USRE33561E - Balloon and manufacture thereof - Google Patents
Balloon and manufacture thereof Download PDFInfo
- Publication number
- USRE33561E USRE33561E US07/287,234 US28723488A USRE33561E US RE33561 E USRE33561 E US RE33561E US 28723488 A US28723488 A US 28723488A US RE33561 E USRE33561 E US RE33561E
- Authority
- US
- United States
- Prior art keywords
- balloon
- psi
- mpa
- tubing
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
- A61M25/1029—Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1397—Single layer [continuous layer]
Definitions
- This invention relates to balloon catheters which are especially useful in medical dilatation procedures.
- Gruntzig et al. disclose an improved technique for the use of a dilating catheter to relieve arterial stenosis. According to Gruntzig et al. the technique of transluminal angioplasty for the treatment of atherosclerotic obstruction of the femoral artery was first introduced in 1964 by Dotter and Judkins.
- Balloon catheters are not limited in their use to the relief of arterial stenosis but have been found useful in many medical applications involving not only insertion into blood vessels but also involving insertion into a variety of body cavities.
- Balloons can be made from a variety of known materials which are generally of the thermoplastic polymeric type.
- ethylene-butylene-styrene block copolymers admixed with low molecular weight polystyrene and, optionally, polypropylene, and similar compositions employing butadiene or isoprene in place of the ethylene and butylene; poly(vinyl chloride); polyurethanes; copolyesters; thermoplastic rubbers; siliconepolycarbonate copolymers; and ethylene-vinyl acetate copolymers.
- a further object is to provide balloons which, because of their superior physical properties, have thinner wall thicknesses than commonly used balloons.
- Another object is to provide such balloons which, because of their flexibility and thin walls, are more readily collapsible and more easily transportable in the body.
- a further object is to provide such balloons which, if they burst under pressure, burst in the axial direction to give an axial rupture, thus ensuring atraumatic removal, it being well known that a balloon which bursts in a circumferential direction may provide fragments which either are removable only with difficulty or are not removable at all nonsurgically.
- a further object is to provide such balloons which, because of their superior physical properties, can be used in medical procedures with a greater probability of success.
- Another object is to provide such balloons which, because of their superior physical properties, can be used in medical procedures under conditions not currently achievable using commonly available balloons. Still another object is to provide a process for fabricating such balloons.
- FIG. 1 is an elevation, in section, showing only the back half of the mold, balloon, tubing and attendant hardware of an apparatus which can be used to form the balloon of the invention from drawn polymeric tubing.
- FIG. 2 shows the radial expansion (%) and burst pressure (psi) of three balloons of the invention (C, D and E) as compared to the radial expansion (%) and burst pressure (psi) of two balloons of the art (A and B).
- the invention resides in an improved balloon having an unusual combination of physical properties and which is especially useful in medical dilatation procedures.
- the invention also resides in a process for fabricating such balloons, and in a dilatation balloon catheter comprising such an improved balloon.
- the process comprises, at a temperature within the range extending from the second order transition temperature to the first order transition temperature, preferably at a temperature of 84°-99° C., more preferably 86°-96° C., drawing a polymeric, preferably a polyethylene terephthalate (PET) homopolyester, tubing, having a finite length (L 1 ) and an internal diameter (ID) which is preferably about one-half the outer diameter (OD), to a length (L 2 ) which is preferably 3 to 6 L 1 , and thereafter expanding the drawn tubing of internal diameter ID 1 and outer diameter OD 1 by expanding means to an internal diameter (ID 2 ) which is preferably 6 to 8 ID and an outer diameter (OD 2 ) which is preferably about 3 to about 4 OD, followed by cooling the drawn and expanded tubing to less than its second order transition temperature, the balloon thus formed having a burst pressure, that is, the internal pressure at which the balloon bursts, of at least 200 psi (1.4 MPa) and
- Such preferred tubing can be commonly formed by conventional extrusion techniques from PET homopolyester resin having an intrinsic viscosity of 1.0 to 1.3 and a density of 1.35 to 1.45.
- the balloon prepared by the process of this invention exhibits an unusual combination of film properties, such as toughness, flexibility and tensile strength.
- the balloon of the invention exhibits a burst pressure of at least 200 psi (1.4 MPa), preferably at least 400 psi (2.8 MPa) more preferably at least 500 psi (3.4 MPa) at ambient temperature (20° C.).
- the balloon of the invention exhibits a radial expansion beyond nominal inflated diameter of less than 5% when at a pressure of 200 psi (1.4 MPa) and less than 10% when at a pressure of 400 psi (2.8 MPa).
- FIG. 2 herein depicts burst pressure vs. radial expansion for two balloons (A and B) commonly available commercially and comprised of poly(vinyl chloride) and for three balloons (C, D and E) of the invention and comprised of PET homopolyester. Balloons A and C have nominal outer diameters of 3.7 mm; balloons B and D, 5.0 mm; and E, 6.0 mm.
- the wall thicknesses of A through E were, respectively, about 0.028, 0.038, 0.028, 0.038, and 0.045 mm.
- Radial expansion data for the balloons of the invention were calculated from the well known membrane equation and the ultimate elongation measured on flat film samples which were similarly biaxially oriented. Similar calculations were made for the poly(vinyl chloride) balloons except that published data were used for ultimate elongation. It can be seen that the burst pressures for the balloons of the invention are, respectively 3.2, 3.4 and 3.5 times those for the balloons of the art.
- radial expansion is determined from the point at which the balloon is pressurized so as to be free of wrinkles, that is, after being inflated from its collapsed position to its nominal inflated diameter; a gas pressure of 75-100 psi (0.5-0.7 MPa) is required to reach this first expanded position with the PET homopolyester balloon of this invention.
- a balloon of higher strength can be produced from the polymeric tubing by operating at high stretch ratios, that is, at the upper ends of the draw and expansion ratios. The balloon thus produced exhibits lower elongation, which is reflected in lower expansion values at a given inflation pressure, vis-a-vis a balloon produced under lower stretch conditions.
- Intrinsic viscosity is determined herein by means of ANSI/ASTM D 2857-70 and density, by ASTM D 1505. Burst pressure is determined by a simple laboratory procedure whereby one end of the polymeric balloon is sealed off and a pressurized gas is introduced incrementally into the other end. The inflation pressure at which the balloon bursts at about 20° C. (ambient temperature) is referred to herein as the burst pressure.
- the process by which the balloon is prepared can be carried out in a conventional manner with conventional equipment using a specialized polymer as the material of fabrication.
- the tubing of appropriate dimensions and of high molecular weight polymer is first drawn at a suitable temperature from a length L 1 to a length L 2 .
- the drawn tubing is then expanded in a confining apparatus such as depicted in FIG. 1 which is a part of this specification.
- one end of the tubing can be filled with a fluid under pressure during the expansion step of the process.
- the mold has a cavity of dimensions commensurate with the desired size of the balloon to be produced.
- the open end of the tubing is equipped with a suitable fitting so that a pressurized fluid can be introduced into the tubing.
- Any suitable fluid can be used to pressurize for inflation of drawn tubing, for example, a gas, such as nitrogen. If the tubing extends beyond the mold, such as shown in FIG. 1, use of a restraining means is preferred to maintain the dimensions of the tubing in the region outside the mold while pressure is being applied to the inside wall of the tubing.
- the restraining means can be of any material which is nondeformable under the tubing expansion conditions. After the drawn tubing is positioned in the mold, heat is applied to raise the tubing temperature. Similar temperatures can be used for both the drawing and expanding steps.
- a suitable temperature is the range extending from the second order transition temperature to the first order transition temperature of the polymer from which the tubing has been fabricated.
- the preferred temperature is 84°-99° C., more preferably 86°-96° C.
- PET homopolymer is the only polymer demonstrated herein, it is to be understood that any high molecular weight polymer that can be extruded into tubing and then drawn and expanded in general accordance with the aforesaid process is operable, for example, a PET copolyester or even a non-polyester polymer, provided the resultant balloon exhibits the desired film properties, such as toughness, flexibility and tensile strength. If the balloon is to be used in medical procedures involving contact with tissue, the polymeric material of construction should be tissue compatible.
- the intrinsic viscosity a measure of the molecular weight of the polymer, be high.
- the polymer is a homopolyester or copolyester PET resin, special, but well known, techniques may be employed to increase the molecular weight to the necessary level.
- the most commonly available PET homopolyester generally has an intrinsic viscosity of about 0.5 to 0.6, well below the requisite 1.0 to 1.3.
- tubing drawing step is performed prior to the tubing expansion step, the latter can be performed immediately after the drawing of the tubing, or it can be performed at a later time.
- drawing of the tubing can be performed using any suitable drawing means, it conveniently can be effected in the apparatus depicted in FIG. 1 so that the drawn tubing is already in place to perform the expansion. Because of the recovery characteristics of shaped polymeric structures which are drawn by the procedures used herein, it may be necessary to maintain axial tension on the drawn tubing during the expansion step. Consistent with all the above and readily understanable to one skilled in the art, the drawing and expansion steps can be performed at the same or at different temperatures. The desired temperature can be achieved by any suitable heat generating means. In actual experiments carried out herein with respect to the use of PET homopolyester, hot water was employed. Drawing of the tubing herein was achieved by using the weight of the mold.
- a dilatation balloon catheter comprising the balloon of the invention can be fabricated by means of conventional techniques, and such a catheter can be used in accordance with accepted medical procedures.
- Tubing (1.5 mm OD ⁇ 0.75 mm ID) is inserted into a mold having a cavity shaped in the form of a cylinder, similar to that shown in FIG. 1, with ends which taper to smaller diameter cylinders slightly larger than the tubing OD.
- the diameter D of the cavity is about 5 mm and its length A+B+C, about 15 mm.
- the tubing is pinched off at the lower end of the mold, and weights are attached to the mold to produce the required axial drawing (about 3 ⁇ ).
- the total weight of mold and weight is about 150 g.
- the weight of the assembly (mold, tubing and weights) is supported by the tubing which is fixed at its upper end by insertion into a tubing fitting.
- the assembly is inserted into a liquid medium at 87° C. and allowed to heat for about 1 minute.
- axial orientation occurs because of the weight of the assembly in the heated liquid supported by the tubing.
- About 200 psi (1.4 MPa) of gas pressure is applied to the tubing, which radially orients the tubing (about 3.33 ⁇ ) in the mold cavity. This pressurization step lasts about two minutes, during which there is some additional axial draw.
- the assembly is cooled by immersion into a cold liquid, the pressure is released and the finished balloon is removed from the mold.
- the process of this example was used to produce balloons having wall thicknesses of about 0.028-0.045 mm and burst strengths of 480-525 psi (3.3-3.6 MPa), as showing in FIG. 2.
- the failure mode (on bursting) of such balloons is an elliptically shaped hole having its major axis substantially along the axial direction.
- An alternate fabrication method and one more suitable for mass production would utilize a stationary mold having internal flow passages for hot and cold fluids.
- the tubing would be axially oriented to predetermined ratios by a stepper motor rather than by means of an attached weight. During the radial expansion phase, additional axial drawing may be required.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Anesthesiology (AREA)
- Child & Adolescent Psychology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Manufacturing & Machinery (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
Claims (4)
- and a radial expansion of less than 10% at 500 psi (3.4 MPa)..]. .[.4. Balloon of claim 3 wherein the polymer is a polyethylene terephthalate homopolyester having an intrinsic viscosity of 0.8 to 1.1..]..[.5. Process for forming a high molecular weight, biaxially oriented, flexible polymeric balloon, the process comprising, at a temperature within the range extending from the second order transition temperature to the first order transition temperature, drawing a polymeric tubing having a finite length (L1) and an internal diameter (ID) which is about one-half the outer diameter (OD) to a length (L2) which is 3 to 6 L1, and thereafter expanding the drawn tubing of internal diameter ID1 and outer diameter OD1 by expanding means to an internal diameter (ID2) which is 6 to 8 ID and an outer diameter (OD2) which is about 3 to 4 OD, followed by cooling the drawn and expanded tubing to less than its second order transition temperature, said balloon thus formed having a burst pressure of at least 200 psi (1.4 MPa) and a radial expansion beyond nominal inflated diameter of less than 5% at 200 psi (1.4 MPa)..]. .[.6. Process of claim 5 wherein the expanding means is pressurized fluid applied to the inside of the tubing..]. .[.7. Process of claim 6 wherein the pressurized fluid is a pressurized gas..]. .[.8. Process of claim 5 wherein the tubing is formed by extrusion of polyethylene terephthalate homopolyester resin having an intrinsic viscosity of 1.0 to 1.3 and a density of 1.35 to 1.45 and the balloon has a burst pressure of at least 400 psi (2.8 MPa)..]. .[.9. Process of claim 8 wherein the temperature is in the range 84°-99° C..]. .[.10. Process of claim 8 wherein the temperature is in the range 86°-96° C..]. .[.11. Process of claim 8 wherein the tubing drawing temperature is different from the tubing expanding temperature..]. .[.12. Dilatation balloon catheter comprising the balloon of claim 1..].
- .Iadd.13. High molecular weight, biaxially oriented, flexible polymeric balloon having a wall tensile strength of at least 31,714 psi (218.86
- MPa). .Iaddend. .Iadd.14. Balloon of claim 13 having a burst pressure of at least 200 psi (1.4 MPa). .Iaddend. .Iadd.15. Balloon of claim 13 wherein the polymer is a polyethylene terephthalate homopolyester having an intrinsic viscosity of 0.8 to 1.1. .Iaddend..Iadd.16. Balloon of claim 13 having a wall thickness of 0.028 to 0.045 mm. .Iaddend..Iadd.17. Dilatation balloon catheter comprising the balloon of claim 13.
- .Iaddend..Iadd.18. High molecular weight, biaxially oriented, flexible polyethylene terephthalate dilatation catheter balloon. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/287,234 USRE33561E (en) | 1983-07-05 | 1988-12-21 | Balloon and manufacture thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/510,812 US4490421A (en) | 1983-07-05 | 1983-07-05 | Balloon and manufacture thereof |
US07/287,234 USRE33561E (en) | 1983-07-05 | 1988-12-21 | Balloon and manufacture thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/510,812 Reissue US4490421A (en) | 1983-07-05 | 1983-07-05 | Balloon and manufacture thereof |
US06/914,108 Division USRE32983E (en) | 1983-07-05 | 1986-10-01 | Balloon and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE33561E true USRE33561E (en) | 1991-03-26 |
Family
ID=26964353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/287,234 Expired - Lifetime USRE33561E (en) | 1983-07-05 | 1988-12-21 | Balloon and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE33561E (en) |
Cited By (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5264260A (en) * | 1991-06-20 | 1993-11-23 | Saab Mark A | Dilatation balloon fabricated from low molecular weight polymers |
US5320634A (en) * | 1990-07-03 | 1994-06-14 | Interventional Technologies, Inc. | Balloon catheter with seated cutting edges |
US5328468A (en) * | 1991-10-08 | 1994-07-12 | Terumo Kabushiki Kaisha | Balloon for blood vessel-dilating catheter |
US5330428A (en) * | 1991-05-14 | 1994-07-19 | Scimed Life Systems, Inc. | Dilatation catheter having a random copolymer balloon |
US5336234A (en) * | 1992-04-17 | 1994-08-09 | Interventional Technologies, Inc. | Method and apparatus for dilatation of a stenotic vessel |
US5337734A (en) * | 1992-10-29 | 1994-08-16 | Advanced Polymers, Incorporated | Disposable sheath with optically transparent window formed continuously integral therewith |
US5344401A (en) * | 1991-12-20 | 1994-09-06 | Interventional Technologies Inc. | Catheter balloon formed from a polymeric composite |
US5348538A (en) * | 1992-09-29 | 1994-09-20 | Scimed Life Systems, Inc. | Shrinking balloon catheter having nonlinear or hybrid compliance curve |
US5356430A (en) * | 1991-06-10 | 1994-10-18 | Nadol Jr Joseph B | Hearing prosthesis |
US5358486A (en) * | 1987-01-09 | 1994-10-25 | C. R. Bard, Inc. | Multiple layer high strength balloon for dilatation catheter |
US5383856A (en) * | 1993-03-19 | 1995-01-24 | Bersin; Robert M. | Helical spiral balloon catheter |
US5411477A (en) * | 1990-05-11 | 1995-05-02 | Saab; Mark A. | High-strength, thin-walled single piece catheters |
US5411478A (en) * | 1993-07-12 | 1995-05-02 | Michael E. Stillabower | Angioplasty apparatus and process |
WO1995016735A1 (en) * | 1993-12-17 | 1995-06-22 | E.I. Du Pont De Nemours And Company | Polyethylene therephthalate articles having desirable adhesion and non-blocking characteristics, and a preparative process therefor |
WO1995022367A1 (en) * | 1994-02-17 | 1995-08-24 | Scimed Life Systems, Inc. | Process improvements for preparing catheter balloons |
EP0721766A1 (en) | 1995-01-10 | 1996-07-17 | Interventional Technologies Inc | Vascular incisor/dilator |
WO1997003716A1 (en) * | 1995-07-20 | 1997-02-06 | Navius Corporation | Distensible pet balloon and method of manufacture |
US5624392A (en) * | 1990-05-11 | 1997-04-29 | Saab; Mark A. | Heat transfer catheters and methods of making and using same |
US5733301A (en) * | 1996-01-11 | 1998-03-31 | Schneider (Usa) Inc. | Laser ablation of angioplasty catheters and balloons |
US5746968A (en) * | 1994-10-20 | 1998-05-05 | Interventional Technologies, Inc. | Method for manufacturing a high strength angioplasty balloon |
US5769817A (en) * | 1997-02-28 | 1998-06-23 | Schneider (Usa) Inc. | Coextruded balloon and method of making same |
US5797877A (en) * | 1993-10-01 | 1998-08-25 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US5807520A (en) * | 1995-11-08 | 1998-09-15 | Scimed Life Systems, Inc. | Method of balloon formation by cold drawing/necking |
US5853408A (en) * | 1992-08-20 | 1998-12-29 | Advanced Cardiovascular Systems, Inc. | In-vivo modification of the mechanical properties of surgical devices |
US5871468A (en) * | 1996-04-24 | 1999-02-16 | Medtronic, Inc. | Medical catheter with a high pressure/low compliant balloon |
US6093463A (en) | 1997-12-12 | 2000-07-25 | Intella Interventional Systems, Inc. | Medical devices made from improved polymer blends |
US6099926A (en) | 1997-12-12 | 2000-08-08 | Intella Interventional Systems, Inc. | Aliphatic polyketone compositions and medical devices |
US6132824A (en) | 1989-09-25 | 2000-10-17 | Schneider (Usa) Inc. | Multilayer catheter balloon |
US6136258A (en) | 1991-04-26 | 2000-10-24 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US6165207A (en) | 1999-05-27 | 2000-12-26 | Alsius Corporation | Method of selectively shaping hollow fibers of heat exchange catheter |
US6171278B1 (en) * | 1994-03-02 | 2001-01-09 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US6193738B1 (en) | 1998-05-11 | 2001-02-27 | Scimed Life Systems, Inc. | Balloon cones and waists thinning methodology |
US6287326B1 (en) | 1999-08-02 | 2001-09-11 | Alsius Corporation | Catheter with coiled multi-lumen heat transfer extension |
US6287506B1 (en) | 1998-07-09 | 2001-09-11 | Schneider (Usa) Inc. | Method for reducing dilation balloon cone stiffness |
US6299599B1 (en) | 1999-02-19 | 2001-10-09 | Alsius Corporation | Dual balloon central venous line catheter temperature control system |
US6358227B1 (en) | 1997-09-10 | 2002-03-19 | Scimed Life Systems, Inc. | Dilatation catheter balloon made from pen based homopolymer or random copolymer |
US6360577B2 (en) | 1999-09-22 | 2002-03-26 | Scimed Life Systems, Inc. | Apparatus for contracting, or crimping stents |
US6368304B1 (en) | 1999-02-19 | 2002-04-09 | Alsius Corporation | Central venous catheter with heat exchange membrane |
US6393320B2 (en) | 1999-02-19 | 2002-05-21 | Alsius Corporation | Method for treating cardiac arrest |
US6406457B1 (en) * | 1994-03-02 | 2002-06-18 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US6416494B1 (en) | 1998-06-11 | 2002-07-09 | Infinity Extrusion & Engineering, Inc. | Semi-compliant catheter balloons and methods of manufacture thereof |
US6419643B1 (en) | 1998-04-21 | 2002-07-16 | Alsius Corporation | Central venous catheter with heat exchange properties |
US6447474B1 (en) | 1999-09-15 | 2002-09-10 | Alsius Corporation | Automatic fever abatement system |
US20020125617A1 (en) * | 2001-03-06 | 2002-09-12 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US6450990B1 (en) | 1998-08-13 | 2002-09-17 | Alsius Corporation | Catheter with multiple heating/cooling fibers employing fiber spreading features |
US6458150B1 (en) | 1999-02-19 | 2002-10-01 | Alsius Corporation | Method and apparatus for patient temperature control |
US6500148B1 (en) | 1988-10-04 | 2002-12-31 | Cordis Corporation | Balloons for medical devices and fabrication thereof |
US6500146B1 (en) | 1988-10-04 | 2002-12-31 | Cordis Corporation | Balloons for medical devices and fabrication thereof |
US6537247B2 (en) * | 2001-06-04 | 2003-03-25 | Donald T. Shannon | Shrouded strain relief medical balloon device and method of use |
US6561788B1 (en) | 2000-05-31 | 2003-05-13 | Advanced Cardiovascular Systems, Inc. | Modular mold designs |
US6572640B1 (en) | 2001-11-21 | 2003-06-03 | Alsius Corporation | Method and apparatus for cardiopulmonary bypass patient temperature control |
US6582398B1 (en) | 1999-02-19 | 2003-06-24 | Alsius Corporation | Method of managing patient temperature with a heat exchange catheter |
US6589271B1 (en) | 1998-04-21 | 2003-07-08 | Alsius Corporations | Indwelling heat exchange catheter |
US6629350B2 (en) | 2000-06-08 | 2003-10-07 | Tom Motsenbocker | Stent crimping apparatus and method |
US20040039410A1 (en) * | 2002-08-22 | 2004-02-26 | Brooke Ren | High-strength balloon with tailored softness |
US6716236B1 (en) | 1998-04-21 | 2004-04-06 | Alsius Corporation | Intravascular catheter with heat exchange element having inner inflation element and methods of use |
US6733474B2 (en) | 1996-10-10 | 2004-05-11 | Scimed Life Systems, Inc. | Catheter for tissue dilatation and drug delivery |
US20040093008A1 (en) * | 1996-10-08 | 2004-05-13 | Zamore Alan M. | Reduced profile medical balloon element |
US20040127851A1 (en) * | 2002-12-31 | 2004-07-01 | Alsius Corporation | System and method for controlling rate of heat exchange with patient |
US20040225318A1 (en) * | 2003-05-05 | 2004-11-11 | Tracee Eidenschink | Balloon catheter and method of making same |
US20050033225A1 (en) * | 2003-08-08 | 2005-02-10 | Scimed Life Systems, Inc. | Catheter shaft for regulation of inflation and deflation |
US20050059989A1 (en) * | 2003-09-17 | 2005-03-17 | Scimed Life Systems, Inc. | Balloon assembly with a torque |
US20050186370A1 (en) * | 1993-10-01 | 2005-08-25 | Boston Scientific Corporation, A Massachusetts Corporation | Medical device balloons containing thermoplastic elastomers |
US6946092B1 (en) | 2001-09-10 | 2005-09-20 | Scimed Life Systems, Inc. | Medical balloon |
US6951674B1 (en) | 2000-11-10 | 2005-10-04 | Scimed Life Systems, Inc. | Blended polyurethane interventional balloon |
US20050228343A1 (en) * | 2004-04-08 | 2005-10-13 | Scimed Life Systems, Inc. | Cutting balloon catheter and method for blade mounting |
US20050267408A1 (en) * | 2004-05-27 | 2005-12-01 | Axel Grandt | Catheter having first and second guidewire tubes and overlapping stiffening members |
US20050273145A1 (en) * | 1992-08-13 | 2005-12-08 | Mark Saab | Multi-lumen heat transfer catheters |
US6988881B2 (en) | 2001-03-26 | 2006-01-24 | Machine Solutions, Inc. | Balloon folding technology |
US20060071371A1 (en) * | 2004-09-29 | 2006-04-06 | Abbott Laboratories Vascular Enterprises Ltd. | Method for connecting a catheter balloon with a catheter shaft of a balloon catheter |
US20060106412A1 (en) * | 2004-11-12 | 2006-05-18 | Scimed Life Systems, Inc. | Cutting balloon catheter having a segmented blade |
US20060106413A1 (en) * | 2004-11-12 | 2006-05-18 | Scimed Life Systems, Inc. | Cutting balloon catheter having flexible atherotomes |
US20060184191A1 (en) * | 2005-02-11 | 2006-08-17 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
US7115183B2 (en) | 1997-10-15 | 2006-10-03 | Scimed Life Systems, Inc. | Catheter with spiral cut transition member |
WO2006138741A1 (en) | 2005-06-17 | 2006-12-28 | Abbott Laboratories | Method of reducing rigidity of angioplasty balloon sections |
US7163522B1 (en) * | 1994-03-02 | 2007-01-16 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US20070016165A1 (en) * | 2004-05-27 | 2007-01-18 | Randolf Von Oepen | Catheter having plurality of stiffening members |
US20070021771A1 (en) * | 2004-05-27 | 2007-01-25 | Oepen Randolf V | Catheter having plurality of stiffening members |
US20070060910A1 (en) * | 2004-05-27 | 2007-03-15 | Axel Grandt | Multiple lumen catheter and method of making same |
US20070078439A1 (en) * | 2004-05-27 | 2007-04-05 | Axel Grandt | Multiple lumen catheter and method of making same |
US7201763B2 (en) | 2001-10-24 | 2007-04-10 | Boston Scientific Scimed, Inc. | Distal balloon waist material relief and method of manufacture |
US20070260177A1 (en) * | 2006-05-05 | 2007-11-08 | Boris Warnack | Balloon having a double compliance |
US7527606B2 (en) | 2004-05-27 | 2009-05-05 | Abbott Laboratories | Catheter having main body portion with coil-defined guidewire passage |
US7566319B2 (en) | 2004-04-21 | 2009-07-28 | Boston Scientific Scimed, Inc. | Traction balloon |
US7628769B2 (en) | 2004-05-27 | 2009-12-08 | Abbott Laboratories | Catheter having overlapping stiffening members |
US7632288B2 (en) | 2003-05-12 | 2009-12-15 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved pushability |
US7758604B2 (en) | 2003-05-29 | 2010-07-20 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved balloon configuration |
US7815627B2 (en) | 2004-05-27 | 2010-10-19 | Abbott Laboratories | Catheter having plurality of stiffening members |
US7887557B2 (en) | 2003-08-14 | 2011-02-15 | Boston Scientific Scimed, Inc. | Catheter having a cutting balloon including multiple cavities or multiple channels |
US8128595B2 (en) | 1998-04-21 | 2012-03-06 | Zoll Circulation, Inc. | Method for a central venous line catheter having a temperature control system |
WO2012122023A2 (en) | 2011-03-04 | 2012-09-13 | W.L. Gore & Associates, Inc. | Eluting medical devices |
WO2012142540A1 (en) | 2011-04-15 | 2012-10-18 | W.L. Gore & Associates, Inc. | Pivoting ring seal |
US8323432B2 (en) | 2002-12-31 | 2012-12-04 | Abbott Laboratories Vascular Enterprises Limited | Catheter and method of manufacturing same |
WO2013009740A1 (en) | 2011-07-14 | 2013-01-17 | W. L. Gore & Associates, Inc. | Expandable medical devices |
WO2013025470A2 (en) | 2011-08-12 | 2013-02-21 | W. L. Gore & Associates, Inc. | Evertable sheath devices, systems, and methods |
WO2013074185A1 (en) | 2011-11-16 | 2013-05-23 | W.L. Gore & Associates, Inc. | Eluting medical devices |
WO2013158342A1 (en) | 2012-04-16 | 2013-10-24 | W. L. Gore & Associates, Inc. | Single access flow-reversal catheter devices and methods |
WO2013188581A1 (en) | 2012-06-15 | 2013-12-19 | W. L. Gore & Associates, Inc. | Vascular occlusion and drug delivery devices, systems, and methods |
WO2014039667A1 (en) | 2012-09-05 | 2014-03-13 | W.L. Gore & Associates, Inc. | Retractable sheath devices, systems, and methods |
US8703260B2 (en) | 2010-09-14 | 2014-04-22 | Abbott Cardiovascular Systems Inc. | Catheter balloon and method for forming same |
US9084875B2 (en) | 2008-08-18 | 2015-07-21 | Cook Medical Technologies Llc | Single piece double wall dilation balloon catheter |
US10166371B2 (en) | 2005-12-20 | 2019-01-01 | Abbott Cardiovascular Systems Inc. | Non-compliant multilayered balloon for a catheter |
US11559387B2 (en) | 2017-09-12 | 2023-01-24 | W. L Gore & Associates, Inc. | Substrate with rotatable struts for medical device |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2995779A (en) * | 1959-03-12 | 1961-08-15 | Du Pont | Treatment for polymeric film to restrain gauge variation |
US3088173A (en) * | 1961-06-02 | 1963-05-07 | Du Pont | Process for preparing oriented polymeric linear terephthalate film with a deglossed writeable surface |
US3141912A (en) * | 1960-08-24 | 1964-07-21 | Du Pont | Process of treating polymeric film |
US3432591A (en) * | 1966-10-21 | 1969-03-11 | Du Pont | Biaxially oriented heat set film of high molecular weight polyethylene terephthalate |
FR2000406A1 (en) * | 1968-01-18 | 1969-09-05 | Union Carbide Corp | |
US3627579A (en) * | 1969-11-18 | 1971-12-14 | Du Pont | Unidirectionally oriented film structure of polyethylene terephthalate |
US3733309A (en) * | 1970-11-30 | 1973-05-15 | Du Pont | Biaxially oriented poly(ethylene terephthalate)bottle |
US3865666A (en) * | 1973-05-08 | 1975-02-11 | Int Paper Co | Method of making a catheter |
US4093484A (en) * | 1975-07-16 | 1978-06-06 | Warne Surgical Products Limited | Method of making surgical catheters and tubes |
US4154244A (en) * | 1977-11-21 | 1979-05-15 | Baxter Travenol Laboratories, Inc. | Balloon-type catheter |
GB2011307A (en) * | 1977-12-30 | 1979-07-11 | Airco Inc | Mehtod of making ecdotrcheal tube cuffs |
US4254774A (en) * | 1979-02-14 | 1981-03-10 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Balloon catheter and technique for the manufacture thereof |
US4256789A (en) * | 1979-07-19 | 1981-03-17 | Yoshino Kogyosho Co., Ltd. | Injection molded, polyethylene terephthalate parison for blow molding |
JPS5748377A (en) * | 1980-09-08 | 1982-03-19 | Babcock Hitachi Kk | Washer for inside of pipe of ash transport system |
US4367747A (en) * | 1980-10-01 | 1983-01-11 | Lothar Witzel | Pneumatic dilatator for introdution into the esophagus |
US4387833A (en) * | 1980-12-16 | 1983-06-14 | Container Industries, Inc. | Apparatus for containing and dispensing fluids under pressure and method of producing same |
US4411055A (en) * | 1980-05-19 | 1983-10-25 | Advanced Cardiovascular Systems, Inc. | Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods for making the same |
US4413989A (en) * | 1980-09-08 | 1983-11-08 | Angiomedics Corporation | Expandable occlusion apparatus |
US4456000A (en) * | 1981-08-17 | 1984-06-26 | Angiomedics Corporation | Expandable occlusion apparatus |
US4456020A (en) * | 1983-12-19 | 1984-06-26 | General Electric Company | Adjustable hair curler |
US4531943A (en) * | 1983-08-08 | 1985-07-30 | Angiomedics Corporation | Catheter with soft deformable tip |
US4531997A (en) * | 1983-12-15 | 1985-07-30 | Johnston Orin B | Forming bead seal in biaxially oriented polymer film by heat bonding |
US4587975A (en) * | 1984-07-02 | 1986-05-13 | Cardiac Pacemakers, Inc. | Dimension sensitive angioplasty catheter |
US4646742A (en) * | 1986-01-27 | 1987-03-03 | Angiomedics Incorporated | Angioplasty catheter assembly |
-
1988
- 1988-12-21 US US07/287,234 patent/USRE33561E/en not_active Expired - Lifetime
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2995779A (en) * | 1959-03-12 | 1961-08-15 | Du Pont | Treatment for polymeric film to restrain gauge variation |
US3141912A (en) * | 1960-08-24 | 1964-07-21 | Du Pont | Process of treating polymeric film |
US3088173A (en) * | 1961-06-02 | 1963-05-07 | Du Pont | Process for preparing oriented polymeric linear terephthalate film with a deglossed writeable surface |
US3432591A (en) * | 1966-10-21 | 1969-03-11 | Du Pont | Biaxially oriented heat set film of high molecular weight polyethylene terephthalate |
FR2000406A1 (en) * | 1968-01-18 | 1969-09-05 | Union Carbide Corp | |
GB1253272A (en) * | 1968-01-18 | 1971-11-10 | Union Carbide Corp | Polyolefin films and aeronautical balloons produced therefrom |
US3627579A (en) * | 1969-11-18 | 1971-12-14 | Du Pont | Unidirectionally oriented film structure of polyethylene terephthalate |
US3733309A (en) * | 1970-11-30 | 1973-05-15 | Du Pont | Biaxially oriented poly(ethylene terephthalate)bottle |
US3733309B1 (en) * | 1970-11-30 | 1985-09-03 | ||
US3865666A (en) * | 1973-05-08 | 1975-02-11 | Int Paper Co | Method of making a catheter |
US4093484A (en) * | 1975-07-16 | 1978-06-06 | Warne Surgical Products Limited | Method of making surgical catheters and tubes |
US4154244A (en) * | 1977-11-21 | 1979-05-15 | Baxter Travenol Laboratories, Inc. | Balloon-type catheter |
GB2011307A (en) * | 1977-12-30 | 1979-07-11 | Airco Inc | Mehtod of making ecdotrcheal tube cuffs |
US4254774A (en) * | 1979-02-14 | 1981-03-10 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Balloon catheter and technique for the manufacture thereof |
US4256789A (en) * | 1979-07-19 | 1981-03-17 | Yoshino Kogyosho Co., Ltd. | Injection molded, polyethylene terephthalate parison for blow molding |
US4256789B1 (en) * | 1979-07-19 | 1991-03-26 | Injection molded,polyethylene terephthalate parison for blow molding | |
US4411055A (en) * | 1980-05-19 | 1983-10-25 | Advanced Cardiovascular Systems, Inc. | Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods for making the same |
JPS5748377A (en) * | 1980-09-08 | 1982-03-19 | Babcock Hitachi Kk | Washer for inside of pipe of ash transport system |
US4413989A (en) * | 1980-09-08 | 1983-11-08 | Angiomedics Corporation | Expandable occlusion apparatus |
US4367747A (en) * | 1980-10-01 | 1983-01-11 | Lothar Witzel | Pneumatic dilatator for introdution into the esophagus |
US4387833A (en) * | 1980-12-16 | 1983-06-14 | Container Industries, Inc. | Apparatus for containing and dispensing fluids under pressure and method of producing same |
US4456000A (en) * | 1981-08-17 | 1984-06-26 | Angiomedics Corporation | Expandable occlusion apparatus |
US4531943A (en) * | 1983-08-08 | 1985-07-30 | Angiomedics Corporation | Catheter with soft deformable tip |
US4531997A (en) * | 1983-12-15 | 1985-07-30 | Johnston Orin B | Forming bead seal in biaxially oriented polymer film by heat bonding |
US4456020A (en) * | 1983-12-19 | 1984-06-26 | General Electric Company | Adjustable hair curler |
US4587975A (en) * | 1984-07-02 | 1986-05-13 | Cardiac Pacemakers, Inc. | Dimension sensitive angioplasty catheter |
US4646742A (en) * | 1986-01-27 | 1987-03-03 | Angiomedics Incorporated | Angioplasty catheter assembly |
Non-Patent Citations (16)
Title |
---|
"Nonoperative Dilatation of Coronary-Artery Stenosis-Percutaneous Transluminal Coronary Angioplasty", The New England Journal of Medicine, vol. 301, No. 2, pp. 61-68, Jul. 12, 1979, Gruntzig et al. |
C. Shriver, "How to Reheat Blow Mold Pet Soft-Drink Bottles", Plastics Technology, Oct. 1977, pp. 91-93. |
C. Shriver, How to Reheat Blow Mold Pet Soft Drink Bottles , Plastics Technology, Oct. 1977, pp. 91 93. * |
D. D. Ray, C. B., Shriver and R. J. Gartland, "Here's Why Polyethylene Terephthalate is the Major Competitor for Beverage Container Applications (Part 2-PET Processing Methods)", Plastics Design & Processing, Sep. 1977, pp. 47-50. |
D. D. Ray, C. B., Shriver and R. J. Gartland, Here s Why Polyethylene Terephthalate is the Major Competitor for Beverage Container Applications (Part 2 PET Processing Methods) , Plastics Design & Processing, Sep. 1977, pp. 47 50. * |
G. S. Kirshenbaum and J. M. Rhodes, "Thermoplastic Polyester: PET", Modern Plastics Encyclopedia by McGraw Hill, 1981-82. |
G. S. Kirshenbaum and J. M. Rhodes, Thermoplastic Polyester: PET , Modern Plastics Encyclopedia by McGraw Hill, 1981 82. * |
Jungnickel, Progr. Colloid Polym Sci. 67, 1159 60 (1980). * |
Jungnickel, Progr. Colloid Polym Sci. 67, 1159-60 (1980). |
Nonoperative Dilatation of Coronary Artery Stenosis Percutaneous Transluminal Coronary Angioplasty , The New England Journal of Medicine, vol. 301, No. 2, pp. 61 68, Jul. 12, 1979, Gruntzig et al. * |
Prof. R. B., Seymour, "The Narrowing Field of Plastics for Blow Molded Beverage Containers", Plastics Design & Processing, Jun. 1977, pp. 61-65. |
Prof. R. B., Seymour, The Narrowing Field of Plastics for Blow Molded Beverage Containers , Plastics Design & Processing, Jun. 1977, pp. 61 65. * |
R. B. Fredrickson and R. O. Braselton, "Stretch-Blow Molding for Packaging Versatility", Plastics Design & Processing, Nov. 1979, pp. 22-26. |
R. B. Fredrickson and R. O. Braselton, Stretch Blow Molding for Packaging Versatility , Plastics Design & Processing, Nov. 1979, pp. 22 26. * |
Schneider Shiley, Presenting an Inflated View of a Systematic Approach to Peripheral Angioplasty , 11/87. * |
Schneider-Shiley, "Presenting an Inflated View of a Systematic Approach to Peripheral Angioplasty", 11/87. |
Cited By (194)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5755690A (en) * | 1987-01-09 | 1998-05-26 | C. R. Bard | Multiple layer high strength balloon for dilatation catheter |
US5358486A (en) * | 1987-01-09 | 1994-10-25 | C. R. Bard, Inc. | Multiple layer high strength balloon for dilatation catheter |
US6500146B1 (en) | 1988-10-04 | 2002-12-31 | Cordis Corporation | Balloons for medical devices and fabrication thereof |
US6500148B1 (en) | 1988-10-04 | 2002-12-31 | Cordis Corporation | Balloons for medical devices and fabrication thereof |
US6132824A (en) | 1989-09-25 | 2000-10-17 | Schneider (Usa) Inc. | Multilayer catheter balloon |
US5411477A (en) * | 1990-05-11 | 1995-05-02 | Saab; Mark A. | High-strength, thin-walled single piece catheters |
US5624392A (en) * | 1990-05-11 | 1997-04-29 | Saab; Mark A. | Heat transfer catheters and methods of making and using same |
US5320634A (en) * | 1990-07-03 | 1994-06-14 | Interventional Technologies, Inc. | Balloon catheter with seated cutting edges |
US6136258A (en) | 1991-04-26 | 2000-10-24 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US20050238833A1 (en) * | 1991-04-26 | 2005-10-27 | Boston Scientific Corporation, A Delaware Corporation | Co-extruded medical balloon |
US6482348B1 (en) | 1991-04-26 | 2002-11-19 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US5330428A (en) * | 1991-05-14 | 1994-07-19 | Scimed Life Systems, Inc. | Dilatation catheter having a random copolymer balloon |
US5356430A (en) * | 1991-06-10 | 1994-10-18 | Nadol Jr Joseph B | Hearing prosthesis |
US5480433A (en) * | 1991-06-10 | 1996-01-02 | Nadol, Jr.; Joseph B. | Method of treating hearing loss |
US5264260A (en) * | 1991-06-20 | 1993-11-23 | Saab Mark A | Dilatation balloon fabricated from low molecular weight polymers |
US5328468A (en) * | 1991-10-08 | 1994-07-12 | Terumo Kabushiki Kaisha | Balloon for blood vessel-dilating catheter |
US5344401A (en) * | 1991-12-20 | 1994-09-06 | Interventional Technologies Inc. | Catheter balloon formed from a polymeric composite |
US5336234A (en) * | 1992-04-17 | 1994-08-09 | Interventional Technologies, Inc. | Method and apparatus for dilatation of a stenotic vessel |
US20050273145A1 (en) * | 1992-08-13 | 2005-12-08 | Mark Saab | Multi-lumen heat transfer catheters |
US7811249B2 (en) | 1992-08-13 | 2010-10-12 | Advanced Polymers, Inc. | Multi-lumen heat transfer catheters |
US5853408A (en) * | 1992-08-20 | 1998-12-29 | Advanced Cardiovascular Systems, Inc. | In-vivo modification of the mechanical properties of surgical devices |
US5500181A (en) * | 1992-09-29 | 1996-03-19 | Scimed Life Systems, Inc. | Shrinking balloon catheter having nonlinear compliance curve |
US5403340A (en) * | 1992-09-29 | 1995-04-04 | Scimed Lifesystems Inc. | Shrinking balloon catheter having nonlinear compliance curve |
US5348538A (en) * | 1992-09-29 | 1994-09-20 | Scimed Life Systems, Inc. | Shrinking balloon catheter having nonlinear or hybrid compliance curve |
US5337734A (en) * | 1992-10-29 | 1994-08-16 | Advanced Polymers, Incorporated | Disposable sheath with optically transparent window formed continuously integral therewith |
US5443781A (en) * | 1992-10-29 | 1995-08-22 | Saab; Mark A. | Method of preparing disposable sheath with optically transparent windows formed continuously integral therewith |
US5383856A (en) * | 1993-03-19 | 1995-01-24 | Bersin; Robert M. | Helical spiral balloon catheter |
US5411478A (en) * | 1993-07-12 | 1995-05-02 | Michael E. Stillabower | Angioplasty apparatus and process |
US6328710B1 (en) | 1993-09-20 | 2001-12-11 | Scimed Life Systems, Inc. | Process improvements for preparing catheter balloons |
US5714110A (en) * | 1993-09-20 | 1998-02-03 | Scimed Life Systems, Inc. | Process improvements for preparing catheter balloons |
US5797877A (en) * | 1993-10-01 | 1998-08-25 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US7781038B2 (en) | 1993-10-01 | 2010-08-24 | Boston Scientific Scimed, Inc. | Medical device balloons containing thermoplastic elastomers |
US20050186370A1 (en) * | 1993-10-01 | 2005-08-25 | Boston Scientific Corporation, A Massachusetts Corporation | Medical device balloons containing thermoplastic elastomers |
US6086556A (en) | 1993-10-01 | 2000-07-11 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
WO1995016735A1 (en) * | 1993-12-17 | 1995-06-22 | E.I. Du Pont De Nemours And Company | Polyethylene therephthalate articles having desirable adhesion and non-blocking characteristics, and a preparative process therefor |
US5721023A (en) * | 1993-12-17 | 1998-02-24 | E. I. Du Pont De Nemours And Company | Polyethylene terephthalate articles having desirable adhesion and non-blocking characteristics, and a preparative process therefor |
WO1995022367A1 (en) * | 1994-02-17 | 1995-08-24 | Scimed Life Systems, Inc. | Process improvements for preparing catheter balloons |
US7700033B2 (en) | 1994-03-02 | 2010-04-20 | Boston Scientific Scimed, Inc. | Block copolymer elastomer catheter balloons |
US20020132072A1 (en) * | 1994-03-02 | 2002-09-19 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US7618696B2 (en) | 1994-03-02 | 2009-11-17 | Boston Scientific Scimed, Inc. | Block copolymer elastomer catheter balloons |
US7163522B1 (en) * | 1994-03-02 | 2007-01-16 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US6171278B1 (en) * | 1994-03-02 | 2001-01-09 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US6406457B1 (en) * | 1994-03-02 | 2002-06-18 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US5746968A (en) * | 1994-10-20 | 1998-05-05 | Interventional Technologies, Inc. | Method for manufacturing a high strength angioplasty balloon |
EP0721766A1 (en) | 1995-01-10 | 1996-07-17 | Interventional Technologies Inc | Vascular incisor/dilator |
WO1997003716A1 (en) * | 1995-07-20 | 1997-02-06 | Navius Corporation | Distensible pet balloon and method of manufacture |
US5645789A (en) * | 1995-07-20 | 1997-07-08 | Navius Corporation | Distensible pet balloon and method of manufacture |
US5807520A (en) * | 1995-11-08 | 1998-09-15 | Scimed Life Systems, Inc. | Method of balloon formation by cold drawing/necking |
US5733301A (en) * | 1996-01-11 | 1998-03-31 | Schneider (Usa) Inc. | Laser ablation of angioplasty catheters and balloons |
US5826588A (en) * | 1996-01-11 | 1998-10-27 | Schneider (Usa) Inc. | Laser ablation of angioplasty catheters and balloons |
US5871468A (en) * | 1996-04-24 | 1999-02-16 | Medtronic, Inc. | Medical catheter with a high pressure/low compliant balloon |
US20040093008A1 (en) * | 1996-10-08 | 2004-05-13 | Zamore Alan M. | Reduced profile medical balloon element |
US7749585B2 (en) | 1996-10-08 | 2010-07-06 | Alan Zamore | Reduced profile medical balloon element |
US8317747B2 (en) | 1996-10-10 | 2012-11-27 | Boston Scientific Scimed, Inc. | Catheter for tissue dilation and drug delivery |
US6733474B2 (en) | 1996-10-10 | 2004-05-11 | Scimed Life Systems, Inc. | Catheter for tissue dilatation and drug delivery |
US5769817A (en) * | 1997-02-28 | 1998-06-23 | Schneider (Usa) Inc. | Coextruded balloon and method of making same |
US6585688B2 (en) | 1997-09-10 | 2003-07-01 | Scimed Life Systems, Inc. | Dilatation catheter balloon made from PEN based homopolymer or random copolymer |
US6866649B2 (en) | 1997-09-10 | 2005-03-15 | Boston Scientific Scimed, Inc. | Dilation catheter balloon made from pen based homopolymer or random copolymer |
US6358227B1 (en) | 1997-09-10 | 2002-03-19 | Scimed Life Systems, Inc. | Dilatation catheter balloon made from pen based homopolymer or random copolymer |
US20070005009A1 (en) * | 1997-10-15 | 2007-01-04 | Scimed Life Systems, Inc. | Catheter with spiral cut transition member |
US7115183B2 (en) | 1997-10-15 | 2006-10-03 | Scimed Life Systems, Inc. | Catheter with spiral cut transition member |
US7744586B2 (en) | 1997-10-15 | 2010-06-29 | Boston Scientific Scimed, Inc. | Catheter with spiral cut transition member |
US6099926A (en) | 1997-12-12 | 2000-08-08 | Intella Interventional Systems, Inc. | Aliphatic polyketone compositions and medical devices |
US6093463A (en) | 1997-12-12 | 2000-07-25 | Intella Interventional Systems, Inc. | Medical devices made from improved polymer blends |
US6589271B1 (en) | 1998-04-21 | 2003-07-08 | Alsius Corporations | Indwelling heat exchange catheter |
US8128595B2 (en) | 1998-04-21 | 2012-03-06 | Zoll Circulation, Inc. | Method for a central venous line catheter having a temperature control system |
US6419643B1 (en) | 1998-04-21 | 2002-07-16 | Alsius Corporation | Central venous catheter with heat exchange properties |
US6716236B1 (en) | 1998-04-21 | 2004-04-06 | Alsius Corporation | Intravascular catheter with heat exchange element having inner inflation element and methods of use |
US6652565B1 (en) | 1998-04-21 | 2003-11-25 | Alsius Corporation | Central venous catheter with heat exchange properties |
US7771450B2 (en) | 1998-05-11 | 2010-08-10 | Boston Scientific Scimed, Inc. | Balloon cones and waists thinning methodology |
US8357177B2 (en) | 1998-05-11 | 2013-01-22 | Boston Scientific Scimed, Inc. | Balloon cones and waists thinning methodology |
US7217278B2 (en) | 1998-05-11 | 2007-05-15 | Boston Scientific Scimed, Inc. | Balloon cones and waists thinning methodology |
US20070213762A1 (en) * | 1998-05-11 | 2007-09-13 | Boston Scientific Scimed, Inc. | Balloon Cones and Waists Thinning Methodology |
US6193738B1 (en) | 1998-05-11 | 2001-02-27 | Scimed Life Systems, Inc. | Balloon cones and waists thinning methodology |
US20100320169A1 (en) * | 1998-05-11 | 2010-12-23 | Boston Scientific Scimed, Inc. | Balloon Cones and Waists Thinning Methodology |
US6495090B1 (en) | 1998-06-11 | 2002-12-17 | Infinity Extrusion & Engineering | Method of manufacture of semi-compliant catheter balloons |
US6416494B1 (en) | 1998-06-11 | 2002-07-09 | Infinity Extrusion & Engineering, Inc. | Semi-compliant catheter balloons and methods of manufacture thereof |
US6458313B2 (en) | 1998-07-09 | 2002-10-01 | Schneider (Usa) Inc. | Method for reducing dilation balloon cone stiffness |
US6287506B1 (en) | 1998-07-09 | 2001-09-11 | Schneider (Usa) Inc. | Method for reducing dilation balloon cone stiffness |
US6450990B1 (en) | 1998-08-13 | 2002-09-17 | Alsius Corporation | Catheter with multiple heating/cooling fibers employing fiber spreading features |
US6393320B2 (en) | 1999-02-19 | 2002-05-21 | Alsius Corporation | Method for treating cardiac arrest |
US6458150B1 (en) | 1999-02-19 | 2002-10-01 | Alsius Corporation | Method and apparatus for patient temperature control |
US6582398B1 (en) | 1999-02-19 | 2003-06-24 | Alsius Corporation | Method of managing patient temperature with a heat exchange catheter |
US6299599B1 (en) | 1999-02-19 | 2001-10-09 | Alsius Corporation | Dual balloon central venous line catheter temperature control system |
US6516224B2 (en) | 1999-02-19 | 2003-02-04 | Alsius Corporation | Method for treating cardiac arrest |
US6620131B2 (en) | 1999-02-19 | 2003-09-16 | Alsius Corporation | Dual balloon central venous line catheter temperature control system |
US6368304B1 (en) | 1999-02-19 | 2002-04-09 | Alsius Corporation | Central venous catheter with heat exchange membrane |
US6165207A (en) | 1999-05-27 | 2000-12-26 | Alsius Corporation | Method of selectively shaping hollow fibers of heat exchange catheter |
US6287326B1 (en) | 1999-08-02 | 2001-09-11 | Alsius Corporation | Catheter with coiled multi-lumen heat transfer extension |
US6447474B1 (en) | 1999-09-15 | 2002-09-10 | Alsius Corporation | Automatic fever abatement system |
US7587801B2 (en) | 1999-09-22 | 2009-09-15 | Boston Scientific Scimed, Inc. | Stent crimper |
US20100154195A1 (en) * | 1999-09-22 | 2010-06-24 | Boston Scientific Scimed, Inc. | Method and apparatus for contracting, or crimping stents |
US6360577B2 (en) | 1999-09-22 | 2002-03-26 | Scimed Life Systems, Inc. | Apparatus for contracting, or crimping stents |
US7992273B2 (en) | 1999-09-22 | 2011-08-09 | Boston Scientific Scimed, Inc. | Crimping apparatus for reducing size of a stent |
US6823576B2 (en) | 1999-09-22 | 2004-11-30 | Scimed Life Systems, Inc. | Method and apparatus for contracting, loading or crimping self-expanding and balloon expandable stent devices |
US20050240256A1 (en) * | 1999-09-22 | 2005-10-27 | Boston Scientific Scimed, Inc. | Method and apparatus for contracting, loading or crimping self-expanding and balloon expandable stent devices |
US8533925B2 (en) | 1999-09-22 | 2013-09-17 | Boston Scientific Scimed, Inc. | Method for contracting or crimping stents |
US6915560B2 (en) | 1999-09-22 | 2005-07-12 | Boston Scientific Scimed, Inc. | Apparatus for contracting, loading or crimping self-expanding and balloon expandable stent devices |
US6561788B1 (en) | 2000-05-31 | 2003-05-13 | Advanced Cardiovascular Systems, Inc. | Modular mold designs |
US6968607B2 (en) | 2000-06-08 | 2005-11-29 | Tom Motsenbocker | Stent crimping method |
US6629350B2 (en) | 2000-06-08 | 2003-10-07 | Tom Motsenbocker | Stent crimping apparatus and method |
US6951674B1 (en) | 2000-11-10 | 2005-10-04 | Scimed Life Systems, Inc. | Blended polyurethane interventional balloon |
US7060218B2 (en) | 2001-03-06 | 2006-06-13 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US20020125617A1 (en) * | 2001-03-06 | 2002-09-12 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US6835059B2 (en) | 2001-03-06 | 2004-12-28 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US20060182833A1 (en) * | 2001-03-06 | 2006-08-17 | Skinner Johann J | Adjustable length mold assemblies |
US20050087913A1 (en) * | 2001-03-06 | 2005-04-28 | Skinner Johann J. | Adjustable length mold assemblies |
US7399444B2 (en) | 2001-03-06 | 2008-07-15 | Advanced Cardivascular Systems, Inc. | Adjustable length mold assemblies |
US8128860B2 (en) | 2001-03-26 | 2012-03-06 | Machine Solutions, Inc. | Balloon folding technology |
US7407377B2 (en) | 2001-03-26 | 2008-08-05 | Machine Solutions, Inc. | Balloon folding technology |
US8679398B2 (en) | 2001-03-26 | 2014-03-25 | Machine Solutions, Inc. | Balloon folding technology |
US6988881B2 (en) | 2001-03-26 | 2006-01-24 | Machine Solutions, Inc. | Balloon folding technology |
US6537247B2 (en) * | 2001-06-04 | 2003-03-25 | Donald T. Shannon | Shrouded strain relief medical balloon device and method of use |
US6946092B1 (en) | 2001-09-10 | 2005-09-20 | Scimed Life Systems, Inc. | Medical balloon |
US20060182913A1 (en) * | 2001-09-10 | 2006-08-17 | William Bertolino | Medical balloon |
US7201763B2 (en) | 2001-10-24 | 2007-04-10 | Boston Scientific Scimed, Inc. | Distal balloon waist material relief and method of manufacture |
US6572640B1 (en) | 2001-11-21 | 2003-06-03 | Alsius Corporation | Method and apparatus for cardiopulmonary bypass patient temperature control |
US20040039410A1 (en) * | 2002-08-22 | 2004-02-26 | Brooke Ren | High-strength balloon with tailored softness |
US7278984B2 (en) | 2002-12-31 | 2007-10-09 | Alsius Corporation | System and method for controlling rate of heat exchange with patient |
US8323432B2 (en) | 2002-12-31 | 2012-12-04 | Abbott Laboratories Vascular Enterprises Limited | Catheter and method of manufacturing same |
US7641632B2 (en) | 2002-12-31 | 2010-01-05 | Zoll Circulation, Inc. | System and method for controlling rate of heat exchange with patient |
US20040127851A1 (en) * | 2002-12-31 | 2004-07-01 | Alsius Corporation | System and method for controlling rate of heat exchange with patient |
US7306616B2 (en) | 2003-05-05 | 2007-12-11 | Boston Scientific Scimed, Inc. | Balloon catheter and method of making same |
US20040225318A1 (en) * | 2003-05-05 | 2004-11-11 | Tracee Eidenschink | Balloon catheter and method of making same |
US7632288B2 (en) | 2003-05-12 | 2009-12-15 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved pushability |
US8172864B2 (en) | 2003-05-12 | 2012-05-08 | Boston Scientific Scimed, Inc. | Balloon catheter with improved pushability |
US8617193B2 (en) | 2003-05-12 | 2013-12-31 | Boston Scientific Scimed, Inc. | Balloon catheter with improved pushability |
US7758604B2 (en) | 2003-05-29 | 2010-07-20 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved balloon configuration |
US20050033225A1 (en) * | 2003-08-08 | 2005-02-10 | Scimed Life Systems, Inc. | Catheter shaft for regulation of inflation and deflation |
US7780626B2 (en) | 2003-08-08 | 2010-08-24 | Boston Scientific Scimed, Inc. | Catheter shaft for regulation of inflation and deflation |
US7887557B2 (en) | 2003-08-14 | 2011-02-15 | Boston Scientific Scimed, Inc. | Catheter having a cutting balloon including multiple cavities or multiple channels |
US7597702B2 (en) | 2003-09-17 | 2009-10-06 | Boston Scientific Scimed, Inc. | Balloon assembly with a torque |
US20100022949A1 (en) * | 2003-09-17 | 2010-01-28 | Boston Scientific Scimed, Inc. | Balloon assembly with a torque |
US8298192B2 (en) | 2003-09-17 | 2012-10-30 | Boston Scientific Scimed, Inc. | Balloon assembly with a torque |
US20050059989A1 (en) * | 2003-09-17 | 2005-03-17 | Scimed Life Systems, Inc. | Balloon assembly with a torque |
US7754047B2 (en) | 2004-04-08 | 2010-07-13 | Boston Scientific Scimed, Inc. | Cutting balloon catheter and method for blade mounting |
US20050228343A1 (en) * | 2004-04-08 | 2005-10-13 | Scimed Life Systems, Inc. | Cutting balloon catheter and method for blade mounting |
US7566319B2 (en) | 2004-04-21 | 2009-07-28 | Boston Scientific Scimed, Inc. | Traction balloon |
US8945047B2 (en) | 2004-04-21 | 2015-02-03 | Boston Scientific Scimed, Inc. | Traction balloon |
US20070021771A1 (en) * | 2004-05-27 | 2007-01-25 | Oepen Randolf V | Catheter having plurality of stiffening members |
US20050267408A1 (en) * | 2004-05-27 | 2005-12-01 | Axel Grandt | Catheter having first and second guidewire tubes and overlapping stiffening members |
US7785318B2 (en) | 2004-05-27 | 2010-08-31 | Abbott Laboratories | Catheter having plurality of stiffening members |
US20070016165A1 (en) * | 2004-05-27 | 2007-01-18 | Randolf Von Oepen | Catheter having plurality of stiffening members |
US7628769B2 (en) | 2004-05-27 | 2009-12-08 | Abbott Laboratories | Catheter having overlapping stiffening members |
US7815627B2 (en) | 2004-05-27 | 2010-10-19 | Abbott Laboratories | Catheter having plurality of stiffening members |
US7625353B2 (en) | 2004-05-27 | 2009-12-01 | Abbott Laboratories | Catheter having first and second guidewire tubes and overlapping stiffening members |
US20070060910A1 (en) * | 2004-05-27 | 2007-03-15 | Axel Grandt | Multiple lumen catheter and method of making same |
US7527606B2 (en) | 2004-05-27 | 2009-05-05 | Abbott Laboratories | Catheter having main body portion with coil-defined guidewire passage |
US7658723B2 (en) | 2004-05-27 | 2010-02-09 | Abbott Laboratories | Catheter having plurality of stiffening members |
US20070078439A1 (en) * | 2004-05-27 | 2007-04-05 | Axel Grandt | Multiple lumen catheter and method of making same |
US8092634B2 (en) | 2004-09-29 | 2012-01-10 | Abbott Laboratories Vascular Enterprises Limited | Method for connecting a catheter balloon with a catheter shaft of a balloon catheter |
US20100319848A1 (en) * | 2004-09-29 | 2010-12-23 | Abbott Laboratories Vascular Enterprises Limited | Method for connecting a catheter balloon with a catheter shaft of a balloon catheter |
US20060071371A1 (en) * | 2004-09-29 | 2006-04-06 | Abbott Laboratories Vascular Enterprises Ltd. | Method for connecting a catheter balloon with a catheter shaft of a balloon catheter |
US7785439B2 (en) | 2004-09-29 | 2010-08-31 | Abbott Laboratories Vascular Enterprises Limited | Method for connecting a catheter balloon with a catheter shaft of a balloon catheter |
US8038691B2 (en) | 2004-11-12 | 2011-10-18 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having flexible atherotomes |
US7291158B2 (en) | 2004-11-12 | 2007-11-06 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having a segmented blade |
US8690903B2 (en) | 2004-11-12 | 2014-04-08 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having flexible atherotomes |
US20060106412A1 (en) * | 2004-11-12 | 2006-05-18 | Scimed Life Systems, Inc. | Cutting balloon catheter having a segmented blade |
US20060106413A1 (en) * | 2004-11-12 | 2006-05-18 | Scimed Life Systems, Inc. | Cutting balloon catheter having flexible atherotomes |
US8361096B2 (en) | 2004-11-12 | 2013-01-29 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having flexible atherotomes |
US20060184191A1 (en) * | 2005-02-11 | 2006-08-17 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
US7993358B2 (en) | 2005-02-11 | 2011-08-09 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
US8986339B2 (en) | 2005-06-17 | 2015-03-24 | Abbott Laboratories | Method of reducing rigidity of angioplasty balloon sections |
US20070016240A1 (en) * | 2005-06-17 | 2007-01-18 | Abbott Laboratories | Method of reducing rigidity of angioplasty balloon sections |
WO2006138741A1 (en) | 2005-06-17 | 2006-12-28 | Abbott Laboratories | Method of reducing rigidity of angioplasty balloon sections |
US7967836B2 (en) | 2005-06-17 | 2011-06-28 | Abbott Laboratories | Dilatation balloon having reduced rigidity |
US8292913B2 (en) | 2005-06-17 | 2012-10-23 | Abbott Laboratories | Method of reducing rigidity of angioplasty balloon sections |
US10166371B2 (en) | 2005-12-20 | 2019-01-01 | Abbott Cardiovascular Systems Inc. | Non-compliant multilayered balloon for a catheter |
US8388599B2 (en) | 2006-05-05 | 2013-03-05 | Abbott Laboratories | Method with balloon catheter having first and second inflatable elements |
US9381327B2 (en) | 2006-05-05 | 2016-07-05 | Abbott Laboratories | Balloon catheter |
US20070260177A1 (en) * | 2006-05-05 | 2007-11-08 | Boris Warnack | Balloon having a double compliance |
US9084875B2 (en) | 2008-08-18 | 2015-07-21 | Cook Medical Technologies Llc | Single piece double wall dilation balloon catheter |
US8703260B2 (en) | 2010-09-14 | 2014-04-22 | Abbott Cardiovascular Systems Inc. | Catheter balloon and method for forming same |
US9579492B2 (en) | 2010-09-14 | 2017-02-28 | Abbott Cardiovascular Systems Inc. | Method for forming catheter balloon |
EP3178501A1 (en) | 2011-03-04 | 2017-06-14 | W.L. Gore & Associates, Inc. | Eluting medical devices |
WO2012122023A2 (en) | 2011-03-04 | 2012-09-13 | W.L. Gore & Associates, Inc. | Eluting medical devices |
WO2012142540A1 (en) | 2011-04-15 | 2012-10-18 | W.L. Gore & Associates, Inc. | Pivoting ring seal |
EP2805740A1 (en) | 2011-04-15 | 2014-11-26 | W.L. Gore & Associates, Inc. | Pivoting ring seal |
EP2805741A1 (en) | 2011-04-15 | 2014-11-26 | W.L. Gore & Associates, Inc. | Pivoting ring seal |
EP3763414A1 (en) | 2011-07-14 | 2021-01-13 | W.L. Gore & Associates, Inc. | Expandable medical devices |
EP4442290A2 (en) | 2011-07-14 | 2024-10-09 | W. L. Gore & Associates, Inc. | Expandable medical devices |
WO2013009740A1 (en) | 2011-07-14 | 2013-01-17 | W. L. Gore & Associates, Inc. | Expandable medical devices |
WO2013025470A2 (en) | 2011-08-12 | 2013-02-21 | W. L. Gore & Associates, Inc. | Evertable sheath devices, systems, and methods |
WO2013074185A1 (en) | 2011-11-16 | 2013-05-23 | W.L. Gore & Associates, Inc. | Eluting medical devices |
EP3804772A1 (en) | 2011-11-16 | 2021-04-14 | W.L. Gore & Associates, Inc. | Eluting medical devices |
US9668743B2 (en) | 2012-04-16 | 2017-06-06 | W. L. Gore & Associates, Inc. | Single access flow-reversal catheter devices and methods |
US10799244B2 (en) | 2012-04-16 | 2020-10-13 | W. L. Gore & Associates, Inc. | Single access flow-reversal catheter devices and methods |
WO2013158342A1 (en) | 2012-04-16 | 2013-10-24 | W. L. Gore & Associates, Inc. | Single access flow-reversal catheter devices and methods |
WO2013188575A1 (en) | 2012-06-15 | 2013-12-19 | W.L. Gore & Associates, Inc. | Vascular occlusion and drug delivery devices, systems, and methods |
WO2013188581A1 (en) | 2012-06-15 | 2013-12-19 | W. L. Gore & Associates, Inc. | Vascular occlusion and drug delivery devices, systems, and methods |
EP4154825A1 (en) | 2012-06-15 | 2023-03-29 | W.L. Gore & Associates Inc. | Vascular occlusion and drug delivery devices |
EP4166098A1 (en) | 2012-06-15 | 2023-04-19 | W. L. Gore & Associates, Inc. | Vascular drug delivery devices |
WO2014039667A1 (en) | 2012-09-05 | 2014-03-13 | W.L. Gore & Associates, Inc. | Retractable sheath devices, systems, and methods |
US11559387B2 (en) | 2017-09-12 | 2023-01-24 | W. L Gore & Associates, Inc. | Substrate with rotatable struts for medical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE33561E (en) | Balloon and manufacture thereof | |
USRE32983E (en) | Balloon and manufacture thereof | |
US4490421A (en) | Balloon and manufacture thereof | |
EP0274411A2 (en) | Thin wall high strength balloon and method of manufacture | |
US5358486A (en) | Multiple layer high strength balloon for dilatation catheter | |
US6620128B1 (en) | Balloon blowing process with metered volumetric inflation | |
US6004289A (en) | Multiple layer high strength balloon for dilatation catheter | |
US5304340A (en) | Method of increasing the tensile strength of a dilatation balloon | |
US5264260A (en) | Dilatation balloon fabricated from low molecular weight polymers | |
US5411477A (en) | High-strength, thin-walled single piece catheters | |
EP0362826B1 (en) | Balloons for medical devices | |
JP3602147B2 (en) | Multi-layer high strength balloon for dilatation catheter | |
US5500180A (en) | Method of making a distensible dilatation balloon using a block copolymer | |
JP2932295B2 (en) | Apparatus and method for manufacturing a balloon for a medical device | |
EP0974370B1 (en) | Balloon for medical catheter | |
US6110142A (en) | Balloons for medical devices and fabrication thereof | |
US5156612A (en) | Balloons for medical devices and fabrication thereof | |
JP3594971B2 (en) | Inflatable balloon containing polyester ether amide copolymer | |
US5055024A (en) | Apparatus for manufacturing balloons for medical devices | |
EP0439202B1 (en) | Apparatus and method for manufacturing balloons for medical devices | |
IE56820B1 (en) | Balloon and manufacture thereof | |
IE56821B1 (en) | Balloon and manufacture thereof | |
JP3360173B2 (en) | Balloon for medical device and its molding | |
JPH1015055A (en) | Low-profile balloon and its production | |
Levy | Improved Dialtation Catheter Balloons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: E.I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON, D Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LEVY, STANLEY B.;REEL/FRAME:005031/0995 Effective date: 19881219 |
|
AS | Assignment |
Owner name: C.R. BARD, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:E.I. DU PONT DE NEMOURS AND COMPANY, A DE CORP.;REEL/FRAME:005511/0613 Effective date: 19901023 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |