about 90%) of the polynucleotides present in the sample that entered processing region 220 .
- Liquid of the sample and inhibitors present in the sample exit the processing region 220 via outlet 267 and enter waste chamber 232 .
- Processing region is typically at a temperature of about 50° C. or less (e.g., 30° C. or less) during introduction of the sample.
- Processing continues by washing retention member 216 with liquid of reservoir 279 to separate remaining inhibitors from polynucleotides retained by retention member 216 .
- valve 206 is closed and gates 242 , 246 of first reservoir 240 are opened.
- Actuator 244 is actuated and moves wash liquid within reservoir 279 along channels 257 , 261 , and 214 , through processing region 220 , and into waste reservoir 232 .
- the wash liquid moves sample that may have remained within channels 204 , 257 , 261 , and 214 through the processing region and into waste chamber 232 .
- the gas pressure generated by actuator 244 is vented and further motion of the liquid is stopped.
- the volume of wash liquid moved by actuator 244 through processing region 220 is typically at least about 2 times the void volume of processing region 220 (e.g., at least about 3 times the void volume) and can be about 10 times the void volume or less (e.g., about 5 times the void volume or less).
- Processing region is typically at a temperature of about 50° C. or less (e.g., 30° C. or less) during washing.
- Exemplary wash fluids include liquids discussed with respect to reservoirs 279 and 281 .
- wash liquid from reservoir 279 is replaced with release liquid (e.g., an hydroxide solution) from reservoir 281 before releasing the polynucleotides.
- release liquid e.g., an hydroxide solution
- Valve 208 is closed and gates 250 , 252 are opened.
- Actuator 248 is actuated thereby moving release liquid within reservoir 281 along channels 261 , 214 and into processing region 220 and in contact with retention member 216 .
- pressure generated by actuator 248 is vented stopping the further motion of the liquid.
- the volume of liquid moved by actuator 248 through processing region 220 is typically at least about equal to the void volume of the processing region 220 (e.g., at least about 2 times the void volume) and can be about 10 times the void volume or less (e.g., about 5 times the void volume or less).
- a releasing step is typically performed.
- the releasing step includes heating release liquid present within processing region 216 .
- the liquid is heated to a temperature insufficient to boil liquid in the presence of the retention member.
- the temperature is 100° C. or less (e.g., less than 100° C., about 97° C. or less).
- the temperature is about 65° C. or more (e.g., about 75° C. or more, about 80° C. or more, about 90° C. or more).
- the temperature maintained for about 1 minute or more e.g., about 2 minutes or more, about 5 minutes or more, about 10 minutes or more. In some embodiments, the temperature is maintained for about 30 minutes (e.g., about 15 minutes or less, about 10 minutes or less, about 5 minutes or less).
- processing region 220 is heated to between about 65 and 90° C. (e.g., to about 70° C.) for between about 1 and 7 minutes (e.g., for about 2 minutes).
- the polynucleotides are released into the liquid present in the processing region 220 (e.g., the polynucleotides are typically released into an amount of release liquid having a volume about the same as the void volume of the processing region 220 ). Typically, the polynucleotides are released into about 10 microliters or less (e.g., about 5 microliters or less, about 2.5 microliters or less) of liquid.
- the ratio of the volume of original sample moved through the processing region 220 to the volume of liquid into which the polynucleotides are released is at least about 10 (e.g., at least about 50, at least about 100, at least about 250, at least about 500, at least about 1000).
- polynucleotides from a sample having a volume of about 2 ml can be retained within the processing region, and released into about 4 microliters or less (e.g., about 3 microliters or less, about 2 microliters or less, about 1 microliter or less) of liquid.
- the liquid into which the polynucleotides are released typically includes at least about 50% (e.g., at least about 75%, at least about 85%, at least about 90%) of the polynucleotides present in the sample that entered processing region 220 .
- the concentration of polynucleotides present in the release liquid may be higher than in the original sample because the volume of release liquid is typically less than the volume of the original liquid sample moved through the processing region.
- the concentration of polynucleotides in the release liquid may be at least about 10 times greater (e.g., at least about 25 times greater, at least about 100 times greater) than the concentration of polynucleotides in the sample introduced to device 200 .
- the concentration of inhibitors present in the liquid into which the polynucleotides are released is generally less than concentration of inhibitors in the original fluidic sample by an amount sufficient to increase the amplification efficiency for the polynucleotides.
- the time interval between introducing the polynucleotide containing sample to processing region 220 and releasing the polynucleotides into the release liquid is typically about 15 minutes or less (e.g., about 10 minutes or less, about 5 minutes or less).
- Liquid including the released polynucleotides may be removed from the processing region 220 as follows. Valves 210 and 234 are closed. Gates 238 and 258 are opened. Actuator 254 is actuated to generate pressure that moves liquid and polynucleotides from processing region 220 , into channel 230 , and toward outlet 236 .
- the liquid with polynucleotides can be removed using, for example, a syringe or automated sampling device.
- the solution with released polynucleotide may be neutralized with an amount of buffer (e.g., an equal volume of 25-50 mM Tris-HCl buffer pH 8.0).
- the polynucleotides may be released without heating.
- the liquid of reservoir 281 has an ionic strength, pH, surfactant concentration, composition, or combination thereof that releases the polynucleotides from the retention member.
- polynucleotides have been described as being released into a single volume of liquid present within processing region 220 , other configurations can be used.
- polynucleotides may be released with the concomitant (stepwise or continuous) introduction of fluid into and/or through processing region 220 .
- the polynucleotides may be released into liquid having a volume of about 10 times or less (e.g., about 7.5 times or less, about 5 times or less, about 2.5 times or less, about 2 times or less) than the void volume of the processing region 220 .
- reservoirs 279 , 281 have been described as holding liquids between first and second gates, other configurations can be used.
- liquid for each reservoir may be held within a pouch (e.g., a blister pack) isolated from network 201 by an generally impermeable membrane.
- the pouch is configured so that a user can rupture the membrane driving liquid into reservoirs 279 , 281 where actuators 244 , 248 can move the liquid during use.
- processing regions have been described as having microliter scale dimensions, other dimensions can be used.
- processing regions with surfaces (e.g., particles) configured to preferentially retain polynucleotides as opposed to inhibitors may have large volumes (e.g., many tens of microliters or more, at least about 1 milliliter or more).
- the processing region has a bench-top scale.
- processing region 220 has been described as having a retention member formed of multiple surface-modified particles, other configurations can be used.
- processing region 220 includes a retention member configured as a porous member (e.g., a filter, a porous membrane, or a gel matrix) having multiple openings (e.g., pores and/or channels) through which polynucleotides pass. Surfaces of the porous member are modified to preferentially retain polynucleotides. Filter membranes available from, for example, Osmonics, are formed of polymers that may be surface-modified and used to retain polynucleotides within processing region 220 .
- processing region 220 includes a retention member configured as a plurality of surfaces (e.g., walls or baffles) through which a sample passes. The walls or baffles are modified to preferentially retain polynucleotides.
- processing region 220 has been described as a component of a microfluidic network, other configurations can be used.
- the retention member can be removed from a processing region for processing elsewhere.
- the retention member may be contacted with a mixture comprising polynucleotides and inhibitors in one location and then moved to another location at which the polynucleotides are removed from the retention member.
- reservoirs 275 have been shown as dispersed within a carrier, other configurations may be used.
- reservoirs 275 can be encased within a flexible enclosure formed by a, for example, (e.g., a membrane, for example, an enclosure such as a sack).
- reservoirs are loose within chamber 272 .
- actuator 244 may include a porous member having pores too small to permit passage of reservoirs 275 but large enough to permit gas to exit chamber 272 .
- microfluidic device 300 has been described as configured to receive polynucleotides already released from cells, microfluidic devices can be configured to release polynucleotides from cells (e.g., by lysing the cells).
- a microfluidic device 300 includes a sample lysing chamber 302 in which cells are lysed to release polynucleotides therein.
- Microfluidic device 300 further includes substrate layers L 1 -L 3 , a microfluidic network 304 (only portions of which are seen in FIG. 4 ), and liquid reagent reservoirs R 1 -R 4 .
- Liquid reagent reservoirs R 1 -R 4 hold liquid reagents (e.g., for processing sample material) and are connected to network 304 by reagent ports RP 1 -RP 4 .
- Network 304 is substantially defined between layers L 2 and L 3 but extends in part between all three layers L 1 -L 3 .
- Microfluidic network 304 includes multiple components including channels Ci, valves Vi, double valves V′ i , gates G 1 , mixing gates MGi, vents Hi, gas actuators (e.g., pumps) Pi, a first processing region B 1 , a second processing region B 2 , detection zones Di, air vents AVi, and waste zones Wi.
- Components of network 304 are typically thermally actuated.
- a heat source network 312 includes heat sources (e.g., resistive heat sources) having locations that correspond to components of microfluidic network 304 .
- the locations of heat sources HPi correspond to the locations of actuators Pi
- the locations of heat sources HGi correspond to locations of gates G 1 and mixing gates
- the locations of heat sources HVi correspond to the locations of valves Vi and double valves V′i
- the locations of heat sources HD 1 correspond to the locations of processing chambers Di of network 304 .
- the components of device 300 are disposed in thermal contact with corresponding heat sources of network 312 , which is typically operated using a processor as described above for device 200 .
- Heat source network 312 can be integral with or separate from device 300 as described for device 200 .
- microfluidic device 300 We next discuss components of microfluidic device 300 .
- Air vents AVi are components that allow gas (e.g., air) displaced by the movement of liquids within network 304 to be vented so that pressure buildup does not inhibit desired movement of the liquids.
- gas e.g., air
- air vent AV 2 permits liquid to move along channel C 14 and into channel C 16 by venting gas downstream of the liquid through vent AV 2 .
- Valves Vi are components that have a normally open state allowing material to pass along a channel from a position on one side of the valve (e.g., upstream of the valve) to a position on the other side of the valve (e.g., downstream of the valve).
- the valves Vi can have the same structure as valves of microfluidic device 200 .
- double valves V′i are also components that have a normally open state allowing material to pass along a channel from a position on one side of the valve (e.g., upstream of the valve) to a position on the other side of the valve (e.g., downstream of the valve).
- double valves Vi′ include first and second masses 314 , 316 of a TRS (e.g., a eutectic alloy or wax) spaced apart from one another on either side of a channel (e.g., channel C 14 ).
- TRS e.g., a eutectic alloy or wax
- the TRS masses 314 , 316 are offset from one another (e.g., by a distance of about 50% of a width of the TRS masses or less). Material moving through the open valve passes between the first and second TRS masses 314 , 316 .
- Each TRS mass 314 , 316 is associated with a respective chamber 318 , 320 , which typically includes a gas (e.g., air).
- the TRS masses 314 , 316 and chambers 318 , 320 of double valve Vi′ are in thermal contact with a corresponding heat source HV 11 ′ of heat source network 312 .
- Actuating heat source HV 11 ′ causes TRS masses 314 , 316 to transition to a more mobile second state (e.g., a partially melted state) and increases the pressure of gas within chambers 318 , 320 .
- the gas pressure drives TRS masses 314 , 316 across channel C 11 and closes valve HV 11 ′ ( FIG. 9 ).
- masses 314 , 316 at least partially combine to form a mass 322 that obstructs channel C 11 .
- gates G 1 are components that have a normally closed state that does not allow material to pass along a channel from a position on one side of the gate to another side of the gate. Gates G 1 can have the same structure as described for gates of device 200 .
- mixing gates MGi are components that allow two volumes of liquid to be combined (e.g., mixed) within network 304 .
- Mixing gates MGi are discussed further below.
- Actuators Pi are components that provide a gas pressure to move material (e.g., sample material and/or reagent material) between one location of network 304 and another location.
- Actuators Pi can be the same as actuators of device 200 .
- each actuator Pi includes a chamber with a mass 273 of TEM that can be heated to pressurize gas within the chamber.
- Each actuator Pi includes a corresponding gate G 1 (e.g., gate G 2 of actuator P 1 ) that prevents liquid from entering the chamber of the actuator.
- the gate is typically actuated (e.g., opened) to allow pressure created in the chamber of the actuator to enter the microfluidic network.
- Waste chambers Wi are components that can receive waste (e.g., overflow) liquid resulting from the manipulation (e.g., movement and/or mixing) of liquids within network 304 .
- each waste chamber Wi has an associated air vent that allows gas displaced by liquid entering the chamber to be vented.
- First processing region B 1 is a component that allows polynucleotides to be concentrated and/or separated from inhibitors of a sample. Processing region B 1 can be configured and operated as processing region 220 of device 200 .
- first processing region B 1 includes a retention member (e.g., multiple particles (e.g., microspheres or beads), a porous member, multiple walls) having at least one surface modified with one or more ligands as described for processing region 220 .
- the ligand can include one or more polyamides (e.g., poly-cationic polyamides such as poly-L-lysine, poly-D-lysine, poly-DL-ornithine).
- particles of the retention member are disposed lysing chamber 302 and are moved into processing region B 1 along with sample material.
- Second processing region B 2 is a component that allows material (e.g., sample material) to be combined with compounds (e.g., reagents) for determining the presence of one or more polynucleotides.
- the compounds include one or more PCR reagents (e.g., primers, control plasmids, and polymerase enzymes).
- the compounds are stored within processing region as one or more lyophilized particles (e.g., pellets).
- the particles generally have a room temperature (e.g., about 20° C.) shelf-life of at least about 6 months (e.g., at least about 12 months). Liquid entering the second processing region B 2 dissolves (e.g., reconstitutes) the lyophilized compounds.
- the lyophilized particle(s) of processing region B 2 have an average volume of about 5 microliters or less (e.g., about 4 microliters or less, about 3 microliters or less, about 2 microliters or less). In some embodiments, the lyophilized particle(s) of processing region B 2 have an average diameter of about 4 mm or less (e.g., about 3 mm or less, about 2 mm or less) In an exemplary embodiment the lyophilized particle(s) have an average volume of about 2 microliters and an average diameter of about 1.35 mm. Lyophilized particles for determining the presence of one or more polynucleotides typically include multiple compounds.
- the lyophilized particles include one or more compounds used in a reaction for determining the presence of a polynucleotide and/or for increasing the concentration of the polynucleotide.
- lypophilized particles can include one or more enzymes for amplifying the polynucleotide as by PCR.
- exemplary lyophilized particles that include exemplary reagents for the amplification of polynucleotides associated with group B streptococcus (GBS) bacteria.
- GBS group B streptococcus
- the lyophilized particles include a cryoprotectant, one or more salts, one or more primers (e.g., GBS Primer F and/or GBS Primer R), one or more probes (e.g., GBS Probe—FAM), one or more internal control plasmids, one or more specificity controls (e.g., Streptococcus pneumoniae DNA as a control for PCR of GBS), one or more PCR reagents (e.g., dNTPs and/or dUTPs), one or more blocking or bulking agents (e.g., non-specific proteins (e.g., bovine serum albumin (BSA), RNAseA, or gelatin), and a polymerase (e.g., glycerol-free Taq Polymerase).
- other components e.g., other primers and/or specificity controls
- other components can be used for amplification of other polynucleotides.
- cryoprotectants generally help increase the stability of the lypophilized particles and help prevent damage to other compounds of the particles (e.g., by preventing denaturation of enzymes during preparation and/or storage of the particles).
- the cryoprotectant includes one or more sugars (e.g., one or more dissacharides (e.g., trehalose, melizitose, raffinose)) and/or one or more poly-alcohols (e.g., mannitol, sorbitol).
- Lyophilized particles can be prepared as desired. Typically, compounds of the lyophilized particles are combined with a solvent (e.g., water) to make a solution, which is then placed (e.g., in discrete aliquots (e.g., drops) such as by pipette) onto a chilled hydrophobic surface (e.g., a diamond film or a polytetrafluorethylene surface). In general, the temperature of the surface is reduced to near the temperature of liquid nitrogen (e.g., about ⁇ 150° F. or less, about ⁇ 200° F. or less, about ⁇ 275° F. or less). The solution freezes as discrete particles. The frozen particles are subjected to a vacuum while still frozen for a pressure and time sufficient to remove the solvent (e.g., by sublimation) from the pellets.
- a solvent e.g., water
- the concentrations of the compounds in the solution from which the particles are made is higher than when reconstituted in the microfluidic device.
- the ratio of the solution concentration to the reconstituted concentration is at least about 3 (e.g., at least about 4.5). In some embodiments, the ratio is about 6.
- An exemplary solution for preparing lyophilized pellets for use in the amplification of polynucleotides indicative of the presence of GBS can be made by combining a cryoprotecant (e.g., 120 mg of trehalose as dry powder), a buffer solution (e.g., 48 microliters of a solution of 1M Tris at pH 8.4, 2.5M KCl, and 200 mM MgCl 2 ), a first primer (e.g., 1.92 microliters of 500 micromolar GBS Primer F (Invitrogen)), a second primer (e.g., 1.92 microliters of 500 micromolar GBS Primer R (Invitrogen)), a probe (e.g., 1.92 microliters of 250 micromolar GBS Probe—FAM (IDT/Biosearch Technologies)), an control probe (e.g., 1.92 microliters of 250 micromolar Cal Orange 560 (Biosearch Technologies)), a template plasmid (e.g., 0.6 microliter
- reagent reservoirs R 1 are configured to hold liquid reagents (e.g., water, buffer solution, hydroxide solution) separated from network 304 until ready for use.
- Reservoirs R 1 include an enclosure 329 that defines a sealed space 330 for holding liquids. Each space 330 is separated from reagent port RPi and network 304 by a lower wall 33 of enclosure 329 .
- a portion of enclosure 329 is formed as a piercing member 331 oriented toward the lower wall 333 of each enclosure.
- reagent reservoirs R 1 are actuated by depressing piercing member 331 to puncture wall 333 .
- Piercing member 331 can be depressed by a user (e.g., with a thumb) or by the operating system used to operate device 300 .
- reagent reservoir R 1 typically holds a release liquid (e.g., a hydroxide solution as discussed above for device 200 ) for releasing polynucleotides retained within processing region B 1 .
- Reagent reservoir R 2 typically holds a wash liquid (e.g., a buffer solution as discussed above for device 200 ) for removing un-retained compounds (e.g., inhibitors) from processing region B 1 prior to releasing the polynucleotides.
- Reagent reservoir R 3 typically holds a neutralization buffer (e.g., 25-50 mM Tris-HCl buffer at pH 8.0).
- Reagent reservoir R 4 typically holds deionized water.
- Lysing chamber 302 is divided into a primary lysing chamber 306 and a waste chamber 308 . Material cannot pass from one of chambers 306 , 308 into the other chamber without passing through at least a portion of network 304 .
- Primary lysing chamber 306 includes a sample input port SP 1 for introducing sample to chamber 306 , a sample output port SP 2 connecting chamber 306 to network 304 , and lyophilized reagent LP that interact with sample material within chamber 306 as discussed below.
- Input port SP 1 includes a one way valve that permits material (e.g., sample material and gas) to enter chamber 306 but limits (e.g., prevents) material from exiting chamber 308 by port SP 1 .
- port SP 1 includes a fitting (e.g., a Luer fitting) configured to mate with a sample input device (e.g., a syringe) to form a gas-tight seal.
- Primary chamber 306 typically has a volume of about 5 milliliters or less (e.g., about 4 milliliters or less). Prior to use, primary chamber 306 is typically filled with a gas (e.g., air).
- Waste chamber 308 includes a waste portion W 6 by which liquid can enter chamber 308 from network 304 and a vent 310 by which gas displaced by liquid entering chamber 308 can exit.
- Lyophilized reagent particles LP of lysing chamber 302 include one or more compounds (e.g., reagents) configured to release polynucleotides from cells (e.g., by lysing the cells).
- particles LP can include one or more enzymes configured to reduce (e.g., denature) proteins (e.g., proteinases, proteases (e.g., pronase), trypsin, proteinase K, phage lytic enzymes (e.g., PlyGBS)), lysozymes (e.g., a modified lysozyme such as ReadyLyse), cell specific enzymes (e.g., mutanolysin for lysing group B streptococci)).
- enzymes configured to reduce (e.g., denature) proteins (e.g., proteinases, proteases (e.g., pronase), trypsin, proteinase K, phag
- articles LP typically alternatively or additionally include components for retaining polynucleotides as compared to inhibitors.
- particles LP can include multiple particles 218 surface modified with ligands as discussed above for device 200 .
- Particles LP can include enzymes that reduce polynucleotides that might compete with a polynucleotide to be determined for binding sites on the surface modified particles.
- particles LP may include an enzyme such as an RNAase (e.g., RNAseA ISC BioExpress (Amresco)).
- particles LP cells include a cryoprotecant, particles modified with ligands configured to retain polynucleotides as compared to inhibitors, and one or more enzymes.
- particles LP have an average volume of about 35 microliters or less (e.g., about 27.5 microliters or less, about 25 microliters or less, about 20 microliters or less). In some embodiments, the particles LP have an average diameter of about 8 mm or less (e.g., about 5 mm or less, about 4 mm or less) In an exemplary embodiment the lyophilized particle(s) have an average volume of about 20 microliters and an average diameter of about 3.5 mm.
- Particles LP can be prepared as desired.
- the particles are prepared using a cryoprotectant and chilled hydrophobic surface as described above.
- a solution for preparing particles LP can be prepared by combining a cryoprotectant (e.g., 6 grams of trehalose), a plurality of particles modified with ligands (e.g., about 2 milliliters of a suspension of carboxylate modified particles with poly-D-lysine ligands), a protease (e.g., 400 milligrams of pronase), an RNAase (e.g., 30 milligrams of RNAseA (activity of 120 U per milligram), an enzyme that digests peptidoglycan (e.g., ReadyLyse (e.g., 160 microliters of a 30000 U per microliter solution of ReadyLyse)), a cell specific enzyme (e.g., mutanolysin (e.g., 200 microliters
- device 300 can be operated as follows. Valves Vi and Vi′ of network 304 are configured in the open state. Gates G 1 and mixing gates MGi of network 304 are configured in the closed state. Reagent ports R 1 -R 4 are depressed to introduce liquid reagents into network 304 as discussed above.
- a sample is introduced to lysing chamber 302 via port SP 1 and combined with lyophilized particles LP within primary lysing chamber 306 .
- the sample includes a combination of particles (e.g., cells) and a buffer solution.
- an exemplary sample includes about 2 parts whole blood to 3 about parts buffer solution (e.g., a solution of 20 mM Tris at pH 8.0, 1 mM EDTA, and 1% SDS).
- buffer solution e.g., a solution of 20 mM Tris at pH 8.0, 1 mM EDTA, and 1% SDS.
- group B streptococci e.g., group B streptococci and a buffer solution (e.g., a solution of 20 mM Tris at pH 8.0, 1 mM EDTA, and 1% Triton X-100).
- the volume of sample introduced is smaller than the total volume of primary lysing chamber 306 .
- the volume of sample may be about 50% or less (e.g., about 35% or less, about 30% or less) of the total volume of chamber 306 .
- a typical sample has a volume of about 3 milliliters or less (e.g., about 1.5 milliliters or less).
- a volume of gas e.g., air
- the volume of gas introduced is about 50% or less (e.g., about 35% or less, about 30% or less) of the total volume of chamber 306 .
- the volume of sample and gas combine to pressurize the gas already present within chamber 306 .
- Valve 307 of port SP 1 prevents gas from exiting chamber 306 . Because gates G 3 , G 4 , G 8 , and G 10 are in the closed state, the pressurized sample is prevented from entering network 304 via port SP 2 .
- the sample dissolves particles LP in chamber 306 .
- Reconstituted lysing reagents e.g., ReadyLyse, mutanolysin
- Other reagents e.g., protease enzymes such as pronase
- Polynucleotides from the sample begin to associate with (e.g., bind to) ligands of particles 218 released from particles LP.
- the sample within chamber 306 is heated (e.g., to at least about 50° C., to at least about 60° C.) for a period of time (e.g., for about 15 minutes or less, about 10 minutes or less, about 7 minutes or less) while lysing occurs.
- optical energy is used at least in part to heat contents of lysing chamber 306 .
- the operating system used to operate device 300 can include a lamp (e.g., a lamp primarily emitting light in the infrared) disposed in thermal and optical contact with chamber 306 .
- Chamber 306 includes a temperature sensor TS used to monitor the temperature of the sample within chamber 306 . The lamp output is increased or decreased based on the temperature determined with sensor TS.
- G 2 is actuated (e.g., opened) providing a path between port SP 2 of primary lysing chamber 306 and port W 6 of lysing waste chamber 308 .
- the path extends along channel C 9 , channel C 8 , through processing region B 1 , and channel C 11 .
- Pressure within chamber 306 drives the lysed sample material (containing lysate, polynucleotides bound to particles 218 , and other sample components) along the pathway.
- Particles 218 are retained within processing region B 1 (e.g., by a filter) while the liquid and other components of the sample flow into waste chamber 308 .
- the pressure in lysing chamber 306 is vented by opening gate G 1 to create a second pathway between ports SP 2 and W 6 .
- Double valves V 1 ′ and V 8 ′ are closed to isolate lysing chamber 302 from network 304 .
- Operation of device 300 continues by actuating pump P 1 and opening gates G 2 ,G 3 and G 9 .
- Pump P 1 drives wash liquid in channel C 2 downstream of junction J 1 through processing region B 1 and into waste chamber W 5 .
- the wash liquid removes inhibitors and other compounds not retained by particles 218 from processing region B 1 .
- the trailing edge of the wash liquid e.g., the upstream interface
- the pressure from actuator P 1 vents from network 304 , stopping further motion of the liquid.
- Double valves V 2 ′ and V 9 ′ are closed.
- Operation continues by actuating pump P 2 and opening gates G 6 , G 4 and G 8 to move release liquid from reagent reservoir R 1 into processing region B 1 and into contact with particles 218 .
- Air vent AV 1 vents pressure ahead of the moving release liquid.
- Hydrophobic vent H 6 vents pressure behind the trailing edge of the release liquid stopping further motion of the release liquid.
- Double valves V 6 ′ and V 10 ′ are closed.
- Operation continues by heating processing region B 1 (e.g., by heating particles 218 ) to release the polynucleotides from particles 218 .
- the particles can be heated as described above for device 200 .
- the release liquid includes about 15 mM hydroxide (e.g., NaOH solution) and the particles are heated to about 70° C. for about 2 minutes to release the polynucleotides from the particles 218 .
- Operation continues by actuating pump P 3 and opening gates G 5 and G 10 to move release liquid from process region B 1 downstream.
- Air vent AV 2 vents gas pressure downstream of the release liquid allowing the liquid to move into channel C 16 .
- Hydrophobic vent H 8 vents pressure from upstream of the release liquid stopping further movement.
- Double valve V 11 ′ and valve V 14 are closed.
- mixing gate MG 11 is used to mix a portion of release liquid including polynucleotides released from particles 218 and neutralization buffer from reagent reservoir R 3 .
- FIG. 10A shows the mixing gate MG 11 region prior to depressing reagent reservoir R 3 to introduce the neutralization buffer into network 304 .
- FIG. 10B shows the mixing gate MG 11 region, after the neutralization buffer has been introduced into channels C 13 and C 12 .
- Double valve V 13 ′ is closed to isolate network 304 from reagent reservoir R 3 .
- Double valve V 12 ′ is closed to isolate network 304 from waste chamber W 3 .
- the neutralization buffer contacts one side of a mass 324 of TRS of gate MG 11 .
- FIG. 10 c shows the mixing gate MG 11 region after release liquid has been moved into channel C 16 .
- the dimensions of microfluidic network 304 e.g., the channel dimensions and the position of hydrophobic vent H 8 ) are configured so that the portion of release liquid positioned between junctions J 3 and J 4 of channels C 16 and C 14 corresponds approximately to the volume of liquid in contact with particles 218 during the release step.
- the volume of liquid positioned between junctions J 3 and J 4 is less than about 5 microliters (e.g., about 4 microliters or less, about 2.5 microliters or less).
- the volume of release liquid between junctions J 3 and J 4 is about 1.75 microliters.
- the liquid between junctions J 3 and J 4 includes at least about 50% of polynucleotides (at least about 75%, at least about 85%, at least about 90%) of the polynucleotides present in the sample that entered processing region B 1 .
- Valve V 14 is closed to isolate network 304 from air vent AV 2 .
- the release liquid at junction J 4 and the neutralization buffer at a junction J 6 between channels C 13 and C 12 are separated only be mass 324 of TRS (e.g., the liquids are not spaced apart by a volume of gas).
- pump P 4 and gates G 12 , G 13 , and MG 11 are actuated.
- Pump P 4 drives the volume of neutralization liquid between junctions J 5 and J 6 and the volume of release liquid between junctions J 4 and J 3 into mixing channel C 15 ( FIG. 10D ).
- Mass 324 of TRS typically disperses and/or melts allowing the two liquids to combine.
- the combined liquids include a downstream interface 335 (formed by junction J 3 ) and an upstream interface (formed by junction J 5 ).
- the presence of these interfaces allows more efficient mixing (e.g., recirculation of the combined liquid) than if the interfaces were not present.
- mixing typically begins near the interface between the two liquids.
- Mixing channel C 15 is typically at least about as long (e.g., at least about twice as long) as a total length of the combined liquids within the channel.
- the volume of neutralization buffer combined with the release liquid is determined by the channel dimensions between junction J 5 and J 6 .
- the volume of combined neutralization liquid is about the same as the volume of combined release liquid.
- the volume of liquid positioned between junctions J 5 and J 6 is less than about 5 microliters (e.g., about 4 microliters or less, about 2.5 microliters or less).
- the volume of release liquid between junctions J 5 and J 6 is about 2.25 microliters (e.g., the total volume of release liquid and neutralization buffer is about 4 microliters).
- the combined release liquid and neutralization buffer move along mixing channel C 15 and into channel C 32 (vented downstream by air vent AV 8 ). Motion continues until the upstream interface of the combined liquids passes hydrophobic vent H 11 , which vents pressure from actuator P 4 stopping further motion of the combined liquids.
- actuator P 5 and gates G 14 , G 15 and G 17 are actuated to dissolve the lyophilized PCR particle present in second processing region B 2 in water from reagent reservoir R 4 .
- Hydrophobic vent H 10 vents pressure from actuator P 5 upstream of the water stopping further motion. Dissolution typically occurs in about 2 minutes or less (e.g., in about 1 minute or less). to dissolve PCR-reagent pellet.
- Valve V 17 is closed.
- actuator P 6 and gate G 16 are actuated to drive the dissolved compounds of the lyophilized particle from processing region B 2 into channel C 31 , where the dissolved reagents mix to form a homogenous dissolved lyophilized particle solution.
- Actuator P 6 moves the solution into channels C 35 and C 33 (vented downstream by air vent AV 5 ).
- Hydrophobic vent H 9 vents pressure generated by actuator P 6 upstream of the solution stopping further motion.
- Valves V 18 , V 19 , V 20 ′, and V 22 ′ are closed.
- actuator P 7 and gates G 18 , MG 20 and G 22 are actuated to combine (e.g., mix) a portion of neutralized release liquid in channel 32 between gate MG 20 and gate G 22 and a portion of the dissolved lyophilized particle solution in channel C 35 between gate G 18 and MG 20 .
- the combined liquids travel long a mixing channel C 37 and into detection region D 2 .
- An air vent AV 3 vents gas pressure downstream of the combined liquids. When the upstream interface of the combined liquids passes hydrophobic vent H 13 , the pressure from actuator P 7 is vented and the combined liquids are positioned within detection region D 2 .
- Actuator P 8 and gates MG 2 , G 23 , and G 19 are actuated to combine a portion of water from reagent reservoir R 4 between MG 2 and gate G 23 with a second portion of the dissolved lyophilized particle solution in channel C 33 between gate G 19 and MG 2 .
- the combined liquids travel long a mixing channel C 41 and into detection region D 1 .
- An air vent AV 4 vents gas pressure downstream of the combined liquids. When the upstream interface of the combined liquids passes hydrophobic vent H 12 , the pressure from actuator P 8 is vented and the combined liquids are positioned within detection region D 1 .
- double valves V 26 ′ and V 27 ′ are closed to isolate detection region D 1 from network 304 and double valves V 24 ′ and V 25 ′ are closed to isolate detection region D 2 from network 304 .
- the contents of each detection region are subjecting to heating and cooling steps to amplify polynucleotides (if present in detection region D 2 ).
- the double valves of each detection region prevent evaporation of the detection region contents during heating.
- the amplified polynucleotides are typically detected using fluorescence detection.
- a device 700 is configured to process a polynucleotide-containing sample, such as to prepare the sample for amplification of the polynucleotides.
- Device 700 includes a sample reservoir 704 , a reagent reservoir 706 , a gas pressure generator 708 , a closure (e.g., a cap 710 ), and a processing region 702 including a retention member 704 having a plurality of particles (e.g. carboxylate beads 705 surface-modified with a ligand, e.g., poly-L-lysine and/or poly-D-lysine). Retention member 705 and beads 705 may share any or all properties of retention member 216 and surface-modified particles 218 .
- Device 700 also includes an opening 716 and a valve, e.g., a thermally actuated valve 714 for opening and closing opening 716 .
- sample reservoir 704 a polynucleotide-containing sample is added to sample reservoir 704 .
- sample amounts range from about 100 ⁇ L to about 2 mL, although greater or smaller amounts may be used.
- Reagent reservoir 706 may be provided to users of device 700 with pre-loaded reagent.
- device 700 may be configured so that users add reagent to device 700 .
- the reagents may include, e.g., NaOH solutions and/or buffer solutions such as any of such solutions discussed herein.
- cap 710 is closed to prevent evaporation of sample and reagent materials.
- an operator 718 is configured to operate device 700 .
- Operator 718 includes a first heat source 720 and a second heat source 722 .
- First heat source 720 heats sample present within sample reservoir 704 , such as to lyse cells of the polynucleotide-containing sample to prepare free polynucleotides.
- Device 700 may also include an enzyme reservoir 712 comprising an enzyme, e.g., a protease such as pronase, configured to cleave peptide bonds of polypeptides present in the polynucleotide-containing sample.
- Enzyme reservoir 712 may be provided to users of device 700 with pre-loaded enzyme. Alternatively, device 700 may be configured so that users add enzyme to device 700 .
- Device 700 may be used to reduce the amount of inhibitors present relative to the amount of polynucleotides to be determined.
- the sample is eluted through processing region 702 to contact constituents of the sample with beads 705 .
- Beads 705 retain polynucleotides of the sample as compared to inhibitors as described elsewhere herein.
- valve 714 With valve 714 in the open state, sample constituents not retained in processing region 702 exit device 700 via the opening.
- an amount of reagent e.g., a wash solution, e.g., a buffer such as Tris-EDTA pH 8.0 with 1% Triton X 100 is eluted through processing region 702 .
- the wash solution is generally stored in reagent reservoir 706 , which may include a valve configured to release an amount of wash solution.
- the wash solution elutes remaining polynucleotide-containing sample and inhibitors without eluting retained polynucleotides.
- the polynucleotides are released from beads 705 .
- polynucleotides are released by contacting the beads 705 with a release solution, e.g., a NaOH solution or buffer solution having a pH different from that of the wash solution.
- a release solution e.g., a NaOH solution or buffer solution having a pH different from that of the wash solution.
- beads 705 with retained polynucleotides are heated, such as by using second heat source 722 of operator 718 .
- the release solution may be identical with the wash solution.
- Gas pressure generator 708 may be used to expel an amount of release solution with released polynucleotides from device 700 .
- Gas pressure generator and/or operator 718 may include a heat source to heat gas present within generator 708 .
- the heated gas expands and provides the gas pressure to expel sample.
- gas pressure generator 708 is configured to expel a predetermined volume of material.
- the amount of expelled solution is less than about 500 ⁇ L, less than about 250 ⁇ L, less than about 100 ⁇ L, less than about 50 ⁇ L, e.g., less than about 25 ⁇ L.
- Carboxylate surface magnetic beads (Sera-Mag Magnetic Carboxylate modified, Part #3008050250, Seradyn) at a concentration of about 10 11 mL ⁇ 1 were activated for 30 minutes using N-hydroxylsuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) in a pH 6.1 500 mM 2-(N-Morpholinio)-ethanesulfonic acid (MES) buffer solution. Activated beads were incubated with 3000 Da or 300,000 Da average molecular weight poly-L-lysine (PLL). After 2 washes to remove unbound PLL, beads were ready for use.
- NHS N-hydroxylsuccinimide
- EDAC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- MES 2-(N-Morpholinio)-ethanesulfonic acid
- a microfluidic device 300 was fabricated to demonstrate separation of polynucleotides from inhibitors.
- Device 300 comprises first and second substrate portions 302 ′, 304 ′, which respectively comprise first and second layers 302 a ′, 302 b ′ and 304 a ′, 304 b ′.
- First and second layers 302 a ′, 302 b ′ define a channel 306 ′ comprising an inlet 310 ′ and an outlet 312 ′.
- First and second layers 304 a ′, 304 b ′ define a channel 308 ′ comprising an inlet 314 ′ and an outlet 316 ′.
- First and second substrate portions 302 ′, 304 ′ were mated using adhesive 324 ′ so that outlet 312 ′ communicated with inlet 314 ′ with a filter 318 ′ positioned therebetween.
- a portion of outlet 312 ′ was filed with the activated beads prepared above to provide a processing region 320 ′ comprising a retention member (the beads).
- a pipette 322 ′ ( FIG. 14 ) secured by adhesive 326 ′ facilitated sample introduction.
- sample introduced via inlet 310 ′ passed along channel and through processing region 320 ′. Excess sample material passed along channel 308 ′ and exited device 300 ′ via outlet 316 ′. Polynucleotides were preferentially retained by the beads as compared to inhibitors. Once sample had been introduced, additional liquids, e.g., a wash liquid and/or a liquid for use in releasing the retained polynucleotides were introduced via inlet 326 ′.
- additional liquids e.g., a wash liquid and/or a liquid for use in releasing the retained polynucleotides were introduced via inlet 326 ′.
- Retention of polynucleotides by the poly-L-lysine modified beads of device 300 ′ was demonstrated by preparing respective devices comprising processing regions having a volume of about 1 mL including about 1000 beads.
- the beads were modified with poly-L-lysine of between about 15,000 and 30,000 Da.
- Each processing region was filled with a liquid comprising herring sperm DNA (about 20 uL of sample with a concentration of about 20 mg/mL) thereby placing the beads and liquid in contact. After the liquid and beads had been in contact for 10 minutes, the liquid was removed from each processing region and subjected to quantitative real-time PCR to determine the amount of herring sperm DNA present in the liquid.
- the first and second controls exhibited essentially identical responses indicating the presence of herring sperm DNA in the liquid contacted with the unmodified beads and in the unprocessed liquid.
- the liquid that had contacted the 3,000 poly-L-lysine beads exhibited a lower response indicating that the modified beads had retained substantially all of the herring sperm DNA.
- the PCR response of the liquid that had contacted the 300,000 Da poly-L-lysine beads exhibited an amplification response that was at least about 50% greater than for the 3,000 Da beads indicating that the lower molecular weight surface modification was more efficient at retaining the herring sperm DNA.
- Liquid comprising polynucleotides obtained from group B streptococci (GBS) was contacted with the beads and incubated for 10 minutes as above for the herring sperm DNA.
- This liquid had been obtained by subjecting about 10,000 GBS bacteria in 10 ⁇ l of 20 mM Tris pH 8, 1 mM EDTA, 1% Triton X-100 buffer to thermal lysing at 97° C. for 3 min.
- the liquid in contact with the beads was removed by flowing about 10 ⁇ l of wash solution (Tris-EDTA pH 8.0 with 1% Triton X 100) through the processing region. Subsequently, about 1 ⁇ l of 5 mM NaOH solution was added to the processing region. This process left the packed processing region filled with the NaOH solution in contact with the beads. The solution in contact with the beads was heated to 95° C. After 5 minutes of heating at 95° C., the solution in contact with the beads was removed by eluting the processing region with a volume of solution equal to three times the void volume of the processing region.
- wash solution Tris-EDTA pH 8.0 with 1% Triton X 100
- Aliquots E 1 , E 2 , and E 3 each contained about 1 ⁇ l of liquid.
- Aliquot L was corresponds to liquid of the original sample that had passed through the processing region.
- Aliquot W was liquid obtained from wash solution without heating.
- Aliquot E 1 corresponds to the dead volume of device 300 , about equal to the volume of channel 308 .
- liquid of aliquot E 1 was present in channel 308 and not in contact with the beads during heating. This liquid had passed through the processing region prior to heating.
- Aliquot E 2 comprises liquid that was present within the processing region and in contact with the beads during heating.
- Aliquot E 3 comprises liquid used to remove aliquot E 2 from the processing region.
- Buccal cells from the lining of the cheeks provide a source of human genetic material (DNA) that may be used for single nucleotide polymorphism (SNP) detection.
- a sample comprising buccal cells was subjected to thermal lysing to release DNA from within the cells.
- Device 300 was used to separate the DNA from concomitant inhibitors as described above.
- a cleaned-up sample corresponding to aliquot E 2 of FIG. 16 was subjected to polymerase chain reaction.
- a control or crude sample as obtained from the thermal lysing was also amplified.
- the cleaned-up sample exhibited substantially higher PCR response in fewer cycles than did the control sample.
- the clean-up sample exceeded a response of 20 within 32 cycles whereas the control sample required about 45 cycles to achieve the sample response.
- Blood acts as a sample matrix in variety of diagnostic tests including detection of infectious disease agents, cancer markers and other genetic markers.
- Hemoglobin present in blood samples is a documented potent inhibitor of PCR.
- Two 5 ml blood samples were lysed in 20 mM Tris pH 8, 1 mM EDTA, 1% SDS buffer and introduced to respective devices 300 , which were operated as described above to prepare two clean-up samples.
- a third 5 ml blood sample was lysed and prepared using a commercial DNA extraction method Puregene, Gentra Systems, MN. The respective cleaned-up samples and sample subjected to the commercial extraction method were used for a Allelic discrimination analysis (CYP2D6*4 reagents, Applied Biosystems, CA). Each sample contained an amount of DNA corresponding to about 1 ml of blood.
- the cleaned-up and commercially extracted samples exhibited similar PCR response demonstrating that the processing region of device 300 ′ efficiently removed inhibitors from the blood samples.
- the preparation of polynucleotide samples for further processing often includes subjecting the samples to protease treatment in which a protease cleaves peptide bonds of proteins in the sample.
- An exemplary protease is pronase, a mixture of endo- and exo-proteases. Pronase cleaves most peptide bonds.
- Certain ligands, such as poly-L-lysine are susceptible to rupture by pronase and other proteases. Thus, if samples are generally not subjected to protease treatment in the presence of the retention member if the ligands bound thereto are susceptible to the proteases.
- Poly-D-lysine the dextro enantiomer of poly-lysine resists cleavage by pronase and other proteases.
- the ability of a retention member comprising bound poly-D-lysine to retain DNA even when subjected to a protease treatment was studied.
- a first group of 4 samples contained 1000 GBS cells in 10 ⁇ l buffer.
- a second group of 4 samples contained 100 GBS cells in 10 ⁇ l buffer.
- Each of the 8 samples was heated to 97° C. for 3 min to lyse the GBS cells.
- Four (4) sample sets were created from the heated samples. Each sample set contained 1 sample from each of the first and second groups. The samples of each sample sets were treated as follows.
- sample set 1 were subjected to pronase incubation to prepare respective protein cleaved samples, which were then heated to inactivate the proteases.
- the protein-cleaved, heated samples were contacted with respective retention members each comprising a set of poly-L-lysine modified beads. After 5 minutes, the respective sets of beads were washed with 5 microliters of a 5 mM NaOH solution to separate inhibitors and products of protein cleavage from the bound DNA.
- the respective sets of beads were each contacted with a second aliquot of NaOH solution and heated to 80 (eighty) ° C. for 2 minutes to release the DNA.
- the solutions with released DNA were neutralized with an equal volume of buffer. The neutralized solutions were analyzed to determine the efficiency of DNA recovery. The results were averaged and shown in FIG. 19 b.
- sample set 2 The samples of sample set 2 were subjected to pronase incubation to prepare respective protein cleaved samples, which were then heated to inactivate the proteases.
- the protein-cleaved, heated samples were contacted with respective retention members each comprising a set of poly-D-lysine modified beads. After 5 minutes, the respective sets of beads were washed with 5 microliters of a 5 mM NaOH solution to separate inhibitors and products of protein cleavage from the bound DNA.
- the respective sets of beads were each contacted with a second aliquot of NaOH solution and heated to 80 (eighty) ° C. for 2 minutes to release the DNA.
- the solutions with released DNA were neutralized with an equal volume of buffer. The neutralized solutions were analyzed to determine the efficiency of DNA recovery. The results were averaged and shown in FIG. 19 b.
- sample set 3 The samples of sample set 3 were subjected to pronase incubation to prepare respective protein cleaved samples.
- the proteases were not deactivated either thermally or chemically.
- the protein-cleaved samples were contacted with respective retention members each comprising a set of poly-L-lysine modified beads. After 5 minutes, the respective sets of beads were washed with 5 microliters of a 5 mM NaOH solution to separate inhibitors and products of protein cleavage from the bound DNA.
- the respective sets of beads were each contacted with a second aliquot of NaOH solution and heated to 80 (eighty) ° C. for 2 minutes to release the DNA.
- the solutions with released polynucleotides were each neutralized with an equal volume of buffer. The neutralized solutions were analyzed to determine the efficiency of DNA recovery. The results were averaged and shown in FIG. 19 b.
- sample set 4 The samples of sample set 4 were subjected to pronase incubation to prepare respective protein cleaved samples.
- the proteases were not deactivated either thermally or chemically.
- the protein-cleaved samples were contacted with respective retention members each comprising a set of poly-D-lysine modified beads. After 5 minutes, the respective sets of beads were washed with 5 microliters of a 5 mM NaOH solution to separate inhibitors and products of protein cleavage from the bound DNA.
- the respective sets of beads were each contacted with a second aliquot of NaOH solution and heated to 80 (eighty) ° C. for 2 minutes to release the DNA.
- the solutions with released polynucleotides were each neutralized with an equal volume of buffer. The neutralized solutions were analyzed to determine the efficiency of DNA recovery. The results were averaged and shown in FIG. 19 b.
- sample set 4 an average of more than 80% of DNA from the GBS cells was recovered using sample set 4 in which the samples were contacted with poly-D-lysine modified beads and subjected to pronase incubation in the presence of the beads without protease inactivation.
- the recovery efficiency for sample set 4 is more than twice as high as for any of the other samples. Specifically, the recovery efficiencies for sample sets 1, 2, 3, and 4, were 29%, 32%, 14%, and 81.5%, respectively. The efficiencies demonstrate that high recovery efficiencies can be obtained for samples subjected to protease incubation in the presence of a retention member that retains DNA.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Clinical Laboratory Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Mechanical Engineering (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/579,353 US8470586B2 (en) | 2004-05-03 | 2005-05-03 | Processing polynucleotide-containing samples |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56717404P | 2004-05-03 | 2004-05-03 | |
US64578405P | 2005-01-21 | 2005-01-21 | |
US11/579,353 US8470586B2 (en) | 2004-05-03 | 2005-05-03 | Processing polynucleotide-containing samples |
PCT/US2005/015345 WO2005108620A2 (en) | 2004-05-03 | 2005-05-03 | Processing polynucleotide-containing samples |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/015345 A-371-Of-International WO2005108620A2 (en) | 2004-05-03 | 2005-05-03 | Processing polynucleotide-containing samples |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/925,547 Continuation US20140030798A1 (en) | 2004-05-03 | 2013-06-24 | Processing polynucleotide-containing samples |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080262213A1 US20080262213A1 (en) | 2008-10-23 |
US8470586B2 true US8470586B2 (en) | 2013-06-25 |
Family
ID=35320810
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/579,353 Active 2027-04-14 US8470586B2 (en) | 2004-05-03 | 2005-05-03 | Processing polynucleotide-containing samples |
US13/925,547 Abandoned US20140030798A1 (en) | 2004-05-03 | 2013-06-24 | Processing polynucleotide-containing samples |
US16/283,617 Abandoned US20190284606A1 (en) | 2004-05-03 | 2019-02-22 | Processing polynucleotide-containing samples |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/925,547 Abandoned US20140030798A1 (en) | 2004-05-03 | 2013-06-24 | Processing polynucleotide-containing samples |
US16/283,617 Abandoned US20190284606A1 (en) | 2004-05-03 | 2019-02-22 | Processing polynucleotide-containing samples |
Country Status (7)
Country | Link |
---|---|
US (3) | US8470586B2 (en) |
EP (2) | EP2345739B8 (en) |
JP (4) | JP5344817B2 (en) |
AU (1) | AU2005241080B2 (en) |
CA (3) | CA3198754A1 (en) |
ES (2) | ES2572382T3 (en) |
WO (1) | WO2005108620A2 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100197008A1 (en) * | 2003-07-31 | 2010-08-05 | Handylab, Inc. | Processing particle-containing samples |
US8685341B2 (en) | 2001-09-12 | 2014-04-01 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US8703069B2 (en) | 2001-03-28 | 2014-04-22 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
US8709787B2 (en) | 2006-11-14 | 2014-04-29 | Handylab, Inc. | Microfluidic cartridge and method of using same |
US8710211B2 (en) | 2007-07-13 | 2014-04-29 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US8734733B2 (en) | 2001-02-14 | 2014-05-27 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US8768517B2 (en) | 2001-03-28 | 2014-07-01 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US8852862B2 (en) | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US8883490B2 (en) | 2006-03-24 | 2014-11-11 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US8894947B2 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US8895311B1 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US9040288B2 (en) | 2006-03-24 | 2015-05-26 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US9050594B2 (en) | 2012-02-13 | 2015-06-09 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9080207B2 (en) | 2006-03-24 | 2015-07-14 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US20150283324A1 (en) * | 2012-11-14 | 2015-10-08 | Ams Research Corporation | Cell delivery device and system with anti-clumping feature and methods for pelvic tissue treatment |
USD742027S1 (en) | 2011-09-30 | 2015-10-27 | Becton, Dickinson And Company | Single piece reagent holder |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9222954B2 (en) | 2011-09-30 | 2015-12-29 | Becton, Dickinson And Company | Unitized reagent strip |
US9238223B2 (en) | 2007-07-13 | 2016-01-19 | Handylab, Inc. | Microfluidic cartridge |
US9259734B2 (en) | 2007-07-13 | 2016-02-16 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9347586B2 (en) | 2007-07-13 | 2016-05-24 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US9382532B2 (en) | 2012-10-25 | 2016-07-05 | Neumodx Molecular, Inc. | Method and materials for isolation of nucleic acid materials |
US9415392B2 (en) | 2009-03-24 | 2016-08-16 | The University Of Chicago | Slip chip device and methods |
US9447461B2 (en) | 2009-03-24 | 2016-09-20 | California Institute Of Technology | Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes |
US9464319B2 (en) | 2009-03-24 | 2016-10-11 | California Institute Of Technology | Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes |
US9604213B2 (en) | 2012-02-13 | 2017-03-28 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9618139B2 (en) | 2007-07-13 | 2017-04-11 | Handylab, Inc. | Integrated heater and magnetic separator |
USD787087S1 (en) | 2008-07-14 | 2017-05-16 | Handylab, Inc. | Housing |
US9765389B2 (en) | 2011-04-15 | 2017-09-19 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US10093963B2 (en) | 2012-02-13 | 2018-10-09 | Neumodx Molecular, Inc. | System and method for processing biological samples |
US10179910B2 (en) | 2007-07-13 | 2019-01-15 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US10196700B2 (en) | 2009-03-24 | 2019-02-05 | University Of Chicago | Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes |
US10822644B2 (en) | 2012-02-03 | 2020-11-03 | Becton, Dickinson And Company | External files for distribution of molecular diagnostic tests and determination of compatibility between tests |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11427815B2 (en) | 2015-12-28 | 2022-08-30 | Koninklijke Philips N.V. | Nucleic acid purification system using a single wash and elution buffer solution |
US11453906B2 (en) | 2011-11-04 | 2022-09-27 | Handylab, Inc. | Multiplexed diagnostic detection apparatus and methods |
US11485968B2 (en) | 2012-02-13 | 2022-11-01 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US11512356B2 (en) | 2018-11-08 | 2022-11-29 | Tokitae Llc | Systems and methods for particle multiplexing in droplets |
US11648561B2 (en) | 2012-02-13 | 2023-05-16 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US12128405B2 (en) | 2020-07-10 | 2024-10-29 | Handylab, Inc. | Microfluidic valve and method of making same |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048734A (en) | 1995-09-15 | 2000-04-11 | The Regents Of The University Of Michigan | Thermal microvalves in a fluid flow method |
JP5344817B2 (en) * | 2004-05-03 | 2013-11-20 | ハンディーラブ インコーポレイテッド | Processing of samples containing polynucleotides |
JP2008513022A (en) | 2004-09-15 | 2008-05-01 | マイクロチップ バイオテクノロジーズ, インコーポレイテッド | Microfluidic device |
JP2008539727A (en) * | 2005-05-03 | 2008-11-20 | ハンディーラブ インコーポレイテッド | Freeze-dried pellets |
EP1896610A2 (en) * | 2005-05-03 | 2008-03-12 | Handylab, Inc. | Lyophilized pellets |
US7727473B2 (en) | 2005-10-19 | 2010-06-01 | Progentech Limited | Cassette for sample preparation |
US7754148B2 (en) | 2006-12-27 | 2010-07-13 | Progentech Limited | Instrument for cassette for sample preparation |
JP5063616B2 (en) | 2006-02-03 | 2012-10-31 | インテジェニックス インコーポレイテッド | Microfluidic device |
US20090105087A1 (en) * | 2006-03-15 | 2009-04-23 | Koninklijke Philips Electronics N.V. | Microelectronic device with controllable reference substance supply |
WO2007111274A1 (en) * | 2006-03-24 | 2007-10-04 | Kabushiki Kaisha Toshiba | Nucleic acid detection cassette and nucleic acid detection apparatus |
US8088616B2 (en) | 2006-03-24 | 2012-01-03 | Handylab, Inc. | Heater unit for microfluidic diagnostic system |
GB0618966D0 (en) * | 2006-09-26 | 2006-11-08 | Iti Scotland Ltd | Cartridge system |
US7857141B2 (en) * | 2006-12-11 | 2010-12-28 | Samsung Electronics Co., Ltd. | Apparatus and method for separating components |
US8307988B2 (en) * | 2006-12-11 | 2012-11-13 | Samsung Electronics Co., Ltd. | Apparatus and method for separating components |
WO2008115626A2 (en) | 2007-02-05 | 2008-09-25 | Microchip Biotechnologies, Inc. | Microfluidic and nanofluidic devices, systems, and applications |
US20090136385A1 (en) | 2007-07-13 | 2009-05-28 | Handylab, Inc. | Reagent Tube |
USD621060S1 (en) | 2008-07-14 | 2010-08-03 | Handylab, Inc. | Microfluidic cartridge |
CA3006347A1 (en) | 2007-07-23 | 2009-01-29 | Clondiag Gmbh | Methods and devices for determining values indicative of the presence and/or amount of nucleic acids |
WO2009108260A2 (en) | 2008-01-22 | 2009-09-03 | Microchip Biotechnologies, Inc. | Universal sample preparation system and use in an integrated analysis system |
GB0812041D0 (en) * | 2008-07-02 | 2008-08-06 | Enigma Diagnostics Ltd | Compositions |
KR101102532B1 (en) * | 2008-07-10 | 2012-01-03 | 삼성전자주식회사 | Cartridge containing reagent therein, microfluidic device having the cartridge, manufacturing method of the microfluidic device, biochemistry analysis method using microfluidic device |
USD618820S1 (en) | 2008-07-11 | 2010-06-29 | Handylab, Inc. | Reagent holder |
CN102341691A (en) | 2008-12-31 | 2012-02-01 | 尹特根埃克斯有限公司 | Instrument with microfluidic chip |
CN102459565A (en) | 2009-06-02 | 2012-05-16 | 尹特根埃克斯有限公司 | Fluidic devices with diaphragm valves |
WO2010141921A1 (en) | 2009-06-05 | 2010-12-09 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
US8584703B2 (en) | 2009-12-01 | 2013-11-19 | Integenx Inc. | Device with diaphragm valve |
KR20160088958A (en) | 2010-02-23 | 2016-07-26 | 루미넥스 코포레이션 | Apparatus and methods for integrated sample preparation, reaction and detection |
US8512538B2 (en) | 2010-05-28 | 2013-08-20 | Integenx Inc. | Capillary electrophoresis device |
US8763642B2 (en) | 2010-08-20 | 2014-07-01 | Integenx Inc. | Microfluidic devices with mechanically-sealed diaphragm valves |
EP2606154B1 (en) | 2010-08-20 | 2019-09-25 | Integenx Inc. | Integrated analysis system |
DE102010061910B4 (en) * | 2010-11-24 | 2016-04-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Microfluidic device and method of making same |
EP2646157A1 (en) * | 2010-11-30 | 2013-10-09 | Quantumdx Group Limited | Microfluidic device for nucleic acid extraction and fractionation |
JPWO2012086168A1 (en) * | 2010-12-21 | 2014-05-22 | 日本電気株式会社 | Sample heating method and heating control apparatus |
CN104023834B (en) | 2011-05-04 | 2016-09-28 | 卢米耐克斯公司 | The apparatus and method for prepared for integrated sample, react and detect |
US20150136604A1 (en) | 2011-10-21 | 2015-05-21 | Integenx Inc. | Sample preparation, processing and analysis systems |
US10865440B2 (en) | 2011-10-21 | 2020-12-15 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
CA2872527A1 (en) * | 2012-05-08 | 2013-11-14 | Northwestern University | Cartridge for use in an automated system for isolating an analyte from a sample, and methods of use |
WO2013169730A1 (en) | 2012-05-08 | 2013-11-14 | Quidel Corporation | Device for isolating an analyte from a sample, and methods of use |
US10010822B2 (en) * | 2012-08-10 | 2018-07-03 | Donaldson Company, Inc. | Recirculation filter for an electronic enclosure |
US10501735B2 (en) | 2012-08-23 | 2019-12-10 | Quidel Corporation | Device with controlled fluid dynamics, for isolation of an analyte from a sample |
US9888283B2 (en) | 2013-03-13 | 2018-02-06 | Nagrastar Llc | Systems and methods for performing transport I/O |
USD758372S1 (en) * | 2013-03-13 | 2016-06-07 | Nagrastar Llc | Smart card interface |
GB2516669B (en) * | 2013-07-29 | 2015-09-09 | Atlas Genetics Ltd | A method for processing a liquid sample in a fluidic cartridge |
GB2516675A (en) * | 2013-07-29 | 2015-02-04 | Atlas Genetics Ltd | A valve which depressurises, and a valve system |
CN105873681B (en) | 2013-11-18 | 2019-10-11 | 尹特根埃克斯有限公司 | Cartridge and instrument for sample analysis |
WO2015123406A1 (en) | 2014-02-13 | 2015-08-20 | Donaldson Company, Inc. | Recirculation filter for an enclosure |
US10208332B2 (en) | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
DE102014216395A1 (en) * | 2014-08-19 | 2016-02-25 | Robert Bosch Gmbh | Blockade-free opening to upstream substances |
EP3209410A4 (en) | 2014-10-22 | 2018-05-02 | IntegenX Inc. | Systems and methods for sample preparation, processing and analysis |
USD864968S1 (en) | 2015-04-30 | 2019-10-29 | Echostar Technologies L.L.C. | Smart card interface |
CN106053859B (en) * | 2016-08-02 | 2018-07-10 | 杭州霆科生物科技有限公司 | A kind of centrifugal glycosylated hemoglobin detection micro-fluidic chip |
WO2018119401A2 (en) * | 2016-12-22 | 2018-06-28 | Daktari Diagnostics, Inc. | Devices and methods for determining one or more analytes in fluids |
AU2018323449B2 (en) | 2017-08-29 | 2020-09-03 | Bio-Rad Laboratories, Inc. | System and method for isolating and analyzing cells |
US20200347380A1 (en) * | 2017-12-06 | 2020-11-05 | Entopsis, LLC | Separation Device, and Method of Use, to Remove PCR Inhibitors from Whole Blood and Serum Samples |
US10633693B1 (en) * | 2019-04-16 | 2020-04-28 | Celsee Diagnostics, Inc. | System and method for leakage control in a particle capture system |
USD928344S1 (en) * | 2019-04-23 | 2021-08-17 | Nippon Sheet Glass Company, Limited | Gene amplification chip for medical and laboratory use |
SG11202112898WA (en) | 2019-06-14 | 2021-12-30 | Bio Rad Laboratories | System and method for automated single cell processing and analyses |
US20220288508A1 (en) * | 2019-08-01 | 2022-09-15 | Georgia Tech Research Corporation | Microfluidic Platform for Refrigeration Induced Phase Separation of Aqueous-Acetonitrile Solutions |
CN113333042B (en) * | 2021-06-21 | 2022-04-22 | 太原理工大学 | Micro-fluidic chip for nucleic acid detection and manufacturing method thereof |
Citations (609)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1434314A (en) | 1921-08-04 | 1922-10-31 | Raich Anthony | Lunch pail |
US1616419A (en) | 1925-04-03 | 1927-02-01 | Everlasting Valve Co | Automatic shut-off device for gas in case of fire |
US1733401A (en) | 1928-03-29 | 1929-10-29 | Christman Matthias | Journal box |
US3528449A (en) | 1968-02-27 | 1970-09-15 | Trw Inc | Fluid flow control apparatus |
US3813316A (en) | 1972-06-07 | 1974-05-28 | Gen Electric | Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof |
US3985649A (en) | 1974-11-25 | 1976-10-12 | Eddelman Roy T | Ferromagnetic separation process and material |
US4018089A (en) | 1976-05-05 | 1977-04-19 | Beckman Instruments, Inc. | Fluid sampling apparatus |
US4018652A (en) | 1976-01-09 | 1977-04-19 | Mcdonnell Douglas Corporation | Process and apparatus for ascertaining the concentration of microorganism in a water specimen |
US4038192A (en) | 1973-12-03 | 1977-07-26 | International Biomedical Laboratories, Inc. | Device for exchange between fluids suitable for treatment of blood |
US4055395A (en) | 1975-10-31 | 1977-10-25 | Hitachi, Ltd. | Analysis apparatus |
USD249706S (en) | 1976-12-17 | 1978-09-26 | Eastman Kodak Company | Sample cup tray for chemical analysis of biological fluids |
US4139005A (en) | 1977-09-01 | 1979-02-13 | Dickey Gilbert C | Safety release pipe cap |
USD252157S (en) | 1977-04-14 | 1979-06-19 | Warner-Lambert Company | Diagnostic device for measuring biochemical characteristics of microorganisms and the like |
USD252341S (en) | 1977-05-12 | 1979-07-10 | Ryder International Corporation | Testing tray |
USD254687S (en) | 1979-01-25 | 1980-04-08 | Mcdonnell Douglas Corporation | Biochemical card for use with an automated microbial identification machine |
US4212744A (en) | 1977-06-21 | 1980-07-15 | Asahi Medical Co., Ltd. | Haemodialyzer apparatus |
USD261033S (en) | 1979-02-05 | 1981-09-29 | American Optical Corporation | Bilirubin concentration analyzer |
USD261173S (en) | 1979-02-05 | 1981-10-06 | American Optical Corporation | Bilirubinometer |
US4301412A (en) | 1979-10-29 | 1981-11-17 | United States Surgical Corporation | Liquid conductivity measuring system and sample cards therefor |
US4439526A (en) | 1982-07-26 | 1984-03-27 | Eastman Kodak Company | Clustered ingress apertures for capillary transport devices and method of use |
US4457329A (en) | 1981-12-04 | 1984-07-03 | Air Products And Chemicals, Inc. | Safety pressure regulator |
US4466740A (en) | 1980-10-09 | 1984-08-21 | Olympus Optical Co., Ltd. | Particle agglutination analyzing plate |
US4504582A (en) | 1982-07-20 | 1985-03-12 | Genex Corporation | Vermiculite as a carrier support for immobilized biological materials |
US4522786A (en) | 1983-08-10 | 1985-06-11 | E. I. Du Pont De Nemours And Company | Multilayered test device for detecting analytes in liquid test samples |
USD279817S (en) | 1982-07-19 | 1985-07-23 | Daryl Laboratories, Inc. | Immunoassay test slide |
US4599315A (en) | 1983-09-13 | 1986-07-08 | University Of California Regents | Microdroplet test apparatus |
US4612959A (en) | 1985-05-07 | 1986-09-23 | Mobil Oil Corporation | Valveless shut-off and transfer device |
US4612873A (en) | 1982-09-02 | 1986-09-23 | Firma Andreas Hettich | Centrifuge chamber for cytodiagnostic investigation of epithelial cells contained in a sample |
USD288478S (en) | 1984-06-21 | 1987-02-24 | Sentech Medical Corporation | Clinical chemistry analyzer |
US4654127A (en) | 1984-04-11 | 1987-03-31 | Sentech Medical Corporation | Self-calibrating single-use sensing device for clinical chemistry and method of use |
US4673657A (en) | 1983-08-26 | 1987-06-16 | The Regents Of The University Of California | Multiple assay card and system |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
USD292735S (en) | 1983-11-02 | 1987-11-10 | A/S Nunc | Tube for the immunological adsorption analysis |
US4720374A (en) | 1985-07-22 | 1988-01-19 | E. I. Du Pont De Nemours And Company | Container having a sonication compartment |
US4798693A (en) | 1984-04-26 | 1989-01-17 | Ngk Insulators, Ltd. | Method of manufacturing an electrochemical device |
US4800022A (en) | 1985-03-13 | 1989-01-24 | Baxter International Inc. | Platelet collection system |
US4841786A (en) | 1986-05-02 | 1989-06-27 | Forschungs-& Entwicklungs-Kg | Specimen distributing system |
USD302294S (en) | 1986-10-03 | 1989-07-18 | Biotrack, Inc. | Reagent cartridge for blood analysis |
US4871779A (en) | 1985-12-23 | 1989-10-03 | The Dow Chemical Company | Ion exchange/chelation resins containing dense star polymers having ion exchange or chelate capabilities |
US4895650A (en) | 1988-02-25 | 1990-01-23 | Gen-Probe Incorporated | Magnetic separation rack for diagnostic assays |
US4919829A (en) | 1988-12-30 | 1990-04-24 | The United States Of America As Represented By The Secretary Of Commerce | Aluminum hydroxides as solid lubricants |
US4921809A (en) | 1987-09-29 | 1990-05-01 | Findley Adhesives, Inc. | Polymer coated solid matrices and use in immunoassays |
US4935342A (en) | 1986-12-01 | 1990-06-19 | Syngene, Inc. | Method of isolating and purifying nucleic acids from biological samples |
US4946562A (en) | 1987-01-29 | 1990-08-07 | Medtest Systems, Inc. | Apparatus and methods for sensing fluid components |
US4949742A (en) | 1989-04-26 | 1990-08-21 | Spectra-Physics, Inc. | Temperature operated gas valve |
USD310413S (en) | 1987-12-17 | 1990-09-04 | Miles Inc. | Sample processor |
US4963498A (en) | 1985-08-05 | 1990-10-16 | Biotrack | Capillary flow device |
US4967950A (en) | 1989-10-31 | 1990-11-06 | International Business Machines Corporation | Soldering method |
US4978502A (en) | 1987-01-05 | 1990-12-18 | Dole Associates, Inc. | Immunoassay or diagnostic device and method of manufacture |
US4978622A (en) | 1986-06-23 | 1990-12-18 | Regents Of The University Of California | Cytophaga-derived immunopotentiator |
US4989626A (en) | 1988-11-11 | 1991-02-05 | Hitachi, Ltd. | Apparatus for and method of controlling the opening and closing of channel for liquid |
US5001417A (en) | 1987-06-01 | 1991-03-19 | Abbott Laboratories | Apparatus for measuring electrolytes utilizing optical signals related to the concentration of the electrolytes |
US5004583A (en) | 1987-01-29 | 1991-04-02 | Medtest Systems, Inc. | Universal sensor cartridge for use with a universal analyzer for sensing components in a multicomponent fluid |
US5048554A (en) | 1989-10-05 | 1991-09-17 | Ceodeux S.A. | Valve for a gas cylinder |
US5053199A (en) | 1989-02-21 | 1991-10-01 | Boehringer Mannheim Corporation | Electronically readable information carrier |
US5060823A (en) * | 1988-09-15 | 1991-10-29 | Brandeis University | Sterile transfer system |
US5061336A (en) | 1989-05-01 | 1991-10-29 | Soane Technologies, Inc. | Gel casting method and apparatus |
US5064618A (en) | 1987-08-29 | 1991-11-12 | Thorn Emi Plc | Sensor arrangements |
US5071531A (en) | 1989-05-01 | 1991-12-10 | Soane Technologies, Inc. | Casting of gradient gels |
US5091328A (en) | 1989-11-21 | 1992-02-25 | National Semiconductor Corporation | Method of late programming MOS devices |
USD324426S (en) | 1989-10-20 | 1992-03-03 | Pacific Biotech, Inc. | Reaction unit for use in analyzing biological fluids |
US5096669A (en) | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
US5126002A (en) | 1989-09-29 | 1992-06-30 | Glory Kogyo Kabushiki Kaisha | Leaf paper bundling apparatus |
US5126022A (en) | 1990-02-28 | 1992-06-30 | Soane Tecnologies, Inc. | Method and device for moving molecules by the application of a plurality of electrical fields |
USD328135S (en) | 1990-01-12 | 1992-07-21 | Pacific Biotech, Inc. | Reaction unit for use in analyzing biological fluids |
US5135627A (en) | 1990-10-15 | 1992-08-04 | Soane Technologies, Inc. | Mosaic microcolumns, slabs, and separation media for electrophoresis and chromatography |
US5135872A (en) | 1989-04-28 | 1992-08-04 | Sangstat Medical Corporation | Matrix controlled method of delayed fluid delivery for assays |
USD328794S (en) | 1989-07-19 | 1992-08-18 | Pb Diagnostic Systems, Inc. | Diagnostic instrument or similar article |
US5147606A (en) | 1990-08-06 | 1992-09-15 | Miles Inc. | Self-metering fluid analysis device |
US5169512A (en) | 1988-04-08 | 1992-12-08 | Robert Bosch Gmbh | Planar polarographic probe for determining the λ value of gas mixtures |
US5186339A (en) | 1990-07-20 | 1993-02-16 | Eastman Kodak Company | Device comprising a plurality of receptacles arranged in a single row for containers filled with a liquid |
USD333522S (en) | 1991-07-23 | 1993-02-23 | P B Diagnostic Systems, Inc. | Sample tube holder |
US5192507A (en) | 1987-06-05 | 1993-03-09 | Arthur D. Little, Inc. | Receptor-based biosensors |
US5208163A (en) | 1990-08-06 | 1993-05-04 | Miles Inc. | Self-metering fluid analysis device |
US5223226A (en) | 1992-04-14 | 1993-06-29 | Millipore Corporation | Insulated needle for forming an electrospray |
USD338275S (en) | 1989-05-03 | 1993-08-10 | Bayer Diagnostics, GmbH | Combined clinical-chemical analyzer evaluation unit and work station |
US5250263A (en) | 1990-11-01 | 1993-10-05 | Ciba-Geigy Corporation | Apparatus for processing or preparing liquid samples for chemical analysis |
US5252743A (en) | 1989-11-13 | 1993-10-12 | Affymax Technologies N.V. | Spatially-addressable immobilization of anti-ligands on surfaces |
US5256376A (en) | 1991-09-12 | 1993-10-26 | Medical Laboratory Automation, Inc. | Agglutination detection apparatus |
US5275787A (en) | 1989-10-04 | 1994-01-04 | Canon Kabushiki Kaisha | Apparatus for separating or measuring particles to be examined in a sample fluid |
US5282950A (en) | 1991-07-15 | 1994-02-01 | Boehringer Mannheim Gmbh | Electrochemical analysis system |
US5296375A (en) | 1992-05-01 | 1994-03-22 | Trustees Of The University Of Pennsylvania | Mesoscale sperm handling devices |
US5304477A (en) | 1991-07-08 | 1994-04-19 | Fuji Oil Company, Limited | Process for producing hard fats using 1,3-specific lipase and mixture of palmitic, lauric and behemic acids |
US5304487A (en) | 1992-05-01 | 1994-04-19 | Trustees Of The University Of Pennsylvania | Fluid handling in mesoscale analytical devices |
US5311896A (en) | 1989-04-10 | 1994-05-17 | Niilo Kaartinen | Method for producing a heatable and refrigerable element for a system handling small quantities of liquid, and an element manufactured by the method |
US5311996A (en) | 1993-01-05 | 1994-05-17 | Duffy Thomas J | Edge protector |
USD347478S (en) | 1991-11-05 | 1994-05-31 | Hybaid Ltd. | Laboratory instrument for handling bimolecular samples |
US5316727A (en) | 1989-09-08 | 1994-05-31 | Terumo Kabushiki Kaisha | Measuring apparatus |
US5327038A (en) | 1991-05-09 | 1994-07-05 | Rockwell International Corporation | Walking expansion actuator |
US5339486A (en) | 1993-03-10 | 1994-08-23 | Persic Jr William V | Golf ball cleaner |
USD351475S (en) | 1992-01-30 | 1994-10-11 | Jan Gerber | Skin patch for testing allergic reactions |
USD351913S (en) | 1993-02-25 | 1994-10-25 | Diametrics Medical, Inc. | Disposable electrochemical measurement cartridge for a portable medical analyzer |
US5364591A (en) | 1992-06-01 | 1994-11-15 | Eastman Kodak Company | Device for moving a target-bearing solid through a liquid for detection while being contained |
US5372946A (en) | 1992-12-10 | 1994-12-13 | International Technidyne Corporation | Blood coagulation time test apparatus and method |
US5374395A (en) | 1993-10-14 | 1994-12-20 | Amoco Corporation | Diagnostics instrument |
US5389339A (en) | 1990-05-01 | 1995-02-14 | Enprotech Corporation | Integral biomolecule preparation device |
US5397709A (en) | 1993-08-27 | 1995-03-14 | Becton Dickinson And Company | System for detecting bacterial growth in a plurality of culture vials |
US5401465A (en) | 1992-05-05 | 1995-03-28 | Chiron Corporation | Luminometer with reduced sample crosstalk |
US5411708A (en) | 1991-08-06 | 1995-05-02 | Moscetta; Pompeo | Apparatus for the determination of analytes in liquid samples |
US5414245A (en) | 1992-08-03 | 1995-05-09 | Hewlett-Packard Corporation | Thermal-ink heater array using rectifying material |
US5416000A (en) | 1989-03-16 | 1995-05-16 | Chemtrak, Inc. | Analyte immunoassay in self-contained apparatus |
US5422284A (en) | 1987-07-16 | 1995-06-06 | E. I. Du Pont De Nemours And Company | Method of performing affinity separation using immobilized flocculating agent on chromatographic support |
US5422271A (en) | 1992-11-20 | 1995-06-06 | Eastman Kodak Company | Nucleic acid material amplification and detection without washing |
US5474796A (en) | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
USD366116S (en) | 1994-05-03 | 1996-01-09 | Thomas Biskupski | Electrical box for storing dental wax |
US5486335A (en) | 1992-05-01 | 1996-01-23 | Trustees Of The University Of Pennsylvania | Analysis based on flow restriction |
US5494639A (en) | 1993-01-13 | 1996-02-27 | Behringwerke Aktiengesellschaft | Biosensor for measuring changes in viscosity and/or density of a fluid |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5503803A (en) | 1988-03-28 | 1996-04-02 | Conception Technologies, Inc. | Miniaturized biological assembly |
US5516410A (en) | 1993-12-17 | 1996-05-14 | Robert Bosch Gmbh | Planar sensor element having a solid electrolyte substrate |
US5519635A (en) | 1993-09-20 | 1996-05-21 | Hitachi Ltd. | Apparatus for chemical analysis with detachable analytical units |
US5529677A (en) | 1992-09-24 | 1996-06-25 | Robert Bosch Gmbh | Planar polarographic sensor for determining the lambda value of gas mixtures |
US5559432A (en) | 1992-02-27 | 1996-09-24 | Logue; Delmar L. | Joystick generating a polar coordinates signal utilizing a rotating magnetic field within a hollow toroid core |
US5565171A (en) | 1993-05-28 | 1996-10-15 | Governors Of The University Of Alberta | Continuous biochemical reactor for analysis of sub-picomole quantities of complex organic molecules |
US5569364A (en) | 1992-11-05 | 1996-10-29 | Soane Biosciences, Inc. | Separation media for electrophoresis |
US5578270A (en) | 1995-03-24 | 1996-11-26 | Becton Dickinson And Company | System for nucleic acid based diagnostic assay |
US5578818A (en) | 1995-05-10 | 1996-11-26 | Molecular Dynamics | LED point scanning system |
US5579928A (en) | 1995-03-06 | 1996-12-03 | Anukwuem; Chidi I. | Test tube holder with lock down clamp |
US5580523A (en) | 1994-04-01 | 1996-12-03 | Bard; Allen J. | Integrated chemical synthesizers |
US5582884A (en) | 1991-10-04 | 1996-12-10 | Alcan International Limited | Peelable laminated structures and process for production thereof |
US5585069A (en) | 1994-11-10 | 1996-12-17 | David Sarnoff Research Center, Inc. | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5585242A (en) | 1992-04-06 | 1996-12-17 | Abbott Laboratories | Method for detection of nucleic acid using total internal reflectance |
US5587128A (en) | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
US5589136A (en) | 1995-06-20 | 1996-12-31 | Regents Of The University Of California | Silicon-based sleeve devices for chemical reactions |
US5599667A (en) | 1987-03-02 | 1997-02-04 | Gen-Probe Incorporated | Polycationic supports and nucleic acid purification separation and hybridization |
US5599503A (en) | 1990-11-26 | 1997-02-04 | Ciba-Geigy Corporation | Detector cell |
US5599432A (en) | 1993-11-11 | 1997-02-04 | Ciba-Geigy Corporation | Device and a method for the electrophoretic separation of fluid substance mixtures |
US5601727A (en) | 1991-11-04 | 1997-02-11 | Pall Corporation | Device and method for separating plasma from a biological fluid |
US5603351A (en) | 1995-06-07 | 1997-02-18 | David Sarnoff Research Center, Inc. | Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device |
US5605662A (en) | 1993-11-01 | 1997-02-25 | Nanogen, Inc. | Active programmable electronic devices for molecular biological analysis and diagnostics |
USD378782S (en) | 1996-03-01 | 1997-04-08 | Johnson & Johnson Clinical Diagnostics, Inc. | Processor for nucleic acid detection |
US5628890A (en) | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
US5630920A (en) | 1994-03-14 | 1997-05-20 | Robert Bosch Gmbh | Electrochemical sensor for determining the oxygen concentration in gas mixtures |
US5631337A (en) | 1996-01-19 | 1997-05-20 | Soane Bioscience | Thermoreversible hydrogels comprising linear copolymers and their use in electrophoresis |
US5632957A (en) | 1993-11-01 | 1997-05-27 | Nanogen | Molecular biological diagnostic systems including electrodes |
US5632876A (en) | 1995-06-06 | 1997-05-27 | David Sarnoff Research Center, Inc. | Apparatus and methods for controlling fluid flow in microchannels |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US5639423A (en) | 1992-08-31 | 1997-06-17 | The Regents Of The University Of Calfornia | Microfabricated reactor |
US5647994A (en) | 1993-06-21 | 1997-07-15 | Labsystems Oy | Method and apparatus for separating magnetic particles from a solution |
US5651839A (en) | 1995-10-26 | 1997-07-29 | Queen's University At Kingston | Process for engineering coherent twin and coincident site lattice grain boundaries in polycrystalline materials |
US5652149A (en) | 1992-12-08 | 1997-07-29 | Westinghouse Electric Corporation | Mixing apparatus & method for an optical agglutination assay device |
USD382346S (en) | 1995-04-19 | 1997-08-12 | Roche Diagnostic Systems, Inc. | Vessel holder |
USD382647S (en) | 1996-01-17 | 1997-08-19 | Biomerieux Vitek, Inc. | Biochemical test card |
US5667976A (en) | 1990-05-11 | 1997-09-16 | Becton Dickinson And Company | Solid supports for nucleic acid hybridization assays |
US5671303A (en) | 1996-04-17 | 1997-09-23 | Motorola, Inc. | Molecular detection apparatus and method using optical waveguide detection |
US5674394A (en) | 1995-03-24 | 1997-10-07 | Johnson & Johnson Medical, Inc. | Single use system for preparation of autologous plasma |
US5681529A (en) | 1994-08-25 | 1997-10-28 | Nihon Medi-Physics Co., Ltd. | Biological fluid analyzing device |
US5683657A (en) | 1994-03-24 | 1997-11-04 | Gamera Bioscience, Corp. | DNA meltometer |
US5699157A (en) | 1996-07-16 | 1997-12-16 | Caliper Technologies Corp. | Fourier detection of species migrating in a microchannel |
US5700637A (en) | 1988-05-03 | 1997-12-23 | Isis Innovation Limited | Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays |
US5705813A (en) | 1995-11-01 | 1998-01-06 | Hewlett-Packard Company | Integrated planar liquid handling system for maldi-TOF MS |
US5726944A (en) | 1996-02-05 | 1998-03-10 | Motorola, Inc. | Voltage regulator for regulating an output voltage from a charge pump and method therefor |
US5726026A (en) | 1992-05-01 | 1998-03-10 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5726404A (en) | 1996-05-31 | 1998-03-10 | University Of Washington | Valveless liquid microswitch |
US5731212A (en) | 1994-12-20 | 1998-03-24 | International Technidyne Corporation | Test apparatus and method for testing cuvette accommodated samples |
US5744366A (en) | 1992-05-01 | 1998-04-28 | Trustees Of The University Of Pennsylvania | Mesoscale devices and methods for analysis of motile cells |
US5747666A (en) | 1997-03-26 | 1998-05-05 | Willis; John P. | Point-of-care analyzer module |
US5750015A (en) | 1990-02-28 | 1998-05-12 | Soane Biosciences | Method and device for moving molecules by the application of a plurality of electrical fields |
US5763262A (en) | 1986-09-18 | 1998-06-09 | Quidel Corporation | Immunodiagnostic device |
US5770388A (en) | 1989-12-22 | 1998-06-23 | Dade Behring Marburg Gmbh | Method of separation employing magnetic particles and second medium |
US5770029A (en) | 1996-07-30 | 1998-06-23 | Soane Biosciences | Integrated electrophoretic microdevices |
US5772966A (en) | 1997-01-24 | 1998-06-30 | Maracas; George N. | Assay dispensing apparatus |
US5779868A (en) | 1996-06-28 | 1998-07-14 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5787032A (en) | 1991-11-07 | 1998-07-28 | Nanogen | Deoxyribonucleic acid(DNA) optical storage using non-radiative energy transfer between a donor group, an acceptor group and a quencher group |
US5788814A (en) | 1996-04-09 | 1998-08-04 | David Sarnoff Research Center | Chucks and methods for positioning multiple objects on a substrate |
US5800690A (en) | 1996-07-03 | 1998-09-01 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5800600A (en) | 1994-07-14 | 1998-09-01 | Tonejet Corporation Pty Ltd | Solid ink jet ink |
US5804436A (en) | 1996-08-02 | 1998-09-08 | Axiom Biotechnologies, Inc. | Apparatus and method for real-time measurement of cellular response |
USD399959S (en) | 1997-01-24 | 1998-10-20 | Abbott Laboratories | Housing for a device for measuring the concentration of an analyte in a sample of blood |
US5827481A (en) | 1997-07-31 | 1998-10-27 | Hewlett-Packard Company | Cartridge system for effecting sample acquisition and introduction |
US5842106A (en) | 1995-06-06 | 1998-11-24 | Sarnoff Corporation | Method of producing micro-electrical conduits |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
US5846396A (en) | 1994-11-10 | 1998-12-08 | Sarnoff Corporation | Liquid distribution system |
US5849486A (en) | 1993-11-01 | 1998-12-15 | Nanogen, Inc. | Methods for hybridization analysis utilizing electrically controlled hybridization |
US5849208A (en) | 1995-09-07 | 1998-12-15 | Microfab Technoologies, Inc. | Making apparatus for conducting biochemical analyses |
US5849489A (en) | 1991-11-07 | 1998-12-15 | Nanogen, Inc. | Hybridization of polynucleotides conjugated with chromophores and fluorophores to generate donor-to-donor energy transfer system |
US5849598A (en) | 1996-03-15 | 1998-12-15 | Washington University | Method for transferring micro quantities of liquid samples to discrete locations |
US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5858188A (en) | 1990-02-28 | 1999-01-12 | Aclara Biosciences, Inc. | Acrylic microchannels and their use in electrophoretic applications |
US5858187A (en) | 1996-09-26 | 1999-01-12 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing electrodynamic focusing on a microchip |
US5863801A (en) | 1996-06-14 | 1999-01-26 | Sarnoff Corporation | Automated nucleic acid isolation |
US5863502A (en) | 1996-01-24 | 1999-01-26 | Sarnoff Corporation | Parallel reaction cassette and associated devices |
US5869244A (en) | 1994-07-07 | 1999-02-09 | Martin; Jean-Rene | Procedure for the analysis of biological substances in a conductive liquid medium |
US5869004A (en) | 1997-06-09 | 1999-02-09 | Caliper Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US5872623A (en) | 1996-09-26 | 1999-02-16 | Sarnoff Corporation | Massively parallel detection |
US5872010A (en) | 1995-07-21 | 1999-02-16 | Northeastern University | Microscale fluid handling system |
US5874046A (en) | 1996-10-30 | 1999-02-23 | Raytheon Company | Biological warfare agent sensor system employing ruthenium-terminated oligonucleotides complementary to target live agent DNA sequences |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
US5882465A (en) | 1997-06-18 | 1999-03-16 | Caliper Technologies Corp. | Method of manufacturing microfluidic devices |
US5883211A (en) | 1996-01-19 | 1999-03-16 | Aclara Biosciences, Inc. | Thermoreversible hydrogels comprising linear copolymers and their use in electrophoresis |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US5885432A (en) | 1992-11-05 | 1999-03-23 | Soane Biosciences | Un-crosslinked polymeric media for electrophoresis |
US5895762A (en) | 1996-03-25 | 1999-04-20 | Diasys Corporation | Apparatus and method for handling fluid samples of body materials |
US5900130A (en) | 1997-06-18 | 1999-05-04 | Alcara Biosciences, Inc. | Method for sample injection in microchannel device |
US5912124A (en) | 1996-06-14 | 1999-06-15 | Sarnoff Corporation | Padlock probe detection |
US5912134A (en) | 1994-09-02 | 1999-06-15 | Biometric Imaging, Inc. | Disposable cartridge and method for an assay of a biological sample |
US5916522A (en) | 1997-08-07 | 1999-06-29 | Careside, Inc. | Electrochemical analytical cartridge |
US5916776A (en) | 1997-08-27 | 1999-06-29 | Sarnoff Corporation | Amplification method for a polynucleotide |
US5919711A (en) | 1997-08-07 | 1999-07-06 | Careside, Inc. | Analytical cartridge |
US5927547A (en) | 1996-05-31 | 1999-07-27 | Packard Instrument Company | System for dispensing microvolume quantities of liquids |
US5932799A (en) | 1997-07-21 | 1999-08-03 | Ysi Incorporated | Microfluidic analyzer module |
US5935401A (en) | 1996-09-18 | 1999-08-10 | Aclara Biosciences | Surface modified electrophoretic chambers |
US5939291A (en) | 1996-06-14 | 1999-08-17 | Sarnoff Corporation | Microfluidic method for nucleic acid amplification |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
USD413391S (en) | 1998-02-05 | 1999-08-31 | Bayer Corporation | Test tube sample rack |
USD413677S (en) | 1997-11-26 | 1999-09-07 | Bayer Corporation | Sample tube rack |
US5948227A (en) | 1997-12-17 | 1999-09-07 | Caliper Technologies Corp. | Methods and systems for performing electrophoretic molecular separations |
US5955028A (en) | 1996-08-02 | 1999-09-21 | Caliper Technologies Corp. | Analytical system and method |
US5959291A (en) | 1997-06-27 | 1999-09-28 | Caliper Technologies Corporation | Method and apparatus for measuring low power signals |
US5958694A (en) | 1997-10-16 | 1999-09-28 | Caliper Technologies Corp. | Apparatus and methods for sequencing nucleic acids in microfluidic systems |
US5959221A (en) | 1997-03-20 | 1999-09-28 | Bayer Corporation | Automatic closed tube sampler |
US5958203A (en) | 1996-06-28 | 1999-09-28 | Caliper Technologies Corportion | Electropipettor and compensation means for electrophoretic bias |
US5965410A (en) | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US5964995A (en) | 1997-04-04 | 1999-10-12 | Caliper Technologies Corp. | Methods and systems for enhanced fluid transport |
US5965886A (en) | 1996-03-27 | 1999-10-12 | Sarnoff Corporation | Infrared imager using room temperature capacitance sensor |
US5964997A (en) | 1997-03-21 | 1999-10-12 | Sarnoff Corporation | Balanced asymmetric electronic pulse patterns for operating electrode-based pumps |
US5968745A (en) | 1995-06-27 | 1999-10-19 | The University Of North Carolina At Chapel Hill | Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof |
US5973138A (en) | 1998-10-30 | 1999-10-26 | Becton Dickinson And Company | Method for purification and manipulation of nucleic acids using paramagnetic particles |
US5976336A (en) | 1997-04-25 | 1999-11-02 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
US5980719A (en) | 1997-05-13 | 1999-11-09 | Sarnoff Corporation | Electrohydrodynamic receptor |
US5981735A (en) | 1996-02-12 | 1999-11-09 | Cobra Therapeutics Limited | Method of plasmid DNA production and purification |
USD417009S (en) | 1998-03-02 | 1999-11-23 | Bayer Corporation | Sample tube rack |
US5989402A (en) | 1997-08-29 | 1999-11-23 | Caliper Technologies Corp. | Controller/detector interfaces for microfluidic systems |
US5993750A (en) | 1997-04-11 | 1999-11-30 | Eastman Kodak Company | Integrated ceramic micro-chemical plant |
US5993611A (en) | 1997-09-24 | 1999-11-30 | Sarnoff Corporation | Capacitive denaturation of nucleic acid |
US5992820A (en) | 1997-11-19 | 1999-11-30 | Sarnoff Corporation | Flow control in microfluidics devices by controlled bubble formation |
EP0766256B1 (en) | 1995-09-29 | 1999-12-01 | STMicroelectronics S.r.l. | Voltage regulator for semiconductor non-volatile electrically programmable memory devices |
US5997708A (en) | 1997-04-30 | 1999-12-07 | Hewlett-Packard Company | Multilayer integrated assembly having specialized intermediary substrate |
US6001231A (en) | 1997-07-15 | 1999-12-14 | Caliper Technologies Corp. | Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems |
US6001307A (en) | 1996-04-26 | 1999-12-14 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US6001229A (en) | 1994-08-01 | 1999-12-14 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing microfluidic manipulations for chemical analysis |
US6010627A (en) | 1995-06-06 | 2000-01-04 | Quantic Biomedical Partners | Device for concentrating plasma |
US6012902A (en) | 1997-09-25 | 2000-01-11 | Caliper Technologies Corp. | Micropump |
USD420747S (en) | 1998-07-10 | 2000-02-15 | Bayer Corporation | Sample tube rack |
US6024920A (en) | 1998-04-21 | 2000-02-15 | Bio-Rad Laboratories, Inc. | Microplate scanning read head |
USD421130S (en) | 1998-06-15 | 2000-02-22 | Bayer Corporation | Sample tube rack |
USD421653S (en) | 1996-11-18 | 2000-03-14 | Tekmar Company | Housing for a laboratory instrument |
US6048734A (en) | 1995-09-15 | 2000-04-11 | The Regents Of The University Of Michigan | Thermal microvalves in a fluid flow method |
US6054277A (en) | 1996-05-08 | 2000-04-25 | Regents Of The University Of Minnesota | Integrated microchip genetic testing system |
US6054034A (en) | 1990-02-28 | 2000-04-25 | Aclara Biosciences, Inc. | Acrylic microchannels and their use in electrophoretic applications |
US6057149A (en) | 1995-09-15 | 2000-05-02 | The University Of Michigan | Microscale devices and reactions in microscale devices |
US6062261A (en) | 1998-12-16 | 2000-05-16 | Lockheed Martin Energy Research Corporation | MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs |
US6063341A (en) | 1997-06-09 | 2000-05-16 | Roche Diagnostics Corporation | Disposable process device |
US6063589A (en) | 1997-05-23 | 2000-05-16 | Gamera Bioscience Corporation | Devices and methods for using centripetal acceleration to drive fluid movement on a microfluidics system |
US6068752A (en) | 1997-04-25 | 2000-05-30 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
US6074725A (en) | 1997-12-10 | 2000-06-13 | Caliper Technologies Corp. | Fabrication of microfluidic circuits by printing techniques |
US6074827A (en) | 1996-07-30 | 2000-06-13 | Aclara Biosciences, Inc. | Microfluidic method for nucleic acid purification and processing |
US6086740A (en) | 1998-10-29 | 2000-07-11 | Caliper Technologies Corp. | Multiplexed microfluidic devices and systems |
USD428497S (en) | 1998-03-06 | 2000-07-18 | Bayer Corporation | Test tube sample rack |
US6100541A (en) | 1998-02-24 | 2000-08-08 | Caliper Technologies Corporation | Microfluidic devices and systems incorporating integrated optical elements |
US6103537A (en) | 1997-10-02 | 2000-08-15 | Aclara Biosciences, Inc. | Capillary assays involving separation of free and bound species |
US6102897A (en) | 1996-11-19 | 2000-08-15 | Lang; Volker | Microvalve |
US6106685A (en) | 1997-05-13 | 2000-08-22 | Sarnoff Corporation | Electrode combinations for pumping fluids |
US6110343A (en) | 1996-10-04 | 2000-08-29 | Lockheed Martin Energy Research Corporation | Material transport method and apparatus |
US6123205A (en) | 1997-11-26 | 2000-09-26 | Bayer Corporation | Sample tube rack |
US6123798A (en) | 1998-05-06 | 2000-09-26 | Caliper Technologies Corp. | Methods of fabricating polymeric structures incorporating microscale fluidic elements |
US6130098A (en) | 1995-09-15 | 2000-10-10 | The Regents Of The University Of Michigan | Moving microdroplets |
US6132684A (en) | 1997-10-31 | 2000-10-17 | Becton Dickinson And Company | Sample tube holder |
US6133436A (en) | 1996-11-06 | 2000-10-17 | Sequenom, Inc. | Beads bound to a solid support and to nucleic acids |
US6132580A (en) | 1995-09-28 | 2000-10-17 | The Regents Of The University Of California | Miniature reaction chamber and devices incorporating same |
US6143250A (en) | 1995-07-31 | 2000-11-07 | Precision System Science Co., Ltd. | Multi-vessel container for testing fluids |
USD433759S (en) | 1998-06-18 | 2000-11-14 | Bayer Corporation | Vial carrier |
US6149787A (en) | 1998-10-14 | 2000-11-21 | Caliper Technologies Corp. | External material accession systems and methods |
US6156199A (en) | 1997-08-11 | 2000-12-05 | Zuk, Jr.; Peter | Centrifugal filtration apparatus |
US6158269A (en) | 1995-07-13 | 2000-12-12 | Bayer Corporation | Method and apparatus for aspirating and dispensing sample fluids |
FR2795426A1 (en) | 1999-06-22 | 2000-12-29 | Commissariat Energie Atomique | Support for genetic analysis comprising reservoir(s) for a medium to be analyzed connected by passage(s) having temperature control device(s) to a test strip with analysis sites having biological probes |
US6167910B1 (en) | 1998-01-20 | 2001-01-02 | Caliper Technologies Corp. | Multi-layer microfluidic devices |
US6168948B1 (en) | 1995-06-29 | 2001-01-02 | Affymetrix, Inc. | Miniaturized genetic analysis systems and methods |
US6171850B1 (en) | 1999-03-08 | 2001-01-09 | Caliper Technologies Corp. | Integrated devices and systems for performing temperature controlled reactions and analyses |
US6174675B1 (en) | 1997-11-25 | 2001-01-16 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US6180950B1 (en) | 1996-05-14 | 2001-01-30 | Don Olsen | Micro heating apparatus for synthetic fibers |
USD438311S1 (en) | 1999-07-28 | 2001-02-27 | Matsushita Electric Industrial Co.,Ltd. | Strip for blood test |
USD438633S1 (en) | 1999-12-21 | 2001-03-06 | Compucyte Corporation | Reagent cartridge for treating a sample |
USD438632S1 (en) | 1999-12-21 | 2001-03-06 | Compucyte Corporation | Multi-well reagent cartridge for treating a sample |
US6211989B1 (en) | 1997-02-24 | 2001-04-03 | Bodenseewerk Perkin-Elmer Gmbh | Light-scanning device |
US6221600B1 (en) | 1999-10-08 | 2001-04-24 | Board Of Regents, The University Of Texas System | Combinatorial oligonucleotide PCR: a method for rapid, global expression analysis |
US6228635B1 (en) | 1995-06-07 | 2001-05-08 | Aastrom Bioscience, Inc. | Portable cell growth cassette for use in maintaining and growing biological cells |
US6232072B1 (en) | 1999-10-15 | 2001-05-15 | Agilent Technologies, Inc. | Biopolymer array inspection |
US6235471B1 (en) | 1997-04-04 | 2001-05-22 | Caliper Technologies Corp. | Closed-loop biochemical analyzers |
US6236456B1 (en) | 1998-08-18 | 2001-05-22 | Molecular Devices Corporation | Optical system for a scanning fluorometer |
US6236581B1 (en) | 1990-04-06 | 2001-05-22 | Mosaid Technologies Incorporated | High voltage boosted word line supply charge pump and regulator for DRAM |
US6235313B1 (en) | 1992-04-24 | 2001-05-22 | Brown University Research Foundation | Bioadhesive microspheres and their use as drug delivery and imaging systems |
US6251343B1 (en) | 1998-02-24 | 2001-06-26 | Caliper Technologies Corp. | Microfluidic devices and systems incorporating cover layers |
US6254826B1 (en) | 1997-11-14 | 2001-07-03 | Gen-Probe Incorporated | Assay work station |
US6259635B1 (en) | 1999-01-19 | 2001-07-10 | Stmicroelectronics S.R.L. | Capacitive boosting circuit for the regulation of the word line reading voltage in non-volatile memories |
US6261431B1 (en) | 1998-12-28 | 2001-07-17 | Affymetrix, Inc. | Process for microfabrication of an integrated PCR-CE device and products produced by the same |
US6267858B1 (en) | 1996-06-28 | 2001-07-31 | Caliper Technologies Corp. | High throughput screening assay systems in microscale fluidic devices |
USD446306S1 (en) | 2000-04-26 | 2001-08-07 | Matsushita Electric Industrial Co., Ltd. | Medical information communication apparatus |
US6274089B1 (en) | 1998-06-08 | 2001-08-14 | Caliper Technologies Corp. | Microfluidic devices, systems and methods for performing integrated reactions and separations |
US6280967B1 (en) | 1996-08-02 | 2001-08-28 | Axiom Biotechnologies, Inc. | Cell flow apparatus and method for real-time of cellular responses |
US6281008B1 (en) | 1998-02-02 | 2001-08-28 | Toyo Boseki Kabushiki Kaisha | Nucleic acid extraction apparatus |
US6284113B1 (en) | 1997-09-19 | 2001-09-04 | Aclara Biosciences, Inc. | Apparatus and method for transferring liquids |
US6287774B1 (en) | 1999-05-21 | 2001-09-11 | Caliper Technologies Corp. | Assay methods and system |
US6287254B1 (en) | 1999-11-02 | 2001-09-11 | W. Jean Dodds | Animal health diagnosis |
US6291248B1 (en) | 1999-04-23 | 2001-09-18 | Norgen Biotek Corporation | Nucleic acid purification and process |
US6294063B1 (en) | 1999-02-12 | 2001-09-25 | Board Of Regents, The University Of Texas System | Method and apparatus for programmable fluidic processing |
US20010023848A1 (en) | 1997-12-05 | 2001-09-27 | Gjerde Douglas T. | Non-polar media for polynucleotide separations |
US6303343B1 (en) | 1999-04-06 | 2001-10-16 | Caliper Technologies Corp. | Inefficient fast PCR |
US6302304B1 (en) | 1995-09-22 | 2001-10-16 | Rieke Packaging Systems Limited | Dispensing systems |
US6306590B1 (en) | 1998-06-08 | 2001-10-23 | Caliper Technologies Corp. | Microfluidic matrix localization apparatus and methods |
US6306273B1 (en) | 1999-04-13 | 2001-10-23 | Aclara Biosciences, Inc. | Methods and compositions for conducting processes in microfluidic devices |
US20010038450A1 (en) | 2000-03-31 | 2001-11-08 | Mccaffrey John T. | Methods and apparatus to improve the sensitivity and reproducibility of bioluminescent analytical methods |
US6319469B1 (en) | 1995-12-18 | 2001-11-20 | Silicon Valley Bank | Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system |
US6322683B1 (en) | 1999-04-14 | 2001-11-27 | Caliper Technologies Corp. | Alignment of multicomponent microfabricated structures |
US20010046702A1 (en) | 1999-04-27 | 2001-11-29 | Schembri Carol T. | Devices for performing array hybridization assays and methods of using the same |
US6326083B1 (en) | 1999-03-08 | 2001-12-04 | Calipher Technologies Corp. | Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety |
JP2001527220A (en) | 1997-12-24 | 2001-12-25 | シーフィード | Integrated fluid operation cartridge |
US20010055765A1 (en) | 2000-02-18 | 2001-12-27 | O'keefe Matthew | Apparatus and methods for parallel processing of micro-volume liquid reactions |
US20020001848A1 (en) | 2000-06-28 | 2002-01-03 | 3M Innovative Properties Company | Multi-format sample processing devices, methods and systems |
US6337435B1 (en) | 1999-07-30 | 2002-01-08 | Bio-Rad Laboratories, Inc. | Temperature control for multi-vessel reaction apparatus |
US20020009015A1 (en) | 1998-10-28 | 2002-01-24 | Laugharn James A. | Method and apparatus for acoustically controlling liquid solutions in microfluidic devices |
US20020008053A1 (en) | 2000-05-19 | 2002-01-24 | Hansen Timothy R. | System and method for manipulating magnetic particles in fluid samples to collect DNA or RNA from a sample |
US20020021983A1 (en) | 2000-07-21 | 2002-02-21 | Comte Roger Le | Device for processing samples of blood products |
US6353475B1 (en) | 1999-07-12 | 2002-03-05 | Caliper Technologies Corp. | Light source power modulation for use with chemical and biochemical analysis |
US6358387B1 (en) | 2000-03-27 | 2002-03-19 | Caliper Technologies Corporation | Ultra high throughput microfluidic analytical systems and methods |
US20020037499A1 (en) | 2000-06-05 | 2002-03-28 | California Institute Of Technology | Integrated active flux microfluidic devices and methods |
US6366924B1 (en) | 1998-07-27 | 2002-04-02 | Caliper Technologies Corp. | Distributed database for analytical instruments |
US20020039783A1 (en) | 1998-12-24 | 2002-04-04 | Cepheid | Device and method for lysing cells, spores, or microorganisms |
US6370206B1 (en) | 1998-06-04 | 2002-04-09 | Infineon Technologies Ag | Adaptive cap receiver and method for controlling a cap receiver |
US6368871B1 (en) | 1997-08-13 | 2002-04-09 | Cepheid | Non-planar microstructures for manipulation of fluid samples |
US6375901B1 (en) | 1998-06-29 | 2002-04-23 | Agilent Technologies, Inc. | Chemico-mechanical microvalve and devices comprising the same |
US6375185B1 (en) | 2000-10-20 | 2002-04-23 | Gamemax Corporation | Paper currency receiving control assembly for currency-coin exchange machine |
US6379929B1 (en) | 1996-11-20 | 2002-04-30 | The Regents Of The University Of Michigan | Chip-based isothermal amplification devices and methods |
US6379974B1 (en) | 1996-11-19 | 2002-04-30 | Caliper Technologies Corp. | Microfluidic systems |
US6379884B2 (en) | 2000-01-06 | 2002-04-30 | Caliper Technologies Corp. | Methods and systems for monitoring intracellular binding reactions |
US6382254B1 (en) | 2000-12-12 | 2002-05-07 | Eastman Kodak Company | Microfluidic valve and method for controlling the flow of a liquid |
US20020053399A1 (en) | 1996-07-30 | 2002-05-09 | Aclara Biosciences, Inc | Methods for fabricating enclosed microchannel structures |
US20020058332A1 (en) | 2000-09-15 | 2002-05-16 | California Institute Of Technology | Microfabricated crossflow devices and methods |
US6391623B1 (en) | 1996-03-26 | 2002-05-21 | Affymetrix, Inc. | Fluidics station injection needles with distal end and side ports and method of using |
US6391541B1 (en) | 1999-05-28 | 2002-05-21 | Kurt E. Petersen | Apparatus for analyzing a fluid sample |
US6395161B1 (en) | 1998-07-23 | 2002-05-28 | Robert Bosch Gmbh | Gas sensor and corresponding production method |
US6399952B1 (en) | 1999-05-12 | 2002-06-04 | Aclara Biosciences, Inc. | Multiplexed fluorescent detection in microfluidic devices |
US6398956B1 (en) | 1999-05-28 | 2002-06-04 | Bio/Data Corporation | Method and apparatus for directly sampling a fluid for microfiltration |
US20020068357A1 (en) | 1995-09-28 | 2002-06-06 | Mathies Richard A. | Miniaturized integrated nucleic acid processing and analysis device and method |
US6401552B1 (en) | 2000-04-17 | 2002-06-11 | Carlos D. Elkins | Centrifuge tube and method for collecting and dispensing mixed concentrated fluid samples |
US6408878B2 (en) | 1999-06-28 | 2002-06-25 | California Institute Of Technology | Microfabricated elastomeric valve and pump systems |
US6416642B1 (en) | 1999-01-21 | 2002-07-09 | Caliper Technologies Corp. | Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection |
US6420143B1 (en) | 1998-02-13 | 2002-07-16 | Caliper Technologies Corp. | Methods and systems for performing superheated reactions in microscale fluidic systems |
US6425972B1 (en) | 1997-06-18 | 2002-07-30 | Calipher Technologies Corp. | Methods of manufacturing microfabricated substrates |
JP2002215241A (en) | 2001-01-22 | 2002-07-31 | National Institute Of Advanced Industrial & Technology | Method for controlling flow rate and micro-valve to be used for the method |
US6428987B2 (en) | 1997-04-23 | 2002-08-06 | Bruker Daltonik Gmbh | Devices for fast DNA replication by polymerase chain reactions (PCR) |
US6430512B1 (en) | 1997-12-30 | 2002-08-06 | Caliper Technologies Corp. | Software for the display of chromatographic separation data |
US6432366B2 (en) | 1997-09-22 | 2002-08-13 | Bristol-Myers Squibb Company | Apparatus for synthesis of multiple organic compounds with pinch valve block |
USD461906S1 (en) | 1999-10-25 | 2002-08-20 | Tuan Hung Pham | Diagnostic test card |
US6444461B1 (en) | 1997-04-04 | 2002-09-03 | Caliper Technologies Corp. | Microfluidic devices and methods for separation |
US6448064B1 (en) | 1997-11-26 | 2002-09-10 | Ut-Battelle, Llc | Integrated circuit biochip microsystem |
USD463031S1 (en) | 2000-10-11 | 2002-09-17 | Aclara Biosciences, Inc. | Microvolume sample plate |
US6453928B1 (en) | 2001-01-08 | 2002-09-24 | Nanolab Ltd. | Apparatus, and method for propelling fluids |
US20020141903A1 (en) | 2001-03-28 | 2002-10-03 | Gene Parunak | Methods and systems for processing microfluidic samples of particle containing fluids |
US20020143297A1 (en) | 2001-03-30 | 2002-10-03 | Becton, Dickinson And Company | Adaptor for use with point-of-care testing cartridge |
US20020143437A1 (en) | 2001-03-28 | 2002-10-03 | Kalyan Handique | Methods and systems for control of microfluidic devices |
US20020142471A1 (en) | 2001-03-28 | 2002-10-03 | Kalyan Handique | Methods and systems for moving fluid in a microfluidic device |
US6465257B1 (en) | 1996-11-19 | 2002-10-15 | Caliper Technologies Corp. | Microfluidic systems |
US6468761B2 (en) | 2000-01-07 | 2002-10-22 | Caliper Technologies, Corp. | Microfluidic in-line labeling method for continuous-flow protease inhibition analysis |
US20020155477A1 (en) | 2001-01-19 | 2002-10-24 | Tetsumasa Ito | Gene detection system, gene detection device comprising same, detection method, and gene detecting chip |
US6472141B2 (en) | 1999-05-21 | 2002-10-29 | Caliper Technologies Corp. | Kinase assays using polycations |
US6475364B1 (en) | 1999-02-02 | 2002-11-05 | Caliper Technologies Corp. | Methods, devices and systems for characterizing proteins |
US20020169518A1 (en) | 2001-04-24 | 2002-11-14 | Luoma Robert P. | Sample handling system |
US20020187557A1 (en) | 2001-06-07 | 2002-12-12 | Hobbs Steven E. | Systems and methods for introducing samples into microfluidic devices |
USD467349S1 (en) | 2001-09-28 | 2002-12-17 | Orasure Technologies, Inc. | Analyzer |
USD467348S1 (en) | 2001-10-15 | 2002-12-17 | Kimberly-Clark Worldwide, Inc. | Diagnostic test carrier |
US6495104B1 (en) | 1999-08-19 | 2002-12-17 | Caliper Technologies Corp. | Indicator components for microfluidic systems |
US6498497B1 (en) | 1998-10-14 | 2002-12-24 | Caliper Technologies Corp. | Microfluidic controller and detector system with self-calibration |
US6500390B1 (en) | 1996-10-17 | 2002-12-31 | David A. Boulton | Method for sealing and venting a microplate assembly |
US6500323B1 (en) | 1999-03-26 | 2002-12-31 | Caliper Technologies Corp. | Methods and software for designing microfluidic devices |
JP2003500674A (en) | 1999-05-28 | 2003-01-07 | シーフィード | Cartridge for controlling chemical reactions |
USD468437S1 (en) | 2000-11-21 | 2003-01-07 | Acon Laboratories, Inc. | Test platform |
US6506609B1 (en) | 1999-05-17 | 2003-01-14 | Caliper Technologies Corp. | Focusing of microparticles in microfluidic systems |
US6509193B1 (en) | 1996-05-20 | 2003-01-21 | Precision System Science Co., Ltd. | Method and apparatus for controlling magnetic particles by pipetting machine |
US6511853B1 (en) | 1999-01-19 | 2003-01-28 | Caliper Technologies Corp. | Optimized high-throughput analytical system |
US20030019522A1 (en) | 2001-07-26 | 2003-01-30 | Gene Parunak | Methods and systems for fluid control in microfluidic devices |
US6515753B2 (en) | 2000-05-19 | 2003-02-04 | Aclara Biosciences, Inc. | Optical alignment in capillary detection using capillary wall scatter |
US6517783B2 (en) | 1997-05-02 | 2003-02-11 | Gen-Probe Incorporated | Reaction receptacle apparatus |
US6520197B2 (en) | 2000-06-02 | 2003-02-18 | The Regents Of The University Of California | Continuous laminar fluid mixing in micro-electromechanical systems |
USD470595S1 (en) | 2001-04-10 | 2003-02-18 | Andrea Crisanti | Assay device |
US6521188B1 (en) | 2000-11-22 | 2003-02-18 | Industrial Technology Research Institute | Microfluidic actuator |
US6524790B1 (en) | 1997-06-09 | 2003-02-25 | Caliper Technologies Corp. | Apparatus and methods for correcting for variable velocity in microfluidic systems |
US6524456B1 (en) | 1999-08-12 | 2003-02-25 | Ut-Battelle, Llc | Microfluidic devices for the controlled manipulation of small volumes |
US20030049833A1 (en) | 1998-06-24 | 2003-03-13 | Shuqi Chen | Sample vessels |
US6534295B2 (en) | 1997-11-14 | 2003-03-18 | California Institute Of Technology | Cell lysis device |
USD472324S1 (en) | 2002-04-05 | 2003-03-25 | Charles River Laboratories, Inc. | Cuvette |
US6537771B1 (en) | 1999-10-08 | 2003-03-25 | Caliper Technologies Corp. | Use of nernstein voltage sensitive dyes in measuring transmembrane voltage |
US6540896B1 (en) | 1998-08-05 | 2003-04-01 | Caliper Technologies Corp. | Open-Field serial to parallel converter |
US20030064507A1 (en) | 2001-07-26 | 2003-04-03 | Sean Gallagher | System and methods for mixing within a microfluidic device |
US6544734B1 (en) | 1998-10-09 | 2003-04-08 | Cynthia G. Briscoe | Multilayered microfluidic DNA analysis system and method |
US20030070677A1 (en) | 2000-07-24 | 2003-04-17 | The Regents Of The University Of Michigan | Compositions and methods for liquid metering in microchannels |
US20030073106A1 (en) | 1998-12-08 | 2003-04-17 | Johansen Jack T. | Methods, kits and compositions for the identification of nucleic acids electrostatically bound to matrices |
US6556923B2 (en) | 2000-01-26 | 2003-04-29 | Caliper Technologies Corp. | Software for high throughput microfluidic systems |
US6555389B1 (en) | 1999-05-11 | 2003-04-29 | Aclara Biosciences, Inc. | Sample evaporative control |
US20030083686A1 (en) | 2001-06-12 | 2003-05-01 | Freeman Dominique M. | Tissue penetration device |
US6558916B2 (en) | 1996-08-02 | 2003-05-06 | Axiom Biotechnologies, Inc. | Cell flow apparatus and method for real-time measurements of patient cellular responses |
USD474279S1 (en) | 2002-05-15 | 2003-05-06 | Monogen, Inc. | Specimen processing instrument |
US6558945B1 (en) | 1999-03-08 | 2003-05-06 | Aclara Biosciences, Inc. | Method and device for rapid color detection |
US6569607B2 (en) | 2000-05-03 | 2003-05-27 | Caliper Technologies Corp. | Multi depth substrate fabrication processes |
US6576459B2 (en) | 2001-03-23 | 2003-06-10 | The Regents Of The University Of California | Sample preparation and detection device for infectious agents |
US6579453B1 (en) | 1997-09-29 | 2003-06-17 | Roche Diagnostics Corporation | Apparatus for separating magnetic particles |
US6589729B2 (en) | 2000-02-04 | 2003-07-08 | Caliper Technologies Corp. | Methods, devices, and systems for monitoring time dependent reactions |
US20030127327A1 (en) | 2002-01-04 | 2003-07-10 | Kurnik Ronald T. | Microfluidic device and method for improved sample handling |
US6592821B1 (en) | 1999-05-17 | 2003-07-15 | Caliper Technologies Corp. | Focusing of microparticles in microfluidic systems |
US6597450B1 (en) | 1997-09-15 | 2003-07-22 | Becton, Dickinson And Company | Automated Optical Reader for Nucleic Acid Assays |
US20030136679A1 (en) | 2001-10-18 | 2003-07-24 | The Board Of Trustees Of The University Of Illinois | Hybrid microfluidic and nanofluidic system |
US6613211B1 (en) | 1999-08-27 | 2003-09-02 | Aclara Biosciences, Inc. | Capillary electrokinesis based cellular assays |
US6613580B1 (en) | 1999-07-06 | 2003-09-02 | Caliper Technologies Corp. | Microfluidic systems and methods for determining modulator kinetics |
US6613581B1 (en) | 1999-08-26 | 2003-09-02 | Caliper Technologies Corp. | Microfluidic analytic detection assays, devices, and integrated systems |
US6620625B2 (en) | 2000-01-06 | 2003-09-16 | Caliper Technologies Corp. | Ultra high throughput sampling and analysis systems and methods |
US6623860B2 (en) | 2000-10-10 | 2003-09-23 | Aclara Biosciences, Inc. | Multilevel flow structures |
US20030186295A1 (en) * | 2000-08-28 | 2003-10-02 | Bruno Colin | Reaction card and use of same |
USD480814S1 (en) | 2002-06-11 | 2003-10-14 | Diversa Corporation | Gigamatrix holding tray |
US6633785B1 (en) | 1999-08-31 | 2003-10-14 | Kabushiki Kaisha Toshiba | Thermal cycler and DNA amplifier method |
US6632655B1 (en) | 1999-02-23 | 2003-10-14 | Caliper Technologies Corp. | Manipulation of microparticles in microfluidic systems |
US20030199081A1 (en) | 1992-05-01 | 2003-10-23 | Peter Wilding | Mesoscale polynucleotide amplification analysis |
US20030211517A1 (en) | 2001-06-22 | 2003-11-13 | Carulli John P. | Gp354 nucleic acids and polypeptides |
US6649358B1 (en) | 1999-06-01 | 2003-11-18 | Caliper Technologies Corp. | Microscale assays and microfluidic devices for transporter, gradient induced, and binding activities |
USD482796S1 (en) | 2001-09-11 | 2003-11-25 | Sysmex Corporation | Sample analyzer |
US6670153B2 (en) | 2000-09-14 | 2003-12-30 | Caliper Technologies Corp. | Microfluidic devices and methods for performing temperature mediated reactions |
US6669831B2 (en) | 2000-05-11 | 2003-12-30 | Caliper Technologies Corp. | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers |
USD484989S1 (en) | 2002-09-20 | 2004-01-06 | Dade Behring Inc. | Multi-well liquid container |
US20040014238A1 (en) | 2002-01-24 | 2004-01-22 | Krug Robert E. | Precision liquid dispensing system |
US6681788B2 (en) | 2001-01-29 | 2004-01-27 | Caliper Technologies Corp. | Non-mechanical valves for fluidic systems |
US6681616B2 (en) | 2000-02-23 | 2004-01-27 | Caliper Technologies Corp. | Microfluidic viscometer |
US6685813B2 (en) | 2000-02-11 | 2004-02-03 | Aclara Biosciences, Inc. | Tandem isotachophoresis/zone electrophoresis method and system |
US20040029258A1 (en) | 2002-04-11 | 2004-02-12 | Paul Heaney | Methods and devices for performing chemical reactions on a solid support |
US20040029260A1 (en) | 2002-05-17 | 2004-02-12 | Hansen Timothy R. | Automated system for isolating, amplifying and detecting a target nucleic acid sequence |
US6692700B2 (en) | 2001-02-14 | 2004-02-17 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US6695009B2 (en) | 2000-10-31 | 2004-02-24 | Caliper Technologies Corp. | Microfluidic methods, devices and systems for in situ material concentration |
US20040037739A1 (en) | 2001-03-09 | 2004-02-26 | Mcneely Michael | Method and system for microfluidic interfacing to arrays |
US6706519B1 (en) | 1999-06-22 | 2004-03-16 | Tecan Trading Ag | Devices and methods for the performance of miniaturized in vitro amplification assays |
US20040053290A1 (en) | 2000-01-11 | 2004-03-18 | Terbrueggen Robert Henry | Devices and methods for biochip multiplexing |
US20040063217A1 (en) | 2002-09-27 | 2004-04-01 | Webster James Russell | Miniaturized fluid delivery and analysis system |
US6720148B1 (en) | 2001-02-22 | 2004-04-13 | Caliper Life Sciences, Inc. | Methods and systems for identifying nucleotides by primer extension |
US20040072375A1 (en) | 2002-07-15 | 2004-04-15 | Gjerde Douglas T. | Low dead volume extraction column device |
US20040072278A1 (en) | 2002-04-01 | 2004-04-15 | Fluidigm Corporation | Microfluidic particle-analysis systems |
US6730206B2 (en) | 2000-03-17 | 2004-05-04 | Aclara Biosciences, Inc. | Microfluidic device and system with improved sample handling |
US20040086956A1 (en) | 2001-06-26 | 2004-05-06 | Bachur Nicholas Robert | System and method for optically monitoring the concentration of a gas in a sample vial using photothermal spectroscopy to detect sample growth |
US6734401B2 (en) | 2000-06-28 | 2004-05-11 | 3M Innovative Properties Company | Enhanced sample processing devices, systems and methods |
US6733645B1 (en) | 2000-04-18 | 2004-05-11 | Caliper Technologies Corp. | Total analyte quantitation |
US6737026B1 (en) | 1999-03-03 | 2004-05-18 | Symyx Technologies, Inc. | Methods for identifying and optimizing materials in microfluidic systems |
US6740518B1 (en) | 1998-09-17 | 2004-05-25 | Clinical Micro Sensors, Inc. | Signal detection techniques for the detection of analytes |
USD491273S1 (en) | 2002-12-19 | 2004-06-08 | 3M Innovative Properties Company | Hybridization cartridge |
USD491272S1 (en) | 2002-12-13 | 2004-06-08 | Immunivest Corporation | Autoprep instrument |
USD491276S1 (en) | 2002-12-09 | 2004-06-08 | Babette Langille | Plastic diagnostic card |
US6750661B2 (en) | 2001-11-13 | 2004-06-15 | Caliper Life Sciences, Inc. | Method and apparatus for controllably effecting samples using two signals |
US6752966B1 (en) | 1999-09-10 | 2004-06-22 | Caliper Life Sciences, Inc. | Microfabrication methods and devices |
US6756019B1 (en) | 1998-02-24 | 2004-06-29 | Caliper Technologies Corp. | Microfluidic devices and systems incorporating cover layers |
US20040141887A1 (en) | 2002-11-08 | 2004-07-22 | Irm, Llc | Apparatus and methods to process substrate surface features |
US6766817B2 (en) | 2001-07-25 | 2004-07-27 | Tubarc Technologies, Llc | Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action |
US20040151629A1 (en) | 2003-01-31 | 2004-08-05 | Grant Pease | Microfluidic device with thin-film electronic devices |
US6773567B1 (en) | 1999-03-12 | 2004-08-10 | Caliper Life Sciences, Inc. | High-throughput analytical microfluidic systems and methods of making same |
US20040157220A1 (en) | 2003-02-10 | 2004-08-12 | Purnima Kurnool | Methods and apparatus for sample tracking |
US6777184B2 (en) | 2000-05-12 | 2004-08-17 | Caliper Life Sciences, Inc. | Detection of nucleic acid hybridization by fluorescence polarization |
US20040161788A1 (en) * | 2003-02-05 | 2004-08-19 | Shuqi Chen | Sample processing |
US6783962B1 (en) | 1999-03-26 | 2004-08-31 | Upfront Chromatography | Particulate material for purification of bio-macromolecules |
US6787015B2 (en) | 2000-07-21 | 2004-09-07 | Aclara Biosciences, Inc. | Methods for conducting electrophoretic analysis |
USD495805S1 (en) | 2001-05-25 | 2004-09-07 | Umedik, Inc. | Assay device |
US6787016B2 (en) | 2000-05-01 | 2004-09-07 | Aclara Biosciences, Inc. | Dynamic coating with linear polymer mixture for electrophoresis |
US6790328B2 (en) | 2000-01-12 | 2004-09-14 | Ut-Battelle, Llc | Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream |
US6790330B2 (en) | 2000-06-14 | 2004-09-14 | Board Of Regents, The University Of Texas System | Systems and methods for cell subpopulation analysis |
US20040189311A1 (en) | 2002-12-26 | 2004-09-30 | Glezer Eli N. | Assay cartridges and methods of using the same |
US20040209354A1 (en) | 2002-12-30 | 2004-10-21 | The Regents Of The University Of California | Fluid control structures in microfluidic devices |
US20040209331A1 (en) | 2001-07-16 | 2004-10-21 | Kirk Ririe | Thermal cycling system and method of use |
US6811668B1 (en) | 1999-06-22 | 2004-11-02 | Caliper Life Sciences, Inc. | Apparatus for the operation of a microfluidic device |
US6818113B2 (en) | 2000-02-11 | 2004-11-16 | Aclara Biosciences, Inc. | Microfluidic device with sample injector and method of using |
US6819027B2 (en) | 2002-03-04 | 2004-11-16 | Cepheid | Method and apparatus for controlling ultrasonic transducer |
US6824663B1 (en) | 1999-08-27 | 2004-11-30 | Aclara Biosciences, Inc. | Efficient compound distribution in microfluidic devices |
US20040240097A1 (en) | 2003-04-28 | 2004-12-02 | Hewlett-Packard Development Company, L.P. | Method and apparatus for use in data transfer |
US6827906B1 (en) | 1997-10-15 | 2004-12-07 | Aclara Biosciences, Inc. | Continuous form microstructure assay array |
USD499813S1 (en) | 2003-08-22 | 2004-12-14 | As.Pire Bioresearch Inc. | Assay testing device |
USD500142S1 (en) | 2001-04-10 | 2004-12-21 | Andrea Crisanti | Assay device |
US6838156B1 (en) | 1999-09-23 | 2005-01-04 | Aclara Biosciences, Inc. | Method for linking two plastic work pieces without using foreign matter |
US6838680B2 (en) | 1999-05-12 | 2005-01-04 | Aclara Biosciences, Inc. | Multiplexed fluorescent detection in microfluidic devices |
US6852287B2 (en) | 2001-09-12 | 2005-02-08 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US6858185B1 (en) | 1999-08-25 | 2005-02-22 | Caliper Life Sciences, Inc. | Dilutions in high throughput systems with a single vacuum source |
US6859698B2 (en) | 2001-06-21 | 2005-02-22 | Snap-On Incorporated | Detachable cartridge unit and auxiliary unit for function expansion of a data processing system |
US20050041525A1 (en) | 2003-08-19 | 2005-02-24 | Pugia Michael J. | Mixing in microfluidic devices |
US6861035B2 (en) | 1998-02-24 | 2005-03-01 | Aurora Discovery, Inc. | Multi-well platforms, caddies, lids and combinations thereof |
US20050048540A1 (en) | 2003-08-26 | 2005-03-03 | Hisao Inami | Chip for processing of gene and apparatus for processing of gene |
US20050058574A1 (en) | 2003-09-15 | 2005-03-17 | Bysouth Stephen Robert | Preparation and characterization of formulations in a high throughput mode |
US6878755B2 (en) | 2001-01-22 | 2005-04-12 | Microgen Systems, Inc. | Automated microfabrication-based biodetector |
US20050084424A1 (en) | 2001-03-28 | 2005-04-21 | Karthik Ganesan | Systems and methods for thermal actuation of microfluidic devices |
US6884628B2 (en) | 1999-04-28 | 2005-04-26 | Eidgenossische Technische Hochschule Zurich | Multifunctional polymeric surface coatings in analytic and sensor devices |
US20050106066A1 (en) | 2003-01-14 | 2005-05-19 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
JP2005514718A (en) | 2001-07-26 | 2005-05-19 | ハンディラブ・インコーポレーテッド | Microfluidic processing method and system |
US6900889B2 (en) | 2001-07-12 | 2005-05-31 | Aclara Biosciences, Inc. | Submersible light-directing member for material excitation in microfluidic devices |
US20050121324A1 (en) | 2003-09-05 | 2005-06-09 | Caliper Life Sciences, Inc. | Analyte injection system |
US6906797B1 (en) | 1999-09-13 | 2005-06-14 | Aclara Biosciences, Inc. | Side light activated microfluid channels |
US6905612B2 (en) | 2003-03-21 | 2005-06-14 | Hanuman Llc | Plasma concentrate apparatus and method |
US6905583B2 (en) | 2002-12-13 | 2005-06-14 | Aclara Biosciences, Inc. | Closed-loop control of electrokinetic processes in microfluidic devices based on optical readings |
US6908594B1 (en) | 1999-10-22 | 2005-06-21 | Aclara Biosciences, Inc. | Efficient microfluidic sealing |
US20050133370A1 (en) | 2003-12-23 | 2005-06-23 | Caliper Life Sciences, Inc. | Analyte injection system |
US6911183B1 (en) | 1995-09-15 | 2005-06-28 | The Regents Of The University Of Michigan | Moving microdroplets |
US6914137B2 (en) | 1997-12-06 | 2005-07-05 | Dna Research Innovations Limited | Isolation of nucleic acids |
US6915679B2 (en) | 2000-02-23 | 2005-07-12 | Caliper Life Sciences, Inc. | Multi-reservoir pressure control system |
US20050170362A1 (en) | 2003-04-14 | 2005-08-04 | Caliper Life Sciences, Inc. | Reduction of migration shift assay interference |
JP2005204661A (en) | 2003-12-25 | 2005-08-04 | Fuchigami Micro:Kk | Detecting apparatus for molecule derived from organism, dioxins and endocrine disrupter, and method for detection using the same |
US20050186585A1 (en) | 2004-02-24 | 2005-08-25 | Thermal Gradient | Thermal cycling device |
USD508999S1 (en) | 2003-07-24 | 2005-08-30 | Biomerieux, Inc. | Sample testing machine |
US6939451B2 (en) | 2000-09-19 | 2005-09-06 | Aclara Biosciences, Inc. | Microfluidic chip having integrated electrodes |
US6942771B1 (en) | 1999-04-21 | 2005-09-13 | Clinical Micro Sensors, Inc. | Microfluidic systems in the electrochemical detection of target analytes |
US20050202470A1 (en) | 2000-11-16 | 2005-09-15 | Caliper Life Sciences, Inc. | Binding assays using molecular melt curves |
US20050202504A1 (en) | 1995-06-29 | 2005-09-15 | Affymetrix, Inc. | Miniaturized genetic analysis systems and methods |
US20050208676A1 (en) | 2004-03-19 | 2005-09-22 | Espir Kahatt | Device for aspirating, manipulating, mixing and dispensing nano-volumes of liquids |
US20050220675A1 (en) | 2003-09-19 | 2005-10-06 | Reed Mark T | High density plate filler |
US20050227269A1 (en) | 2004-04-09 | 2005-10-13 | Research Think Tank, Inc. | Devices and methods for collection, storage and transportation of biological specimens |
JP2005291954A (en) | 2004-03-31 | 2005-10-20 | Olympus Corp | Disposable reagent pack and analyzer using the reagent pack |
US20050233370A1 (en) | 1998-05-01 | 2005-10-20 | Gen-Probe Incorporated | Method for agitating the fluid contents of a container |
US6958392B2 (en) | 1998-10-09 | 2005-10-25 | Whatman, Inc. | Methods for the isolation of nucleic acids and for quantitative DNA extraction and detection for leukocyte evaluation in blood products |
US20050238545A1 (en) | 2000-08-04 | 2005-10-27 | Caliper Life Sciences, Inc. | Control of operation conditions within fluidic systems |
US6964747B2 (en) | 2003-01-21 | 2005-11-15 | Bioarray Solutions, Ltd. | Production of dyed polymer microparticles |
USD512155S1 (en) | 2001-09-12 | 2005-11-29 | Techno Medica Co., Ltd. | Automatic blood sampling tube preparation apparatus |
US6977163B1 (en) | 2001-06-13 | 2005-12-20 | Caliper Life Sciences, Inc. | Methods and systems for performing multiple reactions by interfacial mixing |
USD515707S1 (en) | 2003-09-01 | 2006-02-21 | Matsushita Electric Industrial Co., Ltd. | Fluorescent reader |
US7001853B1 (en) | 2002-08-30 | 2006-02-21 | Caliper Life Sciences, Inc. | Flow control of photo-polymerizable resin |
US20060041058A1 (en) | 2003-11-21 | 2006-02-23 | Anp Technologies, Inc. | Asymmetrically branched polymer conjugates and microarray assays |
USD516221S1 (en) | 2002-09-09 | 2006-02-28 | Meso Scale Technologies, Llc. | Diagnostic instrument |
US20060057629A1 (en) | 2004-09-16 | 2006-03-16 | Min-Soo Kim | Device for injecting PCR solution into PCR channels of PCR chip, and PCR chip unit including the device |
US20060057039A1 (en) | 2001-12-05 | 2006-03-16 | The Regents Of The University Of California | Chemical microreactor and method thereof |
USD517554S1 (en) | 2004-03-05 | 2006-03-21 | Seiko Epson Corporation | Film scanner |
US20060062696A1 (en) | 2001-07-27 | 2006-03-23 | Caliper Life Sciences, Inc. | Optimized high throughput analytical systems |
US7024281B1 (en) | 2000-12-11 | 2006-04-04 | Callper Life Sciences, Inc. | Software for the controlled sampling of arrayed materials |
US7023007B2 (en) | 2001-07-17 | 2006-04-04 | Caliper Life Sciences, Inc. | Methods and systems for alignment of detection optics |
US7036667B2 (en) | 2003-06-02 | 2006-05-02 | Caliper Life Sciences, Inc. | Container providing a controlled hydrated environment |
US7037416B2 (en) | 2000-01-14 | 2006-05-02 | Caliper Life Sciences, Inc. | Method for monitoring flow rate using fluorescent markers |
US7039527B2 (en) | 2003-10-01 | 2006-05-02 | Caliper Life Sciences, Inc. | Method for measuring diffusivities of compounds using microchips |
US7038472B1 (en) | 2003-05-12 | 2006-05-02 | Caliper Life Sciences, Inc. | Methods and systems for measuring internal dimensions of microscale structures |
US20060094108A1 (en) | 2002-12-20 | 2006-05-04 | Karl Yoder | Thermal cycler for microfluidic array assays |
US7040144B2 (en) | 2000-02-23 | 2006-05-09 | Caliper Life Sciences, Inc. | Microfluidic viscometer |
US20060113190A1 (en) | 2002-12-27 | 2006-06-01 | Kurnik Ronald T | Microfluidic device and method for improved sample handling |
US7060171B1 (en) | 2001-07-31 | 2006-06-13 | Caliper Life Sciences, Inc. | Methods and systems for reducing background signal in assays |
USD523153S1 (en) | 2004-07-23 | 2006-06-13 | Hitachi High-Technologies Corporation | Main part for immunity analysis machine |
US20060134790A1 (en) | 2003-01-13 | 2006-06-22 | Yasunobu Tanaka | Solid surface with immobilized degradable cationic polymer for transfecting eukaryotic cells |
US20060133965A1 (en) | 2003-01-31 | 2006-06-22 | Universal Bio Research Co., Ltd. | Monitoring function-equipped dispensing system and method of monitoring dispensing device |
US7069952B1 (en) | 2001-11-14 | 2006-07-04 | Caliper Life Sciences, Inc. | Microfluidic devices and methods of their manufacture |
US20060148063A1 (en) | 2003-05-14 | 2006-07-06 | Fauzzi John A | Method and apparatus for automated pre-treatment and processing of biological samples |
US20060165558A1 (en) | 2004-12-21 | 2006-07-27 | Thomas Witty | Cartridge for diagnostic assays |
US20060166233A1 (en) | 2004-05-03 | 2006-07-27 | Handylab, Inc. | Method and apparatus for processing polynucleotide-containing samples |
US20060165559A1 (en) | 2004-05-21 | 2006-07-27 | Caliper Life Sciences, Inc. | Automated system for handling microfluidic devices |
US20060177855A1 (en) | 2005-01-21 | 2006-08-10 | Utermohlen Joseph G | Nanoparticles for manipulation of biopolymers and methods of thereof |
US20060177376A1 (en) | 2003-07-21 | 2006-08-10 | Dendritic Nanotechnologies, Inc. | Stabilized and chemically functionalized nanoparticles |
US20060183216A1 (en) | 2005-01-21 | 2006-08-17 | Kalyan Handique | Containers for liquid storage and delivery with application to microfluidic devices |
US7099778B2 (en) | 2003-12-30 | 2006-08-29 | Caliper Life Sciences, Inc. | Method for determining diffusivity and molecular weight in a microfluidic device |
US7101467B2 (en) | 2002-03-05 | 2006-09-05 | Caliper Life Sciences, Inc. | Mixed mode microfluidic systems |
USD528215S1 (en) | 2003-09-30 | 2006-09-12 | Biacore Ab | Chip carrier for biosensor |
US7105304B1 (en) | 2000-11-07 | 2006-09-12 | Caliper Life Sciences, Inc. | Pressure-based mobility shift assays |
US20060207944A1 (en) | 1995-02-21 | 2006-09-21 | Siddiqi Iqbal W | Apparatus for mixing magnetic particles |
US7118910B2 (en) | 2001-11-30 | 2006-10-10 | Fluidigm Corporation | Microfluidic device and methods of using same |
USD531321S1 (en) | 2005-04-10 | 2006-10-31 | Akubio Limited | Cartridge |
US20060246533A1 (en) | 2005-04-01 | 2006-11-02 | Caliper Life Sciences, Inc. | Method and apparatus for performing peptide digestion on a microfluidic device |
US20060246493A1 (en) | 2005-04-04 | 2006-11-02 | Caliper Life Sciences, Inc. | Method and apparatus for use in temperature controlled processing of microfluidic samples |
US7148043B2 (en) | 2003-05-08 | 2006-12-12 | Bio-Rad Laboratories, Inc. | Systems and methods for fluorescence detection with a movable detection module |
US7150999B1 (en) | 2001-03-09 | 2006-12-19 | Califer Life Sciences, Inc. | Process for filling microfluidic channels |
US7150814B1 (en) | 1999-05-11 | 2006-12-19 | Callper Life Sciences, Inc. | Prevention of surface adsorption in microchannels by application of electric current during pressure-induced flow |
USD534280S1 (en) | 2005-05-04 | 2006-12-26 | Abbott Laboratories | Reagent carrier for use in an automated analyzer |
US20070004028A1 (en) | 2005-03-10 | 2007-01-04 | Gen-Probe Incorporated | Signal measuring system for conducting real-time amplification assays |
US7161356B1 (en) | 2002-06-05 | 2007-01-09 | Caliper Life Sciences, Inc. | Voltage/current testing equipment for microfluidic devices |
US7160423B2 (en) | 2002-03-05 | 2007-01-09 | Caliper Life Sciences, Inc. | Mixed mode microfluidic systems |
US20070009386A1 (en) | 2005-07-01 | 2007-01-11 | Honeywell International Inc. | Molded cartridge with 3-d hydrodynamic focusing |
USD535403S1 (en) | 2005-02-25 | 2007-01-16 | Fuji Photo Film Co., Ltd. | Component extractor for biochemistry |
US20070020699A1 (en) | 2005-07-19 | 2007-01-25 | Idexx Laboratories, Inc. | Lateral flow assay and device using magnetic particles |
US7169618B2 (en) | 2000-06-28 | 2007-01-30 | Skold Technology | Magnetic particles and methods of producing coated magnetic particles |
US7169277B2 (en) | 2000-08-02 | 2007-01-30 | Caliper Life Sciences, Inc. | High throughput separations based analysis systems |
US20070026421A1 (en) | 2000-11-16 | 2007-02-01 | Caliper Life Sciences, Inc. | Method and apparatus for generating thermal melting curves in a microfluidic device |
US20070042441A1 (en) | 2005-05-02 | 2007-02-22 | Bioscale, Inc. | Method and apparatus for detecting estradiol and metabolites thereof using an acoustic device |
USD537951S1 (en) | 2005-10-21 | 2007-03-06 | Sanyo Electric Co., Ltd. | Gene amplification apparatus |
USD538436S1 (en) | 2006-03-06 | 2007-03-13 | Steris Inc. | Reprocessor for decontaminating medical, dental and veterinary instruments and articles |
US7192557B2 (en) | 2001-03-28 | 2007-03-20 | Handylab, Inc. | Methods and systems for releasing intracellular material from cells within microfluidic samples of fluids |
US7195986B1 (en) | 2002-03-08 | 2007-03-27 | Caliper Life Sciences, Inc. | Microfluidic device with controlled substrate conductivity |
US7208125B1 (en) | 2002-06-28 | 2007-04-24 | Caliper Life Sciences, Inc | Methods and apparatus for minimizing evaporation of sample materials from multiwell plates |
US20070092901A1 (en) | 2004-07-02 | 2007-04-26 | The Government Of The Us, As Represented By The Secretary Of The Navy | Automated sample-to-microarray system |
US20070104617A1 (en) | 2005-11-04 | 2007-05-10 | Advanced Biotechnologies Limited | Capped tubes |
US7235406B1 (en) | 1996-04-03 | 2007-06-26 | Applera Corporation | Nucleic acid analysis device |
US7247274B1 (en) | 2001-11-13 | 2007-07-24 | Caliper Technologies Corp. | Prevention of precipitate blockage in microfluidic channels |
US20070178607A1 (en) | 2002-11-06 | 2007-08-02 | Prober James M | Microparticle-based methods and systems and applications thereof |
US7252928B1 (en) | 2002-03-12 | 2007-08-07 | Caliper Life Sciences, Inc. | Methods for prevention of surface adsorption of biological materials to capillary walls in microchannels |
USD548841S1 (en) | 2004-10-15 | 2007-08-14 | Microsulis, Ltd | Electrical equipment for ablative treatment |
USD549827S1 (en) | 2005-09-16 | 2007-08-28 | Horiba, Ltd. | Blood analyzer |
US7276330B2 (en) | 1999-01-28 | 2007-10-02 | Caliper Technologies Corp. | Devices, systems and methods for time domain multiplexing of reagents |
USD554069S1 (en) | 2006-05-03 | 2007-10-30 | Data I/O Corporation | Processing apparatus |
USD554070S1 (en) | 2006-05-03 | 2007-10-30 | Data I/O Corporation | Processing apparatus |
US7303727B1 (en) | 2002-03-06 | 2007-12-04 | Caliper Life Sciences, Inc | Microfluidic sample delivery devices, systems, and methods |
US20070292941A1 (en) | 2006-03-24 | 2007-12-20 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US7338760B2 (en) | 2001-10-26 | 2008-03-04 | Ntu Ventures Private Limited | Sample preparation integrated chip |
US20080056948A1 (en) | 2006-09-06 | 2008-03-06 | Canon U.S. Life Sciences, Inc. | Chip and cartridge design configuration for performing micro-fluidic assays |
US7351377B2 (en) | 2000-06-19 | 2008-04-01 | Caliper Life Sciences, Inc. | Methods and devices for enhancing bonded substrate yields and regulating temperature |
US7374949B2 (en) | 2003-05-29 | 2008-05-20 | Bayer Healthcare Llc | Diagnostic test strip for collecting and detecting an analyte in a fluid sample |
US7390460B2 (en) | 2002-11-18 | 2008-06-24 | Hitachi Koki Co., Ltd. | Control device for automatic liquid handling system |
US7419784B2 (en) | 2002-04-02 | 2008-09-02 | Dubrow Robert S | Methods, systems and apparatus for separation and isolation of one or more sample components of a sample biological material |
US7440684B2 (en) | 2001-04-12 | 2008-10-21 | Spaid Michael A | Method and apparatus for improved temperature control in microfluidic devices |
US20080262213A1 (en) | 2004-05-03 | 2008-10-23 | Betty Wu | Processing Polynucleotide-Containing Samples |
US7514046B2 (en) | 2000-10-31 | 2009-04-07 | Caliper Life Sciences, Inc. | Methods and systems for processing microscale devices for reuse |
US7521186B2 (en) | 2000-03-20 | 2009-04-21 | Caliper Lifesciences Inc. | PCR compatible nucleic acid sieving matrix |
US20090131650A1 (en) | 2007-07-13 | 2009-05-21 | Handylab, Inc. | Polynucleotide Capture Materials, and Methods of Using Same |
US7553671B2 (en) | 2004-05-25 | 2009-06-30 | Vertex Pharmaceuticals, Inc. | Modular test tube rack |
US20090189089A1 (en) | 2005-07-05 | 2009-07-30 | 3M Innovative Properties Company | Valve control system for a rotating multiplex fluorescence detection device |
US7595197B2 (en) | 2003-05-09 | 2009-09-29 | Caliper Life Sciences, Inc. | Automated sample analysis |
US7635588B2 (en) | 2001-11-29 | 2009-12-22 | Applied Biosystems, Llc | Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength |
US7645581B2 (en) | 2002-12-20 | 2010-01-12 | Caliper Life Sciences, Inc. | Determining nucleic acid fragmentation status by coincident detection of two labeled probes |
US20100009351A1 (en) | 2008-07-11 | 2010-01-14 | Handylab, Inc. | Polynucleotide Capture Materials, and Method of Using Same |
US7670559B2 (en) | 2001-02-15 | 2010-03-02 | Caliper Life Sciences, Inc. | Microfluidic systems with enhanced detection systems |
US7723123B1 (en) | 2001-06-05 | 2010-05-25 | Caliper Life Sciences, Inc. | Western blot by incorporating an affinity purification zone |
US7744817B2 (en) | 2003-08-11 | 2010-06-29 | Sakura Finetek U.S.A., Inc. | Manifold assembly |
US7867776B2 (en) | 2001-03-02 | 2011-01-11 | Caliper Life Sciences, Inc. | Priming module for microfluidic chips |
US8088616B2 (en) | 2006-03-24 | 2012-01-03 | Handylab, Inc. | Heater unit for microfluidic diagnostic system |
US8105783B2 (en) | 2007-07-13 | 2012-01-31 | Handylab, Inc. | Microfluidic cartridge |
US8133671B2 (en) | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8182763B2 (en) | 2007-07-13 | 2012-05-22 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US8323900B2 (en) | 2006-03-24 | 2012-12-04 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2862547B2 (en) * | 1987-03-02 | 1999-03-03 | ジエン―プローブ・インコーポレイテツド | Polycationic support for nucleic acid purification, separation and hybridization |
US5582988A (en) * | 1994-09-15 | 1996-12-10 | Johnson & Johnson Clinical Diagnostics, Inc. | Methods for capture and selective release of nucleic acids using weakly basic polymer and amplification of same |
GB9425138D0 (en) * | 1994-12-12 | 1995-02-08 | Dynal As | Isolation of nucleic acid |
US5872481A (en) * | 1995-12-27 | 1999-02-16 | Qualcomm Incorporated | Efficient parallel-stage power amplifier |
US5859698A (en) * | 1997-05-07 | 1999-01-12 | Nikon Corporation | Method and apparatus for macro defect detection using scattered light |
CA2301309A1 (en) * | 1997-08-13 | 1999-02-25 | Cepheid | Microstructures for the manipulation of fluid samples |
CA2318306A1 (en) * | 1997-12-06 | 1999-06-17 | Dna Research Instruments Limited | Isolation of nucleic acids |
US7078224B1 (en) * | 1999-05-14 | 2006-07-18 | Promega Corporation | Cell concentration and lysate clearance using paramagnetic particles |
US6310199B1 (en) * | 1999-05-14 | 2001-10-30 | Promega Corporation | pH dependent ion exchange matrix and method of use in the isolation of nucleic acids |
GB2355717A (en) * | 1999-10-28 | 2001-05-02 | Amersham Pharm Biotech Uk Ltd | DNA isolation method |
US6875619B2 (en) * | 1999-11-12 | 2005-04-05 | Motorola, Inc. | Microfluidic devices comprising biochannels |
JP3397737B2 (en) * | 2000-01-24 | 2003-04-21 | 倉敷紡績株式会社 | Nucleic acid extraction method |
JP2002116120A (en) * | 2000-04-13 | 2002-04-19 | Jsr Corp | Target substance detecting method |
WO2004094986A2 (en) * | 2003-04-16 | 2004-11-04 | Handylab, Inc. | System and method for electrochemical detection of biological compounds |
EP2402089A1 (en) * | 2003-07-31 | 2012-01-04 | Handylab, Inc. | Processing particle-containing samples |
US20050069898A1 (en) * | 2003-09-25 | 2005-03-31 | Cepheid | Lyophilized beads containing mannitol |
US20060234251A1 (en) * | 2005-04-19 | 2006-10-19 | Lumigen, Inc. | Methods of enhancing isolation of RNA from biological samples |
-
2005
- 2005-05-03 JP JP2007511505A patent/JP5344817B2/en active Active
- 2005-05-03 CA CA3198754A patent/CA3198754A1/en active Pending
- 2005-05-03 WO PCT/US2005/015345 patent/WO2005108620A2/en active Application Filing
- 2005-05-03 ES ES11153427T patent/ES2572382T3/en active Active
- 2005-05-03 EP EP11153427.7A patent/EP2345739B8/en active Active
- 2005-05-03 AU AU2005241080A patent/AU2005241080B2/en active Active
- 2005-05-03 ES ES05745564.4T patent/ES2553097T3/en active Active
- 2005-05-03 EP EP05745564.4A patent/EP1745153B1/en active Active
- 2005-05-03 CA CA2565572A patent/CA2565572C/en active Active
- 2005-05-03 US US11/579,353 patent/US8470586B2/en active Active
- 2005-05-03 CA CA2994321A patent/CA2994321C/en active Active
-
2013
- 2013-04-02 JP JP2013077049A patent/JP5885697B2/en active Active
- 2013-06-24 US US13/925,547 patent/US20140030798A1/en not_active Abandoned
-
2015
- 2015-02-27 JP JP2015039218A patent/JP6504854B2/en active Active
-
2016
- 2016-08-29 JP JP2016167171A patent/JP6475206B2/en active Active
-
2019
- 2019-02-22 US US16/283,617 patent/US20190284606A1/en not_active Abandoned
Patent Citations (705)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1434314A (en) | 1921-08-04 | 1922-10-31 | Raich Anthony | Lunch pail |
US1616419A (en) | 1925-04-03 | 1927-02-01 | Everlasting Valve Co | Automatic shut-off device for gas in case of fire |
US1733401A (en) | 1928-03-29 | 1929-10-29 | Christman Matthias | Journal box |
US3528449A (en) | 1968-02-27 | 1970-09-15 | Trw Inc | Fluid flow control apparatus |
US3813316A (en) | 1972-06-07 | 1974-05-28 | Gen Electric | Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof |
US4038192A (en) | 1973-12-03 | 1977-07-26 | International Biomedical Laboratories, Inc. | Device for exchange between fluids suitable for treatment of blood |
US3985649A (en) | 1974-11-25 | 1976-10-12 | Eddelman Roy T | Ferromagnetic separation process and material |
US4055395A (en) | 1975-10-31 | 1977-10-25 | Hitachi, Ltd. | Analysis apparatus |
US4018652A (en) | 1976-01-09 | 1977-04-19 | Mcdonnell Douglas Corporation | Process and apparatus for ascertaining the concentration of microorganism in a water specimen |
US4018089A (en) | 1976-05-05 | 1977-04-19 | Beckman Instruments, Inc. | Fluid sampling apparatus |
USD249706S (en) | 1976-12-17 | 1978-09-26 | Eastman Kodak Company | Sample cup tray for chemical analysis of biological fluids |
USD252157S (en) | 1977-04-14 | 1979-06-19 | Warner-Lambert Company | Diagnostic device for measuring biochemical characteristics of microorganisms and the like |
USD252341S (en) | 1977-05-12 | 1979-07-10 | Ryder International Corporation | Testing tray |
US4212744A (en) | 1977-06-21 | 1980-07-15 | Asahi Medical Co., Ltd. | Haemodialyzer apparatus |
US4139005A (en) | 1977-09-01 | 1979-02-13 | Dickey Gilbert C | Safety release pipe cap |
USD254687S (en) | 1979-01-25 | 1980-04-08 | Mcdonnell Douglas Corporation | Biochemical card for use with an automated microbial identification machine |
USD261033S (en) | 1979-02-05 | 1981-09-29 | American Optical Corporation | Bilirubin concentration analyzer |
USD261173S (en) | 1979-02-05 | 1981-10-06 | American Optical Corporation | Bilirubinometer |
US4301412A (en) | 1979-10-29 | 1981-11-17 | United States Surgical Corporation | Liquid conductivity measuring system and sample cards therefor |
US4466740A (en) | 1980-10-09 | 1984-08-21 | Olympus Optical Co., Ltd. | Particle agglutination analyzing plate |
US4457329A (en) | 1981-12-04 | 1984-07-03 | Air Products And Chemicals, Inc. | Safety pressure regulator |
USD279817S (en) | 1982-07-19 | 1985-07-23 | Daryl Laboratories, Inc. | Immunoassay test slide |
US4504582A (en) | 1982-07-20 | 1985-03-12 | Genex Corporation | Vermiculite as a carrier support for immobilized biological materials |
US4439526A (en) | 1982-07-26 | 1984-03-27 | Eastman Kodak Company | Clustered ingress apertures for capillary transport devices and method of use |
US4612873A (en) | 1982-09-02 | 1986-09-23 | Firma Andreas Hettich | Centrifuge chamber for cytodiagnostic investigation of epithelial cells contained in a sample |
US4522786A (en) | 1983-08-10 | 1985-06-11 | E. I. Du Pont De Nemours And Company | Multilayered test device for detecting analytes in liquid test samples |
US4673657A (en) | 1983-08-26 | 1987-06-16 | The Regents Of The University Of California | Multiple assay card and system |
US4599315A (en) | 1983-09-13 | 1986-07-08 | University Of California Regents | Microdroplet test apparatus |
USD292735S (en) | 1983-11-02 | 1987-11-10 | A/S Nunc | Tube for the immunological adsorption analysis |
US4654127A (en) | 1984-04-11 | 1987-03-31 | Sentech Medical Corporation | Self-calibrating single-use sensing device for clinical chemistry and method of use |
US4798693A (en) | 1984-04-26 | 1989-01-17 | Ngk Insulators, Ltd. | Method of manufacturing an electrochemical device |
USD288478S (en) | 1984-06-21 | 1987-02-24 | Sentech Medical Corporation | Clinical chemistry analyzer |
US4800022A (en) | 1985-03-13 | 1989-01-24 | Baxter International Inc. | Platelet collection system |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683202B1 (en) | 1985-03-28 | 1990-11-27 | Cetus Corp | |
US4612959A (en) | 1985-05-07 | 1986-09-23 | Mobil Oil Corporation | Valveless shut-off and transfer device |
US4720374A (en) | 1985-07-22 | 1988-01-19 | E. I. Du Pont De Nemours And Company | Container having a sonication compartment |
US4963498A (en) | 1985-08-05 | 1990-10-16 | Biotrack | Capillary flow device |
US4871779A (en) | 1985-12-23 | 1989-10-03 | The Dow Chemical Company | Ion exchange/chelation resins containing dense star polymers having ion exchange or chelate capabilities |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683195B1 (en) | 1986-01-30 | 1990-11-27 | Cetus Corp | |
US4841786A (en) | 1986-05-02 | 1989-06-27 | Forschungs-& Entwicklungs-Kg | Specimen distributing system |
US4978622A (en) | 1986-06-23 | 1990-12-18 | Regents Of The University Of California | Cytophaga-derived immunopotentiator |
US5763262A (en) | 1986-09-18 | 1998-06-09 | Quidel Corporation | Immunodiagnostic device |
USD302294S (en) | 1986-10-03 | 1989-07-18 | Biotrack, Inc. | Reagent cartridge for blood analysis |
US4935342A (en) | 1986-12-01 | 1990-06-19 | Syngene, Inc. | Method of isolating and purifying nucleic acids from biological samples |
US4978502A (en) | 1987-01-05 | 1990-12-18 | Dole Associates, Inc. | Immunoassay or diagnostic device and method of manufacture |
US4946562A (en) | 1987-01-29 | 1990-08-07 | Medtest Systems, Inc. | Apparatus and methods for sensing fluid components |
US5004583A (en) | 1987-01-29 | 1991-04-02 | Medtest Systems, Inc. | Universal sensor cartridge for use with a universal analyzer for sensing components in a multicomponent fluid |
US5599667A (en) | 1987-03-02 | 1997-02-04 | Gen-Probe Incorporated | Polycationic supports and nucleic acid purification separation and hybridization |
US5001417A (en) | 1987-06-01 | 1991-03-19 | Abbott Laboratories | Apparatus for measuring electrolytes utilizing optical signals related to the concentration of the electrolytes |
US5192507A (en) | 1987-06-05 | 1993-03-09 | Arthur D. Little, Inc. | Receptor-based biosensors |
US5422284A (en) | 1987-07-16 | 1995-06-06 | E. I. Du Pont De Nemours And Company | Method of performing affinity separation using immobilized flocculating agent on chromatographic support |
US5064618A (en) | 1987-08-29 | 1991-11-12 | Thorn Emi Plc | Sensor arrangements |
US4921809A (en) | 1987-09-29 | 1990-05-01 | Findley Adhesives, Inc. | Polymer coated solid matrices and use in immunoassays |
USD310413S (en) | 1987-12-17 | 1990-09-04 | Miles Inc. | Sample processor |
US4895650A (en) | 1988-02-25 | 1990-01-23 | Gen-Probe Incorporated | Magnetic separation rack for diagnostic assays |
US5503803A (en) | 1988-03-28 | 1996-04-02 | Conception Technologies, Inc. | Miniaturized biological assembly |
US5169512A (en) | 1988-04-08 | 1992-12-08 | Robert Bosch Gmbh | Planar polarographic probe for determining the λ value of gas mixtures |
US5700637A (en) | 1988-05-03 | 1997-12-23 | Isis Innovation Limited | Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays |
US5096669A (en) | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
US5060823A (en) * | 1988-09-15 | 1991-10-29 | Brandeis University | Sterile transfer system |
US4989626A (en) | 1988-11-11 | 1991-02-05 | Hitachi, Ltd. | Apparatus for and method of controlling the opening and closing of channel for liquid |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US4919829A (en) | 1988-12-30 | 1990-04-24 | The United States Of America As Represented By The Secretary Of Commerce | Aluminum hydroxides as solid lubricants |
US5053199A (en) | 1989-02-21 | 1991-10-01 | Boehringer Mannheim Corporation | Electronically readable information carrier |
US5416000A (en) | 1989-03-16 | 1995-05-16 | Chemtrak, Inc. | Analyte immunoassay in self-contained apparatus |
US5311896A (en) | 1989-04-10 | 1994-05-17 | Niilo Kaartinen | Method for producing a heatable and refrigerable element for a system handling small quantities of liquid, and an element manufactured by the method |
US4949742A (en) | 1989-04-26 | 1990-08-21 | Spectra-Physics, Inc. | Temperature operated gas valve |
US5135872A (en) | 1989-04-28 | 1992-08-04 | Sangstat Medical Corporation | Matrix controlled method of delayed fluid delivery for assays |
US5061336A (en) | 1989-05-01 | 1991-10-29 | Soane Technologies, Inc. | Gel casting method and apparatus |
US5071531A (en) | 1989-05-01 | 1991-12-10 | Soane Technologies, Inc. | Casting of gradient gels |
USD338275S (en) | 1989-05-03 | 1993-08-10 | Bayer Diagnostics, GmbH | Combined clinical-chemical analyzer evaluation unit and work station |
USD328794S (en) | 1989-07-19 | 1992-08-18 | Pb Diagnostic Systems, Inc. | Diagnostic instrument or similar article |
US5316727A (en) | 1989-09-08 | 1994-05-31 | Terumo Kabushiki Kaisha | Measuring apparatus |
US5126002A (en) | 1989-09-29 | 1992-06-30 | Glory Kogyo Kabushiki Kaisha | Leaf paper bundling apparatus |
US5275787A (en) | 1989-10-04 | 1994-01-04 | Canon Kabushiki Kaisha | Apparatus for separating or measuring particles to be examined in a sample fluid |
US5048554A (en) | 1989-10-05 | 1991-09-17 | Ceodeux S.A. | Valve for a gas cylinder |
USD324426S (en) | 1989-10-20 | 1992-03-03 | Pacific Biotech, Inc. | Reaction unit for use in analyzing biological fluids |
US4967950A (en) | 1989-10-31 | 1990-11-06 | International Business Machines Corporation | Soldering method |
US5252743A (en) | 1989-11-13 | 1993-10-12 | Affymax Technologies N.V. | Spatially-addressable immobilization of anti-ligands on surfaces |
US5091328A (en) | 1989-11-21 | 1992-02-25 | National Semiconductor Corporation | Method of late programming MOS devices |
US5770388A (en) | 1989-12-22 | 1998-06-23 | Dade Behring Marburg Gmbh | Method of separation employing magnetic particles and second medium |
USD328135S (en) | 1990-01-12 | 1992-07-21 | Pacific Biotech, Inc. | Reaction unit for use in analyzing biological fluids |
US6054034A (en) | 1990-02-28 | 2000-04-25 | Aclara Biosciences, Inc. | Acrylic microchannels and their use in electrophoretic applications |
US5858188A (en) | 1990-02-28 | 1999-01-12 | Aclara Biosciences, Inc. | Acrylic microchannels and their use in electrophoretic applications |
US5126022A (en) | 1990-02-28 | 1992-06-30 | Soane Tecnologies, Inc. | Method and device for moving molecules by the application of a plurality of electrical fields |
US5750015A (en) | 1990-02-28 | 1998-05-12 | Soane Biosciences | Method and device for moving molecules by the application of a plurality of electrical fields |
US6236581B1 (en) | 1990-04-06 | 2001-05-22 | Mosaid Technologies Incorporated | High voltage boosted word line supply charge pump and regulator for DRAM |
US5389339A (en) | 1990-05-01 | 1995-02-14 | Enprotech Corporation | Integral biomolecule preparation device |
US5667976A (en) | 1990-05-11 | 1997-09-16 | Becton Dickinson And Company | Solid supports for nucleic acid hybridization assays |
US5186339A (en) | 1990-07-20 | 1993-02-16 | Eastman Kodak Company | Device comprising a plurality of receptacles arranged in a single row for containers filled with a liquid |
US5147606A (en) | 1990-08-06 | 1992-09-15 | Miles Inc. | Self-metering fluid analysis device |
US5208163A (en) | 1990-08-06 | 1993-05-04 | Miles Inc. | Self-metering fluid analysis device |
US5135627A (en) | 1990-10-15 | 1992-08-04 | Soane Technologies, Inc. | Mosaic microcolumns, slabs, and separation media for electrophoresis and chromatography |
US5250263A (en) | 1990-11-01 | 1993-10-05 | Ciba-Geigy Corporation | Apparatus for processing or preparing liquid samples for chemical analysis |
US5599503A (en) | 1990-11-26 | 1997-02-04 | Ciba-Geigy Corporation | Detector cell |
US5327038A (en) | 1991-05-09 | 1994-07-05 | Rockwell International Corporation | Walking expansion actuator |
US5304477A (en) | 1991-07-08 | 1994-04-19 | Fuji Oil Company, Limited | Process for producing hard fats using 1,3-specific lipase and mixture of palmitic, lauric and behemic acids |
US5282950A (en) | 1991-07-15 | 1994-02-01 | Boehringer Mannheim Gmbh | Electrochemical analysis system |
USD333522S (en) | 1991-07-23 | 1993-02-23 | P B Diagnostic Systems, Inc. | Sample tube holder |
US5411708A (en) | 1991-08-06 | 1995-05-02 | Moscetta; Pompeo | Apparatus for the determination of analytes in liquid samples |
US5474796A (en) | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
US5256376A (en) | 1991-09-12 | 1993-10-26 | Medical Laboratory Automation, Inc. | Agglutination detection apparatus |
US5582884A (en) | 1991-10-04 | 1996-12-10 | Alcan International Limited | Peelable laminated structures and process for production thereof |
US5601727A (en) | 1991-11-04 | 1997-02-11 | Pall Corporation | Device and method for separating plasma from a biological fluid |
USD347478S (en) | 1991-11-05 | 1994-05-31 | Hybaid Ltd. | Laboratory instrument for handling bimolecular samples |
US5849489A (en) | 1991-11-07 | 1998-12-15 | Nanogen, Inc. | Hybridization of polynucleotides conjugated with chromophores and fluorophores to generate donor-to-donor energy transfer system |
US5787032A (en) | 1991-11-07 | 1998-07-28 | Nanogen | Deoxyribonucleic acid(DNA) optical storage using non-radiative energy transfer between a donor group, an acceptor group and a quencher group |
USD351475S (en) | 1992-01-30 | 1994-10-11 | Jan Gerber | Skin patch for testing allergic reactions |
US5559432A (en) | 1992-02-27 | 1996-09-24 | Logue; Delmar L. | Joystick generating a polar coordinates signal utilizing a rotating magnetic field within a hollow toroid core |
US5585242A (en) | 1992-04-06 | 1996-12-17 | Abbott Laboratories | Method for detection of nucleic acid using total internal reflectance |
US5223226A (en) | 1992-04-14 | 1993-06-29 | Millipore Corporation | Insulated needle for forming an electrospray |
US6235313B1 (en) | 1992-04-24 | 2001-05-22 | Brown University Research Foundation | Bioadhesive microspheres and their use as drug delivery and imaging systems |
US7494770B2 (en) | 1992-05-01 | 2009-02-24 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification analysis |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5928880A (en) | 1992-05-01 | 1999-07-27 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5866345A (en) | 1992-05-01 | 1999-02-02 | The Trustees Of The University Of Pennsylvania | Apparatus for the detection of an analyte utilizing mesoscale flow systems |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US5635358A (en) | 1992-05-01 | 1997-06-03 | Trustees Of The University Of Pennsylvania | Fluid handling methods for use in mesoscale analytical devices |
US5486335A (en) | 1992-05-01 | 1996-01-23 | Trustees Of The University Of Pennsylvania | Analysis based on flow restriction |
US7892819B2 (en) | 1992-05-01 | 2011-02-22 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
US5955029A (en) | 1992-05-01 | 1999-09-21 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5726026A (en) | 1992-05-01 | 1998-03-10 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5427946A (en) | 1992-05-01 | 1995-06-27 | Trustees Of The University Of Pennsylvania | Mesoscale sperm handling devices |
US5744366A (en) | 1992-05-01 | 1998-04-28 | Trustees Of The University Of Pennsylvania | Mesoscale devices and methods for analysis of motile cells |
US5304487A (en) | 1992-05-01 | 1994-04-19 | Trustees Of The University Of Pennsylvania | Fluid handling in mesoscale analytical devices |
US20030199081A1 (en) | 1992-05-01 | 2003-10-23 | Peter Wilding | Mesoscale polynucleotide amplification analysis |
US5587128A (en) | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
US5296375A (en) | 1992-05-01 | 1994-03-22 | Trustees Of The University Of Pennsylvania | Mesoscale sperm handling devices |
US5401465A (en) | 1992-05-05 | 1995-03-28 | Chiron Corporation | Luminometer with reduced sample crosstalk |
US5364591A (en) | 1992-06-01 | 1994-11-15 | Eastman Kodak Company | Device for moving a target-bearing solid through a liquid for detection while being contained |
JPH07290706A (en) | 1992-08-03 | 1995-11-07 | Hewlett Packard Co <Hp> | Thermal ink heater array using rectifying material |
US5414245A (en) | 1992-08-03 | 1995-05-09 | Hewlett-Packard Corporation | Thermal-ink heater array using rectifying material |
US5674742A (en) | 1992-08-31 | 1997-10-07 | The Regents Of The University Of California | Microfabricated reactor |
US5646039A (en) | 1992-08-31 | 1997-07-08 | The Regents Of The University Of California | Microfabricated reactor |
US5639423A (en) | 1992-08-31 | 1997-06-17 | The Regents Of The University Of Calfornia | Microfabricated reactor |
US5529677A (en) | 1992-09-24 | 1996-06-25 | Robert Bosch Gmbh | Planar polarographic sensor for determining the lambda value of gas mixtures |
US5569364A (en) | 1992-11-05 | 1996-10-29 | Soane Biosciences, Inc. | Separation media for electrophoresis |
US5885432A (en) | 1992-11-05 | 1999-03-23 | Soane Biosciences | Un-crosslinked polymeric media for electrophoresis |
US5422271A (en) | 1992-11-20 | 1995-06-06 | Eastman Kodak Company | Nucleic acid material amplification and detection without washing |
US5652149A (en) | 1992-12-08 | 1997-07-29 | Westinghouse Electric Corporation | Mixing apparatus & method for an optical agglutination assay device |
US5372946A (en) | 1992-12-10 | 1994-12-13 | International Technidyne Corporation | Blood coagulation time test apparatus and method |
US5311996A (en) | 1993-01-05 | 1994-05-17 | Duffy Thomas J | Edge protector |
US5494639A (en) | 1993-01-13 | 1996-02-27 | Behringwerke Aktiengesellschaft | Biosensor for measuring changes in viscosity and/or density of a fluid |
USD351913S (en) | 1993-02-25 | 1994-10-25 | Diametrics Medical, Inc. | Disposable electrochemical measurement cartridge for a portable medical analyzer |
US5339486A (en) | 1993-03-10 | 1994-08-23 | Persic Jr William V | Golf ball cleaner |
US5565171A (en) | 1993-05-28 | 1996-10-15 | Governors Of The University Of Alberta | Continuous biochemical reactor for analysis of sub-picomole quantities of complex organic molecules |
US5647994A (en) | 1993-06-21 | 1997-07-15 | Labsystems Oy | Method and apparatus for separating magnetic particles from a solution |
US5595708A (en) | 1993-08-27 | 1997-01-21 | Becton Dickinson And Company | System for detecting bacterial growth in a plurality of culture vials |
US5397709A (en) | 1993-08-27 | 1995-03-14 | Becton Dickinson And Company | System for detecting bacterial growth in a plurality of culture vials |
US5519635A (en) | 1993-09-20 | 1996-05-21 | Hitachi Ltd. | Apparatus for chemical analysis with detachable analytical units |
US5374395A (en) | 1993-10-14 | 1994-12-20 | Amoco Corporation | Diagnostics instrument |
US5632957A (en) | 1993-11-01 | 1997-05-27 | Nanogen | Molecular biological diagnostic systems including electrodes |
US5605662A (en) | 1993-11-01 | 1997-02-25 | Nanogen, Inc. | Active programmable electronic devices for molecular biological analysis and diagnostics |
US5929208A (en) | 1993-11-01 | 1999-07-27 | Nanogen, Inc. | Methods for electronic synthesis of polymers |
US5849486A (en) | 1993-11-01 | 1998-12-15 | Nanogen, Inc. | Methods for hybridization analysis utilizing electrically controlled hybridization |
US5599432A (en) | 1993-11-11 | 1997-02-04 | Ciba-Geigy Corporation | Device and a method for the electrophoretic separation of fluid substance mixtures |
US5516410A (en) | 1993-12-17 | 1996-05-14 | Robert Bosch Gmbh | Planar sensor element having a solid electrolyte substrate |
US5630920A (en) | 1994-03-14 | 1997-05-20 | Robert Bosch Gmbh | Electrochemical sensor for determining the oxygen concentration in gas mixtures |
US5683657A (en) | 1994-03-24 | 1997-11-04 | Gamera Bioscience, Corp. | DNA meltometer |
US5580523A (en) | 1994-04-01 | 1996-12-03 | Bard; Allen J. | Integrated chemical synthesizers |
USD366116S (en) | 1994-05-03 | 1996-01-09 | Thomas Biskupski | Electrical box for storing dental wax |
US5869244A (en) | 1994-07-07 | 1999-02-09 | Martin; Jean-Rene | Procedure for the analysis of biological substances in a conductive liquid medium |
US5800600A (en) | 1994-07-14 | 1998-09-01 | Tonejet Corporation Pty Ltd | Solid ink jet ink |
US6010607A (en) | 1994-08-01 | 2000-01-04 | Lockheed Martin Energy Research Corporation | Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis |
US6033546A (en) | 1994-08-01 | 2000-03-07 | Lockheed Martin Energy Research Corporation | Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis |
US6001229A (en) | 1994-08-01 | 1999-12-14 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing microfluidic manipulations for chemical analysis |
US6010608A (en) | 1994-08-01 | 2000-01-04 | Lockheed Martin Energy Research Corporation | Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis |
US5681529A (en) | 1994-08-25 | 1997-10-28 | Nihon Medi-Physics Co., Ltd. | Biological fluid analyzing device |
US5912134A (en) | 1994-09-02 | 1999-06-15 | Biometric Imaging, Inc. | Disposable cartridge and method for an assay of a biological sample |
US5593838A (en) | 1994-11-10 | 1997-01-14 | David Sarnoff Research Center, Inc. | Partitioned microelectronic device array |
US5846396A (en) | 1994-11-10 | 1998-12-08 | Sarnoff Corporation | Liquid distribution system |
US5755942A (en) | 1994-11-10 | 1998-05-26 | David Sarnoff Research Center, Inc. | Partitioned microelectronic device array |
US5863708A (en) | 1994-11-10 | 1999-01-26 | Sarnoff Corporation | Partitioned microelectronic device array |
US5585069A (en) | 1994-11-10 | 1996-12-17 | David Sarnoff Research Center, Inc. | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
US5681484A (en) | 1994-11-10 | 1997-10-28 | David Sarnoff Research Center, Inc. | Etching to form cross-over, non-intersecting channel networks for use in partitioned microelectronic and fluidic device arrays for clinical diagnostics and chemical synthesis |
US5643738A (en) | 1994-11-10 | 1997-07-01 | David Sarnoff Research Center, Inc. | Method of synthesis of plurality of compounds in parallel using a partitioned solid support |
US5731212A (en) | 1994-12-20 | 1998-03-24 | International Technidyne Corporation | Test apparatus and method for testing cuvette accommodated samples |
US20060207944A1 (en) | 1995-02-21 | 2006-09-21 | Siddiqi Iqbal W | Apparatus for mixing magnetic particles |
US7476313B2 (en) | 1995-02-21 | 2009-01-13 | Iqbal Waheed Siddiqi | Apparatus for mixing magnetic particles |
US5579928A (en) | 1995-03-06 | 1996-12-03 | Anukwuem; Chidi I. | Test tube holder with lock down clamp |
US5674394A (en) | 1995-03-24 | 1997-10-07 | Johnson & Johnson Medical, Inc. | Single use system for preparation of autologous plasma |
US5578270A (en) | 1995-03-24 | 1996-11-26 | Becton Dickinson And Company | System for nucleic acid based diagnostic assay |
USD382346S (en) | 1995-04-19 | 1997-08-12 | Roche Diagnostic Systems, Inc. | Vessel holder |
US5578818A (en) | 1995-05-10 | 1996-11-26 | Molecular Dynamics | LED point scanning system |
US5842106A (en) | 1995-06-06 | 1998-11-24 | Sarnoff Corporation | Method of producing micro-electrical conduits |
US5632876A (en) | 1995-06-06 | 1997-05-27 | David Sarnoff Research Center, Inc. | Apparatus and methods for controlling fluid flow in microchannels |
US6010627A (en) | 1995-06-06 | 2000-01-04 | Quantic Biomedical Partners | Device for concentrating plasma |
US6228635B1 (en) | 1995-06-07 | 2001-05-08 | Aastrom Bioscience, Inc. | Portable cell growth cassette for use in maintaining and growing biological cells |
US5603351A (en) | 1995-06-07 | 1997-02-18 | David Sarnoff Research Center, Inc. | Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device |
US5980704A (en) | 1995-06-07 | 1999-11-09 | David Sarnoff Research Center Inc. | Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device |
US5589136A (en) | 1995-06-20 | 1996-12-31 | Regents Of The University Of California | Silicon-based sleeve devices for chemical reactions |
US5968745A (en) | 1995-06-27 | 1999-10-19 | The University Of North Carolina At Chapel Hill | Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof |
US6326211B1 (en) | 1995-06-29 | 2001-12-04 | Affymetrix, Inc. | Method of manipulating a gas bubble in a microfluidic device |
US20050202504A1 (en) | 1995-06-29 | 2005-09-15 | Affymetrix, Inc. | Miniaturized genetic analysis systems and methods |
US6043080A (en) | 1995-06-29 | 2000-03-28 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5922591A (en) | 1995-06-29 | 1999-07-13 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US6168948B1 (en) | 1995-06-29 | 2001-01-02 | Affymetrix, Inc. | Miniaturized genetic analysis systems and methods |
US6197595B1 (en) | 1995-06-29 | 2001-03-06 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US6158269A (en) | 1995-07-13 | 2000-12-12 | Bayer Corporation | Method and apparatus for aspirating and dispensing sample fluids |
US5872010A (en) | 1995-07-21 | 1999-02-16 | Northeastern University | Microscale fluid handling system |
US6602474B1 (en) | 1995-07-31 | 2003-08-05 | Precision System Science Co., Ltd. | Multi-vessel container for testing fluids |
US6143250A (en) | 1995-07-31 | 2000-11-07 | Precision System Science Co., Ltd. | Multi-vessel container for testing fluids |
US6334980B1 (en) | 1995-09-07 | 2002-01-01 | Microfab Technologies Inc. | Flexible apparatus with ablation formed chamber(s) for conducting bio-chemical analyses |
US5849208A (en) | 1995-09-07 | 1998-12-15 | Microfab Technoologies, Inc. | Making apparatus for conducting biochemical analyses |
US6057149A (en) | 1995-09-15 | 2000-05-02 | The University Of Michigan | Microscale devices and reactions in microscale devices |
US6271021B1 (en) | 1995-09-15 | 2001-08-07 | The Regents Of The University Of Michigan | Microscale devices and reactions in microscale devices |
US6911183B1 (en) | 1995-09-15 | 2005-06-28 | The Regents Of The University Of Michigan | Moving microdroplets |
US6130098A (en) | 1995-09-15 | 2000-10-10 | The Regents Of The University Of Michigan | Moving microdroplets |
US6048734A (en) | 1995-09-15 | 2000-04-11 | The Regents Of The University Of Michigan | Thermal microvalves in a fluid flow method |
US6302304B1 (en) | 1995-09-22 | 2001-10-16 | Rieke Packaging Systems Limited | Dispensing systems |
US5628890A (en) | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
US6132580A (en) | 1995-09-28 | 2000-10-17 | The Regents Of The University Of California | Miniature reaction chamber and devices incorporating same |
US20020068357A1 (en) | 1995-09-28 | 2002-06-06 | Mathies Richard A. | Miniaturized integrated nucleic acid processing and analysis device and method |
EP0766256B1 (en) | 1995-09-29 | 1999-12-01 | STMicroelectronics S.r.l. | Voltage regulator for semiconductor non-volatile electrically programmable memory devices |
US5651839A (en) | 1995-10-26 | 1997-07-29 | Queen's University At Kingston | Process for engineering coherent twin and coincident site lattice grain boundaries in polycrystalline materials |
US5705813A (en) | 1995-11-01 | 1998-01-06 | Hewlett-Packard Company | Integrated planar liquid handling system for maldi-TOF MS |
US6319469B1 (en) | 1995-12-18 | 2001-11-20 | Silicon Valley Bank | Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system |
USD382647S (en) | 1996-01-17 | 1997-08-19 | Biomerieux Vitek, Inc. | Biochemical test card |
US5631337A (en) | 1996-01-19 | 1997-05-20 | Soane Bioscience | Thermoreversible hydrogels comprising linear copolymers and their use in electrophoresis |
US5883211A (en) | 1996-01-19 | 1999-03-16 | Aclara Biosciences, Inc. | Thermoreversible hydrogels comprising linear copolymers and their use in electrophoresis |
US5863502A (en) | 1996-01-24 | 1999-01-26 | Sarnoff Corporation | Parallel reaction cassette and associated devices |
US5726944A (en) | 1996-02-05 | 1998-03-10 | Motorola, Inc. | Voltage regulator for regulating an output voltage from a charge pump and method therefor |
US5981735A (en) | 1996-02-12 | 1999-11-09 | Cobra Therapeutics Limited | Method of plasmid DNA production and purification |
USD378782S (en) | 1996-03-01 | 1997-04-08 | Johnson & Johnson Clinical Diagnostics, Inc. | Processor for nucleic acid detection |
US5849598A (en) | 1996-03-15 | 1998-12-15 | Washington University | Method for transferring micro quantities of liquid samples to discrete locations |
US5895762A (en) | 1996-03-25 | 1999-04-20 | Diasys Corporation | Apparatus and method for handling fluid samples of body materials |
US6391623B1 (en) | 1996-03-26 | 2002-05-21 | Affymetrix, Inc. | Fluidics station injection needles with distal end and side ports and method of using |
US5965886A (en) | 1996-03-27 | 1999-10-12 | Sarnoff Corporation | Infrared imager using room temperature capacitance sensor |
US7235406B1 (en) | 1996-04-03 | 2007-06-26 | Applera Corporation | Nucleic acid analysis device |
US5788814A (en) | 1996-04-09 | 1998-08-04 | David Sarnoff Research Center | Chucks and methods for positioning multiple objects on a substrate |
US5671303A (en) | 1996-04-17 | 1997-09-23 | Motorola, Inc. | Molecular detection apparatus and method using optical waveguide detection |
US6001307A (en) | 1996-04-26 | 1999-12-14 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US6054277A (en) | 1996-05-08 | 2000-04-25 | Regents Of The University Of Minnesota | Integrated microchip genetic testing system |
US6180950B1 (en) | 1996-05-14 | 2001-01-30 | Don Olsen | Micro heating apparatus for synthetic fibers |
US6509193B1 (en) | 1996-05-20 | 2003-01-21 | Precision System Science Co., Ltd. | Method and apparatus for controlling magnetic particles by pipetting machine |
US5927547A (en) | 1996-05-31 | 1999-07-27 | Packard Instrument Company | System for dispensing microvolume quantities of liquids |
US5726404A (en) | 1996-05-31 | 1998-03-10 | University Of Washington | Valveless liquid microswitch |
US5863801A (en) | 1996-06-14 | 1999-01-26 | Sarnoff Corporation | Automated nucleic acid isolation |
US5912124A (en) | 1996-06-14 | 1999-06-15 | Sarnoff Corporation | Padlock probe detection |
US5939291A (en) | 1996-06-14 | 1999-08-17 | Sarnoff Corporation | Microfluidic method for nucleic acid amplification |
US5880071A (en) | 1996-06-28 | 1999-03-09 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US6046056A (en) | 1996-06-28 | 2000-04-04 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5779868A (en) | 1996-06-28 | 1998-07-14 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US6547942B1 (en) | 1996-06-28 | 2003-04-15 | Caliper Technologies Corp. | Electropipettor and compensation means for electrophoretic bias |
US5972187A (en) | 1996-06-28 | 1999-10-26 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US6399389B1 (en) | 1996-06-28 | 2002-06-04 | Caliper Technologies Corp. | High throughput screening assay systems in microscale fluidic devices |
US6267858B1 (en) | 1996-06-28 | 2001-07-31 | Caliper Technologies Corp. | High throughput screening assay systems in microscale fluidic devices |
US5958203A (en) | 1996-06-28 | 1999-09-28 | Caliper Technologies Corportion | Electropipettor and compensation means for electrophoretic bias |
US6413401B1 (en) | 1996-07-03 | 2002-07-02 | Caliper Technologies Corp. | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5965001A (en) | 1996-07-03 | 1999-10-12 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5800690A (en) | 1996-07-03 | 1998-09-01 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5852495A (en) | 1996-07-16 | 1998-12-22 | Caliper Technologies Corporation | Fourier detection of species migrating in a microchannel |
US5699157A (en) | 1996-07-16 | 1997-12-16 | Caliper Technologies Corp. | Fourier detection of species migrating in a microchannel |
US5770029A (en) | 1996-07-30 | 1998-06-23 | Soane Biosciences | Integrated electrophoretic microdevices |
US20020053399A1 (en) | 1996-07-30 | 2002-05-09 | Aclara Biosciences, Inc | Methods for fabricating enclosed microchannel structures |
US6074827A (en) | 1996-07-30 | 2000-06-13 | Aclara Biosciences, Inc. | Microfluidic method for nucleic acid purification and processing |
US6007690A (en) | 1996-07-30 | 1999-12-28 | Aclara Biosciences, Inc. | Integrated microfluidic devices |
US20020015667A1 (en) | 1996-08-02 | 2002-02-07 | Caliper Technologies Corp. | Analytical system and method |
US6399025B1 (en) | 1996-08-02 | 2002-06-04 | Caliper Technologies Corp. | Analytical system and method |
US6096509A (en) | 1996-08-02 | 2000-08-01 | Axiom Biotechnologies, Inc. | Apparatus and method for compound profiling of living cells |
US6280967B1 (en) | 1996-08-02 | 2001-08-28 | Axiom Biotechnologies, Inc. | Cell flow apparatus and method for real-time of cellular responses |
US6071478A (en) | 1996-08-02 | 2000-06-06 | Caliper Technologies Corp. | Analytical system and method |
US5955028A (en) | 1996-08-02 | 1999-09-21 | Caliper Technologies Corp. | Analytical system and method |
US5919646A (en) | 1996-08-02 | 1999-07-06 | Axiom Biotechnologies, Inc. | Apparatus and method for real-time measurement of cellular response |
US6558916B2 (en) | 1996-08-02 | 2003-05-06 | Axiom Biotechnologies, Inc. | Cell flow apparatus and method for real-time measurements of patient cellular responses |
US5804436A (en) | 1996-08-02 | 1998-09-08 | Axiom Biotechnologies, Inc. | Apparatus and method for real-time measurement of cellular response |
US5935401A (en) | 1996-09-18 | 1999-08-10 | Aclara Biosciences | Surface modified electrophoretic chambers |
US6056860A (en) | 1996-09-18 | 2000-05-02 | Aclara Biosciences, Inc. | Surface modified electrophoretic chambers |
US5858187A (en) | 1996-09-26 | 1999-01-12 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing electrodynamic focusing on a microchip |
US5872623A (en) | 1996-09-26 | 1999-02-16 | Sarnoff Corporation | Massively parallel detection |
US6110343A (en) | 1996-10-04 | 2000-08-29 | Lockheed Martin Energy Research Corporation | Material transport method and apparatus |
US6500390B1 (en) | 1996-10-17 | 2002-12-31 | David A. Boulton | Method for sealing and venting a microplate assembly |
US5874046A (en) | 1996-10-30 | 1999-02-23 | Raytheon Company | Biological warfare agent sensor system employing ruthenium-terminated oligonucleotides complementary to target live agent DNA sequences |
US6133436A (en) | 1996-11-06 | 2000-10-17 | Sequenom, Inc. | Beads bound to a solid support and to nucleic acids |
USD421653S (en) | 1996-11-18 | 2000-03-14 | Tekmar Company | Housing for a laboratory instrument |
US6447727B1 (en) | 1996-11-19 | 2002-09-10 | Caliper Technologies Corp. | Microfluidic systems |
US6465257B1 (en) | 1996-11-19 | 2002-10-15 | Caliper Technologies Corp. | Microfluidic systems |
US6379974B1 (en) | 1996-11-19 | 2002-04-30 | Caliper Technologies Corp. | Microfluidic systems |
US6102897A (en) | 1996-11-19 | 2000-08-15 | Lang; Volker | Microvalve |
US6379929B1 (en) | 1996-11-20 | 2002-04-30 | The Regents Of The University Of Michigan | Chip-based isothermal amplification devices and methods |
US5772966A (en) | 1997-01-24 | 1998-06-30 | Maracas; George N. | Assay dispensing apparatus |
USD399959S (en) | 1997-01-24 | 1998-10-20 | Abbott Laboratories | Housing for a device for measuring the concentration of an analyte in a sample of blood |
US6211989B1 (en) | 1997-02-24 | 2001-04-03 | Bodenseewerk Perkin-Elmer Gmbh | Light-scanning device |
US5959221A (en) | 1997-03-20 | 1999-09-28 | Bayer Corporation | Automatic closed tube sampler |
US5964997A (en) | 1997-03-21 | 1999-10-12 | Sarnoff Corporation | Balanced asymmetric electronic pulse patterns for operating electrode-based pumps |
US5747666A (en) | 1997-03-26 | 1998-05-05 | Willis; John P. | Point-of-care analyzer module |
US6444461B1 (en) | 1997-04-04 | 2002-09-03 | Caliper Technologies Corp. | Microfluidic devices and methods for separation |
US6403338B1 (en) | 1997-04-04 | 2002-06-11 | Mountain View | Microfluidic systems and methods of genotyping |
US5964995A (en) | 1997-04-04 | 1999-10-12 | Caliper Technologies Corp. | Methods and systems for enhanced fluid transport |
US20030087300A1 (en) | 1997-04-04 | 2003-05-08 | Caliper Technologies Corp. | Microfluidic sequencing methods |
US6235471B1 (en) | 1997-04-04 | 2001-05-22 | Caliper Technologies Corp. | Closed-loop biochemical analyzers |
US5993750A (en) | 1997-04-11 | 1999-11-30 | Eastman Kodak Company | Integrated ceramic micro-chemical plant |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US6428987B2 (en) | 1997-04-23 | 2002-08-06 | Bruker Daltonik Gmbh | Devices for fast DNA replication by polymerase chain reactions (PCR) |
US6235175B1 (en) | 1997-04-25 | 2001-05-22 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
US5976336A (en) | 1997-04-25 | 1999-11-02 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
US6068752A (en) | 1997-04-25 | 2000-05-30 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
US5997708A (en) | 1997-04-30 | 1999-12-07 | Hewlett-Packard Company | Multilayer integrated assembly having specialized intermediary substrate |
US6517783B2 (en) | 1997-05-02 | 2003-02-11 | Gen-Probe Incorporated | Reaction receptacle apparatus |
US5980719A (en) | 1997-05-13 | 1999-11-09 | Sarnoff Corporation | Electrohydrodynamic receptor |
US6106685A (en) | 1997-05-13 | 2000-08-22 | Sarnoff Corporation | Electrode combinations for pumping fluids |
US6302134B1 (en) | 1997-05-23 | 2001-10-16 | Tecan Boston | Device and method for using centripetal acceleration to device fluid movement on a microfluidics system |
US6063589A (en) | 1997-05-23 | 2000-05-16 | Gamera Bioscience Corporation | Devices and methods for using centripetal acceleration to drive fluid movement on a microfluidics system |
US6524790B1 (en) | 1997-06-09 | 2003-02-25 | Caliper Technologies Corp. | Apparatus and methods for correcting for variable velocity in microfluidic systems |
US6004515A (en) | 1997-06-09 | 1999-12-21 | Calipher Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US5869004A (en) | 1997-06-09 | 1999-02-09 | Caliper Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US6613512B1 (en) | 1997-06-09 | 2003-09-02 | Caliper Technologies Corp. | Apparatus and method for correcting for variable velocity in microfluidic systems |
US6063341A (en) | 1997-06-09 | 2000-05-16 | Roche Diagnostics Corporation | Disposable process device |
US6425972B1 (en) | 1997-06-18 | 2002-07-30 | Calipher Technologies Corp. | Methods of manufacturing microfabricated substrates |
US5900130A (en) | 1997-06-18 | 1999-05-04 | Alcara Biosciences, Inc. | Method for sample injection in microchannel device |
US5882465A (en) | 1997-06-18 | 1999-03-16 | Caliper Technologies Corp. | Method of manufacturing microfluidic devices |
US5959291A (en) | 1997-06-27 | 1999-09-28 | Caliper Technologies Corporation | Method and apparatus for measuring low power signals |
CA2294819C (en) | 1997-07-03 | 2005-04-05 | The Regents Of The University Of Michigan | Thermal microvalves |
JP2001509437A (en) | 1997-07-03 | 2001-07-24 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、ミシガン | Thermal micro valve |
US6001231A (en) | 1997-07-15 | 1999-12-14 | Caliper Technologies Corp. | Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems |
US5932799A (en) | 1997-07-21 | 1999-08-03 | Ysi Incorporated | Microfluidic analyzer module |
US5827481A (en) | 1997-07-31 | 1998-10-27 | Hewlett-Packard Company | Cartridge system for effecting sample acquisition and introduction |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
US5919711A (en) | 1997-08-07 | 1999-07-06 | Careside, Inc. | Analytical cartridge |
US5916522A (en) | 1997-08-07 | 1999-06-29 | Careside, Inc. | Electrochemical analytical cartridge |
US6156199A (en) | 1997-08-11 | 2000-12-05 | Zuk, Jr.; Peter | Centrifugal filtration apparatus |
US6893879B2 (en) | 1997-08-13 | 2005-05-17 | Cepheid | Method for separating analyte from a sample |
US6368871B1 (en) | 1997-08-13 | 2002-04-09 | Cepheid | Non-planar microstructures for manipulation of fluid samples |
US5916776A (en) | 1997-08-27 | 1999-06-29 | Sarnoff Corporation | Amplification method for a polynucleotide |
US6827831B1 (en) | 1997-08-29 | 2004-12-07 | Callper Life Sciences, Inc. | Controller/detector interfaces for microfluidic systems |
US5989402A (en) | 1997-08-29 | 1999-11-23 | Caliper Technologies Corp. | Controller/detector interfaces for microfluidic systems |
US5965410A (en) | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US6597450B1 (en) | 1997-09-15 | 2003-07-22 | Becton, Dickinson And Company | Automated Optical Reader for Nucleic Acid Assays |
US6284113B1 (en) | 1997-09-19 | 2001-09-04 | Aclara Biosciences, Inc. | Apparatus and method for transferring liquids |
US6432366B2 (en) | 1997-09-22 | 2002-08-13 | Bristol-Myers Squibb Company | Apparatus for synthesis of multiple organic compounds with pinch valve block |
US5993611A (en) | 1997-09-24 | 1999-11-30 | Sarnoff Corporation | Capacitive denaturation of nucleic acid |
US6012902A (en) | 1997-09-25 | 2000-01-11 | Caliper Technologies Corp. | Micropump |
US6579453B1 (en) | 1997-09-29 | 2003-06-17 | Roche Diagnostics Corporation | Apparatus for separating magnetic particles |
US6103537A (en) | 1997-10-02 | 2000-08-15 | Aclara Biosciences, Inc. | Capillary assays involving separation of free and bound species |
US5957579A (en) | 1997-10-09 | 1999-09-28 | Caliper Technologies Corp. | Microfluidic systems incorporating varied channel dimensions |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
US6827906B1 (en) | 1997-10-15 | 2004-12-07 | Aclara Biosciences, Inc. | Continuous form microstructure assay array |
US5958694A (en) | 1997-10-16 | 1999-09-28 | Caliper Technologies Corp. | Apparatus and methods for sequencing nucleic acids in microfluidic systems |
US6132684A (en) | 1997-10-31 | 2000-10-17 | Becton Dickinson And Company | Sample tube holder |
US6534295B2 (en) | 1997-11-14 | 2003-03-18 | California Institute Of Technology | Cell lysis device |
US6254826B1 (en) | 1997-11-14 | 2001-07-03 | Gen-Probe Incorporated | Assay work station |
US5992820A (en) | 1997-11-19 | 1999-11-30 | Sarnoff Corporation | Flow control in microfluidics devices by controlled bubble formation |
US6174675B1 (en) | 1997-11-25 | 2001-01-16 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US6448064B1 (en) | 1997-11-26 | 2002-09-10 | Ut-Battelle, Llc | Integrated circuit biochip microsystem |
US6123205A (en) | 1997-11-26 | 2000-09-26 | Bayer Corporation | Sample tube rack |
USD413677S (en) | 1997-11-26 | 1999-09-07 | Bayer Corporation | Sample tube rack |
US20010023848A1 (en) | 1997-12-05 | 2001-09-27 | Gjerde Douglas T. | Non-polar media for polynucleotide separations |
US6914137B2 (en) | 1997-12-06 | 2005-07-05 | Dna Research Innovations Limited | Isolation of nucleic acids |
US6074725A (en) | 1997-12-10 | 2000-06-13 | Caliper Technologies Corp. | Fabrication of microfluidic circuits by printing techniques |
US5948227A (en) | 1997-12-17 | 1999-09-07 | Caliper Technologies Corp. | Methods and systems for performing electrophoretic molecular separations |
JP2001527220A (en) | 1997-12-24 | 2001-12-25 | シーフィード | Integrated fluid operation cartridge |
US6440725B1 (en) | 1997-12-24 | 2002-08-27 | Cepheid | Integrated fluid manipulation cartridge |
US6430512B1 (en) | 1997-12-30 | 2002-08-06 | Caliper Technologies Corp. | Software for the display of chromatographic separation data |
US6167910B1 (en) | 1998-01-20 | 2001-01-02 | Caliper Technologies Corp. | Multi-layer microfluidic devices |
US6281008B1 (en) | 1998-02-02 | 2001-08-28 | Toyo Boseki Kabushiki Kaisha | Nucleic acid extraction apparatus |
USD413391S (en) | 1998-02-05 | 1999-08-31 | Bayer Corporation | Test tube sample rack |
US6420143B1 (en) | 1998-02-13 | 2002-07-16 | Caliper Technologies Corp. | Methods and systems for performing superheated reactions in microscale fluidic systems |
US6251343B1 (en) | 1998-02-24 | 2001-06-26 | Caliper Technologies Corp. | Microfluidic devices and systems incorporating cover layers |
US6488897B2 (en) | 1998-02-24 | 2002-12-03 | Caliper Technologies Corp. | Microfluidic devices and systems incorporating cover layers |
US6100541A (en) | 1998-02-24 | 2000-08-08 | Caliper Technologies Corporation | Microfluidic devices and systems incorporating integrated optical elements |
US6861035B2 (en) | 1998-02-24 | 2005-03-01 | Aurora Discovery, Inc. | Multi-well platforms, caddies, lids and combinations thereof |
US6756019B1 (en) | 1998-02-24 | 2004-06-29 | Caliper Technologies Corp. | Microfluidic devices and systems incorporating cover layers |
USD417009S (en) | 1998-03-02 | 1999-11-23 | Bayer Corporation | Sample tube rack |
USD428497S (en) | 1998-03-06 | 2000-07-18 | Bayer Corporation | Test tube sample rack |
US6024920A (en) | 1998-04-21 | 2000-02-15 | Bio-Rad Laboratories, Inc. | Microplate scanning read head |
US20050233370A1 (en) | 1998-05-01 | 2005-10-20 | Gen-Probe Incorporated | Method for agitating the fluid contents of a container |
US6123798A (en) | 1998-05-06 | 2000-09-26 | Caliper Technologies Corp. | Methods of fabricating polymeric structures incorporating microscale fluidic elements |
US7138032B2 (en) | 1998-05-06 | 2006-11-21 | Caliper Life Sciences, Inc. | Methods of fabricating polymeric structures incorporating microscale fluidic elements |
US6370206B1 (en) | 1998-06-04 | 2002-04-09 | Infineon Technologies Ag | Adaptive cap receiver and method for controlling a cap receiver |
US6306590B1 (en) | 1998-06-08 | 2001-10-23 | Caliper Technologies Corp. | Microfluidic matrix localization apparatus and methods |
US6274089B1 (en) | 1998-06-08 | 2001-08-14 | Caliper Technologies Corp. | Microfluidic devices, systems and methods for performing integrated reactions and separations |
USD421130S (en) | 1998-06-15 | 2000-02-22 | Bayer Corporation | Sample tube rack |
USD433759S (en) | 1998-06-18 | 2000-11-14 | Bayer Corporation | Vial carrier |
US20030049833A1 (en) | 1998-06-24 | 2003-03-13 | Shuqi Chen | Sample vessels |
US6375901B1 (en) | 1998-06-29 | 2002-04-23 | Agilent Technologies, Inc. | Chemico-mechanical microvalve and devices comprising the same |
US20020054835A1 (en) | 1998-06-29 | 2002-05-09 | Robotti Karla M. | Chemico-mechanical microvalve and devices comprising the same |
USD420747S (en) | 1998-07-10 | 2000-02-15 | Bayer Corporation | Sample tube rack |
US6395161B1 (en) | 1998-07-23 | 2002-05-28 | Robert Bosch Gmbh | Gas sensor and corresponding production method |
US6366924B1 (en) | 1998-07-27 | 2002-04-02 | Caliper Technologies Corp. | Distributed database for analytical instruments |
US6540896B1 (en) | 1998-08-05 | 2003-04-01 | Caliper Technologies Corp. | Open-Field serial to parallel converter |
US6236456B1 (en) | 1998-08-18 | 2001-05-22 | Molecular Devices Corporation | Optical system for a scanning fluorometer |
US6740518B1 (en) | 1998-09-17 | 2004-05-25 | Clinical Micro Sensors, Inc. | Signal detection techniques for the detection of analytes |
US6572830B1 (en) | 1998-10-09 | 2003-06-03 | Motorola, Inc. | Integrated multilayered microfludic devices and methods for making the same |
US6984516B2 (en) | 1998-10-09 | 2006-01-10 | Motorola, Inc. | Multilayered microfluidic DNA analysis system and method |
US6958392B2 (en) | 1998-10-09 | 2005-10-25 | Whatman, Inc. | Methods for the isolation of nucleic acids and for quantitative DNA extraction and detection for leukocyte evaluation in blood products |
US6544734B1 (en) | 1998-10-09 | 2003-04-08 | Cynthia G. Briscoe | Multilayered microfluidic DNA analysis system and method |
US6149787A (en) | 1998-10-14 | 2000-11-21 | Caliper Technologies Corp. | External material accession systems and methods |
US6498497B1 (en) | 1998-10-14 | 2002-12-24 | Caliper Technologies Corp. | Microfluidic controller and detector system with self-calibration |
US6447661B1 (en) | 1998-10-14 | 2002-09-10 | Caliper Technologies Corp. | External material accession systems and methods |
US20020009015A1 (en) | 1998-10-28 | 2002-01-24 | Laugharn James A. | Method and apparatus for acoustically controlling liquid solutions in microfluidic devices |
US6086740A (en) | 1998-10-29 | 2000-07-11 | Caliper Technologies Corp. | Multiplexed microfluidic devices and systems |
US5973138A (en) | 1998-10-30 | 1999-10-26 | Becton Dickinson And Company | Method for purification and manipulation of nucleic acids using paramagnetic particles |
US20030073106A1 (en) | 1998-12-08 | 2003-04-17 | Johansen Jack T. | Methods, kits and compositions for the identification of nucleic acids electrostatically bound to matrices |
US6213151B1 (en) | 1998-12-16 | 2001-04-10 | Ut-Battelle, Llc | Microfluidic circuit designs for performing fluidic manipulations that reduce the number of pumping sources and fluid reservoirs |
US6062261A (en) | 1998-12-16 | 2000-05-16 | Lockheed Martin Energy Research Corporation | MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs |
US6887693B2 (en) | 1998-12-24 | 2005-05-03 | Cepheid | Device and method for lysing cells, spores, or microorganisms |
US20020039783A1 (en) | 1998-12-24 | 2002-04-04 | Cepheid | Device and method for lysing cells, spores, or microorganisms |
US6261431B1 (en) | 1998-12-28 | 2001-07-17 | Affymetrix, Inc. | Process for microfabrication of an integrated PCR-CE device and products produced by the same |
US20020060156A1 (en) | 1998-12-28 | 2002-05-23 | Affymetrix, Inc. | Integrated microvolume device |
US6511853B1 (en) | 1999-01-19 | 2003-01-28 | Caliper Technologies Corp. | Optimized high-throughput analytical system |
US6259635B1 (en) | 1999-01-19 | 2001-07-10 | Stmicroelectronics S.R.L. | Capacitive boosting circuit for the regulation of the word line reading voltage in non-volatile memories |
US6416642B1 (en) | 1999-01-21 | 2002-07-09 | Caliper Technologies Corp. | Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection |
US7276330B2 (en) | 1999-01-28 | 2007-10-02 | Caliper Technologies Corp. | Devices, systems and methods for time domain multiplexing of reagents |
US6475364B1 (en) | 1999-02-02 | 2002-11-05 | Caliper Technologies Corp. | Methods, devices and systems for characterizing proteins |
US6294063B1 (en) | 1999-02-12 | 2001-09-25 | Board Of Regents, The University Of Texas System | Method and apparatus for programmable fluidic processing |
US6632655B1 (en) | 1999-02-23 | 2003-10-14 | Caliper Technologies Corp. | Manipulation of microparticles in microfluidic systems |
US6737026B1 (en) | 1999-03-03 | 2004-05-18 | Symyx Technologies, Inc. | Methods for identifying and optimizing materials in microfluidic systems |
US6171850B1 (en) | 1999-03-08 | 2001-01-09 | Caliper Technologies Corp. | Integrated devices and systems for performing temperature controlled reactions and analyses |
US6558945B1 (en) | 1999-03-08 | 2003-05-06 | Aclara Biosciences, Inc. | Method and device for rapid color detection |
US6326083B1 (en) | 1999-03-08 | 2001-12-04 | Calipher Technologies Corp. | Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety |
US6773567B1 (en) | 1999-03-12 | 2004-08-10 | Caliper Life Sciences, Inc. | High-throughput analytical microfluidic systems and methods of making same |
US6500323B1 (en) | 1999-03-26 | 2002-12-31 | Caliper Technologies Corp. | Methods and software for designing microfluidic devices |
US6783962B1 (en) | 1999-03-26 | 2004-08-31 | Upfront Chromatography | Particulate material for purification of bio-macromolecules |
US6303343B1 (en) | 1999-04-06 | 2001-10-16 | Caliper Technologies Corp. | Inefficient fast PCR |
US6306273B1 (en) | 1999-04-13 | 2001-10-23 | Aclara Biosciences, Inc. | Methods and compositions for conducting processes in microfluidic devices |
US6322683B1 (en) | 1999-04-14 | 2001-11-27 | Caliper Technologies Corp. | Alignment of multicomponent microfabricated structures |
US20070098600A1 (en) | 1999-04-21 | 2007-05-03 | Clinical Micro Sensors, Inc. | Devices and methods for biochip multiplexing |
US6942771B1 (en) | 1999-04-21 | 2005-09-13 | Clinical Micro Sensors, Inc. | Microfluidic systems in the electrochemical detection of target analytes |
US6291248B1 (en) | 1999-04-23 | 2001-09-18 | Norgen Biotek Corporation | Nucleic acid purification and process |
US20010046702A1 (en) | 1999-04-27 | 2001-11-29 | Schembri Carol T. | Devices for performing array hybridization assays and methods of using the same |
US6884628B2 (en) | 1999-04-28 | 2005-04-26 | Eidgenossische Technische Hochschule Zurich | Multifunctional polymeric surface coatings in analytic and sensor devices |
US7150814B1 (en) | 1999-05-11 | 2006-12-19 | Callper Life Sciences, Inc. | Prevention of surface adsorption in microchannels by application of electric current during pressure-induced flow |
US6627406B1 (en) | 1999-05-11 | 2003-09-30 | Aclara Biosciences, Inc. | Sample evaporative control |
US6555389B1 (en) | 1999-05-11 | 2003-04-29 | Aclara Biosciences, Inc. | Sample evaporative control |
US6614030B2 (en) | 1999-05-12 | 2003-09-02 | Aclara Biosciences, Inc. | Multiplexed fluorescent detection in microfluidic devices |
US6399952B1 (en) | 1999-05-12 | 2002-06-04 | Aclara Biosciences, Inc. | Multiplexed fluorescent detection in microfluidic devices |
US6838680B2 (en) | 1999-05-12 | 2005-01-04 | Aclara Biosciences, Inc. | Multiplexed fluorescent detection in microfluidic devices |
US6592821B1 (en) | 1999-05-17 | 2003-07-15 | Caliper Technologies Corp. | Focusing of microparticles in microfluidic systems |
US6506609B1 (en) | 1999-05-17 | 2003-01-14 | Caliper Technologies Corp. | Focusing of microparticles in microfluidic systems |
US6472141B2 (en) | 1999-05-21 | 2002-10-29 | Caliper Technologies Corp. | Kinase assays using polycations |
US6287774B1 (en) | 1999-05-21 | 2001-09-11 | Caliper Technologies Corp. | Assay methods and system |
US6398956B1 (en) | 1999-05-28 | 2002-06-04 | Bio/Data Corporation | Method and apparatus for directly sampling a fluid for microfiltration |
US6391541B1 (en) | 1999-05-28 | 2002-05-21 | Kurt E. Petersen | Apparatus for analyzing a fluid sample |
JP2003500674A (en) | 1999-05-28 | 2003-01-07 | シーフィード | Cartridge for controlling chemical reactions |
US6649358B1 (en) | 1999-06-01 | 2003-11-18 | Caliper Technologies Corp. | Microscale assays and microfluidic devices for transporter, gradient induced, and binding activities |
US6811668B1 (en) | 1999-06-22 | 2004-11-02 | Caliper Life Sciences, Inc. | Apparatus for the operation of a microfluidic device |
FR2795426A1 (en) | 1999-06-22 | 2000-12-29 | Commissariat Energie Atomique | Support for genetic analysis comprising reservoir(s) for a medium to be analyzed connected by passage(s) having temperature control device(s) to a test strip with analysis sites having biological probes |
US6706519B1 (en) | 1999-06-22 | 2004-03-16 | Tecan Trading Ag | Devices and methods for the performance of miniaturized in vitro amplification assays |
US6878540B2 (en) | 1999-06-25 | 2005-04-12 | Cepheid | Device for lysing cells, spores, or microorganisms |
US6664104B2 (en) | 1999-06-25 | 2003-12-16 | Cepheid | Device incorporating a microfluidic chip for separating analyte from a sample |
US20020055167A1 (en) | 1999-06-25 | 2002-05-09 | Cepheid | Device incorporating a microfluidic chip for separating analyte from a sample |
US6408878B2 (en) | 1999-06-28 | 2002-06-25 | California Institute Of Technology | Microfabricated elastomeric valve and pump systems |
US6613580B1 (en) | 1999-07-06 | 2003-09-02 | Caliper Technologies Corp. | Microfluidic systems and methods for determining modulator kinetics |
US6353475B1 (en) | 1999-07-12 | 2002-03-05 | Caliper Technologies Corp. | Light source power modulation for use with chemical and biochemical analysis |
USD438311S1 (en) | 1999-07-28 | 2001-02-27 | Matsushita Electric Industrial Co.,Ltd. | Strip for blood test |
US6337435B1 (en) | 1999-07-30 | 2002-01-08 | Bio-Rad Laboratories, Inc. | Temperature control for multi-vessel reaction apparatus |
US6524456B1 (en) | 1999-08-12 | 2003-02-25 | Ut-Battelle, Llc | Microfluidic devices for the controlled manipulation of small volumes |
US6495104B1 (en) | 1999-08-19 | 2002-12-17 | Caliper Technologies Corp. | Indicator components for microfluidic systems |
US6858185B1 (en) | 1999-08-25 | 2005-02-22 | Caliper Life Sciences, Inc. | Dilutions in high throughput systems with a single vacuum source |
US6613581B1 (en) | 1999-08-26 | 2003-09-02 | Caliper Technologies Corp. | Microfluidic analytic detection assays, devices, and integrated systems |
US6824663B1 (en) | 1999-08-27 | 2004-11-30 | Aclara Biosciences, Inc. | Efficient compound distribution in microfluidic devices |
US6613211B1 (en) | 1999-08-27 | 2003-09-02 | Aclara Biosciences, Inc. | Capillary electrokinesis based cellular assays |
US6633785B1 (en) | 1999-08-31 | 2003-10-14 | Kabushiki Kaisha Toshiba | Thermal cycler and DNA amplifier method |
US6752966B1 (en) | 1999-09-10 | 2004-06-22 | Caliper Life Sciences, Inc. | Microfabrication methods and devices |
US6906797B1 (en) | 1999-09-13 | 2005-06-14 | Aclara Biosciences, Inc. | Side light activated microfluid channels |
US6838156B1 (en) | 1999-09-23 | 2005-01-04 | Aclara Biosciences, Inc. | Method for linking two plastic work pieces without using foreign matter |
US6221600B1 (en) | 1999-10-08 | 2001-04-24 | Board Of Regents, The University Of Texas System | Combinatorial oligonucleotide PCR: a method for rapid, global expression analysis |
US6537771B1 (en) | 1999-10-08 | 2003-03-25 | Caliper Technologies Corp. | Use of nernstein voltage sensitive dyes in measuring transmembrane voltage |
US6232072B1 (en) | 1999-10-15 | 2001-05-15 | Agilent Technologies, Inc. | Biopolymer array inspection |
US6908594B1 (en) | 1999-10-22 | 2005-06-21 | Aclara Biosciences, Inc. | Efficient microfluidic sealing |
USD461906S1 (en) | 1999-10-25 | 2002-08-20 | Tuan Hung Pham | Diagnostic test card |
US6287254B1 (en) | 1999-11-02 | 2001-09-11 | W. Jean Dodds | Animal health diagnosis |
USD438632S1 (en) | 1999-12-21 | 2001-03-06 | Compucyte Corporation | Multi-well reagent cartridge for treating a sample |
USD438633S1 (en) | 1999-12-21 | 2001-03-06 | Compucyte Corporation | Reagent cartridge for treating a sample |
US6379884B2 (en) | 2000-01-06 | 2002-04-30 | Caliper Technologies Corp. | Methods and systems for monitoring intracellular binding reactions |
US6620625B2 (en) | 2000-01-06 | 2003-09-16 | Caliper Technologies Corp. | Ultra high throughput sampling and analysis systems and methods |
US6468761B2 (en) | 2000-01-07 | 2002-10-22 | Caliper Technologies, Corp. | Microfluidic in-line labeling method for continuous-flow protease inhibition analysis |
US20040053290A1 (en) | 2000-01-11 | 2004-03-18 | Terbrueggen Robert Henry | Devices and methods for biochip multiplexing |
US6790328B2 (en) | 2000-01-12 | 2004-09-14 | Ut-Battelle, Llc | Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream |
US7422669B2 (en) | 2000-01-12 | 2008-09-09 | Ut-Battelle, Llc | Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream |
US7037416B2 (en) | 2000-01-14 | 2006-05-02 | Caliper Life Sciences, Inc. | Method for monitoring flow rate using fluorescent markers |
US6556923B2 (en) | 2000-01-26 | 2003-04-29 | Caliper Technologies Corp. | Software for high throughput microfluidic systems |
US6589729B2 (en) | 2000-02-04 | 2003-07-08 | Caliper Technologies Corp. | Methods, devices, and systems for monitoring time dependent reactions |
US6818113B2 (en) | 2000-02-11 | 2004-11-16 | Aclara Biosciences, Inc. | Microfluidic device with sample injector and method of using |
US7494577B2 (en) | 2000-02-11 | 2009-02-24 | Monogram Biosciences, Inc. | Tandem isotachophoresis/zone electrophoresis method and system |
US6685813B2 (en) | 2000-02-11 | 2004-02-03 | Aclara Biosciences, Inc. | Tandem isotachophoresis/zone electrophoresis method and system |
US20010055765A1 (en) | 2000-02-18 | 2001-12-27 | O'keefe Matthew | Apparatus and methods for parallel processing of micro-volume liquid reactions |
US6681616B2 (en) | 2000-02-23 | 2004-01-27 | Caliper Technologies Corp. | Microfluidic viscometer |
US6915679B2 (en) | 2000-02-23 | 2005-07-12 | Caliper Life Sciences, Inc. | Multi-reservoir pressure control system |
US7040144B2 (en) | 2000-02-23 | 2006-05-09 | Caliper Life Sciences, Inc. | Microfluidic viscometer |
US6730206B2 (en) | 2000-03-17 | 2004-05-04 | Aclara Biosciences, Inc. | Microfluidic device and system with improved sample handling |
US7521186B2 (en) | 2000-03-20 | 2009-04-21 | Caliper Lifesciences Inc. | PCR compatible nucleic acid sieving matrix |
US6358387B1 (en) | 2000-03-27 | 2002-03-19 | Caliper Technologies Corporation | Ultra high throughput microfluidic analytical systems and methods |
US20050135655A1 (en) | 2000-03-27 | 2005-06-23 | Caliper Life Sciences, Inc. | Ultra high throughput microfluidic analytical systems and methods |
US20010038450A1 (en) | 2000-03-31 | 2001-11-08 | Mccaffrey John T. | Methods and apparatus to improve the sensitivity and reproducibility of bioluminescent analytical methods |
US6401552B1 (en) | 2000-04-17 | 2002-06-11 | Carlos D. Elkins | Centrifuge tube and method for collecting and dispensing mixed concentrated fluid samples |
US6733645B1 (en) | 2000-04-18 | 2004-05-11 | Caliper Technologies Corp. | Total analyte quantitation |
USD446306S1 (en) | 2000-04-26 | 2001-08-07 | Matsushita Electric Industrial Co., Ltd. | Medical information communication apparatus |
US6787016B2 (en) | 2000-05-01 | 2004-09-07 | Aclara Biosciences, Inc. | Dynamic coating with linear polymer mixture for electrophoresis |
US6569607B2 (en) | 2000-05-03 | 2003-05-27 | Caliper Technologies Corp. | Multi depth substrate fabrication processes |
US6669831B2 (en) | 2000-05-11 | 2003-12-30 | Caliper Technologies Corp. | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers |
US6777184B2 (en) | 2000-05-12 | 2004-08-17 | Caliper Life Sciences, Inc. | Detection of nucleic acid hybridization by fluorescence polarization |
US20050009174A1 (en) | 2000-05-12 | 2005-01-13 | Caliper Life Sciences, Inc. | Detection of nucleic acid hybridization by fluorescence polarization |
US20020008053A1 (en) | 2000-05-19 | 2002-01-24 | Hansen Timothy R. | System and method for manipulating magnetic particles in fluid samples to collect DNA or RNA from a sample |
US6515753B2 (en) | 2000-05-19 | 2003-02-04 | Aclara Biosciences, Inc. | Optical alignment in capillary detection using capillary wall scatter |
US6520197B2 (en) | 2000-06-02 | 2003-02-18 | The Regents Of The University Of California | Continuous laminar fluid mixing in micro-electromechanical systems |
US20020037499A1 (en) | 2000-06-05 | 2002-03-28 | California Institute Of Technology | Integrated active flux microfluidic devices and methods |
US6790330B2 (en) | 2000-06-14 | 2004-09-14 | Board Of Regents, The University Of Texas System | Systems and methods for cell subpopulation analysis |
US7351377B2 (en) | 2000-06-19 | 2008-04-01 | Caliper Life Sciences, Inc. | Methods and devices for enhancing bonded substrate yields and regulating temperature |
US7169618B2 (en) | 2000-06-28 | 2007-01-30 | Skold Technology | Magnetic particles and methods of producing coated magnetic particles |
US20020001848A1 (en) | 2000-06-28 | 2002-01-03 | 3M Innovative Properties Company | Multi-format sample processing devices, methods and systems |
US6734401B2 (en) | 2000-06-28 | 2004-05-11 | 3M Innovative Properties Company | Enhanced sample processing devices, systems and methods |
US20020021983A1 (en) | 2000-07-21 | 2002-02-21 | Comte Roger Le | Device for processing samples of blood products |
US6787015B2 (en) | 2000-07-21 | 2004-09-07 | Aclara Biosciences, Inc. | Methods for conducting electrophoretic analysis |
US7004184B2 (en) | 2000-07-24 | 2006-02-28 | The Reagents Of The University Of Michigan | Compositions and methods for liquid metering in microchannels |
US20030070677A1 (en) | 2000-07-24 | 2003-04-17 | The Regents Of The University Of Michigan | Compositions and methods for liquid metering in microchannels |
US7169277B2 (en) | 2000-08-02 | 2007-01-30 | Caliper Life Sciences, Inc. | High throughput separations based analysis systems |
US20050238545A1 (en) | 2000-08-04 | 2005-10-27 | Caliper Life Sciences, Inc. | Control of operation conditions within fluidic systems |
US20030186295A1 (en) * | 2000-08-28 | 2003-10-02 | Bruno Colin | Reaction card and use of same |
US6670153B2 (en) | 2000-09-14 | 2003-12-30 | Caliper Technologies Corp. | Microfluidic devices and methods for performing temperature mediated reactions |
US20020058332A1 (en) | 2000-09-15 | 2002-05-16 | California Institute Of Technology | Microfabricated crossflow devices and methods |
US6939451B2 (en) | 2000-09-19 | 2005-09-06 | Aclara Biosciences, Inc. | Microfluidic chip having integrated electrodes |
US6623860B2 (en) | 2000-10-10 | 2003-09-23 | Aclara Biosciences, Inc. | Multilevel flow structures |
USD463031S1 (en) | 2000-10-11 | 2002-09-17 | Aclara Biosciences, Inc. | Microvolume sample plate |
US6375185B1 (en) | 2000-10-20 | 2002-04-23 | Gamemax Corporation | Paper currency receiving control assembly for currency-coin exchange machine |
US6695009B2 (en) | 2000-10-31 | 2004-02-24 | Caliper Technologies Corp. | Microfluidic methods, devices and systems for in situ material concentration |
US7514046B2 (en) | 2000-10-31 | 2009-04-07 | Caliper Life Sciences, Inc. | Methods and systems for processing microscale devices for reuse |
US7105304B1 (en) | 2000-11-07 | 2006-09-12 | Caliper Life Sciences, Inc. | Pressure-based mobility shift assays |
US20050202470A1 (en) | 2000-11-16 | 2005-09-15 | Caliper Life Sciences, Inc. | Binding assays using molecular melt curves |
US20070026421A1 (en) | 2000-11-16 | 2007-02-01 | Caliper Life Sciences, Inc. | Method and apparatus for generating thermal melting curves in a microfluidic device |
USD468437S1 (en) | 2000-11-21 | 2003-01-07 | Acon Laboratories, Inc. | Test platform |
US6521188B1 (en) | 2000-11-22 | 2003-02-18 | Industrial Technology Research Institute | Microfluidic actuator |
US7024281B1 (en) | 2000-12-11 | 2006-04-04 | Callper Life Sciences, Inc. | Software for the controlled sampling of arrayed materials |
US6382254B1 (en) | 2000-12-12 | 2002-05-07 | Eastman Kodak Company | Microfluidic valve and method for controlling the flow of a liquid |
US6453928B1 (en) | 2001-01-08 | 2002-09-24 | Nanolab Ltd. | Apparatus, and method for propelling fluids |
US20020155477A1 (en) | 2001-01-19 | 2002-10-24 | Tetsumasa Ito | Gene detection system, gene detection device comprising same, detection method, and gene detecting chip |
JP2002215241A (en) | 2001-01-22 | 2002-07-31 | National Institute Of Advanced Industrial & Technology | Method for controlling flow rate and micro-valve to be used for the method |
US6878755B2 (en) | 2001-01-22 | 2005-04-12 | Microgen Systems, Inc. | Automated microfabrication-based biodetector |
US6681788B2 (en) | 2001-01-29 | 2004-01-27 | Caliper Technologies Corp. | Non-mechanical valves for fluidic systems |
US20120183454A1 (en) | 2001-02-14 | 2012-07-19 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US20040219070A1 (en) | 2001-02-14 | 2004-11-04 | Handylab, Inc., A Delaware Corporation | Heat-reduction methods and systems related to microfluidic devices |
US7332130B2 (en) | 2001-02-14 | 2008-02-19 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US6692700B2 (en) | 2001-02-14 | 2004-02-17 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US7670559B2 (en) | 2001-02-15 | 2010-03-02 | Caliper Life Sciences, Inc. | Microfluidic systems with enhanced detection systems |
US6720148B1 (en) | 2001-02-22 | 2004-04-13 | Caliper Life Sciences, Inc. | Methods and systems for identifying nucleotides by primer extension |
US7867776B2 (en) | 2001-03-02 | 2011-01-11 | Caliper Life Sciences, Inc. | Priming module for microfluidic chips |
US7150999B1 (en) | 2001-03-09 | 2006-12-19 | Califer Life Sciences, Inc. | Process for filling microfluidic channels |
US20040037739A1 (en) | 2001-03-09 | 2004-02-26 | Mcneely Michael | Method and system for microfluidic interfacing to arrays |
US6576459B2 (en) | 2001-03-23 | 2003-06-10 | The Regents Of The University Of California | Sample preparation and detection device for infectious agents |
US20020143437A1 (en) | 2001-03-28 | 2002-10-03 | Kalyan Handique | Methods and systems for control of microfluidic devices |
US7270786B2 (en) | 2001-03-28 | 2007-09-18 | Handylab, Inc. | Methods and systems for processing microfluidic samples of particle containing fluids |
US7192557B2 (en) | 2001-03-28 | 2007-03-20 | Handylab, Inc. | Methods and systems for releasing intracellular material from cells within microfluidic samples of fluids |
US20020141903A1 (en) | 2001-03-28 | 2002-10-03 | Gene Parunak | Methods and systems for processing microfluidic samples of particle containing fluids |
US20020142471A1 (en) | 2001-03-28 | 2002-10-03 | Kalyan Handique | Methods and systems for moving fluid in a microfluidic device |
US20050084424A1 (en) | 2001-03-28 | 2005-04-21 | Karthik Ganesan | Systems and methods for thermal actuation of microfluidic devices |
US7323140B2 (en) | 2001-03-28 | 2008-01-29 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
US7010391B2 (en) | 2001-03-28 | 2006-03-07 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US20020143297A1 (en) | 2001-03-30 | 2002-10-03 | Becton, Dickinson And Company | Adaptor for use with point-of-care testing cartridge |
USD470595S1 (en) | 2001-04-10 | 2003-02-18 | Andrea Crisanti | Assay device |
USD500142S1 (en) | 2001-04-10 | 2004-12-21 | Andrea Crisanti | Assay device |
US7440684B2 (en) | 2001-04-12 | 2008-10-21 | Spaid Michael A | Method and apparatus for improved temperature control in microfluidic devices |
US20020169518A1 (en) | 2001-04-24 | 2002-11-14 | Luoma Robert P. | Sample handling system |
USD495805S1 (en) | 2001-05-25 | 2004-09-07 | Umedik, Inc. | Assay device |
US7723123B1 (en) | 2001-06-05 | 2010-05-25 | Caliper Life Sciences, Inc. | Western blot by incorporating an affinity purification zone |
US20020187557A1 (en) | 2001-06-07 | 2002-12-12 | Hobbs Steven E. | Systems and methods for introducing samples into microfluidic devices |
US20030083686A1 (en) | 2001-06-12 | 2003-05-01 | Freeman Dominique M. | Tissue penetration device |
US6977163B1 (en) | 2001-06-13 | 2005-12-20 | Caliper Life Sciences, Inc. | Methods and systems for performing multiple reactions by interfacial mixing |
US6859698B2 (en) | 2001-06-21 | 2005-02-22 | Snap-On Incorporated | Detachable cartridge unit and auxiliary unit for function expansion of a data processing system |
US20030211517A1 (en) | 2001-06-22 | 2003-11-13 | Carulli John P. | Gp354 nucleic acids and polypeptides |
US20040086956A1 (en) | 2001-06-26 | 2004-05-06 | Bachur Nicholas Robert | System and method for optically monitoring the concentration of a gas in a sample vial using photothermal spectroscopy to detect sample growth |
US6900889B2 (en) | 2001-07-12 | 2005-05-31 | Aclara Biosciences, Inc. | Submersible light-directing member for material excitation in microfluidic devices |
US20040209331A1 (en) | 2001-07-16 | 2004-10-21 | Kirk Ririe | Thermal cycling system and method of use |
US7023007B2 (en) | 2001-07-17 | 2006-04-04 | Caliper Life Sciences, Inc. | Methods and systems for alignment of detection optics |
US6766817B2 (en) | 2001-07-25 | 2004-07-27 | Tubarc Technologies, Llc | Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action |
US7066586B2 (en) | 2001-07-25 | 2006-06-27 | Tubarc Technologies, Llc | Ink refill and recharging system |
US6918404B2 (en) | 2001-07-25 | 2005-07-19 | Tubarc Technologies, Llc | Irrigation and drainage based on hydrodynamic unsaturated fluid flow |
US6575188B2 (en) | 2001-07-26 | 2003-06-10 | Handylab, Inc. | Methods and systems for fluid control in microfluidic devices |
US20030019522A1 (en) | 2001-07-26 | 2003-01-30 | Gene Parunak | Methods and systems for fluid control in microfluidic devices |
JP2005514718A (en) | 2001-07-26 | 2005-05-19 | ハンディラブ・インコーポレーテッド | Microfluidic processing method and system |
US20030064507A1 (en) | 2001-07-26 | 2003-04-03 | Sean Gallagher | System and methods for mixing within a microfluidic device |
US20060062696A1 (en) | 2001-07-27 | 2006-03-23 | Caliper Life Sciences, Inc. | Optimized high throughput analytical systems |
US7060171B1 (en) | 2001-07-31 | 2006-06-13 | Caliper Life Sciences, Inc. | Methods and systems for reducing background signal in assays |
USD482796S1 (en) | 2001-09-11 | 2003-11-25 | Sysmex Corporation | Sample analyzer |
US7674431B2 (en) | 2001-09-12 | 2010-03-09 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US8323584B2 (en) | 2001-09-12 | 2012-12-04 | Handylab, Inc. | Method of controlling a microfluidic device having a reduced number of input and output connections |
US20050152808A1 (en) | 2001-09-12 | 2005-07-14 | Karthik Ganesan | Microfluidic devices having a reduced number of input and output connections |
US6852287B2 (en) | 2001-09-12 | 2005-02-08 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
USD512155S1 (en) | 2001-09-12 | 2005-11-29 | Techno Medica Co., Ltd. | Automatic blood sampling tube preparation apparatus |
USD474280S1 (en) | 2001-09-28 | 2003-05-06 | Orasure Technologies, Inc. | Analyzer |
USD467349S1 (en) | 2001-09-28 | 2002-12-17 | Orasure Technologies, Inc. | Analyzer |
USD467348S1 (en) | 2001-10-15 | 2002-12-17 | Kimberly-Clark Worldwide, Inc. | Diagnostic test carrier |
US20030136679A1 (en) | 2001-10-18 | 2003-07-24 | The Board Of Trustees Of The University Of Illinois | Hybrid microfluidic and nanofluidic system |
US7338760B2 (en) | 2001-10-26 | 2008-03-04 | Ntu Ventures Private Limited | Sample preparation integrated chip |
US6750661B2 (en) | 2001-11-13 | 2004-06-15 | Caliper Life Sciences, Inc. | Method and apparatus for controllably effecting samples using two signals |
US7247274B1 (en) | 2001-11-13 | 2007-07-24 | Caliper Technologies Corp. | Prevention of precipitate blockage in microfluidic channels |
US7069952B1 (en) | 2001-11-14 | 2006-07-04 | Caliper Life Sciences, Inc. | Microfluidic devices and methods of their manufacture |
US7635588B2 (en) | 2001-11-29 | 2009-12-22 | Applied Biosystems, Llc | Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength |
US7118910B2 (en) | 2001-11-30 | 2006-10-10 | Fluidigm Corporation | Microfluidic device and methods of using same |
US20060057039A1 (en) | 2001-12-05 | 2006-03-16 | The Regents Of The University Of California | Chemical microreactor and method thereof |
US20030127327A1 (en) | 2002-01-04 | 2003-07-10 | Kurnik Ronald T. | Microfluidic device and method for improved sample handling |
US20040014238A1 (en) | 2002-01-24 | 2004-01-22 | Krug Robert E. | Precision liquid dispensing system |
US6819027B2 (en) | 2002-03-04 | 2004-11-16 | Cepheid | Method and apparatus for controlling ultrasonic transducer |
US7101467B2 (en) | 2002-03-05 | 2006-09-05 | Caliper Life Sciences, Inc. | Mixed mode microfluidic systems |
US7160423B2 (en) | 2002-03-05 | 2007-01-09 | Caliper Life Sciences, Inc. | Mixed mode microfluidic systems |
US7303727B1 (en) | 2002-03-06 | 2007-12-04 | Caliper Life Sciences, Inc | Microfluidic sample delivery devices, systems, and methods |
US7195986B1 (en) | 2002-03-08 | 2007-03-27 | Caliper Life Sciences, Inc. | Microfluidic device with controlled substrate conductivity |
US7252928B1 (en) | 2002-03-12 | 2007-08-07 | Caliper Life Sciences, Inc. | Methods for prevention of surface adsorption of biological materials to capillary walls in microchannels |
US20040072278A1 (en) | 2002-04-01 | 2004-04-15 | Fluidigm Corporation | Microfluidic particle-analysis systems |
US7419784B2 (en) | 2002-04-02 | 2008-09-02 | Dubrow Robert S | Methods, systems and apparatus for separation and isolation of one or more sample components of a sample biological material |
USD472324S1 (en) | 2002-04-05 | 2003-03-25 | Charles River Laboratories, Inc. | Cuvette |
US20040029258A1 (en) | 2002-04-11 | 2004-02-12 | Paul Heaney | Methods and devices for performing chemical reactions on a solid support |
USD474279S1 (en) | 2002-05-15 | 2003-05-06 | Monogen, Inc. | Specimen processing instrument |
US20040029260A1 (en) | 2002-05-17 | 2004-02-12 | Hansen Timothy R. | Automated system for isolating, amplifying and detecting a target nucleic acid sequence |
US7161356B1 (en) | 2002-06-05 | 2007-01-09 | Caliper Life Sciences, Inc. | Voltage/current testing equipment for microfluidic devices |
USD480814S1 (en) | 2002-06-11 | 2003-10-14 | Diversa Corporation | Gigamatrix holding tray |
US7208125B1 (en) | 2002-06-28 | 2007-04-24 | Caliper Life Sciences, Inc | Methods and apparatus for minimizing evaporation of sample materials from multiwell plates |
US20040072375A1 (en) | 2002-07-15 | 2004-04-15 | Gjerde Douglas T. | Low dead volume extraction column device |
US7001853B1 (en) | 2002-08-30 | 2006-02-21 | Caliper Life Sciences, Inc. | Flow control of photo-polymerizable resin |
USD516221S1 (en) | 2002-09-09 | 2006-02-28 | Meso Scale Technologies, Llc. | Diagnostic instrument |
USD484989S1 (en) | 2002-09-20 | 2004-01-06 | Dade Behring Inc. | Multi-well liquid container |
US20040063217A1 (en) | 2002-09-27 | 2004-04-01 | Webster James Russell | Miniaturized fluid delivery and analysis system |
US20070178607A1 (en) | 2002-11-06 | 2007-08-02 | Prober James M | Microparticle-based methods and systems and applications thereof |
US20040141887A1 (en) | 2002-11-08 | 2004-07-22 | Irm, Llc | Apparatus and methods to process substrate surface features |
US7390460B2 (en) | 2002-11-18 | 2008-06-24 | Hitachi Koki Co., Ltd. | Control device for automatic liquid handling system |
USD491276S1 (en) | 2002-12-09 | 2004-06-08 | Babette Langille | Plastic diagnostic card |
US6905583B2 (en) | 2002-12-13 | 2005-06-14 | Aclara Biosciences, Inc. | Closed-loop control of electrokinetic processes in microfluidic devices based on optical readings |
USD491272S1 (en) | 2002-12-13 | 2004-06-08 | Immunivest Corporation | Autoprep instrument |
USD491273S1 (en) | 2002-12-19 | 2004-06-08 | 3M Innovative Properties Company | Hybridization cartridge |
US20060094108A1 (en) | 2002-12-20 | 2006-05-04 | Karl Yoder | Thermal cycler for microfluidic array assays |
US7645581B2 (en) | 2002-12-20 | 2010-01-12 | Caliper Life Sciences, Inc. | Determining nucleic acid fragmentation status by coincident detection of two labeled probes |
US20040189311A1 (en) | 2002-12-26 | 2004-09-30 | Glezer Eli N. | Assay cartridges and methods of using the same |
US20060113190A1 (en) | 2002-12-27 | 2006-06-01 | Kurnik Ronald T | Microfluidic device and method for improved sample handling |
US20040209354A1 (en) | 2002-12-30 | 2004-10-21 | The Regents Of The University Of California | Fluid control structures in microfluidic devices |
US20060134790A1 (en) | 2003-01-13 | 2006-06-22 | Yasunobu Tanaka | Solid surface with immobilized degradable cationic polymer for transfecting eukaryotic cells |
US20050106066A1 (en) | 2003-01-14 | 2005-05-19 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US6964747B2 (en) | 2003-01-21 | 2005-11-15 | Bioarray Solutions, Ltd. | Production of dyed polymer microparticles |
US20060133965A1 (en) | 2003-01-31 | 2006-06-22 | Universal Bio Research Co., Ltd. | Monitoring function-equipped dispensing system and method of monitoring dispensing device |
US20040151629A1 (en) | 2003-01-31 | 2004-08-05 | Grant Pease | Microfluidic device with thin-film electronic devices |
US20040161788A1 (en) * | 2003-02-05 | 2004-08-19 | Shuqi Chen | Sample processing |
US20040157220A1 (en) | 2003-02-10 | 2004-08-12 | Purnima Kurnool | Methods and apparatus for sample tracking |
US6905612B2 (en) | 2003-03-21 | 2005-06-14 | Hanuman Llc | Plasma concentrate apparatus and method |
US20050170362A1 (en) | 2003-04-14 | 2005-08-04 | Caliper Life Sciences, Inc. | Reduction of migration shift assay interference |
US20040240097A1 (en) | 2003-04-28 | 2004-12-02 | Hewlett-Packard Development Company, L.P. | Method and apparatus for use in data transfer |
US7148043B2 (en) | 2003-05-08 | 2006-12-12 | Bio-Rad Laboratories, Inc. | Systems and methods for fluorescence detection with a movable detection module |
US7595197B2 (en) | 2003-05-09 | 2009-09-29 | Caliper Life Sciences, Inc. | Automated sample analysis |
US7038472B1 (en) | 2003-05-12 | 2006-05-02 | Caliper Life Sciences, Inc. | Methods and systems for measuring internal dimensions of microscale structures |
US20060148063A1 (en) | 2003-05-14 | 2006-07-06 | Fauzzi John A | Method and apparatus for automated pre-treatment and processing of biological samples |
US7374949B2 (en) | 2003-05-29 | 2008-05-20 | Bayer Healthcare Llc | Diagnostic test strip for collecting and detecting an analyte in a fluid sample |
US7055695B2 (en) | 2003-06-02 | 2006-06-06 | Caliper Life Sciencee, Inc. | Container providing a controlled hydrated environment |
US7036667B2 (en) | 2003-06-02 | 2006-05-02 | Caliper Life Sciences, Inc. | Container providing a controlled hydrated environment |
US20060177376A1 (en) | 2003-07-21 | 2006-08-10 | Dendritic Nanotechnologies, Inc. | Stabilized and chemically functionalized nanoparticles |
USD508999S1 (en) | 2003-07-24 | 2005-08-30 | Biomerieux, Inc. | Sample testing machine |
US7744817B2 (en) | 2003-08-11 | 2010-06-29 | Sakura Finetek U.S.A., Inc. | Manifold assembly |
US20050041525A1 (en) | 2003-08-19 | 2005-02-24 | Pugia Michael J. | Mixing in microfluidic devices |
USD499813S1 (en) | 2003-08-22 | 2004-12-14 | As.Pire Bioresearch Inc. | Assay testing device |
US20050048540A1 (en) | 2003-08-26 | 2005-03-03 | Hisao Inami | Chip for processing of gene and apparatus for processing of gene |
USD515707S1 (en) | 2003-09-01 | 2006-02-21 | Matsushita Electric Industrial Co., Ltd. | Fluorescent reader |
US20050121324A1 (en) | 2003-09-05 | 2005-06-09 | Caliper Life Sciences, Inc. | Analyte injection system |
US20050058574A1 (en) | 2003-09-15 | 2005-03-17 | Bysouth Stephen Robert | Preparation and characterization of formulations in a high throughput mode |
US20050220675A1 (en) | 2003-09-19 | 2005-10-06 | Reed Mark T | High density plate filler |
USD528215S1 (en) | 2003-09-30 | 2006-09-12 | Biacore Ab | Chip carrier for biosensor |
US7039527B2 (en) | 2003-10-01 | 2006-05-02 | Caliper Life Sciences, Inc. | Method for measuring diffusivities of compounds using microchips |
US20060041058A1 (en) | 2003-11-21 | 2006-02-23 | Anp Technologies, Inc. | Asymmetrically branched polymer conjugates and microarray assays |
US20050133370A1 (en) | 2003-12-23 | 2005-06-23 | Caliper Life Sciences, Inc. | Analyte injection system |
JP2005204661A (en) | 2003-12-25 | 2005-08-04 | Fuchigami Micro:Kk | Detecting apparatus for molecule derived from organism, dioxins and endocrine disrupter, and method for detection using the same |
US7099778B2 (en) | 2003-12-30 | 2006-08-29 | Caliper Life Sciences, Inc. | Method for determining diffusivity and molecular weight in a microfluidic device |
US20050186585A1 (en) | 2004-02-24 | 2005-08-25 | Thermal Gradient | Thermal cycling device |
USD517554S1 (en) | 2004-03-05 | 2006-03-21 | Seiko Epson Corporation | Film scanner |
US20050208676A1 (en) | 2004-03-19 | 2005-09-22 | Espir Kahatt | Device for aspirating, manipulating, mixing and dispensing nano-volumes of liquids |
JP2005291954A (en) | 2004-03-31 | 2005-10-20 | Olympus Corp | Disposable reagent pack and analyzer using the reagent pack |
US20050227269A1 (en) | 2004-04-09 | 2005-10-13 | Research Think Tank, Inc. | Devices and methods for collection, storage and transportation of biological specimens |
US20060166233A1 (en) | 2004-05-03 | 2006-07-27 | Handylab, Inc. | Method and apparatus for processing polynucleotide-containing samples |
US20080262213A1 (en) | 2004-05-03 | 2008-10-23 | Betty Wu | Processing Polynucleotide-Containing Samples |
US20060165559A1 (en) | 2004-05-21 | 2006-07-27 | Caliper Life Sciences, Inc. | Automated system for handling microfluidic devices |
US7553671B2 (en) | 2004-05-25 | 2009-06-30 | Vertex Pharmaceuticals, Inc. | Modular test tube rack |
US20070092901A1 (en) | 2004-07-02 | 2007-04-26 | The Government Of The Us, As Represented By The Secretary Of The Navy | Automated sample-to-microarray system |
USD523153S1 (en) | 2004-07-23 | 2006-06-13 | Hitachi High-Technologies Corporation | Main part for immunity analysis machine |
US20060057629A1 (en) | 2004-09-16 | 2006-03-16 | Min-Soo Kim | Device for injecting PCR solution into PCR channels of PCR chip, and PCR chip unit including the device |
USD548841S1 (en) | 2004-10-15 | 2007-08-14 | Microsulis, Ltd | Electrical equipment for ablative treatment |
US20060165558A1 (en) | 2004-12-21 | 2006-07-27 | Thomas Witty | Cartridge for diagnostic assays |
US20060183216A1 (en) | 2005-01-21 | 2006-08-17 | Kalyan Handique | Containers for liquid storage and delivery with application to microfluidic devices |
US20060177855A1 (en) | 2005-01-21 | 2006-08-10 | Utermohlen Joseph G | Nanoparticles for manipulation of biopolymers and methods of thereof |
USD535403S1 (en) | 2005-02-25 | 2007-01-16 | Fuji Photo Film Co., Ltd. | Component extractor for biochemistry |
US20070004028A1 (en) | 2005-03-10 | 2007-01-04 | Gen-Probe Incorporated | Signal measuring system for conducting real-time amplification assays |
US20060246533A1 (en) | 2005-04-01 | 2006-11-02 | Caliper Life Sciences, Inc. | Method and apparatus for performing peptide digestion on a microfluidic device |
US20060246493A1 (en) | 2005-04-04 | 2006-11-02 | Caliper Life Sciences, Inc. | Method and apparatus for use in temperature controlled processing of microfluidic samples |
USD531321S1 (en) | 2005-04-10 | 2006-10-31 | Akubio Limited | Cartridge |
US20070042441A1 (en) | 2005-05-02 | 2007-02-22 | Bioscale, Inc. | Method and apparatus for detecting estradiol and metabolites thereof using an acoustic device |
USD534280S1 (en) | 2005-05-04 | 2006-12-26 | Abbott Laboratories | Reagent carrier for use in an automated analyzer |
US20070009386A1 (en) | 2005-07-01 | 2007-01-11 | Honeywell International Inc. | Molded cartridge with 3-d hydrodynamic focusing |
US20090189089A1 (en) | 2005-07-05 | 2009-07-30 | 3M Innovative Properties Company | Valve control system for a rotating multiplex fluorescence detection device |
US20070020699A1 (en) | 2005-07-19 | 2007-01-25 | Idexx Laboratories, Inc. | Lateral flow assay and device using magnetic particles |
USD549827S1 (en) | 2005-09-16 | 2007-08-28 | Horiba, Ltd. | Blood analyzer |
USD537951S1 (en) | 2005-10-21 | 2007-03-06 | Sanyo Electric Co., Ltd. | Gene amplification apparatus |
US20070104617A1 (en) | 2005-11-04 | 2007-05-10 | Advanced Biotechnologies Limited | Capped tubes |
USD538436S1 (en) | 2006-03-06 | 2007-03-13 | Steris Inc. | Reprocessor for decontaminating medical, dental and veterinary instruments and articles |
US8323900B2 (en) | 2006-03-24 | 2012-12-04 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US20070292941A1 (en) | 2006-03-24 | 2007-12-20 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US8088616B2 (en) | 2006-03-24 | 2012-01-03 | Handylab, Inc. | Heater unit for microfluidic diagnostic system |
USD554070S1 (en) | 2006-05-03 | 2007-10-30 | Data I/O Corporation | Processing apparatus |
USD554069S1 (en) | 2006-05-03 | 2007-10-30 | Data I/O Corporation | Processing apparatus |
US20080056948A1 (en) | 2006-09-06 | 2008-03-06 | Canon U.S. Life Sciences, Inc. | Chip and cartridge design configuration for performing micro-fluidic assays |
US8133671B2 (en) | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8182763B2 (en) | 2007-07-13 | 2012-05-22 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US20120171759A1 (en) | 2007-07-13 | 2012-07-05 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8105783B2 (en) | 2007-07-13 | 2012-01-31 | Handylab, Inc. | Microfluidic cartridge |
US20120258463A1 (en) | 2007-07-13 | 2012-10-11 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US8324372B2 (en) | 2007-07-13 | 2012-12-04 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US20090131650A1 (en) | 2007-07-13 | 2009-05-21 | Handylab, Inc. | Polynucleotide Capture Materials, and Methods of Using Same |
US20100009351A1 (en) | 2008-07-11 | 2010-01-14 | Handylab, Inc. | Polynucleotide Capture Materials, and Method of Using Same |
Non-Patent Citations (41)
Title |
---|
Bollet, C. et al., "A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria", Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955. |
Brahmassandra, et al., On-Chip DNA Detection in Microfabricated Separation Systems, Part of the SPIE Conference on Microfludic Devices and Systems, 1998, Santa Clara, California, vol. 3515, pp. 242-251. |
Breadmore, M.C. et al., "Microchip-Based Purification of DNA from Biological Samples", Anal. Chem., vol. 75 (2003), pp. 1880-1886. |
Brody, et al., Diffusion-Based Extraction in a Microfabricated Device, Sensors and Actuators Elsevier, 1997, vol. A58, No. 1, pp. 13-18. |
Broyles et al., "Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices", Analytical Chemistry, vol. 75, No. 11, pp. 2761-2767 (2003). |
Burns et al., "An Integrated Nanoliter DNA Analysis Device", Science 282:484-487 (1998). |
Carlen et al., "Paraffin Actuated Surface Micromachined Valve," in IEEE MEMS 2000 Conference, p. 381-385, Miyazaki, Japan, Jan. 2000. |
Chung, Y. et al., "Microfluidic chip for high efficiency DNA extraction", Miniaturisation for Chemistry, Biology & Bioengineering, vol. 4, No. 2 (Apr. 2004), pp. 141-147. |
File History of related U.S. Appl. No. 11/281,247, for the period of Jun. 2, 2010-Oct. 27, 2010. |
File History of the related U.S. Appl. No. 11/281,247, as of Jun. 1, 2010. |
Handique et al., "On-Chip Thermopneumatic Pressure for Discrete Drop Pumping", Anal. Chem. 73:1831-1838 (2000). |
Handique, K. et al., "Mathematical Modeling of Drop Mixing in a Slit-Type Micochannel", J. Micromech. Microeng., 11:548-554 (2001). |
Handique, K. et al., "Microfluidic flow control using selective hydrophobic patterning", SPIE, vol. 3224, pp. 185-194 (1997). |
Handique, K. et al., "Nanoliter Liquid Metering in Microchannels Using Hydrophobic Patterns", Anal. Chem., 72:4100-4109 (2000). |
Handique, K. et al., "Nanoliter-volume discrete drop injection and pumping in microfabricated chemical analysis systems", Solid-State Sensor and Actuator Workshop (Hilton Head, South Carolina, Jun. 8-11, 1998) pp. 346-349. |
Handylab, Inc., Supplementary European Search Report for European Patent Application No. 05745564 dated Jan. 10, 2008, 5 pages. |
He, B. et al., "Microfabricated Filters for Microfluidic Analytical Systems", Analytical Chemistry, vol. 71, No. 7 (1999), pp. 1464-1468. |
Ibrahim, M.S. et al., "Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA", Analytical Chemistry, vol. 70, No. 9 (1998), pp. 2013-2017. |
International Search Report and Written Opinion, dated Oct. 3, 2008, issued in International Application No. PCT/US2008/69897. |
International Search Report, dated Jan. 31, 2006, issued in International Application No. PCT/US2005/15345. |
International Search Report, dated Oct. 6, 2008, issued in International Application No. PCT/US2008/69895. |
Khandurina, et al., Microfabricated Porous Membrane Structure for Sample Concentraction and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, vol. 71, No. 9, pp. 1815-1819. |
Kopp, et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048. |
Kutter, J.P. et al., "Solid Phase Extraction on Microfluidic Devices ", J. Microcolumn Separations, vol. 12, No. 2 (2000), pp. 93-97. |
Lagally, E.T. et al., "Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device", Analytical Chemistry, vol. 73, No. 3 (2001), pp. 565-570. |
Livache, T. et al., "Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping", Analytical Biochemistry, vol. 255 (1998), pp. 188-194. |
Mascini et al., "DNA electrochemical biosensors", Fresenius J. Anal. Chem., 369: 15-22, (2001). |
Nakagawa et al., Fabrication of amino silane-coated microchip for DNA extraction from whole blood, J of Biotechnology, Mar. 2, 2005, vol. 116, pp. 105-111. |
Northrup, M.A. et al., "A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers", Analytical Chemistry, vol. 70, No. 5 (1998), pp. 918-922. |
Oleschuk, R. et al., "Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography", Analytical Chemistry, vol. 72, No. 3 (2000), pp. 585-590. |
Orchid BioSciences, Inc., www.orchid.com, Jul. 6, 2001. |
Plambeck et al., "Electrochemical Studies of Antitumor Antibiotics", J. Electrochem Soc.: Electrochemical Science and Technology (1984), 131(11): 2556-2563. |
Roche, et al. "Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells" Faseb J (2005) 19: 1341-1343. |
Ross, et al., Analysis of DNA Fragments from Conventional and Microfabricated PCR Devices Using Delayed Extraction MALDI-TOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 10, pp. 2067-2073. |
Shoffner, M. et al., "Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR", Nucleic Acids Research, vol. 24, No. 2 (1996), pp. 375-379. |
Smith, K. et al,. "Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples", Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443. |
Wang, "Survey and Summary, from DNA Biosensors to Gene Chips", Nucleic Acids Research, 28(16):3011-3016, (2000). |
Waters, et al., "Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing" Analytical Chemistry, vol. 70, No. 1, pp. 158-162 (1998). |
Weigl, B.H. et al., "Microfluidic Diffusion-Based Separation and Detection", Science, vol. 283 (Jan. 15, 1999), pp. 346-347. |
Yoza, et al., "Fully Automated DNA Extraction fro Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidomine Dendrimer", Journal of Bioscience and Bioengineering, 95(1):21-26, 2003. |
Yoza,et al., "Fully Automated DNA Extraction from Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidomine Dendrimer", Journal of Bioscience and Bioengineering, 95(1):21-26, 2003. |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9051604B2 (en) | 2001-02-14 | 2015-06-09 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US9528142B2 (en) | 2001-02-14 | 2016-12-27 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US8734733B2 (en) | 2001-02-14 | 2014-05-27 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US8703069B2 (en) | 2001-03-28 | 2014-04-22 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
US9677121B2 (en) | 2001-03-28 | 2017-06-13 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US10571935B2 (en) | 2001-03-28 | 2020-02-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US10351901B2 (en) | 2001-03-28 | 2019-07-16 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US8768517B2 (en) | 2001-03-28 | 2014-07-01 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US10619191B2 (en) | 2001-03-28 | 2020-04-14 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US9259735B2 (en) | 2001-03-28 | 2016-02-16 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US8894947B2 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US8895311B1 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US8685341B2 (en) | 2001-09-12 | 2014-04-01 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US9028773B2 (en) | 2001-09-12 | 2015-05-12 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US11078523B2 (en) | 2003-07-31 | 2021-08-03 | Handylab, Inc. | Processing particle-containing samples |
US10865437B2 (en) | 2003-07-31 | 2020-12-15 | Handylab, Inc. | Processing particle-containing samples |
US20100197008A1 (en) * | 2003-07-31 | 2010-08-05 | Handylab, Inc. | Processing particle-containing samples |
US8679831B2 (en) | 2003-07-31 | 2014-03-25 | Handylab, Inc. | Processing particle-containing samples |
US9670528B2 (en) | 2003-07-31 | 2017-06-06 | Handylab, Inc. | Processing particle-containing samples |
US10731201B2 (en) | 2003-07-31 | 2020-08-04 | Handylab, Inc. | Processing particle-containing samples |
US10364456B2 (en) | 2004-05-03 | 2019-07-30 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US11441171B2 (en) | 2004-05-03 | 2022-09-13 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US10443088B1 (en) | 2004-05-03 | 2019-10-15 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US10494663B1 (en) | 2004-05-03 | 2019-12-03 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US10604788B2 (en) | 2004-05-03 | 2020-03-31 | Handylab, Inc. | System for processing polynucleotide-containing samples |
US8852862B2 (en) | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US10821446B1 (en) | 2006-03-24 | 2020-11-03 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US9802199B2 (en) | 2006-03-24 | 2017-10-31 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US10913061B2 (en) | 2006-03-24 | 2021-02-09 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US10857535B2 (en) | 2006-03-24 | 2020-12-08 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US10843188B2 (en) | 2006-03-24 | 2020-11-24 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US11959126B2 (en) | 2006-03-24 | 2024-04-16 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US10821436B2 (en) | 2006-03-24 | 2020-11-03 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US10799862B2 (en) | 2006-03-24 | 2020-10-13 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US8883490B2 (en) | 2006-03-24 | 2014-11-11 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US9040288B2 (en) | 2006-03-24 | 2015-05-26 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US10695764B2 (en) | 2006-03-24 | 2020-06-30 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11085069B2 (en) | 2006-03-24 | 2021-08-10 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US9080207B2 (en) | 2006-03-24 | 2015-07-14 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US11141734B2 (en) | 2006-03-24 | 2021-10-12 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US11142785B2 (en) | 2006-03-24 | 2021-10-12 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11666903B2 (en) | 2006-03-24 | 2023-06-06 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US12030050B2 (en) | 2006-11-14 | 2024-07-09 | Handylab, Inc. | Microfluidic cartridge and method of making same |
US8709787B2 (en) | 2006-11-14 | 2014-04-29 | Handylab, Inc. | Microfluidic cartridge and method of using same |
US8765076B2 (en) | 2006-11-14 | 2014-07-01 | Handylab, Inc. | Microfluidic valve and method of making same |
US10710069B2 (en) | 2006-11-14 | 2020-07-14 | Handylab, Inc. | Microfluidic valve and method of making same |
US9815057B2 (en) | 2006-11-14 | 2017-11-14 | Handylab, Inc. | Microfluidic cartridge and method of making same |
US10234474B2 (en) | 2007-07-13 | 2019-03-19 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US9347586B2 (en) | 2007-07-13 | 2016-05-24 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US8710211B2 (en) | 2007-07-13 | 2014-04-29 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US11060082B2 (en) | 2007-07-13 | 2021-07-13 | Handy Lab, Inc. | Polynucleotide capture materials, and systems using same |
US10065185B2 (en) | 2007-07-13 | 2018-09-04 | Handylab, Inc. | Microfluidic cartridge |
US10071376B2 (en) | 2007-07-13 | 2018-09-11 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9259734B2 (en) | 2007-07-13 | 2016-02-16 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US11845081B2 (en) | 2007-07-13 | 2023-12-19 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10100302B2 (en) | 2007-07-13 | 2018-10-16 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US10875022B2 (en) | 2007-07-13 | 2020-12-29 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10139012B2 (en) | 2007-07-13 | 2018-11-27 | Handylab, Inc. | Integrated heater and magnetic separator |
US10179910B2 (en) | 2007-07-13 | 2019-01-15 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US9238223B2 (en) | 2007-07-13 | 2016-01-19 | Handylab, Inc. | Microfluidic cartridge |
US10717085B2 (en) | 2007-07-13 | 2020-07-21 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9701957B2 (en) | 2007-07-13 | 2017-07-11 | Handylab, Inc. | Reagent holder, and kits containing same |
US10632466B1 (en) | 2007-07-13 | 2020-04-28 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9217143B2 (en) | 2007-07-13 | 2015-12-22 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US9618139B2 (en) | 2007-07-13 | 2017-04-11 | Handylab, Inc. | Integrated heater and magnetic separator |
US10844368B2 (en) | 2007-07-13 | 2020-11-24 | Handylab, Inc. | Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US11549959B2 (en) | 2007-07-13 | 2023-01-10 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US11466263B2 (en) | 2007-07-13 | 2022-10-11 | Handylab, Inc. | Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly |
US10590410B2 (en) | 2007-07-13 | 2020-03-17 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US11254927B2 (en) | 2007-07-13 | 2022-02-22 | Handylab, Inc. | Polynucleotide capture materials, and systems using same |
US11266987B2 (en) | 2007-07-13 | 2022-03-08 | Handylab, Inc. | Microfluidic cartridge |
US10625261B2 (en) | 2007-07-13 | 2020-04-21 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10625262B2 (en) | 2007-07-13 | 2020-04-21 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
USD787087S1 (en) | 2008-07-14 | 2017-05-16 | Handylab, Inc. | Housing |
US10196700B2 (en) | 2009-03-24 | 2019-02-05 | University Of Chicago | Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes |
US9493826B2 (en) | 2009-03-24 | 2016-11-15 | California Institute Of Technology | Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes |
US10370705B2 (en) | 2009-03-24 | 2019-08-06 | University Of Chicago | Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes |
US10543485B2 (en) | 2009-03-24 | 2020-01-28 | University Of Chicago | Slip chip device and methods |
US9447461B2 (en) | 2009-03-24 | 2016-09-20 | California Institute Of Technology | Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes |
US9464319B2 (en) | 2009-03-24 | 2016-10-11 | California Institute Of Technology | Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes |
US9415392B2 (en) | 2009-03-24 | 2016-08-16 | The University Of Chicago | Slip chip device and methods |
US10781482B2 (en) | 2011-04-15 | 2020-09-22 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US9765389B2 (en) | 2011-04-15 | 2017-09-19 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US11788127B2 (en) | 2011-04-15 | 2023-10-17 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US9480983B2 (en) | 2011-09-30 | 2016-11-01 | Becton, Dickinson And Company | Unitized reagent strip |
USD742027S1 (en) | 2011-09-30 | 2015-10-27 | Becton, Dickinson And Company | Single piece reagent holder |
USD905269S1 (en) | 2011-09-30 | 2020-12-15 | Becton, Dickinson And Company | Single piece reagent holder |
USD831843S1 (en) | 2011-09-30 | 2018-10-23 | Becton, Dickinson And Company | Single piece reagent holder |
US9222954B2 (en) | 2011-09-30 | 2015-12-29 | Becton, Dickinson And Company | Unitized reagent strip |
US10076754B2 (en) | 2011-09-30 | 2018-09-18 | Becton, Dickinson And Company | Unitized reagent strip |
USD1029291S1 (en) | 2011-09-30 | 2024-05-28 | Becton, Dickinson And Company | Single piece reagent holder |
US11453906B2 (en) | 2011-11-04 | 2022-09-27 | Handylab, Inc. | Multiplexed diagnostic detection apparatus and methods |
US10822644B2 (en) | 2012-02-03 | 2020-11-03 | Becton, Dickinson And Company | External files for distribution of molecular diagnostic tests and determination of compatibility between tests |
US9604213B2 (en) | 2012-02-13 | 2017-03-28 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9738887B2 (en) | 2012-02-13 | 2017-08-22 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US11142757B2 (en) | 2012-02-13 | 2021-10-12 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US10010888B2 (en) | 2012-02-13 | 2018-07-03 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9403165B2 (en) | 2012-02-13 | 2016-08-02 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US9433940B2 (en) | 2012-02-13 | 2016-09-06 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US9441219B2 (en) | 2012-02-13 | 2016-09-13 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US10041062B2 (en) | 2012-02-13 | 2018-08-07 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9452430B1 (en) | 2012-02-13 | 2016-09-27 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US9050594B2 (en) | 2012-02-13 | 2015-06-09 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US11931740B2 (en) | 2012-02-13 | 2024-03-19 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US11485968B2 (en) | 2012-02-13 | 2022-11-01 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US10093963B2 (en) | 2012-02-13 | 2018-10-09 | Neumodx Molecular, Inc. | System and method for processing biological samples |
US10557132B2 (en) | 2012-02-13 | 2020-02-11 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US11648561B2 (en) | 2012-02-13 | 2023-05-16 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US11655467B2 (en) | 2012-02-13 | 2023-05-23 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9101930B2 (en) | 2012-02-13 | 2015-08-11 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US11708597B2 (en) | 2012-02-13 | 2023-07-25 | Neumodx Molecular, Inc. | Pin-based valve actuation system for processing biological samples |
US11717829B2 (en) | 2012-02-13 | 2023-08-08 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9339812B2 (en) | 2012-02-13 | 2016-05-17 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9540636B2 (en) | 2012-10-25 | 2017-01-10 | Neumodx Molecular, Inc. | Method and materials for isolation of nucleic acid materials |
US10633647B2 (en) | 2012-10-25 | 2020-04-28 | Neumodx Molecular, Inc. | Method and materials for isolation of nucleic acid materials |
US9382532B2 (en) | 2012-10-25 | 2016-07-05 | Neumodx Molecular, Inc. | Method and materials for isolation of nucleic acid materials |
US20150283324A1 (en) * | 2012-11-14 | 2015-10-08 | Ams Research Corporation | Cell delivery device and system with anti-clumping feature and methods for pelvic tissue treatment |
US11427815B2 (en) | 2015-12-28 | 2022-08-30 | Koninklijke Philips N.V. | Nucleic acid purification system using a single wash and elution buffer solution |
US11512356B2 (en) | 2018-11-08 | 2022-11-29 | Tokitae Llc | Systems and methods for particle multiplexing in droplets |
US12128405B2 (en) | 2020-07-10 | 2024-10-29 | Handylab, Inc. | Microfluidic valve and method of making same |
US12128402B2 (en) | 2022-03-03 | 2024-10-29 | Handylab, Inc. | Microfluidic cartridge |
Also Published As
Publication number | Publication date |
---|---|
JP2007535933A (en) | 2007-12-13 |
EP2345739B8 (en) | 2016-12-07 |
AU2005241080A1 (en) | 2005-11-17 |
JP2016195615A (en) | 2016-11-24 |
CA2994321C (en) | 2023-08-08 |
CA2565572A1 (en) | 2005-11-17 |
EP2345739A3 (en) | 2011-10-26 |
EP2345739B1 (en) | 2016-04-06 |
CA3198754A1 (en) | 2005-11-17 |
CA2994321A1 (en) | 2005-11-17 |
JP5344817B2 (en) | 2013-11-20 |
CA2565572C (en) | 2018-03-06 |
US20080262213A1 (en) | 2008-10-23 |
JP6504854B2 (en) | 2019-04-24 |
US20140030798A1 (en) | 2014-01-30 |
ES2572382T3 (en) | 2016-05-31 |
WO2005108620A2 (en) | 2005-11-17 |
EP1745153A2 (en) | 2007-01-24 |
JP2013128498A (en) | 2013-07-04 |
JP5885697B2 (en) | 2016-03-15 |
JP2015097538A (en) | 2015-05-28 |
EP2345739A2 (en) | 2011-07-20 |
ES2572382T8 (en) | 2017-02-20 |
US20190284606A1 (en) | 2019-09-19 |
ES2553097T3 (en) | 2015-12-04 |
WO2005108620A3 (en) | 2006-04-13 |
JP6475206B2 (en) | 2019-02-27 |
EP1745153A4 (en) | 2008-02-13 |
AU2005241080B2 (en) | 2011-08-11 |
EP1745153B1 (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190284606A1 (en) | Processing polynucleotide-containing samples | |
US10443088B1 (en) | Method for processing polynucleotide-containing samples | |
US20230041595A1 (en) | Method for processing polynucleotide-containing samples | |
EP2001990B1 (en) | Integrated system for processing microfluidic samples, and method of using same | |
AU2020264323B2 (en) | Processing polynucleotide-containing samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HANDYLAB, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, BETTY;ALTHAUS, JOHN S.;BRAHMASANDRA, SUNDARESH N.;AND OTHERS;REEL/FRAME:020840/0495;SIGNING DATES FROM 20080107 TO 20080110 Owner name: HANDYLAB, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, BETTY;ALTHAUS, JOHN S.;BRAHMASANDRA, SUNDARESH N.;AND OTHERS;SIGNING DATES FROM 20080107 TO 20080110;REEL/FRAME:020840/0495 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |