[go: nahoru, domu]

US8504054B2 - System and method for multilevel scheduling - Google Patents

System and method for multilevel scheduling Download PDF

Info

Publication number
US8504054B2
US8504054B2 US10/640,720 US64072003A US8504054B2 US 8504054 B2 US8504054 B2 US 8504054B2 US 64072003 A US64072003 A US 64072003A US 8504054 B2 US8504054 B2 US 8504054B2
Authority
US
United States
Prior art keywords
rate
load
signal
transmission
communication channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/640,720
Other versions
US20040185868A1 (en
Inventor
Avinash Jain
Jelena Damnjanovic
Tao Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/640,720 priority Critical patent/US8504054B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to EP03770317A priority patent/EP1540980B1/en
Priority to JP2004536196A priority patent/JP4643265B2/en
Priority to PCT/US2003/028671 priority patent/WO2004025986A2/en
Priority to DE60327083T priority patent/DE60327083D1/en
Priority to KR1020057004171A priority patent/KR101028973B1/en
Priority to MXPA05002631A priority patent/MXPA05002631A/en
Priority to BR0314161-6A priority patent/BR0314161A/en
Priority to CA002498128A priority patent/CA2498128A1/en
Priority to EP09001418A priority patent/EP2048906A3/en
Priority to RU2005110427/09A priority patent/RU2005110427A/en
Priority to AU2003278800A priority patent/AU2003278800A1/en
Priority to AT03770317T priority patent/ATE428283T1/en
Priority to TW092125078A priority patent/TWI328976B/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAIN, AVINASH, CHEN, TAO, DAMNJANOVIC, KELESA
Publication of US20040185868A1 publication Critical patent/US20040185868A1/en
Priority to US12/398,094 priority patent/US8504047B2/en
Priority to JP2009113024A priority patent/JP4938817B2/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED CORRECTIVE ASSIGNMENT TO CORRECT THE INVENTOR NAME JELENA DAMNJANOVIC WAS INCORRECTLY ENTERED AS KELESA DAMNJANOVIC PREVIOUSLY RECORDED ON REEL 014896 FRAME 0771. ASSIGNOR(S) HEREBY CONFIRMS THE INVENTOR NAME JELENA DAMNJANOVIC WAS INCORRECTLY ENTERED AS KELESA DAMNJANOVIC. Assignors: JAIN, AVINASH, CHEN, TAO, DAMNJANOVIC, JELENA
Publication of US8504054B2 publication Critical patent/US8504054B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present disclosed embodiments relate generally to wireless communications, and more specifically to reverse link rate scheduling in a communication system having a variable data transmission rate.
  • the field of communications has many applications including, e.g., paging, wireless local loops, Internet telephony, and satellite communication systems.
  • An exemplary application is a cellular telephone system for mobile subscribers.
  • cellular encompasses both cellular and personal communications services (PCS) system frequencies.
  • PCS personal communications services
  • Modern communication systems designed to allow multiple users to access a common communications medium have been developed for such cellular systems. These modern communication systems may be based on code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), space division multiple access (SDMA), polarization division multiple access (PDMA), or other modulation techniques known in the art.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • SDMA space division multiple access
  • PDMA polarization division multiple access
  • modulation techniques demodulate signals received from multiple users of a communication system, thereby enabling an increase in the capacity of the communication system.
  • various wireless systems have been established including, e.g., Advanced Mobile Phone Service (AMPS), Global System for Mobile communication (GSM), and some other wireless systems.
  • AMPS Advanced Mobile Phone Service
  • GSM Global System for Mobile communication
  • each user is given its own sub-band to access the communication medium.
  • each user is given the entire frequency spectrum during periodically recurring time slots.
  • a CDMA system provides potential advantages over other types of systems, including increased system capacity.
  • each user is given the entire frequency spectrum for all of the time, but distinguishes its transmission through the use of a unique code.
  • a CDMA system may be designed to support one or more CDMA standards such as (1) the “TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System” (the IS-95 standard), (2) the standard offered by a consortium named “3rd Generation Partnership Project” (3GPP) and embodied in a set of documents including Document Nos.
  • CDMA standards such as (1) the “TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System” (the IS-95 standard), (2) the standard offered by a consortium named “3rd Generation Partnership Project” (3GPP) and embodied in a set of documents including Document Nos.
  • 3GPP 3rd Generation Partnership Project
  • 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214 (the W-CDMA standard)
  • 3GPP2 the standard offered by a consortium named “3rd Generation Partnership Project 2” (3GPP2) and embodied in “TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems” (the IS-2000 standard)
  • (4) some other standards 3.
  • CDMA communication systems and standards the available spectrum is shared simultaneously among a number of users, and techniques such as soft handoff are employed to maintain sufficient quality to support delay-sensitive services, such as voice.
  • Data services are also available. More recently, systems have been proposed that enhance the capacity for data services by using higher order modulation, very fast feedback of Carrier to Interference ratio (C/I) from a mobile station, very fast scheduling, and scheduling for services that have more relaxed delay requirements.
  • C/I Carrier to Interference ratio
  • An example of such a data-only communication system using these techniques is the high data rate (HDR) system that conforms to the TIA/EIA/IS-856 standard (the IS-856 standard).
  • HDR high data rate
  • an IS-856 system uses the entire spectrum available in each cell to transmit data to a single user at one time.
  • One factor used in determining which user is served is link quality.
  • link quality By using link quality as a factor for selecting which user is served, the system spends a greater percentage of time sending data at higher rates when the channel is good, and thereby avoids committing resources to support transmission at inefficient rates.
  • the net effect is higher data capacity, higher peak data rates, and higher average throughput.
  • Systems can incorporate support for delay-sensitive data, such as voice channels or data channels supported in the IS-2000 standard, along with support for packet data services such as those described in the IS-856 standard.
  • delay-sensitive data such as voice channels or data channels supported in the IS-2000 standard
  • packet data services such as those described in the IS-856 standard.
  • 3GPP2 3rd Generation Partnership Project 2
  • the proposal is detailed in documents entitled “Updated Joint Physical Layer Proposal for 1xEV-DV”, submitted to 3GPP2 as document number C50-20010611-009, Jun. 11, 2001; “Results of L3NQS Simulation Study”, submitted to 3GPP2 as document number C50-20010820-011, Aug.
  • Multi-level scheduling may be useful for more efficient capacity utilization on the reverse link.
  • Embodiments disclosed herein address the above stated needs by providing a method and system for multilevel scheduling for rate assignment in a communication system.
  • a method for estimating capacity used on a reverse link comprises measuring a plurality of signal-to-noise ratios at a station for a plurality of rates, determining sector load based on the measured plurality of signal-to-noise ratios, an assigned transmission rate, and an expected transmission rate, and estimating capacity on the reverse link based on the sector load.
  • a method of estimating load contribution to a sector antenna comprises assigning a transmission rate Ri on a first communication channel, determining an expected rate of transmission E[R] on a second communication channel, estimating a signal-to-noise ratio of a station for the assigned transmission rate Ri on the first communication channel and the expected rate of transmission E[R] on a second communication channel, and estimating the load contribution based on the estimated signal-to-noise ratio.
  • a method for estimating capacity available to schedule comprises measuring other-cell interference during a previous transmission (I oc ), determining thermal noise (N o ), determining sector load (Load j ), and determining rise-over-thermal (ROT j ) based on the ratio of the measured other-cell interference over thermal noise, and based on the sector load.
  • a method of distributing sector capacity across a base station (BS) and a base station controller (BSC) comprises measuring other-cell interference during a previous transmission (I oc ), determining thermal noise (N o ), determining a maximum rise-over-thermal (ROT(max)), determining an estimated assigned load at the BSC (Load j (BSC)), and determining a sector capacity distributed to the base station based on the ratio of the measured other-cell interference over thermal noise, the maximum rise-over-thermal, and the estimated assigned load at the BSC.
  • BS base station
  • BSC base station controller
  • a method of determining priority of a station comprises determining pilot energy over noise plus interference ratio (Ecp/Nt), determining a soft handoff factor (SHOfactor), determining a fairness value (F), determining a proportional fairness value (PF), determining a fairness factor ⁇ , and determining a maximum capacity utilization based on the pilot energy over noise plus interference ratio, the soft handoff factor, the fairness value, and the fairness factor ⁇ .
  • Ecp/Nt pilot energy over noise plus interference ratio
  • SHOfactor soft handoff factor
  • F fairness value
  • PF proportional fairness value
  • FIG. 1 exemplifies an embodiment of a wireless communication system with three mobile stations and two base stations;
  • FIG. 2 shows set point adjustment due to rate transitions on R-SCH in accordance with an embodiment.
  • FIG. 3 shows scheduling delay timing in accordance with an embodiment
  • FIG. 4 shows parameters associated in mobile station scheduling on a reverse link
  • FIG. 5 is a flowchart of a scheduling process in accordance with an embodiment
  • FIG. 6 is a block diagram of a base station in accordance with an embodiment.
  • FIG. 7 is a block diagram of a mobile station in accordance with an embodiment.
  • a wireless communication system may comprise multiple mobile stations and multiple base stations.
  • FIG. 1 exemplifies an embodiment of a wireless communication system with three mobile stations 10 A, 10 B and 10 C and two base stations 12 .
  • the three mobile stations are shown as a mobile telephone unit installed in a car 10 A, a portable computer remote 10 B, and a fixed location unit 10 C such as might be found in a wireless local loop or meter reading system.
  • Mobile stations may be any type of communication unit such as, for example, hand-held personal communication system units, portable data units such as a personal data assistant, or fixed location data units such as meter reading equipment.
  • FIG. 1 shows a forward link 14 from the base station 12 to the mobile stations 10 and a reverse link 16 from the mobile stations 10 to the base stations 12 .
  • a receiver in an embodiment uses a special processing element called a searcher element, that continually scans the channel in the time domain to determine the existence, time offset, and the signal strength of signals in the multiple path environment.
  • a searcher element is also called a search engine. The output of the searcher element provides the information for ensuring that demodulation elements are tracking the most advantageous paths.
  • multi-level scheduling is performed.
  • multi-level scheduling comprises base station level scheduling, selector level scheduling, and/or network level scheduling.
  • a detailed design of a flexible scheduling algorithm is based on fundamental theoretical principles that limit reverse-link system capacity, while using existing network parameters available or measured by a base station.
  • base-station estimation of each mobile's capacity contribution is based on measured signal-to-noise ratio (Snr) or pilot energy over noise plus interference ratio (Ecp/(Io+No)), collectively called (Ecp/Nt), given the current rate of transmission.
  • Snr signal-to-noise ratio
  • Ecp/(Io+No) pilot energy over noise plus interference ratio
  • Ecp/Nt pilot energy over noise plus interference ratio
  • mobile requests for rate allocation are prioritized.
  • a list of all mobiles that a scheduler is responsible for scheduling is maintained depending on which level the scheduling is performed. In an embodiment, there is one list for all the mobiles. Alternatively, there are two lists for all mobiles. If the scheduler is responsible for scheduling all the base stations a mobile has in its Active Set, then the mobile belongs to a First List. A separate Second List may be maintained for those mobiles that have a base station in the Active Set that the scheduler is not responsible for scheduling. Prioritization of mobile rate requests is based on various reported, measured or known parameters that maximize system throughput, while allowing for mobile fairness as well as their importance status.
  • Greedy Filling is used.
  • a highest priority mobile obtains the available sector capacity.
  • a highest rate that can be allocated to the mobile is determined as the highest rate that the mobile can transmit at.
  • the highest rates are determined based on measured SNR.
  • the highest rates are determined based on Ecp/Nt.
  • the highest rates are determined based also on limiting parameters.
  • the highest rate is determined by a mobile's buffer estimate. The choice of a high rate decreases the transmission delays and decreases interference that the transmitting mobile observes. Remaining sector capacity can be allocated to the next lower priority mobile. This methodology helps in maximizing the gains due to interference reduction while maximizing the capacity utilization.
  • the Greedy Filling algorithm can be tuned to the conventional round-robin, proportionally fair or most unfair scheduling based on a specified cost metric. Under the class of scheduling considered, the above method helps aid maximum capacity utilization.
  • the mobile station initiates a call by transmitting a request message to the base station.
  • the mobile receives a channel assignment message from base station, it can use logical dedicated channel for further communication with the base-station.
  • the mobile station can initiate the high-speed data transmission on the reverse link by transmitting a request message on the reverse link.
  • Rate request and rate allocation structure currently specified in IS 2000 Release C is considered. However, it would be apparent to those skilled in the art that the scope of the design is not limited to IS 2000. It would be apparent to those skilled in the art, that embodiments may be implemented in any multiple access system with a centralized scheduler for rate allocation.
  • mobile stations at least support the simultaneous operation of the following channels:
  • R-FCH Reverse Fundamental Channel
  • a voice-only MS When a voice-only MS has an active voice-call, it is carried on the R-FCH.
  • R-FCH carries signaling and data.
  • Exemplary R-FCH channel frame size, coding, modulation and interleaving are specified in TIA/EIA-IS-2000.2, “Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System,” June, 2002.
  • R-FCH at a null rate is used for outer-loop power control (PC), when an MS is not transmitting voice, data or signaling on R-FCH.
  • Null rate means a lowest rate.
  • R-FCH at a lowest rate may be used to maintain outer-loop power control even when there is no transmission on R-SCH.
  • R-SCH Reverse Supplemental Channel
  • the MS supports one R-SCH for packet data transmissions in accordance with an embodiment.
  • the R-SCH uses rates specified by radio configuration (RC3) in TIA/EIA-IS-2000.2.
  • the signaling and power control can be done on a control channel.
  • signaling can be carried over R-SCH and outer-loop PC can be carried on R-SCH whenever it is present.
  • Multiple Channel Adjustment Gain When the R-FCH and the R-SCH are simultaneously active, multiple channel gain table adjustment as specified in TIA/EIA-IS-2000.2 is performed to maintain correct transmission power of the R-FCH.
  • the traffic-to-pilot (T/P) ratios for all channel rate are also specified in the Nominal Attribute Gain table in appendix A as Nominal Attribute Gain values. Traffic-to-pilot ratio means the ratio of traffic channel power to pilot channel power.
  • the MS may be assigned an R-SCH rate by a scheduler during each scheduling period. When the MS is not assigned an R-SCH rate, it will not transmit anything on the R-SCH. If the MS is assigned to transmit on the R-SCH, but it does not have any data or sufficient power to transmit at the assigned rate, it disables transmission (DTX) on the R-SCH. If the system allows it, the MS may be transmitting on the R-SCH at a rate lower than the assigned one autonomously. In an embodiment, this variable-rate R-SCH operation is accompanied by the variable rate SCH gain adjustment as specified in TIA/EIA-IS-2000.2. R-FCH T/P is adjusted assuming the received pilot SNR is high enough to support the assigned rate on R-SCH.
  • a data-only MS transmits extra power on CQICH and/or other control channels at a CQICH-to-pilot (or control-to-pilot) (C/P) ratio with multi-channel gain adjustment performed to maintain correct transmission power of the R-CQICH (or control channels).
  • C/P CQICH-to-pilot
  • C/P control-to-pilot
  • (C/P) value may be different for MS in soft-handoff from those not in soft handoff.
  • (C/P) represent the ratio of total power used by the control channels to the pilot power without multichannel gain adjustment.
  • an MS receives one PC command per power control group (PCG) at a rate of 800 Hz from all base stations (BSs) in the MS's Active Set.
  • PCG is a 1.25 ms interval on the Reverse Traffic Channel and the Reverse Pilot Channel. Pilot power is updated by + ⁇ 1 dB based on an “Or-of-Downs” rule, after combining of the PC commands from co-located BSs (sectors in a given cell).
  • Rate request is done with one of two methods.
  • rate request is performed using a Supplemental Channel Request Mini Message (SCRMM) on a 5-ms R-FCH as specified in TIA/EIA-IS-2000.5.
  • SCRMM Supplemental Channel Request Mini Message
  • each SCRMM transmission is 24 bits (or 48 bits with the physical layer frame overhead in each 5-ms FCH frame at 9.6 kbps).
  • the MS sends the SCRMM in any periodic interval of 5 ms. If a 5-ms SCRMM needs to be transmitted, the MS interrupts its transmission of the current 20-ms R-FCH frame, and instead sends a 5-ms frame on the R-FCH. After the 5-ms frame is sent, any remaining time in the 20-ms period on the R-FCH is not transmitted. The discontinued transmission of the 20-ms R-FCH is re-established at the start of next 20-ms frame.
  • rate request is performed using a Supplemental Channel Request Message (SCRM) on a 20-ms R-FCH.
  • SCRM Supplemental Channel Request Message
  • SCRMM Supplemental Channel Request Mini Message
  • SCRM Supplemental Channel Request Message
  • the following information shall be reported by the MS to the BS on each SCRM/SCRMM transmission:
  • Maximum Requested Rate It can be the maximum data rate an MS is capable of transmitting at the current channel conditions leaving headroom for fast channel variations.
  • An MS may determine its maximum rate using the following equation:
  • the MS receives grant information by one of the two following methods:
  • Method a Enhanced supplemental channel assignment mini message (ESCAMM) from BS on 5-ms forward dedicated control channel (F-DCCH) with rate assignment for specified scheduling duration.
  • ECAMM Enhanced supplemental channel assignment mini message
  • Method b Enhanced supplemental channel assignment message (ESCAM) from BS on forward physical data channel (F-PDCH) with rate assignment for specified scheduling duration.
  • ESCAM Enhanced supplemental channel assignment message
  • the assignment delays depend on the backhaul and transmission delays and are different depending on which method is used for rate grant. During the scheduled duration, the following procedures are performed:
  • Pref(R) is the “Pilot Reference Level” value specified in the Attribute Gain Table in TIA/EIA-IS-2000.2
  • NormAvPiTx(PCG i ) is the normalized average transmit pilot power
  • (T/P) R is the traffic to pilot ratio that corresponds to rate R and for all channel rates is specified in the Nominal Attribute Gain table in appendix A as Nominal Attribute Gain values
  • (T/P) RFCH is the traffic to pilot ratio on FCH
  • (C/P) is the ratio of total power used by the control
  • the DTX determination is done once every frame, Encode_Delay PCGs before the R-SCH transmission. If the MS disables transmission on the R-SCH, it transmits at the following power:
  • TxPwr ⁇ ( PCG i ) PiTxPwr ⁇ ( PCG i ) ⁇ [ 1 + ( ( T / P ) R FCH + ( C / P ) ) ⁇ ( Pref ⁇ ( R FCH ) Pref ⁇ ( R ) ) ]
  • An MS encodes the transmission frame Encode_Delay before the actual transmission.
  • the BS performs the following essential functions:
  • each of the traffic channels is decoded after correlating with the corresponding Walsh sequence.
  • Power control in a CDMA system is essential to maintain the desired quality of service (QoS).
  • QoS quality of service
  • the RL pilot channel (R-PICH) of each MS is closed-loop power controlled to a desired threshold.
  • this threshold called power control set point, is compared against the received Ecp/Nt to generate power control command (closed-loop PC), where Ecp is the pilot channel energy per chip.
  • the threshold at the BS is changed with erasures on the traffic channel, and has to be adjusted when the data rate changes.
  • Outer-loop power control If the R-FCH is present, the power control set point is corrected based on erasures of the R-FCH. If R-FCH is not present, the outer-loop PC is corrected based on erasures of some control channel or R-SCH when the MS is transmitting data.
  • the BS changes the MS's received Ecp/Nt by the Pilot Reference Levels (Pref(R)) difference between the current and the next R-SCH data rate.
  • FIG. 2 shows set point adjustment due to rate transitions on R-SCH in accordance with an embodiment.
  • the vertical axis of FIG. 2 shows a setpoint of a base station controller (BSC) 202 , a base transceiver subsystem (BTS) receiver pilot power 204 , and the mobile station rate 206 .
  • the MS rate is initially at R 0 208 .
  • the R-SCH data rate increases, i.e., R 1 >R 0 210
  • the setpoint is adjusted according to P ref (R 1 )-P ref (R 0 ) 212 .
  • the R-SCH data rate decreases, i.e., R 2 ⁇ R 1 214
  • the setpoint is adjusted according to P ref (R 2 )-P ref (R 1 ) 216 .
  • a scheduler may be collocated with the BSC, or BTS or at some element in the network layer.
  • a Scheduler may be multilevel with each part responsible for scheduling those MSs that share the lower layer resources. For example, the MS not in soft-handoff (SHO) may be scheduled by BTS while the MS in SHO may be scheduled by part of the scheduler collocated with BSC.
  • SHO soft-handoff
  • the reverse-link capacity is distributed between BTS and BSC for the purpose of scheduling.
  • the scheduler is co-located with the BSC, and is responsible for simultaneous scheduling of MSs across multiple cells.
  • Synchronous Scheduling All R-SCH data rate transmissions are time aligned. All data rate assignments are for the duration of one scheduling period, which is time aligned for all the MSs in the system.
  • the scheduling duration period is denoted SCH_PRD.
  • D_RL(request) The uplink request delay associated with rate requesting via SCRM/SCRMM is denoted as D_RL(request). It is the delay from the time the request is sent to when it is available to the scheduler. D_RL(request) includes delay segments for over-the-air transmission of the request, decode time of the request at the cells, and backhaul delay from the cells to the BSC, and is modeled as a uniformly distributed random variable.
  • Rate Assignment Delay The downlink assignment delay associated with rate assignment via ESCAM/ESCAMM is denoted as D_FL(assign). It is the time between the moment the rate decision is made and the time the MS receiving the resultant assignment. D_FL(assign) includes backhaul delay from the scheduler to the cells, over-the-air transmission time of the assignment (based on method chosen), and its decode time at the MS.
  • the Ecp/Nt measurement used in the scheduler shall be the latest available to it at the last frame boundary.
  • the measured Ecp/Nt is reported to the scheduler by the BTS receiver periodically and so it is delayed for a BSC receiver.
  • FIG. 3 shows scheduling delay timing in accordance with an embodiment.
  • the numbers shown are an example of typical numbers that may be used by a BSC located scheduler though the actual numbers are dependent on backhaul delays and loading scenario of the deployed system.
  • the horizontal axis shows an SCH frame boundary 250 , a last SCH frame boundary before a point A 252 , a point A 254 , a scheduling time 256 , and an action time 258 .
  • An Ec/Nt measurement window 260 is shown starting at the SCH frame boundary 250 and ending at the last SCH frame boundary before point A 252 .
  • a time to last frame boundary 262 is shown from the last SCH frame boundary before point A 252 to point A 254 .
  • a time to get information from the BTS to the BSC (6 PCGs) 264 is shown starting at point A 254 and ending at the scheduling time 256 .
  • ActionTimeDelay (25 PCGs for Method a, 62 PCGs for Method b) 266 is shown to start at the scheduling time 256 and ending at the action time 258 .
  • FIG. 4 illustrates the timing diagram of a rate request, scheduling and rate allocation in accordance with an embodiment.
  • the vertical axes show the time lines for the BSC (scheduler) 402 and the mobile 404 .
  • the MS creates an SCRMM 406 and sends a rate request to the BSC (scheduler) 408 .
  • the rate request is included in the SCRMM, which is sent on R-FCH.
  • the uplink request delay associated with rate requesting via SCRM/SCRMM is denoted as D_RL(request) 410 .
  • a scheduling decision 412 is made once every scheduling period 414 .
  • an ESCAM/ESCAMM 416 is sent on a forward channel from the BSC to the MS indicating a rate assignment 418 .
  • D_FL 420 is the downlink assignment delay associated with rate assignment via ESCAM/ESCAMM.
  • Turnaround time 422 is the time it takes to turnaround a rate request. It is the time from the rate request to rate assignment.
  • Scheduling Timing The scheduler operates once every scheduling period. If the first scheduling decision is performed at t i , then the scheduler operates at t i , t i +SCH_PRD, t i +2SCH_PRD . . .
  • Scheduled Rate Transmissions Given that the MSs have to be notified of the scheduling decisions with sufficient lead-time, a scheduling decision has to be reached at Action Time of the ESCAM/ESCAMM message minus a fixed delay, ActionTimeDelay. Typical values of ActionTimeDelay for Methods a and b are given in Table 1.
  • R-SCH rate requests are triggered as described below:
  • New data arrives and data in the MS's buffer exceeds a certain buffer depth (BUF_DEPTH), and the MS has sufficient power to transmit at a non-zero rate; OR
  • the MS sends a SCRMM/SCRM rate request.
  • an SCRM/SCRMM request made at ⁇ i is made available to the scheduler after a random delay at ⁇ i +D_RL(request)
  • different combinations of change in MS data buffer, change in MS maximum supportable rate and MS last request time out may be used to determine the time when a rate request is sent.
  • the scheduler maintains a list of all MSs in the system and BSs in each MS's Active Set. Associated with each MS, the scheduler stores an estimate of an MS's queue size ( ⁇ circumflex over (Q) ⁇ ) and maximum scheduled rate (Rmax(s)).
  • the queue size estimate ⁇ circumflex over (Q) ⁇ is updated after any of the following events happen:
  • SCRMM/SCRM is received after a delay of D_RL(request).
  • ⁇ circumflex over (Q) ⁇ is updated to:
  • the scheduler uses the previous (and the latest) information it has.
  • Data tx (FCH) and Data tx (SCH) is the data transmitted in the last R-FCH and R-SCH frame, respectively (if the frame is decoded correctly) after discounting the physical layer overhead and RLP layer overhead.
  • scheduler estimates the maximum scheduled rate for the MS in accordance with an embodiment.
  • the maximum scheduled rate is obtained as the minimum of the maximum power constrained rate and maximum buffer size constrained rate.
  • Maximum power constrained rate is the maximum rate that can be achieved with MS available power
  • maximum buffer size constrained rate is the maximum rate such that the transmitted data is smaller or equal to the estimated buffer size.
  • R max ⁇ ( s ) min ⁇ ⁇ R max ⁇ ( power ) , arg ⁇ ⁇ max R R ⁇ 307.2 ⁇ kbps ⁇ ⁇ R
  • SCH Assigned is an indicator function for the current scheduling period
  • R assigned is the rate assigned on the R-SCH during the current scheduling period and MS is supposed to transmit on the R-SCH until the ActionTime of the next assignment.
  • PL_FCH_OHD is physical layer fundamental channel overhead.
  • PL_SCH_OHD is physical layer supplemental channel overhead.
  • R max (power) is the maximum rate that the MS can support given its power limit. If the maximum requested rate by the MS is determined according to an embodiment described herein, R max (power) is the maximum rate reported in the last received SCRM/SCRMM message. If the maximum rate is determined according to a different embodiment, the scheduler can estimate R max (power) from the reported information and MS capability to transmit at the assigned rate. For example, in another embodiment, the scheduler can estimate R max (power) according to the equation below:
  • R assigned is the rate assigned during current scheduling period and R tx is the rate transmitted on R-SCH during current scheduling period.
  • R assigned +1 is rate one higher than what is currently assigned to the MS and
  • R assigned ⁇ 1 is a rate one lower than what is currently assigned to the MS.
  • R(reported) is the maximum rate reported by the MS in rate request message like SCRM/SCRMM. The above method may be used when R(reported) by the MS is not related to the maximum rate that MS is capable of transmitting at its current power constraints.
  • Arg max provides the maximum supportable rate by the scheduler.
  • the sector capacity at the jth sector is estimated from the measured MSs' Sinrs.
  • the Sinr is the average pilot-weighted combined Sinr per antenna.
  • the combining per power-control group (PCG) is pilot-weighted combining over multiple fingers and different antennas of the sector of interest.
  • the combining per power-control group (PCG) is maximal ratio combining over multiple fingers and different antennas. The combining is not over different sectors in the case of a softer-handoff MS.
  • the averaging can be over the duration of a frame or it can be a filtered average over a couple of PCGs.
  • Load j ⁇ j ⁇ ActiveSet ⁇ ( i ) ⁇ ⁇ Sin ⁇ ⁇ r j ⁇ ( R i , E ⁇ [ R FCH ] ) 1 + Sin ⁇ ⁇ r j ⁇ ( R i , E ⁇ [ R FCH ] )
  • Sinr j (R i , E[R FCH ]) is the estimated Sinr if the MS is assigned a rate R i on R-SCH and E[R FCH ] is the expected rate of transmission on the R-FCH.
  • the measured pilot Sinr (frame average or filtered average pilot Sinr averaged over two antennas) be (E cp /N t ) j , while it is assigned a rate of Rassign(SCH) on the R-SCH. Then,
  • C/P can be an average (CQICH/Pilot) or a (Control-to-pilot) ratio.
  • the voice-activity factor ( ⁇ ) could be used to estimate the average received Sinr as follows:
  • ROT j 1 ( 1 - Load j ) ⁇ ( 1 + I oc / N o ) .
  • the scheduler is multi-level scheduler, with different levels of the scheduler elements scheduling different MSs, the sector capacity needs to be distributed across different scheduling elements.
  • BSC BSC
  • Load j ( BTS ) ⁇ 1 ⁇ (1 +I oc /N o )/ROT(max) ⁇ Load j ( BSC ) Scheduling Algorithm
  • Prioritization of mobiles can be based on one or more of the varied reported or measured quantities.
  • a priority function that increases system throughput can have one or many of the following characteristics:
  • a pilot Ecp/Nt set-point that the base-station maintains for power control outer-loop could be used.
  • a lower Ecp/Nt (measured or set-point) implies a better instantaneous channel and hence increased throughput if channel variations are small.
  • pilot Ecp/Nt (measured or Set-point) can be weighted by an SHO factor to reduce the other-cell interference. For example, if average received pilot powers at all SHO legs is available,
  • ⁇ k 1 M ⁇ P i rx ⁇ ( k ) / P i rx ⁇ ( j ) can serve as an SHO factor, where P i rx (k) is the average received pilot power of the I th mobile by the k th base station in its Active Set, P i rx (j) is the average received pilot power of the I th mobile by the strongest, j th base station in its Active Set, and M is the number of base stations in the mobile's Active Set (set of base stations in soft handoff with the mobile)
  • Propagation Loss can be calculated from the measured received pilot power if the mobile periodically reports transmitted pilot power in the request message like SCRM. Or otherwise, it can estimate which mobile sees better propagation loss based on the reported strength of the FL Ecp/Nt
  • Velocity based priority function If the base-station estimated velocity of a moving mobile using some velocity estimation algorithm, then stationary mobiles are given the highest priority, and middle velocity mobiles are given the least priority.
  • Priority function based on above measured or reported parameters is an unfair priority function aimed at increasing the reverse-link system throughput.
  • priority can be increased or decreased by a cost metric that is decided by what grade of service a user is registered for.
  • a certain degree of fairness could be provided by a Fairness factor. Two different kinds of Fairness are described below:
  • PF Proportional Fairness
  • RRF Round Robin Fairness
  • Fairness can be used together with Priority function to determine the priority of the mobile in the Prioritization list.
  • Priority When Fairness is used alone to prioritize mobiles, it provides proportional fair or round-robin scheduling that is throughput optimal for reverse-link as well as allowing multiple transmissions for full capacity utilization.
  • Fairness factor can be used to trade-off fairness for system throughput. As ⁇ increases, fairness gets worse. Schedulers with higher ⁇ yield higher throughput.
  • the MS rate requests are prioritized. Associated with each MS is a priority count PRIORITY. PRIORITY of an MS is initialized to 0 in the beginning. When a new MS enters the system with sector j as the primary sector, its PRIORITY is set equal to the min ⁇ PRIORITY i , ⁇ i such that MS i has sector j as the primary sector ⁇
  • Load constraint be Load j ⁇ max Load, such that the rise-over-thermal overshoot above a certain threshold is limited.
  • max Load value 0.45 will be used by the scheduler.
  • the capacity consumed due to pilot transmissions and transmissions on fundamental channels (due to voice or data) is computed and the available capacity is computed as
  • Cav ⁇ ( j ) max ⁇ ⁇ Load - ⁇ j ⁇ ActiveSet ⁇ Sin ⁇ ⁇ r j ⁇ ( 0 , E ⁇ [ R FCH ] ) 1 + Sin ⁇ ⁇ r j ⁇ ( 0 , E ⁇ [ R FCH ] )
  • max Load is the maximum Load for which rise-over-thermal outage criteria specified is satisfied.
  • MS rate requests are prioritized in decreasing order of their PRIORITY. So MSs with highest PRIORITY are at the top of the queue. When multiple MSs with identical PRIORITY values are at the top of the queue, the scheduler makes a equally-likely random choice among these MSs.
  • the data-only MS at the kth position in the queue is assigned the rate R k given by
  • R k min ⁇ ⁇ R max k ⁇ ( s ) , argmax R ⁇ [ R ⁇ Cav ⁇ ( j ) - Sin ⁇ ⁇ r j ⁇ ( R , E ⁇ [ R FCH ] ) 1 + Sin ⁇ ⁇ r j ⁇ ( R , E ⁇ [ R FCH ] ) + Sin ⁇ ⁇ r j ⁇ ( 0 , E ⁇ [ R FCH ] ) 1 + Sin ⁇ ⁇ r j ⁇ ( 0 , E ⁇ [ R FCH ] ) ⁇ 0 ; ⁇ j ⁇ ActiveSet ⁇ ( k ) ] ⁇
  • the available capacity is updated to:
  • Cav ⁇ ( j ) ⁇ Cav ⁇ ( j ) - Sin ⁇ ⁇ r j ⁇ ( R k , E ⁇ [ R FCH ] ) 1 + Sin ⁇ ⁇ r j ⁇ ( R k , E ⁇ [ R FCH ] ) + ⁇ Sin ⁇ ⁇ r j ⁇ ( 0 , E ⁇ [ R FCH ] ) 1 + Sin ⁇ ⁇ r j ⁇ ( 0 , E ⁇ [ R FCH ] ) ; ⁇ j ⁇ ActiveSet ⁇ ( k )
  • FIG. 5 is a flowchart of a scheduling process in an embodiment.
  • a mobile i and a mobile j send a request rate to a scheduler in step 300 .
  • a mobile i and a mobile j send a request rate to a scheduler in step 310 .
  • the scheduler creates a list of mobiles (Mi) that it will schedule. Then, the scheduler creates a list of base stations (BTSs) the scheduler is responsible for scheduling. Also, the scheduler creates a list of mobiles that are not in the list of base stations the scheduler is responsible for scheduling and that are in soft handoff (SHO) with base stations the scheduler is responsible for scheduling (U i ). The flow of control goes to step 302 .
  • BTSs base stations
  • SHO soft handoff
  • the BTS supplies the scheduler with a reported DTX by a mobile.
  • a check is made to determine whether a mobile, which is scheduled, reported a DTX, in which case resources can be reallocated from the scheduled mobile if a i is less than the last schedule time minus 1 plus a schedule period. ai is current time. t i is the last scheduled time.
  • the resources are reallocated before the scheduled time. The rate of the scheduled mobile is reset and the available capacity is reallocated to other requesting mobiles.
  • a check is made to determine whether the current time has reached a scheduled point. If the current time has not reached a scheduled point, then the flow of control goes to step 302 . If the current time has reached a scheduled point, then the flow of control goes to step 308 .
  • step 308 the scheduler is supplied by the BTSs with an estimate of loc and piolot Ec/Nt of ⁇ M i ⁇ union ⁇ U i ⁇ .
  • the capacity of each Bi is initialized given the loc estimates. For each Bi, subtracting from the available capacity, the voice users contribution to capacity given voice activity and autonomous transmission on R-FCH/R-DCCH. The measurement used for the amount subtracted is the pilot Ecp/Nt. Also for each Bi, subtracted from the available capacity is the expected contribution by ⁇ Ui ⁇ . Then, the flow of control goes to step 310 .
  • pilot Ec/Nt of ⁇ M i ⁇ and set-point and Rx pilot power are provided to the scheduler and are used by a prioritization function.
  • the mobile rate requests are prioritized in a prioritization queue.
  • a prioritization function is used in which measured and reported information is used.
  • a prioritization function provides for fairness. The flow of control goes to step 312 .
  • a maximum rate is assigned to a highest priority mobile such that a capacity constraint of all BSs in soft handoff is not violated.
  • the maximum rate is the maximum rate supported by the highest priority mobile.
  • the highest priority mobile is placed last in the prioritization queue.
  • the available capacity is updated by subtracting the mobile contribution to capacity at an assigned maximum rate. The flow of control goes to step 314 .
  • step 314 a check is made to determine whether all the mobiles in the ⁇ Mi ⁇ list have been scanned. If all the mobiles in the ⁇ Mi ⁇ list have not been scanned, then the flow of control goes to step 312 . If all the mobiles in the ⁇ Mi ⁇ list have been scanned, then the flow of control goes to step 302 .
  • FIG. 6 is a block diagram of a BS 12 in accordance with an embodiment.
  • data for the downlink is received and processed (e.g., formatted, encoded, and so on) by a transmit (TX) data processor 612 .
  • TX transmit
  • the processing for each channel is determined by the set of parameters associated with that channel, and in an embodiment, may be performed as described by standard documents.
  • the processed data is then provided to a modulator (MOD) 614 and further processed (e.g., channelized, scrambled, and so on) to provide modulated data.
  • MOD modulator
  • a transmitter (TMTR) unit 616 then converts the modulated data into one or more analog signals, which are further conditions (e.g., amplifies, filters, and frequency upconverts) to provide a downlink signal.
  • the downlink signal is routed through a duplexer (D) 622 and transmitted via an antenna 624 to the designated MS(s).
  • FIG. 7 is a block diagram of an MS 106 in accordance with an embodiment.
  • the downlink signal is received by an antenna 712 , routed through a duplexer 714 , and provided to a receiver (RCVR) unit 722 .
  • Receiver unit 722 conditions (e.g., filters, amplifies, and frequency downconverts) the received signal and further digitizes the conditioned signal to provide samples.
  • a demodulator 724 then receives and processes (e.g., descrambles, channelizes, and data demodulates) the samples to provide symbols.
  • Demodulator 724 may implement a rake receiver that can process multiple instances (or multipath components) of the received signal and provide combined symbols.
  • a receive (RX) data processor 726 then decodes the symbols, checks the received packets, and provides the decoded packets.
  • the processing by demodulator 724 and RX data processor 726 is complementary to the processing by modulator 614 and TX data processor 612 , respectively.
  • data for the uplink, pilot data, and feedback information are processed (e.g., formatted, encoded, and so on) by a transmit (TX) data processor 742 , further processed (e.g., channelized, scrambled, and so on) by a modulator (MOD) 744 , and conditioned (e.g., converted to analog signals, amplified, filtered, and frequency upconverted) by a transmitter unit 746 to provide an uplink signal.
  • TX transmit
  • MOD modulator
  • the uplink signal is routed through duplexer 714 and transmitted via antenna 712 to one or more BSs 12 .
  • the uplink signal is received by antenna 624 , routed through duplexer 622 , and provided to a receiver unit 628 .
  • Receiver unit 628 conditions (e.g., frequency downconverts, filters, and amplifies) the received signal and further digitizes the conditioned signal to provide a stream of samples.
  • BS 12 includes a number of channel processors 630 a through 630 n .
  • Each channel processor 630 may be assigned to process the sample steam for one MS to recover the data and feedback information transmitted on the uplink by the assigned MS.
  • Each channel processor 630 includes a (1) demodulator 632 that processes (e.g., descrambles, channelizes, and so on) the samples to provide symbols, and (2) a RX data processor 634 that further processes the symbols to provide the decoded data for the assigned MS.
  • Controllers 640 and 730 control the processing at the BS and the MS, respectively. Each controller may also be designed to implement all or a portion of the scheduling process. Program codes and data required by controllers 640 and 730 may be stored in memory units 642 and 732 , respectively.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, a computer-readable medium or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

A method and apparatus for determining multilevel scheduling of a reverse link communication. An embodiment includes estimating capacity on the reverse link based on the sector load. An embodiment includes estimating load contribution based on an estimated signal-to-noise ratio. An embodiment includes estimating capacity available to schedule based on a ratio of measured other-cell interference over thermal noise, and based on sector load. An embodiment includes a method of distributing sector capacity across a base station (BS) and a base station controller (BSC). An embodiment includes determining priority of a station based on the pilot energy over noise plus interference ratio, the soft handoff factor, the fairness value, and the fairness factor α.

Description

The present application for Patent claims priority of U.S. Provisional Application No. 60/409,820, filed Sep. 10, 2002, assigned to the assignee hereof and hereby expressly incorporated by reference herein.
REFERENCE TO CO-PENDING APPLICATIONS FOR PATENT
The present invention is related to the following Applications for Patent in the U.S. Patent & Trademark Office:
“System and Method for Rate Assignment” by Avinash Jain, having Ser. No. 10/640,777, filed concurrently herewith and assigned to the assignee hereof, and which is expressly incorporated by reference herein.
BACKGROUND
1. Field
The present disclosed embodiments relate generally to wireless communications, and more specifically to reverse link rate scheduling in a communication system having a variable data transmission rate.
2. Background
The field of communications has many applications including, e.g., paging, wireless local loops, Internet telephony, and satellite communication systems. An exemplary application is a cellular telephone system for mobile subscribers. (As used herein, the term “cellular” system encompasses both cellular and personal communications services (PCS) system frequencies.) Modern communication systems designed to allow multiple users to access a common communications medium have been developed for such cellular systems. These modern communication systems may be based on code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), space division multiple access (SDMA), polarization division multiple access (PDMA), or other modulation techniques known in the art. These modulation techniques demodulate signals received from multiple users of a communication system, thereby enabling an increase in the capacity of the communication system. In connection therewith, various wireless systems have been established including, e.g., Advanced Mobile Phone Service (AMPS), Global System for Mobile communication (GSM), and some other wireless systems.
In FDMA systems, the total frequency spectrum is divided into a number of smaller sub-bands and each user is given its own sub-band to access the communication medium. Alternatively, in TDMA systems, each user is given the entire frequency spectrum during periodically recurring time slots. A CDMA system provides potential advantages over other types of systems, including increased system capacity. In CDMA systems, each user is given the entire frequency spectrum for all of the time, but distinguishes its transmission through the use of a unique code.
A CDMA system may be designed to support one or more CDMA standards such as (1) the “TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System” (the IS-95 standard), (2) the standard offered by a consortium named “3rd Generation Partnership Project” (3GPP) and embodied in a set of documents including Document Nos. 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214 (the W-CDMA standard), (3) the standard offered by a consortium named “3rd Generation Partnership Project 2” (3GPP2) and embodied in “TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems” (the IS-2000 standard), and (4) some other standards.
In the above named CDMA communication systems and standards, the available spectrum is shared simultaneously among a number of users, and techniques such as soft handoff are employed to maintain sufficient quality to support delay-sensitive services, such as voice. Data services are also available. More recently, systems have been proposed that enhance the capacity for data services by using higher order modulation, very fast feedback of Carrier to Interference ratio (C/I) from a mobile station, very fast scheduling, and scheduling for services that have more relaxed delay requirements. An example of such a data-only communication system using these techniques, is the high data rate (HDR) system that conforms to the TIA/EIA/IS-856 standard (the IS-856 standard).
In contrast to the other above named standards, an IS-856 system uses the entire spectrum available in each cell to transmit data to a single user at one time. One factor used in determining which user is served is link quality. By using link quality as a factor for selecting which user is served, the system spends a greater percentage of time sending data at higher rates when the channel is good, and thereby avoids committing resources to support transmission at inefficient rates. The net effect is higher data capacity, higher peak data rates, and higher average throughput.
Systems can incorporate support for delay-sensitive data, such as voice channels or data channels supported in the IS-2000 standard, along with support for packet data services such as those described in the IS-856 standard. One such system is described in a proposal submitted by LG Electronics, LSI Logic, Lucent Technologies, Nortel Networks, QUALCOMM Incorporated, and Samsung to the 3rd Generation Partnership Project 2 (3GPP2). The proposal is detailed in documents entitled “Updated Joint Physical Layer Proposal for 1xEV-DV”, submitted to 3GPP2 as document number C50-20010611-009, Jun. 11, 2001; “Results of L3NQS Simulation Study”, submitted to 3GPP2 as document number C50-20010820-011, Aug. 20, 2001; and “System Simulation Results for the L3NQS Framework Proposal for cdma2000 1x-EVDV”, submitted to 3GPP2 as document number C50-20010820-012, Aug. 20, 2001. These are hereinafter referred to as the 1xEV-DV proposal.
Multi-level scheduling may be useful for more efficient capacity utilization on the reverse link.
SUMMARY
Embodiments disclosed herein address the above stated needs by providing a method and system for multilevel scheduling for rate assignment in a communication system.
In an aspect, a method for estimating capacity used on a reverse link, comprises measuring a plurality of signal-to-noise ratios at a station for a plurality of rates, determining sector load based on the measured plurality of signal-to-noise ratios, an assigned transmission rate, and an expected transmission rate, and estimating capacity on the reverse link based on the sector load.
In an aspect, a method of estimating load contribution to a sector antenna, comprises assigning a transmission rate Ri on a first communication channel, determining an expected rate of transmission E[R] on a second communication channel, estimating a signal-to-noise ratio of a station for the assigned transmission rate Ri on the first communication channel and the expected rate of transmission E[R] on a second communication channel, and estimating the load contribution based on the estimated signal-to-noise ratio.
In an aspect, a method for estimating capacity available to schedule, comprises measuring other-cell interference during a previous transmission (Ioc), determining thermal noise (No), determining sector load (Loadj), and determining rise-over-thermal (ROTj) based on the ratio of the measured other-cell interference over thermal noise, and based on the sector load.
In another aspect, a method of distributing sector capacity across a base station (BS) and a base station controller (BSC), comprises measuring other-cell interference during a previous transmission (Ioc), determining thermal noise (No), determining a maximum rise-over-thermal (ROT(max)), determining an estimated assigned load at the BSC (Loadj(BSC)), and determining a sector capacity distributed to the base station based on the ratio of the measured other-cell interference over thermal noise, the maximum rise-over-thermal, and the estimated assigned load at the BSC.
In yet another aspect, a method of determining priority of a station, comprises determining pilot energy over noise plus interference ratio (Ecp/Nt), determining a soft handoff factor (SHOfactor), determining a fairness value (F), determining a proportional fairness value (PF), determining a fairness factor α, and determining a maximum capacity utilization based on the pilot energy over noise plus interference ratio, the soft handoff factor, the fairness value, and the fairness factor α.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 exemplifies an embodiment of a wireless communication system with three mobile stations and two base stations;
FIG. 2 shows set point adjustment due to rate transitions on R-SCH in accordance with an embodiment.
FIG. 3 shows scheduling delay timing in accordance with an embodiment;
FIG. 4 shows parameters associated in mobile station scheduling on a reverse link;
FIG. 5 is a flowchart of a scheduling process in accordance with an embodiment;
FIG. 6 is a block diagram of a base station in accordance with an embodiment; and
FIG. 7 is a block diagram of a mobile station in accordance with an embodiment.
DETAILED DESCRIPTION
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
A wireless communication system may comprise multiple mobile stations and multiple base stations. FIG. 1 exemplifies an embodiment of a wireless communication system with three mobile stations 10A, 10B and 10C and two base stations 12. In FIG. 1, the three mobile stations are shown as a mobile telephone unit installed in a car 10A, a portable computer remote 10B, and a fixed location unit 10C such as might be found in a wireless local loop or meter reading system. Mobile stations may be any type of communication unit such as, for example, hand-held personal communication system units, portable data units such as a personal data assistant, or fixed location data units such as meter reading equipment. FIG. 1 shows a forward link 14 from the base station 12 to the mobile stations 10 and a reverse link 16 from the mobile stations 10 to the base stations 12.
As a mobile station moves through the physical environment, the number of signal paths and the strength of the signals on these paths vary constantly, both as received at the mobile station and as received at the base station. Therefore, a receiver in an embodiment uses a special processing element called a searcher element, that continually scans the channel in the time domain to determine the existence, time offset, and the signal strength of signals in the multiple path environment. A searcher element is also called a search engine. The output of the searcher element provides the information for ensuring that demodulation elements are tracking the most advantageous paths.
A method and system for assigning demodulation elements to a set of available signals for both mobile stations and base stations is disclosed in U.S. Pat. No. 5,490,165 entitled “DEMODULATION ELEMENT ASSIGNMENT IN A SYSTEM CAPABLE OF RECEIVING MULTIPLE SIGNALS,” issued Feb. 6, 1996, and assigned to the Assignee of the present.
When multiple mobiles transmit simultaneously, the radio transmission from one mobile acts as interference to the other mobile's radio transmission, thereby limiting throughput achievable on the reverse link (also called the uplink). For efficient capacity utilization on the reverse link, centralized scheduling at the base station has been recommended in U.S. Pat. No. 5,914,950 entitled “METHOD AND APPARATUS FOR REVERSE LINK RATE SCHEDULING,” issued Jun. 22, 1999, and U.S. Pat. No. 5,923,650 entitled “METHOD AND APPARATUS FOR REVERSE LINK RATE SCHEDULING,” issued Jul. 13, 1999, both of which are assigned to the Assignee of the present.
In an exemplary embodiment, multi-level scheduling is performed. In an embodiment, multi-level scheduling comprises base station level scheduling, selector level scheduling, and/or network level scheduling.
In an embodiment, a detailed design of a flexible scheduling algorithm is based on fundamental theoretical principles that limit reverse-link system capacity, while using existing network parameters available or measured by a base station.
In an embodiment, base-station estimation of each mobile's capacity contribution is based on measured signal-to-noise ratio (Snr) or pilot energy over noise plus interference ratio (Ecp/(Io+No)), collectively called (Ecp/Nt), given the current rate of transmission. Measurement of pilot Ecp/Nt from all fingers in multi-path scenario is disclosed in U.S. application Ser. No. 10/011,519 entitled “METHOD AND APPARATUS FOR DETERMINING REVERSE LINK LOAD LEVEL FOR REVERSE LINK DATA RATE SCHEDULING IN A CDMA COMMUNICATION SYSTEM,” filed Nov. 5, 2001, and assigned to the assignee of the present invention.
From the measurement of pilot Ecp/Nt at current rates on different channels, capacity contribution of a mobile is estimated at new rates on these channels.
In an embodiment, mobile requests for rate allocation are prioritized. A list of all mobiles that a scheduler is responsible for scheduling is maintained depending on which level the scheduling is performed. In an embodiment, there is one list for all the mobiles. Alternatively, there are two lists for all mobiles. If the scheduler is responsible for scheduling all the base stations a mobile has in its Active Set, then the mobile belongs to a First List. A separate Second List may be maintained for those mobiles that have a base station in the Active Set that the scheduler is not responsible for scheduling. Prioritization of mobile rate requests is based on various reported, measured or known parameters that maximize system throughput, while allowing for mobile fairness as well as their importance status.
In an embodiment, Greedy Filling is used. In Greedy Filling, a highest priority mobile obtains the available sector capacity. A highest rate that can be allocated to the mobile is determined as the highest rate that the mobile can transmit at. In an embodiment, the highest rates are determined based on measured SNR. In an embodiment, the highest rates are determined based on Ecp/Nt. In an embodiment, the highest rates are determined based also on limiting parameters. In an embodiment, the highest rate is determined by a mobile's buffer estimate. The choice of a high rate decreases the transmission delays and decreases interference that the transmitting mobile observes. Remaining sector capacity can be allocated to the next lower priority mobile. This methodology helps in maximizing the gains due to interference reduction while maximizing the capacity utilization.
By the choice of different prioritization functions, the Greedy Filling algorithm can be tuned to the conventional round-robin, proportionally fair or most unfair scheduling based on a specified cost metric. Under the class of scheduling considered, the above method helps aid maximum capacity utilization.
The mobile station initiates a call by transmitting a request message to the base station. Once the mobile receives a channel assignment message from base station, it can use logical dedicated channel for further communication with the base-station. In a scheduled system, when the mobile station has data to transmit, it can initiate the high-speed data transmission on the reverse link by transmitting a request message on the reverse link.
Rate request and rate allocation structure currently specified in IS 2000 Release C is considered. However, it would be apparent to those skilled in the art that the scope of the design is not limited to IS 2000. It would be apparent to those skilled in the art, that embodiments may be implemented in any multiple access system with a centralized scheduler for rate allocation.
Mobile Station Procedures
In an embodiment, mobile stations (MS) at least support the simultaneous operation of the following channels:
1. Reverse Fundamental Channel (R-FCH)
2. Reverse Supplemental Channel (R-SCH)
Reverse Fundamental Channel (R-FCH): When a voice-only MS has an active voice-call, it is carried on the R-FCH. For data-only MS, R-FCH carries signaling and data. Exemplary R-FCH channel frame size, coding, modulation and interleaving are specified in TIA/EIA-IS-2000.2, “Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System,” June, 2002.
In an exemplary embodiment, R-FCH at a null rate is used for outer-loop power control (PC), when an MS is not transmitting voice, data or signaling on R-FCH. Null rate means a lowest rate. R-FCH at a lowest rate may be used to maintain outer-loop power control even when there is no transmission on R-SCH.
Reverse Supplemental Channel (R-SCH): The MS supports one R-SCH for packet data transmissions in accordance with an embodiment. In an exemplary embodiment, the R-SCH uses rates specified by radio configuration (RC3) in TIA/EIA-IS-2000.2.
In an embodiment where only single data channel (R-SCH) is supported, the signaling and power control can be done on a control channel. Alternatively, signaling can be carried over R-SCH and outer-loop PC can be carried on R-SCH whenever it is present.
In an embodiment, the following procedures are followed by mobile stations:
    • Multiple Channel Adjustment Gain
    • Discontinuous Transmission and Variable Supplemental Adjustment Gain
    • Overhead transmission of R-CQICH and other control channels
    • Closed-loop Power Control (PC) command
    • Rate request using a Supplemental Channel Request Mini Message (SCRMM) on a 5-ms R-FCH or a Supplemental Channel Request Message (SCRM) on a 20-ms R-FCH
Multiple Channel Adjustment Gain: When the R-FCH and the R-SCH are simultaneously active, multiple channel gain table adjustment as specified in TIA/EIA-IS-2000.2 is performed to maintain correct transmission power of the R-FCH. The traffic-to-pilot (T/P) ratios for all channel rate are also specified in the Nominal Attribute Gain table in appendix A as Nominal Attribute Gain values. Traffic-to-pilot ratio means the ratio of traffic channel power to pilot channel power.
Discontinuous Transmission and Variable Supplemental Adjustment Gain: The MS may be assigned an R-SCH rate by a scheduler during each scheduling period. When the MS is not assigned an R-SCH rate, it will not transmit anything on the R-SCH. If the MS is assigned to transmit on the R-SCH, but it does not have any data or sufficient power to transmit at the assigned rate, it disables transmission (DTX) on the R-SCH. If the system allows it, the MS may be transmitting on the R-SCH at a rate lower than the assigned one autonomously. In an embodiment, this variable-rate R-SCH operation is accompanied by the variable rate SCH gain adjustment as specified in TIA/EIA-IS-2000.2. R-FCH T/P is adjusted assuming the received pilot SNR is high enough to support the assigned rate on R-SCH.
Overhead transmission of R-CQICH and other control channels: A data-only MS transmits extra power on CQICH and/or other control channels at a CQICH-to-pilot (or control-to-pilot) (C/P) ratio with multi-channel gain adjustment performed to maintain correct transmission power of the R-CQICH (or control channels). (C/P) value may be different for MS in soft-handoff from those not in soft handoff. (C/P) represent the ratio of total power used by the control channels to the pilot power without multichannel gain adjustment.
Closed-loop Power Control (PC) command: In an embodiment, an MS receives one PC command per power control group (PCG) at a rate of 800 Hz from all base stations (BSs) in the MS's Active Set. A PCG is a 1.25 ms interval on the Reverse Traffic Channel and the Reverse Pilot Channel. Pilot power is updated by +−1 dB based on an “Or-of-Downs” rule, after combining of the PC commands from co-located BSs (sectors in a given cell).
Rate request is done with one of two methods. In a first method, rate request is performed using a Supplemental Channel Request Mini Message (SCRMM) on a 5-ms R-FCH as specified in TIA/EIA-IS-2000.5.
Supplemental Channel Request Mini Message (SCRMM) on a 5-ms R-FCH: In an embodiment, each SCRMM transmission is 24 bits (or 48 bits with the physical layer frame overhead in each 5-ms FCH frame at 9.6 kbps).
The MS sends the SCRMM in any periodic interval of 5 ms. If a 5-ms SCRMM needs to be transmitted, the MS interrupts its transmission of the current 20-ms R-FCH frame, and instead sends a 5-ms frame on the R-FCH. After the 5-ms frame is sent, any remaining time in the 20-ms period on the R-FCH is not transmitted. The discontinued transmission of the 20-ms R-FCH is re-established at the start of next 20-ms frame.
In a second method, rate request is performed using a Supplemental Channel Request Message (SCRM) on a 20-ms R-FCH.
Depending on different embodiments, different information can be sent on a request message. In IS2000, Supplemental Channel Request Mini Message (SCRMM) or a Supplemental Channel Request Message (SCRM) is sent on the reverse-link for rate request.
In an embodiment, the following information shall be reported by the MS to the BS on each SCRM/SCRMM transmission:
    • Maximum Requested Rate
    • Queue Information
Maximum Requested Rate: It can be the maximum data rate an MS is capable of transmitting at the current channel conditions leaving headroom for fast channel variations. An MS may determine its maximum rate using the following equation:
R max ( power ) = arg max R { R : Pref ( R ) * NormAvPiTx ( PCG i ) * ( 1 + ( T / P ) R + ( ( T / P ) 9.6 k + C / P ) ( Pref ( 9.6 k ) Pref ( R ) ) ) Tx ( max ) / Headroom_Req } NormAvPiTx ( PCG i ) = α Headroom TxPiPwr ( PCG i ) Pref ( Rassigned ) + ( 1 - α Headroom ) × NormAvPiTx ( PCG i - 1 ) ,
where Pref(R) is the “Pilot Reference Level” value specified in the Attribute Gain Table in TIA/EIA-IS-2000.2, TxPiPwr(PCGi) is the actual transmit pilot power after power constraints on the MS side are applied in case of power outage, and NormAvPiTx(PCGi) is the normalized average transmit pilot power. An MS may be more conservative or aggressive in its choice of headroom and determination of maximum requested rate depending on what is permitted by the BS.
In an embodiment, the MS receives grant information by one of the two following methods:
Method a: Enhanced supplemental channel assignment mini message (ESCAMM) from BS on 5-ms forward dedicated control channel (F-DCCH) with rate assignment for specified scheduling duration.
Method b: Enhanced supplemental channel assignment message (ESCAM) from BS on forward physical data channel (F-PDCH) with rate assignment for specified scheduling duration.
The assignment delays depend on the backhaul and transmission delays and are different depending on which method is used for rate grant. During the scheduled duration, the following procedures are performed:
    • In an embodiment where R-FCH is used to transmit autonomous data and for outer-loop PC, the MS transmits data at an autonomous rate of 9600 bps if it has some data in its buffer. Otherwise, the MS sends a null R-FCH frame at a rate of 1500 bps.
    • The MS transmits at the assigned R-SCH rate in a given 20-ms period if the MS has more data than can be carried on the R-FCH and if the MS has decided that it would have sufficient power to transmit at the assigned rate (keeping headroom for channel variations). Otherwise, there is no transmission on the R-SCH during the frame or the MS transmits at a lower rate which satisfies the power constraint. The MS decides that it has sufficient power to transmit on the R-SCH at the assigned rate R in a given 20-ms period Encode_Delay before the beginning of that 20-ms period if the following equation is satisfied:
Pref ( R ) * NormAvPiTx ( PCG i ) [ 1 + ( T / P ) R + ( ( T / P ) R FCH + ( C / P ) ) ( Pref ( R FCH ) Pref ( R ) ) ] < Tx ( max ) Headroom_Tx
where Pref(R) is the “Pilot Reference Level” value specified in the Attribute Gain Table in TIA/EIA-IS-2000.2, NormAvPiTx(PCGi) is the normalized average transmit pilot power, (T/P)R is the traffic to pilot ratio that corresponds to rate R and for all channel rates is specified in the Nominal Attribute Gain table in appendix A as Nominal Attribute Gain values, (T/P)RFCH is the traffic to pilot ratio on FCH, (C/P) is the ratio of total power used by the control channels to the pilot power without multichannel gain adjustment, Tx(max) is the maximum MS transmit power, and Headroom_Tx is the headroom the MS keeps to allow for channel variation.
The DTX determination is done once every frame, Encode_Delay PCGs before the R-SCH transmission. If the MS disables transmission on the R-SCH, it transmits at the following power:
TxPwr ( PCG i ) = PiTxPwr ( PCG i ) [ 1 + ( ( T / P ) R FCH + ( C / P ) ) ( Pref ( R FCH ) Pref ( R ) ) ]
An MS encodes the transmission frame Encode_Delay before the actual transmission.
Base Station Procedures
In an embodiment, the BS performs the following essential functions:
    • Decoding of R-FCH/R-SCH
    • Power control
      Decoding of R-FCH/R-SCH
When there are multiple traffic channels transmitted by the MS simultaneously, each of the traffic channels is decoded after correlating with the corresponding Walsh sequence.
Power-control
Power control in a CDMA system is essential to maintain the desired quality of service (QoS). In IS-2000, the RL pilot channel (R-PICH) of each MS is closed-loop power controlled to a desired threshold. At the BS, this threshold, called power control set point, is compared against the received Ecp/Nt to generate power control command (closed-loop PC), where Ecp is the pilot channel energy per chip. To achieve the desired QoS on the traffic channel, the threshold at the BS is changed with erasures on the traffic channel, and has to be adjusted when the data rate changes.
Set point corrections occur due to:
    • Outer-loop power control
    • Rate Transitions
Outer-loop power control: If the R-FCH is present, the power control set point is corrected based on erasures of the R-FCH. If R-FCH is not present, the outer-loop PC is corrected based on erasures of some control channel or R-SCH when the MS is transmitting data.
Rate Transitions: Different data rates on the R-SCH require different optimal set point of the reverse pilot channel. When data rate changes on the R-SCH, the BS changes the MS's received Ecp/Nt by the Pilot Reference Levels (Pref(R)) difference between the current and the next R-SCH data rate. In an embodiment, the Pilot Reference Level for a given data rate R, Pref(R), is specified in the Nominal Attribute Gain Table in C.S0002-C. Since the closed-loop power control brings the received pilot Ecp/Nt to the set point, the BS adjusts the outer loop set point according to the next assigned R-SCH data rate:
Δ=Pref(Rnew)−Pref(Rold)
Set point adjustment is done ┌Δ┐ PCGs in advance of the new R-SCH data rate if Rnew>Rold. Otherwise, this adjustment occurs at the R-SCH frame boundary. The pilot power thus ramps up or down to the correct level approximately in 1 dB step sizes of the closed loop as shown in FIG. 2.
FIG. 2 shows set point adjustment due to rate transitions on R-SCH in accordance with an embodiment. The vertical axis of FIG. 2 shows a setpoint of a base station controller (BSC) 202, a base transceiver subsystem (BTS) receiver pilot power 204, and the mobile station rate 206. The MS rate is initially at R 0 208. When the R-SCH data rate increases, i.e., R1>R0 210, then the setpoint is adjusted according to Pref(R1)-Pref(R0) 212. When the R-SCH data rate decreases, i.e., R2<R1 214, then the setpoint is adjusted according to Pref(R2)-Pref(R1) 216.
Scheduler Procedures
A scheduler may be collocated with the BSC, or BTS or at some element in the network layer. A Scheduler may be multilevel with each part responsible for scheduling those MSs that share the lower layer resources. For example, the MS not in soft-handoff (SHO) may be scheduled by BTS while the MS in SHO may be scheduled by part of the scheduler collocated with BSC. The reverse-link capacity is distributed between BTS and BSC for the purpose of scheduling.
In an embodiment, the following assumptions are used for the scheduler and various parameters associated with scheduling in accordance with an embodiment:
1. Centralized Scheduling: The scheduler is co-located with the BSC, and is responsible for simultaneous scheduling of MSs across multiple cells.
2. Synchronous Scheduling: All R-SCH data rate transmissions are time aligned. All data rate assignments are for the duration of one scheduling period, which is time aligned for all the MSs in the system. The scheduling duration period is denoted SCH_PRD.
3. Voice and Autonomous R-SCH transmissions: Before allocating capacity to transmissions on R-SCH through rate assignments, the scheduler looks at the pending rate requests from the MSs and discounts for voice and autonomous transmissions in a given cell.
4. Rate Request Delay: The uplink request delay associated with rate requesting via SCRM/SCRMM is denoted as D_RL(request). It is the delay from the time the request is sent to when it is available to the scheduler. D_RL(request) includes delay segments for over-the-air transmission of the request, decode time of the request at the cells, and backhaul delay from the cells to the BSC, and is modeled as a uniformly distributed random variable.
5. Rate Assignment Delay: The downlink assignment delay associated with rate assignment via ESCAM/ESCAMM is denoted as D_FL(assign). It is the time between the moment the rate decision is made and the time the MS receiving the resultant assignment. D_FL(assign) includes backhaul delay from the scheduler to the cells, over-the-air transmission time of the assignment (based on method chosen), and its decode time at the MS.
6. Available Ecp/Nt Measurement: The Ecp/Nt measurement used in the scheduler shall be the latest available to it at the last frame boundary. The measured Ecp/Nt is reported to the scheduler by the BTS receiver periodically and so it is delayed for a BSC receiver.
FIG. 3 shows scheduling delay timing in accordance with an embodiment. The numbers shown are an example of typical numbers that may be used by a BSC located scheduler though the actual numbers are dependent on backhaul delays and loading scenario of the deployed system.
The horizontal axis shows an SCH frame boundary 250, a last SCH frame boundary before a point A 252, a point A 254, a scheduling time 256, and an action time 258. An Ec/Nt measurement window 260 is shown starting at the SCH frame boundary 250 and ending at the last SCH frame boundary before point A 252. A time to last frame boundary 262 is shown from the last SCH frame boundary before point A 252 to point A 254. A time to get information from the BTS to the BSC (6 PCGs) 264 is shown starting at point A 254 and ending at the scheduling time 256. ActionTimeDelay (25 PCGs for Method a, 62 PCGs for Method b) 266 is shown to start at the scheduling time 256 and ending at the action time 258.
Scheduling, Rate Assignment and Transmission Timeline
Given the assumed synchronous scheduling, most events related to request, grant and transmission are periodic with period SCH_PRD.
FIG. 4 illustrates the timing diagram of a rate request, scheduling and rate allocation in accordance with an embodiment. The vertical axes show the time lines for the BSC (scheduler) 402 and the mobile 404. The MS creates an SCRMM 406 and sends a rate request to the BSC (scheduler) 408. The rate request is included in the SCRMM, which is sent on R-FCH. The uplink request delay associated with rate requesting via SCRM/SCRMM is denoted as D_RL(request) 410. A scheduling decision 412 is made once every scheduling period 414. After the scheduling decision 412, an ESCAM/ESCAMM 416 is sent on a forward channel from the BSC to the MS indicating a rate assignment 418. D_FL 420 is the downlink assignment delay associated with rate assignment via ESCAM/ESCAMM. Turnaround time 422 is the time it takes to turnaround a rate request. It is the time from the rate request to rate assignment.
The following characterizes the timeline:
    • Scheduling Timing
    • Scheduled Rate Transmissions
    • MS R-SCH Rate Requests
Scheduling Timing: The scheduler operates once every scheduling period. If the first scheduling decision is performed at ti, then the scheduler operates at ti, ti+SCH_PRD, ti+2SCH_PRD . . .
Scheduled Rate Transmissions: Given that the MSs have to be notified of the scheduling decisions with sufficient lead-time, a scheduling decision has to be reached at Action Time of the ESCAM/ESCAMM message minus a fixed delay, ActionTimeDelay. Typical values of ActionTimeDelay for Methods a and b are given in Table 1.
MS R-SCH Rate Requests: R-SCH rate requests are triggered as described below:
Before the beginning of each SCRM/SCRMM frame encode boundary, the MS checks if either of the following three conditions are satisfied:
1. New data arrives and data in the MS's buffer exceeds a certain buffer depth (BUF_DEPTH), and the MS has sufficient power to transmit at a non-zero rate; OR
2. If the last SCRM/SCRMM was sent at time τi, and the current time is greater than or equal to τi+SCH_PRD, and if the MS has data in its buffer that exceeds the BUF_DEPTH, and the MS has sufficient power to transmit at a non-zero rate; OR
3. If the last SCRM/SCRMM was sent at time τi, and the current time is greater than or equal to τi+SCH_PRD, and if the current assigned rate at the MS side based on received ESCAMM/ESCAM is non-zero (irrespective of the fact that the MS may not have data or power to request a non-zero rate). “Current assigned rate” is the assigned rate applicable for the current rate transmission. If no ESCAM is received for the current scheduled duration, then the assigned rate is considered 0. The rate assigned in the ESCAM/ESCAMM message with Action Time at some later time takes effect after the Action Time.
If either of the above three conditions are satisfied, the MS sends a SCRMM/SCRM rate request.
In an embodiment, an SCRM/SCRMM request made at τi is made available to the scheduler after a random delay at τi+D_RL(request) In another embodiment, different combinations of change in MS data buffer, change in MS maximum supportable rate and MS last request time out may be used to determine the time when a rate request is sent.
Scheduler Description and Procedures
In an embodiment, there is one centralized scheduler element for a large number of cells. The scheduler maintains a list of all MSs in the system and BSs in each MS's Active Set. Associated with each MS, the scheduler stores an estimate of an MS's queue size ({circumflex over (Q)}) and maximum scheduled rate (Rmax(s)).
The queue size estimate {circumflex over (Q)} is updated after any of the following events happen:
1. An SCRMM/SCRM is received: SCRMM/SCRM is received after a delay of D_RL(request). {circumflex over (Q)} is updated to:
{circumflex over (Q)}=Queue Size reported in SCRMM
If the SCRMM/SCRM is lost, the scheduler uses the previous (and the latest) information it has.
2. After each R-FCH and R-SCH frame decoding:
{circumflex over (Q)}={circumflex over (Q)}−Datatx(FCH)+Datatx(SCH)
where Datatx(FCH) and Datatx(SCH) is the data transmitted in the last R-FCH and R-SCH frame, respectively (if the frame is decoded correctly) after discounting the physical layer overhead and RLP layer overhead.
3. At the scheduling instant ti, scheduler estimates the maximum scheduled rate for the MS in accordance with an embodiment. The buffer size estimation is done as:
{circumflex over (Q)}(f)={circumflex over (Q)}−(R assigned+9600)×┌ActionTimeDelay/20┐·20 ms+((PL FCH OHD+SCH assigned *PL SCH OHD)×(┌ActionTimeDelay/20┐)
The maximum scheduled rate is obtained as the minimum of the maximum power constrained rate and maximum buffer size constrained rate. Maximum power constrained rate is the maximum rate that can be achieved with MS available power, and maximum buffer size constrained rate is the maximum rate such that the transmitted data is smaller or equal to the estimated buffer size.
R max ( s ) = min { R max ( power ) , arg max R R 307.2 kbps { R | Q ^ ( f ) ( ( R + 9600 ) × 20 ms - PL_FCH _OHD - PL_SCH _OHD ) × ( SCH_PRD / 20 ms ) } }
where SCHAssigned is an indicator function for the current scheduling period,
SCH Assigned = { 1 if R assigned > 0 0 if R assigned = 0
Rassigned is the rate assigned on the R-SCH during the current scheduling period and MS is supposed to transmit on the R-SCH until the ActionTime of the next assignment. PL_FCH_OHD is physical layer fundamental channel overhead. PL_SCH_OHD is physical layer supplemental channel overhead.
Rmax (power) is the maximum rate that the MS can support given its power limit. If the maximum requested rate by the MS is determined according to an embodiment described herein, Rmax (power) is the maximum rate reported in the last received SCRM/SCRMM message. If the maximum rate is determined according to a different embodiment, the scheduler can estimate Rmax (power) from the reported information and MS capability to transmit at the assigned rate. For example, in another embodiment, the scheduler can estimate Rmax (power) according to the equation below:
R max ( power ) = { min { R ( reported ) , R assigned + 1 } ; if R tx = R assigned min { R ( reported ) , R assigned - 1 } ; if R tx < R assigned }
Rassigned is the rate assigned during current scheduling period and Rtx is the rate transmitted on R-SCH during current scheduling period. Rassigned+1 is rate one higher than what is currently assigned to the MS and Rassigned−1 is a rate one lower than what is currently assigned to the MS. R(reported) is the maximum rate reported by the MS in rate request message like SCRM/SCRMM. The above method may be used when R(reported) by the MS is not related to the maximum rate that MS is capable of transmitting at its current power constraints.
Arg max provides the maximum supportable rate by the scheduler.
Capacity Computation
The sector capacity at the jth sector is estimated from the measured MSs' Sinrs. The Sinr is the average pilot-weighted combined Sinr per antenna. In an embodiment, the combining per power-control group (PCG) is pilot-weighted combining over multiple fingers and different antennas of the sector of interest. In an embodiment, the combining per power-control group (PCG) is maximal ratio combining over multiple fingers and different antennas. The combining is not over different sectors in the case of a softer-handoff MS. The averaging can be over the duration of a frame or it can be a filtered average over a couple of PCGs.
The following formula is used for estimating Load contribution to a sector antenna:
Load j = j ActiveSet ( i ) Sin r j ( R i , E [ R FCH ] ) 1 + Sin r j ( R i , E [ R FCH ] )
where Sinrj(Ri, E[RFCH]) is the estimated Sinr if the MS is assigned a rate Ri on R-SCH and E[RFCH] is the expected rate of transmission on the R-FCH.
Let the measured pilot Sinr (frame average or filtered average pilot Sinr averaged over two antennas) be (Ecp/Nt)j, while it is assigned a rate of Rassign(SCH) on the R-SCH. Then,
Sin r j ( R i , R FCH ) = Pref ( R i ) Pref ( R assign ( SCH ) ) ( E cp / N t ) j [ 1 + ( T / P ) R i + ( ( T / P ) R FCH + ( C / P ) ) ( Pref ( R FCH ) Pref ( R i ) ) ]
C/P can be an average (CQICH/Pilot) or a (Control-to-pilot) ratio.
For voice-only MSs, the following equation is used to estimate the average received Sinr:
Sin r j ( 0 , E [ R FCH ( υ ) ] ) = ( E cp / N t ) j Pref ( R assign ( SCH ) ) × [ 1 + ( ( T / P ) 9.6 k P ( 9.6 k ) + ( T / P ) 4.8 k P ( 4.8 k ) + ( T / P ) 2.7 k P ( 2.7 k ) + ( T / P ) 1.5 k P ( 1.5 k ) + ( C / P ) ) Pref ( R FCH max = 9.6 k ) ]
where P(R) is the probability of voice codec transmitting at that rate. In another embodiment where a different voice codec with different rate selections are used, the same equation is used with different rates to estimate the expected Sinr due to voice transmission on R-FCH.
In a more generic formulation, with data-voice mobiles and no data transmission on R-FCH, the voice-activity factor (ν) could be used to estimate the average received Sinr as follows:
Sin r j ( R i , E [ R FCH ( υ ) ] ) = Pref ( R i ) ( E cp / N t ) j Pref ( R assign ( SCH ) ) [ 1 + ( T / P ) R i + ( υ - 1 + υ ( T / P ) R FCH max ) ( Pref ( R FCH max ) Pref ( R i ) ) ]
If the interference from neighboring sectors and average thermal noise can be measured, a more direct measure of the capacity of reverse-link called rise-over-thermal (ROT) can be obtained. Let the other-cell interference measured during previous transmission be denoted as Ioc, thermal noise be No, then the estimated ROT during the next transmission can be estimated as
ROT j = 1 ( 1 - Load j ) ( 1 + I oc / N o ) .
If the scheduler is multi-level scheduler, with different levels of the scheduler elements scheduling different MSs, the sector capacity needs to be distributed across different scheduling elements. In an embodiment, where the scheduler has two scheduling elements, one at a BTS and the other at a BSC, let the estimated assigned Load at BSC be Loadj(BSC) and the estimated assigned load at BTS be Loadj(BTS). Then,
Loadj(BSC)+Loadj(BTS)<=1−(1+I oc/No)/ROT(max).
Since the timing delay in scheduling at BSC is greater than BTS, estimated assigned load at BSC Loadj(BSC) can be known at BTS prior to scheduling at BTS. BTS scheduler prior to scheduling then has following constraint on the assigned load:
Loadj(BTS)<=1−(1+I oc/No)/ROT(max)−Loadj(BSC)
Scheduling Algorithm
The scheduling algorithm has the following characteristics:
a) scheduling least number of MS for increasing TDM gains,
b) CDM few users for maximum capacity utilization, and
c) prioritization of MS rate requests.
Prioritization of mobiles can be based on one or more of the varied reported or measured quantities. A priority function that increases system throughput can have one or many of the following characteristics:
The higher the measured pilot Ecp/Nt (normalized), the lower is the mobile's priority. Instead of using a measured Ecp/Nt, a pilot Ecp/Nt set-point that the base-station maintains for power control outer-loop could be used. A lower Ecp/Nt (measured or set-point) implies a better instantaneous channel and hence increased throughput if channel variations are small.
For a mobile in SHO, pilot Ecp/Nt (measured or Set-point) can be weighted by an SHO factor to reduce the other-cell interference. For example, if average received pilot powers at all SHO legs is available,
k = 1 M P i rx ( k ) / P i rx ( j )
can serve as an SHO factor, where Pi rx (k) is the average received pilot power of the Ith mobile by the kth base station in its Active Set, Pi rx (j) is the average received pilot power of the Ith mobile by the strongest, jth base station in its Active Set, and M is the number of base stations in the mobile's Active Set (set of base stations in soft handoff with the mobile)
Higher the measured or estimated propagation loss, lesser is the priority. Propagation Loss can be calculated from the measured received pilot power if the mobile periodically reports transmitted pilot power in the request message like SCRM. Or otherwise, it can estimate which mobile sees better propagation loss based on the reported strength of the FL Ecp/Nt
Velocity based priority function: If the base-station estimated velocity of a moving mobile using some velocity estimation algorithm, then stationary mobiles are given the highest priority, and middle velocity mobiles are given the least priority.
Priority function based on above measured or reported parameters is an unfair priority function aimed at increasing the reverse-link system throughput. In addition, priority can be increased or decreased by a cost metric that is decided by what grade of service a user is registered for. In addition to the above, a certain degree of fairness could be provided by a Fairness factor. Two different kinds of Fairness are described below:
Proportional Fairness (PF): PF is the ratio of maximum requested rate to average achieved transmission rate. Thus, PF=Ri req/Ri alloc, where Ri req is the requested rate and Ri alloc is the average rate allocated by the scheduler.
Round Robin Fairness (RRF): Round robin scheduling tries to provide equal transmission opportunities to all the users. When a mobile enters the system, RRF is initialized to some value, say 0. Each scheduling period the rate is not allocated to the mobile, RRF is incremented by one. Every time some rate (or the requested rate) is allocated to the mobile, RRF is reset to the initial value 0. This emulates the process where mobiles scheduled in the last scheduling period are last in the queue.
Fairness can be used together with Priority function to determine the priority of the mobile in the Prioritization list. When Fairness is used alone to prioritize mobiles, it provides proportional fair or round-robin scheduling that is throughput optimal for reverse-link as well as allowing multiple transmissions for full capacity utilization.
An embodiment which uses different aspects of previously defined priority functions and proportional fairness may have a priority of the ith user determined as:
w i = 1 Ecp / Nt i ( setpt ) * SHOfactor · ( PF ) α ,
where the parameter α called Fairness factor can be used to trade-off fairness for system throughput. As α increases, fairness gets worse. Schedulers with higher α yield higher throughput.
Next we consider a particular embodiment where the scheduler wakes up every scheduling period and makes rate allocation decisions based on pending rate requests. The scheduling algorithm looks like the one described below.
Initialization: The MS rate requests are prioritized. Associated with each MS is a priority count PRIORITY. PRIORITY of an MS is initialized to 0 in the beginning. When a new MS enters the system with sector j as the primary sector, its PRIORITY is set equal to the min{PRIORITYi, ∀i such that MSi has sector j as the primary sector}
1. Let the Load constraint be Loadj≦max Load, such that the rise-over-thermal overshoot above a certain threshold is limited. For the calibration purposes, max Load value of 0.45 will be used by the scheduler. The capacity consumed due to pilot transmissions and transmissions on fundamental channels (due to voice or data) is computed and the available capacity is computed as
Cav ( j ) = max Load - j ActiveSet Sin r j ( 0 , E [ R FCH ] ) 1 + Sin r j ( 0 , E [ R FCH ] )
where max Load is the maximum Load for which rise-over-thermal outage criteria specified is satisfied.
MS rate requests are prioritized in decreasing order of their PRIORITY. So MSs with highest PRIORITY are at the top of the queue. When multiple MSs with identical PRIORITY values are at the top of the queue, the scheduler makes a equally-likely random choice among these MSs.
2. Setk=1,
3. The data-only MS at the kth position in the queue is assigned the rate Rk given by
R k = min { R max k ( s ) , argmax R [ R Cav ( j ) - Sin r j ( R , E [ R FCH ] ) 1 + Sin r j ( R , E [ R FCH ] ) + Sin r j ( 0 , E [ R FCH ] ) 1 + Sin r j ( 0 , E [ R FCH ] ) 0 ; j ActiveSet ( k ) ] }
The available capacity is updated to:
Cav ( j ) = Cav ( j ) - Sin r j ( R k , E [ R FCH ] ) 1 + Sin r j ( R k , E [ R FCH ] ) + Sin r j ( 0 , E [ R FCH ] ) 1 + Sin r j ( 0 , E [ R FCH ] ) ; j ActiveSet ( k )
4. If Rmax k(s)>0 and Rk=0, increment PRIORITY of the MS Otherwise, do not change PRIORITY of the MS
5. k=k+1; if k<total number of MSs in the list, Go to Step 3, otherwise, stop.
TABLE 1
Baseline specific parameters
Typical
Parameter Values Comments
Headroom_Req 5 dB Conservative rate request
Keeps power headroom for long-
term channel variation
Reduces DTX on R-SCH
Headroom_Tx
2 dB Reduces probability of power
outage during the duration of R-
SCH transmission
Average Tx Power Filter 1/16 Normalized Average transmit
Coefficient αHeadroom pilot power is computed as
filtered version over several PCGs
ActionTimeDelay 31.25 ms Based on the expected ESCAMM
(Method a) delay, including the 2 PCG MS
encoding delay
ActionTimeDelay  77.5 ms Based on the expected ESCAM
(Method b) delay on F-PDCH at the primary
sector Geometry of −5 dB. This
includes the 2 PCG MS encoding
delay
It would be apparent to those skilled in the art that other values can be used for the parameters in table 1. It would also be apparent to those skilled in the art that more or less parameters may be used for a particular implementation.
FIG. 5 is a flowchart of a scheduling process in an embodiment. In an embodiment, a mobile i and a mobile j send a request rate to a scheduler in step 300. Alternatively, a mobile i and a mobile j send a request rate to a scheduler in step 310.
In step 300, the scheduler creates a list of mobiles (Mi) that it will schedule. Then, the scheduler creates a list of base stations (BTSs) the scheduler is responsible for scheduling. Also, the scheduler creates a list of mobiles that are not in the list of base stations the scheduler is responsible for scheduling and that are in soft handoff (SHO) with base stations the scheduler is responsible for scheduling (Ui). The flow of control goes to step 302.
The BTS supplies the scheduler with a reported DTX by a mobile. In step 302, a check is made to determine whether a mobile, which is scheduled, reported a DTX, in which case resources can be reallocated from the scheduled mobile if ai is less than the last schedule time minus 1 plus a schedule period. ai is current time. ti is the last scheduled time. In step 302, the resources are reallocated before the scheduled time. The rate of the scheduled mobile is reset and the available capacity is reallocated to other requesting mobiles. In step 306, a check is made to determine whether the current time has reached a scheduled point. If the current time has not reached a scheduled point, then the flow of control goes to step 302. If the current time has reached a scheduled point, then the flow of control goes to step 308.
In step 308, the scheduler is supplied by the BTSs with an estimate of loc and piolot Ec/Nt of {Mi}union{Ui}. The capacity of each Bi is initialized given the loc estimates. For each Bi, subtracting from the available capacity, the voice users contribution to capacity given voice activity and autonomous transmission on R-FCH/R-DCCH. The measurement used for the amount subtracted is the pilot Ecp/Nt. Also for each Bi, subtracted from the available capacity is the expected contribution by {Ui}. Then, the flow of control goes to step 310.
In step 310, pilot Ec/Nt of {Mi} and set-point and Rx pilot power are provided to the scheduler and are used by a prioritization function. The mobile rate requests are prioritized in a prioritization queue. In an embodiment, a prioritization function is used in which measured and reported information is used. In an embodiment, a prioritization function provides for fairness. The flow of control goes to step 312.
In step 312, a maximum rate is assigned to a highest priority mobile such that a capacity constraint of all BSs in soft handoff is not violated. The maximum rate is the maximum rate supported by the highest priority mobile. The highest priority mobile is placed last in the prioritization queue. The available capacity is updated by subtracting the mobile contribution to capacity at an assigned maximum rate. The flow of control goes to step 314.
In step 314, a check is made to determine whether all the mobiles in the {Mi} list have been scanned. If all the mobiles in the {Mi} list have not been scanned, then the flow of control goes to step 312. If all the mobiles in the {Mi} list have been scanned, then the flow of control goes to step 302.
Those of skill in the art would understand that method steps could be interchanged without departing from the scope of the invention. Those of skill in the art would also understand that information and signals might be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
FIG. 6 is a block diagram of a BS 12 in accordance with an embodiment. On the downlink, data for the downlink is received and processed (e.g., formatted, encoded, and so on) by a transmit (TX) data processor 612. The processing for each channel is determined by the set of parameters associated with that channel, and in an embodiment, may be performed as described by standard documents. The processed data is then provided to a modulator (MOD) 614 and further processed (e.g., channelized, scrambled, and so on) to provide modulated data. A transmitter (TMTR) unit 616 then converts the modulated data into one or more analog signals, which are further conditions (e.g., amplifies, filters, and frequency upconverts) to provide a downlink signal. The downlink signal is routed through a duplexer (D) 622 and transmitted via an antenna 624 to the designated MS(s).
FIG. 7 is a block diagram of an MS 106 in accordance with an embodiment. The downlink signal is received by an antenna 712, routed through a duplexer 714, and provided to a receiver (RCVR) unit 722. Receiver unit 722 conditions (e.g., filters, amplifies, and frequency downconverts) the received signal and further digitizes the conditioned signal to provide samples. A demodulator 724 then receives and processes (e.g., descrambles, channelizes, and data demodulates) the samples to provide symbols. Demodulator 724 may implement a rake receiver that can process multiple instances (or multipath components) of the received signal and provide combined symbols. A receive (RX) data processor 726 then decodes the symbols, checks the received packets, and provides the decoded packets. The processing by demodulator 724 and RX data processor 726 is complementary to the processing by modulator 614 and TX data processor 612, respectively.
On the uplink, data for the uplink, pilot data, and feedback information are processed (e.g., formatted, encoded, and so on) by a transmit (TX) data processor 742, further processed (e.g., channelized, scrambled, and so on) by a modulator (MOD) 744, and conditioned (e.g., converted to analog signals, amplified, filtered, and frequency upconverted) by a transmitter unit 746 to provide an uplink signal. The data processing for the uplink is described by standard documents. The uplink signal is routed through duplexer 714 and transmitted via antenna 712 to one or more BSs 12.
Referring back to FIG. 6, at BS 12, the uplink signal is received by antenna 624, routed through duplexer 622, and provided to a receiver unit 628. Receiver unit 628 conditions (e.g., frequency downconverts, filters, and amplifies) the received signal and further digitizes the conditioned signal to provide a stream of samples.
In the embodiment shown in FIG. 6, BS 12 includes a number of channel processors 630 a through 630 n. Each channel processor 630 may be assigned to process the sample steam for one MS to recover the data and feedback information transmitted on the uplink by the assigned MS. Each channel processor 630 includes a (1) demodulator 632 that processes (e.g., descrambles, channelizes, and so on) the samples to provide symbols, and (2) a RX data processor 634 that further processes the symbols to provide the decoded data for the assigned MS.
Controllers 640 and 730 control the processing at the BS and the MS, respectively. Each controller may also be designed to implement all or a portion of the scheduling process. Program codes and data required by controllers 640 and 730 may be stored in memory units 642 and 732, respectively.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, a computer-readable medium or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (14)

What is claimed is:
1. A method for estimating capacity used on a reverse link, comprising:
measuring a plurality of signal-to-noise ratios at a station for a plurality of rates;
averaging the measured plurality of signal-to-noise ratios over a plurality of pilot control groups;
determining sector load based on the averaged plurality of signal-to-noise ratios, an assigned transmission rate, and an expected transmission rate; and
estimating capacity on the reverse link based on the sector load.
2. The method of claim 1, wherein the station is a base station.
3. A method of estimating load contribution to a sector antenna, comprising:
assigning a transmission rate Ri on a first communication channel;
determining an expected rate of transmission E[R] on a second communication channel;
estimating a signal-to-noise ratio of a station for the assigned transmission rate Ri on the first communication channel and the expected rate of transmission E[R] on a second communication channel; and
estimating the load contribution based on the estimated signal-to-noise ratio.
4. The method of claim 3, wherein the load contribution to a sector antenna j is estimated based on:
Load j = j ActiveSet ( i ) Sin r j ( R i , E [ R FCH ] ) 1 + Sin r j ( R i , E [ R FCH ] ) .
5. The method of claim 4, wherein the first communication channel is a reverse link supplemental channel and the second communication channel is a reverse link fundamental channel.
6. A method of distributing sector capacity across a base station (BS) and a base station controller (BSC), comprising:
measuring other-cell interference during a previous transmission (Ioc);
determining thermal noise (No);
determining a maximum rise-over-thermal (ROT(max));
determining an estimated assigned load at the BSC (Loadj(BSC)); and
determining a sector capacity distributed to the base station based on the ratio of the measured other-cell interference over thermal noise, the maximum rise-over-thermal, and the estimated assigned load at the BSC.
7. The method of claim 6, wherein the sector capacity distributed to the base station is determined such that:

Loadj(BTS)<=1−(1+I oc/No)/ROT(max)−Loadj(BSC).
8. An apparatus for estimating capacity used on a reverse link, comprising:
means for measuring a plurality of signal-to-noise ratios at a station for a plurality of rates;
means for averaging the measured plurality of signal-to-noise ratios over a plurality of pilot control groups;
means for determining sector load based on the averaged plurality of signal-to-noise ratios, an assigned transmission rate, and an expected transmission rate; and
means for estimating capacity on the reverse link based on the sector load.
9. An apparatus for estimating load contribution to a sector antenna, comprising:
means for assigning a transmission rate Ri on a first communication channel;
means for determining an expected rate of transmission E[R] on a second communication channel;
means for estimating a signal-to-noise ratio of a station for the assigned transmission rate Ri on the first communication channel and the expected rate of transmission E[R] on a second communication channel; and
means for estimating the load contribution based on the estimated signal-to-noise ratio.
10. A station, comprising:
an antenna for receiving and transmitting a plurality of signals;
a receiver coupled to the antenna, the receiver receives the plurality of receive signals;
a controller coupled to the receiver, the controller
measures a plurality of signal-to-noise ratios for a plurality of rates;
averages the plurality of signal-to-noise ratios over a plurality of pilot control groups;
determines sector load based on the averaged plurality of signal-to-noise ratios, an assigned transmission rate, and an expected transmission rate; and
estimates capacity on the reverse link based on the sector load; and
a transmitter coupled to the controller, the transmitter conditions the capacity estimation for transmission.
11. The station of claim 10, wherein the station is a base station.
12. A station comprising:
an antenna for receiving and transmitting a plurality of signals;
a receiver coupled to the antenna, the receiver receives the plurality of receive signals;
a controller coupled to the receiver, the controller
assigns a transmission rate Ri on a first communication channel;
determines an expected ate of transmission E[R] on a second communication channel;
estimates a signal-in-noise ratio of a station for the assigned transmission rate Ri on the first communication channel and the expected rate of transmission E[R] on a second communication channel; and
estimates the load contribution based on the estimated signal-to-noise ratio; and
a transmitter coupled to the controller, the transmitter conditions the load contribution estimation for transmission.
13. A non-transitory computer-readable medium encoded. with computer executable instructions for:
measuring a plurality of signal-to-noise ratios at a station for a plurality of rates;
averaging the measured plurality of signal-to-noise ratios over a plurality of pilot control groups;
determining sector load based on the measured plurality of signal-to-noise ratios, an assigned transmission rate, and an expected transmission; and
estimating capacity on the reverse link based on the sector load.
14. A non-transitory computer-readable medium encoded. with computer executable instructions for:
assigning a transmission rate R, on a first communication channel;
determining an expected rate of transmission E[R] on a second communication channel;
estimating a signal-to-noise ratio of a station for the assigned transmission rate Ri on the first communication channel and the expected rate of transmission E[R] on a second communication channel; and
estimating the load contribution based on the estimated signal-to-noise ratio.
US10/640,720 2002-09-10 2003-08-13 System and method for multilevel scheduling Expired - Fee Related US8504054B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US10/640,720 US8504054B2 (en) 2002-09-10 2003-08-13 System and method for multilevel scheduling
AT03770317T ATE428283T1 (en) 2002-09-10 2003-09-10 ESTIMATION OF THE LOAD OF THE REVERSE LINK WITH DIFFERENT DATA RATES
JP2004536196A JP4643265B2 (en) 2002-09-10 2003-09-10 Estimating forward link load with varying data rates
DE60327083T DE60327083D1 (en) 2002-09-10 2003-09-10 Estimation of the load of the reverse link with changed data rates
KR1020057004171A KR101028973B1 (en) 2002-09-10 2003-09-10 Estimation of uplink load with changed data rates
MXPA05002631A MXPA05002631A (en) 2002-09-10 2003-09-10 System and method for multilevel scheduling.
BR0314161-6A BR0314161A (en) 2002-09-10 2003-09-10 System and method for multilevel programming
CA002498128A CA2498128A1 (en) 2002-09-10 2003-09-10 System and method for multilevel scheduling
TW092125078A TWI328976B (en) 2002-09-10 2003-09-10 System and method for multilevel scheduling
RU2005110427/09A RU2005110427A (en) 2002-09-10 2003-09-10 ASSESSMENT OF THE LOAD OF THE RISING COMMUNICATION LINK WITH CHANGED DATA TRANSMISSION SPEEDS
EP03770317A EP1540980B1 (en) 2002-09-10 2003-09-10 Estimation of uplink load with changed data rates
PCT/US2003/028671 WO2004025986A2 (en) 2002-09-10 2003-09-10 System and method for multilevel scheduling
EP09001418A EP2048906A3 (en) 2002-09-10 2003-09-10 Prioritizing Mobile Requests for Rate Allocation
AU2003278800A AU2003278800A1 (en) 2002-09-10 2003-09-10 System and method for multilevel scheduling
US12/398,094 US8504047B2 (en) 2002-09-10 2009-03-04 System and method for multilevel scheduling
JP2009113024A JP4938817B2 (en) 2002-09-10 2009-05-07 Estimating forward link load with varying data rates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40982002P 2002-09-10 2002-09-10
US10/640,720 US8504054B2 (en) 2002-09-10 2003-08-13 System and method for multilevel scheduling

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/398,094 Division US8504047B2 (en) 2002-09-10 2009-03-04 System and method for multilevel scheduling
US13/323,212 Division US8837208B2 (en) 2009-11-25 2011-12-12 Magnetic tunnel junction device with diffusion barrier layer

Publications (2)

Publication Number Publication Date
US20040185868A1 US20040185868A1 (en) 2004-09-23
US8504054B2 true US8504054B2 (en) 2013-08-06

Family

ID=31997865

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/640,720 Expired - Fee Related US8504054B2 (en) 2002-09-10 2003-08-13 System and method for multilevel scheduling
US12/398,094 Expired - Fee Related US8504047B2 (en) 2002-09-10 2009-03-04 System and method for multilevel scheduling

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/398,094 Expired - Fee Related US8504047B2 (en) 2002-09-10 2009-03-04 System and method for multilevel scheduling

Country Status (13)

Country Link
US (2) US8504054B2 (en)
EP (2) EP2048906A3 (en)
JP (2) JP4643265B2 (en)
KR (1) KR101028973B1 (en)
AT (1) ATE428283T1 (en)
AU (1) AU2003278800A1 (en)
BR (1) BR0314161A (en)
CA (1) CA2498128A1 (en)
DE (1) DE60327083D1 (en)
MX (1) MXPA05002631A (en)
RU (1) RU2005110427A (en)
TW (1) TWI328976B (en)
WO (1) WO2004025986A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130155926A1 (en) * 2011-12-19 2013-06-20 Qualcomm Atheros, Inc. Voice activity detection in communication devices for power saving
US20130203384A1 (en) * 2012-02-07 2013-08-08 Partha Narasimhan System and method for determining leveled security key holder

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8504054B2 (en) * 2002-09-10 2013-08-06 Qualcomm Incorporated System and method for multilevel scheduling
US7630321B2 (en) * 2002-09-10 2009-12-08 Qualcomm Incorporated System and method for rate assignment
KR100808335B1 (en) * 2002-12-20 2008-02-27 엘지노텔 주식회사 Mobile communication system and method for preventing overload thereof
US20040228349A1 (en) * 2003-01-10 2004-11-18 Sophie Vrzic Semi-distributed scheduling scheme for the reverse link of wireless systems
US7433310B2 (en) * 2003-03-12 2008-10-07 Interdigital Technology Corporation Estimation of interference variation caused by the addition or deletion of a connection
US7979078B2 (en) * 2003-06-16 2011-07-12 Qualcomm Incorporated Apparatus, system, and method for managing reverse link communication resources in a distributed communication system
US7158796B2 (en) * 2003-06-16 2007-01-02 Qualcomm Incorporated Apparatus, system, and method for autonomously managing reverse link communication resources in a distributed communication system
KR100594102B1 (en) * 2003-08-30 2006-07-03 삼성전자주식회사 Method for Controlling Reverse Data Transmission Rate in a Mobile Communication System
US7643449B2 (en) * 2005-01-18 2010-01-05 Airwalk Communications, Inc. Combined base transceiver station and base station controller data call and quality of service
US7983708B2 (en) * 2004-04-28 2011-07-19 Airvana Network Solutions, Inc. Reverse link power control
US7843892B2 (en) * 2004-04-28 2010-11-30 Airvana Network Solutions, Inc. Reverse link power control
US7594151B2 (en) 2004-06-18 2009-09-22 Qualcomm, Incorporated Reverse link power control in an orthogonal system
US7197692B2 (en) 2004-06-18 2007-03-27 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
JP2008507881A (en) * 2004-07-22 2008-03-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Scheduling the transmission of messages on the broadcast channel of an ad hoc network depending on the usage of the broadcast channel
CN100411475C (en) * 2004-08-12 2008-08-13 华为技术有限公司 Up-load estimating method in mobile communication system
US7680093B2 (en) * 2004-08-27 2010-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Sector selection for F-SCH
US7668085B2 (en) * 2004-08-27 2010-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Common rate control command generation
KR101061709B1 (en) 2004-08-30 2011-09-01 고려대학교 산학협력단 Packet Scheduling Using Adjacent Cell Interference
US7729243B2 (en) * 2005-01-18 2010-06-01 Airvana, Inc. Reverse link rate and stability control
WO2006078252A1 (en) * 2005-01-18 2006-07-27 Airwalk Communications, Inc. Combined base transceiver station and base station controller data call and quality of service
CN100369516C (en) * 2005-01-21 2008-02-13 中兴通讯股份有限公司 Capacity test method for fixed beam intelligent antenna base station system
US8942716B2 (en) * 2005-02-24 2015-01-27 Ntt Docomo, Inc. Radio resource control method, radio base station, and radio network controller
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US8942639B2 (en) 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US7831257B2 (en) * 2005-04-26 2010-11-09 Airvana, Inc. Measuring interference in radio networks
GB2425684B (en) 2005-04-28 2008-04-02 Siemens Ag A method of controlling noise rise in a cell
CN100420336C (en) * 2005-04-29 2008-09-17 大唐移动通信设备有限公司 Method for arranging non-realtime business
CN100455041C (en) * 2005-06-23 2009-01-21 华为技术有限公司 Uplink load controlling method
US8111253B2 (en) * 2005-07-28 2012-02-07 Airvana Network Solutions, Inc. Controlling usage capacity in a radio access network
US8630602B2 (en) 2005-08-22 2014-01-14 Qualcomm Incorporated Pilot interference cancellation
US9071344B2 (en) 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US8611305B2 (en) 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US8743909B2 (en) 2008-02-20 2014-06-03 Qualcomm Incorporated Frame termination
US8594252B2 (en) 2005-08-22 2013-11-26 Qualcomm Incorporated Interference cancellation for wireless communications
US7587206B2 (en) * 2005-08-26 2009-09-08 Alcatel-Lucent Usa Inc. Providing overload control in relatively high-speed wireless data networks
JP4612523B2 (en) * 2005-10-13 2011-01-12 株式会社日立製作所 Wireless communication system and base station
KR101019002B1 (en) * 2005-10-26 2011-03-04 퀄컴 인코포레이티드 Minimum rate guarantees on wireless channel using resource utilization messages
US8918114B2 (en) * 2005-10-26 2014-12-23 Qualcomm Incorporated Using resource utilization messages in a multi-carrier MAC to achieve fairness
US8081592B2 (en) * 2005-10-26 2011-12-20 Qualcomm Incorporated Flexible medium access control (MAC) for ad hoc deployed wireless networks
US8942161B2 (en) * 2005-10-26 2015-01-27 Qualcomm Incorporated Weighted fair sharing of a wireless channel using resource utilization masks
US9204428B2 (en) * 2005-10-26 2015-12-01 Qualcomm Incorporated Interference management using resource utilization masks sent at constant PSD
EP1941638A2 (en) 2005-10-27 2008-07-09 Qualcomm Incorporated Method and apparatus for estimating reverse link loading in a wireless communication system
KR100943613B1 (en) * 2005-11-22 2010-02-24 삼성전자주식회사 Apparatus and method for uplink scheduling in a communication system
US7908396B2 (en) * 2005-11-30 2011-03-15 Motorola Mobility, Inc. Method and system for scheduling requests in a non-first in first out (FIFO) order in a network
JP4786340B2 (en) * 2005-12-28 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ Base station apparatus and packet scheduling method
WO2007148927A1 (en) 2006-06-22 2007-12-27 Samsung Electronics Co., Ltd. Method of transmitting scheduling request in mobile communication system and terminal apparatus for the same
US9622190B2 (en) 2006-07-25 2017-04-11 Google Technology Holdings LLC Spectrum emission level variation in schedulable wireless communication terminal
US20080025254A1 (en) * 2006-07-25 2008-01-31 Motorola Inc Spectrum emission level variation in schedulable wireless communication terminal
GB2441374A (en) * 2006-09-01 2008-03-05 Agilent Technologies Inc Method for optimized capacity estimation of a cellular communications network
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
KR101296080B1 (en) * 2007-02-02 2013-08-12 삼성전자주식회사 Method and apparatus for controlling reverse power in mobile communication system orthogonal frequency division multiple access based
WO2008143026A1 (en) * 2007-05-24 2008-11-27 Nec Corporation Throughput estimation method and system
US20090005102A1 (en) * 2007-06-30 2009-01-01 Suman Das Method and Apparatus for Dynamically Adjusting Base Station Transmit Power
CN100596237C (en) * 2007-07-05 2010-03-24 华为技术有限公司 Fan section forward loading measuring method and device, controlling method and device
US8824979B2 (en) 2007-09-21 2014-09-02 Qualcomm Incorporated Interference management employing fractional frequency reuse
US9078269B2 (en) 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
US9066306B2 (en) 2007-09-21 2015-06-23 Qualcomm Incorporated Interference management utilizing power control
US9374791B2 (en) 2007-09-21 2016-06-21 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US9137806B2 (en) 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
US20090135754A1 (en) 2007-11-27 2009-05-28 Qualcomm Incorporated Interference management in a wireless communication system using overhead channel power control
US8948095B2 (en) 2007-11-27 2015-02-03 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
KR100932918B1 (en) * 2007-12-12 2009-12-21 한국전자통신연구원 Method for controlling inter-cell interference of terminal in wireless communication system
US8165528B2 (en) * 2007-12-27 2012-04-24 Airvana, Corp. Interference mitigation in wireless networks
US20090175324A1 (en) * 2008-01-04 2009-07-09 Qualcomm Incorporated Dynamic interference control in a wireless communication network
US8995417B2 (en) * 2008-06-09 2015-03-31 Qualcomm Incorporated Increasing capacity in wireless communication
US9277487B2 (en) 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
US9237515B2 (en) 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US9160577B2 (en) 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
US8787509B2 (en) 2009-06-04 2014-07-22 Qualcomm Incorporated Iterative interference cancellation receiver
US8831149B2 (en) 2009-09-03 2014-09-09 Qualcomm Incorporated Symbol estimation methods and apparatuses
EP2476215B1 (en) * 2009-09-08 2016-02-24 Telefonaktiebolaget LM Ericsson (publ) Load estimation in wireless communication
WO2011063568A1 (en) 2009-11-27 2011-06-03 Qualcomm Incorporated Increasing capacity in wireless communications
EP2505017B1 (en) 2009-11-27 2018-10-31 Qualcomm Incorporated Increasing capacity in wireless communications
US9065584B2 (en) 2010-09-29 2015-06-23 Qualcomm Incorporated Method and apparatus for adjusting rise-over-thermal threshold
US9106319B2 (en) * 2010-12-03 2015-08-11 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for interference congestion control
EP2647143B1 (en) * 2010-12-03 2016-07-06 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for load management in heterogeneous networks with interference suppression capable receivers
EP2679070B1 (en) 2011-02-25 2018-10-17 Telefonaktiebolaget LM Ericsson (publ) Method and device for estimating available cell load
US9565655B2 (en) 2011-04-13 2017-02-07 Google Technology Holdings LLC Method and apparatus to detect the transmission bandwidth configuration of a channel in connection with reducing interference between channels in wireless communication systems
US8934500B2 (en) 2011-04-13 2015-01-13 Motorola Mobility Llc Method and apparatus using two radio access technologies for scheduling resources in wireless communication systems
US9148770B2 (en) 2011-08-25 2015-09-29 Avaya Inc. Identification of static position witnesses to a PSAP emergency
EP2767121A4 (en) * 2011-09-29 2015-12-02 Nokia Solutions & Networks Oy Handover management based on load
JP5867111B2 (en) * 2012-01-25 2016-02-24 富士通株式会社 COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND CONTROL DEVICE
US10616794B2 (en) * 2012-07-20 2020-04-07 Sony Corporation Wireless communication device, information processing device, communication system, and communication quality calculation method and program
KR20140046518A (en) * 2012-10-04 2014-04-21 삼성전자주식회사 Method and apparatus for scheduling management in communication system
WO2015187071A1 (en) 2014-06-04 2015-12-10 Telefonaktiebolaget L M Ericsson (Publ) Method and user equipment for predicting available throughput for uplink data

Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763322A (en) 1985-07-31 1988-08-09 U.S. Philips Corp. Digital radio transmission system with variable duration of the time slots in the time-division multiplex frame
US5224120A (en) 1990-12-05 1993-06-29 Interdigital Technology Corporation Dynamic capacity allocation CDMA spread spectrum communications
US5289463A (en) 1991-05-30 1994-02-22 Alcatel Cit Method of managing flows in a wideband integrated services digital telecommunications network
US5367523A (en) 1993-08-26 1994-11-22 International Business Machines Corporation Adaptive rate-based congestion and flow control in packet communications networks
US5390165A (en) 1992-07-23 1995-02-14 Ncr Corporation Method and apparatus for transmitting digital data packets on a wireless channel
US5442625A (en) 1994-05-13 1995-08-15 At&T Ipm Corp Code division multiple access system providing variable data rate access to a user
US5465389A (en) 1994-02-25 1995-11-07 At&T Corp. Method of prioritizing handoff procedures in a cellular system
US5490136A (en) 1993-05-14 1996-02-06 Cselt - Centro Studi E Laboratori Telecomunicazioni Spa Method of controlling transmission on a same radio channel of variable-rate information streams in radio communication systems
US5490165A (en) 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
EP0719062A2 (en) 1994-12-21 1996-06-26 AT&T Corp. Broadband wireless system and network architecture providing broadband/narrowband service with optimal static and dynamic bandwidth/channel allocation
US5537410A (en) 1994-09-15 1996-07-16 Oki Telecom Subsequent frame variable data rate indication method
US5619492A (en) 1995-06-16 1997-04-08 Unisys Corporation CDMA communication system in which bit rates are dynamically allocated
US5640414A (en) 1992-03-05 1997-06-17 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
EP0782364A2 (en) 1995-12-29 1997-07-02 Lsi Logic Corporation Method and apparatus for the dynamic allocation of signal bandwidth between audio, video and data signals
US5648955A (en) 1993-11-01 1997-07-15 Omnipoint Corporation Method for power control in a TDMA spread spectrum communication system
TW318983B (en) 1995-06-30 1997-11-01 Interdigital Tech Corp
US5729534A (en) 1995-01-09 1998-03-17 Nokia Mobile Phones Limited Dynamic allocation of radio capacity in a TDMA system
US5734646A (en) 1995-10-05 1998-03-31 Lucent Technologies Inc. Code division multiple access system providing load and interference based demand assignment service to users
US5784695A (en) 1996-05-14 1998-07-21 Trw Inc. Method and apparatus for handover control in a satellite based telecommunications system
US5784358A (en) 1994-03-09 1998-07-21 Oxford Brookes University Broadband switching network with automatic bandwidth allocation in response to data cell detection
US5839056A (en) 1995-08-31 1998-11-17 Nokia Telecommunications Oy Method and apparatus for controlling transmission power of a radio transmitter
WO1999009779A1 (en) 1997-08-20 1999-02-25 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US5914950A (en) 1997-04-08 1999-06-22 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US6018515A (en) 1997-08-19 2000-01-25 Ericsson Messaging Systems Inc. Message buffering for prioritized message transmission and congestion management
WO2000025485A1 (en) 1998-10-23 2000-05-04 Caly Corporation Broadband wireless mesh topology network
US6064678A (en) 1997-11-07 2000-05-16 Qualcomm Incorporated Method for assigning optimal packet lengths in a variable rate communication system
US6088324A (en) 1996-05-30 2000-07-11 Nec Corporation Prediction-based transmission power control in a mobile communications system
WO2000048669A1 (en) 1999-02-18 2000-08-24 Biovalve Technologies, Inc. Electroactive pore
US6167270A (en) 1997-09-16 2000-12-26 Qualcomm Inc. Soft handoff in the transmission of supplemental channel data
US6173187B1 (en) * 1996-11-26 2001-01-09 Nokia Telecommunications Oy Method of setting load goal, and radio system
US6173197B1 (en) 1996-11-09 2001-01-09 Moor Instruments Limited Apparatus for measuring microvascular blood flow
EP1067704A2 (en) 1999-07-08 2001-01-10 Lucent Technologies Inc. Method for controlling power for a communications system having multiple traffic channels per subscriber
US6205129B1 (en) 1999-01-15 2001-03-20 Qualcomm Inc. Method and apparatus for variable and fixed forward link rate control in a mobile radio communications system
WO2001031824A1 (en) 1999-10-26 2001-05-03 Sk Telecom Co., Ltd. Apparatus and method for controlling a power of reverse link in cdma system
WO2001043485A1 (en) 1999-12-08 2001-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching control
TW453056B (en) 1999-03-15 2001-09-01 Ericsson Telefon Ab L M Adaptive power control in a radio communications system
US6317234B1 (en) 1997-11-04 2001-11-13 British Telecommunications Public Limited Company Communications network
KR20010102373A (en) 1999-12-24 2001-11-15 마츠시타 덴끼 산교 가부시키가이샤 Cdma terminal and cdma method
US6335923B2 (en) 1996-09-03 2002-01-01 Fujitsu Limited Mobile communication terminal and transmission power control method therefor
US6335922B1 (en) 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
US6337983B1 (en) 2000-06-21 2002-01-08 Motorola, Inc. Method for autonomous handoff in a wireless communication system
US6366761B1 (en) 1998-10-06 2002-04-02 Teledesic Llc Priority-based bandwidth allocation and bandwidth-on-demand in a low-earth-orbit satellite data communication network
US6396804B2 (en) 1996-05-28 2002-05-28 Qualcomm Incorporated High data rate CDMA wireless communication system
US6400699B1 (en) 2000-09-12 2002-06-04 Iospan Wireless, Inc. Transmission scheduler for a multiple antenna wireless cellular network
US6418320B2 (en) 1997-08-12 2002-07-09 Nec Corporation Mobile station and a method of reducing interference among radio channels in the mobile station
US6436824B1 (en) 1999-07-02 2002-08-20 Chartered Semiconductor Manufacturing Ltd. Low dielectric constant materials for copper damascene
US20020147025A1 (en) 2001-04-05 2002-10-10 Telefonaktiebolaget Lm Ericsson Systems and methods for base station signal transmission power control
US6473624B1 (en) 2000-03-21 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Determining a reference power level for diversity handover base stations
US20020160782A1 (en) * 2001-02-21 2002-10-31 Abhay Joshi Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
KR20020083942A (en) 2001-04-26 2002-11-04 가부시키가이샤 엔티티 도코모 Data link transmission control method, mobile communication system, data link transmission control apparatus, base station, mobile station, mobile station control program and computer readable rocording medium
US20030047728A1 (en) 2001-09-10 2003-03-13 Gary Chen Insulation of an mram device through a self-aligned spacer
US20030059958A1 (en) 2001-09-27 2003-03-27 Drewes Joel A. Methods of forming magnetoresistive devices
US20030086397A1 (en) 2001-11-05 2003-05-08 Tao Chen Method and apparatus for determining reverse link load level for reverse link data scheduling in a CDMA communication system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US6597705B1 (en) 1998-09-10 2003-07-22 Qualcomm Incorporated Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system
US20030142732A1 (en) 2002-01-25 2003-07-31 Shimon Moshavi Novel receiver architecture for CDMA receiver downlink
US6633552B1 (en) 1999-08-06 2003-10-14 Qualcomm Incorporated Method and apparatus for determining the closed loop power control set point in a wireless packet data communication system
US6633554B1 (en) 1998-09-01 2003-10-14 Samsung Electronics Co., Ltd. System and method for soft handoff setup during system access idle handoff in a wireless network
US6657980B2 (en) 2001-04-12 2003-12-02 Qualcomm Incorporated Method and apparatus for scheduling packet data transmissions in a wireless communication system
WO2004015597A1 (en) 2002-08-08 2004-02-19 Fry's Metals, Inc. D/B/A Alpha Metals, Inc. System and method for modifying electronic design data
US20040037565A1 (en) 2002-08-22 2004-02-26 Robin Young Transport of signals over an optical fiber using analog RF multiplexing
US20040052212A1 (en) 2002-09-13 2004-03-18 Steve Baillargeon Packet flow control in a wireless communications network based on an indication contained in a packet
US6728233B1 (en) 1998-07-16 2004-04-27 Samsung Electronics Co., Ltd Processing packet data in mobile communication system
US6741562B1 (en) * 2000-12-15 2004-05-25 Tellabs San Jose, Inc. Apparatus and methods for managing packets in a broadband data stream
US20040137681A1 (en) 2002-02-18 2004-07-15 Makoto Motoyoshi Magnetic memory device and its production method
RU2233045C2 (en) 1997-11-03 2004-07-20 Квэлкомм Инкорпорейтед Method and device for high-speed burst data transfer
US6782271B2 (en) 2000-06-27 2004-08-24 Samsung Electronics Co., Ltd Method and apparatus for link adaptation in a mobile communication system
US6798736B1 (en) 1998-09-22 2004-09-28 Qualcomm Incorporated Method and apparatus for transmitting and receiving variable rate data
US6804219B2 (en) 1999-12-29 2004-10-12 Samsung Electronics, Co., Ltd. Data transmitting method in a CDMA system
US6807426B2 (en) 2001-04-12 2004-10-19 Qualcomm Incorporated Method and apparatus for scheduling transmissions in a communication system
US6816476B2 (en) 1998-08-25 2004-11-09 Samsung Electronics Co., Ltd. Reverse closed loop power control in control hold state for CDMA communication system
US20050004970A1 (en) 2003-01-13 2005-01-06 Avinash Jain System and method for a time-scalable priority-based scheduler
US6842624B2 (en) 2001-08-29 2005-01-11 Qualcomm, Incorporated Systems and techniques for power control
US20050014474A1 (en) 2001-11-30 2005-01-20 Daisuke Jitsukawa Transmission diversity communication system
US6847629B2 (en) 2000-11-30 2005-01-25 Qualcomm Incorporated Method and apparatus for scheduling packet data transmissions in a wireless communication system
US20050107106A1 (en) 2002-02-25 2005-05-19 Kimmo Valkealahti Method and network element for controlling power and/or load in a network
US20050147063A1 (en) 2002-06-07 2005-07-07 Zhouyue Pi Apparatus and an associated method for facilitating communications in a radio communication system that provides for data communications at multiple data rates
US6963746B2 (en) * 2001-06-27 2005-11-08 Fujitsu Limited Radio base station transceiver sub-system
US6967998B1 (en) 1999-11-12 2005-11-22 Qualcomm Incorporated Method and apparatus for monitoring transmission quality
US7010316B2 (en) 2001-09-28 2006-03-07 Qualcomm Incorporated Method and apparatus for multi-channel reverse link outer-loop power control
US7031741B2 (en) 2001-09-07 2006-04-18 Lg Electronics Inc. Method of adjusting a signal power in a variable data rate mode in a mobile communication system
US20060095889A1 (en) 2004-10-29 2006-05-04 Synopsys, Inc. Silicon tolerance specification using shapes as design intent markers
US7042858B1 (en) 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
US7065060B2 (en) 2000-06-21 2006-06-20 Samsung Electronics Co., Ltd. Apparatus and method for gating transmission of a data rate control channel in an HDR mobile communication system
US7085239B2 (en) 2001-01-05 2006-08-01 Qualcomm, Incorporated Method and apparatus for determining the forward link closed loop power control set point in a wireless packet data communication system
US7133460B2 (en) 2000-10-20 2006-11-07 Samsung Electronics Co., Ltd. Apparatus and method for determining a data rate of packet data in a mobile communication system
US7171214B2 (en) 2002-05-16 2007-01-30 Cingular Wireless Ii, Llc System and method for dynamic scheduling of channels in a code division multiple access system
US7206296B2 (en) 2001-01-12 2007-04-17 Matsushita Electric Industrial Co., Ltd. Transmitting device and transmitting method
US7215653B2 (en) 2001-02-12 2007-05-08 Lg Electronics Inc. Controlling data transmission rate on the reverse link for each mobile station in a dedicated manner
EP1793433A2 (en) 2005-11-30 2007-06-06 MagIC Technologies Inc. Spacer structure in MRAM cell and method of its fabrication
US7236467B2 (en) 2000-06-14 2007-06-26 Nec Corporation CDMA communication system with pilot power control unit
US7289473B1 (en) 1997-11-03 2007-10-30 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
EP1926158A1 (en) 2005-09-13 2008-05-28 Canon Anelva Corporation Method and apparatus for manufacturing magnetoresistive device
US7411923B2 (en) 2002-11-14 2008-08-12 Qualcomm Incorporated Wireless communication rate shaping
US7411974B2 (en) 2002-11-14 2008-08-12 Qualcomm Incorporated Wireless communication rate shaping
US7489655B2 (en) 2001-07-06 2009-02-10 Qualcomm, Incorporated Method and apparatus for predictive scheduling in a bi-directional communication system
US20090097412A1 (en) 2002-09-10 2009-04-16 Qualcomm Incorporated System and method for rate assignment
US20090130779A1 (en) 2007-11-20 2009-05-21 Qualcomm Incorporated Method of Forming a Magnetic Tunnel Junction Structure
US20090170523A1 (en) 2002-09-10 2009-07-02 Qualcomm Incorporated System and method for multilevel scheduling
US7626989B2 (en) 2000-02-21 2009-12-01 Nokia Corporation Capacity allocation for packet data bearers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1151901A (en) 1915-01-27 1915-08-31 Joseph Rau Stock-feeder.
EP0604623A4 (en) 1992-07-13 1994-12-07 Motorola Inc A method and apparatus for performing handoffs in a wireless communication system.
ZA946674B (en) 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
FI97929C (en) 1994-02-25 1997-03-10 Nokia Telecommunications Oy Procedure for transmitting calls with different priorities in cellular radio networks
FI96558C (en) 1994-09-27 1996-07-10 Nokia Telecommunications Oy Method for data transmission in a TDMA mobile radio system and a mobile radio system for carrying out the method
FI96557C (en) 1994-09-27 1996-07-10 Nokia Telecommunications Oy Method for data transmission in a TDMA mobile radio system and a mobile radio system for carrying out the method
GB9509921D0 (en) 1995-05-17 1995-07-12 Roke Manor Research Improvements in or relating to mobile radio systems
KR100651457B1 (en) 1999-02-13 2006-11-28 삼성전자주식회사 Method of contiguous outer loop power control in dtx mode of cdma mobile communication system
KR100605978B1 (en) 1999-05-29 2006-07-28 삼성전자주식회사 Transceiver apparatus and method for continuous outer loop power control in dtx mode of cdma mobile communication system
US6356531B1 (en) * 1999-06-07 2002-03-12 Qualcomm Incorporated Monitoring of CDMA load and frequency reuse based on reverse link signal-to-noise ratio
US6591110B1 (en) * 2000-06-27 2003-07-08 Lucent Technologies Inc. Method of detecting and calculating external jammer signal power in communication systems
US6833554B2 (en) * 2000-11-21 2004-12-21 Massachusetts Institute Of Technology Laser-induced defect detection system and method
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system

Patent Citations (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763322A (en) 1985-07-31 1988-08-09 U.S. Philips Corp. Digital radio transmission system with variable duration of the time slots in the time-division multiplex frame
US5224120A (en) 1990-12-05 1993-06-29 Interdigital Technology Corporation Dynamic capacity allocation CDMA spread spectrum communications
US5289463A (en) 1991-05-30 1994-02-22 Alcatel Cit Method of managing flows in a wideband integrated services digital telecommunications network
US5640414A (en) 1992-03-05 1997-06-17 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
US5390165A (en) 1992-07-23 1995-02-14 Ncr Corporation Method and apparatus for transmitting digital data packets on a wireless channel
US5490136A (en) 1993-05-14 1996-02-06 Cselt - Centro Studi E Laboratori Telecomunicazioni Spa Method of controlling transmission on a same radio channel of variable-rate information streams in radio communication systems
US5367523A (en) 1993-08-26 1994-11-22 International Business Machines Corporation Adaptive rate-based congestion and flow control in packet communications networks
US5490165A (en) 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
US5648955A (en) 1993-11-01 1997-07-15 Omnipoint Corporation Method for power control in a TDMA spread spectrum communication system
US5465389A (en) 1994-02-25 1995-11-07 At&T Corp. Method of prioritizing handoff procedures in a cellular system
US5784358A (en) 1994-03-09 1998-07-21 Oxford Brookes University Broadband switching network with automatic bandwidth allocation in response to data cell detection
US5442625A (en) 1994-05-13 1995-08-15 At&T Ipm Corp Code division multiple access system providing variable data rate access to a user
US5537410A (en) 1994-09-15 1996-07-16 Oki Telecom Subsequent frame variable data rate indication method
EP0719062A2 (en) 1994-12-21 1996-06-26 AT&T Corp. Broadband wireless system and network architecture providing broadband/narrowband service with optimal static and dynamic bandwidth/channel allocation
US5729534A (en) 1995-01-09 1998-03-17 Nokia Mobile Phones Limited Dynamic allocation of radio capacity in a TDMA system
US5619492A (en) 1995-06-16 1997-04-08 Unisys Corporation CDMA communication system in which bit rates are dynamically allocated
TW318983B (en) 1995-06-30 1997-11-01 Interdigital Tech Corp
US5839056A (en) 1995-08-31 1998-11-17 Nokia Telecommunications Oy Method and apparatus for controlling transmission power of a radio transmitter
US5734646A (en) 1995-10-05 1998-03-31 Lucent Technologies Inc. Code division multiple access system providing load and interference based demand assignment service to users
EP0782364A2 (en) 1995-12-29 1997-07-02 Lsi Logic Corporation Method and apparatus for the dynamic allocation of signal bandwidth between audio, video and data signals
US5784695A (en) 1996-05-14 1998-07-21 Trw Inc. Method and apparatus for handover control in a satellite based telecommunications system
US6396804B2 (en) 1996-05-28 2002-05-28 Qualcomm Incorporated High data rate CDMA wireless communication system
US6549525B2 (en) 1996-05-28 2003-04-15 Qualcomm Incorporated High data rate CDMA wireless communication system
US6088324A (en) 1996-05-30 2000-07-11 Nec Corporation Prediction-based transmission power control in a mobile communications system
US6335923B2 (en) 1996-09-03 2002-01-01 Fujitsu Limited Mobile communication terminal and transmission power control method therefor
US6173197B1 (en) 1996-11-09 2001-01-09 Moor Instruments Limited Apparatus for measuring microvascular blood flow
US6173187B1 (en) * 1996-11-26 2001-01-09 Nokia Telecommunications Oy Method of setting load goal, and radio system
US6335922B1 (en) 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
US5914950A (en) 1997-04-08 1999-06-22 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US5923650A (en) 1997-04-08 1999-07-13 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US6418320B2 (en) 1997-08-12 2002-07-09 Nec Corporation Mobile station and a method of reducing interference among radio channels in the mobile station
US6018515A (en) 1997-08-19 2000-01-25 Ericsson Messaging Systems Inc. Message buffering for prioritized message transmission and congestion management
JP2001516975A (en) 1997-08-20 2001-10-02 クゥアルコム・インコーポレイテッド Method and apparatus for reverse link speed scheduling
WO1999009779A1 (en) 1997-08-20 1999-02-25 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US6167270A (en) 1997-09-16 2000-12-26 Qualcomm Inc. Soft handoff in the transmission of supplemental channel data
RU2233045C2 (en) 1997-11-03 2004-07-20 Квэлкомм Инкорпорейтед Method and device for high-speed burst data transfer
US7289473B1 (en) 1997-11-03 2007-10-30 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US6317234B1 (en) 1997-11-04 2001-11-13 British Telecommunications Public Limited Company Communications network
US6064678A (en) 1997-11-07 2000-05-16 Qualcomm Incorporated Method for assigning optimal packet lengths in a variable rate communication system
US6728233B1 (en) 1998-07-16 2004-04-27 Samsung Electronics Co., Ltd Processing packet data in mobile communication system
US7079522B1 (en) 1998-08-25 2006-07-18 Samsung Electronics Co., Ltd. Reverse closed loop power control in control hold state for CDMA communication system
US6816476B2 (en) 1998-08-25 2004-11-09 Samsung Electronics Co., Ltd. Reverse closed loop power control in control hold state for CDMA communication system
US6633554B1 (en) 1998-09-01 2003-10-14 Samsung Electronics Co., Ltd. System and method for soft handoff setup during system access idle handoff in a wireless network
US6597705B1 (en) 1998-09-10 2003-07-22 Qualcomm Incorporated Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system
US6798736B1 (en) 1998-09-22 2004-09-28 Qualcomm Incorporated Method and apparatus for transmitting and receiving variable rate data
US6366761B1 (en) 1998-10-06 2002-04-02 Teledesic Llc Priority-based bandwidth allocation and bandwidth-on-demand in a low-earth-orbit satellite data communication network
WO2000025485A1 (en) 1998-10-23 2000-05-04 Caly Corporation Broadband wireless mesh topology network
US6205129B1 (en) 1999-01-15 2001-03-20 Qualcomm Inc. Method and apparatus for variable and fixed forward link rate control in a mobile radio communications system
US6560211B2 (en) 1999-01-15 2003-05-06 Qualcomm, Incorporated Method and apparatus for variable and fixed forward link rate control in a mobile radio communication system
WO2000048669A1 (en) 1999-02-18 2000-08-24 Biovalve Technologies, Inc. Electroactive pore
TW453056B (en) 1999-03-15 2001-09-01 Ericsson Telefon Ab L M Adaptive power control in a radio communications system
US6436824B1 (en) 1999-07-02 2002-08-20 Chartered Semiconductor Manufacturing Ltd. Low dielectric constant materials for copper damascene
EP1067704A2 (en) 1999-07-08 2001-01-10 Lucent Technologies Inc. Method for controlling power for a communications system having multiple traffic channels per subscriber
US6633552B1 (en) 1999-08-06 2003-10-14 Qualcomm Incorporated Method and apparatus for determining the closed loop power control set point in a wireless packet data communication system
US7200127B1 (en) 1999-10-26 2007-04-03 Sk Telecom Co., Ltd. Apparatus and method for controlling a power of reverse link in CDMA system
WO2001031824A1 (en) 1999-10-26 2001-05-03 Sk Telecom Co., Ltd. Apparatus and method for controlling a power of reverse link in cdma system
US6967998B1 (en) 1999-11-12 2005-11-22 Qualcomm Incorporated Method and apparatus for monitoring transmission quality
WO2001043485A1 (en) 1999-12-08 2001-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching control
US6594241B1 (en) 1999-12-08 2003-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching control
KR20010102373A (en) 1999-12-24 2001-11-15 마츠시타 덴끼 산교 가부시키가이샤 Cdma terminal and cdma method
US20020136186A1 (en) 1999-12-24 2002-09-26 Masatoshi Watanabe Cdma terminal and cdma method
US6804219B2 (en) 1999-12-29 2004-10-12 Samsung Electronics, Co., Ltd. Data transmitting method in a CDMA system
US7626989B2 (en) 2000-02-21 2009-12-01 Nokia Corporation Capacity allocation for packet data bearers
US6473624B1 (en) 2000-03-21 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Determining a reference power level for diversity handover base stations
US7236467B2 (en) 2000-06-14 2007-06-26 Nec Corporation CDMA communication system with pilot power control unit
US6337983B1 (en) 2000-06-21 2002-01-08 Motorola, Inc. Method for autonomous handoff in a wireless communication system
US7065060B2 (en) 2000-06-21 2006-06-20 Samsung Electronics Co., Ltd. Apparatus and method for gating transmission of a data rate control channel in an HDR mobile communication system
US6782271B2 (en) 2000-06-27 2004-08-24 Samsung Electronics Co., Ltd Method and apparatus for link adaptation in a mobile communication system
US6400699B1 (en) 2000-09-12 2002-06-04 Iospan Wireless, Inc. Transmission scheduler for a multiple antenna wireless cellular network
US7133460B2 (en) 2000-10-20 2006-11-07 Samsung Electronics Co., Ltd. Apparatus and method for determining a data rate of packet data in a mobile communication system
US6847629B2 (en) 2000-11-30 2005-01-25 Qualcomm Incorporated Method and apparatus for scheduling packet data transmissions in a wireless communication system
US6741562B1 (en) * 2000-12-15 2004-05-25 Tellabs San Jose, Inc. Apparatus and methods for managing packets in a broadband data stream
US7085239B2 (en) 2001-01-05 2006-08-01 Qualcomm, Incorporated Method and apparatus for determining the forward link closed loop power control set point in a wireless packet data communication system
US7206296B2 (en) 2001-01-12 2007-04-17 Matsushita Electric Industrial Co., Ltd. Transmitting device and transmitting method
US7215653B2 (en) 2001-02-12 2007-05-08 Lg Electronics Inc. Controlling data transmission rate on the reverse link for each mobile station in a dedicated manner
US20020160782A1 (en) * 2001-02-21 2002-10-31 Abhay Joshi Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
US20020147025A1 (en) 2001-04-05 2002-10-10 Telefonaktiebolaget Lm Ericsson Systems and methods for base station signal transmission power control
US6807426B2 (en) 2001-04-12 2004-10-19 Qualcomm Incorporated Method and apparatus for scheduling transmissions in a communication system
US6657980B2 (en) 2001-04-12 2003-12-02 Qualcomm Incorporated Method and apparatus for scheduling packet data transmissions in a wireless communication system
KR20020083942A (en) 2001-04-26 2002-11-04 가부시키가이샤 엔티티 도코모 Data link transmission control method, mobile communication system, data link transmission control apparatus, base station, mobile station, mobile station control program and computer readable rocording medium
US6963746B2 (en) * 2001-06-27 2005-11-08 Fujitsu Limited Radio base station transceiver sub-system
US7489655B2 (en) 2001-07-06 2009-02-10 Qualcomm, Incorporated Method and apparatus for predictive scheduling in a bi-directional communication system
US6842624B2 (en) 2001-08-29 2005-01-11 Qualcomm, Incorporated Systems and techniques for power control
US7486961B2 (en) 2001-09-07 2009-02-03 Lg Electronics Inc. Method of adjusting a signal power in a variable data rate mode in a mobile communication system
US7031741B2 (en) 2001-09-07 2006-04-18 Lg Electronics Inc. Method of adjusting a signal power in a variable data rate mode in a mobile communication system
US20030047728A1 (en) 2001-09-10 2003-03-13 Gary Chen Insulation of an mram device through a self-aligned spacer
US20030059958A1 (en) 2001-09-27 2003-03-27 Drewes Joel A. Methods of forming magnetoresistive devices
US7010316B2 (en) 2001-09-28 2006-03-07 Qualcomm Incorporated Method and apparatus for multi-channel reverse link outer-loop power control
US20030086397A1 (en) 2001-11-05 2003-05-08 Tao Chen Method and apparatus for determining reverse link load level for reverse link data scheduling in a CDMA communication system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US20050014474A1 (en) 2001-11-30 2005-01-20 Daisuke Jitsukawa Transmission diversity communication system
US20030142732A1 (en) 2002-01-25 2003-07-31 Shimon Moshavi Novel receiver architecture for CDMA receiver downlink
US20040137681A1 (en) 2002-02-18 2004-07-15 Makoto Motoyoshi Magnetic memory device and its production method
US20050107106A1 (en) 2002-02-25 2005-05-19 Kimmo Valkealahti Method and network element for controlling power and/or load in a network
US7042858B1 (en) 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
US7171214B2 (en) 2002-05-16 2007-01-30 Cingular Wireless Ii, Llc System and method for dynamic scheduling of channels in a code division multiple access system
US20050147063A1 (en) 2002-06-07 2005-07-07 Zhouyue Pi Apparatus and an associated method for facilitating communications in a radio communication system that provides for data communications at multiple data rates
WO2004015597A1 (en) 2002-08-08 2004-02-19 Fry's Metals, Inc. D/B/A Alpha Metals, Inc. System and method for modifying electronic design data
US20040037565A1 (en) 2002-08-22 2004-02-26 Robin Young Transport of signals over an optical fiber using analog RF multiplexing
US20090097412A1 (en) 2002-09-10 2009-04-16 Qualcomm Incorporated System and method for rate assignment
US20090170523A1 (en) 2002-09-10 2009-07-02 Qualcomm Incorporated System and method for multilevel scheduling
US7630321B2 (en) 2002-09-10 2009-12-08 Qualcomm Incorporated System and method for rate assignment
US20040052212A1 (en) 2002-09-13 2004-03-18 Steve Baillargeon Packet flow control in a wireless communications network based on an indication contained in a packet
US7411923B2 (en) 2002-11-14 2008-08-12 Qualcomm Incorporated Wireless communication rate shaping
US7411974B2 (en) 2002-11-14 2008-08-12 Qualcomm Incorporated Wireless communication rate shaping
US20050004970A1 (en) 2003-01-13 2005-01-06 Avinash Jain System and method for a time-scalable priority-based scheduler
US20060095889A1 (en) 2004-10-29 2006-05-04 Synopsys, Inc. Silicon tolerance specification using shapes as design intent markers
EP1926158A1 (en) 2005-09-13 2008-05-28 Canon Anelva Corporation Method and apparatus for manufacturing magnetoresistive device
EP1793433A2 (en) 2005-11-30 2007-06-06 MagIC Technologies Inc. Spacer structure in MRAM cell and method of its fabrication
US20090130779A1 (en) 2007-11-20 2009-05-21 Qualcomm Incorporated Method of Forming a Magnetic Tunnel Junction Structure

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
"Upper Layer (layer3) Signaling standard for cdma2000 spread spectrum systems" TIA/EIA Interim Standard IS-2000.5-A-2.
Alan Gatherer, Edgar Auslander: "The Application of Programmable DSPs in Mobile Communications" [Online] Apr. 18, 2002, Wiley, England.
Attar R A et al: "A reverse link outer-loop power control algorithm for cdma2000 1xEV systems" ICC 2002. 2002 IEEE International Confernce on Communications, NY, vol. 1, Apr. 28, 2002, pp. 573-578.
Avinash Jain: "A time-scalable priority-based scheduler for IS-2000 Release C reverse link baseline simulations," 3GPP2, 3GPP2-TSG-C30-20030113-xxx, Jan. 13, 2002, pp. 1-9.
Avinash Jain: "IS-2000 Release 0 Simulation Configuration Specification, Rev. 2".
Avinash Jain: "Reverse Link System Stimulation Results for IS-2000 Release A Using DVRL Evaluation Framework", 3GPP2, Dec. 3, 2001 pp. 1-11 XP002526313.
Avinash Main; "IS-2000 Reiease C Simulation Configuration Specification; Rev. 7" 3GPP2, Dec. 9, 2002, pp. 1-19.
Chen T., "Proposed Text to Clarify the Usage of Multiple-Channel-Adjustment-Gain", 3GPP2 TSG-C meeting document, May 14, 2002, 3GPP2-C30-20020513-020, URL, ftp://ftp.3gpp2.org/TSGC/Working/2002/TSG-C-0205/ TSG-C-2002-05/WG3/C30-20020513-020 QC-MultipleChannelAdjustmentGainClarification.doc.
Damnjanovic et al., "Scheduling the cdma2000 Reverse Link", IEEE 56th Vehicular Technology Conference Proceedings, Vancouver, Canada, Sep. 24-27, 2002, vol. 1, pp. 386-390 XP010608583.
European Search Report EP09001418, Search Authority Berlin, May 14, 2009.
International Search Report and Written Opinion-PCT/US2010/057891, ISA/EPO-Jul. 12, 2011.
International Search Report-PCT/US03/028671-International Search Authority, European Patent Office-Sep. 21, 2004.
Jain, A., "IS-2000 Release C Simulation Configuration Specification, Rev.11", 3GPP2 TSG-C meeting document, Apr. 14, 2003, C30-20030414-064., URL, http://ftp.3gpp2.org/TSGC/working/2003/2003-04-Coeur-d%27Alene/ TSG-C-2003-04-Coeur-d%27Alene/WG3/C30-20030414-064R1-1xRelC-Sim-Specification-Rev11.doc.
Partial International Search Report-PCT/US2010/057891, International Search Authority-European Patent Office-Feb. 21, 2011.
Physical Layer Standard for cdma2000 spread spectrum systems release c May 28, 2002 pp. 2-189-2-199.
Prasad, R. et al.: "Third Generation Mobile Communication Systems," Jan. 1, 2000, pp. 243-248.
Ramjee Prasad, Werner Mohr, Wlater Konhauser: "Third Generation Mobile Communication Systems", Jan. 1, 2000, XP002294887, p. 245, 247.
Taiwanese Search Report-092125078-TIPO-Jan. 25, 2010.
Telecommunication Industrty Association: "Physical Layer Standard for CDMA2000 Spread Spectrum Systems", May 1, 2002, XP002294886.
Tero Ojanpera, Ramjee Prasad (Interpreter: Xuhong Zhu etc.): "Wideband CDMA for Third Generation Mobile Communications" Jun. 2000, People Posts & Telecommunications Publishing House, Bejing, pp. 170-209 and 275-285.
TIA/EIA/IS-95-B Mobile Station-Base Station Compatibility Standard For Dual-Mode Wideband Spread Spectrum Cellular System (IS-95 Standard), Feb. 3, 1999.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130155926A1 (en) * 2011-12-19 2013-06-20 Qualcomm Atheros, Inc. Voice activity detection in communication devices for power saving
US8787230B2 (en) * 2011-12-19 2014-07-22 Qualcomm Incorporated Voice activity detection in communication devices for power saving
US20130203384A1 (en) * 2012-02-07 2013-08-08 Partha Narasimhan System and method for determining leveled security key holder
US9084111B2 (en) * 2012-02-07 2015-07-14 Aruba Networks, Inc. System and method for determining leveled security key holder

Also Published As

Publication number Publication date
US20090170523A1 (en) 2009-07-02
WO2004025986A3 (en) 2004-11-18
TW200421894A (en) 2004-10-16
MXPA05002631A (en) 2005-06-08
BR0314161A (en) 2006-01-17
EP1540980A2 (en) 2005-06-15
EP2048906A3 (en) 2009-06-17
DE60327083D1 (en) 2009-05-20
US20040185868A1 (en) 2004-09-23
US8504047B2 (en) 2013-08-06
KR20050048629A (en) 2005-05-24
TWI328976B (en) 2010-08-11
JP4938817B2 (en) 2012-05-23
JP4643265B2 (en) 2011-03-02
RU2005110427A (en) 2005-11-10
EP2048906A2 (en) 2009-04-15
JP2009246981A (en) 2009-10-22
JP2005538650A (en) 2005-12-15
CA2498128A1 (en) 2004-03-25
ATE428283T1 (en) 2009-04-15
WO2004025986A2 (en) 2004-03-25
EP1540980B1 (en) 2009-04-08
AU2003278800A1 (en) 2004-04-30
KR101028973B1 (en) 2011-04-12

Similar Documents

Publication Publication Date Title
US8504054B2 (en) System and method for multilevel scheduling
US8787180B2 (en) System and method for rate assignment
US8165148B2 (en) System and method for rate assignment

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAIN, AVINASH;DAMNJANOVIC, KELESA;CHEN, TAO;REEL/FRAME:014896/0771;SIGNING DATES FROM 20040108 TO 20040109

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAIN, AVINASH;DAMNJANOVIC, KELESA;CHEN, TAO;SIGNING DATES FROM 20040108 TO 20040109;REEL/FRAME:014896/0771

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INVENTOR NAME JELENA DAMNJANOVIC WAS INCORRECTLY ENTERED AS KELESA DAMNJANOVIC PREVIOUSLY RECORDED ON REEL 014896 FRAME 0771. ASSIGNOR(S) HEREBY CONFIRMS THE INVENTOR NAME JELENA DAMNJANOVIC WAS INCORRECTLY ENTERED AS KELESA DAMNJANOVIC;ASSIGNORS:JAIN, AVINASH;DAMNJANOVIC, JELENA;CHEN, TAO;SIGNING DATES FROM 20040108 TO 20040109;REEL/FRAME:027330/0739

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210806