US9583838B2 - Electronic device with indirectly fed slot antennas - Google Patents
Electronic device with indirectly fed slot antennas Download PDFInfo
- Publication number
- US9583838B2 US9583838B2 US14/220,467 US201414220467A US9583838B2 US 9583838 B2 US9583838 B2 US 9583838B2 US 201414220467 A US201414220467 A US 201414220467A US 9583838 B2 US9583838 B2 US 9583838B2
- Authority
- US
- United States
- Prior art keywords
- slot
- antenna
- electronic device
- metal
- rear wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 54
- 239000002184 metal Substances 0.000 claims abstract description 54
- 239000003990 capacitor Substances 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 description 11
- 230000001413 cellular effect Effects 0.000 description 9
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2258—Supports; Mounting means by structural association with other equipment or articles used with computer equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2258—Supports; Mounting means by structural association with other equipment or articles used with computer equipment
- H01Q1/2266—Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/103—Resonant slot antennas with variable reactance for tuning the antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
Definitions
- This relates generally to electronic devices and, more particularly, to electronic devices with antennas.
- Electronic devices often include antennas.
- cellular telephones, computers, and other devices often contain antennas for supporting wireless communications.
- An electronic device may be provided with antennas.
- the antennas may include a primary antenna and a secondary antenna that are coupled to radio-frequency transceiver circuitry by switching circuitry.
- the switching circuitry may be adjusted to switch a desired one of the antennas into use. Additional antennas such as a hybrid antenna may also be incorporated into the electronic device.
- the antennas for the electronic device may be formed from slot antenna structures.
- a slot antenna structure may be formed from portions of a metal housing for an electronic device. For example, slots may be formed within the rear metal wall of a housing and a metal sidewall in the housing.
- the slots of the slot antenna structures may be indirectly fed to form first and second indirectly fed slot antennas.
- the first and second indirectly fed slot antennas may be formed from slots in a rear surface of an electronic device and a sidewall of the electronic device.
- the slots may have open ends along an edge of the sidewall.
- a hybrid antenna may also be formed in the electronic device.
- the hybrid antenna may have a slot antenna portion and may have a planar inverted-F antenna portion each of which contributes to the overall frequency response of the hybrid antenna.
- the slot antenna portion of the hybrid antenna may be formed from a slot in a metal housing or other conductive structures.
- the slot antenna portion of the hybrid antenna may be formed from a slot that extends through a rear metal housing wall and a metal sidewall having an edge.
- the slot may have an opening along the edge of the metal sidewall.
- FIG. 1 is a perspective view of an illustrative electronic device such as a laptop computer in accordance with an embodiment.
- FIG. 2 is a perspective view of an illustrative electronic device such as a handheld electronic device in accordance with an embodiment.
- FIG. 3 is a perspective view of an illustrative electronic device such as a tablet computer in accordance with an embodiment.
- FIG. 4 is a perspective view of an illustrative electronic device such as a display for a computer or television in accordance with an embodiment.
- FIG. 5 is a schematic diagram of illustrative circuitry in an electronic device in accordance with an embodiment.
- FIG. 6 is a schematic diagram of illustrative wireless circuitry in accordance with an embodiment.
- FIG. 7 is a schematic diagram of illustrative wireless circuitry in which multiple antennas have been coupled to transceiver circuitry using switching circuitry in accordance with an embodiment.
- FIG. 8 is a diagram of an illustrative inverted-F antenna in accordance with an embodiment.
- FIG. 9 is a diagram of an illustrative antenna that is fed using near-field coupling in accordance with an embodiment.
- FIG. 10 is a perspective view of a slot antenna being fed using near-field coupling in accordance with an embodiment.
- FIG. 11 is a perspective view of an interior portion of an electronic device housing having a pair of slots and associated near-field coupling structures in accordance with an embodiment.
- FIG. 12 is a perspective view of an illustrative interior portion of an electronic device having electronic device housing slots with multiple widths that are fed using near-field coupling structures and having a hybrid antenna that includes a planar inverted-F antenna structure and a slot antenna structure in accordance with an embodiment.
- FIG. 13 is a diagram showing how electrical components may be incorporated into a slot antenna to adjust antenna performance in accordance with an embodiment.
- Electronic devices may be provided with antennas.
- the antennas may include slot antennas formed in device structures such as electronic device housing structures. Illustrative electronic devices that have housings that accommodate slot antennas are shown in FIGS. 1, 2, 3 , and 4 .
- Electronic device 10 of FIG. 1 has the shape of a laptop computer and has upper housing 12 A and lower housing 12 B with components such as keyboard 16 and touchpad 18 .
- Device 10 has hinge structures 20 (sometimes referred to as a clutch barrel) to allow upper housing 12 A to rotate in directions 22 about rotational axis 24 relative to lower housing 12 B.
- Display 14 is mounted in housing 12 A.
- Upper housing 12 A which may sometimes be referred to as a display housing or lid, is placed in a closed position by rotating upper housing 12 A towards lower housing 12 B about rotational axis 24 .
- FIG. 2 shows an illustrative configuration for electronic device 10 based on a handheld device such as a cellular telephone, music player, gaming device, navigation unit, or other compact device.
- device 10 has opposing front and rear surfaces.
- the rear surface of device 10 may be formed from a planar portion of housing 12 .
- Display 14 forms the front surface of device 10 .
- Display 14 may have an outermost layer that includes openings for components such as button 26 and speaker port 27 .
- electronic device 10 is a tablet computer.
- device 10 has opposing planar front and rear surfaces.
- the rear surface of device 10 is formed from a planar rear wall portion of housing 12 . Curved or planar sidewalls may run around the periphery of the planar rear wall and may extend vertically upwards.
- Display 14 is mounted on the front surface of device 10 in housing 12 . As shown in FIG. 3 , display 14 has an outermost layer with an opening to accommodate button 26 .
- FIG. 4 shows an illustrative configuration for electronic device 10 in which device 10 is a computer display, a computer that has an integrated computer display, or a television.
- Display 14 is mounted on a front face of device 10 in housing 12 .
- housing 12 for device 10 may be mounted on a wall or may have an optional structure such as support stand 30 to support device 10 on a flat surface such as a table top or desk.
- An electronic device such as electronic device 10 of FIGS. 1, 2, 3, and 4 , may, in general, be a computing device such as a laptop computer, a computer monitor containing an embedded computer, a tablet computer, a cellular telephone, a media player, or other handheld or portable electronic device, a smaller device such as a wrist-watch device, a pendant device, a headphone or earpiece device, or other wearable or miniature device, a television, a computer display that does not contain an embedded computer, a gaming device, a navigation device, an embedded system such as a system in which electronic equipment with a display is mounted in a kiosk or automobile, equipment that implements the functionality of two or more of these devices, or other electronic equipment.
- FIGS. 1, 2, 3, and 4 are merely illustrative.
- Device 10 may include a display such as display 14 .
- Display 14 may be mounted in housing 12 .
- Housing 12 which may sometimes be referred to as an enclosure or case, may be formed of plastic, glass, ceramics, fiber composites, metal (e.g., stainless steel, aluminum, etc.), other suitable materials, or a combination of any two or more of these materials.
- Housing 12 may be formed using a unibody configuration in which some or all of housing 12 is machined or molded as a single structure or may be formed using multiple structures (e.g., an internal frame structure, one or more structures that form exterior housing surfaces, etc.).
- Display 14 may be a touch screen display that incorporates a layer of conductive capacitive touch sensor electrodes or other touch sensor components (e.g., resistive touch sensor components, acoustic touch sensor components, force-based touch sensor components, light-based touch sensor components, etc.) or may be a display that is not touch-sensitive.
- Capacitive touch screen electrodes may be formed from an array of indium tin oxide pads or other transparent conductive structures.
- Display 14 may include an array of display pixels formed from liquid crystal display (LCD) components, an array of electrophoretic display pixels, an array of plasma display pixels, an array of organic light-emitting diode display pixels, an array of electrowetting display pixels, or display pixels based on other display technologies.
- LCD liquid crystal display
- electrophoretic display pixels an array of electrophoretic display pixels
- plasma display pixels an array of plasma display pixels
- organic light-emitting diode display pixels an array of organic light-emitting diode display pixels
- electrowetting display pixels or display pixels based on other display technologies.
- Display 14 may be protected using a display cover layer such as a layer of transparent glass or clear plastic. Openings may be formed in the display cover layer. For example, an opening may be formed in the display cover layer to accommodate a button, an opening may be formed in the display cover layer to accommodate a speaker port, etc.
- a display cover layer such as a layer of transparent glass or clear plastic. Openings may be formed in the display cover layer. For example, an opening may be formed in the display cover layer to accommodate a button, an opening may be formed in the display cover layer to accommodate a speaker port, etc.
- Housing 12 may be formed from conductive materials and/or insulating materials. In configurations in which housing 12 is formed from plastic or other dielectric materials, antenna signals can pass through housing 12 . Antennas in this type of configuration can be mounted behind a portion of housing 12 . In configurations in which housing 12 is formed from a conductive material (e.g., metal), it may be desirable to provide one or more radio-transparent antenna windows in openings in the housing. As an example, a metal housing may have openings that are filled with plastic antenna windows. Antennas may be mounted behind the antenna windows and may transmit and/or receive antenna signals through the antenna windows.
- a conductive material e.g., metal
- FIG. 5 A schematic diagram showing illustrative components that may be used in device 10 is shown in FIG. 5 .
- device 10 may include control circuitry such as storage and processing circuitry 28 .
- Storage and processing circuitry 28 may include storage such as hard disk drive storage, nonvolatile memory (e.g., flash memory or other electrically-programmable-read-only memory configured to form a solid state drive), volatile memory (e.g., static or dynamic random-access-memory), etc.
- Processing circuitry in storage and processing circuitry 28 may be used to control the operation of device 10 .
- This processing circuitry may be based on one or more microprocessors, microcontrollers, digital signal processors, application specific integrated circuits, etc.
- Storage and processing circuitry 28 may be used to run software on device 10 , such as internet browsing applications, voice-over-internet-protocol (VOIP) telephone call applications, email applications, media playback applications, operating system functions, etc.
- VOIP voice-over-internet-protocol
- Communications protocols that may be implemented using storage and processing circuitry 28 include internet protocols, wireless local area network protocols (e.g. IEEE 802.11 protocols—sometimes referred to as WiFi®), protocols for other short-range wireless communications links such as the Bluetooth® protocol, cellular telephone protocols. MIMO protocols, antenna diversity protocols, etc.
- Input-output circuitry 44 may include input-output devices 32 .
- Input-output devices 32 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices.
- Input-output devices 32 may include user interface devices, data port devices, and other input-output components.
- input-output devices may include touch screens, displays without touch sensor capabilities, buttons, joysticks, click wheels, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, buttons, speakers, status indicators, light sources, audio jacks and other audio port components, digital data port devices, light sensors, motion sensors (accelerometers), capacitance sensors, proximity sensors, etc.
- Input-output circuitry 44 may include wireless communications circuitry 34 for communicating wirelessly with external equipment.
- Wireless communications circuitry 34 may include radio-frequency (RF) transceiver circuitry formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, one or more antennas, transmission lines, and other circuitry for handling RF wireless signals.
- Wireless signals can also be sent using light (e.g., using infrared communications).
- Wireless communications circuitry 34 may include radio-frequency transceiver circuitry 90 for handling various radio-frequency communications bands.
- circuitry 34 may include transceiver circuitry 36 , 38 , and 42 .
- Transceiver circuitry 36 may be wireless local area network transceiver circuitry that may handle 2.4 GHz and 5 GHz bands for WiFi® (IEEE 802.11) communications and that may handle the 2.4 GHz Bluetooth® communications band.
- Circuitry 34 may use cellular telephone transceiver circuitry 38 for handling wireless communications in frequency ranges such as a low communications band from 700 to 960 MHz, a midband from 1710 to 2170 MHz and a high band from 2300 to 2700 MHz or other communications bands between 700 MHz and 2700 MHz or other suitable frequencies (as examples).
- Wireless communications circuitry 34 can include circuitry for other short-range and long-range wireless links if desired.
- wireless communications circuitry 34 may include 60 GHz transceiver circuitry, circuitry for receiving television and radio signals, paging system transceivers, near field communications (NFC) circuitry, etc.
- Wireless communications circuitry 34 may include satellite navigation system circuitry such as global positioning system (GPS) receiver circuitry 42 for receiving GPS signals at 1575 MHz or for handling other satellite positioning data.
- GPS global positioning system
- WiFi® and Bluetooth® links and other short-range wireless links wireless signals are typically used to convey data over tens or hundreds of feet.
- cellular telephone links and other long-range links wireless signals are typically used to convey data over thousands of feet or miles.
- Wireless communications circuitry 34 may include antennas 40 .
- Antennas 40 may be formed using any suitable antenna types.
- antennas 40 may include antennas with resonating elements that are formed from loop antenna structures, patch antenna structures, inverted-F antenna structures, slot antenna structures, planar inverted-F antenna structures, helical antenna structures, hybrids of these designs, etc.
- Different types of antennas may be used for different bands and combinations of bands. For example, one type of antenna may be used in forming a local wireless link antenna and another type of antenna may be used in forming a remote wireless link antenna.
- transceiver circuitry 90 in wireless circuitry 34 may be coupled to antenna structures 40 using paths such as path 92 .
- Wireless circuitry 34 may be coupled to control circuitry 28 .
- Control circuitry 28 may be coupled to input-output devices 32 .
- Input-output devices 32 may supply output from device 10 and may receive input from sources that are external to device 10 .
- antenna structures 40 may be provided with circuitry such as filter circuitry (e.g., one or more passive filters and/or one or more tunable filter circuits). Discrete components such as capacitors, inductors, and resistors may be incorporated into the filter circuitry. Capacitive structures, inductive structures, and resistive structures may also be formed from patterned metal structures (e.g., part of an antenna). If desired, antenna structures 40 may be provided with adjustable circuits such as tunable components 102 to tune antennas over communications bands of interest. Tunable components 102 may include tunable inductors, tunable capacitors, or other tunable components.
- circuitry such as filter circuitry (e.g., one or more passive filters and/or one or more tunable filter circuits). Discrete components such as capacitors, inductors, and resistors may be incorporated into the filter circuitry. Capacitive structures, inductive structures, and resistive structures may also be formed from patterned metal structures (e.g., part of an antenna).
- antenna structures 40
- Tunable components such as these may be based on switches and networks of fixed components, distributed metal structures that produce associated distributed capacitances and inductances, variable solid state devices for producing variable capacitance and inductance values, tunable filters, or other suitable tunable structures.
- control circuitry 28 may issue control signals on one or more paths such as path 104 that adjust inductance values, capacitance values, or other parameters associated with tunable components 102 , thereby tuning antenna structures 40 to cover desired communications bands.
- Path 92 may include one or more transmission lines.
- signal path 92 of FIG. 6 may be a transmission line having a positive signal conductor such as line 94 and a ground signal conductor such as line 96 .
- Lines 94 and 96 may form parts of a coaxial cable or a microstrip transmission line (as examples).
- a matching network formed from components such as inductors, resistors, and capacitors may be used in matching the impedance of antenna structures 40 to the impedance of transmission line 92 .
- Matching network components may be provided as discrete components (e.g., surface mount technology components) or may be formed from housing structures, printed circuit board structures, traces on plastic supports, etc. Components such as these may also be used in forming filter circuitry in antenna structures 40 .
- Transmission line 92 may be directly coupled to an antenna resonating element and ground for antenna 40 or may be coupled to near-field-coupled antenna feed structures that are used in indirectly feeding a resonating element for antenna 40 .
- antenna structures 40 may form an inverted-F antenna, a slot antenna, a hybrid inverted-F slot antenna or other antenna having an antenna feed with a positive antenna feed terminal such as terminal 98 and a ground antenna feed terminal such as ground antenna feed terminal 100 .
- Positive transmission line conductor 94 may be coupled to positive antenna feed terminal 98 and ground transmission line conductor 96 may be coupled to ground antenna feed terminal 100 .
- antenna structures 40 may include an antenna resonating element such as a slot antenna resonating element or other element that is indirectly fed using near-field coupling.
- transmission line 92 is coupled to a near-field-coupled antenna feed structure that is used to indirectly feed antenna structures such as an antenna slot or other element through near-field electromagnetic coupling.
- antenna structures 40 may include multiple antennas such as secondary antenna 40 A and primary antenna 40 B.
- Primary antenna 40 B may be used for transmitting and receiving wireless signals.
- Secondary antenna 40 A may be switched into use when antenna 40 B is blocked or otherwise degraded in performance (e.g., to receive and, if desired, to transmit wireless signals).
- Switching circuitry 200 may be used to select which of antennas 40 A and 40 B is coupled to transceiver circuitry 90 .
- primary antenna 40 B and/or secondary antenna 40 A may cover multiple frequency bands of interest (e.g., a low band cellular band, a midband cellular band including GPS coverage, and a high band cellular band that may cover 2.4 GHz communications, if desired).
- Other communications band may be covered using antennas 40 A and 40 B, if desired.
- FIG. 8 is a diagram of illustrative inverted-F antenna structures that may be used in forming an antenna in device 10 .
- Inverted-F antenna 40 of FIG. 8 has antenna resonating element 106 and antenna ground (ground plane) 104 .
- Antenna resonating element 106 may have a main resonating element arm such as arm 108 .
- the length of arm 108 may be selected so that antenna 40 resonates at desired operating frequencies. For example, if the length of arm 108 may be a quarter of a wavelength at a desired operating frequency for antenna 40 .
- Antenna 40 may also exhibit resonances at harmonic frequencies.
- Main resonating element arm 108 may be coupled to ground 104 by return path 110 .
- Antenna feed 112 may include positive antenna feed terminal 98 and ground antenna feed terminal 100 and may run in parallel to return path 110 between arm 108 and ground 104 .
- inverted-F antennas such as illustrative antenna 40 of FIG. 4 may have more than one resonating arm branch (e.g., to create multiple frequency resonances to support operations in multiple communications bands) or may have other antenna structures (e.g., parasitic antenna resonating elements, tunable components to support antenna tuning, etc.).
- a planar inverted-F antenna (PIFA) may be formed by implementing arm 108 using planar structures (e.g., a planar metal structure such as a metal patch or strip of metal that extends into the page of FIG. 8 ).
- FIG. 9 shows how antenna 40 may be indirectly fed using a near-field coupling arrangement.
- transceiver 90 is connected to near-field-coupled antenna feed structure 202 by transmission line 92 .
- Antenna 40 may include a resonating element such as a slot or other antenna resonating element structure (antenna element 40 ′).
- Structure 202 may include a strip of metal, a patch of metal, planar metal members with other shapes, a loop of metal, or other structure that is near-field coupled to antenna resonating element 40 ′ by near-field coupled electromagnetic signals 204 .
- Structure 202 does not produce significant far-field radiation during operation (i.e., structure 202 does not itself form a far-field antenna but rather serves as a coupled feed for a slot antenna structure or other antenna resonating element structure for antenna 40 ).
- the indirect feeding of element 40 ′ by structure 202 allows antenna element 40 ′ and therefore antenna 40 to receive and/or transmit far-field wireless signals 205 (i.e., radio-frequency antenna signals for antenna 40 ).
- FIG. 10 A perspective view of an illustrative indirectly feed (coupled feed) configuration in which a slot-based antenna is being indirectly fed is shown in FIG. 10 .
- antenna 40 is a slot-based antenna formed from slot 206 in a ground plane structure such as metal housing 12 of device 10 .
- Slot 206 may be filled with plastic or other dielectric.
- slot 206 has an open end such as end 218 and an opposing closed end such as closed end 208 .
- a slot antenna such as slot antenna 40 of FIG. 10 that has an open end and a closed end may sometimes be referred to as an open slot antenna.
- slot antenna 40 may be a closed slot antenna (i.e., end 218 may be closed by providing a short circuit path across the slot opening at end 218 so that both ends of the slot are closed).
- Slot antenna 40 of FIG. 10 is based on a slot that has bend 210 . If desired, slots for slot antennas such as slot 206 may be provided with two bends, three or more bends, etc. The example of FIG. 10 is merely illustrative.
- Slot antenna 40 may be near-field coupled to near-field-coupled antenna feed structure 202 .
- Structure 202 may be formed from a patch of metal such as patch 212 with a bent leg such as leg 214 .
- Leg 214 extends downwards towards ground plane 12 .
- Tip 216 of leg 214 is separated from ground plane 12 by air gap D (i.e., tip 216 is not directly connected to ground 12 ).
- Transceiver circuitry 90 is coupled to antenna feed terminals such as terminals 98 and 100 by transmission line 92 .
- Terminal 98 may be connected to tip portion 216 of leg 214 of near-field-coupled antenna feed structure 202 .
- Terminal 100 may be connected to ground structure 12 .
- Positive signal line 94 may be coupled to terminal 98 .
- Ground signal line 96 may be coupled to terminal 100 .
- Near-field-coupled antenna feed structure 202 is near-field coupled to slot antenna 40 by near-field electromagnetic signals and forms an indirect antenna feed for antenna 40 .
- transceiver circuitry 90 can transmit and receive wireless radio-frequency antenna signals with antenna 40 (i.e., with slot 206 ) using coupled feed structure 202 .
- FIG. 11 is a perspective interior view of an illustrative configuration that may be used for housing 12 .
- Housing 12 of FIG. 11 has a rear wall such as planar rear wall 12 - 1 and has flat or curved sidewalls 12 - 2 that run around the periphery of rear wall 12 - 1 and that extend vertically upwards to support display 14 (not shown in FIG. 11 ).
- Slots 206 A and 206 B are formed in housing walls 12 - 1 and 12 - 2 .
- Plastic or other dielectric may be used to fill slots 206 A and 206 B.
- Slots 206 A and 206 B may be open ended slots having closed ends 208 and open ends 218 or one or both of slots 206 A and 206 B may be closed slots.
- Slots 206 A and 206 B may have bends such as bends 210 - 1 and 210 - 2 that allow slots 206 A and 206 B to extend across portions of rear wall 12 - 1 and up side walls 12 - 2 . Openings 218 may be formed along upper edge 220 of housing sidewall 12 .
- Near-field-coupled antenna feed structure 202 A is electromagnetically coupled to slot 206 A and allows slot antenna 40 A to be indirectly feed by transceiver circuitry 90 using terminals 98 A and 100 A.
- Near-field-coupled antenna feed structure 202 B is electromagnetically coupled to slot 206 B and allows slot antenna 40 B to be indirectly feed by transceiver circuitry 90 using terminals 98 B and 100 B.
- Switching circuitry such as switching circuitry 200 of FIG. 7 may be used to couple transceiver circuitry 90 to antennas 40 A and 40 B.
- Antenna 40 A may be a secondary antenna and antenna 40 B may be a primary antenna (or vice versa). Additional indirectly fed slot antennas 40 may be incorporated into housing 12 , if desired.
- the two-antenna configuration of FIG. 11 is merely illustrative.
- FIG. 12 is a perspective interior view of another illustrative configuration that may be used for providing slot antennas in housing 12 .
- Housing 12 of FIG. 12 has a rear wall such as planar rear wall 12 - 1 and has flat or curved sidewalls 12 - 2 that extend upwards from the rear wall around the periphery of device 10 .
- Slots 206 A, 206 B, and 206 C may be formed in housing walls 12 - 1 and 12 - 2 .
- Plastic or other dielectric may be used to fill slots 206 A, 206 B, and 206 C.
- Slots 206 A, 206 B, and 206 C may be open ended slots having closed ends 208 and open ends 218 or one or more of slots 206 A.
- 206 B, and 206 C may be closed slots that are surrounded on all sides by metal (e.g., metal housing 12 ).
- Slots 206 A, 206 B, and 206 C may have bends that allow slots 206 A, 206 B, and 206 C to extend across portions of rear wall 12 - 1 and up a given one of sidewalls 12 - 2 . Openings 218 may be formed along upper edge 220 of housing wall 12 . Slots 206 A and 206 B may have locally widened portions such as portions 222 (i.e., portions along the lengths of slots 206 A and 206 B where the widths of the slots have been widened relative to the widths of the slots elsewhere along their lengths). The locally widened slot portion of each slot may exhibit a reduced capacitance that improves low band antenna efficiency.
- Antennas 40 A and 40 B may be indirectly fed slot antennas.
- Near-field-coupled antenna feed structure 202 A may be electromagnetically coupled to slot 206 A and may allow slot antenna 40 A to be indirectly feed by transceiver circuitry 90 using terminals 98 A and 100 A.
- Near-field-coupled antenna feed structure 202 B may be electromagnetically coupled to slot 206 B and may allow slot antenna 40 B to be indirectly feed by transceiver circuitry 90 using terminals 98 B and 100 B.
- Switching circuitry such as switching circuitry 200 of FIG. 7 may be used to couple transceiver circuitry 90 to antennas 40 A and 40 B.
- Antenna 40 A may be a secondary antenna and antenna 40 B may be a primary antenna (or vice versa).
- Antenna 40 C may be a hybrid antenna that incorporates a slot antenna and a planar inverted-F antenna.
- the slot antenna portion of antenna 40 C may be formed from slot 206 C.
- the planar inverted-F portion of antenna 40 C may be formed from a planar inverted-F antenna having main planar resonating element portion 108 (e.g., a rectangular metal patch or a planar metal structure with another suitable shape), a downward-extending leg forming feed path 112 , and another downward-extending leg forming return path 110 .
- Antenna 40 C may be fed using positive antenna feed terminal 98 C (i.e., a feed terminal on the tip of leg 112 that is separated from ground 12 - 1 by an air gap or other dielectric gap) and ground antenna feed terminal 100 C (e.g., a terminal directly shorted to ground 12 on an opposing side of slot 206 C from terminal 98 C or shorted to ground 12 elsewhere on rear wall 12 - 1 ).
- positive antenna feed terminal 98 C i.e., a feed terminal on the tip of leg 112 that is separated from ground 12 - 1 by an air gap or other dielectric gap
- ground antenna feed terminal 100 C e.g., a terminal directly shorted to ground 12 on an opposing side of slot 206 C from terminal 98 C or shorted to ground 12 elsewhere on rear wall 12 - 1 ).
- Antenna 40 C may operate in one or more communications bands of interest. Both the slot antenna portion of antenna 40 C formed from slot 206 C and the planar inverted-F antenna portion of antenna 40 C may contribute to the antenna performance of antenna 40 C (i.e., both the slot antenna and planar inverted-F antenna may contribute to the antenna resonances of antenna 40 C). This allows the hybrid antenna to effectively cover communications frequencies of interest. With one suitable arrangement, antenna 40 C may operate in 2.4 GHz and 5 GHz communications bands (e.g., to support wireless local area network communications).
- slot antennas in housing 12 may be provided with electrical components such as inductors, capacitors, resistors, and more complex circuitry formed from multiple circuit elements such as these.
- the components may be packed in surface mount technology (SMT) packages or other packages.
- antenna 40 may have a near-field-coupled antenna feed structure 202 that is used to provide an indirect feed arrangement for slot antenna 40 .
- Transceiver circuitry 90 may be coupled to feed terminals 98 and 100 , as described in connection with FIG. 10 .
- Capacitor C and/or inductor L may be incorporated into antenna 40 using surface mount technology components or other electrical components.
- One or more capacitors such as capacitor C may, for example, bridge slot 206 at one or more locations along the length of slot 206 .
- Capacitor C may be implemented using a discrete capacitor or other capacitor structures.
- Inductor L may be used to form closed end 208 of slot 206 and may be formed from a discrete inductor and/or a length of metal with an associated inductance.
- the inclusion of capacitor C into antenna 40 may help reduce the size of antenna 40 (e.g., the length of slot 206 ) while ensuring that antenna 40 can continue to operate in desired communications bands.
- the inclusion of inductor L into antenna 40 may somewhat reduce low band antenna efficiency, but will also help reduce the size of antenna 40 (e.g., by minimizing slot length).
- Elements such as inductor L and capacitor C may, if desired, be tunable elements so that antenna 40 can be tuned to cover frequencies of interest, as described in connection with tunable components 102 of FIG. 6 .
- the use of coupled (indirect) feeding arrangements for the slot antennas in device 10 may help increase antenna bandwidth while minimizing slot length requirements (e.g., by shifting maximum antenna currents towards the edge of housing 12 or via other mechanisms). Other types of feeding arrangements may be used, if desired.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Support Of Aerials (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/220,467 US9583838B2 (en) | 2014-03-20 | 2014-03-20 | Electronic device with indirectly fed slot antennas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/220,467 US9583838B2 (en) | 2014-03-20 | 2014-03-20 | Electronic device with indirectly fed slot antennas |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150270618A1 US20150270618A1 (en) | 2015-09-24 |
US9583838B2 true US9583838B2 (en) | 2017-02-28 |
Family
ID=54142964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/220,467 Active 2034-06-27 US9583838B2 (en) | 2014-03-20 | 2014-03-20 | Electronic device with indirectly fed slot antennas |
Country Status (1)
Country | Link |
---|---|
US (1) | US9583838B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160295370A1 (en) * | 2015-04-03 | 2016-10-06 | Qualcomm Incorporated | Systems and methods for location-based tuning |
US9813532B2 (en) * | 2016-02-20 | 2017-11-07 | Samsung Electronics Co., Ltd | Antenna and electronic device including the same |
US20180034134A1 (en) * | 2016-08-01 | 2018-02-01 | Intel IP Corporation | Antennas in electronic devices |
US10158384B1 (en) * | 2017-09-08 | 2018-12-18 | Apple Inc. | Electronic devices with indirectly-fed adjustable slot elements |
US10164679B1 (en) | 2017-09-27 | 2018-12-25 | Apple Inc. | Electronic devices having multiple slot antennas |
US20190036211A1 (en) * | 2017-07-27 | 2019-01-31 | Ambit Microsystems (Shanghai) Ltd. | Antenna device |
US10389010B2 (en) * | 2016-07-21 | 2019-08-20 | Chiun Mai Communication Systems, Inc. | Antenna structure and wireless communication device using same |
CN110571507A (en) * | 2018-06-05 | 2019-12-13 | 宏碁股份有限公司 | mobile device and antenna structure thereof |
US11322832B2 (en) | 2018-01-24 | 2022-05-03 | Samsung Electronics Co., Ltd. | Antenna structure and electronic device comprising antenna structure |
US11356131B2 (en) * | 2015-04-17 | 2022-06-07 | Apple Inc. | Electronic device with millimeter wave antennas |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US9379445B2 (en) | 2014-02-14 | 2016-06-28 | Apple Inc. | Electronic device with satellite navigation system slot antennas |
US9583838B2 (en) | 2014-03-20 | 2017-02-28 | Apple Inc. | Electronic device with indirectly fed slot antennas |
US9559425B2 (en) | 2014-03-20 | 2017-01-31 | Apple Inc. | Electronic device with slot antenna and proximity sensor |
US9728858B2 (en) | 2014-04-24 | 2017-08-08 | Apple Inc. | Electronic devices with hybrid antennas |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10218052B2 (en) | 2015-05-12 | 2019-02-26 | Apple Inc. | Electronic device with tunable hybrid antennas |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
CN105390804B (en) * | 2015-12-09 | 2017-12-19 | 广东欧珀移动通信有限公司 | A kind of multi-mode slot antenna and mobile terminal |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10490881B2 (en) | 2016-03-10 | 2019-11-26 | Apple Inc. | Tuning circuits for hybrid electronic device antennas |
TWI609527B (en) * | 2016-03-17 | 2017-12-21 | 宏碁股份有限公司 | Mobile device |
CN106058429B (en) * | 2016-07-22 | 2019-03-12 | 常熟市泓博通讯技术股份有限公司 | Electronic device with antenna |
US10290946B2 (en) | 2016-09-23 | 2019-05-14 | Apple Inc. | Hybrid electronic device antennas having parasitic resonating elements |
TWI612721B (en) * | 2016-10-03 | 2018-01-21 | 泓博無線通訊技術有限公司 | Electronic device having antenna |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
TWI637557B (en) * | 2016-12-09 | 2018-10-01 | 群邁通訊股份有限公司 | Antenna structure and wireless communication device with same |
CN116455101A (en) | 2016-12-12 | 2023-07-18 | 艾诺格思公司 | Transmitter integrated circuit |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
JP2018170589A (en) * | 2017-03-29 | 2018-11-01 | 富士通株式会社 | Antenna device, and electronic equipment |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
TWI640130B (en) * | 2017-05-23 | 2018-11-01 | 群邁通訊股份有限公司 | Antenna structure and wireless communication device with same |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
TWI646731B (en) * | 2017-09-04 | 2019-01-01 | 宏碁股份有限公司 | Mobile electronic device |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
WO2019077624A1 (en) | 2017-10-20 | 2019-04-25 | Indian Institute Of Technology, Guwahati | A mobile rf radiation detection device. |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
EP3499640B1 (en) * | 2017-12-14 | 2021-06-30 | Alois Huber | Slot antenna |
TWI724360B (en) * | 2018-01-24 | 2021-04-11 | 仁寶電腦工業股份有限公司 | Antenna apparatus, electronic apparatus and antenna modification method |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
KR102483631B1 (en) * | 2018-06-11 | 2023-01-03 | 삼성전자주식회사 | An electronic device comprising an antenna |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
DE102018122423A1 (en) * | 2018-09-13 | 2020-03-19 | Endress+Hauser SE+Co. KG | Device for transmitting signals from an at least partially metallic housing |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
WO2020160015A1 (en) | 2019-01-28 | 2020-08-06 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
EP3921945A1 (en) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
CN111949070B (en) * | 2019-05-14 | 2023-06-20 | 荣耀终端有限公司 | Electronic equipment |
CN115104234A (en) | 2019-09-20 | 2022-09-23 | 艾诺格思公司 | System and method for protecting a wireless power receiver using multiple rectifiers and establishing in-band communication using multiple rectifiers |
US11139699B2 (en) | 2019-09-20 | 2021-10-05 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021119483A1 (en) | 2019-12-13 | 2021-06-17 | Energous Corporation | Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
CN114253350B (en) * | 2020-09-21 | 2023-12-08 | 华为技术有限公司 | Electronic equipment |
CN113079435B (en) * | 2021-04-07 | 2023-07-21 | 畅达星科技(深圳)有限公司 | Earphone |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
Citations (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016490A (en) | 1974-12-19 | 1977-04-05 | Robert Bosch G.M.B.H. | Capacitative proximity sensing system |
EP0086135B1 (en) | 1982-01-29 | 1986-04-16 | Commissariat à l'Energie Atomique | Capacitive keyboard structure |
JPH05128828A (en) | 1991-10-31 | 1993-05-25 | Toshiba Corp | Remote controller |
US5337353A (en) | 1992-04-01 | 1994-08-09 | At&T Bell Laboratories | Capacitive proximity sensors |
US5410497A (en) | 1992-03-12 | 1995-04-25 | Ing. C. Olivetti & C. S.P.A. | Portable computer having two display units |
US5463406A (en) | 1992-12-22 | 1995-10-31 | Motorola | Diversity antenna structure having closely-positioned antennas |
US5650597A (en) | 1995-01-20 | 1997-07-22 | Dynapro Systems, Inc. | Capacitive touch sensor |
US5826458A (en) | 1994-10-06 | 1998-10-27 | Scapa Group Plc | Moisture detection meter |
US5854972A (en) | 1996-05-16 | 1998-12-29 | Motorola, Inc. | Circuit for adjusting transmit power |
US5864316A (en) | 1996-12-30 | 1999-01-26 | At&T Corporation | Fixed communication terminal having proximity detector method and apparatus for safe wireless communication |
US5905467A (en) | 1997-07-25 | 1999-05-18 | Lucent Technologies Inc. | Antenna diversity in wireless communication terminals |
US5956626A (en) | 1996-06-03 | 1999-09-21 | Motorola, Inc. | Wireless communication device having an electromagnetic wave proximity sensor |
US6181281B1 (en) * | 1998-11-25 | 2001-01-30 | Nec Corporation | Single- and dual-mode patch antennas |
WO2001031733A1 (en) | 1999-10-29 | 2001-05-03 | Allgon Ab | Antenna device and method for transmitting and receiving radio waves |
US6301489B1 (en) | 1998-12-21 | 2001-10-09 | Ericsson Inc. | Flat blade antenna and flip engagement and hinge configurations |
US6329958B1 (en) | 1998-09-11 | 2001-12-11 | Tdk Rf Solutions, Inc. | Antenna formed within a conductive surface |
US20020015024A1 (en) | 1998-01-26 | 2002-02-07 | University Of Delaware | Method and apparatus for integrating manual input |
US20020027474A1 (en) | 2000-01-07 | 2002-03-07 | Spectrian Corporation | Swept performance monitor for measuring and correcting RF power amplifier distortion |
CN1343380A (en) | 1999-03-05 | 2002-04-03 | 特利泰尔R&D丹麦有限公司 | Microstrip antenna arrangement in communication device |
US6380899B1 (en) | 2000-09-20 | 2002-04-30 | 3Com Corporation | Case with communication module having a passive radiator for a handheld computer system |
US20020060645A1 (en) | 2000-11-13 | 2002-05-23 | Samsung Electronics Co., Ltd | Antenna device in radio communication terminal |
US6408193B1 (en) | 1998-11-10 | 2002-06-18 | Hitachi, Ltd. | Cellular telephone |
WO2002005443A3 (en) | 2000-07-07 | 2002-06-27 | Ericsson Inc | Portable communication device with rf output power capped when the device operates in very close proximity to a human body |
US20020094789A1 (en) | 2001-01-15 | 2002-07-18 | Nobuya Harano | Portable radio terminal device |
US6445906B1 (en) * | 1999-09-30 | 2002-09-03 | Motorola, Inc. | Micro-slot antenna |
US20020123309A1 (en) | 2001-02-21 | 2002-09-05 | Collier James Digby Yarlet | Communication system |
US6456856B1 (en) | 1998-07-28 | 2002-09-24 | Koninklijke Philips Electronics N.V. | Mobile radio equipment forming antenna pattern to project user from radiation |
US6480162B2 (en) * | 2000-01-12 | 2002-11-12 | Emag Technologies, Llc | Low cost compact omini-directional printed antenna |
US6529088B2 (en) | 2000-12-26 | 2003-03-04 | Vistar Telecommunications Inc. | Closed loop antenna tuning system |
US20030062907A1 (en) | 2001-09-28 | 2003-04-03 | Siemens Information And Communication Mobile Llc | System and method for detecting the proximity of a body |
JP2003209483A (en) | 2001-09-28 | 2003-07-25 | Siemens Information & Communication Mobile Llc | System and method for reducing sar value |
US6611227B1 (en) | 2002-08-08 | 2003-08-26 | Raytheon Company | Automotive side object detection sensor blockage detection system and related techniques |
US20030186728A1 (en) | 2001-06-08 | 2003-10-02 | Yoshiharu Manjo | Portable radio unit |
US20030193438A1 (en) | 2002-04-11 | 2003-10-16 | Samsung Electro-Mechanics Co., Ltd. | Multi band built-in antenna |
US20030197597A1 (en) | 2002-04-17 | 2003-10-23 | Microsoft Corporation | Reducing power consumption in a networked battery-operated device using sensors |
US20030210203A1 (en) | 2002-05-09 | 2003-11-13 | Phillips James P. | Sensor-driven adaptive counterpoise antenna system |
US20030218993A1 (en) | 2002-05-23 | 2003-11-27 | Ntt Docomo, Inc. | Base station, and transmission power control method |
JP2004005516A (en) | 2002-04-04 | 2004-01-08 | Toshiba Electronic Engineering Corp | Input device and display arrangement mounting the same |
US6678532B1 (en) | 1998-11-19 | 2004-01-13 | Nec Corporation | Portable phone with detecting unit of contact of antenna with human body |
US20040051670A1 (en) | 2002-02-25 | 2004-03-18 | Tdk Corporation | Antenna device and electric appliance using the same |
US20040080457A1 (en) | 2002-10-28 | 2004-04-29 | Yongxin Guo | Miniature built-in multiple frequency band antenna |
US6741214B1 (en) | 2002-11-06 | 2004-05-25 | Centurion Wireless Technologies, Inc. | Planar Inverted-F-Antenna (PIFA) having a slotted radiating element providing global cellular and GPS-bluetooth frequency response |
US20040104853A1 (en) | 2002-12-02 | 2004-06-03 | Po-Chao Chen | Flat and leveled F antenna |
US6759989B2 (en) * | 2001-10-22 | 2004-07-06 | Filtronic Lk Oy | Internal multiband antenna |
US6788266B2 (en) * | 2001-04-27 | 2004-09-07 | Tyco Electronics Logistics Ag | Diversity slot antenna |
US20040176083A1 (en) | 2003-02-25 | 2004-09-09 | Motorola, Inc. | Method and system for reducing distractions of mobile device users |
US20040189542A1 (en) | 2003-01-21 | 2004-09-30 | Kohei Mori | Flat antenna, antenna unit and broadcast reception terminal apparatus |
WO2004010528A3 (en) | 2002-07-24 | 2004-09-30 | Centurion Wireless Tech Inc | Dual feed multi-band planar antenna |
CN1543010A (en) | 2003-02-21 | 2004-11-03 | �Ҵ���˾ | Antenna and transceiving apparatus |
US20040222926A1 (en) | 2003-05-08 | 2004-11-11 | Christos Kontogeorgakis | Wideband internal antenna for communication device |
US20040239575A1 (en) | 2002-07-19 | 2004-12-02 | Hideaki Shoji | Antenna device and portable radio communication terminal |
WO2004112187A1 (en) | 2003-06-19 | 2004-12-23 | International Business Machines Corporation | Antennas integrated within the metallic display frame of a computing device |
JP2003330618A5 (en) | 2002-05-16 | 2005-03-17 | ||
EP1524774A1 (en) | 2003-10-06 | 2005-04-20 | Research In Motion Limited | System and method of controlling transmit power for multi-mode mobile device |
US20050146475A1 (en) * | 2003-12-31 | 2005-07-07 | Bettner Allen W. | Slot antenna configuration |
US20050168384A1 (en) | 2004-01-30 | 2005-08-04 | Yageo Corporation | Dual-band inverted-F antenna with shorted parasitic elements |
EP1564896A1 (en) | 2004-02-10 | 2005-08-17 | Sony Ericsson Mobile Communications AB | Impedance matching for an antenna |
EP1361623B1 (en) | 2002-05-08 | 2005-08-24 | Sony Ericsson Mobile Communications AB | Multiple frequency bands switchable antenna for portable terminals |
EP1324425A4 (en) | 2001-06-05 | 2005-08-31 | Sony Corp | Mobile wireless terminal |
US20050245204A1 (en) | 2004-05-03 | 2005-11-03 | Vance Scott L | Impedance matching circuit for a mobile communication device |
EP1593988A1 (en) | 2002-12-25 | 2005-11-09 | Act Elsi Inc. | Electrostatic capacity detection type proximity sensor |
US20050264466A1 (en) | 2003-08-07 | 2005-12-01 | Yasuhiro Hibino | Matching unit and receiver apparatus using the same |
GB2380359B (en) | 2001-09-28 | 2005-12-07 | Agere Systems Inc | A proximity regulation system for use with a portable cell phone and a method of operation thereof |
US6975276B2 (en) * | 2002-08-30 | 2005-12-13 | Raytheon Company | System and low-loss millimeter-wave cavity-backed antennas with dielectric and air cavities |
US6978121B1 (en) | 2002-11-05 | 2005-12-20 | Rfmd Wpan, Inc | Method and apparatus for operating a dual-mode radio in a wireless communication system |
US20060001576A1 (en) * | 2004-06-30 | 2006-01-05 | Ethertronics, Inc. | Compact, multi-element volume reuse antenna |
US6985113B2 (en) | 2003-04-18 | 2006-01-10 | Matsushita Electric Industrial Co., Ltd. | Radio antenna apparatus provided with controller for controlling SAR and radio communication apparatus using the same radio antenna apparatus |
US6985108B2 (en) | 2002-09-19 | 2006-01-10 | Filtronic Lk Oy | Internal antenna |
JP2006067061A (en) | 2004-08-25 | 2006-03-09 | Ritsumeikan | Wireless communication unit |
US7016686B2 (en) | 2000-12-15 | 2006-03-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Congestion control in a CDMA-based mobile radio communications system |
WO2006060232A2 (en) | 2004-11-30 | 2006-06-08 | Intel Corporation | Integrated input and display device for a mobile computer |
US20060152497A1 (en) | 2002-05-16 | 2006-07-13 | Junichi Rekimoto | Inputting method and inputting apparatus |
US20060161871A1 (en) | 2004-07-30 | 2006-07-20 | Apple Computer, Inc. | Proximity detector in handheld device |
US7113087B1 (en) | 2003-04-08 | 2006-09-26 | Microsoft Corporation | Proximity sensing based on antenna impedance variation |
US20060232468A1 (en) | 2005-02-02 | 2006-10-19 | Kabushiki Kaisha Toshiba | Antenna unit and method of transmission or reception |
US20060248363A1 (en) | 2005-04-29 | 2006-11-02 | Clevo Co. | Apparatus of dual-monitor portable computer and operational method thereof |
US20060244663A1 (en) | 2005-04-29 | 2006-11-02 | Vulcan Portals, Inc. | Compact, multi-element antenna and method |
US20060274493A1 (en) | 2001-11-19 | 2006-12-07 | Richardson Curtis R | Protective enclosure for electronic device |
US20060278444A1 (en) | 2003-06-14 | 2006-12-14 | Binstead Ronald P | Touch technology |
US7221092B2 (en) | 2002-12-27 | 2007-05-22 | Semiconductor Energy Laboratory Co., Ltd. | Display device having a double sided display panel |
US20070120740A1 (en) | 2003-12-12 | 2007-05-31 | Devis Iellici | Antenna for mobile telephone handsets, pdas, and the like |
US20070126711A1 (en) | 2005-12-01 | 2007-06-07 | Alps Electrc Co., Ltd. | Input device |
JP2007170995A (en) | 2005-12-22 | 2007-07-05 | Casio Comput Co Ltd | Electronic equipment and electronic timepiece |
US20070188375A1 (en) | 2003-08-19 | 2007-08-16 | Plextek Limited | Proximity detecting apparatus |
US20070239921A1 (en) | 2006-04-05 | 2007-10-11 | Portalplayer, Inc. | Notebook having secondary processor coupled by a multiplexer to a content source or disk drive |
WO2007116790A1 (en) | 2006-04-03 | 2007-10-18 | Panasonic Corporation | Semiconductor memory module incorporating antenna |
WO2007124333A2 (en) | 2006-04-20 | 2007-11-01 | Pressure Profile Systems, Inc. | Reconfigurable tactile sensor input device |
JP2008046070A (en) | 2006-08-21 | 2008-02-28 | Toppan Printing Co Ltd | Object detection system |
US7356361B1 (en) | 2001-06-11 | 2008-04-08 | Palm, Inc. | Hand-held device |
US7388550B2 (en) | 2005-10-11 | 2008-06-17 | Tdk Corporation | PxM antenna with improved radiation characteristics over a broad frequency range |
WO2008078142A1 (en) | 2006-12-22 | 2008-07-03 | Nokia Corporation | An apparatus comprising a radio antenna element and a grounded conductor |
US20080165063A1 (en) | 2007-01-04 | 2008-07-10 | Schlub Robert W | Handheld electronic devices with isolated antennas |
US20080246735A1 (en) | 2007-04-05 | 2008-10-09 | Reynolds Joseph K | Tactile feedback for capacitive sensors |
US20080248837A1 (en) | 2007-04-05 | 2008-10-09 | Sony Ericsson Mobile Communications Ab | Light sensor within display |
US20080297487A1 (en) | 2007-01-03 | 2008-12-04 | Apple Inc. | Display integrated photodiode matrix |
US20080309836A1 (en) | 2004-08-10 | 2008-12-18 | Hitachi, Ltd. | Liquid Crystal Display Mounted With IC Tag and Method for Manufacturing the Same |
US20080316120A1 (en) | 2007-06-19 | 2008-12-25 | Kabushiki Kaisha Toshiba | Electronic apparatus |
US20090000023A1 (en) | 2007-06-27 | 2009-01-01 | Wegelin Jackson W | Fluid dispenser having infrared user sensor |
US7482991B2 (en) * | 2004-04-06 | 2009-01-27 | Nxp B.V. | Multi-band compact PIFA antenna with meandered slot(s) |
JP2009032570A (en) | 2007-07-27 | 2009-02-12 | Fujikura Ltd | Human body approach detecting device |
WO2009022387A1 (en) | 2007-08-10 | 2009-02-19 | Panasonic Corporation | Portable wireless device |
US7502221B2 (en) | 2005-04-22 | 2009-03-10 | Microsoft Corporation | Multiple-use auxiliary display |
US20090096683A1 (en) | 2007-10-10 | 2009-04-16 | Rosenblatt Michael N | Handheld electronic devices with antenna power monitoring |
US7522846B1 (en) | 2003-12-23 | 2009-04-21 | Nortel Networks Limited | Transmission power optimization apparatus and method |
US20090128435A1 (en) | 2007-11-16 | 2009-05-21 | Smartant Telecom Co., Ltd. | Slot-coupled microstrip antenna |
US7538760B2 (en) | 2006-03-30 | 2009-05-26 | Apple Inc. | Force imaging input device and system |
US20090153410A1 (en) * | 2007-12-18 | 2009-06-18 | Bing Chiang | Feed networks for slot antennas in electronic devices |
US20090153407A1 (en) * | 2007-12-13 | 2009-06-18 | Zhijun Zhang | Hybrid antennas with directly fed antenna slots for handheld electronic devices |
US7557760B2 (en) | 2006-05-04 | 2009-07-07 | Samsung Electro-Mechanics Co., Ltd. | Inverted-F antenna and mobile communication terminal using the same |
US20090174611A1 (en) | 2008-01-04 | 2009-07-09 | Schlub Robert W | Antenna isolation for portable electronic devices |
US7595788B2 (en) | 2006-04-14 | 2009-09-29 | Pressure Profile Systems, Inc. | Electronic device housing with integrated user input capability |
US20090256758A1 (en) | 2008-04-11 | 2009-10-15 | Schlub Robert W | Hybrid antennas for electronic devices |
US20090256757A1 (en) | 2008-04-10 | 2009-10-15 | Bing Chiang | Slot antennas for electronic devices |
US20090295648A1 (en) | 2008-06-03 | 2009-12-03 | Dorsey John G | Antenna diversity systems for portable electronic devices |
WO2009149023A1 (en) | 2008-06-05 | 2009-12-10 | Apple Inc. | Electronic device with proximity-based radio power control |
US7633076B2 (en) | 2005-09-30 | 2009-12-15 | Apple Inc. | Automated response to and sensing of user activity in portable devices |
US7663612B2 (en) | 2003-02-27 | 2010-02-16 | Bang & Olufsen A/S | Metal display panel having one or more translucent regions |
US20100062728A1 (en) | 2008-09-05 | 2010-03-11 | Motorola, Inc, | Tuning an electrically small antenna |
US20100079351A1 (en) | 2008-09-09 | 2010-04-01 | Chih-Yung Huang | Solid dual-band antenna device |
US20100081374A1 (en) | 2008-09-30 | 2010-04-01 | Research In Motion Limited | Mobile wireless communications device having touch activated near field communications (nfc) circuit |
US7705787B2 (en) | 2007-03-26 | 2010-04-27 | Motorola, Inc. | Coupled slot probe antenna |
US20100109971A2 (en) | 2007-11-13 | 2010-05-06 | Rayspan Corporation | Metamaterial structures with multilayer metallization and via |
US20100167672A1 (en) | 2008-12-31 | 2010-07-01 | Lg Electronics Inc. | Mobile terminal having multiple antennas and antenna information display method thereof |
US20100182203A1 (en) | 2007-06-19 | 2010-07-22 | Agency For Science, Technology And Research | Broadband antenna for wireless communications |
US20100238072A1 (en) * | 2009-03-17 | 2010-09-23 | Mina Ayatollahi | Wideband, high isolation two port antenna array for multiple input, multiple output handheld devices |
US20100253651A1 (en) | 2009-04-06 | 2010-10-07 | Synaptics Incorporated | Input device with deflectable electrode |
US7826875B2 (en) | 2004-08-13 | 2010-11-02 | Broadcom Corporation | Multiple network wake-up |
US7834813B2 (en) | 2004-10-15 | 2010-11-16 | Skycross, Inc. | Methods and apparatuses for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness |
US7848771B2 (en) * | 2003-05-14 | 2010-12-07 | Nxp B.V. | Wireless terminals |
US7864123B2 (en) | 2007-08-28 | 2011-01-04 | Apple Inc. | Hybrid slot antennas for handheld electronic devices |
US20110012793A1 (en) | 2009-07-17 | 2011-01-20 | Amm David T | Electronic devices with capacitive proximity sensors for proximity-based radio-frequency power control |
US20110012794A1 (en) | 2009-07-17 | 2011-01-20 | Schlub Robert W | Electronic devices with parasitic antenna resonating elements that reduce near field radiation |
US7876274B2 (en) | 2007-06-21 | 2011-01-25 | Apple Inc. | Wireless handheld electronic device |
US20110045789A1 (en) | 2007-06-28 | 2011-02-24 | Nokia Corporation | Method and Device for Optimizing Mobile Radio Transmitter/Receiver having Antenna |
WO2011022067A1 (en) | 2009-08-21 | 2011-02-24 | Aleksandar Pance | Methods and apparatus for capacitive sensing |
US20110050509A1 (en) | 2009-09-03 | 2011-03-03 | Enrique Ayala Vazquez | Cavity-backed antenna for tablet device |
US7999748B2 (en) | 2008-04-02 | 2011-08-16 | Apple Inc. | Antennas for electronic devices |
US20110212746A1 (en) | 2010-02-26 | 2011-09-01 | Shantanu Sarkar | Reducing power consumption of wireless devices |
US20110241949A1 (en) | 2010-04-01 | 2011-10-06 | Josh Nickel | Multiband antennas formed from bezel bands with gaps |
US20110260924A1 (en) | 2010-04-23 | 2011-10-27 | Iain Campbell Roy | Tuneable pcb antenna |
US20110260939A1 (en) | 2010-04-21 | 2011-10-27 | Heikki Korva | Distributed multiband antenna and methods |
US8059039B2 (en) | 2008-09-25 | 2011-11-15 | Apple Inc. | Clutch barrel antenna for wireless electronic devices |
US8059040B2 (en) | 2008-09-25 | 2011-11-15 | Apple Inc. | Wireless electronic devices with clutch barrel transceivers |
US20110300907A1 (en) * | 2010-06-03 | 2011-12-08 | Hill Robert J | Parallel-fed equal current density dipole antenna |
US20120009983A1 (en) | 2010-07-06 | 2012-01-12 | Mow Matt A | Tunable antenna systems |
US8115753B2 (en) | 2007-04-11 | 2012-02-14 | Next Holdings Limited | Touch screen system with hover and click input methods |
US20120068893A1 (en) | 2010-09-22 | 2012-03-22 | Jerzy Guterman | Antenna structures having resonating elements and parasitic elements within slots in conductive elements |
US20120092298A1 (en) | 2006-04-20 | 2012-04-19 | Koottungal Paul D | Touch sensor |
US20120112970A1 (en) | 2010-11-05 | 2012-05-10 | Ruben Caballero | Antenna system with antenna swapping and antenna tuning |
US20120112969A1 (en) | 2010-11-05 | 2012-05-10 | Ruben Caballero | Antenna system with receiver diversity and tunable matching circuit |
US20120176279A1 (en) | 2011-01-11 | 2012-07-12 | Merz Nicholas G L | Structures for forming conductive paths in antennas and other electronic device structures |
US8228198B2 (en) | 2005-08-19 | 2012-07-24 | Adasa Inc. | Systems, methods, and devices for commissioning wireless sensors |
US8238971B2 (en) | 2005-01-07 | 2012-08-07 | Apple Inc. | Accessory detection to minimize interference with wireless communication |
US20120214412A1 (en) | 2011-02-17 | 2012-08-23 | Schlub Robert W | Antenna with integrated proximity sensor for proximity-based radio-frequency power control |
US8255009B2 (en) | 2008-04-25 | 2012-08-28 | Apple Inc. | Radio frequency communications circuitry with power supply voltage and gain control |
US20120223865A1 (en) | 2011-03-01 | 2012-09-06 | Qingxiang Li | Antenna structures with carriers and shields |
US20120223866A1 (en) | 2011-03-01 | 2012-09-06 | Enrique Ayala Vazquez | Multi-element antenna structure with wrapped substrate |
US20120229360A1 (en) * | 2009-09-08 | 2012-09-13 | Molex Incorporated | Indirect fed antenna |
US8270914B2 (en) | 2009-12-03 | 2012-09-18 | Apple Inc. | Bezel gap antennas |
US8319692B2 (en) | 2009-03-10 | 2012-11-27 | Apple Inc. | Cavity antenna for an electronic device |
US20120299785A1 (en) | 2011-05-27 | 2012-11-29 | Peter Bevelacqua | Dynamically adjustable antenna supporting multiple antenna modes |
US8326221B2 (en) | 2009-02-09 | 2012-12-04 | Apple Inc. | Portable electronic device with proximity-based content synchronization |
US8325094B2 (en) | 2009-06-17 | 2012-12-04 | Apple Inc. | Dielectric window antennas for electronic devices |
US8347014B2 (en) | 2010-06-04 | 2013-01-01 | Apple Inc. | Class-based compatibility testing and notification |
US20130050038A1 (en) | 2011-08-25 | 2013-02-28 | Samsung Electronics Co., Ltd. | Antenna apparatus of mobile terminal |
US20130082884A1 (en) * | 2011-09-30 | 2013-04-04 | Google Inc. | Antennas for computers with conductive chassis |
US20130106660A1 (en) | 2011-10-28 | 2013-05-02 | Lg Innotek Co., Ltd. | Radiation device for planar inverted-f antenna and antenna using the same |
US8436816B2 (en) | 2008-10-24 | 2013-05-07 | Apple Inc. | Disappearing button or slider |
US20130115884A1 (en) * | 2010-12-01 | 2013-05-09 | Huizhou Tcl Mobile Communication Co., Ltd | Five-band bluetooth built-in antenna and its mobile communication terminal |
US20130154900A1 (en) * | 2011-12-20 | 2013-06-20 | Chih-Yang Tsai | Wireless communication device having metal end portion of housing thereof |
US20130169490A1 (en) | 2012-01-04 | 2013-07-04 | Mattia Pascolini | Antenna With Switchable Inductor Low-Band Tuning |
US8497806B2 (en) | 2010-07-23 | 2013-07-30 | Research In Motion Limited | Mobile wireless device with multi-band loop antenna with arms defining a slotted opening and related methods |
US20130203364A1 (en) | 2012-02-08 | 2013-08-08 | Dean F. Darnell | Tunable Antenna System with Multiple Feeds |
US20130201067A1 (en) | 2012-02-03 | 2013-08-08 | Hongfei Hu | Tunable Antenna System |
WO2013123109A1 (en) | 2012-02-14 | 2013-08-22 | Molex Incorporated | On radiator slot fed antenna |
US8517383B2 (en) | 2008-06-20 | 2013-08-27 | Pure Imagination, LLC | Interactive game board system incorporating capacitive sensing and identification of game pieces |
US8525734B2 (en) | 2006-12-21 | 2013-09-03 | Nokia Corporation | Antenna device |
US8531337B2 (en) | 2005-05-13 | 2013-09-10 | Fractus, S.A. | Antenna diversity system and slot antenna component |
US20130234910A1 (en) | 2012-03-12 | 2013-09-12 | Samsung Electronics Co., Ltd. | Antenna apparatus for portable terminal |
US20130257659A1 (en) | 2012-03-30 | 2013-10-03 | Dean F. Darnell | Antenna Having Flexible Feed Structure with Components |
US20130285857A1 (en) | 2011-10-26 | 2013-10-31 | John Colin Schultz | Antenna arrangement |
WO2013165419A1 (en) | 2012-05-03 | 2013-11-07 | Hewlett-Packard Development Company, L.P. | Controlling electromagnetic radiation from an electronic device |
US20130293425A1 (en) * | 2012-05-04 | 2013-11-07 | Jiang Zhu | Antenna Structures Having Slot-Based Parasitic Elements |
US20130321216A1 (en) | 2012-05-30 | 2013-12-05 | James W. Jervis | Antenna Structures in Electronic Devices With Hinged Enclosures |
US20130328730A1 (en) | 2012-06-06 | 2013-12-12 | Jerzy Guterman | Methods for Forming Elongated Antennas With Plastic Support Structures for Electronic Devices |
US8610629B2 (en) | 2010-05-27 | 2013-12-17 | Apple Inc. | Housing structures for optimizing location of emitted radio-frequency signals |
US20130333496A1 (en) | 2012-06-19 | 2013-12-19 | Faurecia Sieges D'automobile | Adjustment Mechanism for Vehicle Seat, Vehicle Seat Comprising Such a Mechanism |
US20130342411A1 (en) | 2012-06-21 | 2013-12-26 | Lg Electronics Inc. | Antenna device and mobile terminal having the same |
US20140009352A1 (en) * | 2012-07-06 | 2014-01-09 | Kun-Lin Sung | Antenna assembly and wireless communication device employing same |
US8638266B2 (en) * | 2008-07-24 | 2014-01-28 | Nxp, B.V. | Antenna arrangement and a radio apparatus including the antenna arrangement |
US8638549B2 (en) | 2010-08-24 | 2014-01-28 | Apple Inc. | Electronic device display module |
US8648752B2 (en) | 2011-02-11 | 2014-02-11 | Pulse Finland Oy | Chassis-excited antenna apparatus and methods |
US20140086441A1 (en) | 2012-09-27 | 2014-03-27 | Apple, Inc. | Distributed Loop Speaker Enclosure Antenna |
US20140184450A1 (en) * | 2012-12-28 | 2014-07-03 | Korea Advanced Institute Of Science And Technology | Slot antenna and information terminal apparatus using the same |
US8781420B2 (en) | 2010-04-13 | 2014-07-15 | Apple Inc. | Adjustable wireless circuitry with antenna-based proximity detector |
US20140266941A1 (en) | 2013-12-04 | 2014-09-18 | Apple Inc. | Electronic Device With Hybrid Inverted-F Slot Antenna |
US20140375509A1 (en) | 2013-06-20 | 2014-12-25 | Sony Corporation | Wireless electronic devices including a feed structure connected to a plurality of antennas |
US20150180123A1 (en) * | 2013-12-19 | 2015-06-25 | Alexandru Daniel Tatomirescu | Platform independent antenna |
US20150236426A1 (en) | 2014-02-14 | 2015-08-20 | Apple Inc. | Electronic Device With Satellite Navigation System Slot Antennas |
US20150257158A1 (en) | 2014-03-07 | 2015-09-10 | Apple Inc. | Electronic Device With Accessory-Based Transmit Power Control |
US20150255851A1 (en) | 2014-03-10 | 2015-09-10 | Apple Inc. | Electronic Device With Dual Clutch Barrel Cavity Antennas |
US20150270618A1 (en) | 2014-03-20 | 2015-09-24 | Apple Inc. | Electronic Device With Indirectly Fed Slot Antennas |
US20150270619A1 (en) | 2014-03-20 | 2015-09-24 | Apple Inc. | Electronic Device With Slot Antenna and Proximity Sensor |
US20150311594A1 (en) | 2014-04-24 | 2015-10-29 | Apple Inc. | Electronic Devices With Hybrid Antennas |
DE102005035935B4 (en) | 2005-07-28 | 2016-02-18 | Huf Hülsbeck & Fürst Gmbh & Co. Kg | Motor vehicle door handle with integrated capacitive sensor, inductive transmitting antenna and an arrangement for reducing false triggering of the capacitive sensor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003330618A (en) | 2002-05-16 | 2003-11-21 | Sony Corp | Input method and input device |
-
2014
- 2014-03-20 US US14/220,467 patent/US9583838B2/en active Active
Patent Citations (237)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016490A (en) | 1974-12-19 | 1977-04-05 | Robert Bosch G.M.B.H. | Capacitative proximity sensing system |
EP0086135B1 (en) | 1982-01-29 | 1986-04-16 | Commissariat à l'Energie Atomique | Capacitive keyboard structure |
US4614937A (en) | 1982-01-29 | 1986-09-30 | Commissariat A L'energie Atomique | Capacitive keyboard structure |
JPH05128828A (en) | 1991-10-31 | 1993-05-25 | Toshiba Corp | Remote controller |
US5410497A (en) | 1992-03-12 | 1995-04-25 | Ing. C. Olivetti & C. S.P.A. | Portable computer having two display units |
EP0564164B1 (en) | 1992-04-01 | 1997-05-28 | AT&T Corp. | Telecommunications instrument with capacitive controller |
US5337353A (en) | 1992-04-01 | 1994-08-09 | At&T Bell Laboratories | Capacitive proximity sensors |
US5463406A (en) | 1992-12-22 | 1995-10-31 | Motorola | Diversity antenna structure having closely-positioned antennas |
US5826458A (en) | 1994-10-06 | 1998-10-27 | Scapa Group Plc | Moisture detection meter |
US5650597A (en) | 1995-01-20 | 1997-07-22 | Dynapro Systems, Inc. | Capacitive touch sensor |
US5854972A (en) | 1996-05-16 | 1998-12-29 | Motorola, Inc. | Circuit for adjusting transmit power |
US5956626A (en) | 1996-06-03 | 1999-09-21 | Motorola, Inc. | Wireless communication device having an electromagnetic wave proximity sensor |
US5864316A (en) | 1996-12-30 | 1999-01-26 | At&T Corporation | Fixed communication terminal having proximity detector method and apparatus for safe wireless communication |
US5905467A (en) | 1997-07-25 | 1999-05-18 | Lucent Technologies Inc. | Antenna diversity in wireless communication terminals |
US20020015024A1 (en) | 1998-01-26 | 2002-02-07 | University Of Delaware | Method and apparatus for integrating manual input |
US6456856B1 (en) | 1998-07-28 | 2002-09-24 | Koninklijke Philips Electronics N.V. | Mobile radio equipment forming antenna pattern to project user from radiation |
US6329958B1 (en) | 1998-09-11 | 2001-12-11 | Tdk Rf Solutions, Inc. | Antenna formed within a conductive surface |
US6408193B1 (en) | 1998-11-10 | 2002-06-18 | Hitachi, Ltd. | Cellular telephone |
US6678532B1 (en) | 1998-11-19 | 2004-01-13 | Nec Corporation | Portable phone with detecting unit of contact of antenna with human body |
US6181281B1 (en) * | 1998-11-25 | 2001-01-30 | Nec Corporation | Single- and dual-mode patch antennas |
US6301489B1 (en) | 1998-12-21 | 2001-10-09 | Ericsson Inc. | Flat blade antenna and flip engagement and hinge configurations |
CN1343380A (en) | 1999-03-05 | 2002-04-03 | 特利泰尔R&D丹麦有限公司 | Microstrip antenna arrangement in communication device |
US6445906B1 (en) * | 1999-09-30 | 2002-09-03 | Motorola, Inc. | Micro-slot antenna |
WO2001031733A1 (en) | 1999-10-29 | 2001-05-03 | Allgon Ab | Antenna device and method for transmitting and receiving radio waves |
US20020027474A1 (en) | 2000-01-07 | 2002-03-07 | Spectrian Corporation | Swept performance monitor for measuring and correcting RF power amplifier distortion |
US6480162B2 (en) * | 2000-01-12 | 2002-11-12 | Emag Technologies, Llc | Low cost compact omini-directional printed antenna |
WO2002005443A3 (en) | 2000-07-07 | 2002-06-27 | Ericsson Inc | Portable communication device with rf output power capped when the device operates in very close proximity to a human body |
US6380899B1 (en) | 2000-09-20 | 2002-04-30 | 3Com Corporation | Case with communication module having a passive radiator for a handheld computer system |
US20020060645A1 (en) | 2000-11-13 | 2002-05-23 | Samsung Electronics Co., Ltd | Antenna device in radio communication terminal |
US6590539B2 (en) | 2000-11-13 | 2003-07-08 | Samsung Electronics Co., Ltd. | Antenna device in radio communication terminal |
US7016686B2 (en) | 2000-12-15 | 2006-03-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Congestion control in a CDMA-based mobile radio communications system |
US6529088B2 (en) | 2000-12-26 | 2003-03-04 | Vistar Telecommunications Inc. | Closed loop antenna tuning system |
US20020094789A1 (en) | 2001-01-15 | 2002-07-18 | Nobuya Harano | Portable radio terminal device |
US20020123309A1 (en) | 2001-02-21 | 2002-09-05 | Collier James Digby Yarlet | Communication system |
US6788266B2 (en) * | 2001-04-27 | 2004-09-07 | Tyco Electronics Logistics Ag | Diversity slot antenna |
EP1324425A4 (en) | 2001-06-05 | 2005-08-31 | Sony Corp | Mobile wireless terminal |
US20030186728A1 (en) | 2001-06-08 | 2003-10-02 | Yoshiharu Manjo | Portable radio unit |
US7356361B1 (en) | 2001-06-11 | 2008-04-08 | Palm, Inc. | Hand-held device |
GB2380359B (en) | 2001-09-28 | 2005-12-07 | Agere Systems Inc | A proximity regulation system for use with a portable cell phone and a method of operation thereof |
US7499722B2 (en) | 2001-09-28 | 2009-03-03 | Agere Systems Inc. | Proximity regulation system for use with a portable cell phone and a method of operation thereof |
US7039435B2 (en) | 2001-09-28 | 2006-05-02 | Agere Systems Inc. | Proximity regulation system for use with a portable cell phone and a method of operation thereof |
US20030062907A1 (en) | 2001-09-28 | 2003-04-03 | Siemens Information And Communication Mobile Llc | System and method for detecting the proximity of a body |
JP2003209483A (en) | 2001-09-28 | 2003-07-25 | Siemens Information & Communication Mobile Llc | System and method for reducing sar value |
US7146139B2 (en) | 2001-09-28 | 2006-12-05 | Siemens Communications, Inc. | System and method for reducing SAR values |
EP1298809B1 (en) | 2001-09-28 | 2006-08-23 | Siemens Communications, Inc. | System and method for reducing SAR values |
US6759989B2 (en) * | 2001-10-22 | 2004-07-06 | Filtronic Lk Oy | Internal multiband antenna |
US20060274493A1 (en) | 2001-11-19 | 2006-12-07 | Richardson Curtis R | Protective enclosure for electronic device |
US20040051670A1 (en) | 2002-02-25 | 2004-03-18 | Tdk Corporation | Antenna device and electric appliance using the same |
US6879293B2 (en) | 2002-02-25 | 2005-04-12 | Tdk Corporation | Antenna device and electric appliance using the same |
JP2004005516A (en) | 2002-04-04 | 2004-01-08 | Toshiba Electronic Engineering Corp | Input device and display arrangement mounting the same |
US20030193438A1 (en) | 2002-04-11 | 2003-10-16 | Samsung Electro-Mechanics Co., Ltd. | Multi band built-in antenna |
US20030197597A1 (en) | 2002-04-17 | 2003-10-23 | Microsoft Corporation | Reducing power consumption in a networked battery-operated device using sensors |
EP1361623B1 (en) | 2002-05-08 | 2005-08-24 | Sony Ericsson Mobile Communications AB | Multiple frequency bands switchable antenna for portable terminals |
US6657595B1 (en) | 2002-05-09 | 2003-12-02 | Motorola, Inc. | Sensor-driven adaptive counterpoise antenna system |
US20030210203A1 (en) | 2002-05-09 | 2003-11-13 | Phillips James P. | Sensor-driven adaptive counterpoise antenna system |
JP2003330618A5 (en) | 2002-05-16 | 2005-03-17 | ||
US20060152497A1 (en) | 2002-05-16 | 2006-07-13 | Junichi Rekimoto | Inputting method and inputting apparatus |
US20030218993A1 (en) | 2002-05-23 | 2003-11-27 | Ntt Docomo, Inc. | Base station, and transmission power control method |
US20040239575A1 (en) | 2002-07-19 | 2004-12-02 | Hideaki Shoji | Antenna device and portable radio communication terminal |
WO2004010528A3 (en) | 2002-07-24 | 2004-09-30 | Centurion Wireless Tech Inc | Dual feed multi-band planar antenna |
US6611227B1 (en) | 2002-08-08 | 2003-08-26 | Raytheon Company | Automotive side object detection sensor blockage detection system and related techniques |
US6975276B2 (en) * | 2002-08-30 | 2005-12-13 | Raytheon Company | System and low-loss millimeter-wave cavity-backed antennas with dielectric and air cavities |
US6985108B2 (en) | 2002-09-19 | 2006-01-10 | Filtronic Lk Oy | Internal antenna |
JP2003179670A5 (en) | 2002-09-26 | 2005-10-27 | ||
US20040080457A1 (en) | 2002-10-28 | 2004-04-29 | Yongxin Guo | Miniature built-in multiple frequency band antenna |
US6978121B1 (en) | 2002-11-05 | 2005-12-20 | Rfmd Wpan, Inc | Method and apparatus for operating a dual-mode radio in a wireless communication system |
US6741214B1 (en) | 2002-11-06 | 2004-05-25 | Centurion Wireless Technologies, Inc. | Planar Inverted-F-Antenna (PIFA) having a slotted radiating element providing global cellular and GPS-bluetooth frequency response |
US20040104853A1 (en) | 2002-12-02 | 2004-06-03 | Po-Chao Chen | Flat and leveled F antenna |
EP1593988A1 (en) | 2002-12-25 | 2005-11-09 | Act Elsi Inc. | Electrostatic capacity detection type proximity sensor |
US7221092B2 (en) | 2002-12-27 | 2007-05-22 | Semiconductor Energy Laboratory Co., Ltd. | Display device having a double sided display panel |
US20040189542A1 (en) | 2003-01-21 | 2004-09-30 | Kohei Mori | Flat antenna, antenna unit and broadcast reception terminal apparatus |
US7109945B2 (en) | 2003-01-21 | 2006-09-19 | Sony Corporation | Flat antenna, antenna unit and broadcast reception terminal apparatus |
CN1543010A (en) | 2003-02-21 | 2004-11-03 | �Ҵ���˾ | Antenna and transceiving apparatus |
US20040176083A1 (en) | 2003-02-25 | 2004-09-09 | Motorola, Inc. | Method and system for reducing distractions of mobile device users |
US7663612B2 (en) | 2003-02-27 | 2010-02-16 | Bang & Olufsen A/S | Metal display panel having one or more translucent regions |
US7113087B1 (en) | 2003-04-08 | 2006-09-26 | Microsoft Corporation | Proximity sensing based on antenna impedance variation |
EP1469550B1 (en) | 2003-04-18 | 2008-03-26 | Matsushita Electric Industrial Co., Ltd. | Radio antenna apparatus provided with controller for controlling SAR (specific absorption rate) and radio communication apparatus using the same radio antenna apparatus |
US6985113B2 (en) | 2003-04-18 | 2006-01-10 | Matsushita Electric Industrial Co., Ltd. | Radio antenna apparatus provided with controller for controlling SAR and radio communication apparatus using the same radio antenna apparatus |
US20040222926A1 (en) | 2003-05-08 | 2004-11-11 | Christos Kontogeorgakis | Wideband internal antenna for communication device |
US7848771B2 (en) * | 2003-05-14 | 2010-12-07 | Nxp B.V. | Wireless terminals |
US20060278444A1 (en) | 2003-06-14 | 2006-12-14 | Binstead Ronald P | Touch technology |
WO2004112187A1 (en) | 2003-06-19 | 2004-12-23 | International Business Machines Corporation | Antennas integrated within the metallic display frame of a computing device |
US20050264466A1 (en) | 2003-08-07 | 2005-12-01 | Yasuhiro Hibino | Matching unit and receiver apparatus using the same |
US20070188375A1 (en) | 2003-08-19 | 2007-08-16 | Plextek Limited | Proximity detecting apparatus |
EP1524774A1 (en) | 2003-10-06 | 2005-04-20 | Research In Motion Limited | System and method of controlling transmit power for multi-mode mobile device |
US20070120740A1 (en) | 2003-12-12 | 2007-05-31 | Devis Iellici | Antenna for mobile telephone handsets, pdas, and the like |
US7522846B1 (en) | 2003-12-23 | 2009-04-21 | Nortel Networks Limited | Transmission power optimization apparatus and method |
US20050146475A1 (en) * | 2003-12-31 | 2005-07-07 | Bettner Allen W. | Slot antenna configuration |
US20050168384A1 (en) | 2004-01-30 | 2005-08-04 | Yageo Corporation | Dual-band inverted-F antenna with shorted parasitic elements |
US7050010B2 (en) | 2004-01-30 | 2006-05-23 | Yageo Corporation | Dual-band inverted-F antenna with shorted parasitic elements |
EP1564896A1 (en) | 2004-02-10 | 2005-08-17 | Sony Ericsson Mobile Communications AB | Impedance matching for an antenna |
US7482991B2 (en) * | 2004-04-06 | 2009-01-27 | Nxp B.V. | Multi-band compact PIFA antenna with meandered slot(s) |
US20050245204A1 (en) | 2004-05-03 | 2005-11-03 | Vance Scott L | Impedance matching circuit for a mobile communication device |
WO2005112280A1 (en) | 2004-05-03 | 2005-11-24 | Sony Ericsson Mobile Communications Ab | Impedance matching circuit for a mobile communication device |
US20060001576A1 (en) * | 2004-06-30 | 2006-01-05 | Ethertronics, Inc. | Compact, multi-element volume reuse antenna |
US20060161871A1 (en) | 2004-07-30 | 2006-07-20 | Apple Computer, Inc. | Proximity detector in handheld device |
US20080309836A1 (en) | 2004-08-10 | 2008-12-18 | Hitachi, Ltd. | Liquid Crystal Display Mounted With IC Tag and Method for Manufacturing the Same |
US7826875B2 (en) | 2004-08-13 | 2010-11-02 | Broadcom Corporation | Multiple network wake-up |
JP2006067061A (en) | 2004-08-25 | 2006-03-09 | Ritsumeikan | Wireless communication unit |
US7834813B2 (en) | 2004-10-15 | 2010-11-16 | Skycross, Inc. | Methods and apparatuses for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness |
WO2006060232A2 (en) | 2004-11-30 | 2006-06-08 | Intel Corporation | Integrated input and display device for a mobile computer |
US8238971B2 (en) | 2005-01-07 | 2012-08-07 | Apple Inc. | Accessory detection to minimize interference with wireless communication |
US20060232468A1 (en) | 2005-02-02 | 2006-10-19 | Kabushiki Kaisha Toshiba | Antenna unit and method of transmission or reception |
US7502221B2 (en) | 2005-04-22 | 2009-03-10 | Microsoft Corporation | Multiple-use auxiliary display |
US20060244663A1 (en) | 2005-04-29 | 2006-11-02 | Vulcan Portals, Inc. | Compact, multi-element antenna and method |
US20060248363A1 (en) | 2005-04-29 | 2006-11-02 | Clevo Co. | Apparatus of dual-monitor portable computer and operational method thereof |
US8531337B2 (en) | 2005-05-13 | 2013-09-10 | Fractus, S.A. | Antenna diversity system and slot antenna component |
DE102005035935B4 (en) | 2005-07-28 | 2016-02-18 | Huf Hülsbeck & Fürst Gmbh & Co. Kg | Motor vehicle door handle with integrated capacitive sensor, inductive transmitting antenna and an arrangement for reducing false triggering of the capacitive sensor |
US8228198B2 (en) | 2005-08-19 | 2012-07-24 | Adasa Inc. | Systems, methods, and devices for commissioning wireless sensors |
US7633076B2 (en) | 2005-09-30 | 2009-12-15 | Apple Inc. | Automated response to and sensing of user activity in portable devices |
US7388550B2 (en) | 2005-10-11 | 2008-06-17 | Tdk Corporation | PxM antenna with improved radiation characteristics over a broad frequency range |
US20070126711A1 (en) | 2005-12-01 | 2007-06-07 | Alps Electrc Co., Ltd. | Input device |
JP2007170995A (en) | 2005-12-22 | 2007-07-05 | Casio Comput Co Ltd | Electronic equipment and electronic timepiece |
US7538760B2 (en) | 2006-03-30 | 2009-05-26 | Apple Inc. | Force imaging input device and system |
WO2007116790A1 (en) | 2006-04-03 | 2007-10-18 | Panasonic Corporation | Semiconductor memory module incorporating antenna |
US20070239921A1 (en) | 2006-04-05 | 2007-10-11 | Portalplayer, Inc. | Notebook having secondary processor coupled by a multiplexer to a content source or disk drive |
US7595788B2 (en) | 2006-04-14 | 2009-09-29 | Pressure Profile Systems, Inc. | Electronic device housing with integrated user input capability |
WO2007124333A2 (en) | 2006-04-20 | 2007-11-01 | Pressure Profile Systems, Inc. | Reconfigurable tactile sensor input device |
US20120092298A1 (en) | 2006-04-20 | 2012-04-19 | Koottungal Paul D | Touch sensor |
US7557760B2 (en) | 2006-05-04 | 2009-07-07 | Samsung Electro-Mechanics Co., Ltd. | Inverted-F antenna and mobile communication terminal using the same |
JP2008046070A (en) | 2006-08-21 | 2008-02-28 | Toppan Printing Co Ltd | Object detection system |
US8525734B2 (en) | 2006-12-21 | 2013-09-03 | Nokia Corporation | Antenna device |
WO2008078142A1 (en) | 2006-12-22 | 2008-07-03 | Nokia Corporation | An apparatus comprising a radio antenna element and a grounded conductor |
US20080297487A1 (en) | 2007-01-03 | 2008-12-04 | Apple Inc. | Display integrated photodiode matrix |
US20080165063A1 (en) | 2007-01-04 | 2008-07-10 | Schlub Robert W | Handheld electronic devices with isolated antennas |
US7705787B2 (en) | 2007-03-26 | 2010-04-27 | Motorola, Inc. | Coupled slot probe antenna |
US20080248837A1 (en) | 2007-04-05 | 2008-10-09 | Sony Ericsson Mobile Communications Ab | Light sensor within display |
US20080246735A1 (en) | 2007-04-05 | 2008-10-09 | Reynolds Joseph K | Tactile feedback for capacitive sensors |
US8115753B2 (en) | 2007-04-11 | 2012-02-14 | Next Holdings Limited | Touch screen system with hover and click input methods |
US20080316120A1 (en) | 2007-06-19 | 2008-12-25 | Kabushiki Kaisha Toshiba | Electronic apparatus |
US20100182203A1 (en) | 2007-06-19 | 2010-07-22 | Agency For Science, Technology And Research | Broadband antenna for wireless communications |
CN101330162B (en) | 2007-06-19 | 2013-04-10 | 株式会社东芝 | Electronic apparatus |
US7876274B2 (en) | 2007-06-21 | 2011-01-25 | Apple Inc. | Wireless handheld electronic device |
US20090000023A1 (en) | 2007-06-27 | 2009-01-01 | Wegelin Jackson W | Fluid dispenser having infrared user sensor |
US20110045789A1 (en) | 2007-06-28 | 2011-02-24 | Nokia Corporation | Method and Device for Optimizing Mobile Radio Transmitter/Receiver having Antenna |
JP2009032570A (en) | 2007-07-27 | 2009-02-12 | Fujikura Ltd | Human body approach detecting device |
WO2009022387A1 (en) | 2007-08-10 | 2009-02-19 | Panasonic Corporation | Portable wireless device |
US7864123B2 (en) | 2007-08-28 | 2011-01-04 | Apple Inc. | Hybrid slot antennas for handheld electronic devices |
US20090096683A1 (en) | 2007-10-10 | 2009-04-16 | Rosenblatt Michael N | Handheld electronic devices with antenna power monitoring |
US20100109971A2 (en) | 2007-11-13 | 2010-05-06 | Rayspan Corporation | Metamaterial structures with multilayer metallization and via |
US20090128435A1 (en) | 2007-11-16 | 2009-05-21 | Smartant Telecom Co., Ltd. | Slot-coupled microstrip antenna |
US20090153407A1 (en) * | 2007-12-13 | 2009-06-18 | Zhijun Zhang | Hybrid antennas with directly fed antenna slots for handheld electronic devices |
US7551142B1 (en) | 2007-12-13 | 2009-06-23 | Apple Inc. | Hybrid antennas with directly fed antenna slots for handheld electronic devices |
US20090153410A1 (en) * | 2007-12-18 | 2009-06-18 | Bing Chiang | Feed networks for slot antennas in electronic devices |
US20090174611A1 (en) | 2008-01-04 | 2009-07-09 | Schlub Robert W | Antenna isolation for portable electronic devices |
US7999748B2 (en) | 2008-04-02 | 2011-08-16 | Apple Inc. | Antennas for electronic devices |
US20090256757A1 (en) | 2008-04-10 | 2009-10-15 | Bing Chiang | Slot antennas for electronic devices |
US20090256758A1 (en) | 2008-04-11 | 2009-10-15 | Schlub Robert W | Hybrid antennas for electronic devices |
US8255009B2 (en) | 2008-04-25 | 2012-08-28 | Apple Inc. | Radio frequency communications circuitry with power supply voltage and gain control |
US20090295648A1 (en) | 2008-06-03 | 2009-12-03 | Dorsey John G | Antenna diversity systems for portable electronic devices |
US8159399B2 (en) | 2008-06-03 | 2012-04-17 | Apple Inc. | Antenna diversity systems for portable electronic devices |
WO2009149023A1 (en) | 2008-06-05 | 2009-12-10 | Apple Inc. | Electronic device with proximity-based radio power control |
US8417296B2 (en) | 2008-06-05 | 2013-04-09 | Apple Inc. | Electronic device with proximity-based radio power control |
US8517383B2 (en) | 2008-06-20 | 2013-08-27 | Pure Imagination, LLC | Interactive game board system incorporating capacitive sensing and identification of game pieces |
US8638266B2 (en) * | 2008-07-24 | 2014-01-28 | Nxp, B.V. | Antenna arrangement and a radio apparatus including the antenna arrangement |
US20100062728A1 (en) | 2008-09-05 | 2010-03-11 | Motorola, Inc, | Tuning an electrically small antenna |
US20100079351A1 (en) | 2008-09-09 | 2010-04-01 | Chih-Yung Huang | Solid dual-band antenna device |
US8059039B2 (en) | 2008-09-25 | 2011-11-15 | Apple Inc. | Clutch barrel antenna for wireless electronic devices |
US8059040B2 (en) | 2008-09-25 | 2011-11-15 | Apple Inc. | Wireless electronic devices with clutch barrel transceivers |
US20100081374A1 (en) | 2008-09-30 | 2010-04-01 | Research In Motion Limited | Mobile wireless communications device having touch activated near field communications (nfc) circuit |
US8436816B2 (en) | 2008-10-24 | 2013-05-07 | Apple Inc. | Disappearing button or slider |
US8749523B2 (en) | 2008-10-24 | 2014-06-10 | Apple Inc. | Methods and apparatus for capacitive sensing |
US20100167672A1 (en) | 2008-12-31 | 2010-07-01 | Lg Electronics Inc. | Mobile terminal having multiple antennas and antenna information display method thereof |
US8326221B2 (en) | 2009-02-09 | 2012-12-04 | Apple Inc. | Portable electronic device with proximity-based content synchronization |
US8319692B2 (en) | 2009-03-10 | 2012-11-27 | Apple Inc. | Cavity antenna for an electronic device |
US20100238072A1 (en) * | 2009-03-17 | 2010-09-23 | Mina Ayatollahi | Wideband, high isolation two port antenna array for multiple input, multiple output handheld devices |
US20100253651A1 (en) | 2009-04-06 | 2010-10-07 | Synaptics Incorporated | Input device with deflectable electrode |
US8325094B2 (en) | 2009-06-17 | 2012-12-04 | Apple Inc. | Dielectric window antennas for electronic devices |
US8466839B2 (en) | 2009-07-17 | 2013-06-18 | Apple Inc. | Electronic devices with parasitic antenna resonating elements that reduce near field radiation |
US20110012794A1 (en) | 2009-07-17 | 2011-01-20 | Schlub Robert W | Electronic devices with parasitic antenna resonating elements that reduce near field radiation |
US20110012793A1 (en) | 2009-07-17 | 2011-01-20 | Amm David T | Electronic devices with capacitive proximity sensors for proximity-based radio-frequency power control |
US8432322B2 (en) | 2009-07-17 | 2013-04-30 | Apple Inc. | Electronic devices with capacitive proximity sensors for proximity-based radio-frequency power control |
US8947305B2 (en) | 2009-07-17 | 2015-02-03 | Apple Inc. | Electronic devices with capacitive proximity sensors for proximity-based radio-frequency power control |
WO2011022067A1 (en) | 2009-08-21 | 2011-02-24 | Aleksandar Pance | Methods and apparatus for capacitive sensing |
US20110050509A1 (en) | 2009-09-03 | 2011-03-03 | Enrique Ayala Vazquez | Cavity-backed antenna for tablet device |
US8963782B2 (en) | 2009-09-03 | 2015-02-24 | Apple Inc. | Cavity-backed antenna for tablet device |
US20120229360A1 (en) * | 2009-09-08 | 2012-09-13 | Molex Incorporated | Indirect fed antenna |
US8270914B2 (en) | 2009-12-03 | 2012-09-18 | Apple Inc. | Bezel gap antennas |
US20110212746A1 (en) | 2010-02-26 | 2011-09-01 | Shantanu Sarkar | Reducing power consumption of wireless devices |
US20110241949A1 (en) | 2010-04-01 | 2011-10-06 | Josh Nickel | Multiband antennas formed from bezel bands with gaps |
US8781420B2 (en) | 2010-04-13 | 2014-07-15 | Apple Inc. | Adjustable wireless circuitry with antenna-based proximity detector |
US20110260939A1 (en) | 2010-04-21 | 2011-10-27 | Heikki Korva | Distributed multiband antenna and methods |
US20110260924A1 (en) | 2010-04-23 | 2011-10-27 | Iain Campbell Roy | Tuneable pcb antenna |
US8610629B2 (en) | 2010-05-27 | 2013-12-17 | Apple Inc. | Housing structures for optimizing location of emitted radio-frequency signals |
US8368602B2 (en) | 2010-06-03 | 2013-02-05 | Apple Inc. | Parallel-fed equal current density dipole antenna |
US20110300907A1 (en) * | 2010-06-03 | 2011-12-08 | Hill Robert J | Parallel-fed equal current density dipole antenna |
US8347014B2 (en) | 2010-06-04 | 2013-01-01 | Apple Inc. | Class-based compatibility testing and notification |
US20120009983A1 (en) | 2010-07-06 | 2012-01-12 | Mow Matt A | Tunable antenna systems |
US8497806B2 (en) | 2010-07-23 | 2013-07-30 | Research In Motion Limited | Mobile wireless device with multi-band loop antenna with arms defining a slotted opening and related methods |
US8638549B2 (en) | 2010-08-24 | 2014-01-28 | Apple Inc. | Electronic device display module |
US20120068893A1 (en) | 2010-09-22 | 2012-03-22 | Jerzy Guterman | Antenna structures having resonating elements and parasitic elements within slots in conductive elements |
US8872706B2 (en) | 2010-11-05 | 2014-10-28 | Apple Inc. | Antenna system with receiver diversity and tunable matching circuit |
US20120112969A1 (en) | 2010-11-05 | 2012-05-10 | Ruben Caballero | Antenna system with receiver diversity and tunable matching circuit |
US8947302B2 (en) | 2010-11-05 | 2015-02-03 | Apple Inc. | Antenna system with antenna swapping and antenna tuning |
US20120112970A1 (en) | 2010-11-05 | 2012-05-10 | Ruben Caballero | Antenna system with antenna swapping and antenna tuning |
US20130115884A1 (en) * | 2010-12-01 | 2013-05-09 | Huizhou Tcl Mobile Communication Co., Ltd | Five-band bluetooth built-in antenna and its mobile communication terminal |
US20120176279A1 (en) | 2011-01-11 | 2012-07-12 | Merz Nicholas G L | Structures for forming conductive paths in antennas and other electronic device structures |
US8648752B2 (en) | 2011-02-11 | 2014-02-11 | Pulse Finland Oy | Chassis-excited antenna apparatus and methods |
US20120214412A1 (en) | 2011-02-17 | 2012-08-23 | Schlub Robert W | Antenna with integrated proximity sensor for proximity-based radio-frequency power control |
US8577289B2 (en) | 2011-02-17 | 2013-11-05 | Apple Inc. | Antenna with integrated proximity sensor for proximity-based radio-frequency power control |
US8952860B2 (en) | 2011-03-01 | 2015-02-10 | Apple Inc. | Antenna structures with carriers and shields |
US8896488B2 (en) | 2011-03-01 | 2014-11-25 | Apple Inc. | Multi-element antenna structure with wrapped substrate |
US20120223865A1 (en) | 2011-03-01 | 2012-09-06 | Qingxiang Li | Antenna structures with carriers and shields |
US20120223866A1 (en) | 2011-03-01 | 2012-09-06 | Enrique Ayala Vazquez | Multi-element antenna structure with wrapped substrate |
US9024823B2 (en) | 2011-05-27 | 2015-05-05 | Apple Inc. | Dynamically adjustable antenna supporting multiple antenna modes |
US20120299785A1 (en) | 2011-05-27 | 2012-11-29 | Peter Bevelacqua | Dynamically adjustable antenna supporting multiple antenna modes |
US20130050038A1 (en) | 2011-08-25 | 2013-02-28 | Samsung Electronics Co., Ltd. | Antenna apparatus of mobile terminal |
US20130082884A1 (en) * | 2011-09-30 | 2013-04-04 | Google Inc. | Antennas for computers with conductive chassis |
US20130285857A1 (en) | 2011-10-26 | 2013-10-31 | John Colin Schultz | Antenna arrangement |
US20130106660A1 (en) | 2011-10-28 | 2013-05-02 | Lg Innotek Co., Ltd. | Radiation device for planar inverted-f antenna and antenna using the same |
US20130154900A1 (en) * | 2011-12-20 | 2013-06-20 | Chih-Yang Tsai | Wireless communication device having metal end portion of housing thereof |
US20130169490A1 (en) | 2012-01-04 | 2013-07-04 | Mattia Pascolini | Antenna With Switchable Inductor Low-Band Tuning |
US20130201067A1 (en) | 2012-02-03 | 2013-08-08 | Hongfei Hu | Tunable Antenna System |
US20130203364A1 (en) | 2012-02-08 | 2013-08-08 | Dean F. Darnell | Tunable Antenna System with Multiple Feeds |
US8798554B2 (en) | 2012-02-08 | 2014-08-05 | Apple Inc. | Tunable antenna system with multiple feeds |
WO2013123109A1 (en) | 2012-02-14 | 2013-08-22 | Molex Incorporated | On radiator slot fed antenna |
US20130234910A1 (en) | 2012-03-12 | 2013-09-12 | Samsung Electronics Co., Ltd. | Antenna apparatus for portable terminal |
US8836587B2 (en) | 2012-03-30 | 2014-09-16 | Apple Inc. | Antenna having flexible feed structure with components |
US20130257659A1 (en) | 2012-03-30 | 2013-10-03 | Dean F. Darnell | Antenna Having Flexible Feed Structure with Components |
WO2013165419A1 (en) | 2012-05-03 | 2013-11-07 | Hewlett-Packard Development Company, L.P. | Controlling electromagnetic radiation from an electronic device |
US20130293425A1 (en) * | 2012-05-04 | 2013-11-07 | Jiang Zhu | Antenna Structures Having Slot-Based Parasitic Elements |
US20130321216A1 (en) | 2012-05-30 | 2013-12-05 | James W. Jervis | Antenna Structures in Electronic Devices With Hinged Enclosures |
US20130328730A1 (en) | 2012-06-06 | 2013-12-12 | Jerzy Guterman | Methods for Forming Elongated Antennas With Plastic Support Structures for Electronic Devices |
US20130333496A1 (en) | 2012-06-19 | 2013-12-19 | Faurecia Sieges D'automobile | Adjustment Mechanism for Vehicle Seat, Vehicle Seat Comprising Such a Mechanism |
US20130342411A1 (en) | 2012-06-21 | 2013-12-26 | Lg Electronics Inc. | Antenna device and mobile terminal having the same |
US20140009352A1 (en) * | 2012-07-06 | 2014-01-09 | Kun-Lin Sung | Antenna assembly and wireless communication device employing same |
US20140086441A1 (en) | 2012-09-27 | 2014-03-27 | Apple, Inc. | Distributed Loop Speaker Enclosure Antenna |
US20140184450A1 (en) * | 2012-12-28 | 2014-07-03 | Korea Advanced Institute Of Science And Technology | Slot antenna and information terminal apparatus using the same |
US20140375509A1 (en) | 2013-06-20 | 2014-12-25 | Sony Corporation | Wireless electronic devices including a feed structure connected to a plurality of antennas |
US20140266941A1 (en) | 2013-12-04 | 2014-09-18 | Apple Inc. | Electronic Device With Hybrid Inverted-F Slot Antenna |
US20150180123A1 (en) * | 2013-12-19 | 2015-06-25 | Alexandru Daniel Tatomirescu | Platform independent antenna |
US20150236426A1 (en) | 2014-02-14 | 2015-08-20 | Apple Inc. | Electronic Device With Satellite Navigation System Slot Antennas |
US20150257158A1 (en) | 2014-03-07 | 2015-09-10 | Apple Inc. | Electronic Device With Accessory-Based Transmit Power Control |
US20150255851A1 (en) | 2014-03-10 | 2015-09-10 | Apple Inc. | Electronic Device With Dual Clutch Barrel Cavity Antennas |
US20150270618A1 (en) | 2014-03-20 | 2015-09-24 | Apple Inc. | Electronic Device With Indirectly Fed Slot Antennas |
US20150270619A1 (en) | 2014-03-20 | 2015-09-24 | Apple Inc. | Electronic Device With Slot Antenna and Proximity Sensor |
US20150311594A1 (en) | 2014-04-24 | 2015-10-29 | Apple Inc. | Electronic Devices With Hybrid Antennas |
Non-Patent Citations (26)
Title |
---|
"CapTouch Programmable Controller for Single-Electrode Capacitance Sensors", AD7147 Data Sheet Rev. B, [online], Analog Devices, Inc., [retrieved on Dec. 7, 2009], . |
"CapTouch Programmable Controller for Single-Electrode Capacitance Sensors", AD7147 Data Sheet Rev. B, [online], Analog Devices, Inc., [retrieved on Dec. 7, 2009], <URL: http://www.analog.com/static/imported-files/data-sheets/AD7147.pdf>. |
Ayala Vazquez et al., U.S. Appl. No. 13/895,194, filed May 15, 2013. |
Azad et al., U.S. Appl. No. 15/066,419, filed May 10, 2016. |
Bevelacqua et al., U.S. Appl. No. 13/851,471, filed Mar. 27, 2013. |
Bevelacqua et al., U.S. Appl. No. 13/860,396, filed Apr. 10, 2013. |
Caballero et al., U.S. Appl. No. 13/886,157, filed May 2, 2013. |
Hu et al., U.S. Appl. No. 13/890,013, filed May 8, 2013. |
Jiang et al., U.S. Appl. No. 13/864,968, filed Apr. 17, 2013. |
Jin et al., U.S. Appl. No. 13/846,471, filed Mar. 18, 2013. |
Liu et al.; MEMS-Switched Frequency-Tuanble Hybrid Slot/PIFA Antenna; IEEE Antennas and Wireless Propagation Letters, vol. 82009; p. 311-314. * |
Liu et al.; MEMS-Switched Frequency-Tunable Hybrid Slot/PIFA Antenna; IEEE Antennas and Wireless Propagation Letters, vol. 82009; p. 311-314. * |
Liu et al.; MEMS-Switched, Frequency-Tunable Hybrid Slot/PIFA Antenna; IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009; p. 311-314. * |
Myllmaki et al., "Capacitive recognition of the user's hand grip position in mobile handsets", Progress in Electromagnetics Research B, vol. 22, 2010, pp. 203-220. |
Ouyang et al., U.S. Appl. No. 13/846,459, filed Mar. 18, 2013. |
Pance et al., U.S. Appl. No. 61/235,905, filed Aug. 21, 2009. |
Pascolini et al., U.S. Appl. No. 14/710,377, filed May 12, 2015. |
Schlub et al., U.S. Appl. No. 13/420,278, filed Mar. 14, 2012. |
Schlub et al., U.S. Appl. No. 13/865,578, filed Apr. 18, 2013. |
The ARRL Antenna Book, Published by the American Radio League, 1998, 15th Edition, ISBN: 1-87259-206-5. |
Vazquez et al., U.S. Appl. No. 13/889,987, filed May 8, 2013. |
Yarga et al., U.S. Appl. No. 13/790,549, filed Mar. 8, 2013. |
Yarga et al., U.S. Appl. No. 13/855,568, filed Apr. 2, 2013 |
Zhou et al., U.S. Appl. No. 13/846,481, filed Mar. 18, 2013. |
Zhu et al., U.S. Appl. No. 13/402,831, filed Feb. 22, 2012. |
Zhu et al., U.S. Appl. No. 14/180,866, filed Feb. 14, 2014. |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160295370A1 (en) * | 2015-04-03 | 2016-10-06 | Qualcomm Incorporated | Systems and methods for location-based tuning |
US9826364B2 (en) * | 2015-04-03 | 2017-11-21 | Qualcomm Incorporated | Systems and methods for location-based tuning |
US20220278702A1 (en) * | 2015-04-17 | 2022-09-01 | Apple Inc. | Electronic Device With Millimeter Wave Antennas |
US11356131B2 (en) * | 2015-04-17 | 2022-06-07 | Apple Inc. | Electronic device with millimeter wave antennas |
US9813532B2 (en) * | 2016-02-20 | 2017-11-07 | Samsung Electronics Co., Ltd | Antenna and electronic device including the same |
US10389010B2 (en) * | 2016-07-21 | 2019-08-20 | Chiun Mai Communication Systems, Inc. | Antenna structure and wireless communication device using same |
US10186756B2 (en) * | 2016-08-01 | 2019-01-22 | Intel IP Corporation | Antennas in electronic devices |
US20180034134A1 (en) * | 2016-08-01 | 2018-02-01 | Intel IP Corporation | Antennas in electronic devices |
US20190036211A1 (en) * | 2017-07-27 | 2019-01-31 | Ambit Microsystems (Shanghai) Ltd. | Antenna device |
US10439278B2 (en) * | 2017-07-27 | 2019-10-08 | Ambit Microsystems (Shanghai) Ltd. | Antenna device |
US10158384B1 (en) * | 2017-09-08 | 2018-12-18 | Apple Inc. | Electronic devices with indirectly-fed adjustable slot elements |
US10164679B1 (en) | 2017-09-27 | 2018-12-25 | Apple Inc. | Electronic devices having multiple slot antennas |
US11322832B2 (en) | 2018-01-24 | 2022-05-03 | Samsung Electronics Co., Ltd. | Antenna structure and electronic device comprising antenna structure |
CN110571507A (en) * | 2018-06-05 | 2019-12-13 | 宏碁股份有限公司 | mobile device and antenna structure thereof |
Also Published As
Publication number | Publication date |
---|---|
US20150270618A1 (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9583838B2 (en) | Electronic device with indirectly fed slot antennas | |
US10965008B2 (en) | Electronic device with housing slots for antennas | |
US9728858B2 (en) | Electronic devices with hybrid antennas | |
AU2015101429B4 (en) | Electronic device cavity antennas with slots and monopoles | |
US9379445B2 (en) | Electronic device with satellite navigation system slot antennas | |
US9559425B2 (en) | Electronic device with slot antenna and proximity sensor | |
US10218052B2 (en) | Electronic device with tunable hybrid antennas | |
US9966667B2 (en) | Electronic device antenna with switchable return paths | |
US10158384B1 (en) | Electronic devices with indirectly-fed adjustable slot elements | |
US10297902B2 (en) | Electronic device with peripheral hybrid antenna | |
US10312593B2 (en) | Antennas for near-field and non-near-field communications | |
US9972891B2 (en) | Electronic device antenna with isolation mode | |
US10490881B2 (en) | Tuning circuits for hybrid electronic device antennas | |
US9236659B2 (en) | Electronic device with hybrid inverted-F slot antenna | |
US9531061B2 (en) | Electronic device antenna with reduced lossy mode | |
US20160093955A1 (en) | Electronic Device With Passive Antenna Retuning Circuitry | |
US20150311579A1 (en) | Electronic Device Antenna Carrier Coupled to Printed Circuit and Housing Structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLE INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, JIANG;RAJAGOPALAN, HARISH;GOMEZ ANGULO, RODNEY A.;AND OTHERS;SIGNING DATES FROM 20140313 TO 20140320;REEL/FRAME:032490/0097 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |