USRE45638E1 - Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and method of use - Google Patents
Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and method of use Download PDFInfo
- Publication number
- USRE45638E1 USRE45638E1 US10/219,785 US21978502A USRE45638E US RE45638 E1 USRE45638 E1 US RE45638E1 US 21978502 A US21978502 A US 21978502A US RE45638 E USRE45638 E US RE45638E
- Authority
- US
- United States
- Prior art keywords
- catheter
- cardiac tissue
- lumen
- needle
- cutting head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320016—Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
- A61B17/32002—Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0266—Pointed or sharp biopsy instruments means for severing sample
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/32053—Punch like cutting instruments, e.g. using a cylindrical or oval knife
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00039—Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00199—Electrical control of surgical instruments with a console, e.g. a control panel with a display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00292—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
- A61B2017/003—Steerable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00367—Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
- A61B2017/00398—Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00685—Archimedes screw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22072—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
- A61B2017/22074—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
- A61B2017/22077—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel with a part piercing the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/30—Surgical pincettes without pivotal connections
- A61B2017/306—Surgical pincettes without pivotal connections holding by means of suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
- A61B2017/320775—Morcellators, impeller or propeller like means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B2017/348—Means for supporting the trocar against the body or retaining the trocar inside the body
- A61B2017/3482—Means for supporting the trocar against the body or retaining the trocar inside the body inside
- A61B2017/3484—Anchoring means, e.g. spreading-out umbrella-like structure
- A61B2017/3488—Fixation to inner organ or inner body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/03—Automatic limiting or abutting means, e.g. for safety
- A61B2090/033—Abutting means, stops, e.g. abutting on tissue or skin
- A61B2090/034—Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/062—Measuring instruments not otherwise provided for penetration depth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/065—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/066—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/0811—Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
- A61B2090/3782—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3966—Radiopaque markers visible in an X-ray image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/005—Auxiliary appliance with suction drainage system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
- A61M25/0084—Catheter tip comprising a tool being one or more injection needles
Definitions
- Cutting head 28 preferably is constructed of a radio-opaque material or includes band 45 of radio-opaque material, such as platinum-iridium, disposed on its proximal end to assist in visualizing the location of the cutting head under a fluoroscope.
- band 45 of radio-opaque material such as platinum-iridium
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
Apparatus and methods for percutaneously performing myocardial revascularization are provided using a catheter having an end region that is directable to contact a patient's endocardium at a plurality of positions. A cutting head is disposed within a lumen of the catheter and coupled to a drive tube that rotates and reciprocates the drive shaft. One or more stabilizing elements are disposed on the distal end to retain the catheter in position when the cutting head is actuated. The cutting head and drive tube include a lumen through which severed tissue is aspirated. Mechanisms and methods are provided for providing the operator with information to assess the desirability of treating a proposed site. Mechanisms also are provided for controlling the maximum extension of the cutting head beyond a distal endface of the catheter, independent of the degree of tortuosity imposed on the catheter.
Description
The present application is a continuation-in-part of U.S. patent application Ser. No. 08/863,877, filed May 27, 1997, now U.S. Pat. No. 5,910,150, which claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/032,196, filed Dec. 2, 1996
The present invention relates to apparatus and methods for percutaneously performing myocardial revascularization. More particularly, the present invention provides a device that enables a clinician to perform myocardial revascularization by treating only those regions of cardiac tissue likely to experience beneficial effect.
A leading cause of death in the United States today is coronary artery disease, in which atherosclerotic plaque causes blockages in the coronary arteries, resulting in ischemia of the heart (i.e., inadequate blood flow to the myocardium). The disease manifests itself as chest pain or angina. In 1996, approximately 7 million people suffered from angina in the United States.
One technique that has been developed to treat patients suffering from diffuse atherosclerosis, is referred to as transmyocardial revascularization (TMR). In this method, a series of channels are formed in the left ventricular wall of the heart. Typically, between 15 and 30 channels about 1 mm in diameter and preferably several millimeters deep are formed with a laser in the wall of the left ventricle to perfuse the heart muscle with blood coming directly from the inside of the left ventricle, rather than traveling through the coronary arteries. Apparatus and methods have been proposed to create those channels both percutaneously and intraoperatively (i.e., with the chest opened).
U S. Pat No. 5,389,096 to Aita et al. describes a catheter-based laser apparatus for use in percutaneously forming channels extending from the endocardium into the myocardium The catheter includes a plurality of control lines for directing the tip of the catheter. The patent states that because the myocardium is more easily traversed than the epicardium, the clinician may judge the depth of the channel by sensing the pressure applied to the proximal end of the catheter. The patent does not address the problem of cardiac tamponade that might result if the clinician inadvertently perforates the heart wall, nor how ablated tissue is prevented from embolizing blood vessels. Moreover, Aita et al. rely on fluoroscopic methods to determine the location of the distal end of the catheter.
U.S. Pat. No. 5,591,159 to Taheri describes a mechanical apparatus for performing TMR involving a catheter having an end effector formed from a plurality of spring-loaded needles. The catheter first is positioned percutaneously within the left ventricle. A plunger is then released so that the needles are thrust into the endocardium. The needles form small channels that extend into the myocardium as they are withdrawn. The patent suggests that the needles may be withdrawn and advanced repetitively at different locations under fluoroscopic guidance. The patent does not appear to address how tissue is ejected from the needles between the tissue-cutting steps
The disadvantages of the above-described previously known methods and apparatus for performing TMR are numerous and will impede the acceptance of this new treatment method. For example, percutaneous laser-based systems, such as described in the Aita et al. patent, do not provide the ability to reliably determine the depth of the channels formed by the laser and may result in perforations, nor does that system address potential embolization of the ablated tissue. Likewise, previously known mechanical systems do not address issues such as how to remove tissue cores from the needles. Neither do such previously known systems provide the capability to assess whether channel formation or drug injection at a proposed site will provide any therapeutic benefit.
U.S. Pat. No. 5,910,150 (allowed U.S. patent application Ser. No. 08/863,877, filed May 27, 1997), which is incorporated herein by reference, describes a percutaneous system for performing TMR that uses a rotating tubular cutting head disposed for reciprocation beyond the end face of a catheter. Vacuum drawn through the cutting head aspirates the severed tissue, thus reducing the risk of embolization.
A drawback common to all of the previously known percutaneous myocardial revascularization devices is the inability to determine whether treating a proposed site, such as by forming a channel in the myocardium or by injecting drugs or angiogenic agents, would have a therapeutic effect. For example, little therapeutic benefit would be expected from forming channels or injecting drugs or angiogenic agents in heavily infarcted tissue. It would therefore be desirable to provide apparatus and methods that enable a clinician to determine whether treatment at a proposed site would be beneficial.
It has been observed that in the device described in the above-incorporated patent, the distance that the cutting head extends into the tissue depends upon the degree of tortuosity imposed on the catheter when percutaneously inserting the distal end of the catheter into the left ventricle. This is so because differences in the radii of curvature of the catheter and the drive tube coupled to the cutting head can result in significant accumulated displacement of the cutting head relative to the distal endface of the catheter. This displacement effect is heightened where the tip of the catheter is articulated using a pull wire that exerts a compressive force on the catheter.
Accordingly, it also would be desirable to provide apparatus and methods for percutaneously performing myocardial revascularization that enable a reciprocated cutting head to be advanced a controlled depth, independent of the degree of tortuosity imposed on the catheter.
It further would be desirable to control the location within the ventricle of a distal end of a device for percutaneously performing myocardial revascularization, both with respect to features of the ventricular walls and in relation to other channels formed by the device.
It still further would be desirable to provide apparatus and methods for percutaneously performing myocardial revascularization that enable therapeutic agents, such as angiogenic growth factors, genes, or drugs to be injected into the myocardium within or adjacent to channels formed by the cutting head.
It also would be desirable to provide the capability to stabilize a distal end of a device for percutaneously performing myocardial revascularization, for example, to counteract reaction forces created by the actuation of the cutting head, and to reduce transverse movement of the distal end of the device.
It further would be desirable to provide apparatus and methods for percutaneously performing myocardial revascularization that use cutting heads designed to morcellate severed tissue to enhance aspiration of the severed tissue from the treatment site
In view of the foregoing, it is an object of this invention to provide apparatus and methods for percutaneously performing myocardial revascularization that enable a clinician to determine during a percutaneous myocardial revascularization procedure whether treatment at a proposed site would be beneficial.
It is another object of the present invention to enable a reciprocated cutting head to be advanced to a controlled depth, independent of the degree of tortuosity imposed on the catheter.
It is also an object of the present invention to provide apparatus and methods that enable control of the location within the ventricle of a distal end of a device for percutaneously performing myocardial revascularization, both with respect to features of the ventricular walls and in relation to other channels formed by the device.
It is a further object of the present invention to provide apparatus and methods for percutaneously performing myocardial revascularization that enable therapeutic agents, such as angiogenic growth factors, genes, plasmids or drugs to be injected into the myocardium or channels formed by the cutting head.
It is another object of this invention to provide apparatus and methods to stabilize a distal end of a device for percutaneously performing myocardial revascularization, for example, to counteract reaction forces created by the actuation of the cutting head and to reduce transverse movement of the distal end of the device.
It is a still further object of the present invention to provide apparatus and methods for percutaneously performing myocardial revascularization that use cutting heads designed to morcellate severed tissue to enhance aspiration of the severed tissue from the treatment site.
These and other objects of the present invention are accomplished by providing apparatus that senses a physiologic parameter, e.g., electrical activity or impedance, of tissue at a proposed treatment site, and providing information to the operator indicative of a state of the tissue. The operator then uses that information in deciding whether to form a channel or inject drugs into that region tissue, or to re-position the device elsewhere.
Apparatus constructed in accordance with the present invention comprises a catheter having an end region that is directable to contact a patient's endocardium at a plurality of positions. Preferably, the catheter comprises inner and outer catheters each having preformed distal bends, so that the distal end of the inner catheter is directable to a plurality of positions. A cutting head is disposed within a lumen of the inner catheter and coupled to a drive tube that rotates and reciprocates the drive shaft. The drive tube is coupled to a motor that imparts rotational motion to the drive tube. One or more stabilizing elements are disposed on the distal end to retain the inner catheter in position while the cutting head is reciprocated beyond a distal endface of the inner catheter. The cutting head and drive tube include a lumen through which severed tissue is aspirated.
In accordance with another aspect of the present invention, means are provided for limiting the maximum extension of the cutting head beyond the distal endface of the catheter, independent of the degree of bending imposed on the inner catheter and drive tube. In one embodiment, in which the drive tube and cutting head are reciprocated by a linear actuator mechanism, the drive tube includes a bearing surface that abuts against a mating surface affixed within a distal region of the inner catheter, and circuitry that senses a parameter (e.g., stall torque or linear force) of a motor driving the drive tube. When the bearing surface contacts the mating surface, the increase in the motor parameter is sensed, forward motion ceases, and the direction of travel of the linear actuator mechanism is reversed.
In another embodiment, the drive tube and cutting head are reciprocated manually, the drive tube includes a bearing surface that abuts against a mating surface affixed within a distal region of the inner catheter, and the mechanism used to advance the drive tube transmits to the user sufficient tactile sensation for the user to detect that the maximum depth has been achieved. The handle of the device may optionally include a mechanism for adjusting the position of the distal endface of the inner catheter relative to the cutting head, to account for differences in the curvatures of the inner catheter and drive tube.
In still other alternative embodiments, the opposing bearing surfaces may be omitted, and attainment of the maximum cutting depth may be sensed by a mechanical switch, a resistance-based circuit or an optical circuit. In these embodiments, the maximum extension of the cutting head may be set independently of the adjustment required to reduce or eliminate any displacement effect caused by bending of the catheter.
Methods of using the apparatus of the present invention to selectively form channels and/or inject therapeutic agents in the myocardium are also provided.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which:
The present invention provides apparatus and methods for percutaneously performing myocardial revascularization by mechanically cutting a series of channels in the myocardium using a rotating cutting head and aspirating the severed tissue. The cutting head is disposed within a lumen of a catheter, and is extended beyond a distal endface of the catheter to bore a channel. In accordance with the principles of the present invention, a physiologic parameter is measured at a proposed treatment site, and that information is provided to the operator to assess whether to treat that site or re-position the device. The apparatus and methods of the present invention further provide for limiting the maximum extension of the cutting head, independent of the tortuosity of the path traversed by the catheter The maximum extension of the cutting head also may be independently adjusted.
Referring to FIGS. 1 and 2 , illustrative apparatus 20 constructed in accordance with the present invention is described. Apparatus 20 includes device 21 comprising handle 24 having inner catheter 23 disposed within outer guide catheter 22, and coupled to controller 25 via cable 26 and vacuum hose 27. Cutting head 28 having lumen 29 and sharpened distal end 30 is disposed within lumen 31 of inner catheter 23. Cutting head 28 is coupled to drive tube 32, which in turn is coupled via cable 26 to a drive system contained in controller 25 that imparts rotational and longitudinal motion to drive tube 32 and cutting head 28. Suction is drawn through lumen 29 of cutting head 28 and drive tube 32 to aspirate tissue severed by the cutting head to tissue trap 33 connected to controller 25 via vacuum hose 27.
Cutting head 28 and drive tube 32 are coupled via cable 26 to a drive train that moves cutting head 28 from a retracted position within lumen 31 of inner catheter 23 (as shown) in FIG. 2 ), to an extended position wherein cutting head 28 and a distal portion of drive tube 32 extend beyond distal endface 40 (see FIG. 3 ). Button 42 of handle 24 signals controller 25 to extend and rotate cutting head 28 to cut a channel in the myocardium. Myocardial tissue severed by cutting head 28 is aspirated through lumen 34 of drive tube 32 to tissue trap 33 to reduce the risk that the severed tissue will embolize. Cutting head 28 preferably is constructed of a radio-opaque material or includes band 45 of radio-opaque material, such as platinum-iridium, disposed on its proximal end to assist in visualizing the location of the cutting head under a fluoroscope.
Referring to FIG. 3 , outer guide catheter 22 and inner catheter 23 preferably include preformed bends. In particular, by rotating outer guide catheter 22 (indicated by arrows A) or inner catheter 23 (as indicated by arrows B) relative to one another, or extending inner catheter 23 longitudinally with respect to outer guide catheter 22 (as indicated by arrows C), distal endface 40 of inner catheter 23 may be disposed at a plurality of tissue contacting locations. Accordingly, outer guide catheter may disposed at a first orientation relative to an endocardial surface, and then inner catheter 23 may be moved relative to outer catheter 22 to form channels at a plurality of positions along the path indicated by arrows B. Outer catheter 22 may then be moved along the path indicated by arrows A, and a new series of holes may then be formed at that position by further rotating inner catheter 23. As will of course be understood, needle stabilizer 39 and cutting head 28 are retracted when moving between one channel forming position and another.
Referring now to FIGS. 4A and 4B , an illustrative arrangement of the components of handle 24 is described Handle 24 comprises proximal and distal portions 50 and 51, respectively, joined so that distal portion 51 may be rotated independently of proximal portion 50. Proximal portion 50 is coupled to cable 26 and includes button 42 for activating the cutting head to bore a channel. Distal portion 51 is affixed to inner catheter 23 so that rotation of knob 43 of portion 51 is transmitted to the distal end of inner catheter 23.
With respect to FIG. 4B , wheel 44 is disposed within tubular member 56 and extends within portions 50 and 51. Inner catheter 23 is coupled to a rigid tubular member (e.g., stainless steel hypotube) that extends through element 57. Element 57 in turn is coupled through tubular member 58 to distal portion 51, so that rotation of distal portion 51 is transmitted to inner catheter 23. Tubular member 56 is coupled by threads to tubular member 58 so that rotation of wheel 44 causes inner catheter to be moved in a distal or proximal direction relative to drive tube 32 (depending upon direction of rotation), thereby lengthening or shortening the stroke of cutting head 28 beyond distal endface 40 of the inner catheter.
Drive tube 32 has proximal end 60 affixed to tubular member 61 having skive 62. Tubular member 61 is coupled to drive wire 63. Tubular member 61 is disposed for rotational and longitudinal motion, imparted by drive wire 63, within tubular member 64. The distal end of tubular member 64 is disposed within tubular member 58, while the proximal end includes a suitable bearing that seals against tubular member 61 without binding. Tissue passing through lumen 34 of drive tube 32 exits through skive 62 into the interior of tubular member 64, and then aspirated through port 65 into vacuum hose 27. Tubular member 64 is affixed to the interior of proximal portion 51 by element 66, which also supports button 42. Needle stabilizer 39 is fastened to slider button 41, which is in turn coupled to spool 67 to provide rigidity to the assembly
With respect to FIG. 5 , a block diagram of the components of controller 25 are described Controller 25 preferably comprises microprocessor 70 coupled to display panel 35, input device 36 (e g., keyboard), activation button 42 of handle 24, data storage 71 (e g., RAM and ROM or hard disk), vacuum pump 72, linear actuator mechanism 73 (e.g., a worm screw drive or pneumatic cylinder), motor 74 and monitoring circuitry 75. Monitoring circuitry 75 may be coupled to components 72-74, for example, to monitor the level of vacuum drawn by vacuum pump 72, or a motor parameter, such as the displacement of or linear force applied by linear actuator mechanism 73 and/or the speed of or electrical current drawn by motor 74.
For example, monitoring circuitry 75 may be arranged to ensure that the cutting head is not extended unless there is an appropriate level of suction being drawn through drive tube 32 and cutting head 28, or that the cutting head is rotating at a desired RPM before being advanced into tissue. Additional applications for monitoring circuitry 75 are described in the above-incorporated, commonly assigned U.S. patent. In a preferred embodiment of the present invention, monitoring circuitry 75 is configured to limit and/or adjust the cutting depth attained by the cutting head, as described in detail below. Controller 25 also may comprise circuitry for measuring a physiologic parameter of tissue, e.g., impedance or electrical activity, as described hereinbelow with respect to the embodiments of FIGS. 17 and 18 .
Referring now to FIG. 6 , a distal portion of inner catheter 23 is shown being deflected such as may be expected when the distal end of device 21 is percutaneously inserted along a tortuous path. For example, inner catheter 23 is shown as it may be deflected when inserted transluminally via a femoral artery and advanced in a retrograde manner through the aortic arch into the left ventricle. Drive tube 32 and cutting head 28 are shown disposed within inner catheter 23. For purposes of illustration, the discrepancy between the outer diameter of drive tube 32 and the inner diameter of lumen 31 of inner catheter 23 is exaggerated.
As depicted in FIG. 6 , because inner catheter 23 has an average radius of curvature R, while the smaller drive tube has a larger radius of curvature R′, the degree of tortuosity imposed on the distal end of device 21 causes the distal end of cutting head 28 to move to a variable distance δ from distal endface 40 of inner catheter 23. Because the linear actuator mechanism is configured to advance the cutting head a predetermined distance, the variable distance δ introduced by the degree of tortuosity changes the extend to which cutting head 28 extends beyond distal endface 40 of the inner catheter. This effect is further heightened where the tip of the catheter is articulated using a pull wire that exerts a compressive force on the catheter.
Thus, applicant has discovered that, depending upon the degree of flex imparted to the distal end of device 21, the depth of the cutting channel formed by the cutting head may be undesirably changed an unknown amount. Applicant has therefore determined that if channels are to be formed to a uniform and predetermined depth in the myocardium, a mechanism must be provided to limit and control the maximum extension of the cutting head.
Referring now to FIGS. 7A and 7B , a first embodiment of apparatus and methods for providing a uniform maximum extension of a cutting head are described that overcome the aforementioned problem. In accordance with the principles of the present invention, device 21′ having inner catheter 23′, drive tube 32′ and cutting head 28′ is described. Inner catheter 23′ is similar to that described hereinabove with respect to FIG. 2 (preformed bend omitted for clarity), except that a distal region of inner catheter 23 has reduced diameter lumen 80. Drive tube 32′ includes reduced diameter portion 81 to which cutting head 28′ is affixed.
Drive tube 32′ forms shoulder 82 where it couples to reduced diameter portion 81. Stainless steel washer 83a is disposed on drive tube 32′ between low-friction washer 83b and shoulder 82 of drive tube 32′, so that low-friction washer 83b forms a first bearing surface. Rigid tubular member 84, for example, a short section of stainless steel hypotube, is affixed to the interior of lumen 80 of catheter 23′ so that its proximal end forms a mating bearing surface to low-friction washer 83b. Washers 83a and 83b and tubular member 84 alternatively may be constructed or coated with a radio-opaque material to aid in visually positioning the drive tube to account for the variable distance created by bending of the catheter.
In accordance with the principles of the present invention, the linear actuator is configured to advance drive wire 63 (see FIG. 4A ), and therefore drive tube 32′ and cutting head 28′ until low-friction washer 83b abuts against the proximal end of rigid tubular member 84. In this manner, drive tube 32′ and cutting head 28′ are advanced a total distance of δ+D, where δ is the unknown distance caused by differential bending of the drive tube and the inner catheter, and D is the desired maximum extension of cutting head 28′ beyond distal endface 40′ of inner catheter 23′.
Applicant has determined however, that where forward motion of the drive tube is controlled by a mechanical actuator, some precaution must be made to ensure that forward motion of the linear actuator in controller 25 stops when low-friction washer 83 first contacts rigid member 84. Otherwise, the forward motion of the drive tube might tear the distal end of inner catheter 23′ off or cause buckling of drive tube 32′.
Further in accordance with the present invention, monitoring circuitry 75 of controller 25 (see FIG. 5 ) therefore is adapted to sense a parameter of the motor 74 or linear actuator 73, and to signal linear actuator 73 to cease forward (i e. distal) motion of the drive tube. This may be accomplished, for example, by monitoring the stall torque of motor 74 e.g., by monitoring the winding current required by that component, or by monitoring the linear displacement or linear force applied by linear actuator 73. Processor 70 may be programmed to then reverse the direction of linear actuator mechanism 73 responsive to the motor parameter of component 73 or 74 exceeding a predetermined threshold. Thus, the cutting head will be retracted as soon as low-friction washer 83b bears against rigid tubular member 84 with sufficient force to cause a disturbance in the monitored parameter for motor 74 or linear actuator 73.
Referring to FIG. 8 , an alternative embodiment for sensing that the maximum cutting depth has been attained is described. Drive tube 32′ is coupled to reduced diameter portion 80, and includes electrically conductive washer 85 disposed adjacent to shoulder 82 Electrical lead wires 86 and 87 are disposed in grooves 88 in the outer surface of inner catheter 23′. Lead wires pass through holes 89 and are coupled to electrical contacts 90. When drive tube 32′ is advanced in the distal direction, washer 85 bears against contacts 90, thereby completing an electrical circuit that can be sensed by controller 25. When the controller senses that the switch formed by washer 85 and contacts 90 is closed, it signals linear actuator 73 to reverse direction.
With respect to FIG. 9A , an alternative embodiment is described that permits the variable distance δ imposed by bending of the catheter to be accounted for, and also permits the maximum cutting depth to be adjusted. In this embodiment, which omits a mechanical stop as in the embodiments of FIGS. 7 and 8 , inner catheter 23 includes groove 91 with window 92 communicating with lumen 31. Resilient contact element 93 is disposed through window 92 to contact the distal end of cutting head 28. Contact element 93 is configured to deflect upwardly to permit unobstructed distal and proximal movement of cutting head 28 and drive tube 32. Contact element 93 is coupled to one or more electrical wires 94 disposed in groove 91 that couple to controller 25 via handle 24 and cable 26
In accordance with one aspect of the present invention, contact element 93 provides a signal that is sensed by controller 25 to determine the location of cutting head 28 relative to distal endface 40 of inner catheter 23. Contact element 93 may comprise, for example, a resilient wire element coupled to a strain gauge. Alternatively, contact element 93 may be energized with an electric current to form one part of an electrical switch that is closed when it contacts cutting head 28, also coupled to the electric current by one or more suitable conductors (not shown). Still other mechanisms for detecting the proximity of cutting head 28, such as a Hall effect sensor, may be employed. Accordingly, once the distal end region of inner catheter 23 is disposed within the patient's left ventricle, inner catheter 23 may be adjusted proximally or distally until contact element 93 indicates that the cutting head is located a predetermined distance from distal endface 40.
As a further aspect of the embodiment of FIG. 9A , linear actuator 73 of controller 25 may be programmed to accept a stroke input via input device 36 of controller 25. In this manner, inner catheter 23 may be adjusted to first eliminate the variable distance δ introduced by bending of the inner catheter, e.g., using wheel 44 on handle 24, while the extension of cutting head 28 beyond distal endface 40 of inner catheter 23 may be independently adjusted to a user selected value as a function of the stroke length of linear actuator 73. Alternatively, wheel 44 may be omitted, and linear actuator 73 may be programmed to first “zero out” the variable distance δ using the signal provided from contact element 93, and then accepts a user selectable stroke length that determines the maximum depth of the channel.
With respect to FIG. 9B , another alternative embodiment for controlling that the maximum cutting depth is described. This embodiment also omits a mechanical stop, and includes inner catheter 23 having fiber optic element 95 disposed in lumen 96. The distal end of fiber optic element 95 is cut at a 45° angle, so that light transmitted along the element is emitted through aperture 97 that opens into lumen 31. Light source 98, e.g., a laser diode, is coupled to the proximal end of fiber optic element 95 by means that are per se known.
Optically absorptive material 99 is disposed on the interior of the opposing wall of the inner catheter, so that light emitted by element 95 is absorbed when the cutting head 28 is fully retracted proximally of aperture 97. When drive tube 32 obscures aperture 97, some of the light emitted by element 95 is reflected back into the distal end of the fiber optic element. This reflected light may be sensed by suitable circuitry in controller 25, and used to signal processor 70 that cutting head 28 is located a predetermined distance from distal endface 40 of inner catheter 23, thereby “zeroing out” the variable distance δ. As for the embodiment of FIG. 9A , linear actuator 73 of controller 25 may be programmed to then provide a maximum cutting depth as a function of the stroke length of the linear actuator, independent of the degree of bending imposed on the inner catheter.
As will of course be understood, still other mechanisms may be used to sense that the location of the cutting head or drive tube relative to the distal endface of inner catheter 23, or some other reference point of distal end region of inner catheter 23. For example, saline or blood introduced into lumen 31 between the cutting head and a pair of electrical leads may be used to sense the location of the cutting head by measuring impedance across the lumen. Still other mechanisms may include, for example, piezoelectric crystals that use ultrasound or measure stress, so long as the mechanisms are sufficiently compact to be disposed near the distal end of the inner catheter without appreciably increasing the overall diameter of the inner catheter.
Referring now to FIGS. 10A-10C , a method of using the apparatus of the present invention to percutaneously perform myocardial revascularization is described. In FIG. 10A , distal region 100 of device 21 of FIG. 1 is shown positioned in a patient's left ventricular cavity, using techniques which are per se known. Specifically, distal region 100 of device 21 is inserted via a femoral artery, and is maneuvered under fluoroscopic guidance in a retrograde manner up through the descending aorta, through aortic arch A, and down through ascending aorta AA and aortic valve AV into left ventricle LV. Previously known imaging techniques, such as ultrasound, MRI scan, CT scan, or fluoroscopy, may be used to verify the location of the distal region 100 within the heart.
In FIG. 10B , slider button 41 on handle 24 is advanced to extend needle stabilizer 39 so that it penetrates into the myocardium a predetermined distance, for example, 7 mm. Button 42 on handle 24 then is depressed, causing the drive system of controller 25 to extend cutting head 28 to bore a channel into the myocardium to a predetermined depth. Alternatively, button 42 of handle 24 may be omitted, and controller 25 instead programmed so that linear actuator 73 causes the cutting head to be extended a predetermined interval of time (e.g., 1 second) after slider button 41 is actuated. In this alternative embodiment, slider button 41 will of course have to generate a signal that is communicated to controller 25 via cable 26.
When cutting head 28 engages the endocardium, a reaction force is generated in inner catheter 21 that tends both to push distal region 100 away from the tissue. Needle stabilizer 39 counteracts these reaction forces and reduces transverse movement of the distal end of inner catheter 23, thus retaining the inner catheter in position while the cutting head is extended and retracted. Tissue severed by the cutting head is aspirated to trap 33 of controller 25.
Once cutting head reaches its maximum extension, as determined by any of the means described hereinabove, processor 70 causes forward motion of the cutting head to cease. In the embodiments using linear actuator 73, processor 70 also issues a command to reverse the direction of linear actuator 73. This in turn causes cutting head 28 to be withdrawn from channel C formed in the myocardium to a position just below distal endface 40 of inner catheter 23.
As shown in FIG. 10C , a matrix of spaced-apart channels C may be formed in the wall of left ventricular wall LV by rotating outer guide catheter 22 and inner catheter 23 relative to one another (see FIG. 3 ). Needle stabilizer 39 and cutting head 28 are then advanced at each position to form further channels C in the tissue. The foregoing methods therefore enable a matrix of channels to be formed in the left ventricular wall. It is believed that such channels may be drilled anywhere on the walls of the heart chamber, including the septum, apex and left ventricular wall, and the above-described apparatus provides this capability.
Referring to FIG. 11 , a preferred embodiment of a needle stabilizer of the present invention is described. Because the needle stabilizer is subject to the same type of flex-induced displacement as the drive tube (as discussed with respect to FIG. 6 ), it would be desirable to ensure that the needle stabilizer is extended to a predetermined depth, independent of the degree of bending imposed on inner catheter 23.
Referring now to FIGS. 12A and 12B , handle 120 of an alternative embodiment of the present invention is described. In this embodiment, linear actuator 73 of controller 25 is omitted, and drive tube 32 and cutting head 28 are instead advanced by slider button 121 of handle 120. Like components of handle 120 with the components of handle 24 of FIGS. 4A and 4B are indicated by like numbers.
Handle 120 differs that instead of having button 42 signal processor 70 to activate linear actuator mechanism, slider button 121 instead includes yoke 122 that is engaged with disk 123 affixed to an extension of drive wire 63. Disk 123 is biased in a proximal position by spring 124. In this embodiment, the drive tube and inner catheter preferably include a mechanical stop, such as shown in FIGS. 7A and 7B . Thus, the clinician can sense when drive tube 32′ has abutted against tubular member 84, and may release forward pressure on slider button 121, thereby allowing spring 124 to return the cutting head to its retracted position.
With respect to FIGS. 13A-13F , alternative embodiments of stabilizer elements suitable for use with device 21 of the present invention are described. In FIG. 13A , the distal end of inner catheter 130 includes a plurality of longitudinal slits 131 that allow the catheter to fold back on itself to form a plurality of stabilizing members 132 when urged against an endocardial surface. Stabilizer members 132 preferably are angled in a distal direction to engage and stabilize the distal end of the inner catheter against the endocardial surface during activation of the cutting head.
In FIG. 13B , inner catheter 134 includes a plurality of lumens through which preformed wires 135, comprising, for example, a nickel-titanium alloy, are advanced. Each of the preformed wires 135 includes a ball or foot 136 for engaging an endocardial surface to stabilize the inner catheter in contact therewith. Wires 135 may be advanced or retracted singly or as a group.
In FIG. 13C , inner catheter 140 includes and alternative embodiment of needle stabilizer 39 of FIG. 2 . In this embodiment, needle stabilizer 141 includes lumen 142 that may be coupled, for example, to a syringe containing a therapeutic agent such as a drug, angiogenic factors, gene vectors, plasmids, etc. Needle stabilizer 142 therefore not only serves to stabilize the distal end of inner catheter 140 in contact with the endocardium during activation of the cutting head, but also enables a therapeutic agent to be injected into the tissue prior to, during, or after the channel is formed in the myocardium.
Alternatively, several such needle stabilizers may be arranged around the cutting head to provide enhanced stabilization or multiple injection sites for therapeutic agents, as described hereinafter with respect to FIGS. 15 and 16 . As a further alternative, needle stabilizer 141 may be disposed directly adjacent to cutting head 143 (illustrated partly extended) so that the channel formed in the myocardial tissue by cutting head 143 communicates with the needle track formed by needle stabilizer 141. Thus, when cutting head 143 is retracted, lumen 142 of needle stabilizer 141 may be used to inject a therapeutic agent into the channel formed by cutting head 143.
Advantageously, lumen 142 of the embodiment of FIG. 13C permits a therapeutic agent to be injected at locations adjacent to, or directly into, the channel formed by cutting head 143. By comparison, use of a separate needle catheter to inject a therapeutic agent into the myocardium after the channel forming process is completed would result in the therapeutic agent being injected at random locations relative to the previously formed channels.
In FIG. 13D , inner catheter 145 includes conical element 146 formed of a resilient material. Conical member 146 may be urged against an endocardial surface so that base 147 provides a larger surface area for stabilizing the inner catheter in contact with the endocardium. In conjunction with suction drawn through the cutting head, conical member 146 may serve as a suction cup for retaining the inner catheter in contact with the endocardial surface.
In FIG. 13E , inner catheter 150 includes inflatable member 151 disposed on its distal end for contacting an endocardial surface. Inflatable member 151 is inflated by a suitable inflation medium, such as saline, injected through inflation tube 152. As with the embodiment of FIG. 13D , inflatable member 151 increases the surface area against which the distal end of the inner catheter is stabilized. Moreover, suction may be drawn through lumen 153 so that the inflatable member serves as a suction cup, as in the embodiment of FIG. 13E . Alternatively, lumen 153 may be used to inject a therapeutic agent into cavity 154 formed by inflatable member, and thus serve as a “dam” to direct the therapeutic agent into the channel formed in the myocardium by the cutting head.
In FIG. 13F , inner catheter 160 includes a plurality of wires 161 that are extended through lumens (not shown) in inner catheter 160 and to form stabilizer legs 162 that stabilize the distal end of the inner catheter against the endocardial surface. Wires 161 may be deployed and retracted individually or in unison. Additional forms of stabilizers comprising extendable wires are describe in the above-incorporated, commonly assigned U.S. Patent.
In FIG. 13G , inner catheter 155 includes pull wire 156 slidingly embedded disposed in a lumen (not shown) and affixed to the distal end of the inner catheter. In this embodiment, instead of inner catheter having a preformed bend, pull wire 156 is instead pulled in a proximal direction to direct the distal end of inner catheter 155 to a desired location on the endocardial surface. Inner catheter 155 may in addition include needle stabilizer 157 such as described hereinabove with respect to FIG. 2 .
Referring now to FIGS. 14A-14E , alternative embodiments of cutting heads constructed in accordance with the present invention are described. In FIG. 14A , cutting head 170 comprises tubular member 171 affixed to drive tube 172 having sharpened beveled edge 173 and lumen 174. Cutting head 170 includes enlarged diameter region 175 that communicates with lumen 174. It is believed that the presence of the step between enlarged diameter region 175 and lumen 174 will enhance morcellation and aspiration of tissue severed by cutting head 170. In particular, when the core of tissue in enlarged diameter region 175 contacts the smaller diameter of lumen 174, the tissue core is twisted off at its base.
In FIG. 14B , cutting head 180 comprises tubular member 181 affixed to drive tube 182 and having sharpened edge 183 and lumen 184. Cutting head 180 includes a plurality of flutes or grooves 185 extending along lumen 184 that are expected to enhance friction between the cutting head and the severed tissue, thereby enhancing morcellation and aspiration of tissue severed by cutting head 180.
In FIG. 14C , cutting head 190 comprises tubular member 191 affixed to drive tube 192 and having sharpened edge 193 and lumen 194. Cutting head 190 includes a plurality of pins 195 that extend into lumen 194. It is expected that pins 195 will shred the severed tissue core as the cutting head rotates, thereby enhancing aspiration of tissue severed by cutting head 190.
In FIG. 14D cutting head 200 comprises tubular member 201 affixed to drive tube 202 and having sharpened edge 203 and lumen 204. Cutting head 200 includes band 205 having sharpened edge 206 that spans the interior into lumen 204, and which is expected to shred the severed tissue core as the cutting head rotates, thereby enhancing aspiration of tissue severed by cutting head 200.
With respect to FIG. 14E , cutting head 210 comprises tubular member 211 affixed to drive tube 212 and having lumen 213. Cutting head 210 includes sharpened element 214 that extends from distal endface 215 of the cutting head. Sharpened element 214 is expected to shred the myocardial tissue as the cutting head is rotated and extended, thus improving aspiration of tissue severed by the cutting head.
Referring to FIGS. 15A-15B and 16A-16B, further alternative embodiments of the device of FIG. 13C are described. In FIGS. 15A and 15B , inner catheter 220 includes multiple needle stabilizers 221 that may be retractable extended from distal endface 222. Each of needle stabilizers 222 includes lumen 223 that may be coupled to a source of therapeutic agent to inject such material into the myocardium at locations adjacent to the channel cut by a cutting head (not shown) extended from lumen 224 of inner catheter 220. In the embodiment of FIGS. 15A and 15B , needle stabilizers 221 diverge from axis 225 of the cutting head.
In FIGS. 16A and 16B , a further alternative of the embodiment of FIGS. 15 is depicted. Inner catheter 230 comprises central lumen 231 having extendable cutting head 232 (shown in the extended position) and converging reciprocable needle stabilizers 233. Each of needle stabilizers 233 preferably includes lumen 234 for injecting a therapeutic agent into the myocardial tissue distal to the maximum depth achieved by cutting head 232. Needle stabilizers optionally also may include side ports 234a. Alternatively, needle stabilizers 233 may be configured to converge just at the distal end of the channel formed by cutting head 232, so that material injected through lumens 234 enters the channel formed by the cutting head. As a yet further alternative, needle stabilizers 233 may be used to inject a bolus of fluid, such as saline, prior to or during the channel forming process to facilitate aspiration of the myocardium severed by cutting head 232.
Referring now to FIGS. 17 and 18 , apparatus constructed in accordance with a further feature of the present invention are described. With respect to FIG. 17 , apparatus similar to that of FIG. 1 includes inner catheter 240 having reciprocable needle stabilizers 241 disposed on either side of lumen 242 that houses the cutting head. Each of needle stabilizers 241 includes lumen 243 and comprises an electrically conductive material, e.g., stainless steel, and is coupled via conductors 244 to monitoring circuit 245. Sensing circuit 245, which preferably measures a physiologic parameter of the myocardium, is in turn coupled to processor 70 of controller 25.
In one embodiment, sensing circuit 245 may sense electrical activity (e.g., EKG or impedance) in the myocardium between needle stabilizers 241 and generate a signal that is displayed to the clinician operating the instrument. Thus, in accordance with one aspect of the methods of the present invention, the clinician may dispose inner catheter against a region of tissue, deploy needle stabilizers 241, and obtain a reading of the degree of electrical activity in that region of the myocardium.
If the sensed electrical activity is low, indicating that the tissue region is heavily infarcted, the clinician may forego boring a channel. Instead, the clinician may instead simply re-position the distal end of the catheter in contact with another region of tissue more likely to experience a beneficial effect from myocardial revascularization. Likewise, the clinician also may use the sensed physiological parameter as an aid in determining whether to inject therapeutic agents via lumens 243.
Referring to FIG. 18 , an alternative embodiment of the device of FIG. 17 is described. In this embodiment the apparatus includes inner catheter 250 having electrically conductive end cap 251. Cutting head 252 (shown in the extended position) is disposed for reciprocation in lumen 253 of inner catheter 250. Needle stabilizer 254 includes injection lumen 255 and dielectric coating 256 over its proximal length. End cap 251 and uninsulated distal region 257 of needle stabilizer are coupled via electrical conductors 258 to sensing circuit 259. A reference electrode (not shown), e.g., a grounding pad, may be coupled to the patient at a remote location. As for the embodiment of FIG. 17 , sensing circuit 259 is coupled to processor 70 of controller 25 and is configured to sense or measure a physiologic property of the tissue.
In the embodiment of FIG. 18 , sensing circuit 259 preferably measures and displays a signal corresponding to the electrical impedance of the material sensed between the endcap and reference electrode Thus, for example, a signal generated by sensing circuit 259 may be used by the clinician to determine when the distal end of the inner catheter is in contact with tissue. In addition, by deploying needle stabilizer 254 and measuring and displaying a metric corresponding to the impedance between end cap 251 and uninsulated region 257 of needle stabilizer 255, the clinician may be able to assess the viability of the tissue.
Further in accordance with the methods of the present invention, if the sensed electrical impedance indicates that the tissue region is heavily infarcted, the clinician may forego boring a channel at that location. Instead, the clinician may instead reposition the distal end of the catheter in contact with another region of tissue more likely to experience a beneficial effect from myocardial revascularization. Also, the clinician may use the sensed impedance level (or other physiologic parameter) as an aid in determining whether to inject therapeutic agents via lumens 255.
While preferred illustrative embodiments of the invention are described, it will be apparent that various changes and modifications may be made therein without departing from the invention, and the appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Claims (57)
1. Apparatus for percutaneously performing myocardial revascularization comprising.
a first catheter adapted for insertion into the left ventricle, the first catheter having a lumen and a distal endface movable to a plurality of sites on an endocardial surface;
a stabilizer element disposed on the first catheter, the stabilizer element contacting the endocardial surface to stabilize the first catheter against the endocardial surface;
a cutting head disposed movable from a retracted position within the lumen of the first catheter to an extended position wherein the cutting head extends beyond the distal endface of the first catheter to form a channel in cardiac tissue; and
means for sensing a physiologic state of cardiac tissue in a region adjacent to the distal endface of the first catheter.
2. The apparatus of claim 1 wherein a distal region of the first catheter further comprises a preformed bend
3. The apparatus of claim 1 wherein the first catheter further comprises a pull wire for directing the distal endface of the first catheter.
4. The apparatus of claim 1 further comprising a second catheter adapted for insertion into the left ventricle, the second catheter having a preformed bend and a lumen for accepting the first catheter therethrough.
5. The apparatus of claim 1 further comprising means for adjusting a maximum cutting depth of the cutting head.
6. The apparatus of claim 1 wherein the stabilizer element comprises a first retractable needle.
7. The apparatus of claim 6 wherein the distal end of the first catheter comprises an electrically conductive end cap, the means for sensing comprising circuitry for measuring an electrical impedance of cardiac tissue between the end cap and a reference electrode located at a remote position.
8. The apparatus of claim 6 wherein the distal end of the first catheter comprises an electrically conductive end cap, and the means for sensing comprises circuitry for measuring an electrical impedance of cardiac tissue disposed between the end cap and the first retractable needle.
9. The apparatus of claim 6 wherein the stabilizer element further comprises a second retractable needle, the means for sensing comprising circuitry for measuring a physiologic state of cardiac tissue disposed between the first and second retractable needles.
10. The apparatus of claim 9 wherein the physiologic state comprises one of: a degree of electrical activity within the cardiac tissue or an electrical impedance of the cardiac tissue.
11. The apparatus of claim 6 wherein the first retractable needle is curved towards or away from a longitudinal axis of the cutting head.
12. The apparatus of claim 6 wherein the first retractable needle includes a lumen having one or more ports adapted for injecting a therapeutic agent into the cardiac tissue.
13. The apparatus of claim 1 further comprising means for limiting extension of the cutting head in the extended position.
14. The apparatus of claim 13 wherein the means for limiting extension comprises an electrical circuit that senses when the cutting head is disposed a predetermined distance from the distal endface of the first catheter.
15. The apparatus of claim 14 wherein the electrical circuit further comprises one of: a fiber optic element, a resilient contact member, a strain gauge, a Hall effect sensor or an electrically conductive fluid
16. The apparatus of claim 13 wherein the means for limiting extension further comprises monitoring circuitry for monitoring a motor parameter and generating a signal that causes movement of the cutting head towards the extended position to cease when the motor parameter exceeds a predetermined threshold.
17. The apparatus of claim 1 wherein the stabilizer element comprises one of: a plurality of stabilizing members adapted to be adjusted between a contracted state and an expanded state, an inflatable member, and a plurality of sections of the first catheter that fold back on themselves when the distal endface is urged against an endocardial surface.
18. The apparatus of claim 1 further comprising drive means for rotating the cutting head and a linear actuator that translates the cutting head from the retracted position to the extended position.
19. The apparatus of claim 1 wherein the cutting head comprises a tubular member having a lumen through which cardiac tissue severed by the cutting head is aspirated, the cutting head further comprising one of: a stepped portion disposed between the lumen and a distal endface of the cutting head, a plurality of flutes or grooves disposed along an interior surface of the lumen, a member that projects within the lumen, and a sharpened element extending from a distal endface of the cutting element.
20. Apparatus for percutaneously performing myocardial revascularization comprising.
a first catheter adapted for insertion into the left ventricle, the first catheter having a cutting head lumen, a needle lumen, and a distal endface movable to a plurality of sites on an endocardial surface;
a first needle disposed on the first catheter movable from a retracted position within the needle lumen to an extended position extending beyond a distal endface of the first catheter, the first needle contacting and penetrating the endocardial surface to stabilize the first catheter against the endocardial surface; and
a cutting head disposed movable from a retracted position within the lumen of the first catheter to an extended position wherein the cutting head extends beyond the distal endface of the first catheter to form a channel in cardiac tissue.
21. The apparatus of claim 20 wherein the first needle includes a lumen having one or more ports adapted for injecting a therapeutic agent into the cardiac tissue.
22. The apparatus of claim 20 wherein the distal end of the first catheter comprises an electrically conductive end cap, the apparatus further comprising sensing circuitry for measuring an electrical impedance of cardiac tissue between the end cap and a reference electrode at a remote location.
23. The apparatus of claim 20 wherein the distal end of the first catheter comprises an electrically conductive end cap, the apparatus further comprising sensing circuitry for measuring an electrical impedance of cardiac tissue disposed between the end cap and the first needle.
24. The apparatus of claim 20 wherein further comprising a second needle mounted for extension and retraction from the distal endface of the first catheter, the apparatus further comprising sensing circuitry for measuring a physiologic state of cardiac tissue disposed between the first and second needles.
25. The apparatus of claim 24 wherein the physiologic state comprises one of: a degree of electrical activity within the cardiac tissue or an electrical impedance of the cardiac tissue.
26. The apparatus of claim 20 wherein a distal region of the first catheter further comprises a preformed bend, the apparatus of further comprising a second catheter adapted for insertion into the left ventricle, the second catheter having a preformed bend and a lumen for accepting the first catheter therethrough.
27. The apparatus of claim 20 further comprising means for adjusting a maximum cutting depth of the cutting head
28. The apparatus of claim 20 further comprising means for limiting extension of the cutting head in the extended position.
29. The apparatus of claim 20 wherein the cutting head comprises a tubular member having a lumen through which cardiac tissue severed by the cutting head is aspirated, the cutting head further comprising one of. a stepped portion disposed between the lumen and a distal endface of the cutting head, a plurality of flutes or grooves disposed along an interior surface of the lumen, a plurality of pins projecting within the lumen, a sharpened band disposed within and spanning the lumen, and a sharpened element extending from a distal endface of the cutting element.
30. A method of percutaneously performing revascularization of a patient's cardiac tissue, the method comprising:
providing a first catheter adapted for insertion into the left ventricle comprising a stabilizer element and a cutting head movable from a retracted position to an extended position;
advancing a distal region of the first catheter transluminally to a position within a patient's left ventricle;
deploying the stabilizer element to stabilize the distal region of the first catheter in contact with an endocardial surface;
sensing a physiologic state of cardiac tissue in a portion of the cardiac tissue adjacent to the distal endface of the first catheter; and
if it is determined that myocardial revascularization in the portion of cardiac tissue adjacent to the distal endface would have a beneficial effect, advancing the cutting head from the retracted to the extended position to bore a channel into the patient's cardiac tissue.
31. The method of claim 30 wherein the stabilizer element comprises a first retractable needle and deploying the stabilizer element comprises advancing the first retractable needle to penetrate into the patient's cardiac tissue.
32. The method of claim 31 wherein the distal end of the first catheter comprises an electrically conductive end cap, and sensing a physiologic state further comprises measuring an electrical impedance of cardiac tissue between the end cap and a reference electrode located at a remote location.
33. The method of claim 32 wherein the distal end of the first catheter comprises an electrically conductive end cap, and sensing a physiologic state further comprises measuring an electrical impedance of cardiac tissue disposed between the end cap and the first retractable needle.
34. The method of claim 33 further comprising comparing a measured value of electrical impedance of the cardiac tissue to a predetermined threshold to decide whether to advance the cutting head or re-position the first catheter.
35. The method of claim 31 wherein the stabilizer element further comprises a second retractable needle, and sensing a physiologic state further comprises measuring a physiologic state of cardiac tissue disposed between the first and second retractable needles.
36. The method of claim 35 wherein measuring a physiologic state comprises measuring one of: a degree of electrical activity within the cardiac tissue or an electrical impedance of the cardiac tissue.
37. The method of claim 36 further comprising determining a degree of infarction based on the measured value of the physiologic state of the cardiac tissue.
38. The method of claim 31 wherein the first retractable needle includes a lumen having one or more ports, the method further comprising injecting a therapeutic agent into the cardiac tissue through the lumen via the one or more ports.
39. The method of claim 31 further comprising aspirating cardiac tissue severed by the cutting head.
40. A method of percutaneously performing revascularization of a patient's cardiac tissue, the method comprising:
providing a first catheter adapted for insertion into the left ventricle comprising a first needle movable from a retracted position to an extended position and a cutting head movable from a retracted position to an extended position;
advancing a distal region of the first catheter transluminally to a position within a patient's left ventricle;
advancing the first needle to the extended position to penetrate and stabilize the distal region of the first catheter in contact with an endocardial surface;
rotating the cutting head; and
advancing the cutting head from the retracted to the extended position to bore a channel into the patient's cardiac tissue.
41. The method of claim 40 wherein the first needle includes a lumen having one or more ports, the method further comprising injecting a therapeutic agent into the cardiac tissue through the lumen via the one or more ports.
42. The method of claim 40 wherein the first catheter further comprises a second needle movable from a retracted position to an extended position, the method further comprising measuring a physiologic state of cardiac tissue disposed between the first and second needles.
43. The method of claim 42 wherein measuring a physiologic state comprises measuring one of: a degree of electrical activity within the cardiac tissue or an electrical impedance of the cardiac tissue.
44. The method of claim 42 further comprising determining a degree of infarction based on the measured value of the physiologic state of the cardiac tissue.
45. The method of claim 40 further comprising aspirating cardiac tissue severed by the cutting head.
46. An apparatus comprising:
a first catheter adapted for percutaneous insertion into a cardiac tissue, the first catheter having a needle lumen with a longitudinal axis, a stabilizer lumen radially offset from the needle lumen, and a distal endface steerable to a plurality of sites on the cardiac tissue relative to another portion of the first catheter proximal to the distal endface;
a needle disposed within the needle lumen while in a retracted position, the needle moveable from the retracted position, through the distal endface, to an external position beyond the distal endface in which the needle extends in alignment with the longitudinal axis of the needle lumen from the distal endface to a distal tip of the needle, the needle having at least one lumen to inject a therapeutic agent into the cardiac tissue;
a stabilizer element to stabilize the first catheter against the cardiac tissue, the stabilizer element moveable through the stabilizer lumen from an unextended position to an extended position, wherein the stabilizer element is disposed within the stabilizer lumen while in the unextended position, and wherein the stabilizer element angles in a distal direction while in the extended position; and
a second catheter adapted for insertion into a left ventricle, the second catheter having a preformed bend and an inner lumen for receiving movement of the first catheter therethrough.
47. The apparatus of claim 46, wherein the stabilizer element comprises at least one wire.
48. The apparatus of claim 47 wherein the at least one wire is responsible for stabilizing the distal endface against the cardiac tissue.
49. The apparatus of claim 46, wherein the cardiac tissue is an intraventricular wall.
50. The apparatus of claim 46, wherein a distal region of the first catheter further comprises a preformed bend.
51. The apparatus of claim 46, wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue and includes a surface parallel to the first catheter.
52. The apparatus of claim 46 wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue to ensure that the needle is stable relative to the cardiac tissue when injecting a therapeutic agent into the cardiac tissue.
53. The apparatus of claim 46 wherein the needle can advance to different depths into the cardiac tissue.
54. An apparatus comprising:
a first catheter adapted for percutaneous insertion into a cardiac tissue, the first catheter having a preformed bend, a needle lumen with a longitudinal axis, a stabilizer lumen radially offset from the needle lumen, and a distal endface steerable to a plurality of sites on the cardiac tissue relative to another portion of the first catheter proximal to the distal endface;
a needle disposed within the needle lumen while in a retracted position, the needle moveable from the retracted position, through the distal endface, to an external position beyond the distal endface in which the needle extends in alignment with the longitudinal axis of the needle lumen from the distal endface to a distal tip of the needle, the needle having at least one lumen to inject a therapeutic agent into the cardiac tissue;
a stabilizer element to stabilize the first catheter against the cardiac tissue, the stabilizer element moveable through the stabilizer lumen from an unextended position to an extended position, wherein the stabilizer element is disposed within the stabilizer lumen while in the unextended position, and wherein the stabilizer element angles in a distal direction while in the extended position; and
a second catheter adapted for insertion into a left ventricle, the second catheter having a preformed bend and an inner lumen for receiving movement of the first catheter therethrough.
55. The apparatus of claim 54 wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue and includes a surface parallel to the first catheter.
56. An apparatus comprising:
a first catheter adapted for percutaneous insertion into a cardiac tissue, the first catheter having a needle lumen with a longitudinal axis, a stabilizer lumen radially offset from the needle lumen, and a distal endface steerable to a plurality of sites on the cardiac tissue relative to another portion of the first catheter proximal to the distal endface;
a needle disposed within the needle lumen while in a retracted position, the needle moveable from the retracted position, through the distal endface, to an external position beyond the distal endface in which the needle extends in alignment with the longitudinal axis of the needle lumen from the distal endface to a distal tip of the needle, the needle having at least one lumen to inject a therapeutic agent into the cardiac tissue; and
a stabilizer element to stabilize the first catheter against the cardiac tissue, the stabilizer element moveable through the stabilizer lumen from an unextended position to an extended position, wherein the stabilizer element is disposed within the stabilizer lumen while in the unextended position, and wherein the stabilizer element angles in a distal direction while in the extended position.
57. The apparatus of claim 56 wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue and includes a surface parallel to the first catheter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/219,785 USRE45638E1 (en) | 1996-12-02 | 2002-08-14 | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and method of use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3219696P | 1996-12-02 | 1996-12-02 | |
US08/863,877 US5910150A (en) | 1996-12-02 | 1997-05-27 | Apparatus for performing surgery |
US09/274,790 US6102926A (en) | 1996-12-02 | 1999-03-23 | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US10/219,785 USRE45638E1 (en) | 1996-12-02 | 2002-08-14 | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and method of use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/274,790 Reissue US6102926A (en) | 1996-12-02 | 1999-03-23 | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE45638E1 true USRE45638E1 (en) | 2015-08-04 |
Family
ID=23049626
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/274,790 Ceased US6102926A (en) | 1996-12-02 | 1999-03-23 | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US10/219,785 Expired - Lifetime USRE45638E1 (en) | 1996-12-02 | 2002-08-14 | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and method of use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/274,790 Ceased US6102926A (en) | 1996-12-02 | 1999-03-23 | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
Country Status (3)
Country | Link |
---|---|
US (2) | US6102926A (en) |
AU (1) | AU3761800A (en) |
WO (1) | WO2000056224A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150328435A1 (en) * | 2004-11-23 | 2015-11-19 | Pneumrx, Inc. | Steerable device for accessing a target site and methods |
US11304753B2 (en) | 2019-09-13 | 2022-04-19 | Alleviant Medical, Inc. | Systems, devices, and methods for forming an anastomosis |
WO2022208243A1 (en) * | 2021-03-29 | 2022-10-06 | Medtronic Vascular, Inc. | Debulking catheter |
Families Citing this family (546)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306125B1 (en) * | 1998-06-22 | 2001-10-23 | Neovasys, Inc. | Angiogenic implant delivery system and method |
US6254564B1 (en) | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
WO2000035531A1 (en) * | 1998-12-14 | 2000-06-22 | Tre Esse Progettazione Biomedica S.R.L. | Catheter system for performing intramyocardiac therapeutic treatment |
US6475226B1 (en) * | 1999-02-03 | 2002-11-05 | Scimed Life Systems, Inc. | Percutaneous bypass apparatus and method |
US6554851B1 (en) * | 1999-05-07 | 2003-04-29 | Scimed Life Systems, Inc. | Methods of sealing an injection site |
US6743245B2 (en) * | 1999-12-20 | 2004-06-01 | Alcon Universal Ltd. | Asynchronous method of operating microsurgical instruments |
US7588554B2 (en) | 2000-06-26 | 2009-09-15 | Boston Scientific Scimed, Inc. | Method and apparatus for treating ischemic tissue |
EP1301228B1 (en) | 2000-07-13 | 2008-07-23 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
US20020029037A1 (en) * | 2000-09-06 | 2002-03-07 | Kim Young D. | Method and apparatus for percutaneous trans-endocardial reperfusion |
US6436059B1 (en) * | 2000-09-12 | 2002-08-20 | Claudio I. Zanelli | Detection of imd contact and alignment based on changes in frequency response characteristics |
US6616684B1 (en) * | 2000-10-06 | 2003-09-09 | Myocor, Inc. | Endovascular splinting devices and methods |
US6530914B1 (en) * | 2000-10-24 | 2003-03-11 | Scimed Life Systems, Inc. | Deflectable tip guide in guide system |
US6582400B1 (en) | 2000-10-24 | 2003-06-24 | Scimed Life Systems, Inc. | Variable tip catheter |
US6692466B1 (en) | 2000-12-21 | 2004-02-17 | Advanced Cardiovascular Systems, Inc. | Drug delivery catheter with retractable needle |
US6579300B2 (en) * | 2001-01-18 | 2003-06-17 | Scimed Life Systems, Inc. | Steerable sphincterotome and methods for cannulation, papillotomy and sphincterotomy |
US6702744B2 (en) | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
US7510534B2 (en) * | 2001-07-20 | 2009-03-31 | Ethicon Endo-Surgery, Inc. | Method for operating biopsy device |
US20030050648A1 (en) | 2001-09-11 | 2003-03-13 | Spiration, Inc. | Removable lung reduction devices, systems, and methods |
US6592594B2 (en) | 2001-10-25 | 2003-07-15 | Spiration, Inc. | Bronchial obstruction device deployment system and method |
US8608661B1 (en) | 2001-11-30 | 2013-12-17 | Advanced Cardiovascular Systems, Inc. | Method for intravascular delivery of a treatment agent beyond a blood vessel wall |
US7169127B2 (en) * | 2002-02-21 | 2007-01-30 | Boston Scientific Scimed, Inc. | Pressure apron direct injection catheter |
US20030216769A1 (en) | 2002-05-17 | 2003-11-20 | Dillard David H. | Removable anchored lung volume reduction devices and methods |
US20030181922A1 (en) | 2002-03-20 | 2003-09-25 | Spiration, Inc. | Removable anchored lung volume reduction devices and methods |
US6811777B2 (en) | 2002-04-13 | 2004-11-02 | Allan Mishra | Compositions and minimally invasive methods for treating incomplete connective tissue repair |
US7108685B2 (en) * | 2002-04-15 | 2006-09-19 | Boston Scientific Scimed, Inc. | Patch stabilization of rods for treatment of cardiac muscle |
US20030195511A1 (en) * | 2002-04-16 | 2003-10-16 | Spiration, Inc. | Device for and method of removing deleterious body tissue from a site within a patient |
US7364567B2 (en) * | 2002-06-10 | 2008-04-29 | Abbott Cardiovascular Systems Inc. | Systems and methods for detecting tissue contact and needle penetration depth |
US8574195B2 (en) * | 2002-06-10 | 2013-11-05 | Advanced Cardiovascular Systems, Inc. | Systems and methods for detecting tissue contact and needle penetration depth using static fluid pressure measurements |
US7361368B2 (en) * | 2002-06-28 | 2008-04-22 | Advanced Cardiovascular Systems, Inc. | Device and method for combining a treatment agent and a gel |
KR100505133B1 (en) * | 2002-06-29 | 2005-08-01 | 메디칸(주) | Facial bone contouring device using non plugging, penetrating, overlapped pass-through lumen rasp |
US6951549B1 (en) | 2002-09-30 | 2005-10-04 | Advanced Cardiovascular Systems, Inc. | Systems and methods for detecting tissue contact and needle penetration depth |
US7100616B2 (en) | 2003-04-08 | 2006-09-05 | Spiration, Inc. | Bronchoscopic lung volume reduction method |
US8038991B1 (en) | 2003-04-15 | 2011-10-18 | Abbott Cardiovascular Systems Inc. | High-viscosity hyaluronic acid compositions to treat myocardial conditions |
US8383158B2 (en) | 2003-04-15 | 2013-02-26 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
US8821473B2 (en) | 2003-04-15 | 2014-09-02 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US8308708B2 (en) | 2003-07-15 | 2012-11-13 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
US7533671B2 (en) | 2003-08-08 | 2009-05-19 | Spiration, Inc. | Bronchoscopic repair of air leaks in a lung |
US7273469B1 (en) * | 2003-12-31 | 2007-09-25 | Advanced Cardiovascular Systems, Inc. | Modified needle catheter for directional orientation delivery |
US7862811B2 (en) * | 2004-02-27 | 2011-01-04 | Regents Of The University Of Colorado | Protease inhibition for prevention or treatment of heart failure |
US7632262B2 (en) * | 2004-07-19 | 2009-12-15 | Nexeon Medical Systems, Inc. | Systems and methods for atraumatic implantation of bio-active agents |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
DE102004039202B3 (en) * | 2004-08-12 | 2006-01-19 | Erbe Elektromedizin Gmbh | Device for measuring a relative position of a surgical instrument and use thereof |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
US20060263338A1 (en) * | 2005-03-04 | 2006-11-23 | Jacoby Douglas B | Catheter-based delivery of Skeletal Myoblasts to the Myocardium of Damaged Hearts |
US8075498B2 (en) | 2005-03-04 | 2011-12-13 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US8182433B2 (en) * | 2005-03-04 | 2012-05-22 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US8187621B2 (en) | 2005-04-19 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Methods and compositions for treating post-myocardial infarction damage |
US8828433B2 (en) | 2005-04-19 | 2014-09-09 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
US20080125745A1 (en) | 2005-04-19 | 2008-05-29 | Shubhayu Basu | Methods and compositions for treating post-cardial infarction damage |
US9539410B2 (en) | 2005-04-19 | 2017-01-10 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating post-cardial infarction damage |
US8303972B2 (en) | 2005-04-19 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
EP3028645B1 (en) | 2005-08-01 | 2019-09-18 | St. Jude Medical International Holding S.à r.l. | Medical apparatus system having optical fiber load sensing capability |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US9259267B2 (en) * | 2005-09-06 | 2016-02-16 | W.L. Gore & Associates, Inc. | Devices and methods for treating cardiac tissue |
US8012096B2 (en) * | 2005-10-17 | 2011-09-06 | Cardiogenesis Corporation | Surgical device and method for performing combination revascularization and therapeutic substance delivery to tissue |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US8038595B2 (en) * | 2006-01-25 | 2011-10-18 | Beth Israel Deaconess Medical Center | Devices and methods for tissue transplant and regeneration |
CA2854625C (en) * | 2006-01-27 | 2017-01-24 | Suturtek Incorporated | Apparatus and method for tissue closure |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
EP1986559B1 (en) | 2006-02-24 | 2012-03-28 | Terumo Kabushiki Kaisha | Pfo closing device |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US7691151B2 (en) | 2006-03-31 | 2010-04-06 | Spiration, Inc. | Articulable Anchor |
US9511214B2 (en) | 2006-05-02 | 2016-12-06 | Vascular Access Technologies, Inc. | Methods of transvascular retrograde access placement and devices for facilitating therein |
JP4963319B2 (en) * | 2006-05-05 | 2012-06-27 | キャスリックス リミテッド | Modular catheter assembly |
US8048063B2 (en) * | 2006-06-09 | 2011-11-01 | Endosense Sa | Catheter having tri-axial force sensor |
US8567265B2 (en) | 2006-06-09 | 2013-10-29 | Endosense, SA | Triaxial fiber optic force sensing catheter |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US7732190B2 (en) | 2006-07-31 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
CN101500635A (en) * | 2006-08-04 | 2009-08-05 | 导管治疗有限公司 | Modular catheter assembly |
US9242005B1 (en) | 2006-08-21 | 2016-01-26 | Abbott Cardiovascular Systems Inc. | Pro-healing agent formulation compositions, methods and treatments |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US9005672B2 (en) | 2006-11-17 | 2015-04-14 | Abbott Cardiovascular Systems Inc. | Methods of modifying myocardial infarction expansion |
US8741326B2 (en) | 2006-11-17 | 2014-06-03 | Abbott Cardiovascular Systems Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
US8192760B2 (en) | 2006-12-04 | 2012-06-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating tissue using silk proteins |
EP2114502B1 (en) * | 2006-12-08 | 2014-07-30 | Boston Scientific Limited | Therapeutic catheter with displacement sensing transducer |
US8118803B1 (en) | 2006-12-19 | 2012-02-21 | Abbott Cardiovascular Systems Inc. | Deflectable catheter assembly |
CN101568306A (en) * | 2006-12-22 | 2009-10-28 | 爱尔康研究有限公司 | Method of operating a microsurgical instrument |
US9028520B2 (en) | 2006-12-22 | 2015-05-12 | The Spectranetics Corporation | Tissue separating systems and methods |
US8961551B2 (en) | 2006-12-22 | 2015-02-24 | The Spectranetics Corporation | Retractable separating systems and methods |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US7655004B2 (en) | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US8157789B2 (en) | 2007-05-24 | 2012-04-17 | Endosense Sa | Touch sensing catheter |
US8622935B1 (en) | 2007-05-25 | 2014-01-07 | Endosense Sa | Elongated surgical manipulator with body position and distal force sensing |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
ES2325715B1 (en) | 2007-08-03 | 2010-06-17 | Genetrix, S.L. | POPULATION OF ADULT MOTHER CELLS DERIVED FROM CARDIAC ADIPOSE TISSUE AND ITS USE IN CARDIAC REGENERATION. |
US8568410B2 (en) | 2007-08-31 | 2013-10-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
US8262655B2 (en) | 2007-11-21 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8480657B2 (en) | 2007-10-31 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ |
US20090112059A1 (en) | 2007-10-31 | 2009-04-30 | Nobis Rudolph H | Apparatus and methods for closing a gastrotomy |
US8175679B2 (en) * | 2007-12-26 | 2012-05-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode that can simultaneously emit electrical energy and facilitate visualization by magnetic resonance imaging |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US8262680B2 (en) | 2008-03-10 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Anastomotic device |
US8010210B2 (en) * | 2008-04-30 | 2011-08-30 | Medizinische Hochschule Hannover | Apparatus and system for insertion of an implant |
US8298227B2 (en) * | 2008-05-14 | 2012-10-30 | Endosense Sa | Temperature compensated strain sensing catheter |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
US8679003B2 (en) | 2008-05-30 | 2014-03-25 | Ethicon Endo-Surgery, Inc. | Surgical device and endoscope including same |
US8317806B2 (en) | 2008-05-30 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Endoscopic suturing tension controlling and indication devices |
US8906035B2 (en) | 2008-06-04 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Endoscopic drop off bag |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US8361112B2 (en) | 2008-06-27 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical suture arrangement |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US8262563B2 (en) | 2008-07-14 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
WO2010011930A2 (en) * | 2008-07-24 | 2010-01-28 | Boston Scientific Scimed, Inc. | Various catheter devices for myocardial injections or other uses |
US8211125B2 (en) | 2008-08-15 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US8529563B2 (en) | 2008-08-25 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8241204B2 (en) | 2008-08-29 | 2012-08-14 | Ethicon Endo-Surgery, Inc. | Articulating end cap |
US8480689B2 (en) * | 2008-09-02 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Suturing device |
US8409200B2 (en) | 2008-09-03 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8337394B2 (en) | 2008-10-01 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Overtube with expandable tip |
US20100112081A1 (en) | 2008-10-07 | 2010-05-06 | Bioparadox, Llc | Use of platelet rich plasma composition in the treatment of cardiac conduction abnormalities |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US20100106052A1 (en) * | 2008-10-23 | 2010-04-29 | Margaret Uznanski | Surgical retractor |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US8361066B2 (en) | 2009-01-12 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8828031B2 (en) | 2009-01-12 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Apparatus for forming an anastomosis |
US20100191267A1 (en) * | 2009-01-26 | 2010-07-29 | Ethicon Endo-Surgery, Inc. | Rotary needle for natural orifice translumenal endoscopic surgery |
US8252057B2 (en) | 2009-01-30 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US9226772B2 (en) | 2009-01-30 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical device |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
BRPI1008667A2 (en) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | improvement of the operated surgical stapler |
DE102009000685B4 (en) * | 2009-02-06 | 2018-10-25 | Sirona Dental Systems Gmbh | Laser Handpiece |
US20100233282A1 (en) * | 2009-03-13 | 2010-09-16 | Allan Mishra | Device and methods for delivery of bioactive materials to the right side of the heart |
US8409236B2 (en) * | 2009-08-21 | 2013-04-02 | Vascular Access Technologies, Inc. | Methods of transvascular retrograde access placement and devices for facilitating the placement |
US20110098704A1 (en) | 2009-10-28 | 2011-04-28 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8608652B2 (en) | 2009-11-05 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Vaginal entry surgical devices, kit, system, and method |
US8353487B2 (en) | 2009-12-17 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | User interface support devices for endoscopic surgical instruments |
US8496574B2 (en) | 2009-12-17 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Selectively positionable camera for surgical guide tube assembly |
US9028483B2 (en) | 2009-12-18 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US8506564B2 (en) | 2009-12-18 | 2013-08-13 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US9005198B2 (en) | 2010-01-29 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
JP2013526388A (en) | 2010-05-25 | 2013-06-24 | イエナバルブ テクノロジー インク | Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US10092291B2 (en) | 2011-01-25 | 2018-10-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectively rigidizable features |
US9254169B2 (en) | 2011-02-28 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9314620B2 (en) | 2011-02-28 | 2016-04-19 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9049987B2 (en) | 2011-03-17 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US10561368B2 (en) | 2011-04-14 | 2020-02-18 | St. Jude Medical International Holding S.À R.L. | Compact force sensor for catheters |
BR112013027794B1 (en) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | CLAMP CARTRIDGE SET |
US8795241B2 (en) | 2011-05-13 | 2014-08-05 | Spiration, Inc. | Deployment catheter |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US8986199B2 (en) | 2012-02-17 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Apparatus and methods for cleaning the lens of an endoscope |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
BR112014024194B1 (en) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | STAPLER CARTRIDGE SET FOR A SURGICAL STAPLER |
CN104334098B (en) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
US9623217B2 (en) | 2012-05-30 | 2017-04-18 | Vascular Access Techonlogies, Inc. | Transvascular access methods |
US9220874B2 (en) | 2012-05-30 | 2015-12-29 | Vascular Access Technologies, Inc. | Transvascular access device and method |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
RU2636861C2 (en) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Blocking of empty cassette with clips |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9078662B2 (en) | 2012-07-03 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US9545290B2 (en) | 2012-07-30 | 2017-01-17 | Ethicon Endo-Surgery, Inc. | Needle probe guide |
US9572623B2 (en) | 2012-08-02 | 2017-02-21 | Ethicon Endo-Surgery, Inc. | Reusable electrode and disposable sheath |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US9763692B2 (en) | 2012-09-14 | 2017-09-19 | The Spectranetics Corporation | Tissue slitting methods and systems |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
RU2669463C2 (en) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Surgical instrument with soft stop |
RU2672520C2 (en) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Hingedly turnable surgical instruments with conducting ways for signal transfer |
US10383691B2 (en) | 2013-03-13 | 2019-08-20 | The Spectranetics Corporation | Last catheter with helical internal lumen |
US9283040B2 (en) | 2013-03-13 | 2016-03-15 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9291663B2 (en) | 2013-03-13 | 2016-03-22 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US9456872B2 (en) | 2013-03-13 | 2016-10-04 | The Spectranetics Corporation | Laser ablation catheter |
US9883885B2 (en) | 2013-03-13 | 2018-02-06 | The Spectranetics Corporation | System and method of ablative cutting and pulsed vacuum aspiration |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US10835279B2 (en) | 2013-03-14 | 2020-11-17 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US9925366B2 (en) | 2013-03-15 | 2018-03-27 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US9918737B2 (en) | 2013-03-15 | 2018-03-20 | The Spectranetics Corporation | Medical device for removing an implanted object |
US10842532B2 (en) | 2013-03-15 | 2020-11-24 | Spectranetics Llc | Medical device for removing an implanted object |
US10448999B2 (en) | 2013-03-15 | 2019-10-22 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
WO2017048486A1 (en) | 2013-03-15 | 2017-03-23 | The Spectranetics Corporation | Medical device for removing an implanted object using laser cut hypotubes |
US9668765B2 (en) | 2013-03-15 | 2017-06-06 | The Spectranetics Corporation | Retractable blade for lead removal device |
US9700351B2 (en) * | 2013-04-15 | 2017-07-11 | Transseptal Solutions Ltd. | Fossa ovalis penetration |
US9788858B2 (en) | 2013-04-15 | 2017-10-17 | Transseptal Solutions Ltd. | Fossa ovalis penetration using probing elements |
WO2016059638A1 (en) * | 2014-10-14 | 2016-04-21 | Transseptal Solutions Ltd. | Fossa ovalis penetration |
US9545265B2 (en) | 2013-04-15 | 2017-01-17 | Transseptal Solutions Ltd. | Fossa ovalis penetration using balloons |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US20140356893A1 (en) | 2013-06-04 | 2014-12-04 | Allan Mishra | Compositions and methods for using platelet-rich plasma for drug discovery, cell nuclear reprogramming, proliferation or differentiation |
JP6416260B2 (en) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | Firing member retractor for a powered surgical instrument |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
JP6563394B2 (en) | 2013-08-30 | 2019-08-21 | イェーナヴァルヴ テクノロジー インコーポレイテッド | Radially foldable frame for an artificial valve and method for manufacturing the frame |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US12053203B2 (en) | 2014-03-03 | 2024-08-06 | Spectranetics, Llc | Multiple configuration surgical cutting device |
WO2015134383A1 (en) | 2014-03-03 | 2015-09-11 | The Spectranetics Corporation | Multiple configuration surgical cutting device |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
JP6532889B2 (en) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | Fastener cartridge assembly and staple holder cover arrangement |
JP6612256B2 (en) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US10405924B2 (en) | 2014-05-30 | 2019-09-10 | The Spectranetics Corporation | System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port |
US9744335B2 (en) * | 2014-07-01 | 2017-08-29 | Auris Surgical Robotics, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
MX2017003960A (en) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Surgical stapling buttresses and adjunct materials. |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
MX2017008108A (en) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge. |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
KR20240099504A (en) | 2014-12-23 | 2024-06-28 | 메조블라스트 인터내셔널 에스에이알엘 | Method for treating heart failure |
USD765243S1 (en) | 2015-02-20 | 2016-08-30 | The Spectranetics Corporation | Medical device handle |
USD770616S1 (en) | 2015-02-20 | 2016-11-01 | The Spectranetics Corporation | Medical device handle |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9668674B2 (en) | 2015-03-03 | 2017-06-06 | Transseptal Solutions Ltd. | Measurement of appendage openings |
US9706982B2 (en) | 2015-03-03 | 2017-07-18 | Transseptal Solutions Ltd. | Treatment of appendage openings |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US11819636B2 (en) | 2015-03-30 | 2023-11-21 | Auris Health, Inc. | Endoscope pull wire electrical circuit |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
EP4403138A3 (en) | 2015-05-01 | 2024-10-09 | JenaValve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US10398503B2 (en) | 2015-10-14 | 2019-09-03 | Transseptal Soulutions Ltd. | Fossa ovalis penetration |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US20170189123A1 (en) * | 2016-01-06 | 2017-07-06 | Biosense Webster (Israel) Ltd. | Optical Registration of Rotary Sinuplasty Cutter |
EP3677206B1 (en) | 2016-01-07 | 2022-02-23 | St. Jude Medical International Holding S.à r.l. | Medical device with multi-core fiber for optical sensing |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
BR112018016098B1 (en) | 2016-02-09 | 2023-02-23 | Ethicon Llc | SURGICAL INSTRUMENT |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
CN109475419B (en) | 2016-05-13 | 2021-11-09 | 耶拿阀门科技股份有限公司 | Heart valve prosthesis delivery systems and methods for delivering heart valve prostheses through guide sheaths and loading systems |
WO2018015782A1 (en) * | 2016-07-16 | 2018-01-25 | Injeq Oy | A biopsy gun, a biopsy needle, a biopsy sample collecting system and a method for connecting at least one needle electrode of a biopsy needle to a connector and/or to a measurement cable in a biopsy gun |
US11660121B2 (en) | 2016-10-18 | 2023-05-30 | East End Medical Llc | Transseptal insertion device |
US11547489B2 (en) | 2016-11-28 | 2023-01-10 | Koninklijke Philips N.V. | Shape sensing of multiple over-the-wire devices |
US12053602B2 (en) | 2016-12-09 | 2024-08-06 | Vascular Access Technologies, Inc. | Methods and devices for vascular access |
US10617854B2 (en) | 2016-12-09 | 2020-04-14 | Vascular Access Technologies, Inc. | Trans-jugular carotid artery access methods |
MX2019007311A (en) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Surgical stapling systems. |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
CN110114014B (en) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | Surgical instrument system including end effector and firing assembly lockout |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US11654224B2 (en) | 2016-12-30 | 2023-05-23 | Vascular Access Technologies, Inc. | Methods and devices for percutaneous implantation of arterio-venous grafts |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
JP7279040B2 (en) * | 2017-07-28 | 2023-05-22 | イースト エンド メディカル エルエルシー | Directional balloon transseptal insertion device for medical procedures |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US20220160776A1 (en) | 2019-01-28 | 2022-05-26 | Mesoblast International Sárl | Method for treating or preventing gastrointestinal bleeding |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
EP3982849B1 (en) | 2019-06-11 | 2024-05-08 | East End Medical LLC | Directional balloon transseptal insertion device for medical procedures with improved transseptal puncture system with puncture member balloon seal |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
CA3151548A1 (en) | 2019-09-20 | 2021-03-25 | Brijeshwar S. MAINI | Directional balloon transseptal insertion device for medical procedures with improved transseptal puncture system with puncture member balloon seal |
US11666733B2 (en) | 2019-10-04 | 2023-06-06 | East End Medical Llc | Directional balloon transseptal insertion device for medical procedures with improved handle |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
BR112022016338A2 (en) | 2020-02-18 | 2022-10-04 | East End Medical Llc | DEFLECTABLE ANCHORAGE BALLOON CATHETER FOR VASCULAR PROCEDURES |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
CN118632667A (en) * | 2022-01-20 | 2024-09-10 | 美敦力瓦斯科尔勒公司 | Tissue removal catheter with adaptive torque control |
CN117202866A (en) * | 2022-04-06 | 2023-12-08 | 清流科技有限公司 | Control handle for atherectomy device |
WO2024039402A1 (en) * | 2022-08-18 | 2024-02-22 | Bard Peripheral Vascular, Inc. | Curved fire-forward needle for puncturing and traversing vasculature |
Citations (229)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1162901A (en) | 1915-10-08 | 1915-12-07 | Edward B Cantey | Instrument for cutting cores from solid substances. |
US2710000A (en) | 1952-02-19 | 1955-06-07 | Cromer Jeremiah Keith | Cutting instrument |
US2749909A (en) | 1956-06-12 | Biopsy knife | ||
US2923295A (en) * | 1958-05-22 | 1960-02-02 | Federico D C Guerriero | Cannula-directed hypodermic needle |
US3120845A (en) | 1961-02-20 | 1964-02-11 | David B Horner | Self-powered surgical drill |
US3308819A (en) * | 1963-12-09 | 1967-03-14 | Univ Iowa State Res Found Inc | Anesthetic device |
US3470876A (en) * | 1966-09-28 | 1969-10-07 | John Barchilon | Dirigible catheter |
US3477423A (en) | 1967-01-09 | 1969-11-11 | Baxter Laboratories Inc | Biopsy instrument |
US3557794A (en) | 1968-07-30 | 1971-01-26 | Us Air Force | Arterial dilation device |
US3598119A (en) * | 1970-02-02 | 1971-08-10 | Charles A White | Continuous paracervical anesthesia method and device |
US3614953A (en) | 1968-01-30 | 1971-10-26 | Nat Res Dev | Drills for clearing obstructions in arteries |
US3692020A (en) | 1971-04-29 | 1972-09-19 | Robert J Schied | Rotary punch for excising uniform diopsy specimens |
US3780246A (en) | 1972-08-22 | 1973-12-18 | Black & Decker Mfg Co | Hand-operated tool with switch actuator having three-position lock-off assembly |
US4136695A (en) * | 1975-07-09 | 1979-01-30 | Gynetech-Denver, Inc. | Transvaginal sterilization instrument |
US4207874A (en) | 1978-03-27 | 1980-06-17 | Choy Daniel S J | Laser tunnelling device |
US4222380A (en) * | 1977-12-02 | 1980-09-16 | Olympus Optical Co., Ltd. | Celiac injector |
US4362161A (en) | 1980-10-27 | 1982-12-07 | Codman & Shurtleff, Inc. | Cranial drill |
US4381037A (en) | 1979-10-29 | 1983-04-26 | Black & Decker Inc. | Portable electric tool |
US4461305A (en) | 1981-09-04 | 1984-07-24 | Cibley Leonard J | Automated biopsy device |
US4468224A (en) * | 1982-01-28 | 1984-08-28 | Advanced Cardiovascular Systems, Inc. | System and method for catheter placement in blood vessels of a human patient |
US4479896A (en) | 1981-12-11 | 1984-10-30 | Antoniades Harry N | Method for extraction localization and direct recovery of platelet derived growth factor |
US4576162A (en) | 1983-03-30 | 1986-03-18 | Mccorkle Charles E | Apparatus and method for separation of scar tissue in venous pathway |
US4578057A (en) | 1984-08-31 | 1986-03-25 | Cordis Corporation | Ventricular right angle connector and system |
US4581017A (en) * | 1983-03-07 | 1986-04-08 | Harvinder Sahota | Catheter systems |
US4582056A (en) | 1983-03-30 | 1986-04-15 | Mccorkle Jr Charles E | Endocardial lead extraction apparatus and method |
WO1986003122A1 (en) | 1984-11-29 | 1986-06-05 | Curatech, Inc. | Wound healing agents |
US4600014A (en) | 1984-02-10 | 1986-07-15 | Dan Beraha | Transrectal prostate biopsy device and method |
US4640296A (en) | 1983-11-12 | 1987-02-03 | Schnepp Pesch Wolfram | Biopsy cannula |
US4646738A (en) | 1985-12-05 | 1987-03-03 | Concept, Inc. | Rotary surgical tool |
US4702261A (en) | 1985-07-03 | 1987-10-27 | Sherwood Medical Company | Biopsy device and method |
US4729763A (en) | 1986-06-06 | 1988-03-08 | Henrie Rodney A | Catheter for removing occlusive material |
US4788975A (en) | 1987-11-05 | 1988-12-06 | Medilase, Inc. | Control system and method for improved laser angioplasty |
US4790812A (en) | 1985-11-15 | 1988-12-13 | Hawkins Jr Irvin F | Apparatus and method for removing a target object from a body passsageway |
US4792327A (en) | 1986-09-15 | 1988-12-20 | Barry Swartz | Lipectomy cannula |
US4813930A (en) | 1987-10-13 | 1989-03-21 | Dimed, Inc. | Angioplasty guiding catheters and methods for performing angioplasty |
US4850354A (en) | 1987-08-13 | 1989-07-25 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument |
US4856529A (en) * | 1985-05-24 | 1989-08-15 | Cardiometrics, Inc. | Ultrasonic pulmonary artery catheter and method |
US4895166A (en) | 1987-11-23 | 1990-01-23 | Interventional Technologies, Inc. | Rotatable cutter for the lumen of a blood vesel |
US4898577A (en) | 1988-09-28 | 1990-02-06 | Advanced Cardiovascular Systems, Inc. | Guiding cathether with controllable distal tip |
US4917102A (en) | 1988-09-14 | 1990-04-17 | Advanced Cardiovascular Systems, Inc. | Guidewire assembly with steerable adjustable tip |
US4923462A (en) | 1987-03-17 | 1990-05-08 | Cordis Corporation | Catheter system having a small diameter rotatable drive member |
USRE33258E (en) | 1984-07-23 | 1990-07-10 | Surgical Dynamics Inc. | Irrigating, cutting and aspirating system for percutaneous surgery |
US4946442A (en) * | 1985-06-28 | 1990-08-07 | Olympus Optical Co., Ltd. | Endoscope treatment device |
US4957742A (en) | 1984-11-29 | 1990-09-18 | Regents Of The University Of Minnesota | Method for promoting hair growth |
US4964854A (en) | 1989-01-23 | 1990-10-23 | Luther Medical Products, Inc. | Intravascular catheter assembly incorporating needle tip shielding cap |
US4976710A (en) | 1987-01-28 | 1990-12-11 | Mackin Robert A | Working well balloon method |
US4985028A (en) * | 1989-08-30 | 1991-01-15 | Angeion Corporation | Catheter |
US5030201A (en) | 1989-11-24 | 1991-07-09 | Aubrey Palestrant | Expandable atherectomy catheter device |
US5087265A (en) * | 1989-02-17 | 1992-02-11 | American Biomed, Inc. | Distal atherectomy catheter |
US5093877A (en) | 1990-10-30 | 1992-03-03 | Advanced Cardiovascular Systems | Optical fiber lasing apparatus lens |
US5104393A (en) | 1989-08-30 | 1992-04-14 | Angelase, Inc. | Catheter |
US5106386A (en) | 1989-08-30 | 1992-04-21 | Angelase, Inc. | Catheter |
US5123904A (en) | 1988-04-28 | 1992-06-23 | Olympus Optical Co., Ltd. | Surgical resecting instrument |
WO1992010142A1 (en) | 1990-12-10 | 1992-06-25 | Howmedica Inc. | A device and method for interstitial laser energy delivery |
US5125924A (en) | 1990-09-24 | 1992-06-30 | Laser Engineering, Inc. | Heart-synchronized vacuum-assisted pulsed laser system and method |
US5125926A (en) | 1990-09-24 | 1992-06-30 | Laser Engineering, Inc. | Heart-synchronized pulsed laser system |
US5133713A (en) | 1990-03-27 | 1992-07-28 | Huang Jong Khing | Apparatus of a spinning type of resectoscope for prostatectomy |
US5135531A (en) | 1984-05-14 | 1992-08-04 | Surgical Systems & Instruments, Inc. | Guided atherectomy system |
US5152744A (en) | 1990-02-07 | 1992-10-06 | Smith & Nephew Dyonics | Surgical instrument |
US5179962A (en) * | 1991-06-20 | 1993-01-19 | Possis Medical, Inc. | Cardiac lead with retractible fixators |
US5195988A (en) | 1988-05-26 | 1993-03-23 | Haaga John R | Medical needle with removable sheath |
US5197968A (en) | 1991-08-14 | 1993-03-30 | Mectra Labs, Inc. | Disposable tissue retrieval assembly |
US5224951A (en) | 1991-02-19 | 1993-07-06 | Dexide, Inc. | Surgical trocar and spike assembly |
US5242460A (en) | 1990-10-25 | 1993-09-07 | Devices For Vascular Intervention, Inc. | Atherectomy catheter having axially-disposed cutting edge |
US5263959A (en) | 1991-10-21 | 1993-11-23 | Cathco, Inc. | Dottering auger catheter system and method |
US5269785A (en) | 1990-06-28 | 1993-12-14 | Bonutti Peter M | Apparatus and method for tissue removal |
US5273051A (en) | 1993-03-16 | 1993-12-28 | Wilk Peter J | Method and associated device for obtaining a biopsy of tissues of an internal organ |
US5281218A (en) | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
US5285795A (en) | 1991-09-12 | 1994-02-15 | Surgical Dynamics, Inc. | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
US5287861A (en) * | 1992-10-30 | 1994-02-22 | Wilk Peter J | Coronary artery by-pass method and associated catheter |
US5292309A (en) | 1993-01-22 | 1994-03-08 | Schneider (Usa) Inc. | Surgical depth measuring instrument and method |
US5313949A (en) | 1986-02-28 | 1994-05-24 | Cardiovascular Imaging Systems Incorporated | Method and apparatus for intravascular two-dimensional ultrasonography |
US5323781A (en) | 1992-01-31 | 1994-06-28 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
US5330466A (en) | 1992-12-01 | 1994-07-19 | Cardiac Pathways Corporation | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
US5336237A (en) | 1993-08-25 | 1994-08-09 | Devices For Vascular Intervention, Inc. | Removal of tissue from within a body cavity |
US5339799A (en) | 1991-04-23 | 1994-08-23 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
US5342393A (en) | 1992-08-27 | 1994-08-30 | Duke University | Method and device for vascular repair |
US5342300A (en) | 1992-03-13 | 1994-08-30 | Stefanadis Christodoulos I | Steerable stent catheter |
US5354310A (en) | 1993-03-22 | 1994-10-11 | Cordis Corporation | Expandable temporary graft |
US5358485A (en) | 1992-01-13 | 1994-10-25 | Schneider (Usa) Inc. | Cutter for atherectomy catheter |
US5358472A (en) | 1992-01-13 | 1994-10-25 | Schneider (Usa) Inc. | Guidewire atherectomy catheter and method of using the same |
US5366468A (en) | 1993-11-09 | 1994-11-22 | Linvatec Corporation | Double bladed surgical router having aspiration ports within flutes |
US5366490A (en) | 1992-08-12 | 1994-11-22 | Vidamed, Inc. | Medical probe device and method |
US5380316A (en) | 1990-12-18 | 1995-01-10 | Advanced Cardiovascular Systems, Inc. | Method for intra-operative myocardial device revascularization |
US5379772A (en) | 1993-09-14 | 1995-01-10 | Intelliwire, Inc. | Flexible elongate device having forward looking ultrasonic imaging |
US5383884A (en) | 1992-12-04 | 1995-01-24 | American Biomed, Inc. | Spinal disc surgical instrument |
US5389073A (en) | 1992-12-01 | 1995-02-14 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location |
US5389096A (en) | 1990-12-18 | 1995-02-14 | Advanced Cardiovascular Systems | System and method for percutaneous myocardial revascularization |
US5392917A (en) | 1993-08-03 | 1995-02-28 | Ethicon, Inc. | Easy open 1-2-3 instrumentation package |
US5396897A (en) | 1992-01-16 | 1995-03-14 | The General Hospital Corporation | Method for locating tumors prior to needle biopsy |
US5403334A (en) | 1989-09-12 | 1995-04-04 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5409000A (en) | 1993-09-14 | 1995-04-25 | Cardiac Pathways Corporation | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
US5415166A (en) | 1991-02-15 | 1995-05-16 | Cardiac Pathways Corporation | Endocardial mapping apparatus and cylindrical semiconductor device mounting structure for use therewith and method |
US5419777A (en) * | 1994-03-10 | 1995-05-30 | Bavaria Medizin Technologie Gmbh | Catheter for injecting a fluid or medicine |
US5425376A (en) | 1993-09-08 | 1995-06-20 | Sofamor Danek Properties, Inc. | Method and apparatus for obtaining a biopsy sample |
US5429144A (en) | 1992-10-30 | 1995-07-04 | Wilk; Peter J. | Coronary artery by-pass method |
US5439474A (en) | 1993-10-08 | 1995-08-08 | Li Medical Technologies, Inc. | Morcellator system |
US5443443A (en) | 1984-05-14 | 1995-08-22 | Surgical Systems & Instruments, Inc. | Atherectomy system |
US5456689A (en) | 1993-10-13 | 1995-10-10 | Arnold J. Kresch | Method and device for tissue resection |
US5464395A (en) * | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
US5488958A (en) | 1992-11-09 | 1996-02-06 | Vance Products Incorporated | Surgical cutting instrument for coring tissue affixed thereto |
US5492119A (en) | 1993-12-22 | 1996-02-20 | Heart Rhythm Technologies, Inc. | Catheter tip stabilizing apparatus |
US5497784A (en) | 1991-11-18 | 1996-03-12 | Intelliwire, Inc. | Flexible elongate device having steerable distal extremity |
US5500012A (en) * | 1992-07-15 | 1996-03-19 | Angeion Corporation | Ablation catheter system |
US5505725A (en) | 1990-10-30 | 1996-04-09 | Cardiogenesis Corporation | Shapeable optical fiber apparatus |
US5507802A (en) | 1993-06-02 | 1996-04-16 | Cardiac Pathways Corporation | Method of mapping and/or ablation using a catheter having a tip with fixation means |
US5520634A (en) | 1993-04-23 | 1996-05-28 | Ethicon, Inc. | Mechanical morcellator |
US5531780A (en) * | 1992-09-03 | 1996-07-02 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
WO1996025097A1 (en) | 1995-02-17 | 1996-08-22 | Ep Technologies, Inc. | Systems and methods for examining heart tissue |
US5551427A (en) | 1995-02-13 | 1996-09-03 | Altman; Peter A. | Implantable device for the effective elimination of cardiac arrhythmogenic sites |
WO1996026675A1 (en) | 1995-02-28 | 1996-09-06 | Boston Scientific Corporation | Deflectable catheter for ablating cardiac tissue |
US5562694A (en) | 1994-10-11 | 1996-10-08 | Lasersurge, Inc. | Morcellator |
US5569284A (en) | 1994-09-23 | 1996-10-29 | United States Surgical Corporation | Morcellator |
US5569254A (en) | 1995-04-12 | 1996-10-29 | Midas Rex Pneumatic Tools, Inc. | Surgical resection tool having an irrigation, lighting, suction and vision attachment |
US5569178A (en) | 1995-10-20 | 1996-10-29 | Henley; Julian L. | Power assisted suction lipectomy device |
WO1996035469A1 (en) | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | System for treating or diagnosing heart tissue |
US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US5575293A (en) | 1995-02-06 | 1996-11-19 | Promex, Inc. | Apparatus for collecting and staging tissue |
US5575787A (en) | 1993-09-20 | 1996-11-19 | Abela Laser Systems, Inc. | Cardiac ablation catheters and method |
US5575772A (en) | 1993-07-01 | 1996-11-19 | Boston Scientific Corporation | Albation catheters |
US5578067A (en) | 1994-04-14 | 1996-11-26 | Pacesetter Ab | Medical electrode system having a sleeve body and control element therefor for selectively positioning an exposed conductor area |
US5584842A (en) | 1992-12-02 | 1996-12-17 | Intramed Laboratories, Inc. | Valvulotome and method of using |
US5588432A (en) * | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5591159A (en) | 1994-11-09 | 1997-01-07 | Taheri; Syde A. | Transcavitary myocardial perfusion apparatus |
US5593405A (en) | 1994-07-16 | 1997-01-14 | Osypka; Peter | Fiber optic endoscope |
US5601588A (en) | 1994-09-29 | 1997-02-11 | Olympus Optical Co., Ltd. | Endoscopic puncture needle |
US5601573A (en) | 1994-03-02 | 1997-02-11 | Ethicon Endo-Surgery, Inc. | Sterile occlusion fasteners and instruments and method for their placement |
US5601586A (en) | 1992-09-30 | 1997-02-11 | Linvatec Corporation | Variable angle rotating shaver |
US5606974A (en) | 1995-05-02 | 1997-03-04 | Heart Rhythm Technologies, Inc. | Catheter having ultrasonic device |
US5607421A (en) | 1991-05-01 | 1997-03-04 | The Trustees Of Columbia University In The City Of New York | Myocardial revascularization through the endocardial surface using a laser |
US5609591A (en) | 1993-10-05 | 1997-03-11 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
US5609621A (en) | 1995-08-04 | 1997-03-11 | Medtronic, Inc. | Right ventricular outflow tract defibrillation lead |
US5611803A (en) | 1994-12-22 | 1997-03-18 | Urohealth Systems, Inc. | Tissue segmentation device |
US5613972A (en) | 1992-07-15 | 1997-03-25 | The University Of Miami | Surgical cutting heads with curled cutting wings |
WO1997010753A1 (en) | 1995-09-20 | 1997-03-27 | Medtronic, Inc. | Method and apparatus for temporarily immobilizing a local area of tissue |
WO1997013471A1 (en) | 1995-10-13 | 1997-04-17 | Transvascular, Inc. | A device, system and method for interstitial transvascular intervention |
US5640955A (en) | 1995-02-14 | 1997-06-24 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5643253A (en) | 1995-06-06 | 1997-07-01 | Rare Earth Medical, Inc. | Phototherapy apparatus with integral stopper device |
US5651781A (en) | 1995-04-20 | 1997-07-29 | Grace-Wells Technology Partners No. 1, L.P. | Surgical cutting instrument |
US5658263A (en) | 1995-05-18 | 1997-08-19 | Cordis Corporation | Multisegmented guiding catheter for use in medical catheter systems |
US5662124A (en) | 1996-06-19 | 1997-09-02 | Wilk Patent Development Corp. | Coronary artery by-pass method |
US5662671A (en) | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US5665062A (en) | 1995-01-23 | 1997-09-09 | Houser; Russell A. | Atherectomy catheter and RF cutting method |
US5669920A (en) | 1993-07-09 | 1997-09-23 | Devices For Vascular Intervention, Inc. | Atherectomy catheter |
US5680860A (en) * | 1994-07-07 | 1997-10-28 | Cardiac Pathways Corporation | Mapping and/or ablation catheter with coilable distal extremity and method for using same |
US5683362A (en) | 1994-05-13 | 1997-11-04 | Rowland; Christopher A. | Apparatus for performing diagnostic and therapeutic modalities in the biliary tree |
US5688234A (en) | 1996-01-26 | 1997-11-18 | Cardiometrics Inc. | Apparatus and method for the treatment of thrombotic occlusions in vessels |
EP0807412A1 (en) | 1996-05-13 | 1997-11-19 | United States Surgical Corporation | Coring device and method |
US5702412A (en) | 1995-10-03 | 1997-12-30 | Cedars-Sinai Medical Center | Method and devices for performing vascular anastomosis |
US5707362A (en) * | 1992-04-15 | 1998-01-13 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member |
US5709697A (en) | 1995-11-22 | 1998-01-20 | United States Surgical Corporation | Apparatus and method for removing tissue |
WO1998005307A1 (en) | 1996-08-08 | 1998-02-12 | Localmed, Inc. | Transmural drug delivery method and apparatus |
US5722400A (en) | 1995-02-16 | 1998-03-03 | Daig Corporation | Guiding introducers for use in the treatment of left ventricular tachycardia |
US5725521A (en) | 1996-03-29 | 1998-03-10 | Eclipse Surgical Technologies, Inc. | Depth stop apparatus and method for laser-assisted transmyocardial revascularization and other surgical applications |
US5724975A (en) | 1996-12-12 | 1998-03-10 | Plc Medical Systems, Inc. | Ultrasonic detection system for transmyocardial revascularization |
US5730741A (en) | 1997-02-07 | 1998-03-24 | Eclipse Surgical Technologies, Inc. | Guided spiral catheter |
US5743870A (en) | 1994-05-09 | 1998-04-28 | Somnus Medical Technologies, Inc. | Ablation apparatus and system for removal of soft palate tissue |
WO1998017186A1 (en) | 1996-10-21 | 1998-04-30 | Plc Medical Systems, Inc. | Percutaneous transmyocardial revascularization marking system |
US5755714A (en) | 1996-09-17 | 1998-05-26 | Eclipse Surgical Technologies, Inc. | Shaped catheter for transmyocardial revascularization |
US5766163A (en) | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Controllable trocar for transmyocardial revascularization (TMR) via endocardium method and apparatus |
US5776092A (en) | 1994-03-23 | 1998-07-07 | Erbe Elektromedizin Gmbh | Multifunctional surgical instrument |
US5782823A (en) | 1996-04-05 | 1998-07-21 | Eclipse Surgical Technologies, Inc. | Laser device for transmyocardial revascularization procedures including means for enabling a formation of a pilot hole in the epicardium |
EP0853921A2 (en) | 1996-12-27 | 1998-07-22 | Eclipse Surgical Technologies, Inc. | Laser assisted drug delivery |
US5797870A (en) | 1995-06-07 | 1998-08-25 | Indiana University Foundation | Pericardial delivery of therapeutic and diagnostic agents |
WO1998038916A1 (en) | 1997-03-07 | 1998-09-11 | Cardiogenesis Corporation | Apparatus and method of myocardial revascularization using ultrasonic pulse-echo distance ranging |
WO1998039045A1 (en) | 1997-03-07 | 1998-09-11 | Cardiogenesis Corporation | Catheter with three sections of different flexibilities |
US5807401A (en) | 1994-11-07 | 1998-09-15 | Grieshaber & Co. Ag Schaffhausen | Ophthalmic surgical apparatus for pulverizing and removing the lens nucleus from the eye of a living being |
US5807384A (en) | 1996-12-20 | 1998-09-15 | Eclipse Surgical Technologies, Inc. | Transmyocardial revascularization (TMR) enhanced treatment for coronary artery disease |
US5814028A (en) | 1993-11-03 | 1998-09-29 | Daig Corporation | Curved guiding introducers for cardiac access |
EP0868923A2 (en) | 1997-04-04 | 1998-10-07 | Eclipse Surgical Technologies, Inc. | Steerable catheter |
US5830210A (en) | 1996-10-21 | 1998-11-03 | Plc Medical Systems, Inc. | Catheter navigation apparatus |
US5834418A (en) | 1996-03-20 | 1998-11-10 | Theratechnologies, Inc. | Process for the preparation of platelet growth factors extract |
EP0876796A2 (en) | 1997-05-07 | 1998-11-11 | Eclipse Surgical Technologies, Inc. | Device for use in the treatment of cardiovascular or other tissue |
US5840059A (en) | 1995-06-07 | 1998-11-24 | Cardiogenesis Corporation | Therapeutic and diagnostic agent delivery |
US5846225A (en) | 1997-02-19 | 1998-12-08 | Cornell Research Foundation, Inc. | Gene transfer therapy delivery device and method |
US5851171A (en) | 1997-11-04 | 1998-12-22 | Advanced Cardiovascular Systems, Inc. | Catheter assembly for centering a radiation source within a body lumen |
US5857995A (en) | 1996-08-15 | 1999-01-12 | Surgical Dynamics, Inc. | Multiple bladed surgical cutting device removably connected to a rotary drive element |
EP0895752A1 (en) | 1997-08-08 | 1999-02-10 | Eclipse Surgical Technologies, Inc. | Apparatus for sampling heart tissue and/or myocardial revascularization by mechanical cutting |
US5871495A (en) | 1996-09-13 | 1999-02-16 | Eclipse Surgical Technologies, Inc. | Method and apparatus for mechanical transmyocardial revascularization of the heart |
US5873366A (en) | 1996-11-07 | 1999-02-23 | Chim; Nicholas | Method for transmyocardial revascularization |
US5878751A (en) | 1996-03-04 | 1999-03-09 | Myocardial Stents, Inc. | Method for trans myocardial revascularization (TMR) |
US5885276A (en) | 1997-12-02 | 1999-03-23 | Galil Medical Ltd. | Method and device for transmyocardial cryo revascularization |
US5885272A (en) | 1990-10-30 | 1999-03-23 | Aita; Michael | System and method for percutaneous myocardial revascularization |
US5891137A (en) * | 1997-05-21 | 1999-04-06 | Irvine Biomedical, Inc. | Catheter system having a tip with fixation means |
US5893848A (en) | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US5899874A (en) | 1992-04-30 | 1999-05-04 | Stiftelsen For Medicinsk-Teknisk Utveckling | Preparation and method for production of platelet concentrates with significantly prolonged viabilty during storage |
US5906594A (en) | 1997-01-08 | 1999-05-25 | Symbiosis Corporation | Endoscopic infusion needle having dual distal stops |
US5910150A (en) * | 1996-12-02 | 1999-06-08 | Angiotrax, Inc. | Apparatus for performing surgery |
US5916214A (en) | 1995-05-01 | 1999-06-29 | Medtronic Cardiorhythm | Dual curve ablation catheter |
US5921982A (en) | 1993-07-30 | 1999-07-13 | Lesh; Michael D. | Systems and methods for ablating body tissue |
US5925012A (en) | 1996-12-27 | 1999-07-20 | Eclipse Surgical Technologies, Inc. | Laser assisted drug delivery |
US5928943A (en) | 1994-11-22 | 1999-07-27 | Institut Fur Pflanzengenetik Und Kulturpflanzenforschung | Embryonal cardiac muscle cells, their preparation and their use |
US5938632A (en) | 1997-03-06 | 1999-08-17 | Scimed Life Systems, Inc. | Radiofrequency transmyocardial revascularization apparatus and method |
US5941868A (en) | 1995-12-22 | 1999-08-24 | Localmed, Inc. | Localized intravascular delivery of growth factors for promotion of angiogenesis |
US5944716A (en) | 1996-12-09 | 1999-08-31 | Scimed Life Systems, Inc. | Radio frequency transmyocardial revascularization corer |
US5951567A (en) | 1997-07-24 | 1999-09-14 | Cardiogenesis Corporation | Introducer for channel forming device |
US5964757A (en) | 1997-09-05 | 1999-10-12 | Cordis Webster, Inc. | Steerable direct myocardial revascularization catheter |
US5964754A (en) | 1996-05-24 | 1999-10-12 | Sulzer Osypka Gmbh | Device for perforating the heart wall |
US5968059A (en) | 1997-03-06 | 1999-10-19 | Scimed Life Systems, Inc. | Transmyocardial revascularization catheter and method |
US5971993A (en) | 1996-11-07 | 1999-10-26 | Myocardial Stents, Inc. | System for delivery of a trans myocardial device to a heart wall |
US5980548A (en) | 1997-10-29 | 1999-11-09 | Kensey Nash Corporation | Transmyocardial revascularization system |
US6017340A (en) * | 1994-10-03 | 2000-01-25 | Wiltek Medical Inc. | Pre-curved wire guided papillotome having a shape memory tip for controlled bending and orientation |
US6045530A (en) | 1998-10-14 | 2000-04-04 | Heyer-Schulte Neurocare Inc. | Adjustable angle catheter |
US6045565A (en) | 1997-11-04 | 2000-04-04 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization growth factor mediums and method |
US6051008A (en) | 1996-12-02 | 2000-04-18 | Angiotrax, Inc. | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
US6056743A (en) | 1997-11-04 | 2000-05-02 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization device and method |
US6056760A (en) | 1997-01-30 | 2000-05-02 | Nissho Corporation | Device for intracardiac suture |
US6066126A (en) | 1997-12-18 | 2000-05-23 | Medtronic, Inc. | Precurved, dual curve cardiac introducer sheath |
US6102887A (en) * | 1998-08-11 | 2000-08-15 | Biocardia, Inc. | Catheter drug delivery system and method for use |
US6106520A (en) | 1997-09-30 | 2000-08-22 | Hearten Medical, Inc. | Endocardial device for producing reversible damage to heart tissue |
US6165164A (en) | 1999-03-29 | 2000-12-26 | Cordis Corporation | Catheter for injecting therapeutic and diagnostic agents |
US6179809B1 (en) | 1997-09-24 | 2001-01-30 | Eclipse Surgical Technologies, Inc. | Drug delivery catheter with tip alignment |
US6197324B1 (en) | 1997-12-18 | 2001-03-06 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
US6224584B1 (en) | 1997-01-14 | 2001-05-01 | Eclipse Surgical Technologies, Inc. | Therapeutic and diagnostic agent delivery |
US6238389B1 (en) * | 1997-09-30 | 2001-05-29 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US6251104B1 (en) | 1995-05-10 | 2001-06-26 | Eclipse Surgical Technologies, Inc. | Guiding catheter system for ablating heart tissue |
US6270496B1 (en) | 1998-05-05 | 2001-08-07 | Cardiac Pacemakers, Inc. | Steerable catheter with preformed distal shape and method for use |
US6309370B1 (en) | 1998-02-05 | 2001-10-30 | Biosense, Inc. | Intracardiac drug delivery |
US6322548B1 (en) | 1995-05-10 | 2001-11-27 | Eclipse Surgical Technologies | Delivery catheter system for heart chamber |
US6589232B1 (en) | 1997-11-25 | 2003-07-08 | Richard L. Mueller | Selective treatment of endocardial/myocardial boundary |
US6613062B1 (en) * | 1999-10-29 | 2003-09-02 | Medtronic, Inc. | Method and apparatus for providing intra-pericardial access |
US6620139B1 (en) | 1998-12-14 | 2003-09-16 | Tre Esse Progettazione Biomedica S.R.L. | Catheter system for performing intramyocardiac therapeutic treatment |
US6638233B2 (en) | 1999-08-19 | 2003-10-28 | Fox Hollow Technologies, Inc. | Apparatus and methods for material capture and removal |
US20040010231A1 (en) | 2000-07-13 | 2004-01-15 | Leonhardt Howard J | Deployment system for myocardial cellular material |
US6905476B2 (en) | 1998-06-04 | 2005-06-14 | Biosense Webster, Inc. | Catheter with injection needle |
US6991602B2 (en) * | 2002-01-11 | 2006-01-31 | Olympus Corporation | Medical treatment method and apparatus |
US7094201B1 (en) | 1996-07-17 | 2006-08-22 | Medtronic, Inc. | System and method for genetically treating cardiac conduction disturbances |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US33258A (en) * | 1861-09-10 | Improvement in gas-burners |
-
1999
- 1999-03-23 US US09/274,790 patent/US6102926A/en not_active Ceased
-
2000
- 2000-03-17 WO PCT/US2000/007275 patent/WO2000056224A1/en active Application Filing
- 2000-03-17 AU AU37618/00A patent/AU3761800A/en not_active Abandoned
-
2002
- 2002-08-14 US US10/219,785 patent/USRE45638E1/en not_active Expired - Lifetime
Patent Citations (245)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2749909A (en) | 1956-06-12 | Biopsy knife | ||
US1162901A (en) | 1915-10-08 | 1915-12-07 | Edward B Cantey | Instrument for cutting cores from solid substances. |
US2710000A (en) | 1952-02-19 | 1955-06-07 | Cromer Jeremiah Keith | Cutting instrument |
US2923295A (en) * | 1958-05-22 | 1960-02-02 | Federico D C Guerriero | Cannula-directed hypodermic needle |
US3120845A (en) | 1961-02-20 | 1964-02-11 | David B Horner | Self-powered surgical drill |
US3308819A (en) * | 1963-12-09 | 1967-03-14 | Univ Iowa State Res Found Inc | Anesthetic device |
US3470876A (en) * | 1966-09-28 | 1969-10-07 | John Barchilon | Dirigible catheter |
US3477423A (en) | 1967-01-09 | 1969-11-11 | Baxter Laboratories Inc | Biopsy instrument |
US3614953A (en) | 1968-01-30 | 1971-10-26 | Nat Res Dev | Drills for clearing obstructions in arteries |
US3557794A (en) | 1968-07-30 | 1971-01-26 | Us Air Force | Arterial dilation device |
US3598119A (en) * | 1970-02-02 | 1971-08-10 | Charles A White | Continuous paracervical anesthesia method and device |
US3692020A (en) | 1971-04-29 | 1972-09-19 | Robert J Schied | Rotary punch for excising uniform diopsy specimens |
US3780246A (en) | 1972-08-22 | 1973-12-18 | Black & Decker Mfg Co | Hand-operated tool with switch actuator having three-position lock-off assembly |
US4136695A (en) * | 1975-07-09 | 1979-01-30 | Gynetech-Denver, Inc. | Transvaginal sterilization instrument |
US4222380A (en) * | 1977-12-02 | 1980-09-16 | Olympus Optical Co., Ltd. | Celiac injector |
US4207874A (en) | 1978-03-27 | 1980-06-17 | Choy Daniel S J | Laser tunnelling device |
US4381037A (en) | 1979-10-29 | 1983-04-26 | Black & Decker Inc. | Portable electric tool |
US4362161A (en) | 1980-10-27 | 1982-12-07 | Codman & Shurtleff, Inc. | Cranial drill |
US4461305A (en) | 1981-09-04 | 1984-07-24 | Cibley Leonard J | Automated biopsy device |
US4479896A (en) | 1981-12-11 | 1984-10-30 | Antoniades Harry N | Method for extraction localization and direct recovery of platelet derived growth factor |
US4468224A (en) * | 1982-01-28 | 1984-08-28 | Advanced Cardiovascular Systems, Inc. | System and method for catheter placement in blood vessels of a human patient |
US4581017A (en) * | 1983-03-07 | 1986-04-08 | Harvinder Sahota | Catheter systems |
US4581017B1 (en) * | 1983-03-07 | 1994-05-17 | Bard Inc C R | Catheter systems |
US4582056A (en) | 1983-03-30 | 1986-04-15 | Mccorkle Jr Charles E | Endocardial lead extraction apparatus and method |
US4576162A (en) | 1983-03-30 | 1986-03-18 | Mccorkle Charles E | Apparatus and method for separation of scar tissue in venous pathway |
US4640296A (en) | 1983-11-12 | 1987-02-03 | Schnepp Pesch Wolfram | Biopsy cannula |
US4600014A (en) | 1984-02-10 | 1986-07-15 | Dan Beraha | Transrectal prostate biopsy device and method |
US5135531A (en) | 1984-05-14 | 1992-08-04 | Surgical Systems & Instruments, Inc. | Guided atherectomy system |
US5443443A (en) | 1984-05-14 | 1995-08-22 | Surgical Systems & Instruments, Inc. | Atherectomy system |
USRE33258E (en) | 1984-07-23 | 1990-07-10 | Surgical Dynamics Inc. | Irrigating, cutting and aspirating system for percutaneous surgery |
US4578057A (en) | 1984-08-31 | 1986-03-25 | Cordis Corporation | Ventricular right angle connector and system |
WO1986003122A1 (en) | 1984-11-29 | 1986-06-05 | Curatech, Inc. | Wound healing agents |
US4957742A (en) | 1984-11-29 | 1990-09-18 | Regents Of The University Of Minnesota | Method for promoting hair growth |
US4856529A (en) * | 1985-05-24 | 1989-08-15 | Cardiometrics, Inc. | Ultrasonic pulmonary artery catheter and method |
US4946442A (en) * | 1985-06-28 | 1990-08-07 | Olympus Optical Co., Ltd. | Endoscope treatment device |
US4702261A (en) | 1985-07-03 | 1987-10-27 | Sherwood Medical Company | Biopsy device and method |
US4790812A (en) | 1985-11-15 | 1988-12-13 | Hawkins Jr Irvin F | Apparatus and method for removing a target object from a body passsageway |
US4646738A (en) | 1985-12-05 | 1987-03-03 | Concept, Inc. | Rotary surgical tool |
US5313949A (en) | 1986-02-28 | 1994-05-24 | Cardiovascular Imaging Systems Incorporated | Method and apparatus for intravascular two-dimensional ultrasonography |
US4729763A (en) | 1986-06-06 | 1988-03-08 | Henrie Rodney A | Catheter for removing occlusive material |
US4792327A (en) | 1986-09-15 | 1988-12-20 | Barry Swartz | Lipectomy cannula |
US4976710A (en) | 1987-01-28 | 1990-12-11 | Mackin Robert A | Working well balloon method |
US4923462A (en) | 1987-03-17 | 1990-05-08 | Cordis Corporation | Catheter system having a small diameter rotatable drive member |
US4850354A (en) | 1987-08-13 | 1989-07-25 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument |
US4813930A (en) | 1987-10-13 | 1989-03-21 | Dimed, Inc. | Angioplasty guiding catheters and methods for performing angioplasty |
US4788975B1 (en) | 1987-11-05 | 1999-03-02 | Trimedyne Inc | Control system and method for improved laser angioplasty |
US4788975A (en) | 1987-11-05 | 1988-12-06 | Medilase, Inc. | Control system and method for improved laser angioplasty |
US4895166A (en) | 1987-11-23 | 1990-01-23 | Interventional Technologies, Inc. | Rotatable cutter for the lumen of a blood vesel |
US5588432A (en) * | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5123904A (en) | 1988-04-28 | 1992-06-23 | Olympus Optical Co., Ltd. | Surgical resecting instrument |
US5195988A (en) | 1988-05-26 | 1993-03-23 | Haaga John R | Medical needle with removable sheath |
US4917102A (en) | 1988-09-14 | 1990-04-17 | Advanced Cardiovascular Systems, Inc. | Guidewire assembly with steerable adjustable tip |
US4898577A (en) | 1988-09-28 | 1990-02-06 | Advanced Cardiovascular Systems, Inc. | Guiding cathether with controllable distal tip |
US4964854A (en) | 1989-01-23 | 1990-10-23 | Luther Medical Products, Inc. | Intravascular catheter assembly incorporating needle tip shielding cap |
US5087265A (en) * | 1989-02-17 | 1992-02-11 | American Biomed, Inc. | Distal atherectomy catheter |
US5106386A (en) | 1989-08-30 | 1992-04-21 | Angelase, Inc. | Catheter |
US5104393A (en) | 1989-08-30 | 1992-04-14 | Angelase, Inc. | Catheter |
US4985028A (en) * | 1989-08-30 | 1991-01-15 | Angeion Corporation | Catheter |
US5403334A (en) | 1989-09-12 | 1995-04-04 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5030201A (en) | 1989-11-24 | 1991-07-09 | Aubrey Palestrant | Expandable atherectomy catheter device |
US5152744A (en) | 1990-02-07 | 1992-10-06 | Smith & Nephew Dyonics | Surgical instrument |
US5133713A (en) | 1990-03-27 | 1992-07-28 | Huang Jong Khing | Apparatus of a spinning type of resectoscope for prostatectomy |
US5269785A (en) | 1990-06-28 | 1993-12-14 | Bonutti Peter M | Apparatus and method for tissue removal |
US5125924A (en) | 1990-09-24 | 1992-06-30 | Laser Engineering, Inc. | Heart-synchronized vacuum-assisted pulsed laser system and method |
US5125926A (en) | 1990-09-24 | 1992-06-30 | Laser Engineering, Inc. | Heart-synchronized pulsed laser system |
US5242460A (en) | 1990-10-25 | 1993-09-07 | Devices For Vascular Intervention, Inc. | Atherectomy catheter having axially-disposed cutting edge |
US5093877A (en) | 1990-10-30 | 1992-03-03 | Advanced Cardiovascular Systems | Optical fiber lasing apparatus lens |
US5885272A (en) | 1990-10-30 | 1999-03-23 | Aita; Michael | System and method for percutaneous myocardial revascularization |
US5505725A (en) | 1990-10-30 | 1996-04-09 | Cardiogenesis Corporation | Shapeable optical fiber apparatus |
WO1992010142A1 (en) | 1990-12-10 | 1992-06-25 | Howmedica Inc. | A device and method for interstitial laser energy delivery |
US5380316A (en) | 1990-12-18 | 1995-01-10 | Advanced Cardiovascular Systems, Inc. | Method for intra-operative myocardial device revascularization |
US5554152A (en) | 1990-12-18 | 1996-09-10 | Cardiogenesis Corporation | Method for intra-operative myocardial revascularization |
US5389096A (en) | 1990-12-18 | 1995-02-14 | Advanced Cardiovascular Systems | System and method for percutaneous myocardial revascularization |
US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
US5415166A (en) | 1991-02-15 | 1995-05-16 | Cardiac Pathways Corporation | Endocardial mapping apparatus and cylindrical semiconductor device mounting structure for use therewith and method |
US5224951A (en) | 1991-02-19 | 1993-07-06 | Dexide, Inc. | Surgical trocar and spike assembly |
US5339799A (en) | 1991-04-23 | 1994-08-23 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
US5607421A (en) | 1991-05-01 | 1997-03-04 | The Trustees Of Columbia University In The City Of New York | Myocardial revascularization through the endocardial surface using a laser |
US5179962A (en) * | 1991-06-20 | 1993-01-19 | Possis Medical, Inc. | Cardiac lead with retractible fixators |
US5197968A (en) | 1991-08-14 | 1993-03-30 | Mectra Labs, Inc. | Disposable tissue retrieval assembly |
US5285795A (en) | 1991-09-12 | 1994-02-15 | Surgical Dynamics, Inc. | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
US5263959A (en) | 1991-10-21 | 1993-11-23 | Cathco, Inc. | Dottering auger catheter system and method |
US5497784A (en) | 1991-11-18 | 1996-03-12 | Intelliwire, Inc. | Flexible elongate device having steerable distal extremity |
US5358485A (en) | 1992-01-13 | 1994-10-25 | Schneider (Usa) Inc. | Cutter for atherectomy catheter |
US5358472A (en) | 1992-01-13 | 1994-10-25 | Schneider (Usa) Inc. | Guidewire atherectomy catheter and method of using the same |
US5396897A (en) | 1992-01-16 | 1995-03-14 | The General Hospital Corporation | Method for locating tumors prior to needle biopsy |
US5323781A (en) | 1992-01-31 | 1994-06-28 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5342300A (en) | 1992-03-13 | 1994-08-30 | Stefanadis Christodoulos I | Steerable stent catheter |
US5707362A (en) * | 1992-04-15 | 1998-01-13 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member |
US5899874A (en) | 1992-04-30 | 1999-05-04 | Stiftelsen For Medicinsk-Teknisk Utveckling | Preparation and method for production of platelet concentrates with significantly prolonged viabilty during storage |
US5281218A (en) | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
US5500012A (en) * | 1992-07-15 | 1996-03-19 | Angeion Corporation | Ablation catheter system |
US5613972A (en) | 1992-07-15 | 1997-03-25 | The University Of Miami | Surgical cutting heads with curled cutting wings |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5366490A (en) | 1992-08-12 | 1994-11-22 | Vidamed, Inc. | Medical probe device and method |
US5342393A (en) | 1992-08-27 | 1994-08-30 | Duke University | Method and device for vascular repair |
US5531780A (en) * | 1992-09-03 | 1996-07-02 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
US5833715A (en) * | 1992-09-03 | 1998-11-10 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
US5601586A (en) | 1992-09-30 | 1997-02-11 | Linvatec Corporation | Variable angle rotating shaver |
US5429144A (en) | 1992-10-30 | 1995-07-04 | Wilk; Peter J. | Coronary artery by-pass method |
US5287861A (en) * | 1992-10-30 | 1994-02-22 | Wilk Peter J | Coronary artery by-pass method and associated catheter |
US5488958A (en) | 1992-11-09 | 1996-02-06 | Vance Products Incorporated | Surgical cutting instrument for coring tissue affixed thereto |
US5527279A (en) | 1992-12-01 | 1996-06-18 | Cardiac Pathways Corporation | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
US5389073A (en) | 1992-12-01 | 1995-02-14 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location |
US5330466A (en) | 1992-12-01 | 1994-07-19 | Cardiac Pathways Corporation | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
US5584842A (en) | 1992-12-02 | 1996-12-17 | Intramed Laboratories, Inc. | Valvulotome and method of using |
US5383884A (en) | 1992-12-04 | 1995-01-24 | American Biomed, Inc. | Spinal disc surgical instrument |
US5292309A (en) | 1993-01-22 | 1994-03-08 | Schneider (Usa) Inc. | Surgical depth measuring instrument and method |
US5273051A (en) | 1993-03-16 | 1993-12-28 | Wilk Peter J | Method and associated device for obtaining a biopsy of tissues of an internal organ |
US5354310A (en) | 1993-03-22 | 1994-10-11 | Cordis Corporation | Expandable temporary graft |
US5520634A (en) | 1993-04-23 | 1996-05-28 | Ethicon, Inc. | Mechanical morcellator |
US5507802A (en) | 1993-06-02 | 1996-04-16 | Cardiac Pathways Corporation | Method of mapping and/or ablation using a catheter having a tip with fixation means |
US5575772A (en) | 1993-07-01 | 1996-11-19 | Boston Scientific Corporation | Albation catheters |
US5669920A (en) | 1993-07-09 | 1997-09-23 | Devices For Vascular Intervention, Inc. | Atherectomy catheter |
US5921982A (en) | 1993-07-30 | 1999-07-13 | Lesh; Michael D. | Systems and methods for ablating body tissue |
US5392917A (en) | 1993-08-03 | 1995-02-28 | Ethicon, Inc. | Easy open 1-2-3 instrumentation package |
US5336237A (en) | 1993-08-25 | 1994-08-09 | Devices For Vascular Intervention, Inc. | Removal of tissue from within a body cavity |
US5425376A (en) | 1993-09-08 | 1995-06-20 | Sofamor Danek Properties, Inc. | Method and apparatus for obtaining a biopsy sample |
US5409000A (en) | 1993-09-14 | 1995-04-25 | Cardiac Pathways Corporation | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
US5379772A (en) | 1993-09-14 | 1995-01-10 | Intelliwire, Inc. | Flexible elongate device having forward looking ultrasonic imaging |
US5575787A (en) | 1993-09-20 | 1996-11-19 | Abela Laser Systems, Inc. | Cardiac ablation catheters and method |
US5609591A (en) | 1993-10-05 | 1997-03-11 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
US5439474A (en) | 1993-10-08 | 1995-08-08 | Li Medical Technologies, Inc. | Morcellator system |
US5456689A (en) | 1993-10-13 | 1995-10-10 | Arnold J. Kresch | Method and device for tissue resection |
US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US5814028A (en) | 1993-11-03 | 1998-09-29 | Daig Corporation | Curved guiding introducers for cardiac access |
US5366468A (en) | 1993-11-09 | 1994-11-22 | Linvatec Corporation | Double bladed surgical router having aspiration ports within flutes |
US5492119A (en) | 1993-12-22 | 1996-02-20 | Heart Rhythm Technologies, Inc. | Catheter tip stabilizing apparatus |
US5601573A (en) | 1994-03-02 | 1997-02-11 | Ethicon Endo-Surgery, Inc. | Sterile occlusion fasteners and instruments and method for their placement |
US5419777A (en) * | 1994-03-10 | 1995-05-30 | Bavaria Medizin Technologie Gmbh | Catheter for injecting a fluid or medicine |
US5776092A (en) | 1994-03-23 | 1998-07-07 | Erbe Elektromedizin Gmbh | Multifunctional surgical instrument |
US5464395A (en) * | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
US5578067A (en) | 1994-04-14 | 1996-11-26 | Pacesetter Ab | Medical electrode system having a sleeve body and control element therefor for selectively positioning an exposed conductor area |
US5743870A (en) | 1994-05-09 | 1998-04-28 | Somnus Medical Technologies, Inc. | Ablation apparatus and system for removal of soft palate tissue |
US5683362A (en) | 1994-05-13 | 1997-11-04 | Rowland; Christopher A. | Apparatus for performing diagnostic and therapeutic modalities in the biliary tree |
US5680860A (en) * | 1994-07-07 | 1997-10-28 | Cardiac Pathways Corporation | Mapping and/or ablation catheter with coilable distal extremity and method for using same |
US5593405A (en) | 1994-07-16 | 1997-01-14 | Osypka; Peter | Fiber optic endoscope |
US5569284A (en) | 1994-09-23 | 1996-10-29 | United States Surgical Corporation | Morcellator |
US5601588A (en) | 1994-09-29 | 1997-02-11 | Olympus Optical Co., Ltd. | Endoscopic puncture needle |
US6017340A (en) * | 1994-10-03 | 2000-01-25 | Wiltek Medical Inc. | Pre-curved wire guided papillotome having a shape memory tip for controlled bending and orientation |
US5562694A (en) | 1994-10-11 | 1996-10-08 | Lasersurge, Inc. | Morcellator |
US5807401A (en) | 1994-11-07 | 1998-09-15 | Grieshaber & Co. Ag Schaffhausen | Ophthalmic surgical apparatus for pulverizing and removing the lens nucleus from the eye of a living being |
US5591159A (en) | 1994-11-09 | 1997-01-07 | Taheri; Syde A. | Transcavitary myocardial perfusion apparatus |
US5928943A (en) | 1994-11-22 | 1999-07-27 | Institut Fur Pflanzengenetik Und Kulturpflanzenforschung | Embryonal cardiac muscle cells, their preparation and their use |
US5611803A (en) | 1994-12-22 | 1997-03-18 | Urohealth Systems, Inc. | Tissue segmentation device |
US5665062A (en) | 1995-01-23 | 1997-09-09 | Houser; Russell A. | Atherectomy catheter and RF cutting method |
US5575293A (en) | 1995-02-06 | 1996-11-19 | Promex, Inc. | Apparatus for collecting and staging tissue |
US5551427A (en) | 1995-02-13 | 1996-09-03 | Altman; Peter A. | Implantable device for the effective elimination of cardiac arrhythmogenic sites |
US5640955A (en) | 1995-02-14 | 1997-06-24 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5722400A (en) | 1995-02-16 | 1998-03-03 | Daig Corporation | Guiding introducers for use in the treatment of left ventricular tachycardia |
WO1996025097A1 (en) | 1995-02-17 | 1996-08-22 | Ep Technologies, Inc. | Systems and methods for examining heart tissue |
WO1996026675A1 (en) | 1995-02-28 | 1996-09-06 | Boston Scientific Corporation | Deflectable catheter for ablating cardiac tissue |
US5569254A (en) | 1995-04-12 | 1996-10-29 | Midas Rex Pneumatic Tools, Inc. | Surgical resection tool having an irrigation, lighting, suction and vision attachment |
US5651781A (en) | 1995-04-20 | 1997-07-29 | Grace-Wells Technology Partners No. 1, L.P. | Surgical cutting instrument |
US5916214A (en) | 1995-05-01 | 1999-06-29 | Medtronic Cardiorhythm | Dual curve ablation catheter |
US5606974A (en) | 1995-05-02 | 1997-03-04 | Heart Rhythm Technologies, Inc. | Catheter having ultrasonic device |
WO1996035469A1 (en) | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | System for treating or diagnosing heart tissue |
US6251104B1 (en) | 1995-05-10 | 2001-06-26 | Eclipse Surgical Technologies, Inc. | Guiding catheter system for ablating heart tissue |
US6322548B1 (en) | 1995-05-10 | 2001-11-27 | Eclipse Surgical Technologies | Delivery catheter system for heart chamber |
US5658263A (en) | 1995-05-18 | 1997-08-19 | Cordis Corporation | Multisegmented guiding catheter for use in medical catheter systems |
US5643253A (en) | 1995-06-06 | 1997-07-01 | Rare Earth Medical, Inc. | Phototherapy apparatus with integral stopper device |
US5797870A (en) | 1995-06-07 | 1998-08-25 | Indiana University Foundation | Pericardial delivery of therapeutic and diagnostic agents |
US5840059A (en) | 1995-06-07 | 1998-11-24 | Cardiogenesis Corporation | Therapeutic and diagnostic agent delivery |
US5609621A (en) | 1995-08-04 | 1997-03-11 | Medtronic, Inc. | Right ventricular outflow tract defibrillation lead |
WO1997010753A1 (en) | 1995-09-20 | 1997-03-27 | Medtronic, Inc. | Method and apparatus for temporarily immobilizing a local area of tissue |
US5702412A (en) | 1995-10-03 | 1997-12-30 | Cedars-Sinai Medical Center | Method and devices for performing vascular anastomosis |
US5830222A (en) | 1995-10-13 | 1998-11-03 | Transvascular, Inc. | Device, system and method for intersititial transvascular intervention |
WO1997013471A1 (en) | 1995-10-13 | 1997-04-17 | Transvascular, Inc. | A device, system and method for interstitial transvascular intervention |
US5569178A (en) | 1995-10-20 | 1996-10-29 | Henley; Julian L. | Power assisted suction lipectomy device |
US5709697A (en) | 1995-11-22 | 1998-01-20 | United States Surgical Corporation | Apparatus and method for removing tissue |
US5941868A (en) | 1995-12-22 | 1999-08-24 | Localmed, Inc. | Localized intravascular delivery of growth factors for promotion of angiogenesis |
US5688234A (en) | 1996-01-26 | 1997-11-18 | Cardiometrics Inc. | Apparatus and method for the treatment of thrombotic occlusions in vessels |
US5878751A (en) | 1996-03-04 | 1999-03-09 | Myocardial Stents, Inc. | Method for trans myocardial revascularization (TMR) |
US5834418A (en) | 1996-03-20 | 1998-11-10 | Theratechnologies, Inc. | Process for the preparation of platelet growth factors extract |
US5725521A (en) | 1996-03-29 | 1998-03-10 | Eclipse Surgical Technologies, Inc. | Depth stop apparatus and method for laser-assisted transmyocardial revascularization and other surgical applications |
US5782823A (en) | 1996-04-05 | 1998-07-21 | Eclipse Surgical Technologies, Inc. | Laser device for transmyocardial revascularization procedures including means for enabling a formation of a pilot hole in the epicardium |
US5980545A (en) | 1996-05-13 | 1999-11-09 | United States Surgical Corporation | Coring device and method |
EP0807412A1 (en) | 1996-05-13 | 1997-11-19 | United States Surgical Corporation | Coring device and method |
US5964754A (en) | 1996-05-24 | 1999-10-12 | Sulzer Osypka Gmbh | Device for perforating the heart wall |
US5662124A (en) | 1996-06-19 | 1997-09-02 | Wilk Patent Development Corp. | Coronary artery by-pass method |
US5766163A (en) | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Controllable trocar for transmyocardial revascularization (TMR) via endocardium method and apparatus |
US5662671A (en) | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US7094201B1 (en) | 1996-07-17 | 2006-08-22 | Medtronic, Inc. | System and method for genetically treating cardiac conduction disturbances |
WO1998005307A1 (en) | 1996-08-08 | 1998-02-12 | Localmed, Inc. | Transmural drug delivery method and apparatus |
US5857995A (en) | 1996-08-15 | 1999-01-12 | Surgical Dynamics, Inc. | Multiple bladed surgical cutting device removably connected to a rotary drive element |
US5871495A (en) | 1996-09-13 | 1999-02-16 | Eclipse Surgical Technologies, Inc. | Method and apparatus for mechanical transmyocardial revascularization of the heart |
US5989278A (en) | 1996-09-13 | 1999-11-23 | Eclipse Surgical Technologies, Inc. | Method and apparatus for mechanical transmyocardial revascularization of the heart |
US5755714A (en) | 1996-09-17 | 1998-05-26 | Eclipse Surgical Technologies, Inc. | Shaped catheter for transmyocardial revascularization |
WO1998017186A1 (en) | 1996-10-21 | 1998-04-30 | Plc Medical Systems, Inc. | Percutaneous transmyocardial revascularization marking system |
US5830210A (en) | 1996-10-21 | 1998-11-03 | Plc Medical Systems, Inc. | Catheter navigation apparatus |
US6030377A (en) | 1996-10-21 | 2000-02-29 | Plc Medical Systems, Inc. | Percutaneous transmyocardial revascularization marking system |
US5893848A (en) | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US5873366A (en) | 1996-11-07 | 1999-02-23 | Chim; Nicholas | Method for transmyocardial revascularization |
US5971993A (en) | 1996-11-07 | 1999-10-26 | Myocardial Stents, Inc. | System for delivery of a trans myocardial device to a heart wall |
US6051008A (en) | 1996-12-02 | 2000-04-18 | Angiotrax, Inc. | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
US5941893A (en) | 1996-12-02 | 1999-08-24 | Angiotrax, Inc. | Apparatus for transluminally performing surgery |
US5910150A (en) * | 1996-12-02 | 1999-06-08 | Angiotrax, Inc. | Apparatus for performing surgery |
US5931848A (en) | 1996-12-02 | 1999-08-03 | Angiotrax, Inc. | Methods for transluminally performing surgery |
US5944716A (en) | 1996-12-09 | 1999-08-31 | Scimed Life Systems, Inc. | Radio frequency transmyocardial revascularization corer |
US5724975A (en) | 1996-12-12 | 1998-03-10 | Plc Medical Systems, Inc. | Ultrasonic detection system for transmyocardial revascularization |
US5807384A (en) | 1996-12-20 | 1998-09-15 | Eclipse Surgical Technologies, Inc. | Transmyocardial revascularization (TMR) enhanced treatment for coronary artery disease |
EP0853921A2 (en) | 1996-12-27 | 1998-07-22 | Eclipse Surgical Technologies, Inc. | Laser assisted drug delivery |
US5925012A (en) | 1996-12-27 | 1999-07-20 | Eclipse Surgical Technologies, Inc. | Laser assisted drug delivery |
US5906594A (en) | 1997-01-08 | 1999-05-25 | Symbiosis Corporation | Endoscopic infusion needle having dual distal stops |
US6224584B1 (en) | 1997-01-14 | 2001-05-01 | Eclipse Surgical Technologies, Inc. | Therapeutic and diagnostic agent delivery |
US6056760A (en) | 1997-01-30 | 2000-05-02 | Nissho Corporation | Device for intracardiac suture |
US5730741A (en) | 1997-02-07 | 1998-03-24 | Eclipse Surgical Technologies, Inc. | Guided spiral catheter |
US5846225A (en) | 1997-02-19 | 1998-12-08 | Cornell Research Foundation, Inc. | Gene transfer therapy delivery device and method |
US5938632A (en) | 1997-03-06 | 1999-08-17 | Scimed Life Systems, Inc. | Radiofrequency transmyocardial revascularization apparatus and method |
US5968059A (en) | 1997-03-06 | 1999-10-19 | Scimed Life Systems, Inc. | Transmyocardial revascularization catheter and method |
US6036677A (en) | 1997-03-07 | 2000-03-14 | Cardiogenesis Corporation | Catheter with flexible intermediate section |
WO1998038916A1 (en) | 1997-03-07 | 1998-09-11 | Cardiogenesis Corporation | Apparatus and method of myocardial revascularization using ultrasonic pulse-echo distance ranging |
US6093177A (en) | 1997-03-07 | 2000-07-25 | Cardiogenesis Corporation | Catheter with flexible intermediate section |
WO1998039045A1 (en) | 1997-03-07 | 1998-09-11 | Cardiogenesis Corporation | Catheter with three sections of different flexibilities |
US5876373A (en) | 1997-04-04 | 1999-03-02 | Eclipse Surgical Technologies, Inc. | Steerable catheter |
EP0868923A2 (en) | 1997-04-04 | 1998-10-07 | Eclipse Surgical Technologies, Inc. | Steerable catheter |
US6126654A (en) | 1997-04-04 | 2000-10-03 | Eclipse Surgical Technologies, Inc. | Method of forming revascularization channels in myocardium using a steerable catheter |
EP0876796A2 (en) | 1997-05-07 | 1998-11-11 | Eclipse Surgical Technologies, Inc. | Device for use in the treatment of cardiovascular or other tissue |
US5891137A (en) * | 1997-05-21 | 1999-04-06 | Irvine Biomedical, Inc. | Catheter system having a tip with fixation means |
US5951567A (en) | 1997-07-24 | 1999-09-14 | Cardiogenesis Corporation | Introducer for channel forming device |
EP0895752A1 (en) | 1997-08-08 | 1999-02-10 | Eclipse Surgical Technologies, Inc. | Apparatus for sampling heart tissue and/or myocardial revascularization by mechanical cutting |
US5964757A (en) | 1997-09-05 | 1999-10-12 | Cordis Webster, Inc. | Steerable direct myocardial revascularization catheter |
US6179809B1 (en) | 1997-09-24 | 2001-01-30 | Eclipse Surgical Technologies, Inc. | Drug delivery catheter with tip alignment |
US6238389B1 (en) * | 1997-09-30 | 2001-05-29 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US6106520A (en) | 1997-09-30 | 2000-08-22 | Hearten Medical, Inc. | Endocardial device for producing reversible damage to heart tissue |
US5980548A (en) | 1997-10-29 | 1999-11-09 | Kensey Nash Corporation | Transmyocardial revascularization system |
US6056743A (en) | 1997-11-04 | 2000-05-02 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization device and method |
US6045565A (en) | 1997-11-04 | 2000-04-04 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization growth factor mediums and method |
US5851171A (en) | 1997-11-04 | 1998-12-22 | Advanced Cardiovascular Systems, Inc. | Catheter assembly for centering a radiation source within a body lumen |
US6589232B1 (en) | 1997-11-25 | 2003-07-08 | Richard L. Mueller | Selective treatment of endocardial/myocardial boundary |
US5885276A (en) | 1997-12-02 | 1999-03-23 | Galil Medical Ltd. | Method and device for transmyocardial cryo revascularization |
US6066126A (en) | 1997-12-18 | 2000-05-23 | Medtronic, Inc. | Precurved, dual curve cardiac introducer sheath |
US6197324B1 (en) | 1997-12-18 | 2001-03-06 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
US6309370B1 (en) | 1998-02-05 | 2001-10-30 | Biosense, Inc. | Intracardiac drug delivery |
US6270496B1 (en) | 1998-05-05 | 2001-08-07 | Cardiac Pacemakers, Inc. | Steerable catheter with preformed distal shape and method for use |
US6905476B2 (en) | 1998-06-04 | 2005-06-14 | Biosense Webster, Inc. | Catheter with injection needle |
US6102887A (en) * | 1998-08-11 | 2000-08-15 | Biocardia, Inc. | Catheter drug delivery system and method for use |
US6045530A (en) | 1998-10-14 | 2000-04-04 | Heyer-Schulte Neurocare Inc. | Adjustable angle catheter |
US6620139B1 (en) | 1998-12-14 | 2003-09-16 | Tre Esse Progettazione Biomedica S.R.L. | Catheter system for performing intramyocardiac therapeutic treatment |
US6165164A (en) | 1999-03-29 | 2000-12-26 | Cordis Corporation | Catheter for injecting therapeutic and diagnostic agents |
US6638233B2 (en) | 1999-08-19 | 2003-10-28 | Fox Hollow Technologies, Inc. | Apparatus and methods for material capture and removal |
US6613062B1 (en) * | 1999-10-29 | 2003-09-02 | Medtronic, Inc. | Method and apparatus for providing intra-pericardial access |
US20040010231A1 (en) | 2000-07-13 | 2004-01-15 | Leonhardt Howard J | Deployment system for myocardial cellular material |
US6991602B2 (en) * | 2002-01-11 | 2006-01-31 | Olympus Corporation | Medical treatment method and apparatus |
Non-Patent Citations (46)
Title |
---|
A Collection of Abstracts, Society of Thoracic Surgeons, 1999. |
Assmus, Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI), Clinical Investigation and Reports, Oct. 8, 2002, pp. 3009-3017, Department of Molecular Cardiology and Department of Hematology (H.M., D.H.) University of Frankfurt, Frankfurt, Germany, Circulation available at http://www.circulationha.org DOI: 10.1161/01.CIR.0000043246.74879CD. |
Cooley, Denton A., M.D. et al., "Transmyocardial Laser Revascularization: Anatomic Evidence of Long-Term Channel Patency," Texas heart Institute Journal, vol. 21, No. 3 (1994), pp. 220-224. |
Cooley, Denton A., M.D. et al., "Transmyocardial Laser Revascularization: Clinical Experience with Twelve-Month Follow-Up," The Journal of Thoracic and Cardiovascular Surgery, (Apr. 1996), pp. 791-799. |
Fenton II, John W. et al. "Thrombin and Antithrombotics," Seminars in Thrombosis and Hemostasis, vol. 24, No. 2, 1998, pp. 1987-1991. |
Folkman, Judah, "Angiogenic Therapy of the Human Heart," circulation, 1998, 97:628-629. |
Frazier, O.H., M.D., et al., "Myocardial Revascularization With Laser Preliminary Findings," Supplement II Circulation, vol. 92, No. 9, (Nov. 1995), pp. II-58-II-65. |
Hardy, Roger Ian, et al., "A Histologic Study of Laser-Induced Transmyocardial Channels," Lasers in Surgery and Medicine, (1987), pp. 6:563-573. |
Henry, Timothy D., Can We Really Grow New Blood Vessels, The Lancet, vol. 351, Jun. 20, 1998, pp. 1926-1827. |
Hershey, John E. et al., "Transmyocardial Puncture Revascularization: A Possible Emergency Adjunct to Arterial Implant Surgery," Geriatrics, (Mar. 1969), pp. 101-108. |
Horvath, Keith A. M.D., et al., "Transmyocardial Laser Revascularization: Operative Techniques and Clinical Results at Two Years," The Journal of Thoracic and Cardiovascular Surgery, (May 1996) pp. 1047-1053. |
Horvath, Keith A., M.D., et al., "Recovery and Viability of an Acute Myocardial Infarct After Transmyocardial Laser Revascularization," Journal of American College of Cardiology, vol. 25, No. 1 (Jan. 1995), pp. 258-263. |
Horvath, Keith A., M.D., et al., "Transmyocardial Laser Revascularization: Operative Techniques and Clinical Results at Two Years," The Journal of Thoracic and Cardiovascular Surgery, (May 1996) pp. 1047-1053. |
Khazei, Hassan A., et al., "Myocardial Canalization: A New Method of Myocardial Revasularization," The Annals of Thoracic Surgery, vol. 6, No. 2, (Aug. 1968) pp. 163-171. |
Knighton, David R., et al., "Role of Platelets and Fibrin in the Healing Sequence," Annals of Surgery, vol. 196, No. 4, Oct. 1982, pp. 379-388. |
Kohmoto, Takushi, M.D., et al., "Does Blood Flow Through Holmium: YAG Transmyocardial Laser Channels?," Ann. Thorac. Surg., (1996) pp. 61: 861-868. |
Kuzela, Ladislaw, et al., "Experimental Evaluation of Direct Transventricular Revascularization," Journal of Thoracic and Cardiovasuclar Surger, vol. 57, No. 6, (Jun. 1969), pp. 770-773. |
Lee, Garrett, M.D. et al. "Effects of laser irradiation delivered by flexible fiberoptic system on the left ventricular internal myocardium," American Heart Journal Brief Communications, pp. 587-590 (Sep. 1983). |
Lee, Gilbert, M.D., "Effects of Laser Irradiation Delivered by Flexible Fiberoptic System on the Left Ventricular Internal Myocardium," American Heart Journal, (Sep. 1983), pp. 587-590. |
Losordo, Douglas, W., et al., "Gene Therapy for Myocardial Angiogenesis Initial Clinical Results with Direct Myocardial Injection of phVEGF 165 as Sole Therapy Myocardial Ischemia," Circulation, 1998, 98:2800-2804. |
Maloney, James P. et al., "In Vitro Release of Vascular Endothelial Growth Factor During Platelet Aggregation," American Physiological Society, H1054-H1061, 1998. |
Mandrusov, Membrane-Based Cell Affinity Chromatography to Retrieve Viable Cells, Biotechnol, Prob. 1995, 11, 208-213, Artificial Organs Research Laboratory, Department of Chemical Engineering, Material Science and Metallurgy, Columbia University, New York, New York 10027, and Lousville, Lousville, Kentucky 40292. |
Miyazono, Kohei et al, "Platelet-Derived Endothelial Cell Growth Factor," Progress in Growth Factor Research, vol. 3, 1991, pp. 207-217. |
NASA's Jet Propulsion Laboratory, "Swivel-Head Sampling Drill Bit" NASA Tech Briefs, p. 67, Nov. 1998. |
NASA's Jet Propulsion Laboratory, "Swivel-head Sampling Drill Bit," NASA Tech Briefs, Nov. 1998. |
PCT Communication-Supplementary European Search Report, Aug. 3, 2001, 3 pages. |
PCT International Search Report Mar. 18, 1998, 4 pages. |
PCT Notification of Transmittal of International Preliminary Examination Report, Apr. 15, 1999, 13 pages. |
PCT Written Opinion, Dec. 23, 1998, 4 pages. |
Pipili-Synetos, E. et al., "Evidence That Platelets Promote Tube Formation By Endothelial Cells on Matrigel," British Journal of Pharmacology, vol. 125, 1998, pp. 1252-1257. |
PMR Poduct, Axcis(TM) PMR. System, http://www.cardiogenesis.com/percutaneous/product.html, Jan. 27, 1999. |
PMR Poduct, Axcis™ PMR. System, http://www.cardiogenesis.com/percutaneous/product.html, Jan. 27, 1999. |
Sen, P.K. et al., "Further Studies in Multiple Transmyocardial Acupuncture as a Method of Myocardial Revascularization," Surgery, vol. 64, No. 5, (Nov. 1968), pp. 861-870. |
Simons, Michael et al. "Food for Starving Hearts," Nature Medicine, vol. 2, No. 5, pp. 519-520 (May 1996). |
Thaning, Otto, "Transmyocardial Laser Revascularisation in South Africa," SAMJ, vol. 85, No. 8 (Aug. 1995) pp. 787-788. |
The PMR(TM) Procedure, http://www.cardiogenesis.com/percutaneous/procedure.html, Jan. 27, 1999. |
The PMR(TM) Procedure,: http://www.cardiogenesis.com;percutaneous/procedure.html, Jan. 27, 1999. |
The PMR™ Procedure, http://www.cardiogenesis.com/percutaneous/procedure.html, Jan. 27, 1999. |
The PMR™ Procedure,: http://www.cardiogenesis.com;percutaneous/procedure.html, Jan. 27, 1999. |
Tsopanoglou, Nikos E. et al., "Thrombin Promotes Angiogenesis By a Mechanism Independent of Fibrin Formation," American Physiological Society, 0363-6143/93, C1302-1307. |
Verheul, Henk M. W., et al., "Platelet: Transporter of Vascular Endothelial Growth Factor," Clinical Cancer Research, vol. 3, Dec. 1997, pp. 2187-2190. |
Von Oppell, Ulrich O., "Transmyocardial Laser Revascularisation," SAMJ, vol. 85, No. 9, (Sep. 1995), p. 930. |
Wakabayashi, Akio, "Myocardial Boring For the Ischemic Heart,"Arch. Surgery, vol. 95, (Nov. 1967), pp. 743-752. |
Wartiovaara, Ulla et al., Peripheral Blood Platelets Express VEGF-C and VEGF Which are Released During Platelet Activation, Thromb Haemost, 9198, 80:171-5. |
Washington Adventist Hospital, "Washington Area Cardiologist Performs First State-of-the-Art Heart Procedure in U.S.," PR Newswire, Dec. 15, 1999, 2 pages. |
White, Manuel et al., "Multiple Transmyocardial Puncture Revascularization in Refractory Ventricular Fibrillation due to Myocardial Ischemia," The Annals of Thoracic Surgery, vol. 6, No. 6, (Dec. 1968), pp. 557-563. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150328435A1 (en) * | 2004-11-23 | 2015-11-19 | Pneumrx, Inc. | Steerable device for accessing a target site and methods |
US10034999B2 (en) * | 2004-11-23 | 2018-07-31 | Pneumrx, Inc. | Steerable device for accessing a target site and methods |
US11304753B2 (en) | 2019-09-13 | 2022-04-19 | Alleviant Medical, Inc. | Systems, devices, and methods for forming an anastomosis |
US11612432B2 (en) | 2019-09-13 | 2023-03-28 | Alleviant Medical, Inc. | Systems, devices, and methods for forming an anastomosis |
US11871987B2 (en) | 2019-09-13 | 2024-01-16 | Alleviant Medical, Inc. | Systems, devices, and methods for forming an anastomosis |
WO2022208243A1 (en) * | 2021-03-29 | 2022-10-06 | Medtronic Vascular, Inc. | Debulking catheter |
Also Published As
Publication number | Publication date |
---|---|
WO2000056224A9 (en) | 2001-11-29 |
US6102926A (en) | 2000-08-15 |
AU3761800A (en) | 2000-10-09 |
WO2000056224A1 (en) | 2000-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE45638E1 (en) | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and method of use | |
US6165188A (en) | Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use | |
US5910150A (en) | Apparatus for performing surgery | |
USRE43300E1 (en) | Apparatus having stabilization members for percutaneously performing surgery and methods of use | |
US7147633B2 (en) | Method and apparatus for treatment of atrial fibrillation | |
EP0643601B1 (en) | Catheter having needle electrode for radiofrequency ablation | |
CA2273149A1 (en) | Apparatus and methods for percutaneously performing surgery | |
EP0900574B1 (en) | Handle for steerable DMR catheter | |
US6024739A (en) | Method for detecting and revascularizing ischemic myocardial tissue | |
US6015405A (en) | Device for forming holes in tissue | |
US6176856B1 (en) | Resistive heating system and apparatus for improving blood flow in the heart | |
AU7594398A (en) | Catheter with oblique lumen | |
US20240341838A1 (en) | Transseptal crossing system for single pass large bore access | |
US6235021B1 (en) | Ablation sheath | |
EP1367947B1 (en) | Apparatus for treatment of atrial fibrillation | |
US11660119B2 (en) | Catheter system for left heart access | |
WO2000019919A9 (en) | Laser handpiece having zero time positioning system | |
CN117918944A (en) | Medical catheter needle-out length detection device and medical system | |
WO2002072176A1 (en) | Intervention heart catheter with locating means and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:036021/0869 Effective date: 20070209 |